_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
31
13.1k
language
stringclasses
1 value
meta_information
dict
q1700
DataGenerator.from_config
train
def from_config(self, k, v): """ Hook method that allows converting values from the dictionary. :param k: the key in the dictionary :type k: str :param v: the value :type v: object :return: the potentially parsed value :rtype: object
python
{ "resource": "" }
q1701
SimpleExperiment.configure_splitevaluator
train
def configure_splitevaluator(self): """ Configures and returns the SplitEvaluator and Classifier instance as tuple. :return: evaluator and classifier :rtype: tuple """ if self.classification: speval = javabridge.make_instance("weka/experiment/ClassifierSplitEvaluator", "()V") else:
python
{ "resource": "" }
q1702
SimpleExperiment.setup
train
def setup(self): """ Initializes the experiment. """ # basic options javabridge.call( self.jobject, "setPropertyArray", "(Ljava/lang/Object;)V", javabridge.get_env().make_object_array(0, javabridge.get_env().find_class("weka/classifiers/Classifier"))) javabridge.call( self.jobject, "setUsePropertyIterator", "(Z)V", True) javabridge.call( self.jobject, "setRunLower", "(I)V", 1) javabridge.call( self.jobject, "setRunUpper", "(I)V", self.runs) # setup result producer rproducer, prop_path = self.configure_resultproducer() javabridge.call( self.jobject, "setResultProducer", "(Lweka/experiment/ResultProducer;)V", rproducer) javabridge.call( self.jobject, "setPropertyPath", "([Lweka/experiment/PropertyNode;)V", prop_path) # classifiers classifiers = javabridge.get_env().make_object_array( len(self.classifiers), javabridge.get_env().find_class("weka/classifiers/Classifier")) for i, classifier in enumerate(self.classifiers): if type(classifier) is Classifier: javabridge.get_env().set_object_array_element( classifiers, i, classifier.jobject) else: javabridge.get_env().set_object_array_element( classifiers, i, from_commandline(classifier).jobject) javabridge.call( self.jobject, "setPropertyArray", "(Ljava/lang/Object;)V",
python
{ "resource": "" }
q1703
SimpleExperiment.run
train
def run(self): """ Executes the experiment. """ logger.info("Initializing...") javabridge.call(self.jobject, "initialize", "()V") logger.info("Running...")
python
{ "resource": "" }
q1704
SimpleExperiment.load
train
def load(cls, filename): """ Loads the experiment from disk. :param filename: the filename of the experiment to load :type filename: str :return: the experiment :rtype: Experiment """ jobject = javabridge.static_call(
python
{ "resource": "" }
q1705
SimpleRandomSplitExperiment.configure_resultproducer
train
def configure_resultproducer(self): """ Configures and returns the ResultProducer and PropertyPath as tuple. :return: producer and property path :rtype: tuple """ rproducer = javabridge.make_instance("weka/experiment/RandomSplitResultProducer", "()V") javabridge.call(rproducer, "setRandomizeData", "(Z)V", not self.preserve_order) javabridge.call(rproducer, "setTrainPercent", "(D)V", self.percentage) speval, classifier = self.configure_splitevaluator() javabridge.call(rproducer, "setSplitEvaluator", "(Lweka/experiment/SplitEvaluator;)V", speval) prop_path = javabridge.get_env().make_object_array( 2, javabridge.get_env().find_class("weka/experiment/PropertyNode")) cls = javabridge.get_env().find_class("weka/experiment/RandomSplitResultProducer") desc = javabridge.make_instance( "java/beans/PropertyDescriptor", "(Ljava/lang/String;Ljava/lang/Class;)V", "splitEvaluator", cls) node = javabridge.make_instance( "weka/experiment/PropertyNode", "(Ljava/lang/Object;Ljava/beans/PropertyDescriptor;Ljava/lang/Class;)V",
python
{ "resource": "" }
q1706
ResultMatrix.set_row_name
train
def set_row_name(self, index, name): """ Sets the row name. :param index: the 0-based row index :type index: int :param name: the name of the row :type name: str
python
{ "resource": "" }
q1707
ResultMatrix.set_col_name
train
def set_col_name(self, index, name): """ Sets the column name. :param index: the 0-based row index :type index: int :param name: the name of the column :type name: str
python
{ "resource": "" }
q1708
RCRequest.validate
train
def validate(self): """Checks that at least required params exist""" required = ['token', 'content'] valid_data = { 'exp_record': (['type', 'format'], 'record', 'Exporting record but content is not record'), 'imp_record': (['type', 'overwriteBehavior', 'data', 'format'], 'record', 'Importing record but content is not record'), 'metadata': (['format'], 'metadata', 'Requesting metadata but content != metadata'), 'exp_file': (['action', 'record', 'field'], 'file', 'Exporting file but content is not file'), 'imp_file': (['action', 'record', 'field'], 'file', 'Importing file but content is not file'), 'del_file': (['action', 'record', 'field'], 'file', 'Deleteing file but content is not file'), 'exp_event': (['format'], 'event', 'Exporting events but content is not event'), 'exp_arm': (['format'], 'arm', 'Exporting arms but content is not arm'), 'exp_fem': (['format'], 'formEventMapping', 'Exporting form-event mappings but content != formEventMapping'), 'exp_user': (['format'], 'user', 'Exporting users but content is not user'),
python
{ "resource": "" }
q1709
RCRequest.execute
train
def execute(self, **kwargs): """Execute the API request and return data Parameters ---------- kwargs : passed to requests.post() Returns ------- response : list, str data object from JSON decoding process if format=='json', else return raw
python
{ "resource": "" }
q1710
RCRequest.get_content
train
def get_content(self, r): """Abstraction for grabbing content from a returned response""" if self.type == 'exp_file': # don't use the decoded r.text return r.content elif self.type == 'version': return r.content else: if self.fmt == 'json': content = {}
python
{ "resource": "" }
q1711
RCRequest.raise_for_status
train
def raise_for_status(self, r): """Given a response, raise for bad status for certain actions Some redcap api methods don't return error messages that the user could test for or otherwise use. Therefore, we need to do the testing ourself Raising for everything wouldn't let the user see the (hopefully helpful) error message"""
python
{ "resource": "" }
q1712
Project.__basepl
train
def __basepl(self, content, rec_type='flat', format='json'): """Return a dictionary which can be used as is or added to for payloads""" d
python
{ "resource": "" }
q1713
Project.filter_metadata
train
def filter_metadata(self, key): """ Return a list of values for the metadata key from each field of the project's metadata. Parameters ---------- key: str A known key in the metadata
python
{ "resource": "" }
q1714
Project.export_fem
train
def export_fem(self, arms=None, format='json', df_kwargs=None): """ Export the project's form to event mapping Parameters ---------- arms : list Limit exported form event mappings to these arm numbers format : (``'json'``), ``'csv'``, ``'xml'`` Return the form event mappings in native objects, csv or xml, ``'df''`` will return a ``pandas.DataFrame`` df_kwargs : dict Passed to pandas.read_csv to control construction of returned DataFrame Returns ------- fem : list, str, ``pandas.DataFrame`` form-event mapping for the project """ ret_format = format if format == 'df': from pandas import read_csv ret_format = 'csv' pl = self.__basepl('formEventMapping', format=ret_format) to_add = [arms] str_add =
python
{ "resource": "" }
q1715
Project.export_metadata
train
def export_metadata(self, fields=None, forms=None, format='json', df_kwargs=None): """ Export the project's metadata Parameters ---------- fields : list Limit exported metadata to these fields forms : list Limit exported metadata to these forms format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Return the metadata in native objects, csv or xml. ``'df'`` will return a ``pandas.DataFrame``. df_kwargs : dict Passed to ``pandas.read_csv`` to control construction of returned DataFrame. by default ``{'index_col': 'field_name'}`` Returns ------- metadata : list, str, ``pandas.DataFrame`` metadata sttructure for the project. """ ret_format = format if format == 'df': from pandas import read_csv ret_format = 'csv'
python
{ "resource": "" }
q1716
Project.export_records
train
def export_records(self, records=None, fields=None, forms=None, events=None, raw_or_label='raw', event_name='label', format='json', export_survey_fields=False, export_data_access_groups=False, df_kwargs=None, export_checkbox_labels=False, filter_logic=None): """ Export data from the REDCap project. Parameters ---------- records : list array of record names specifying specific records to export. by default, all records are exported fields : list array of field names specifying specific fields to pull by default, all fields are exported forms : list array of form names to export. If in the web UI, the form name has a space in it, replace the space with an underscore by default, all forms are exported events : list an array of unique event names from which to export records :note: this only applies to longitudinal projects raw_or_label : (``'raw'``), ``'label'``, ``'both'`` export the raw coded values or labels for the options of multiple choice fields, or both event_name : (``'label'``), ``'unique'`` export the unique event name or the event label format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Format of returned data. ``'json'`` returns json-decoded objects while ``'csv'`` and ``'xml'`` return other formats. ``'df'`` will attempt to return a ``pandas.DataFrame``. export_survey_fields : (``False``), True specifies whether or not to export the survey identifier field (e.g., "redcap_survey_identifier") or survey timestamp fields (e.g., form_name+"_timestamp") when surveys are utilized in the project. export_data_access_groups : (``False``), ``True`` specifies whether or not to export the ``"redcap_data_access_group"`` field when data access groups are utilized in the project. :note: This flag is only viable if the user whose token is being used to make the API request is *not* in a data access group. If the user is in a group, then this flag will revert to its default value. df_kwargs : dict Passed to ``pandas.read_csv`` to control construction of returned DataFrame. by default, ``{'index_col': self.def_field}`` export_checkbox_labels : (``False``), ``True`` specify whether to export checkbox
python
{ "resource": "" }
q1717
Project.__meta_metadata
train
def __meta_metadata(self, field, key): """Return the value for key for the field in the metadata""" mf = '' try: mf = str([f[key] for f in self.metadata if f['field_name'] == field][0])
python
{ "resource": "" }
q1718
Project.filter
train
def filter(self, query, output_fields=None): """Query the database and return subject information for those who match the query logic Parameters ---------- query: Query or QueryGroup Query(Group) object to process output_fields: list The fields desired for matching subjects Returns ------- A list of dictionaries whose keys contains at least the default field and at most each key passed in with output_fields, each dictionary representing a surviving row in the database. """ query_keys = query.fields() if not set(query_keys).issubset(set(self.field_names)):
python
{ "resource": "" }
q1719
Project.names_labels
train
def names_labels(self, do_print=False): """Simple helper function to get all field names and labels """ if do_print:
python
{ "resource": "" }
q1720
Project.import_records
train
def import_records(self, to_import, overwrite='normal', format='json', return_format='json', return_content='count', date_format='YMD', force_auto_number=False): """ Import data into the RedCap Project Parameters ---------- to_import : array of dicts, csv/xml string, ``pandas.DataFrame`` :note: If you pass a csv or xml string, you should use the ``format`` parameter appropriately. :note: Keys of the dictionaries should be subset of project's, fields, but this isn't a requirement. If you provide keys that aren't defined fields, the returned response will contain an ``'error'`` key. overwrite : ('normal'), 'overwrite' ``'overwrite'`` will erase values previously stored in the database if not specified in the to_import dictionaries. format : ('json'), 'xml', 'csv' Format of incoming data. By default, to_import will be json-encoded return_format : ('json'), 'csv', 'xml' Response format. By default, response will be json-decoded. return_content : ('count'), 'ids', 'nothing' By default, the response contains a 'count' key with the number of records just imported. By specifying 'ids', a list of ids imported will be returned. 'nothing' will only return the HTTP status code and no message. date_format : ('YMD'), 'DMY', 'MDY' Describes the formatting of dates. By default, date strings are formatted as 'YYYY-MM-DD' corresponding to 'YMD'. If date strings are formatted as 'MM/DD/YYYY' set this parameter as 'MDY' and if formatted as 'DD/MM/YYYY' set as 'DMY'. No other formattings are allowed. force_auto_number : ('False') Enables automatic assignment of record IDs of imported records by REDCap. If this is set to true, and auto-numbering for records is enabled for the project, auto-numbering of imported records will be enabled. Returns ------- response : dict, str response from REDCap API, json-decoded if ``return_format`` == ``'json'``
python
{ "resource": "" }
q1721
Project.export_file
train
def export_file(self, record, field, event=None, return_format='json'): """ Export the contents of a file stored for a particular record Notes ----- Unlike other export methods, this works on a single record. Parameters ---------- record : str record ID field : str field name containing the file to be exported. event: str for longitudinal projects, specify the unique event here return_format: ('json'), 'csv', 'xml' format of error message Returns ------- content : bytes content of the file content_map : dict content-type dictionary """ self._check_file_field(field) # load up payload pl = self.__basepl(content='file', format=return_format) # there's no format field in this call del pl['format'] pl['returnFormat'] = return_format pl['action'] = 'export' pl['field'] = field
python
{ "resource": "" }
q1722
Project.import_file
train
def import_file(self, record, field, fname, fobj, event=None, return_format='json'): """ Import the contents of a file represented by fobj to a particular records field Parameters ---------- record : str record ID field : str field name where the file will go fname : str file name visible in REDCap UI fobj : file object file object as returned by `open` event : str
python
{ "resource": "" }
q1723
Project.delete_file
train
def delete_file(self, record, field, return_format='json', event=None): """ Delete a file from REDCap Notes ----- There is no undo button to this. Parameters ---------- record : str record ID field : str field name return_format : (``'json'``), ``'csv'``, ``'xml'`` return format for error message event : str If longitudinal project, event to delete file from Returns ------- response : dict, str
python
{ "resource": "" }
q1724
Project._check_file_field
train
def _check_file_field(self, field): """Check that field exists and is a file field""" is_field = field in self.field_names is_file = self.__meta_metadata(field, 'field_type')
python
{ "resource": "" }
q1725
Project.export_users
train
def export_users(self, format='json'): """ Export the users of the Project Notes ----- Each user will have the following keys: * ``'firstname'`` : User's first name * ``'lastname'`` : User's last name * ``'email'`` : Email address * ``'username'`` : User's username * ``'expiration'`` : Project access expiration date * ``'data_access_group'`` : data access group ID * ``'data_export'`` : (0=no access, 2=De-Identified, 1=Full Data Set)
python
{ "resource": "" }
q1726
Project.export_survey_participant_list
train
def export_survey_participant_list(self, instrument, event=None, format='json'): """ Export the Survey Participant List Notes ----- The passed instrument must be set up as a survey instrument. Parameters ---------- instrument: str Name of instrument as seen
python
{ "resource": "" }
q1727
create_new_username
train
def create_new_username(ip, devicetype=None, timeout=_DEFAULT_TIMEOUT): """Interactive helper function to generate a new anonymous username. Args: ip: ip address of the bridge devicetype (optional): devicetype to register with the bridge. If unprovided, generates a device type based on the local hostname. timeout (optional, default=5): request timeout in seconds Raises: QhueException if something went wrong with username generation (for example, if the bridge button wasn't pressed). """ res = Resource(_api_url(ip), timeout) prompt = "Press the Bridge button, then press Return: " # Deal with one of the sillier
python
{ "resource": "" }
q1728
GordonRouter.run
train
async def run(self): """Entrypoint to route messages between plugins.""" logging.info('Starting message router...') coroutines = set() while True: coro =
python
{ "resource": "" }
q1729
shutdown
train
async def shutdown(sig, loop): """Gracefully cancel current tasks when app receives a shutdown signal.""" logging.info(f'Received exit signal {sig.name}...') tasks = [task for task in asyncio.Task.all_tasks() if task is not asyncio.tasks.Task.current_task()] for task in tasks: logging.debug(f'Cancelling task: {task}')
python
{ "resource": "" }
q1730
_deep_merge_dict
train
def _deep_merge_dict(a, b): """Additively merge right side dict into left side dict.""" for k, v in b.items(): if k in a and isinstance(a[k], dict) and
python
{ "resource": "" }
q1731
load_plugins
train
def load_plugins(config, plugin_kwargs): """ Discover and instantiate plugins. Args: config (dict): loaded configuration for the Gordon service. plugin_kwargs (dict): keyword arguments to give to plugins during instantiation. Returns: Tuple of 3 lists: list of names of plugins, list of instantiated plugin objects, and any errors encountered while loading/instantiating plugins. A tuple of three empty lists is returned if there are no plugins found or activated in gordon config. """ installed_plugins = _gather_installed_plugins() metrics_plugin = _get_metrics_plugin(config, installed_plugins) if metrics_plugin: plugin_kwargs['metrics'] = metrics_plugin active_plugins = _get_activated_plugins(config, installed_plugins)
python
{ "resource": "" }
q1732
UDPClientProtocol.connection_made
train
def connection_made(self, transport): """Create connection, use to send message and close. Args: transport (asyncio.DatagramTransport): Transport used for sending. """
python
{ "resource": "" }
q1733
UDPClient.send
train
async def send(self, metric): """Transform metric to JSON bytestring and send to server. Args: metric (dict): Complete metric to send
python
{ "resource": "" }
q1734
RecordChecker.check_record
train
async def check_record(self, record, timeout=60): """Measures the time for a DNS record to become available. Query a provided DNS server multiple times until the reply matches the information in the record or until timeout is reached. Args: record (dict): DNS record as a dict with record properties. timeout (int): Time threshold to query the DNS server. """ start_time = time.time() name, rr_data, r_type, ttl = self._extract_record_data(record) r_type_code = async_dns.types.get_code(r_type) resolvable_record = False retries = 0 sleep_time = 5 while not resolvable_record and \ timeout > retries * sleep_time: retries += 1 resolver_res = await self._resolver.query(name, r_type_code) possible_ans = resolver_res.an resolvable_record = \ await self._check_resolver_ans(possible_ans, name,
python
{ "resource": "" }
q1735
RecordChecker._check_resolver_ans
train
async def _check_resolver_ans( self, dns_answer_list, record_name, record_data_list, record_ttl, record_type_code): """Check if resolver answer is equal to record data. Args: dns_answer_list (list): DNS answer list contains record objects. record_name (str): Record name. record_data_list (list): List of data values for the record. record_ttl (int): Record time-to-live info. record_type_code (int): Record type code. Returns: boolean indicating if DNS answer data
python
{ "resource": "" }
q1736
LoggerAdapter.log
train
def log(self, metric): """Format and output metric. Args: metric (dict): Complete metric. """
python
{ "resource": "" }
q1737
Atbash.encipher
train
def encipher(self,string,keep_punct=False): """Encipher string using Atbash cipher. Example:: ciphertext = Atbash().encipher(plaintext) :param string: The string to encipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The enciphered string.
python
{ "resource": "" }
q1738
PolybiusSquare.encipher
train
def encipher(self,string): """Encipher string using Polybius square cipher according to initialised key. Example:: ciphertext = Polybius('APCZWRLFBDKOTYUQGENHXMIVS',5,'MKSBU').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. The ciphertext will be twice the length of the plaintext. """
python
{ "resource": "" }
q1739
PolybiusSquare.decipher
train
def decipher(self,string): """Decipher string using Polybius square cipher according to initialised key. Example:: plaintext = Polybius('APCZWRLFBDKOTYUQGENHXMIVS',5,'MKSBU').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. The plaintext will be half the length of the ciphertext. """
python
{ "resource": "" }
q1740
ADFGVX.decipher
train
def decipher(self,string): """Decipher string using ADFGVX cipher according to initialised key information. Punctuation and whitespace are removed from the input. Example:: plaintext = ADFGVX('ph0qg64mea1yl2nofdxkr3cvs5zw7bj9uti8','HELLO').decipher(ciphertext) :param string: The string to decipher. :returns: The enciphered string.
python
{ "resource": "" }
q1741
Enigma.encipher
train
def encipher(self,string): """Encipher string using Enigma M3 cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Enigma(settings=('A','A','A'),rotors=(1,2,3),reflector='B', ringstellung=('F','V','N'),steckers=[('P','O'),('M','L'),
python
{ "resource": "" }
q1742
ic
train
def ic(ctext): ''' takes ciphertext, calculates index of coincidence.''' counts = ngram_count(ctext,N=1) icval = 0 for k in counts.keys():
python
{ "resource": "" }
q1743
restore_punctuation
train
def restore_punctuation(original,modified): ''' If punctuation was accidently removed, use this function to restore it. requires the orignial string with punctuation. ''' ret = '' count = 0 try: for c in original: if c.isalpha(): ret+=modified[count] count+=1
python
{ "resource": "" }
q1744
Playfair.encipher
train
def encipher(self, string): """Encipher string using Playfair cipher according to initialised key. Punctuation and whitespace are removed from the input. If the input plaintext is not an even number of characters, an 'X' will be appended. Example:: ciphertext = Playfair(key='zgptfoihmuwdrcnykeqaxvsbl').encipher(plaintext)
python
{ "resource": "" }
q1745
Playfair.decipher
train
def decipher(self, string): """Decipher string using Playfair cipher according to initialised key. Punctuation and whitespace are removed from the input. The ciphertext should be an even number of characters. If the input ciphertext is not an even number of characters, an 'X' will be appended. Example:: plaintext = Playfair(key='zgptfoihmuwdrcnykeqaxvsbl').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. """
python
{ "resource": "" }
q1746
Delastelle.encipher
train
def encipher(self,string): """Encipher string using Delastelle cipher according to initialised key. Example:: ciphertext = Delastelle('APCZ WRLFBDKOTYUQGENHXMIVS').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. The ciphertext will be 3 times the length of the plaintext. """
python
{ "resource": "" }
q1747
Delastelle.decipher
train
def decipher(self,string): """Decipher string using Delastelle cipher according to initialised key. Example:: plaintext = Delastelle('APCZ WRLFBDKOTYUQGENHXMIVS').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. The plaintext will be 1/3 the length of the ciphertext. """
python
{ "resource": "" }
q1748
Foursquare.encipher
train
def encipher(self,string): """Encipher string using Foursquare cipher according to initialised key. Punctuation and whitespace are removed from the input. If the input plaintext is not an even number of characters, an 'X' will be appended. Example:: ciphertext = Foursquare(key1='zgptfoihmuwdrcnykeqaxvsbl',key2='mfnbdcrhsaxyogvituewlqzkp').encipher(plaintext)
python
{ "resource": "" }
q1749
Foursquare.decipher
train
def decipher(self,string): """Decipher string using Foursquare cipher according to initialised key. Punctuation and whitespace are removed from the input. The ciphertext should be an even number of characters. If the input ciphertext is not an even number of characters, an 'X' will be appended. Example::
python
{ "resource": "" }
q1750
Rot13.encipher
train
def encipher(self,string,keep_punct=False): r"""Encipher string using rot13 cipher. Example:: ciphertext = Rot13().encipher(plaintext) :param string: The string to encipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The enciphered string. """
python
{ "resource": "" }
q1751
Porta.encipher
train
def encipher(self,string): """Encipher string using Porta cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Porta('HELLO').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = self.remove_punctuation(string) ret = '' for (i,c) in enumerate(string): i = i%len(self.key) if self.key[i] in 'AB': ret += 'NOPQRSTUVWXYZABCDEFGHIJKLM'[self.a2i(c)] elif self.key[i] in 'YZ': ret += 'ZNOPQRSTUVWXYBCDEFGHIJKLMA'[self.a2i(c)] elif self.key[i] in 'WX': ret += 'YZNOPQRSTUVWXCDEFGHIJKLMAB'[self.a2i(c)] elif self.key[i] in 'UV': ret += 'XYZNOPQRSTUVWDEFGHIJKLMABC'[self.a2i(c)] elif self.key[i] in 'ST': ret += 'WXYZNOPQRSTUVEFGHIJKLMABCD'[self.a2i(c)] elif self.key[i] in 'QR':
python
{ "resource": "" }
q1752
M209.encipher
train
def encipher(self,message): """Encipher string using M209 cipher according to initialised key. Punctuation and whitespace are removed from the input. Example (continuing from the example above):: ciphertext = m.encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ message = self.remove_punctuation(message) effective_ch = [0,0,0,0,0,0,0] # these are the wheels which are effective currently, 1 for yes, 0 no # -the zero at the beginning is extra, indicates lug was in pos 0 ret = '' # from now we no longer need the wheel starts, we can
python
{ "resource": "" }
q1753
FracMorse.encipher
train
def encipher(self,string): """Encipher string using FracMorse cipher according to initialised key. Example:: ciphertext = FracMorse('ROUNDTABLECFGHIJKMPQSVWXYZ').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = string.upper() #print string morsestr = self.enmorse(string) # make sure the morse string is a multiple of 3 in length if len(morsestr) % 3 == 1:
python
{ "resource": "" }
q1754
FracMorse.decipher
train
def decipher(self,string): """Decipher string using FracMorse cipher according to initialised key. Example:: plaintext = FracMorse('ROUNDTABLECFGHIJKMPQSVWXYZ').decipher(ciphertext)
python
{ "resource": "" }
q1755
ColTrans.encipher
train
def encipher(self,string): """Encipher string using Columnar Transposition cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = ColTrans('GERMAN').encipher(plaintext)
python
{ "resource": "" }
q1756
ColTrans.decipher
train
def decipher(self,string): '''Decipher string using Columnar Transposition cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: plaintext = ColTrans('GERMAN').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. ''' string = self.remove_punctuation(string) ret = ['_']*len(string) L,M = len(string),len(self.keyword)
python
{ "resource": "" }
q1757
Railfence.encipher
train
def encipher(self,string,keep_punct=False): """Encipher string using Railfence cipher according to initialised key. Example:: ciphertext = Railfence(3).encipher(plaintext) :param string: The string to encipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False.
python
{ "resource": "" }
q1758
Railfence.decipher
train
def decipher(self,string,keep_punct=False): """Decipher string using Railfence cipher according to initialised key. Example:: plaintext = Railfence(3).decipher(ciphertext) :param string: The string to decipher.
python
{ "resource": "" }
q1759
Affine.decipher
train
def decipher(self,string,keep_punct=False): """Decipher string using affine cipher according to initialised key. Example:: plaintext = Affine(a,b).decipher(ciphertext) :param string: The string to decipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The deciphered string.
python
{ "resource": "" }
q1760
Autokey.encipher
train
def encipher(self,string): """Encipher string using Autokey cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Autokey('HELLO').encipher(plaintext) :param string: The string
python
{ "resource": "" }
q1761
Bifid.encipher
train
def encipher(self,string): """Encipher string using Bifid cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Bifid('phqgmeaylnofdxkrcvszwbuti',5).encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = self.remove_punctuation(string) step1 = self.pb.encipher(string) evens =
python
{ "resource": "" }
q1762
Bifid.decipher
train
def decipher(self,string): """Decipher string using Bifid cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: plaintext = Bifid('phqgmeaylnofdxkrcvszwbuti',5).decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. """ ret = '' string = string.upper() rowseq,colseq = [],[] # take blocks of length period, reform rowseq,colseq from them for i in range(0,len(string),self.period): tempseq = [] for j in range(0,self.period):
python
{ "resource": "" }
q1763
SimpleSubstitution.decipher
train
def decipher(self,string,keep_punct=False): """Decipher string using Simple Substitution cipher according to initialised key. Example:: plaintext = SimpleSubstitution('AJPCZWRLFBDKOTYUQGENHXMIVS').decipher(ciphertext) :param string: The string to decipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The deciphered string. """ # if we have not yet calculated the inverse key, calculate it now if self.invkey == '':
python
{ "resource": "" }
q1764
kron
train
def kron(a, b): """Kronecker product of two TT-matrices or two TT-vectors""" if hasattr(a, '__kron__'): return a.__kron__(b) if a is None: return b else:
python
{ "resource": "" }
q1765
dot
train
def dot(a, b): """Dot product of two TT-matrices or two TT-vectors""" if hasattr(a, '__dot__'): return a.__dot__(b) if a is None: return b else: raise
python
{ "resource": "" }
q1766
mkron
train
def mkron(a, *args): """Kronecker product of all the arguments""" if not isinstance(a, list): a = [a] a = list(a) # copy list for i in args: if isinstance(i, list): a.extend(i) else: a.append(i) c = _vector.vector()
python
{ "resource": "" }
q1767
concatenate
train
def concatenate(*args): """Concatenates given TT-vectors. For two tensors :math:`X(i_1,\\ldots,i_d),Y(i_1,\\ldots,i_d)` returns :math:`(d+1)`-dimensional tensor :math:`Z(i_0,i_1,\\ldots,i_d)`, :math:`i_0=\\overline{0,1}`, such that .. math:: Z(0, i_1, \\ldots, i_d) = X(i_1, \\ldots, i_d), Z(1, i_1, \\ldots, i_d) = Y(i_1, \\ldots, i_d). """ tmp = _np.array([[1] +
python
{ "resource": "" }
q1768
sum
train
def sum(a, axis=-1): """Sum TT-vector over specified axes""" d = a.d crs = _vector.vector.to_list(a.tt if isinstance(a, _matrix.matrix) else a) if axis < 0: axis = range(a.d) elif isinstance(axis, int): axis = [axis] axis = list(axis)[::-1] for ax in axis:
python
{ "resource": "" }
q1769
ones
train
def ones(n, d=None): """ Creates a TT-vector of all ones""" c = _vector.vector() if d is None: c.n = _np.array(n, dtype=_np.int32) c.d = c.n.size else: c.n = _np.array([n] * d, dtype=_np.int32)
python
{ "resource": "" }
q1770
rand
train
def rand(n, d=None, r=2, samplefunc=_np.random.randn): """Generate a random d-dimensional TT-vector with ranks ``r``. Distribution to sample cores is provided by the samplefunc. Default is to sample from normal distribution. """ n0 = _np.asanyarray(n, dtype=_np.int32)
python
{ "resource": "" }
q1771
eye
train
def eye(n, d=None): """ Creates an identity TT-matrix""" c = _matrix.matrix() c.tt = _vector.vector() if d is None: n0 = _np.asanyarray(n, dtype=_np.int32) c.tt.d = n0.size else: n0 = _np.asanyarray([n] * d, dtype=_np.int32) c.tt.d = d c.n = n0.copy() c.m = n0.copy() c.tt.n = (c.n) * (c.m)
python
{ "resource": "" }
q1772
cores_orthogonalization_step
train
def cores_orthogonalization_step(coresX, dim, left_to_right=True): """TT-Tensor X orthogonalization step. The function can change the shape of some cores. """ cc = coresX[dim] r1, n, r2 = cc.shape if left_to_right: # Left to right orthogonalization step. assert(0 <= dim < len(coresX) - 1)
python
{ "resource": "" }
q1773
unfolding
train
def unfolding(tens, i): """Compute the i-th unfolding
python
{ "resource": "" }
q1774
gcd
train
def gcd(a, b): '''Greatest common divider'''
python
{ "resource": "" }
q1775
ksl
train
def ksl(A, y0, tau, verb=1, scheme='symm', space=8, rmax=2000, use_normest=1): """ Dynamical tensor-train approximation based on projector splitting This function performs one step of dynamical tensor-train approximation for the equation .. math :: \\frac{dy}{dt} = A y, \\quad y(0) = y_0 and outputs approximation for :math:`y(\\tau)` :References: 1. Christian Lubich, Ivan Oseledets, and Bart Vandereycken. Time integration of tensor trains. arXiv preprint 1407.2042, 2014. http://arxiv.org/abs/1407.2042 2. Christian Lubich and Ivan V. Oseledets. A projector-splitting integrator for dynamical low-rank approximation. BIT, 54(1):171-188, 2014. http://dx.doi.org/10.1007/s10543-013-0454-0 :param A: Matrix in the TT-format :type A: matrix :param y0: Initial condition in the TT-format, :type y0: tensor :param tau: Timestep :type tau: float :param scheme: The integration scheme, possible values: 'symm' -- second order, 'first' -- first order :type scheme: str :param space: Maximal dimension of the Krylov space for the local EXPOKIT solver. :type space: int :param use_normest: Use matrix norm estimation instead of the true 1-norm in KSL procedure. 0 -use true norm, 1 - Higham norm estimator, 2 - fixed norm=1.0 (for testing purposes only) :type use_normest: int, default: 1 :rtype: tensor :Example: >>> import tt >>> import tt.ksl >>> import numpy as np >>> d = 8 >>> a = tt.qlaplace_dd([d, d, d]) >>> y0, ev = tt.eigb.eigb(a, tt.rand(2 , 24, 2), 1e-6, verb=0) Solving a block eigenvalue problem Looking for 1 eigenvalues with accuracy 1E-06 swp: 1 er = 1.1408 rmax:2 swp: 2 er = 190.01 rmax:2 swp: 3 er = 2.72582E-08 rmax:2 Total number of matvecs: 0 >>> y1 = tt.ksl.ksl(a, y0, 1e-2) Solving a real-valued dynamical problem with tau=1E-02 >>> print tt.dot(y1, y0) / (y1.norm() * y0.norm()) - 1 #Eigenvectors should not change 0.0 """ y0 = y0.round(1e-14) # This will fix ranks
python
{ "resource": "" }
q1776
diag_ksl
train
def diag_ksl(A, y0, tau, verb=1, scheme='symm', space=8, rmax=2000): """ Dynamical tensor-train approximation based on projector splitting This function performs one step of dynamical tensor-train approximation with diagonal matrix, i.e. it solves the equation for the equation .. math :: \\frac{dy}{dt} = V y, \\quad y(0) = y_0 and outputs approximation for :math:`y(\\tau)` :References: 1. Christian Lubich, Ivan Oseledets, and Bart Vandereycken. Time integration of tensor trains. arXiv preprint 1407.2042, 2014. http://arxiv.org/abs/1407.2042 2. Christian Lubich and Ivan V. Oseledets. A projector-splitting integrator for dynamical low-rank approximation. BIT, 54(1):171-188, 2014. http://dx.doi.org/10.1007/s10543-013-0454-0 :param A: Matrix in the TT-format :type A: matrix :param y0: Initial condition in the TT-format, :type y0: tensor :param tau: Timestep :type tau: float :param scheme: The integration scheme, possible values: 'symm' -- second order, 'first' -- first order :type scheme: str :param space: Maximal dimension of the Krylov space for the local EXPOKIT solver. :type space: int :rtype: tensor :Example: >>> import tt >>> import tt.ksl >>> import numpy as np >>> d = 8 >>> a = tt.qlaplace_dd([d, d, d]) >>> y0, ev = tt.eigb.eigb(a, tt.rand(2 , 24, 2), 1e-6, verb=0) Solving a block eigenvalue problem Looking for 1 eigenvalues with accuracy 1E-06 swp: 1 er = 1.1408 rmax:2 swp: 2 er = 190.01 rmax:2 swp: 3 er = 2.72582E-08 rmax:2 Total number of matvecs: 0 >>> y1 = tt.ksl.ksl(a, y0, 1e-2) Solving a real-valued dynamical problem with tau=1E-02 >>> print tt.dot(y1, y0) / (y1.norm() * y0.norm()) - 1 #Eigenvectors should not change 0.0 """ y0 = y0.round(1e-14) # This will fix ranks # to be no more than maximal reasonable.
python
{ "resource": "" }
q1777
matrix.T
train
def T(self): """Transposed TT-matrix""" mycrs = matrix.to_list(self) trans_crs = [] for cr in mycrs:
python
{ "resource": "" }
q1778
matrix.real
train
def real(self): """Return real part of a matrix."""
python
{ "resource": "" }
q1779
matrix.imag
train
def imag(self): """Return imaginary part of a matrix."""
python
{ "resource": "" }
q1780
matrix.c2r
train
def c2r(self): """Get real matrix from complex one suitable for solving complex linear system with real solver. For matrix :math:`M(i_1,j_1,\\ldots,i_d,j_d) = \\Re M + i\\Im M` returns (d+1)-dimensional matrix :math:`\\tilde{M}(i_1,j_1,\\ldots,i_d,j_d,i_{d+1},j_{d+1})` of form :math:`\\begin{bmatrix}\\Re M & -\\Im M \\\\ \\Im M & \\Re M \\end{bmatrix}`. This function is useful for solving complex linear system :math:`\\mathcal{A}X = B` with real solver by transforming it into .. math:: \\begin{bmatrix}\\Re\\mathcal{A} & -\\Im\\mathcal{A} \\\\
python
{ "resource": "" }
q1781
matrix.round
train
def round(self, eps=1e-14, rmax=100000): """ Computes an approximation to a TT-matrix in with accuracy
python
{ "resource": "" }
q1782
matrix.copy
train
def copy(self): """ Creates a copy of the TT-matrix """ c = matrix() c.tt = self.tt.copy()
python
{ "resource": "" }
q1783
matrix.full
train
def full(self): """ Transforms a TT-matrix into a full matrix""" N = self.n.prod() M = self.m.prod() a = self.tt.full() d = self.tt.d sz = _np.vstack((self.n, self.m)).flatten('F') a = a.reshape(sz, order='F')
python
{ "resource": "" }
q1784
vector.from_list
train
def from_list(a, order='F'): """Generate TT-vectorr object from given TT cores. :param a: List of TT cores. :type a: list :returns: vector -- TT-vector constructed from the given cores. """ d = len(a) # Number of cores res = vector()
python
{ "resource": "" }
q1785
vector.erank
train
def erank(self): """ Effective rank of the TT-vector """ r = self.r n = self.n d = self.d if d <= 1: er = 0e0 else: sz = _np.dot(n * r[0:d], r[1:]) if sz == 0: er = 0e0 else: b = r[0] * n[0] + n[d - 1] * r[d]
python
{ "resource": "" }
q1786
vector.rmean
train
def rmean(self): """ Calculates the mean rank of a TT-vector.""" if not _np.all(self.n): return 0 # Solving quadratic equation ar^2 + br + c = 0; a = _np.sum(self.n[1:-1]) b = self.n[0] + self.n[-1]
python
{ "resource": "" }
q1787
eigb
train
def eigb(A, y0, eps, rmax=150, nswp=20, max_full_size=1000, verb=1): """ Approximate computation of minimal eigenvalues in tensor train format This function uses alternating least-squares algorithm for the computation of several minimal eigenvalues. If you want maximal eigenvalues, just send -A to the function. :Reference: S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V. Savostyanov. Computation of extreme eigenvalues in higher dimensions using block tensor train format. Computer Phys. Comm., 185(4):1207-1216, 2014. http://dx.doi.org/10.1016/j.cpc.2013.12.017 :param A: Matrix in the TT-format :type A: matrix :param y0: Initial guess in the block TT-format, r(d+1) is the number of eigenvalues sought :type y0: tensor :param eps: Accuracy required :type eps: float :param rmax: Maximal rank :type rmax: int :param kickrank: Addition rank, the larger the more robus the method, :type kickrank: int :rtype: A tuple (ev, tensor), where ev is a list of eigenvalues, tensor is an approximation to eigenvectors. :Example: >>> import tt >>> import tt.eigb >>> d = 8; f = 3 >>> r = [8] * (d * f + 1); r[d * f] = 8; r[0] = 1 >>> x = tt.rand(n, d * f, r)
python
{ "resource": "" }
q1788
encode_for_locale
train
def encode_for_locale(s): """ Encode text items for system locale. If encoding fails, fall back to ASCII. """ try: return s.encode(LOCALE_ENCODING, 'ignore')
python
{ "resource": "" }
q1789
fib
train
def fib(n): """Terrible Fibonacci number generator."""
python
{ "resource": "" }
q1790
Brain.format_message
train
def format_message(self, msg, botreply=False): """Format a user's message for safe processing. This runs substitutions on the message and strips out any remaining symbols (depending on UTF-8 mode). :param str msg: The user's message. :param bool botreply: Whether this formatting is being done for the bot's last reply (e.g. in a ``%Previous`` command). :return str: The formatted message. """ # Make sure the string is Unicode for Python 2. if sys.version_info[0] < 3 and isinstance(msg, str): msg = msg.decode() # Lowercase it. msg = msg.lower() # Run substitutions on it. msg = self.substitute(msg, "sub") # In UTF-8 mode, only strip metacharacters and HTML brackets # (to protect from obvious XSS attacks). if self.utf8: msg = re.sub(RE.utf8_meta, '', msg) msg = re.sub(self.master.unicode_punctuation, '', msg)
python
{ "resource": "" }
q1791
Brain.do_expand_array
train
def do_expand_array(self, array_name, depth=0): """Do recurrent array expansion, returning a set of keywords. Exception is thrown when there are cyclical dependencies between arrays or if the ``@array`` name references an undefined array. :param str array_name: The name of the array to expand. :param int depth: The recursion depth counter. :return set: The final set of array entries. """ if depth > self.master._depth: raise Exception("deep recursion detected") if not array_name in self.master._array:
python
{ "resource": "" }
q1792
Brain.expand_array
train
def expand_array(self, array_name): """Expand variables and return a set of keywords. :param str array_name: The name of the array to expand. :return list: The final array contents. Warning is issued when exceptions occur.""" ret = self.master._array[array_name] if array_name in self.master._array else [] try:
python
{ "resource": "" }
q1793
Brain.substitute
train
def substitute(self, msg, kind): """Run a kind of substitution on a message. :param str msg: The message to run substitutions against. :param str kind: The kind of substitution to run, one of ``subs`` or ``person``. """ # Safety checking. if 'lists' not in self.master._sorted: raise RepliesNotSortedError("You must call sort_replies() once you are done loading RiveScript documents") if kind not in self.master._sorted["lists"]: raise RepliesNotSortedError("You must call sort_replies() once you are done loading RiveScript documents") # Get the substitution map. subs = None if kind == 'sub': subs = self.master._sub else: subs = self.master._person # Make placeholders each time we substitute something. ph = [] i = 0 for pattern in self.master._sorted["lists"][kind]: result = subs[pattern] # Make a placeholder.
python
{ "resource": "" }
q1794
PyRiveObjects.load
train
def load(self, name, code): """Prepare a Python code object given by the RiveScript interpreter. :param str name: The name of the Python object macro. :param []str code: The Python source code for the object macro. """ # We need to make a dynamic Python method. source = "def RSOBJ(rs, args):\n" for line in code: source = source + "\t" + line + "\n" source += "self._objects[name] = RSOBJ\n"
python
{ "resource": "" }
q1795
PyRiveObjects.call
train
def call(self, rs, name, user, fields): """Invoke a previously loaded object. :param RiveScript rs: the parent RiveScript instance. :param str name: The name of the object macro to be called. :param str user: The user ID invoking the object macro. :param []str fields: Array of words sent as the object's arguments. :return str: The output of the object macro. """ # Call the dynamic method. if name not in self._objects: return '[ERR: Object Not Found]'
python
{ "resource": "" }
q1796
get_topic_triggers
train
def get_topic_triggers(rs, topic, thats, depth=0, inheritance=0, inherited=False): """Recursively scan a topic and return a list of all triggers. Arguments: rs (RiveScript): A reference to the parent RiveScript instance. topic (str): The original topic name. thats (bool): Are we getting triggers for 'previous' replies? depth (int): Recursion step counter. inheritance (int): The inheritance level counter, for topics that inherit other topics. inherited (bool): Whether the current topic is inherited by others. Returns: []str: List of all triggers found. """ # Break if we're in too deep. if depth > rs._depth: rs._warn("Deep recursion while scanning topic inheritance") # Keep in mind here that there is a difference between 'includes' and # 'inherits' -- topics that inherit other topics are able to OVERRIDE # triggers that appear in the inherited topic. This means that if the top # topic has a trigger of simply '*', then NO triggers are capable of # matching in ANY inherited topic, because even though * has the lowest # priority, it has an automatic priority over all inherited topics. # # The getTopicTriggers method takes this into account. All topics that # inherit other topics will have their triggers prefixed with a fictional # {inherits} tag, which would start at {inherits=0} and increment if this # topic has other inheriting topics. So we can use this tag to make sure # topics that inherit things will have their triggers always be on top of # the stack, from inherits=0 to inherits=n. # Important info about the depth vs inheritance params to this function: # depth increments by 1 each time this function recursively calls itrs. # inheritance increments by 1 only when this topic inherits another # topic. # # This way, '> topic alpha includes beta inherits gamma' will have this # effect: # alpha and beta's triggers are combined together into one matching # pool, and then those triggers have higher matching priority than # gamma's. # # The inherited option is True if this is a recursive call, from a topic # that inherits other topics. This forces the {inherits} tag to be added # to the triggers. This only applies when the top topic 'includes' # another topic. rs._say("\tCollecting trigger list for topic " + topic + "(depth=" + str(depth) + "; inheritance=" + str(inheritance) + "; " + "inherited=" + str(inherited) + ")") # topic: the name of the topic # depth: starts at 0 and ++'s with each recursion # Topic doesn't exist? if not topic in rs._topics: rs._warn("Inherited or included topic {} doesn't exist or has no triggers".format( topic )) return [] # Collect an array of triggers to return. triggers = [] # Get those
python
{ "resource": "" }
q1797
word_count
train
def word_count(trigger, all=False): """Count the words that aren't wildcards or options in a trigger. :param str trigger: The trigger to count words for. :param bool all: Count purely based on whitespace separators, or consider wildcards not to be their own words. :return int: The word count.""" words = []
python
{ "resource": "" }
q1798
PerlObject.load
train
def load(self, name, code): """Prepare a Perl code object given by
python
{ "resource": "" }
q1799
hello_rivescript
train
def hello_rivescript(): """Receive an inbound SMS and send a reply from RiveScript.""" from_number = request.values.get("From", "unknown") message = request.values.get("Body") reply = "(Internal error)" # Get a reply from RiveScript. if message:
python
{ "resource": "" }