_id
stringlengths 2
7
| title
stringlengths 1
88
| partition
stringclasses 3
values | text
stringlengths 31
13.1k
| language
stringclasses 1
value | meta_information
dict |
---|---|---|---|---|---|
q276300
|
ConnectorDB.reset_apikey
|
test
|
def reset_apikey(self):
"""invalidates the device's current api key, and generates a new one. Resets current auth to use the new apikey,
since the change would have future queries fail
|
python
|
{
"resource": ""
}
|
q276301
|
ConnectorDB.users
|
test
|
def users(self):
"""Returns the list of users in the database"""
result = self.db.read("", {"q": "ls"})
if result is None or result.json() is None:
return []
users = []
|
python
|
{
"resource": ""
}
|
q276302
|
run_bwa_index
|
test
|
def run_bwa_index(job, ref_id):
"""
Use BWA to create reference index files
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str ref_id: FileStoreID for the reference genome
:return: FileStoreIDs for BWA index files
:rtype: tuple(str, str, str, str, str)
"""
job.fileStore.logToMaster('Created BWA index files')
work_dir = job.fileStore.getLocalTempDir()
job.fileStore.readGlobalFile(ref_id, os.path.join(work_dir, 'ref.fa'))
command = ['index', '/data/ref.fa']
dockerCall(job=job, workDir=work_dir, parameters=command,
|
python
|
{
"resource": ""
}
|
q276303
|
Logger.connectordb
|
test
|
def connectordb(self):
"""Returns the ConnectorDB object that the logger uses. Raises an error if Logger isn't able to connect"""
if self.__cdb is None:
|
python
|
{
"resource": ""
}
|
q276304
|
Logger.addStream
|
test
|
def addStream(self, streamname, schema=None, **kwargs):
"""Adds the given stream to the logger. Requires an active connection to the ConnectorDB database.
If a schema is not specified, loads the stream from the database. If a schema is specified, and the stream
does not exist, creates the stream. You can
|
python
|
{
"resource": ""
}
|
q276305
|
Logger.addStream_force
|
test
|
def addStream_force(self, streamname, schema=None):
"""This function adds the given stream to the logger, but does not check with a ConnectorDB database
to make sure
|
python
|
{
"resource": ""
}
|
q276306
|
Logger.insert
|
test
|
def insert(self, streamname, value):
"""Insert the datapoint into the logger for the given stream name. The logger caches the datapoint
and eventually synchronizes it with ConnectorDB"""
if streamname not in self.streams:
raise Exception("The stream '%s' was not found" % (streamname, ))
# Validate the schema
validate(value, self.streams[streamname])
|
python
|
{
"resource": ""
}
|
q276307
|
Logger.sync
|
test
|
def sync(self):
"""Attempt to sync with the ConnectorDB server"""
logging.debug("Logger: Syncing...")
failed = False
try:
# Get the connectordb object
cdb = self.connectordb
# Ping the database - most connection errors will happen here
cdb.ping()
with self.synclock:
c = self.database.cursor()
for stream in self.streams:
s = cdb[stream]
c.execute(
"SELECT * FROM cache WHERE stream=? ORDER BY timestamp ASC;",
(stream, ))
datapointArray = []
for dp in c.fetchall():
datapointArray.append(
{"t": dp[1],
"d": json.loads(dp[2])})
# First, check if the data already inserted has newer timestamps,
# and in that case, assume that there was an error, and remove the datapoints
# with an older timestamp, so that we don't have an error when syncing
if len(s) > 0:
newtime = s[-1]["t"]
while (len(datapointArray) > 0 and datapointArray[0]["t"] < newtime):
logging.debug("Datapoint exists with older timestamp. Removing the datapoint.")
datapointArray = datapointArray[1:]
if len(datapointArray) > 0:
logging.debug("%s: syncing %i datapoints" %
(stream, len(datapointArray)))
while (len(datapointArray) > DATAPOINT_INSERT_LIMIT):
# We insert datapoints in chunks of a couple
# thousand so that they fit in the insert size
# limit of ConnectorDB
|
python
|
{
"resource": ""
}
|
q276308
|
Logger.start
|
test
|
def start(self):
"""Start the logger background synchronization service. This allows you to not need to
worry about syncing with ConnectorDB - you just insert into the Logger, and the Logger
will by
|
python
|
{
"resource": ""
}
|
q276309
|
Logger.stop
|
test
|
def stop(self):
"""Stops the background synchronization thread"""
with self.synclock:
if self.syncthread is not None:
|
python
|
{
"resource": ""
}
|
q276310
|
download_url_job
|
test
|
def download_url_job(job, url, name=None, s3_key_path=None, cghub_key_path=None):
"""Job version of `download_url`"""
work_dir = job.fileStore.getLocalTempDir()
fpath = download_url(job=job, url=url, work_dir=work_dir, name=name,
|
python
|
{
"resource": ""
}
|
q276311
|
s3am_upload_job
|
test
|
def s3am_upload_job(job, file_id, file_name, s3_dir, s3_key_path=None):
"""Job version of s3am_upload"""
work_dir = job.fileStore.getLocalTempDir()
|
python
|
{
"resource": ""
}
|
q276312
|
labels
|
test
|
def labels(ontology, output, ols_base):
"""Output the names to the given file"""
for label in get_labels(ontology=ontology,
|
python
|
{
"resource": ""
}
|
q276313
|
tree
|
test
|
def tree(ontology, output, ols_base):
"""Output the parent-child relations to the given file"""
for parent, child in get_hierarchy(ontology=ontology,
|
python
|
{
"resource": ""
}
|
q276314
|
get_mean_insert_size
|
test
|
def get_mean_insert_size(work_dir, bam_name):
"""Function taken from MC3 Pipeline"""
cmd = "docker run --log-driver=none --rm -v {}:/data quay.io/ucsc_cgl/samtools " \
"view -f66 {}".format(work_dir, os.path.join(work_dir, bam_name))
process = subprocess.Popen(args=cmd, shell=True, stdout=subprocess.PIPE)
b_sum = 0.0
b_count = 0.0
while True:
line = process.stdout.readline()
if not line:
break
tmp = line.split("\t")
|
python
|
{
"resource": ""
}
|
q276315
|
current_docker_container_id
|
test
|
def current_docker_container_id():
"""
Returns a string that represents the container ID of the current Docker container. If this
function is invoked outside of a container a NotInsideContainerError is raised.
>>> import subprocess
>>> import sys
>>> a = subprocess.check_output(['docker', 'run', '-v',
... sys.modules[__name__].__file__ + ':/foo.py',
...
|
python
|
{
"resource": ""
}
|
q276316
|
run_star
|
test
|
def run_star(job, r1_id, r2_id, star_index_url, wiggle=False, sort=True):
"""
Performs alignment of fastqs to bam via STAR
--limitBAMsortRAM step added to deal with memory explosion when sorting certain samples.
The value was chosen to complement the recommended amount of memory to have when running STAR (60G)
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str r1_id: FileStoreID of fastq (pair 1)
:param str r2_id: FileStoreID of fastq (pair 2 if applicable, else pass None)
:param str star_index_url: STAR index tarball
:param bool wiggle: If True, will output a wiggle file and return it
:return: FileStoreID from RSEM
:rtype: str
"""
work_dir = job.fileStore.getLocalTempDir()
download_url(job, url=star_index_url, name='starIndex.tar.gz', work_dir=work_dir)
subprocess.check_call(['tar', '-xvf', os.path.join(work_dir, 'starIndex.tar.gz'), '-C', work_dir])
os.remove(os.path.join(work_dir, 'starIndex.tar.gz'))
# Determine tarball structure - star index contains are either in a subdir or in the tarball itself
star_index = os.path.join('/data', os.listdir(work_dir)[0]) if len(os.listdir(work_dir)) == 1 else '/data'
# Parameter handling for paired / single-end data
parameters = ['--runThreadN', str(job.cores),
'--genomeDir', star_index,
'--outFileNamePrefix', 'rna',
'--outSAMunmapped', 'Within',
'--quantMode', 'TranscriptomeSAM',
'--outSAMattributes', 'NH', 'HI', 'AS', 'NM', 'MD',
'--outFilterType', 'BySJout',
'--outFilterMultimapNmax', '20',
'--outFilterMismatchNmax', '999',
'--outFilterMismatchNoverReadLmax', '0.04',
'--alignIntronMin', '20',
'--alignIntronMax', '1000000',
'--alignMatesGapMax', '1000000',
'--alignSJoverhangMin', '8',
'--alignSJDBoverhangMin', '1',
'--sjdbScore', '1',
'--limitBAMsortRAM', '49268954168']
# Modify paramaters based on function arguments
if sort:
parameters.extend(['--outSAMtype', 'BAM', 'SortedByCoordinate'])
aligned_bam = 'rnaAligned.sortedByCoord.out.bam'
else:
parameters.extend(['--outSAMtype', 'BAM', 'Unsorted'])
aligned_bam = 'rnaAligned.out.bam'
if wiggle:
parameters.extend(['--outWigType', 'bedGraph',
|
python
|
{
"resource": ""
}
|
q276317
|
Stream.create
|
test
|
def create(self, schema="{}", **kwargs):
"""Creates a stream given an optional JSON schema encoded as a python dict. You can also add other properties
of the stream, such as the icon, datatype or description. Create accepts both a string schema and
|
python
|
{
"resource": ""
}
|
q276318
|
Stream.export
|
test
|
def export(self, directory):
"""Exports the stream to the given directory. The directory can't exist.
You can later import this device by running import_stream on a device.
"""
if os.path.exists(directory):
raise FileExistsError(
"The stream export directory already exists")
os.mkdir(directory)
# Write the stream's info
with open(os.path.join(directory, "stream.json"), "w") as f:
json.dump(self.data, f)
# Now write the stream's data
# We sort it first, since older versions of ConnectorDB had a bug
|
python
|
{
"resource": ""
}
|
q276319
|
Stream.device
|
test
|
def device(self):
"""returns the device which owns the given stream"""
splitted_path = self.path.split("/")
|
python
|
{
"resource": ""
}
|
q276320
|
get_labels
|
test
|
def get_labels(ontology, ols_base=None):
"""Iterates over the labels of terms in the ontology
:param str ontology: The name of the ontology
:param str ols_base: An optional, custom OLS base url
|
python
|
{
"resource": ""
}
|
q276321
|
get_hierarchy
|
test
|
def get_hierarchy(ontology, ols_base=None):
"""Iterates over the parent-child relationships in an ontolog
:param str ontology: The name of the ontology
:param str ols_base: An optional, custom OLS base url
|
python
|
{
"resource": ""
}
|
q276322
|
AbstractPipelineWrapper.run
|
test
|
def run(cls, name, desc):
"""
Prepares and runs the pipeline. Note this method must be invoked both from inside a
Docker container and while the docker daemon is reachable.
:param str name: The name of the command to start the workflow.
:param str desc: The description of the workflow.
"""
wrapper = cls(name, desc)
mount_path = wrapper._get_mount_path()
# prepare parser
arg_parser = wrapper._create_argument_parser()
wrapper._extend_argument_parser(arg_parser)
# prepare config file
empty_config = wrapper.__get_empty_config()
config_yaml = ruamel.yaml.load(empty_config)
wrapper.__populate_parser_from_config(arg_parser, config_yaml)
args = arg_parser.parse_args()
for k,v in vars(args).items():
k = k.replace('_', '-')
if k in config_yaml:
config_yaml[k] = v
config_path = wrapper._get_config_path()
with open(config_path, 'w') as writable:
ruamel.yaml.dump(config_yaml, stream=writable)
# prepare workdir
workdir_path = os.path.join(mount_path, 'Toil-' + wrapper._name)
if os.path.exists(workdir_path):
if args.restart:
log.info('Reusing temporary directory: %s', workdir_path)
else:
raise UserError('Temporary directory {} already exists. Run with --restart '
|
python
|
{
"resource": ""
}
|
q276323
|
AbstractPipelineWrapper.__populate_parser_from_config
|
test
|
def __populate_parser_from_config(self, arg_parser, config_data, prefix=''):
"""
Populates an ArgumentParser object with arguments where each argument is a key from the
given config_data dictionary.
:param str prefix: Prepends the key with this prefix delimited by a single '.' character.
:param argparse.ArgumentParser arg_parser:
:param dict config_data: The parsed yaml data from the config.
>>> pw = AbstractPipelineWrapper('test', 'this is a test')
>>> parser = argparse.ArgumentParser()
>>> pw._PipelineWrapperBuilder__populate_parser_from_config(parser, {'a':None, 'b':2})
>>> vars(parser.parse_args(['--a', '1']))
{'a': '1', 'b': 2}
>>> vars(parser.parse_args(['--b', '3']))
{'a': None, 'b': '3'}
>>> parser = argparse.ArgumentParser()
>>> pw._PipelineWrapperBuilder__populate_parser_from_config(parser, {})
>>> vars(parser.parse_args([]))
{}
>>> parser = argparse.ArgumentParser()
>>> pw._PipelineWrapperBuilder__populate_parser_from_config(parser,
...
|
python
|
{
"resource": ""
}
|
q276324
|
AbstractPipelineWrapper.__get_empty_config
|
test
|
def __get_empty_config(self):
"""
Returns the config file contents as a string. The config file is generated and then deleted.
"""
self._generate_config()
path = self._get_config_path()
|
python
|
{
"resource": ""
}
|
q276325
|
AbstractPipelineWrapper._get_mount_path
|
test
|
def _get_mount_path(self):
"""
Returns the path of the mount point of the current container. If this method is invoked
outside of a Docker container a NotInsideContainerError is raised. Likewise if the docker
daemon is unreachable from inside the container a UserError is raised. This method is
idempotent.
"""
if self._mount_path is None:
name = current_docker_container_id()
if dockerd_is_reachable():
# Get name of mounted volume
blob = json.loads(subprocess.check_output(['docker', 'inspect', name]))
mounts = blob[0]['Mounts']
# Ensure docker.sock is mounted correctly
sock_mnt = [x['Source'] == x['Destination']
for x in mounts if 'docker.sock' in x['Source']]
require(len(sock_mnt) == 1,
'Missing socket mount. Requires the following: '
'docker run -v /var/run/docker.sock:/var/run/docker.sock')
# Ensure formatting of command for 2 mount points
if len(mounts) == 2:
require(all(x['Source'] == x['Destination'] for x in mounts),
'Docker Src/Dst mount points, invoked with the -v argument, '
'must be the same if only using one mount point aside from the docker '
'socket.')
work_mount = [x['Source'] for x in mounts if 'docker.sock' not in x['Source']]
else:
# Ensure only one mirror mount exists aside from docker.sock
|
python
|
{
"resource": ""
}
|
q276326
|
AbstractPipelineWrapper._add_option
|
test
|
def _add_option(self, arg_parser, name, *args, **kwargs):
"""
Add an argument to the given arg_parser with the given name.
:param argparse.ArgumentParser arg_parser:
|
python
|
{
"resource": ""
}
|
q276327
|
AbstractPipelineWrapper._create_argument_parser
|
test
|
def _create_argument_parser(self):
"""
Creates and returns an ArgumentParser object prepopulated with 'no clean', 'cores' and
'restart' arguments.
"""
parser = argparse.ArgumentParser(description=self._desc,
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--no-clean', action='store_true',
help='If this flag is used, temporary work directory is not cleaned.')
parser.add_argument('--restart', action='store_true',
|
python
|
{
"resource": ""
}
|
q276328
|
AbstractPipelineWrapper._create_pipeline_command
|
test
|
def _create_pipeline_command(self, args, workdir_path, config_path):
"""
Creates and returns a list that represents a command for running the pipeline.
"""
return ([self._name, 'run', os.path.join(workdir_path, 'jobStore'),
|
python
|
{
"resource": ""
}
|
q276329
|
DatabaseConnection.setauth
|
test
|
def setauth(self, user_or_apikey=None, user_password=None):
""" setauth sets the authentication header for use in the session.
It is for use when apikey is updated or something of the sort, such that
there is a seamless experience. """
auth = None
if user_or_apikey is not None:
# ConnectorDB allows login using both basic auth or an apikey url param.
# The python client uses basic auth for all logins
if user_password is None:
# Login by api key - the basic auth
|
python
|
{
"resource": ""
}
|
q276330
|
DatabaseConnection.handleresult
|
test
|
def handleresult(self, r):
"""Handles HTTP error codes for the given request
Raises:
AuthenticationError on the appropriate 4** errors
ServerError if the response is not an ok (2**)
Arguments:
r -- The request result
"""
if r.status_code >= 400 and r.status_code < 500:
msg = r.json()
|
python
|
{
"resource": ""
}
|
q276331
|
DatabaseConnection.ping
|
test
|
def ping(self):
"""Attempts to ping the server using current credentials, and responds with the path of the currently
authenticated device"""
|
python
|
{
"resource": ""
}
|
q276332
|
DatabaseConnection.create
|
test
|
def create(self, path, data=None):
"""Send a POST CRUD API request to the given path using the given data which will be converted
to
|
python
|
{
"resource": ""
}
|
q276333
|
DatabaseConnection.update
|
test
|
def update(self, path, data=None):
"""Send an update request to the given path of the CRUD API, with the given data dict, which will be converted
into json"""
return self.handleresult(self.r.put(urljoin(self.url + CRUD_PATH,
|
python
|
{
"resource": ""
}
|
q276334
|
DatabaseConnection.delete
|
test
|
def delete(self, path):
"""Send a delete request to the given path of the CRUD API. This deletes the object. Or at least tries to."""
|
python
|
{
"resource": ""
}
|
q276335
|
DatabaseConnection.subscribe
|
test
|
def subscribe(self, stream, callback, transform=""):
"""Subscribe to
|
python
|
{
"resource": ""
}
|
q276336
|
User.create
|
test
|
def create(self, email, password, role="user", public=True, **kwargs):
"""Creates the given user - using the passed in email and password.
You can also set other default properties by passing in the relevant information::
usr.create("my@email","mypass",description="I like trains.")
Furthermore, ConnectorDB permits immediate initialization of an entire user tree,
so that you can create all relevant devices and streams in one go::
usr.create("my@email","mypass",devices={
"device1": {
"nickname": "My train",
"streams": {
"stream1": {
"schema": "{\"type\":\"string\"}",
|
python
|
{
"resource": ""
}
|
q276337
|
User.devices
|
test
|
def devices(self):
"""Returns the list of devices that belong to the user"""
result = self.db.read(self.path, {"q": "ls"})
if result is None or result.json() is None:
return []
devices = []
|
python
|
{
"resource": ""
}
|
q276338
|
run_cutadapt
|
test
|
def run_cutadapt(job, r1_id, r2_id, fwd_3pr_adapter, rev_3pr_adapter):
"""
Adapter trimming for RNA-seq data
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str r1_id: FileStoreID of fastq read 1
:param str r2_id: FileStoreID of fastq read 2 (if paired data)
:param str fwd_3pr_adapter: Adapter sequence for the forward 3' adapter
:param str rev_3pr_adapter: Adapter sequence for the reverse 3' adapter (second fastq pair)
:return: R1 and R2 FileStoreIDs
:rtype: tuple
"""
work_dir = job.fileStore.getLocalTempDir()
if r2_id:
require(rev_3pr_adapter, "Paired end data requires a reverse 3' adapter sequence.")
# Retrieve files
parameters = ['-a', fwd_3pr_adapter,
'-m', '35']
if r1_id and r2_id:
job.fileStore.readGlobalFile(r1_id, os.path.join(work_dir, 'R1.fastq'))
job.fileStore.readGlobalFile(r2_id, os.path.join(work_dir, 'R2.fastq'))
parameters.extend(['-A', rev_3pr_adapter,
'-o', '/data/R1_cutadapt.fastq',
'-p', '/data/R2_cutadapt.fastq',
'/data/R1.fastq', '/data/R2.fastq'])
else:
job.fileStore.readGlobalFile(r1_id, os.path.join(work_dir, 'R1.fastq'))
|
python
|
{
"resource": ""
}
|
q276339
|
run_samtools_faidx
|
test
|
def run_samtools_faidx(job, ref_id):
"""
Use SAMtools to create reference index file
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str ref_id: FileStoreID for the reference genome
:return: FileStoreID for reference index
:rtype: str
"""
job.fileStore.logToMaster('Created reference index')
work_dir = job.fileStore.getLocalTempDir()
job.fileStore.readGlobalFile(ref_id, os.path.join(work_dir, 'ref.fasta'))
|
python
|
{
"resource": ""
}
|
q276340
|
run_samtools_index
|
test
|
def run_samtools_index(job, bam):
"""
Runs SAMtools index to create a BAM index file
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str bam: FileStoreID of the BAM file
:return: FileStoreID for BAM index file
:rtype: str
"""
work_dir = job.fileStore.getLocalTempDir()
job.fileStore.readGlobalFile(bam, os.path.join(work_dir, 'sample.bam'))
# Call: index the bam
|
python
|
{
"resource": ""
}
|
q276341
|
run_sambamba_markdup
|
test
|
def run_sambamba_markdup(job, bam):
"""
Marks reads as PCR duplicates using Sambamba
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str bam: FileStoreID for BAM file
:return: FileStoreID for sorted BAM file
:rtype: str
"""
work_dir = job.fileStore.getLocalTempDir()
job.fileStore.readGlobalFile(bam, os.path.join(work_dir, 'input.bam'))
command = ['/usr/local/bin/sambamba',
'markdup',
'-t', str(int(job.cores)),
'/data/input.bam',
'/data/output.bam']
|
python
|
{
"resource": ""
}
|
q276342
|
run_samblaster
|
test
|
def run_samblaster(job, sam):
"""
Marks reads as PCR duplicates using SAMBLASTER
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str sam: FileStoreID for SAM file
:return: FileStoreID for deduped SAM file
:rtype: str
"""
work_dir = job.fileStore.getLocalTempDir()
job.fileStore.readGlobalFile(sam, os.path.join(work_dir, 'input.sam'))
|
python
|
{
"resource": ""
}
|
q276343
|
picard_mark_duplicates
|
test
|
def picard_mark_duplicates(job, bam, bai, validation_stringency='LENIENT'):
"""
Runs Picard MarkDuplicates on a BAM file. Requires that the BAM file be coordinate sorted.
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str bam: FileStoreID for BAM file
:param str bai: FileStoreID for BAM index file
:param str validation_stringency: BAM file validation stringency, default is LENIENT
:return: FileStoreIDs for BAM and BAI files
:rtype: tuple
"""
work_dir = job.fileStore.getLocalTempDir()
# Retrieve file path
job.fileStore.readGlobalFile(bam, os.path.join(work_dir, 'sorted.bam'))
job.fileStore.readGlobalFile(bai, os.path.join(work_dir, 'sorted.bai'))
# Call: picardtools
command = ['MarkDuplicates',
'INPUT=sorted.bam',
'OUTPUT=mkdups.bam',
'METRICS_FILE=metrics.txt',
'ASSUME_SORTED=true',
'CREATE_INDEX=true',
'VALIDATION_STRINGENCY=%s' % validation_stringency.upper()]
# picard-tools container doesn't have JAVA_OPTS variable
# Set TMPDIR to /data to prevent writing temporary files to /tmp
docker_parameters = ['--rm',
|
python
|
{
"resource": ""
}
|
q276344
|
run_picard_sort
|
test
|
def run_picard_sort(job, bam, sort_by_name=False):
"""
Sorts BAM file using Picard SortSam
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str bam: FileStoreID for BAM file
:param boolean sort_by_name: If true, sorts by read name instead of coordinate.
:return: FileStoreID for sorted BAM file
:rtype: str
"""
work_dir = job.fileStore.getLocalTempDir()
job.fileStore.readGlobalFile(bam, os.path.join(work_dir, 'input.bam'))
command = ['SortSam',
'O=/data/output.bam',
'I=/data/input.bam']
# picard-tools container doesn't have JAVA_OPTS variable
|
python
|
{
"resource": ""
}
|
q276345
|
run_base_recalibration
|
test
|
def run_base_recalibration(job, bam, bai, ref, ref_dict, fai, dbsnp, mills, unsafe=False):
"""
Creates recalibration table for Base Quality Score Recalibration
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str bam: FileStoreID for BAM file
:param str bai: FileStoreID for BAM index file
:param str ref: FileStoreID for reference genome fasta file
:param str ref_dict: FileStoreID for reference genome sequence dictionary file
:param str fai: FileStoreID for reference genome fasta index file
:param str dbsnp: FileStoreID for dbSNP VCF file
:param str mills: FileStoreID for Mills VCF file
:param bool unsafe: If True, runs GATK in UNSAFE mode: "-U ALLOW_SEQ_DICT_INCOMPATIBILITY"
:return: FileStoreID for the recalibration table file
:rtype: str
"""
inputs = {'ref.fasta': ref,
'ref.fasta.fai': fai,
'ref.dict': ref_dict,
'input.bam': bam,
'input.bai': bai,
'dbsnp.vcf': dbsnp,
'mills.vcf': mills}
work_dir = job.fileStore.getLocalTempDir()
for name, file_store_id in inputs.iteritems():
job.fileStore.readGlobalFile(file_store_id, os.path.join(work_dir, name))
# Call: GATK -- BaseRecalibrator
parameters = ['-T', 'BaseRecalibrator',
'-nct', str(int(job.cores)),
'-R', '/data/ref.fasta',
'-I', '/data/input.bam',
# Recommended known sites:
|
python
|
{
"resource": ""
}
|
q276346
|
run_kallisto
|
test
|
def run_kallisto(job, r1_id, r2_id, kallisto_index_url):
"""
RNA quantification via Kallisto
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str r1_id: FileStoreID of fastq (pair 1)
:param str r2_id: FileStoreID of fastq (pair 2 if applicable, otherwise pass None for single-end)
:param str kallisto_index_url: FileStoreID for Kallisto index file
:return: FileStoreID from Kallisto output
:rtype: str
"""
work_dir = job.fileStore.getLocalTempDir()
download_url(job, url=kallisto_index_url, name='kallisto_hg38.idx', work_dir=work_dir)
# Retrieve files
parameters = ['quant',
'-i', '/data/kallisto_hg38.idx',
'-t', str(job.cores),
|
python
|
{
"resource": ""
}
|
q276347
|
run_rsem
|
test
|
def run_rsem(job, bam_id, rsem_ref_url, paired=True):
"""
RNA quantification with RSEM
:param JobFunctionWrappingJob job: Passed automatically by Toil
:param str bam_id: FileStoreID of transcriptome bam for quantification
:param str rsem_ref_url: URL of RSEM reference (tarball)
:param bool paired: If True, uses parameters for paired end data
:return: FileStoreIDs for RSEM's gene and isoform output
:rtype: str
"""
work_dir = job.fileStore.getLocalTempDir()
download_url(job, url=rsem_ref_url, name='rsem_ref.tar.gz', work_dir=work_dir)
subprocess.check_call(['tar', '-xvf', os.path.join(work_dir, 'rsem_ref.tar.gz'), '-C', work_dir])
os.remove(os.path.join(work_dir, 'rsem_ref.tar.gz'))
# Determine tarball structure - based on it, ascertain folder name and rsem reference prefix
rsem_files = []
for root, directories, files in os.walk(work_dir):
rsem_files.extend([os.path.join(root, x) for x in files])
# "grp" is a required RSEM extension that should exist in the RSEM reference
ref_prefix = [os.path.basename(os.path.splitext(x)[0]) for x in rsem_files if 'grp' in x][0]
ref_folder = os.path.join('/data', os.listdir(work_dir)[0]) if len(os.listdir(work_dir)) == 1 else '/data'
# I/O
job.fileStore.readGlobalFile(bam_id, os.path.join(work_dir, 'transcriptome.bam'))
output_prefix = 'rsem'
# Call: RSEM
parameters = ['--quiet',
'--no-qualities',
'-p', str(job.cores),
|
python
|
{
"resource": ""
}
|
q276348
|
SARPlus.get_user_affinity
|
test
|
def get_user_affinity(self, test):
"""Prepare test set for C++ SAR prediction code.
Find all items the test users have seen in the past.
Arguments:
test (pySpark.DataFrame): input dataframe which contains test users.
"""
test.createOrReplaceTempView(self.f("{prefix}df_test"))
query = self.f(
"SELECT DISTINCT {col_user} FROM {prefix}df_test CLUSTER BY {col_user}"
)
df_test_users = self.spark.sql(query)
df_test_users.write.mode("overwrite").saveAsTable(
self.f("{prefix}df_test_users")
)
query = self.f(
|
python
|
{
"resource": ""
}
|
q276349
|
WebsocketHandler.send
|
test
|
def send(self, cmd):
"""Send the given command thru the websocket"""
|
python
|
{
"resource": ""
}
|
q276350
|
WebsocketHandler.subscribe
|
test
|
def subscribe(self, stream, callback, transform=""):
"""Given a stream, a callback and an optional transform, sets up the subscription"""
if self.status == "disconnected" or self.status == "disconnecting" or self.status == "connecting":
self.connect()
if self.status is not "connected":
|
python
|
{
"resource": ""
}
|
q276351
|
WebsocketHandler.connect
|
test
|
def connect(self):
"""Attempt to connect to the websocket - and returns either True or False depending on if
the connection was successful or not"""
# Wait for the lock to be available (ie, the websocket is not being used (yet))
self.ws_openlock.acquire()
self.ws_openlock.release()
if self.status == "connected":
return True # Already connected
if self.status == "disconnecting":
# If currently disconnecting, wait a moment, and retry connect
time.sleep(0.1)
return self.connect()
if self.status == "disconnected" or self.status == "reconnecting":
self.ws = websocket.WebSocketApp(self.ws_url,
header=self.headers,
on_message=self.__on_message,
|
python
|
{
"resource": ""
}
|
q276352
|
WebsocketHandler.__reconnect
|
test
|
def __reconnect(self):
"""This is called when a connection is lost - it attempts to reconnect to the server"""
self.status = "reconnecting"
# Reset the disconnect time after 15 minutes
if self.disconnected_time - self.connected_time > 15 * 60:
self.reconnect_time = self.reconnect_time_starting_seconds
else:
self.reconnect_time *= self.reconnect_time_backoff_multiplier
if self.reconnect_time > self.reconnect_time_max_seconds:
self.reconnect_time = self.reconnect_time_max_seconds
# We want to add some randomness to the reconnect rate - necessary so that we don't pound the server
# if it goes down
self.reconnect_time *= 1 + random.uniform(-0.2, 0.2)
|
python
|
{
"resource": ""
}
|
q276353
|
WebsocketHandler.__resubscribe
|
test
|
def __resubscribe(self):
"""Send subscribe command for all existing subscriptions. This allows to resume a connection
that was closed"""
with self.subscription_lock:
for sub in self.subscriptions:
logging.debug("Resubscribing to %s", sub)
|
python
|
{
"resource": ""
}
|
q276354
|
WebsocketHandler.__on_open
|
test
|
def __on_open(self, ws):
"""Called when the websocket is opened"""
logging.debug("ConnectorDB: Websocket opened")
# Connection success - decrease the wait time for next connection
self.reconnect_time /= self.reconnect_time_backoff_multiplier
self.status = "connected"
self.lastpingtime = time.time()
|
python
|
{
"resource": ""
}
|
q276355
|
WebsocketHandler.__on_close
|
test
|
def __on_close(self, ws):
"""Called when the websocket is closed"""
if self.status == "disconnected":
return # This can be double-called on disconnect
logging.debug("ConnectorDB:WS: Websocket closed")
# Turn off the ping timer
if self.pingtimer is not None:
|
python
|
{
"resource": ""
}
|
q276356
|
WebsocketHandler.__on_error
|
test
|
def __on_error(self, ws, err):
"""Called when there is an error in the websocket"""
logging.debug("ConnectorDB:WS: Connection Error")
|
python
|
{
"resource": ""
}
|
q276357
|
WebsocketHandler.__on_message
|
test
|
def __on_message(self, ws, msg):
"""This function is called whenever there is a message received from the server"""
msg = json.loads(msg)
logging.debug("ConnectorDB:WS: Msg '%s'", msg["stream"])
# Build the subcription key
stream_key = msg["stream"] + ":"
if "transform" in msg:
stream_key += msg["transform"]
self.subscription_lock.acquire()
if stream_key in self.subscriptions:
subscription_function = self.subscriptions[stream_key]
self.subscription_lock.release()
fresult = subscription_function(msg["stream"], msg["data"])
if fresult is True:
# This is a special result - if the subscription function of a downlink returns True,
# then the datapoint is acknowledged automatically (ie, reinserted in non-downlink stream)
fresult = msg["data"]
if fresult is not False and fresult is not None and msg["stream"].endswith(
"/downlink") and msg["stream"].count("/") ==
|
python
|
{
"resource": ""
}
|
q276358
|
WebsocketHandler.__ensure_ping
|
test
|
def __ensure_ping(self):
"""Each time the server sends a ping message, we record the timestamp. If we haven't received a ping
within the given interval, then we assume that the connection was lost, close the websocket and
attempt to reconnect"""
logging.debug("ConnectorDB:WS: pingcheck")
if (time.time() - self.lastpingtime > self.connection_ping_timeout):
logging.warn("ConnectorDB:WS: Websocket ping timed out!")
if self.ws is not None:
self.ws.close()
self.__on_close(self.ws)
|
python
|
{
"resource": ""
}
|
q276359
|
gatk_select_variants
|
test
|
def gatk_select_variants(job, mode, vcf_id, ref_fasta, ref_fai, ref_dict):
"""
Isolates a particular variant type from a VCF file using GATK SelectVariants
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str mode: variant type (i.e. SNP or INDEL)
:param str vcf_id: FileStoreID for input VCF file
:param str ref_fasta: FileStoreID for reference genome fasta
:param str ref_fai: FileStoreID for reference genome index file
:param str ref_dict: FileStoreID for reference genome sequence dictionary file
:return: FileStoreID for filtered VCF
:rtype: str
"""
job.fileStore.logToMaster('Running GATK SelectVariants to select %ss' % mode)
inputs = {'genome.fa': ref_fasta,
'genome.fa.fai': ref_fai,
'genome.dict': ref_dict,
'input.vcf': vcf_id}
work_dir = job.fileStore.getLocalTempDir()
for name, file_store_id in inputs.iteritems():
job.fileStore.readGlobalFile(file_store_id, os.path.join(work_dir, name))
command = ['-T', 'SelectVariants',
'-R', 'genome.fa',
'-V', 'input.vcf',
|
python
|
{
"resource": ""
}
|
q276360
|
gatk_variant_filtration
|
test
|
def gatk_variant_filtration(job, vcf_id, filter_name, filter_expression, ref_fasta, ref_fai, ref_dict):
"""
Filters VCF file using GATK VariantFiltration. Fixes extra pair of quotation marks in VCF header that
may interfere with other VCF tools.
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str vcf_id: FileStoreID for input VCF file
:param str filter_name: Name of filter for VCF header
:param str filter_expression: JEXL filter expression
:param str ref_fasta: FileStoreID for reference genome fasta
:param str ref_fai: FileStoreID for reference genome index file
:param str ref_dict: FileStoreID for reference genome sequence dictionary file
:return: FileStoreID for filtered VCF file
:rtype: str
"""
inputs = {'genome.fa': ref_fasta,
'genome.fa.fai': ref_fai,
'genome.dict': ref_dict,
'input.vcf': vcf_id}
work_dir = job.fileStore.getLocalTempDir()
for name, file_store_id in inputs.iteritems():
job.fileStore.readGlobalFile(file_store_id, os.path.join(work_dir, name))
command = ['-T', 'VariantFiltration',
'-R', 'genome.fa',
'-V', 'input.vcf',
'--filterName', filter_name, # Documents filter name in header
'--filterExpression', filter_expression,
'-o', 'filtered_variants.vcf']
job.fileStore.logToMaster('Running GATK VariantFiltration using {name}: '
|
python
|
{
"resource": ""
}
|
q276361
|
gatk_variant_recalibrator
|
test
|
def gatk_variant_recalibrator(job,
mode,
vcf,
ref_fasta, ref_fai, ref_dict,
annotations,
hapmap=None, omni=None, phase=None, dbsnp=None, mills=None,
max_gaussians=4,
unsafe_mode=False):
"""
Runs either SNP or INDEL variant quality score recalibration using GATK VariantRecalibrator. Because the VQSR method
models SNPs and INDELs differently, VQSR must be run separately for these variant types.
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str mode: Determines variant recalibration mode (SNP or INDEL)
:param str vcf: FileStoreID for input VCF file
:param str ref_fasta: FileStoreID for reference genome fasta
:param str ref_fai: FileStoreID for reference genome index file
:param str ref_dict: FileStoreID for reference genome sequence dictionary file
:param list[str] annotations: List of GATK variant annotations to filter on
:param str hapmap: FileStoreID for HapMap resource file, required for SNP VQSR
:param str omni: FileStoreID for Omni resource file, required for SNP VQSR
:param str phase: FileStoreID for 1000G resource file, required for SNP VQSR
:param str dbsnp: FilesStoreID for dbSNP resource file, required for SNP and INDEL VQSR
:param str mills: FileStoreID for Mills resource file, required for INDEL VQSR
:param int max_gaussians: Number of Gaussians used during training, default is 4
:param bool unsafe_mode: If True, runs gatk UNSAFE mode: "-U ALLOW_SEQ_DICT_INCOMPATIBILITY"
:return: FileStoreID for the variant recalibration table, tranche file, and plots file
:rtype: tuple
"""
mode = mode.upper()
inputs = {'genome.fa': ref_fasta,
'genome.fa.fai': ref_fai,
'genome.dict': ref_dict,
'input.vcf': vcf}
# Refer to GATK documentation for description of recommended parameters:
# https://software.broadinstitute.org/gatk/documentation/article?id=1259
# https://software.broadinstitute.org/gatk/documentation/article?id=2805
# This base command includes parameters for both INDEL and SNP VQSR.
command = ['-T', 'VariantRecalibrator',
'-R', 'genome.fa',
'-input', 'input.vcf',
'-tranche', '100.0',
'-tranche', '99.9',
'-tranche', '99.0',
'-tranche', '90.0',
'--maxGaussians', str(max_gaussians),
'-recalFile', 'output.recal',
'-tranchesFile', 'output.tranches',
'-rscriptFile', 'output.plots.R']
# Parameters and resource files for SNP VQSR.
if mode == 'SNP':
command.extend(
['-resource:hapmap,known=false,training=true,truth=true,prior=15.0', 'hapmap.vcf',
'-resource:omni,known=false,training=true,truth=true,prior=12.0', 'omni.vcf',
'-resource:dbsnp,known=true,training=false,truth=false,prior=2.0', 'dbsnp.vcf',
|
python
|
{
"resource": ""
}
|
q276362
|
gatk_apply_variant_recalibration
|
test
|
def gatk_apply_variant_recalibration(job,
mode,
vcf,
recal_table, tranches,
ref_fasta, ref_fai, ref_dict,
ts_filter_level=99.0,
unsafe_mode=False):
"""
Applies variant quality score recalibration to VCF file using GATK ApplyRecalibration
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str mode: Determines variant recalibration mode (SNP or INDEL)
:param str vcf: FileStoreID for input VCF file
:param str recal_table: FileStoreID for recalibration table file
:param str tranches: FileStoreID for tranches file
:param str ref_fasta: FileStoreID for reference genome fasta
:param str ref_fai: FileStoreID for reference genome index file
:param str ref_dict: FileStoreID for reference genome sequence dictionary file
:param float ts_filter_level: Sensitivity expressed as a percentage, default is 99.0
:param bool unsafe_mode: If True, runs gatk UNSAFE mode: "-U ALLOW_SEQ_DICT_INCOMPATIBILITY"
:return: FileStoreID for recalibrated VCF file
:rtype: str
|
python
|
{
"resource": ""
}
|
q276363
|
gatk_combine_variants
|
test
|
def gatk_combine_variants(job, vcfs, ref_fasta, ref_fai, ref_dict, merge_option='UNIQUIFY'):
"""
Merges VCF files using GATK CombineVariants
:param JobFunctionWrappingJob job: Toil Job instance
:param dict vcfs: Dictionary of VCF FileStoreIDs {sample identifier: FileStoreID}
:param str ref_fasta: FileStoreID for reference genome fasta
:param str ref_fai: FileStoreID for reference genome index file
:param str ref_dict: FileStoreID for reference genome sequence dictionary file
:param str merge_option: Value for --genotypemergeoption flag (Default: 'UNIQUIFY')
'UNIQUIFY': Multiple variants at a single site are merged into a
single variant record.
'UNSORTED': Used to merge VCFs from the same sample
:return: FileStoreID for merged VCF file
:rtype: str
"""
job.fileStore.logToMaster('Running GATK CombineVariants')
inputs = {'genome.fa': ref_fasta,
'genome.fa.fai': ref_fai,
'genome.dict': ref_dict}
inputs.update(vcfs)
work_dir = job.fileStore.getLocalTempDir()
for name, file_store_id in inputs.iteritems():
job.fileStore.readGlobalFile(file_store_id, os.path.join(work_dir, name))
command = ['-T', 'CombineVariants',
'-R', '/data/genome.fa',
|
python
|
{
"resource": ""
}
|
q276364
|
bam_quickcheck
|
test
|
def bam_quickcheck(bam_path):
"""
Perform a quick check on a BAM via `samtools quickcheck`.
This will detect obvious BAM errors such as truncation.
:param str bam_path: path to BAM file to checked
:rtype: boolean
:return: True if the BAM is valid, False is BAM is invalid or something related to the call went wrong
"""
directory, bam_name = os.path.split(bam_path)
exit_code = subprocess.call(['docker', 'run', '-v', directory + ':/data',
|
python
|
{
"resource": ""
}
|
q276365
|
load_handlers
|
test
|
def load_handlers(handler_mapping):
"""
Given a dictionary mapping which looks like the following, import the
objects based on the dotted path and yield the packet type and handler as
pairs.
If the special string '*' is passed, don't process that, pass it on as it
is a wildcard.
If an non-string object is given for either packet or handler (key or
value) assume these are the objects to use and yield them.
::
{
'rfxcom.protocol.Status': 'home.collect.logging_handler',
'rfxcom.protocol.Elec': 'home.collect.elec_handler',
'rfxcom.protocol.TempHumidity': 'home.collect.temp_humidity_handler',
'*': 'home.collect.logging_handler'
}
"""
handlers = {}
for packet_type, handler in handler_mapping.items():
if packet_type ==
|
python
|
{
"resource": ""
}
|
q276366
|
write_config
|
test
|
def write_config(configuration):
"""Helper to write the JSON configuration to
|
python
|
{
"resource": ""
}
|
q276367
|
get_config
|
test
|
def get_config():
"""Gets the configuration for this project from the default JSON file, or writes one if it doesn't exist
:rtype: dict
"""
|
python
|
{
"resource": ""
}
|
q276368
|
OlsClient.get_term
|
test
|
def get_term(self, ontology, iri):
"""Gets the data for a given term
:param str ontology: The name of the ontology
:param str iri: The IRI of a term
:rtype: dict
"""
|
python
|
{
"resource": ""
}
|
q276369
|
OlsClient.search
|
test
|
def search(self, name, query_fields=None):
"""Searches the OLS with the given term
:param str name:
:param list[str] query_fields: Fields to query
:return: dict
"""
params = {'q': name}
if query_fields is not None:
|
python
|
{
"resource": ""
}
|
q276370
|
OlsClient.suggest
|
test
|
def suggest(self, name, ontology=None):
"""Suggest terms from an optional list of ontologies
:param str name:
:param list[str] ontology:
:rtype: dict
.. seealso:: https://www.ebi.ac.uk/ols/docs/api#_suggest_term
"""
params = {'q': name}
|
python
|
{
"resource": ""
}
|
q276371
|
OlsClient.iter_descendants
|
test
|
def iter_descendants(self, ontology, iri, size=None, sleep=None):
"""Iterates over the descendants of a given term
:param str ontology: The name of the ontology
:param str iri: The IRI of a term
:param int size: The size of each page. Defaults to 500, which is the maximum allowed by the EBI.
:param int sleep: The amount of time to sleep between pages. Defaults to 0 seconds.
|
python
|
{
"resource": ""
}
|
q276372
|
OlsClient.iter_descendants_labels
|
test
|
def iter_descendants_labels(self, ontology, iri, size=None, sleep=None):
"""Iterates over the labels for the descendants of a given term
:param str ontology: The name of the ontology
:param str iri: The IRI of a term
:param int size: The size of each page. Defaults to 500, which is the maximum allowed by the EBI.
:param int
|
python
|
{
"resource": ""
}
|
q276373
|
OlsClient.iter_labels
|
test
|
def iter_labels(self, ontology, size=None, sleep=None):
"""Iterates over the labels of terms in the ontology. Automatically wraps the pager returned by the OLS.
:param str ontology: The name of the ontology
:param int size: The size of each page. Defaults to 500, which is the maximum allowed by the EBI.
:param int sleep: The amount of time to sleep between
|
python
|
{
"resource": ""
}
|
q276374
|
OlsClient.iter_hierarchy
|
test
|
def iter_hierarchy(self, ontology, size=None, sleep=None):
"""Iterates over parent-child relations
:param str ontology: The name of the ontology
:param int size: The size of each page. Defaults to 500, which is the maximum allowed by the EBI.
:param int sleep: The amount of time to sleep between pages. Defaults to 0 seconds.
:rtype: iter[tuple[str,str]]
"""
for term in self.iter_terms(ontology=ontology, size=size, sleep=sleep):
try:
hierarchy_children_link = term['_links'][HIERARCHICAL_CHILDREN]['href']
|
python
|
{
"resource": ""
}
|
q276375
|
run_fastqc
|
test
|
def run_fastqc(job, r1_id, r2_id):
"""
Run Fastqc on the input reads
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str r1_id: FileStoreID of fastq read 1
:param str r2_id: FileStoreID of fastq read 2
:return: FileStoreID of fastQC output (tarball)
:rtype: str
"""
work_dir = job.fileStore.getLocalTempDir()
job.fileStore.readGlobalFile(r1_id, os.path.join(work_dir, 'R1.fastq'))
parameters = ['/data/R1.fastq']
output_names = ['R1_fastqc.html', 'R1_fastqc.zip']
if r2_id:
job.fileStore.readGlobalFile(r2_id, os.path.join(work_dir, 'R2.fastq'))
parameters.extend(['-t', '2',
|
python
|
{
"resource": ""
}
|
q276376
|
Merge.addStream
|
test
|
def addStream(self, stream, t1=None, t2=None, limit=None, i1=None, i2=None, transform=None):
"""Adds the given stream to the query construction. The function supports both stream
names and Stream objects."""
params = query_maker(t1, t2, limit, i1, i2, transform)
|
python
|
{
"resource": ""
}
|
q276377
|
create_app
|
test
|
def create_app(config=None):
""" This needs some tidying up. To avoid circular imports we import
everything here but it makes this method a bit more gross.
"""
# Initialise the app
from home.config import TEMPLATE_FOLDER, STATIC_FOLDER
app = Flask(__name__, static_folder=STATIC_FOLDER,
template_folder=TEMPLATE_FOLDER)
app.config['SECRET_KEY'] = 'ssh, its a secret.'
# Load the default config, the specified config file and then any
# overwrites that are manually passed in.
app.config.from_object('home.config')
if 'HOME_SETTINGS' in environ:
app.config.from_envvar('HOME_SETTINGS')
app.config.from_object(config)
# Register the web front end and the API.
from home.dash.web import web
from home.dash.api import api
app.register_blueprint(web)
app.register_blueprint(api, url_prefix='/api')
login_manager.init_app(app)
login_manager.login_view = 'Dashboard Web.login'
|
python
|
{
"resource": ""
}
|
q276378
|
SparkService.start
|
test
|
def start(self, job):
"""
Start spark and hdfs master containers
:param job: The underlying job.
"""
if self.hostname is None:
self.hostname = subprocess.check_output(["hostname", "-f",])[:-1]
_log.info("Started Spark master container.")
self.sparkContainerID = dockerCheckOutput(job=job,
defer=STOP,
workDir=os.getcwd(),
tool="quay.io/ucsc_cgl/apache-spark-master:1.5.2",
dockerParameters=["--net=host",
"-d",
"-v", "/mnt/ephemeral/:/ephemeral/:rw",
"-e", "SPARK_MASTER_IP=" + self.hostname,
"-e", "SPARK_LOCAL_DIRS=/ephemeral/spark/local",
"-e", "SPARK_WORKER_DIR=/ephemeral/spark/work"],
|
python
|
{
"resource": ""
}
|
q276379
|
WorkerService.start
|
test
|
def start(self, job):
"""
Start spark and hdfs worker containers
:param job: The underlying job.
"""
# start spark and our datanode
self.sparkContainerID = dockerCheckOutput(job=job,
defer=STOP,
workDir=os.getcwd(),
tool="quay.io/ucsc_cgl/apache-spark-worker:1.5.2",
dockerParameters=["--net=host",
"-d",
"-v", "/mnt/ephemeral/:/ephemeral/:rw",
"-e",
"\"SPARK_MASTER_IP=" + self.masterIP + ":" + _SPARK_MASTER_PORT + "\"",
"-e", "SPARK_LOCAL_DIRS=/ephemeral/spark/local",
"-e", "SPARK_WORKER_DIR=/ephemeral/spark/work"],
parameters=[self.masterIP + ":" + _SPARK_MASTER_PORT])[:-1]
self.__start_datanode(job)
# fake do/while to check if HDFS is up
hdfs_down = True
retries = 0
while hdfs_down and (retries < 5):
|
python
|
{
"resource": ""
}
|
q276380
|
WorkerService.__start_datanode
|
test
|
def __start_datanode(self, job):
"""
Launches the Hadoop datanode.
:param job: The underlying job.
"""
self.hdfsContainerID = dockerCheckOutput(job=job,
defer=STOP,
workDir=os.getcwd(),
|
python
|
{
"resource": ""
}
|
q276381
|
WorkerService.stop
|
test
|
def stop(self, fileStore):
"""
Stop spark and hdfs worker containers
:param job: The underlying job.
"""
subprocess.call(["docker", "exec", self.sparkContainerID, "rm", "-r", "/ephemeral/spark"])
subprocess.call(["docker", "stop", self.sparkContainerID])
subprocess.call(["docker", "rm", self.sparkContainerID])
_log.info("Stopped Spark worker.")
subprocess.call(["docker", "exec", self.hdfsContainerID, "rm",
|
python
|
{
"resource": ""
}
|
q276382
|
WorkerService.check
|
test
|
def check(self):
"""
Checks to see if Spark worker and HDFS datanode are still running.
"""
status = _checkContainerStatus(self.sparkContainerID,
self.hdfsContainerID,
|
python
|
{
"resource": ""
}
|
q276383
|
base_tokenizer
|
test
|
def base_tokenizer(fp):
'Tokenizer. Generates tokens stream from text'
if isinstance(fp, StringIO):
template_file = fp
size = template_file.len
else:
#empty file check
if os.fstat(fp.fileno()).st_size == 0:
yield TOKEN_EOF, 'EOF', 0, 0
return
template_file = mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)
size = template_file.size()
lineno = 0
while 1:
lineno += 1
pos = 1
# end of file
if template_file.tell() == size:
yield TOKEN_EOF, 'EOF', lineno, 0
break
# now we tokinize line by line
line = template_file.readline().decode('utf-8')
line = line.replace('\r\n', '')
line = line.replace('\n', '')
# ignoring non XML comments
|
python
|
{
"resource": ""
}
|
q276384
|
lookup_zone
|
test
|
def lookup_zone(conn, zone):
"""Look up a zone ID for a zone string.
Args: conn: boto.route53.Route53Connection
zone: string eg. foursquare.com
Returns: zone ID eg. ZE2DYFZDWGSL4.
Raises: ZoneNotFoundError if zone not found."""
all_zones = conn.get_all_hosted_zones()
for resp in all_zones['ListHostedZonesResponse']['HostedZones']:
|
python
|
{
"resource": ""
}
|
q276385
|
fetch_config
|
test
|
def fetch_config(zone, conn):
"""Fetch all pieces of a Route 53 config from Amazon.
Args: zone: string, hosted zone id.
conn: boto.route53.Route53Connection
Returns: list of ElementTrees, one for each piece of config."""
more_to_fetch = True
cfg_chunks = []
next_name = None
next_type = None
next_identifier = None
while more_to_fetch == True:
more_to_fetch = False
getstr = '/%s/hostedzone/%s/rrset' % (R53_API_VERSION, zone)
if next_name is not None:
getstr += '?name=%s&type=%s' % (next_name, next_type)
if next_identifier is not None:
getstr += '&identifier=%s' % next_identifier
log.debug('requesting %s' % getstr)
resp = conn.make_request('GET', getstr)
etree = lxml.etree.parse(resp)
cfg_chunks.append(etree)
root = etree.getroot()
truncated = root.find('{%s}IsTruncated' % R53_XMLNS)
|
python
|
{
"resource": ""
}
|
q276386
|
merge_config
|
test
|
def merge_config(cfg_chunks):
"""Merge a set of fetched Route 53 config Etrees into a canonical form.
Args: cfg_chunks: [ lxml.etree.ETree ]
Returns: lxml.etree.Element"""
root = lxml.etree.XML('<ResourceRecordSets xmlns="%s"></ResourceRecordSets>' % R53_XMLNS, parser=XML_PARSER)
|
python
|
{
"resource": ""
}
|
q276387
|
validate_changeset
|
test
|
def validate_changeset(changeset):
"""Validate a changeset is compatible with Amazon's API spec.
Args: changeset: lxml.etree.Element (<ChangeResourceRecordSetsRequest>)
Returns: [ errors ] list of error strings or []."""
errors = []
changes = changeset.findall('.//{%s}Change' % R53_XMLNS)
num_changes = len(changes)
if num_changes == 0:
errors.append('changeset must have at least one <Change> element')
if num_changes > 100:
errors.append('changeset has %d <Change> elements: max is 100' % num_changes)
rrs = changeset.findall('.//{%s}ResourceRecord' % R53_XMLNS)
num_rrs =
|
python
|
{
"resource": ""
}
|
q276388
|
minimize_best_n
|
test
|
def minimize_best_n(Members):
'''
Orders population members from lowest fitness to highest fitness
Args:
Members (list): list of PyGenetics Member objects
Returns:
lsit: ordered
|
python
|
{
"resource": ""
}
|
q276389
|
Population.fitness
|
test
|
def fitness(self):
'''Population fitness == average member fitness score'''
if len(self.__members) != 0:
if self.__num_processes > 1:
members = [m.get() for m in self.__members]
|
python
|
{
"resource": ""
}
|
q276390
|
Population.ave_cost_fn_val
|
test
|
def ave_cost_fn_val(self):
'''Returns average cost function return value for all members'''
if len(self.__members) != 0:
if self.__num_processes > 1:
members = [m.get() for m in self.__members]
|
python
|
{
"resource": ""
}
|
q276391
|
Population.med_cost_fn_val
|
test
|
def med_cost_fn_val(self):
'''Returns median cost function return value for all members'''
if len(self.__members) != 0:
if self.__num_processes > 1:
members = [m.get() for m in self.__members]
|
python
|
{
"resource": ""
}
|
q276392
|
Population.parameters
|
test
|
def parameters(self):
'''Population parameter vals == average member parameter vals'''
if len(self.__members) != 0:
if self.__num_processes > 1:
members = [m.get() for m in self.__members]
else:
members = self.__members
params = {}
for p in self.__parameters:
|
python
|
{
"resource": ""
}
|
q276393
|
Population.members
|
test
|
def members(self):
'''Returns Member objects of population'''
if self.__num_processes > 1:
return [m.get() for m
|
python
|
{
"resource": ""
}
|
q276394
|
Population.add_parameter
|
test
|
def add_parameter(self, name, min_val, max_val):
'''Adds a paramber to the Population
Args:
name (str): name of the parameter
min_val (int or float): minimum value for the parameter
max_val (int or
|
python
|
{
"resource": ""
}
|
q276395
|
Population.next_generation
|
test
|
def next_generation(self, mut_rate=0, max_mut_amt=0, log_base=10):
'''Generates the next population from a previously evaluated generation
Args:
mut_rate (float): mutation rate for new members (0.0 - 1.0)
max_mut_amt (float): how much the member is allowed to mutate
(0.0 - 1.0, proportion change of mutated parameter)
log_base (int): the higher this number, the more likely the first
Members (chosen with supplied selection function) are chosen
as parents for the next generation
'''
if self.__num_processes > 1:
process_pool = Pool(processes=self.__num_processes)
members = [m.get() for m in self.__members]
else:
members = self.__members
if len(members) == 0:
raise Exception(
'Generation 0 not found: use generate_population() first'
)
selected_members = self.__select_fn(members)
reproduction_probs = list(reversed(logspace(0.0, 1.0,
num=len(selected_members), base=log_base)))
reproduction_probs = reproduction_probs / sum(reproduction_probs)
self.__members = []
for _ in range(self.__pop_size):
parent_1 = nrandom.choice(selected_members, p=reproduction_probs)
parent_2 = nrandom.choice(selected_members, p=reproduction_probs)
feed_dict = {}
for param in self.__parameters:
|
python
|
{
"resource": ""
}
|
q276396
|
ConfigOptionParser.normalize_keys
|
test
|
def normalize_keys(self, items):
"""Return a config dictionary with normalized keys regardless of
whether the keys were specified in environment variables or in config
|
python
|
{
"resource": ""
}
|
q276397
|
ConfigOptionParser.get_environ_vars
|
test
|
def get_environ_vars(self):
"""Returns a generator with all environmental vars with prefix PIP_"""
for key, val in os.environ.items():
|
python
|
{
"resource": ""
}
|
q276398
|
throws_exception
|
test
|
def throws_exception(callable, *exceptions):
"""
Return True if the callable throws the specified exception
>>> throws_exception(lambda: int('3'))
False
|
python
|
{
"resource": ""
}
|
q276399
|
transform_hits
|
test
|
def transform_hits(hits):
"""
The list from pypi is really a list of versions. We want a list of
packages with the list of versions stored inline. This converts the
list from pypi into one we can use.
"""
packages = {}
for hit in hits:
name = hit['name']
summary = hit['summary']
version = hit['version']
score = hit['_pypi_ordering']
if score is None:
score = 0
if name not in packages.keys():
packages[name] = {
'name': name,
'summary': summary,
'versions': [version],
'score': score,
}
else:
packages[name]['versions'].append(version)
# if this is the highest version, replace summary and score
|
python
|
{
"resource": ""
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.