_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
31
13.1k
language
stringclasses
1 value
meta_information
dict
q275700
D.filter_threshold
test
def filter_threshold(self, analyte, threshold): """ Apply threshold filter. Generates threshold filters for the given analytes above and below the specified threshold. Two filters are created with prefixes '_above' and '_below'. '_above' keeps all the data above the threshold. '_below' keeps all the data below the threshold. i.e. to select data below the threshold value, you should turn the '_above' filter off. Parameters ---------- analyte : TYPE Description of `analyte`. threshold : TYPE Description of `threshold`. Returns ------- None """ params = locals() del(params['self']) # generate filter below, above = filters.threshold(self.focus[analyte], threshold)
python
{ "resource": "" }
q275701
D.filter_gradient_threshold
test
def filter_gradient_threshold(self, analyte, win, threshold, recalc=True): """ Apply gradient threshold filter. Generates threshold filters for the given analytes above and below the specified threshold. Two filters are created with prefixes '_above' and '_below'. '_above' keeps all the data above the threshold. '_below' keeps all the data below the threshold. i.e. to select data below the threshold value, you should turn the '_above' filter off. Parameters ---------- analyte : str Description of `analyte`. threshold : float Description of `threshold`. win : int Window used to calculate gradients (n points) recalc : bool Whether or not to re-calculate the gradients. Returns ------- None """ params = locals() del(params['self']) # calculate absolute gradient if recalc or not self.grads_calced:
python
{ "resource": "" }
q275702
D.calc_correlation
test
def calc_correlation(self, x_analyte, y_analyte, window=15, filt=True, recalc=True): """ Calculate local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None """ label = '{:}_{:}_{:.0f}'.format(x_analyte, y_analyte, window) if label in self.correlations and not recalc: return # make window odd if window % 2 != 1: window += 1 # get
python
{ "resource": "" }
q275703
D.filter_correlation
test
def filter_correlation(self, x_analyte, y_analyte, window=15, r_threshold=0.9, p_threshold=0.05, filt=True, recalc=False): """ Calculate correlation filter. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. r_threshold : float The correlation index above which to exclude data. Note: the absolute pearson R value is considered, so negative correlations below -`r_threshold` will also be excluded. p_threshold : float The significant level below which data are excluded. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None """ # make window odd if window % 2
python
{ "resource": "" }
q275704
D.filter_new
test
def filter_new(self, name, filt_str): """ Make new filter from combination of other filters. Parameters ---------- name : str The name of the new filter. Should be unique. filt_str : str A logical combination of partial strings which will create the new filter. For example, 'Albelow & Mnbelow' will combine
python
{ "resource": "" }
q275705
D.get_params
test
def get_params(self): """ Returns paramters used to process data. Returns ------- dict dict of analysis parameters """ outputs = ['sample', 'ratio_params', 'despike_params', 'autorange_params', 'bkgcorrect_params'] out = {}
python
{ "resource": "" }
q275706
histograms
test
def histograms(dat, keys=None, bins=25, logy=False, cmap=None, ncol=4): """ Plot histograms of all items in dat. Parameters ---------- dat : dict Data in {key: array} pairs. keys : arra-like The keys in dat that you want to plot. If None, all are plotted. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. cmap : dict The colours that the different items should be. If None, all are grey. Returns ------- fig, axes """ if keys is None: keys = dat.keys() ncol = int(ncol) nrow = calc_nrow(len(keys), ncol) fig, axs = plt.subplots(nrow, 4, figsize=[ncol * 2, nrow * 2]) pn = 0 for k, ax in zip(keys, axs.flat): tmp = nominal_values(dat[k]) x = tmp[~np.isnan(tmp)] if cmap is not None: c = cmap[k] else: c = (0, 0, 0, 0.5)
python
{ "resource": "" }
q275707
summary_stats
test
def summary_stats(x, y, nm=None): """ Compute summary statistics for paired x, y data. Tests ----- Parameters ---------- x, y : array-like Data to compare nm : str (optional) Index value of created dataframe. Returns ------- pandas dataframe of statistics. """ # create datafrane for results if isinstance(nm, str): nm = [nm] # cols = pd.MultiIndex.from_arrays([['', 'Pairwise', 'Pairwise', cat, cat, cat, cat], # ['N', 'W', 'p', 'Median', 'IQR', 'W', 'p']]) # cols = ['Median', 'IQR', 'CI95', 'L95', 'LQ', 'UQ', 'U95', 'N', # 'Wilcoxon_stat', 'Wilcoxon_p', # 'KS_stat', 'KS_p', # 'LR_slope', 'LR_intercept', 'LR_slope_tvalue', 'LR_intercept_tvalue', 'LR_slope_p', 'LR_intercept_p', 'LR_R2adj'] # out = pd.DataFrame(index=nm, columns=cols) cols = pd.MultiIndex.from_tuples([('Residual Summary', 'N'), ('Residual Summary', 'Median'), ('Residual Summary', 'LQ'), ('Residual Summary', 'IQR'), ('Residual Summary', 'UQ'), ('Residual Regression', 'Slope'), ('Residual Regression', 'Slope t'), ('Residual Regression', 'Slope p'), ('Residual Regression', 'Intercept'), ('Residual Regression', 'Intercept t'), ('Residual Regression', 'Intercept p'), ('Residual
python
{ "resource": "" }
q275708
load_reference_data
test
def load_reference_data(name=None): """ Fetch LAtools reference data from online repository. Parameters ---------- name : str< Which data to download. Can be one of 'culture_reference', 'culture_test', 'downcore_reference', 'downcore_test', 'iolite_reference' or 'zircon_reference'. If None, all are downloaded and returned as a dict. Returns ------- pandas.DataFrame or dict. """ base_url = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vQJfCeuqrtFFMAeSpA9rguzLAo9OVuw50AHhAULuqjMJzbd3h46PK1KjF69YiJAeNAAjjMDkJK7wMpG/pub?gid={:}&single=true&output=csv' gids = {'culture_reference': '0',
python
{ "resource": "" }
q275709
AllInstances.lookup
test
def lookup(self, TC: type, G: type) -> Optional[TypeClass]: ''' Find an instance of the type class `TC` for type `G`. Iterates `G`'s parent classes, looking up instances for each, checking whether the instance is a subclass of the target type class `TC`. ''' if isinstance(G, str): raise ImplicitNotFound(TC, G, f'{G} is a string annotation') if not isinstance(G, (type, TypeVar, _GenericAlias)): raise ImplicitNotFound(TC, G, f'{G} is neither type, _GenericAlias nor TypeVar:
python
{ "resource": "" }
q275710
elements
test
def elements(all_isotopes=True): """ Loads a DataFrame of all elements and isotopes. Scraped from https://www.webelements.com/ Returns ------- pandas DataFrame with columns (element, atomic_number, isotope, atomic_weight, percent) """ el = pd.read_pickle(pkgrs.resource_filename('latools', 'resources/elements.pkl')) if all_isotopes: return el.set_index('element') else:
python
{ "resource": "" }
q275711
calc_M
test
def calc_M(molecule): """ Returns molecular weight of molecule. Where molecule is in standard chemical notation, e.g. 'CO2', 'HCO3' or B(OH)4 Returns ------- molecular_weight : float """ # load periodic table els = elements() # define regexs parens = re.compile('\(([A-z0-9]+)\)([0-9]+)?') stoich = re.compile('([A-Z][a-z]?)([0-9]+)?') ps = parens.findall(molecule) # find subgroups in parentheses rem = parens.sub('', molecule) # get remainder m = 0 # deal with sub-groups if len(ps) > 0: for sub, ns in ps: ms = 0 for e, n in stoich.findall(sub): me = (els.loc[e, 'atomic_weight'] * els.loc[e, 'percent'] / 100).sum() if n == '':
python
{ "resource": "" }
q275712
gen_keywords
test
def gen_keywords(*args: Union[ANSIColors, ANSIStyles], **kwargs: Union[ANSIColors, ANSIStyles]) -> tuple: '''generate single escape sequence mapping.''' fields: tuple = tuple() values: tuple = tuple() for tpl in args: fields += tpl._fields values += tpl
python
{ "resource": "" }
q275713
annihilate
test
def annihilate(predicate: tuple, stack: tuple) -> tuple: '''Squash and reduce the input stack. Removes the elements of input that match predicate and only keeps the
python
{ "resource": "" }
q275714
dedup
test
def dedup(stack: tuple) -> tuple: '''Remove duplicates from the stack in first-seen order.''' # Initializes with an accumulator and then reduces the stack with first match # deduplication.
python
{ "resource": "" }
q275715
gauss_weighted_stats
test
def gauss_weighted_stats(x, yarray, x_new, fwhm): """ Calculate gaussian weigted moving mean, SD and SE. Parameters ---------- x : array-like The independent variable yarray : (n,m) array Where n = x.size, and m is the number of dependent variables to smooth. x_new : array-like The new x-scale to interpolate the data fwhm : int FWHM of the gaussian kernel. Returns ------- (mean, std, se) : tuple """ sigma = fwhm / (2 * np.sqrt(2 * np.log(2))) # create empty mask array mask = np.zeros((x.size, yarray.shape[1], x_new.size)) # fill mask for i, xni in enumerate(x_new): mask[:, :, i] = gauss(x[:, np.newaxis], 1, xni, sigma) # normalise mask nmask = mask / mask.sum(0) # sum of each gaussian = 1
python
{ "resource": "" }
q275716
gauss
test
def gauss(x, *p): """ Gaussian function. Parameters ---------- x : array_like Independent variable. *p : parameters unpacked to A, mu, sigma A = amplitude, mu = centre, sigma = width Return ------
python
{ "resource": "" }
q275717
stderr
test
def stderr(a): """ Calculate the standard error of a. """
python
{ "resource": "" }
q275718
analyse._get_samples
test
def _get_samples(self, subset=None): """ Helper function to get sample names from subset. Parameters ---------- subset : str Subset name. If None, returns all samples. Returns ------- List of sample names """ if subset is None: samples = self.subsets['All_Samples'] else: try:
python
{ "resource": "" }
q275719
analyse.despike
test
def despike(self, expdecay_despiker=False, exponent=None, noise_despiker=True, win=3, nlim=12., exponentplot=False, maxiter=4, autorange_kwargs={}, focus_stage='rawdata'): """ Despikes data with exponential decay and noise filters. Parameters ---------- expdecay_despiker : bool Whether or not to apply the exponential decay filter. exponent : None or float The exponent for the exponential decay filter. If None, it is determined automatically using `find_expocoef`. tstep : None or float The timeinterval between measurements. If None, it is determined automatically from the Time variable. noise_despiker : bool Whether or not to apply the standard deviation spike filter. win : int The rolling window over which the spike filter calculates the trace statistics. nlim : float The number of standard deviations above the rolling mean that data are excluded. exponentplot : bool Whether or not to show a plot of the automatically
python
{ "resource": "" }
q275720
analyse.bkg_calc_weightedmean
test
def bkg_calc_weightedmean(self, analytes=None, weight_fwhm=None, n_min=20, n_max=None, cstep=None, bkg_filter=False, f_win=7, f_n_lim=3, focus_stage='despiked'): """ Background calculation using a gaussian weighted mean. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. weight_fwhm : float The full-width-at-half-maximum of the gaussian used to calculate the weighted average. n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes self.bkg = Bunch() elif isinstance(analytes, str): analytes = [analytes] if weight_fwhm is None: weight_fwhm = 600 # 10 minute default window self.get_background(n_min=n_min, n_max=n_max,
python
{ "resource": "" }
q275721
analyse.bkg_calc_interp1d
test
def bkg_calc_interp1d(self, analytes=None, kind=1, n_min=10, n_max=None, cstep=None, bkg_filter=False, f_win=7, f_n_lim=3, focus_stage='despiked'): """ Background calculation using a 1D interpolation. scipy.interpolate.interp1D is used for interpolation. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. kind : str or int Integer specifying the order of the spline interpolation used, or string specifying a type of interpolation. Passed to `scipy.interpolate.interp1D` n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes self.bkg = Bunch() elif isinstance(analytes, str): analytes = [analytes] self.get_background(n_min=n_min, n_max=n_max,
python
{ "resource": "" }
q275722
analyse.bkg_subtract
test
def bkg_subtract(self, analytes=None, errtype='stderr', focus_stage='despiked'): """ Subtract calculated background from data. Must run bkg_calc first! Parameters ---------- analytes : str or iterable Which analyte(s) to subtract. errtype : str Which type of error to propagate. default is 'stderr'. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if focus_stage == 'despiked': if 'despiked' not in self.stages_complete:
python
{ "resource": "" }
q275723
analyse.ratio
test
def ratio(self, internal_standard=None): """ Calculates the ratio of all analytes to a single analyte. Parameters ---------- internal_standard : str The name of the analyte to divide all other analytes by. Returns ------- None """ if 'bkgsub' not in self.stages_complete:
python
{ "resource": "" }
q275724
analyse.make_subset
test
def make_subset(self, samples=None, name=None): """ Creates a subset of samples, which can be treated independently. Parameters ---------- samples : str or array - like Name of sample, or list of sample names. name : (optional) str or number The name of the sample group. Defaults to n + 1, where n is the highest existing group number """ # Check if a subset containing the same samples already exists. for k, v in self.subsets.items(): if set(v) == set(samples) and k != 'not_in_set': return k if isinstance(samples, str):
python
{ "resource": "" }
q275725
analyse.filter_gradient_threshold_percentile
test
def filter_gradient_threshold_percentile(self, analyte, percentiles, level='population', win=15, filt=False, samples=None, subset=None): """ Calculate a gradient threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. win : int The window over which to calculate the moving gradient percentiles : float or iterable of len=2 The percentile values. filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ params = locals() del(params['self']) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.minimal_analytes.update([analyte]) # Calculate gradients of all samples self.get_gradients(analytes=[analyte], win=win, filt=filt, subset=subset) grad = self.gradients[analyte][~np.isnan(self.gradients[analyte])] if isinstance(percentiles, (int, float)): percentiles = [percentiles] if level == 'population': # calculate filter limits lims = np.percentile(grad, percentiles) # Calculate filter for individual samples with self.pbar.set(total=len(samples), desc='Percentile Threshold Filter') as prog: for s in samples: d = self.data[s] setn = d.filt.maxset + 1 g = calc_grads(d.Time, d.focus, [analyte], win)[analyte] if level == 'individual': gt = nominal_values(g) lims = np.percentile(gt[~np.isnan(gt)], percentiles) if len(lims) == 1: above =
python
{ "resource": "" }
q275726
analyse.fit_classifier
test
def fit_classifier(self, name, analytes, method, samples=None, subset=None, filt=True, sort_by=0, **kwargs): """ Create a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier. analytes : str or iterable Which analytes the clustering algorithm should consider. method : str Which clustering algorithm to use. Can be: 'meanshift' The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. 'kmeans' The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters.
python
{ "resource": "" }
q275727
analyse.apply_classifier
test
def apply_classifier(self, name, samples=None, subset=None): """ Apply a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier to apply. subset : str The subset of samples to apply the classifier to. Returns ------- name : str """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) c = self.classifiers[name] labs = c.classifier.ulabels_ with self.pbar.set(total=len(samples), desc='Applying ' + name + ' classifier') as prog: for s in samples: d = self.data[s] try: f = c.predict(d.focus) except ValueError:
python
{ "resource": "" }
q275728
analyse.filter_correlation
test
def filter_correlation(self, x_analyte, y_analyte, window=None, r_threshold=0.9, p_threshold=0.05, filt=True, samples=None, subset=None): """ Applies a correlation filter to the data. Calculates a rolling correlation between every `window` points of two analytes, and excludes data where their Pearson's R value is above `r_threshold` and statistically significant. Data will be excluded where their absolute R value is greater than `r_threshold` AND the p - value associated with the correlation is less than `p_threshold`. i.e. only correlations that are statistically significant are considered. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. r_threshold : float The correlation index above which to exclude data. Note: the absolute pearson R value is considered, so negative correlations below -`r_threshold` will also be excluded. p_threshold : float The significant level below which data are
python
{ "resource": "" }
q275729
analyse.filter_on
test
def filter_on(self, filt=None, analyte=None, samples=None, subset=None, show_status=False): """ Turns data filters on for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters.
python
{ "resource": "" }
q275730
analyse.filter_off
test
def filter_off(self, filt=None, analyte=None, samples=None, subset=None, show_status=False): """ Turns data filters off for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters.
python
{ "resource": "" }
q275731
analyse.filter_status
test
def filter_status(self, sample=None, subset=None, stds=False): """ Prints the current status of filters for specified samples. Parameters ---------- sample : str Which sample to print. subset : str Specify a subset stds : bool Whether or not to include standards. """ s = '' if sample is None and subset is None: if not self._has_subsets: s += 'Subset: All Samples\n\n' s += self.data[self.subsets['All_Samples'][0]].filt.__repr__() else: for n in sorted(str(sn) for sn in self._subset_names): if n in self.subsets: pass elif int(n) in self.subsets: n = int(n) pass s += 'Subset: ' + str(n) + '\n' s += 'Samples: ' + ', '.join(self.subsets[n]) + '\n\n' s += self.data[self.subsets[n][0]].filt.__repr__()
python
{ "resource": "" }
q275732
analyse.filter_defragment
test
def filter_defragment(self, threshold, mode='include', filt=True, samples=None, subset=None): """ Remove 'fragments' from the calculated filter Parameters ---------- threshold : int Contiguous data regions that contain this number or fewer points are considered 'fragments' mode : str Specifies wither to 'include' or 'exclude' the identified fragments. filt : bool or filt string Which filter to apply the defragmenter to. Defaults to True samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ if samples is
python
{ "resource": "" }
q275733
analyse.filter_nremoved
test
def filter_nremoved(self, filt=True, quiet=False): """ Report how many data are removed by the active filters. """ rminfo = {} for n in self.subsets['All_Samples']: s = self.data[n] rminfo[n] = s.filt_nremoved(filt) if not quiet: maxL = max([len(s) for s in rminfo.keys()]) print('{string:{number}s}'.format(string='Sample ', number=maxL + 3) + '{total:4s}'.format(total='tot') + '{removed:4s}'.format(removed='flt') + '{percent:4s}'.format(percent='%rm'))
python
{ "resource": "" }
q275734
analyse.gradient_histogram
test
def gradient_histogram(self, analytes=None, win=15, filt=False, bins=None, samples=None, subset=None, recalc=True, ncol=4): """ Plot a histogram of the gradients in all samples. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. bins : None or array-like The bins to use in the histogram samples : str or list which samples to get subset : str or int which subset to get recalc : bool Whether to re-calculate the gradients, or use existing gradients. Returns ------- fig, ax """ if analytes is None: analytes = [a for a in self.analytes if self.internal_standard not in a] if not hasattr(self, 'gradients'): self.gradients = Bunch() ncol = int(ncol) n = len(analytes) nrow = plot.calc_nrow(n, ncol) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.get_gradients(analytes=analytes, win=win, filt=filt, subset=subset, recalc=recalc) fig, axs = plt.subplots(nrow, ncol, figsize=[3. * ncol, 2.5 * nrow])
python
{ "resource": "" }
q275735
analyse.gradient_crossplot
test
def gradient_crossplot(self, analytes=None, win=15, lognorm=True, bins=25, filt=False, samples=None, subset=None, figsize=(12, 12), save=False, colourful=True, mode='hist2d', recalc=True, **kwargs): """ Plot analyte gradients against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. figsize : tuple Figure size (width, height) in inches. save : bool or str If True, plot is saves as 'crossplot.png', if str plot is
python
{ "resource": "" }
q275736
analyse.histograms
test
def histograms(self, analytes=None, bins=25, logy=False, filt=False, colourful=True): """ Plot histograms of analytes. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. colourful : bool If True, histograms are colourful :) Returns ------- (fig, axes) """ if analytes is None: analytes = self.analytes
python
{ "resource": "" }
q275737
analyse.trace_plots
test
def trace_plots(self, analytes=None, samples=None, ranges=False, focus=None, outdir=None, filt=None, scale='log', figsize=[10, 4], stats=False, stat='nanmean', err='nanstd', subset='All_Analyses'): """ Plot analytes as a function of time. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. samples: optional, array_like or str The sample(s) to plot. Defaults to all samples. ranges : bool Whether or not to show the signal/backgroudn regions identified by 'autorange'. focus : str The focus 'stage' of the analysis to plot. Can be 'rawdata', 'despiked':, 'signal', 'background', 'bkgsub', 'ratios' or 'calibrated'. outdir : str Path to a directory where you'd like the plots to be saved. Defaults to 'reports/[focus]' in your data directory. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. scale : str If 'log', plots the data on a log scale. figsize : array_like Array of length 2 specifying figure [width, height] in inches. stats : bool Whether or not to overlay the mean and standard deviations for each trace. stat, err: str The names of the statistic and error components to plot. Deafaults to 'nanmean' and 'nanstd'. Returns ------- None """ if focus is None: focus = self.focus_stage if outdir is None: outdir = self.report_dir + '/' + focus if not os.path.isdir(outdir): os.mkdir(outdir)
python
{ "resource": "" }
q275738
analyse.gradient_plots
test
def gradient_plots(self, analytes=None, win=15, samples=None, ranges=False, focus=None, outdir=None, figsize=[10, 4], subset='All_Analyses'): """ Plot analyte gradients as a function of time. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. samples: optional, array_like or str The sample(s) to plot. Defaults to all samples. ranges : bool Whether or not to show the signal/backgroudn regions identified by 'autorange'. focus : str The focus 'stage' of the analysis to plot. Can be 'rawdata', 'despiked':, 'signal', 'background', 'bkgsub', 'ratios' or 'calibrated'. outdir : str Path to a directory where you'd like the plots to be saved. Defaults to 'reports/[focus]' in your data directory. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. scale : str If 'log', plots the data on a log scale. figsize : array_like Array of length 2 specifying figure [width, height] in inches. stats : bool Whether or not to overlay the mean and standard deviations for each trace. stat, err: str The names of the statistic and error components to plot. Deafaults to 'nanmean' and 'nanstd'. Returns ------- None """ if focus is None: focus = self.focus_stage if outdir is None: outdir = self.report_dir + '/' + focus + '_gradient' if not os.path.isdir(outdir):
python
{ "resource": "" }
q275739
analyse.filter_reports
test
def filter_reports(self, analytes, filt_str='all', nbin=5, samples=None, outdir=None, subset='All_Samples'): """ Plot filter reports for all filters that contain ``filt_str`` in the name. """ if outdir is None: outdir = self.report_dir + '/filters/' + filt_str if not os.path.isdir(self.report_dir + '/filters'): os.mkdir(self.report_dir + '/filters') if not os.path.isdir(outdir): os.mkdir(outdir) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset)
python
{ "resource": "" }
q275740
analyse.sample_stats
test
def sample_stats(self, analytes=None, filt=True, stats=['mean', 'std'], eachtrace=True, csf_dict={}): """ Calculate sample statistics. Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated from the 'focus' data variable, so output depends on how the data have been processed. Included stat functions: * :func:`~latools.stat_fns.mean`: arithmetic mean * :func:`~latools.stat_fns.std`: arithmetic standard deviation * :func:`~latools.stat_fns.se`: arithmetic standard error * :func:`~latools.stat_fns.H15_mean`: Huber mean (outlier removal) * :func:`~latools.stat_fns.H15_std`: Huber standard deviation (outlier removal) * :func:`~latools.stat_fns.H15_se`: Huber standard error (outlier removal) Parameters ---------- analytes : optional, array_like or str The analyte(s) to calculate statistics for. Defaults to all analytes. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. stats : array_like take a single array_like input, and return a single statistic. list of functions or names (see above) or functions that Function should be able to cope with NaN values. eachtrace : bool Whether to calculate the statistics for each analysis spot individually, or to produce per - sample means. Default is True. Returns ------- None Adds dict to analyse object containing samples, analytes and functions and data. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] self.stats = Bunch() self.stats_calced = [] stat_fns = Bunch() stat_dict = {'mean': np.nanmean, 'std': np.nanstd,
python
{ "resource": "" }
q275741
analyse.getstats
test
def getstats(self, save=True, filename=None, samples=None, subset=None, ablation_time=False): """ Return pandas dataframe of all sample statistics. """ slst = [] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in self.stats_calced: for nm in [n for n in samples if self.srm_identifier not in n]: if self.stats[nm][s].ndim == 2: # make multi - index reps = np.arange(self.stats[nm][s].shape[-1]) ss = np.array([s] * reps.size) nms = np.array([nm] * reps.size) # make sub - dataframe stdf = pd.DataFrame(self.stats[nm][s].T, columns=self.stats[nm]['analytes'], index=[ss, nms, reps]) stdf.index.set_names(['statistic', 'sample', 'rep'], inplace=True) else: stdf = pd.DataFrame(self.stats[nm][s], index=self.stats[nm]['analytes'], columns=[[s], [nm]]).T stdf.index.set_names(['statistic', 'sample'],
python
{ "resource": "" }
q275742
analyse._minimal_export_traces
test
def _minimal_export_traces(self, outdir=None, analytes=None, samples=None, subset='All_Analyses'): """ Used for exporting minimal dataset. DON'T USE. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) focus_stage = 'rawdata' # ud = 'counts' if not os.path.isdir(outdir): os.mkdir(outdir) for s in samples: d = self.data[s].data[focus_stage] out = Bunch() for a in analytes: out[a] = d[a] out = pd.DataFrame(out, index=self.data[s].Time) out.index.name = 'Time' d = dateutil.parser.parse(self.data[s].meta['date']) header = ['# Minimal Reproduction Dataset Exported from LATOOLS on %s' %
python
{ "resource": "" }
q275743
analyse.export_traces
test
def export_traces(self, outdir=None, focus_stage=None, analytes=None, samples=None, subset='All_Analyses', filt=False, zip_archive=False): """ Function to export raw data. Parameters ---------- outdir : str directory to save toe traces. Defaults to 'main-dir-name_export'. focus_stage : str The name of the analysis stage to export. * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Defaults to the most recent stage of analysis. analytes : str or array - like Either a single analyte, or list of analytes to export. Defaults to all analytes. samples : str or array - like Either a single sample name, or list of samples to export. Defaults to all samples. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) if focus_stage is None: focus_stage = self.focus_stage if focus_stage in ['ratios', 'calibrated']: analytes = [a for a in analytes if a != self.internal_standard] if outdir is None: outdir = os.path.join(self.export_dir, 'trace_export') ud = {'rawdata': 'counts', 'despiked': 'counts', 'bkgsub': 'background corrected counts', 'ratios': 'counts/count {:s}', 'calibrated': 'mol/mol
python
{ "resource": "" }
q275744
analyse.save_log
test
def save_log(self, directory=None, logname=None, header=None): """ Save analysis.lalog in specified location """ if directory is None: directory = self.export_dir if not os.path.isdir(directory):
python
{ "resource": "" }
q275745
analyse.minimal_export
test
def minimal_export(self, target_analytes=None, path=None): """ Exports a analysis parameters, standard info and a minimal dataset, which can be imported by another user. Parameters ---------- target_analytes : str or iterable Which analytes to include in the export. If specified, the export will contain these analytes, and all other analytes used during data processing (e.g. during filtering). If not specified, all analytes are exported. path : str Where to save the minimal export. If it ends with .zip, a zip file is created. If it's a folder, all data are exported to a folder. """ if target_analytes is None: target_analytes = self.analytes if isinstance(target_analytes, str): target_analytes = [target_analytes] self.minimal_analytes.update(target_analytes) zip_archive = False # set up data path if path is None: path = self.export_dir + '/minimal_export.zip' if path.endswith('.zip'): path = path.replace('.zip', '') zip_archive = True if not os.path.isdir(path): os.mkdir(path) # export data self._minimal_export_traces(path + '/data', analytes=self.minimal_analytes) # define analysis_log header log_header = ['# Minimal Reproduction Dataset Exported from LATOOLS on %s' % (time.strftime('%Y:%m:%d %H:%M:%S')), 'data_folder :: ./data/'] if hasattr(self, 'srmdat'): log_header.append('srm_table :: ./srm.table') # export srm table els = np.unique([re.sub('[0-9]', '', a) for a in self.minimal_analytes]) srmdat = [] for e in els: srmdat.append(self.srmdat.loc[self.srmdat.element == e, :])
python
{ "resource": "" }
q275746
by_regex
test
def by_regex(file, outdir=None, split_pattern=None, global_header_rows=0, fname_pattern=None, trim_tail_lines=0, trim_head_lines=0): """ Split one long analysis file into multiple smaller ones. Parameters ---------- file : str The path to the file you want to split. outdir : str The directory to save the split files to. If None, files are saved to a new directory called 'split', which is created inside the data directory. split_pattern : regex string A regular expression that will match lines in the file that mark the start of a new section. Does not have to match the whole line, but must provide a positive match to the lines containing the pattern. global_header_rows : int How many rows at the start of the file to include in each new sub-file. fname_pattern : regex string A regular expression that identifies a new file name in the lines identified by split_pattern. If none, files will be called 'noname_N'. The extension of the main file will be used for all sub-files. trim_head_lines : int If greater than zero, this many lines are removed from the start of each segment trim_tail_lines : int If greater than zero, this many lines are removed from the end of each segment Returns ------- Path to new directory : str """ # create output sirectory if outdir is None: outdir = os.path.join(os.path.dirname(file), 'split') if not os.path.exists(outdir): os.mkdir(outdir) # read input file
python
{ "resource": "" }
q275747
Foldable.fold_map
test
def fold_map(self, fa: F[A], z: B, f: Callable[[A], B], g: Callable[[Z, B], Z]=operator.add) -> Z: ''' map `f` over the traversable, then fold over the result
python
{ "resource": "" }
q275748
pca_plot
test
def pca_plot(pca, dt, xlabs=None, mode='scatter', lognorm=True): """ Plot a fitted PCA, and all components. """ nc = pca.n_components f = np.arange(pca.n_features_) cs = list(itertools.combinations(range(nc), 2)) ind = ~np.apply_along_axis(any, 1, np.isnan(dt)) cylim = (pca.components_.min(), pca.components_.max()) yd = cylim[1] - cylim[0] # Make figure fig, axs = plt.subplots(nc, nc, figsize=[3 * nc, nc * 3], tight_layout=True) for x, y in zip(*np.triu_indices(nc)): if x == y: tax = axs[x, y] tax.bar(f, pca.components_[x], 0.8) tax.set_xticks([]) tax.axhline(0, zorder=-1, c=(0,0,0,0.6)) # labels tax.set_ylim(cylim[0] - 0.2 * yd, cylim[1] + 0.2 * yd) for xi, yi, lab in zip(f, pca.components_[x], xlabs): if yi > 0: yo = yd * 0.03 va = 'bottom' else: yo = yd * -0.02 va = 'top' tax.text(xi, yi + yo, lab, ha='center', va=va, rotation=90, fontsize=8) else: xv = dt[ind, x] yv = dt[ind, y] if mode == 'scatter':
python
{ "resource": "" }
q275749
bayes_scale
test
def bayes_scale(s): """ Remove mean and divide by standard deviation, using bayes_kvm statistics. """ if sum(~np.isnan(s)) > 1: bm, bv, bs = bayes_mvs(s[~np.isnan(s)])
python
{ "resource": "" }
q275750
median_scaler
test
def median_scaler(s): """ Remove median, divide by IQR. """ if sum(~np.isnan(s)) > 2: ss = s[~np.isnan(s)] median = np.median(ss)
python
{ "resource": "" }
q275751
noise_despike
test
def noise_despike(sig, win=3, nlim=24., maxiter=4): """ Apply standard deviation filter to remove anomalous values. Parameters ---------- win : int The window used to calculate rolling statistics. nlim : float The number of standard deviations above the rolling mean above which data are considered outliers. Returns ------- None """ if win % 2 != 1: win += 1 # win must be odd kernel = np.ones(win) / win # make convolution kernel over = np.ones(len(sig), dtype=bool) # initialize bool array # pad edges to avoid edge-effects npad = int((win - 1) / 2) over[:npad] = False over[-npad:] = False # set up monitoring nloops = 0 # do the despiking while any(over) and (nloops < maxiter): rmean = np.convolve(sig, kernel, 'valid') # mean by convolution rstd = rmean**0.5 # std = sqrt(signal), because count statistics # identify where signal > mean + std * nlim (OR signa < mean - std * # nlim) # | (sig[npad:-npad] < rmean - nlim * rstd)
python
{ "resource": "" }
q275752
expdecay_despike
test
def expdecay_despike(sig, expdecay_coef, tstep, maxiter=3): """ Apply exponential decay filter to remove physically impossible data based on instrumental washout. The filter is re-applied until no more points are removed, or maxiter is reached. Parameters ---------- exponent : float Exponent used in filter tstep : float The time increment between data points. maxiter : int The maximum number of times the filter should be applied. Returns ------- None """ # determine rms noise of data noise = np.std(sig[:5]) # initially, calculated based on first 5 points # expand the selection up to 50 points, unless it dramatically increases # the std (i.e. catches the 'laser on' region) for i in [10, 20, 30, 50]: inoise = np.std(sig[:i]) if inoise < 1.5 * noise: noise = inoise rms_noise3 = 3 * noise i = 0 f = True while (i < maxiter) and f: # calculate low and high possibles values based on exponential decay siglo = np.roll(sig * np.exp(tstep * expdecay_coef), 1)
python
{ "resource": "" }
q275753
filt.add
test
def add(self, name, filt, info='', params=(), setn=None): """ Add filter. Parameters ---------- name : str filter name filt : array_like boolean filter array info : str informative description of the filter params : tuple parameters used to make the filter Returns ------- None """ iname = '{:.0f}_'.format(self.n) + name self.index[self.n] = iname if setn is None: setn = self.maxset + 1
python
{ "resource": "" }
q275754
filt.remove
test
def remove(self, name=None, setn=None): """ Remove filter. Parameters ---------- name : str name of the filter to remove setn : int or True int: number of set to remove True: remove all filters in set that 'name' belongs to Returns ------- None """ if isinstance(name, int): name = self.index[name] if setn is not None: name = self.sets[setn] del self.sets[setn] elif isinstance(name, (int, str)): name = [name] if setn is True: for n in name: for k, v in self.sets.items(): if n in v:
python
{ "resource": "" }
q275755
filt.clear
test
def clear(self): """ Clear all filters. """ self.components = {} self.info = {} self.params = {} self.switches = {} self.keys = {} self.index = {}
python
{ "resource": "" }
q275756
filt.clean
test
def clean(self): """ Remove unused filters. """ for f in sorted(self.components.keys()):
python
{ "resource": "" }
q275757
filt.fuzzmatch
test
def fuzzmatch(self, fuzzkey, multi=False): """ Identify a filter by fuzzy string matching. Partial ('fuzzy') matching performed by `fuzzywuzzy.fuzzy.ratio` Parameters ---------- fuzzkey : str A string that partially matches one filter name more than the others. Returns ------- The name of the most closely matched filter. : str """ keys, ratios = np.array([(f, seqm(None, fuzzkey, f).ratio()) for f in self.components.keys()]).T mratio = max(ratios) if multi: return keys[ratios == mratio]
python
{ "resource": "" }
q275758
filt.make_fromkey
test
def make_fromkey(self, key): """ Make filter from logical expression. Takes a logical expression as an input, and returns a filter. Used for advanced filtering, where combinations of nested and/or filters are desired. Filter names must exactly match the names listed by print(filt). Example: ``key = '(Filter_1 | Filter_2) & Filter_3'`` is equivalent to: ``(Filter_1 OR Filter_2) AND Filter_3`` statements in parentheses are evaluated first. Parameters ---------- key : str logical expression describing filter
python
{ "resource": "" }
q275759
filt.grab_filt
test
def grab_filt(self, filt, analyte=None): """ Flexible access to specific filter using any key format. Parameters ---------- f : str, dict or bool either logical filter expression, dict of expressions, or a boolean analyte : str name of analyte the filter is for. Returns ------- array_like boolean filter """ if isinstance(filt, str): if filt in self.components: if analyte is None: return self.components[filt] else: if self.switches[analyte][filt]: return self.components[filt] else: try: ind = self.make_fromkey(filt) except KeyError:
python
{ "resource": "" }
q275760
filt.get_info
test
def get_info(self): """ Get info for all filters. """ out = '' for k in sorted(self.components.keys()):
python
{ "resource": "" }
q275761
_log
test
def _log(func): """ Function for logging method calls and parameters """ @wraps(func) def wrapper(self, *args, **kwargs): a = func(self, *args, **kwargs)
python
{ "resource": "" }
q275762
write_logfile
test
def write_logfile(log, header, file_name): """ Write and analysis log to a file. Parameters ---------- log : list latools.analyse analysis log header : list File header lines. file_name : str Destination file. If no file extension specified, uses '.lalog' Returns
python
{ "resource": "" }
q275763
read_logfile
test
def read_logfile(log_file): """ Reads an latools analysis.log file, and returns dicts of arguments. Parameters ---------- log_file : str Path to an analysis.log file produced by latools. Returns ------- runargs, paths : tuple Two dictionaries. runargs contains all the arguments required to run each step of analysis in the form (function_name, {'args': (), 'kwargs': {}}). paths contains the locations of the data directory and the SRM database used for analysis. """ dirname = os.path.dirname(log_file) + '/' with open(log_file, 'r') as f: rlog = f.readlines() hashind = [i for i, n in enumerate(rlog) if '#' in n] pathread = re.compile('(.*) :: (.*)\n') paths = (pathread.match(l).groups() for l in rlog[hashind[0] + 1:hashind[-1]] if pathread.match(l)) paths = {k: os.path.join(dirname, v) for k, v in paths} # paths = {k: os.path.abspath(v) for k, v in paths}
python
{ "resource": "" }
q275764
autologin
test
def autologin(function, timeout=TIMEOUT): """Decorator that will try to login and redo an action before failing.""" @wraps(function) async def wrapper(self, *args, **kwargs): """Wrap a function with timeout.""" try: async with async_timeout.timeout(timeout): return await function(self, *args, **kwargs) except (asyncio.TimeoutError, ClientError, Error): pass _LOGGER.debug("autologin") try:
python
{ "resource": "" }
q275765
get_information
test
async def get_information(): """Example of printing the inbox.""" jar = aiohttp.CookieJar(unsafe=True) websession = aiohttp.ClientSession(cookie_jar=jar) modem =
python
{ "resource": "" }
q275766
send_message
test
async def send_message(): """Example of sending a message.""" jar = aiohttp.CookieJar(unsafe=True) websession = aiohttp.ClientSession(cookie_jar=jar) modem = eternalegypt.Modem(hostname=sys.argv[1], websession=websession)
python
{ "resource": "" }
q275767
parse
test
def parse(file_or_string): """Parse a file-like object or string. Args: file_or_string (file, str): File-like object or string. Returns: ParseResults: instance of pyparsing parse results. """ from mysqlparse.grammar.sql_file import sql_file_syntax if hasattr(file_or_string,
python
{ "resource": "" }
q275768
nbviewer_link
test
def nbviewer_link(url): """Return the link to the Jupyter nbviewer for the given notebook url""" if six.PY2: from urlparse import urlparse as urlsplit
python
{ "resource": "" }
q275769
NotebookProcessor.thumbnail_div
test
def thumbnail_div(self): """The string for creating the thumbnail of this example""" return self.THUMBNAIL_TEMPLATE.format(
python
{ "resource": "" }
q275770
NotebookProcessor.code_div
test
def code_div(self): """The string for creating a code example for the gallery""" code_example = self.code_example if code_example is None: return None return self.CODE_TEMPLATE.format(
python
{ "resource": "" }
q275771
NotebookProcessor.code_example
test
def code_example(self): """The code example out of the notebook metadata""" if self._code_example is not None:
python
{ "resource": "" }
q275772
NotebookProcessor.url
test
def url(self): """The url on jupyter nbviewer for this notebook or None if unknown""" if self._url is not None: url = self._url else:
python
{ "resource": "" }
q275773
NotebookProcessor.get_out_file
test
def get_out_file(self, ending='rst'): """get the output file with the specified `ending`"""
python
{ "resource": "" }
q275774
NotebookProcessor.process_notebook
test
def process_notebook(self, disable_warnings=True): """Process the notebook and create all the pictures and files This method runs the notebook using the :mod:`nbconvert` and :mod:`nbformat` modules. It creates the :attr:`outfile` notebook, a python and a rst file""" infile = self.infile outfile = self.outfile in_dir = os.path.dirname(infile) + os.path.sep odir = os.path.dirname(outfile) + os.path.sep create_dirs(os.path.join(odir, 'images')) ep = nbconvert.preprocessors.ExecutePreprocessor( timeout=300) cp = nbconvert.preprocessors.ClearOutputPreprocessor( timeout=300) self.nb = nb = nbformat.read(infile, nbformat.current_nbformat) # disable warnings in the rst file if disable_warnings: for i, cell in enumerate(nb.cells): if cell['cell_type'] == 'code': cell = cell.copy() break cell = cell.copy() cell.source = """ import logging logging.captureWarnings(True) logging.getLogger('py.warnings').setLevel(logging.ERROR) """ nb.cells.insert(i, cell) # write and process rst_file if self.preprocess: t = dt.datetime.now() logger.info('Processing %s', self.infile) try:
python
{ "resource": "" }
q275775
NotebookProcessor.create_py
test
def create_py(self, nb, force=False): """Create the python script from the notebook node""" # Although we would love to simply use ``nbconvert.export_python(nb)`` # this causes troubles in other cells processed by the ipython # directive. Instead of getting something like ``Out [5]:``, we get # some weird like '[0;31mOut[5]: ' which look like # color information if we allow the call of nbconvert.export_python if list(map(int, re.findall('\d+', nbconvert.__version__))) >= [4, 2]: py_file = os.path.basename(self.py_file) else: py_file = self.py_file try: level = logger.logger.level
python
{ "resource": "" }
q275776
NotebookProcessor.data_download
test
def data_download(self, files): """Create the rst string to download supplementary data""" if len(files) > 1: return self.DATA_DOWNLOAD % ( ('\n\n' + ' '*8) + ('\n' + ' '*8).join(
python
{ "resource": "" }
q275777
NotebookProcessor.create_thumb
test
def create_thumb(self): """Create the thumbnail for html output""" thumbnail_figure = self.copy_thumbnail_figure() if thumbnail_figure is not None: if isinstance(thumbnail_figure, six.string_types):
python
{ "resource": "" }
q275778
NotebookProcessor.get_description
test
def get_description(self): """Get summary and description of this notebook""" def split_header(s, get_header=True): s = s.lstrip().rstrip() parts = s.splitlines() if parts[0].startswith('#'): if get_header: header = re.sub('#+\s*', '', parts.pop(0)) if not parts: return header, '' else: header = '' rest = '\n'.join(parts).lstrip().split('\n\n') desc = rest[0].replace('\n', ' ') return header, desc else: if get_header:
python
{ "resource": "" }
q275779
NotebookProcessor.scale_image
test
def scale_image(self, in_fname, out_fname, max_width, max_height): """Scales an image with the same aspect ratio centered in an image with a given max_width and max_height if in_fname == out_fname the image can only be scaled down """ # local import to avoid testing dependency on PIL: try: from PIL import Image except ImportError: import Image img = Image.open(in_fname) width_in, height_in = img.size
python
{ "resource": "" }
q275780
NotebookProcessor.save_thumbnail
test
def save_thumbnail(self, image_path): """Save the thumbnail image""" thumb_dir = os.path.join(os.path.dirname(image_path), 'thumb') create_dirs(thumb_dir) thumb_file = os.path.join(thumb_dir, '%s_thumb.png' %
python
{ "resource": "" }
q275781
NotebookProcessor.copy_thumbnail_figure
test
def copy_thumbnail_figure(self): """The integer of the thumbnail figure""" ret = None if self._thumbnail_figure is not None: if not isstring(self._thumbnail_figure): ret = self._thumbnail_figure else: ret = osp.join(osp.dirname(self.outfile), osp.basename(self._thumbnail_figure)) copyfile(self._thumbnail_figure, ret) return ret elif hasattr(self.nb.metadata, 'thumbnail_figure'): if not isstring(self.nb.metadata.thumbnail_figure): ret =
python
{ "resource": "" }
q275782
Gallery.get_url
test
def get_url(self, nbfile): """Return the url corresponding to the given notebook file Parameters ---------- nbfile: str The path of the notebook relative to the corresponding :attr:``in_dir`` Returns ------- str or None The url or None if no url has been specified """ urls = self.urls
python
{ "resource": "" }
q275783
Command.get_db_change_languages
test
def get_db_change_languages(self, field_name, db_table_fields): """ get only db changes fields """ for lang_code, lang_name in get_languages(): if get_real_fieldname(field_name, lang_code) not in db_table_fields: yield lang_code for db_table_field in db_table_fields:
python
{ "resource": "" }
q275784
default_value
test
def default_value(field): ''' When accessing to the name of the field itself, the value in the current language will be returned. Unless it's set, the value in the default language will be returned. ''' def default_value_func(self): attname = lambda x: get_real_fieldname(field, x) if getattr(self, attname(get_language()), None): result = getattr(self, attname(get_language())) elif getattr(self, attname(get_language()[:2]), None): result = getattr(self, attname(get_language()[:2])) else: default_language = fallback_language()
python
{ "resource": "" }
q275785
process
test
def process(thumbnail_file, size, **kwargs): """ Post processors are functions that receive file objects, performs necessary operations and return the results as
python
{ "resource": "" }
q275786
ImageField.pre_save
test
def pre_save(self, model_instance, add): """ Process the source image through the defined processors. """ file = getattr(model_instance, self.attname) if file and not file._committed: image_file = file
python
{ "resource": "" }
q275787
ThumbnailManager._refresh_cache
test
def _refresh_cache(self): """Populate self._thumbnails.""" self._thumbnails = {} metadatas = self.metadata_backend.get_thumbnails(self.source_image.name)
python
{ "resource": "" }
q275788
ThumbnailManager.all
test
def all(self): """ Return all thumbnails in a dict format. """ if self._thumbnails is not None:
python
{ "resource": "" }
q275789
ThumbnailManager.create
test
def create(self, size): """ Creates and return a thumbnail of a given size. """ thumbnail = images.create(self.source_image.name, size,
python
{ "resource": "" }
q275790
ThumbnailManager.delete
test
def delete(self, size): """ Deletes a thumbnail of a given size """ images.delete(self.source_image.name, size,
python
{ "resource": "" }
q275791
create
test
def create(source_name, size, metadata_backend=None, storage_backend=None): """ Creates a thumbnail file and its relevant metadata. Returns a Thumbnail instance. """ if storage_backend is None: storage_backend = backends.storage.get_backend() if metadata_backend is None:
python
{ "resource": "" }
q275792
get
test
def get(source_name, size, metadata_backend=None, storage_backend=None): """ Returns a Thumbnail instance, or None if thumbnail does not yet exist. """ if storage_backend is None: storage_backend = backends.storage.get_backend() if metadata_backend is None:
python
{ "resource": "" }
q275793
delete
test
def delete(source_name, size, metadata_backend=None, storage_backend=None): """ Deletes a thumbnail file and its relevant metadata. """ if storage_backend is None: storage_backend = backends.storage.get_backend() if metadata_backend is None:
python
{ "resource": "" }
q275794
LoopbackProvider.received
test
def received(self, src, body): """ Simulate an incoming message :type src: str :param src: Message source :type boby: str | unicode :param body: Message body :rtype: IncomingMessage """ # Create the message
python
{ "resource": "" }
q275795
LoopbackProvider.subscribe
test
def subscribe(self, number, callback): """ Register a virtual subscriber which receives messages to the matching number. :type number: str :param number: Subscriber phone number :type callback: callable :param callback: A callback(OutgoingMessage) which handles the messages directed to the subscriber.
python
{ "resource": "" }
q275796
MessageStatus.states
test
def states(self): """ Get the set of states. Mostly used for pretty printing :rtype: set :returns: Set of 'accepted', 'delivered', 'expired', 'error'
python
{ "resource": "" }
q275797
Gateway.add_provider
test
def add_provider(self, name, Provider, **config): """ Register a provider on the gateway The first provider defined becomes the default one: used in case the routing function has no better idea. :type name: str :param name: Provider name that will be used to uniquely identify it :type Provider: type :param Provider: Provider class that inherits from `smsframework.IProvider` :param config: Provider configuration. Please refer to the Provider documentation. :rtype: IProvider :returns: The created provider """ assert issubclass(Provider, IProvider), 'Provider does not implement IProvider' assert
python
{ "resource": "" }
q275798
Gateway.send
test
def send(self, message): """ Send a message object :type message: data.OutgoingMessage :param message: The message to send :rtype: data.OutgoingMessage :returns: The sent message with populated fields :raises AssertionError: wrong provider name encountered (returned by the router, or provided to OutgoingMessage) :raises MessageSendError: generic errors :raises AuthError: provider authentication failed :raises LimitsError: sending limits exceeded :raises CreditError: not enough money on the account """ # Which provider to use? provider_name = self._default_provider # default if message.provider is not None: assert message.provider in self._providers, \ 'Unknown provider specified in OutgoingMessage.provideer: {}'.format(provider_name) provider = self.get_provider(message.provider) else: # Apply routing if message.routing_values is not None: # Use the default provider when no routing values are given # Routing values are present
python
{ "resource": "" }
q275799
Gateway.receiver_blueprint_for
test
def receiver_blueprint_for(self, name): """ Get a Flask blueprint for the named provider that handles incoming messages & status reports Note: this requires Flask microframework. :rtype: flask.blueprints.Blueprint :returns: Flask Blueprint, fully functional :raises KeyError: provider not found :raises NotImplementedError: Provider does not implement a receiver """ # Get the provider & blueprint provider = self.get_provider(name) bp = provider.make_receiver_blueprint() # Register a Flask handler that initializes `g.provider`
python
{ "resource": "" }