File size: 6,176 Bytes
8d095fd 3a0359a 8d095fd 3a0359a 9c0daeb be61c57 eab141c e203fb8 9c0daeb 1ab64c5 8d095fd 1ab64c5 e203fb8 1ab64c5 41d397a 24bb688 41d397a 1ab64c5 be61c57 f1658c0 1ab64c5 7b9e4ff 0aaa4e0 e203fb8 0aaa4e0 e203fb8 be61c57 0aaa4e0 8d095fd be61c57 0aaa4e0 b2620a8 59ea6c7 8d095fd 0aaa4e0 8d095fd 9c0daeb 8d095fd e203fb8 4fad638 e203fb8 8d095fd 59ea6c7 9c0daeb b2620a8 a15365e 9c0daeb a15365e 9c0daeb e203fb8 9c0daeb 8d095fd 0aaa4e0 8d095fd 0aaa4e0 8d095fd 0aaa4e0 8d095fd b2620a8 a15365e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import os
import json
import tarfile
import datasets
from collections import defaultdict
_DESCRIPTION = """\
Dataset for extracting notations from chess scoresheets, integrating both image and text data.
"""
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.},
year={2024}
}
"""
_LICENSE = "Creative Commons Attribution 3.0"
class ChessImageTextDataset(datasets.GeneratorBasedBuilder):
"""Dataset for linking chess scoresheet images with multiple ground truth texts."""
def _info(self):
# Define the features of your dataset (images + text)
features = datasets.Features(
{
"image": datasets.Image(), # Image feature for chess scoresheets
"text": datasets.Value("string"), # Text feature for chess notations
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage={
"text_dataset_homepage": "https://huggingface.co/datasets/Chesscorner/jsonl-chess-dataset",
"image_dataset_homepage": "https://huggingface.co/datasets/Chesscorner/chess-images"
},
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Define the splits of the dataset."""
image_dataset_url = "https://huggingface.co/datasets/Chesscorner/chess-images/resolve/main/flat_images.tar.gz"
extracted_image_path = dl_manager.download(image_dataset_url)
text_dataset_url = "https://huggingface.co/datasets/Chesscorner/jsonl-chess-dataset/resolve/main/train.jsonl/train.jsonl"
text_filepath = dl_manager.download(text_dataset_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"image_tar_path": extracted_image_path, # Path to the tar.gz file
"text_filepath": text_filepath, # Path to the text dataset
},
),
]
def _generate_examples(self, image_tar_path, text_filepath):
"""Generate examples by linking images with multiple related texts and clean up the text data."""
idx = 0
# Extract and map text IDs to their corresponding images
image_mapping = self._extract_images_from_tar(image_tar_path)
# Dictionary to hold multiple texts for each image ID
grouped_texts = defaultdict(list)
# Load the text dataset (ground truths) from the JSONL file
with open(text_filepath, encoding="utf-8") as fp:
for line in fp:
obj = json.loads(line)
text = obj["text"]
# Extract the text ID (assuming text ID matches image filename)
text_id = text[:5] # Adjust this based on the actual pattern of text IDs
# Group texts by their text_id (which corresponds to the image)
grouped_texts[text_id].append(text)
# Now generate examples, linking each image to its grouped texts
for text_id, texts in grouped_texts.items():
image_file = image_mapping.get(f"{text_id}.png") # Adjust file extension if necessary
# Ensure the image exists and yield the example
if image_file:
# Clean the text to keep only chess notation
cleaned_texts = [self._extract_chess_notation(text) for text in texts]
# Add numbering to the moves in pairs
numbered_text = self._add_numeration(cleaned_texts)
yield idx, {
"image": image_file,
"text": numbered_text, # Link all related cleaned notations together with numeration
}
idx += 1
else:
print(f"Image not found for ID: {text_id}")
def _extract_images_from_tar(self, tar_path):
"""Extracts the images from the tar.gz archive and returns a mapping of image filenames to file paths."""
image_mapping = {}
extraction_directory = "images_extracted" # Temporary directory to store extracted images
os.makedirs(extraction_directory, exist_ok=True)
# Open the tar file and extract only files (skip directories)
with tarfile.open(tar_path, "r:gz") as tar:
for member in tar.getmembers():
if member.isfile(): # Only process files, skip directories
image_filename = os.path.basename(member.name)
extracted_image_path = os.path.join(extraction_directory, image_filename)
# Extract the image file individually
with tar.extractfile(member) as extracted_file:
with open(extracted_image_path, "wb") as out_file:
out_file.write(extracted_file.read())
# Map the image file to its path
image_mapping[image_filename] = extracted_image_path
return image_mapping
def _extract_chess_notation(self, text):
"""Extracts the chess notation from the full text string."""
# Assuming the chess notation comes after the filename and space, e.g., '001_0_30_white.png Rxc6'
notation = text.split(" ", 1)[-1] # Extract everything after the first space
return notation.strip()
def _add_numeration(self, notations):
"""Adds numeration to chess notations, pairing moves and numbering them."""
numbered_text = []
counter = 1
# Pair every two moves and add numeration
for i in range(0, len(notations), 2):
# Grab two moves if available, otherwise just take the remaining one
move_pair = notations[i:i+2]
numbered_move = f"{counter}. " + " ".join(move_pair)
numbered_text.append(numbered_move)
counter += 1
# Join all numbered moves into a single text
return " ".join(numbered_text)
|