|
import os |
|
import json |
|
import tarfile |
|
import datasets |
|
from collections import defaultdict |
|
|
|
_DESCRIPTION = """\ |
|
Dataset for extracting notations from chess scoresheets, integrating both image and text data. |
|
""" |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A great new dataset}, |
|
author={huggingface, Inc.}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
_LICENSE = "Creative Commons Attribution 3.0" |
|
|
|
class ChessImageTextDataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset for linking chess scoresheet images with multiple ground truth texts.""" |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage={ |
|
"text_dataset_homepage": "https://huggingface.co/datasets/Chesscorner/jsonl-chess-dataset", |
|
"image_dataset_homepage": "https://huggingface.co/datasets/Chesscorner/chess-images" |
|
}, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Define the splits of the dataset.""" |
|
image_dataset_url = "https://huggingface.co/datasets/Chesscorner/chess-images/resolve/main/flat_images.tar.gz" |
|
extracted_image_path = dl_manager.download(image_dataset_url) |
|
|
|
text_dataset_url = "https://huggingface.co/datasets/Chesscorner/jsonl-chess-dataset/resolve/main/train.jsonl/train.jsonl" |
|
text_filepath = dl_manager.download(text_dataset_url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"image_tar_path": extracted_image_path, |
|
"text_filepath": text_filepath, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, image_tar_path, text_filepath): |
|
"""Generate examples by linking images with multiple related texts and clean up the text data.""" |
|
idx = 0 |
|
|
|
image_mapping = self._extract_images_from_tar(image_tar_path) |
|
|
|
|
|
grouped_texts = defaultdict(list) |
|
|
|
|
|
with open(text_filepath, encoding="utf-8") as fp: |
|
for line in fp: |
|
obj = json.loads(line) |
|
text = obj["text"] |
|
|
|
|
|
text_id = text[:5] |
|
|
|
|
|
grouped_texts[text_id].append(text) |
|
|
|
|
|
for text_id, texts in grouped_texts.items(): |
|
image_file = image_mapping.get(f"{text_id}.png") |
|
|
|
|
|
if image_file: |
|
|
|
cleaned_texts = [self._extract_chess_notation(text) for text in texts] |
|
|
|
|
|
numbered_text = self._add_numeration(cleaned_texts) |
|
|
|
yield idx, { |
|
"image": image_file, |
|
"text": numbered_text, |
|
} |
|
idx += 1 |
|
else: |
|
print(f"Image not found for ID: {text_id}") |
|
|
|
def _extract_images_from_tar(self, tar_path): |
|
"""Extracts the images from the tar.gz archive and returns a mapping of image filenames to file paths.""" |
|
image_mapping = {} |
|
extraction_directory = "images_extracted" |
|
os.makedirs(extraction_directory, exist_ok=True) |
|
|
|
|
|
with tarfile.open(tar_path, "r:gz") as tar: |
|
for member in tar.getmembers(): |
|
if member.isfile(): |
|
image_filename = os.path.basename(member.name) |
|
extracted_image_path = os.path.join(extraction_directory, image_filename) |
|
|
|
|
|
with tar.extractfile(member) as extracted_file: |
|
with open(extracted_image_path, "wb") as out_file: |
|
out_file.write(extracted_file.read()) |
|
|
|
|
|
image_mapping[image_filename] = extracted_image_path |
|
|
|
return image_mapping |
|
|
|
def _extract_chess_notation(self, text): |
|
"""Extracts the chess notation from the full text string.""" |
|
|
|
notation = text.split(" ", 1)[-1] |
|
return notation.strip() |
|
|
|
def _add_numeration(self, notations): |
|
"""Adds numeration to chess notations, pairing moves and numbering them.""" |
|
numbered_text = [] |
|
counter = 1 |
|
|
|
|
|
for i in range(0, len(notations), 2): |
|
|
|
move_pair = notations[i:i+2] |
|
numbered_move = f"{counter}. " + " ".join(move_pair) |
|
numbered_text.append(numbered_move) |
|
counter += 1 |
|
|
|
|
|
return " ".join(numbered_text) |
|
|