_id
stringlengths 2
7
| title
stringlengths 1
88
| partition
stringclasses 3
values | text
stringlengths 31
13.1k
| language
stringclasses 1
value | meta_information
dict |
---|---|---|---|---|---|
q3100
|
header
|
train
|
def header(headers, width=WIDTH, align=ALIGN, style=STYLE, add_hr=True):
"""Returns a formatted row of column header strings
Parameters
----------
headers : list of strings
A list of n strings, the column headers
width : int
The width of each column (Default: 11)
style : string or tuple, optional
A formatting style (see STYLES)
Returns
-------
headerstr : string
|
python
|
{
"resource": ""
}
|
q3101
|
row
|
train
|
def row(values, width=WIDTH, format_spec=FMT, align=ALIGN, style=STYLE):
"""Returns a formatted row of data
Parameters
----------
values : array_like
An iterable array of data (numbers or strings), each value is printed in a separate column
width : int
The width of each column (Default: 11)
format_spec : string
The precision format string used to format numbers in the values array (Default: '5g')
align : string
The alignment to use ('left', 'center', or 'right'). (Default: 'right')
style : namedtuple, optional
A line formatting style
Returns
-------
rowstr : string
A string consisting of the full row of data to
|
python
|
{
"resource": ""
}
|
q3102
|
top
|
train
|
def top(n, width=WIDTH, style=STYLE):
"""Prints the top row of a table"""
|
python
|
{
"resource": ""
}
|
q3103
|
banner
|
train
|
def banner(message, width=30, style='banner', out=sys.stdout):
"""Prints a banner message
Parameters
----------
message : string
The message to print in the banner
width : int
The minimum width of the banner (Default: 30)
style : string
A line formatting style (Default: 'banner')
out :
|
python
|
{
"resource": ""
}
|
q3104
|
dataframe
|
train
|
def dataframe(df, **kwargs):
"""Print table with data from the given pandas DataFrame
Parameters
----------
df : DataFrame
|
python
|
{
"resource": ""
}
|
q3105
|
MacrosPlugin.on_config
|
train
|
def on_config(self, config):
"Fetch the variables and functions"
#print("Here is the config:", config)
# fetch variables from YAML file:
self._variables = config.get(YAML_SUBSET)
|
python
|
{
"resource": ""
}
|
q3106
|
MacrosPlugin.on_page_markdown
|
train
|
def on_page_markdown(self, markdown, page, config,
site_navigation=None, **kwargs):
"Provide a hook for defining functions from an external module"
# the site_navigation argument has been made optional
# (deleted in post 1.0 mkdocs, but maintained here
# for backward compatibility)
if not self.variables:
return markdown
else:
|
python
|
{
"resource": ""
}
|
q3107
|
load_variables
|
train
|
def load_variables(variables, config):
"""
Add the template functions, via the python module
located in the same directory as the Yaml config file.
The python module must contain the following hook:
declare_variables(variables, macro):
variables['a'] = 5
@macro
def bar(x):
....
@macro
def baz(x):
....
"""
def macro(v, name=''):
"""
Registers a variable as a macro in the template,
i.e. in the variables dictionary:
macro(myfunc)
Optionally, you can assign a different name:
macro(myfunc, 'funcname')
You can also use it as a decorator:
@macro
def foo(a):
return a ** 2
More info:
https://stackoverflow.com/questions/6036082/call-a-python-function-from-jinja2
"""
name = name or v.__name__
variables[name] = v
return v
# determine the package name, from the filename:
python_module = config.get('python_module') or DEFAULT_MODULE_NAME
|
python
|
{
"resource": ""
}
|
q3108
|
b64decode
|
train
|
def b64decode(s, altchars=None, validate=False):
"""Decode bytes encoded with the standard Base64 alphabet.
Argument ``s`` is a :term:`bytes-like object` or ASCII string to
decode.
Optional ``altchars`` must be a :term:`bytes-like object` or ASCII
string of length 2 which specifies the alternative alphabet used instead
of the '+' and '/' characters.
If ``validate`` is ``False`` (the default), characters that are neither in
the normal base-64 alphabet nor the alternative alphabet are discarded
prior to the padding check.
If ``validate`` is ``True``, these non-alphabet characters in the input
result in a :exc:`binascii.Error`.
The result is returned as a :class:`bytes` object.
A :exc:`binascii.Error` is raised if ``s`` is incorrectly padded.
"""
if version_info < (3, 0) or validate:
if validate and len(s) % 4 != 0:
raise BinAsciiError('Incorrect padding')
s = _get_bytes(s)
if altchars is not None:
altchars = _get_bytes(altchars)
assert len(altchars) == 2, repr(altchars)
if version_info < (3, 0):
map = maketrans(altchars,
|
python
|
{
"resource": ""
}
|
q3109
|
b64encode
|
train
|
def b64encode(s, altchars=None):
"""Encode bytes using the standard Base64 alphabet.
Argument ``s`` is a :term:`bytes-like object` to encode.
Optional ``altchars`` must be a byte string of length 2 which specifies
an alternative alphabet for the '+' and '/' characters. This allows an
application to e.g. generate url or filesystem safe Base64 strings.
The result is returned as a :class:`bytes` object.
"""
if altchars is not None:
|
python
|
{
"resource": ""
}
|
q3110
|
get_song_urls
|
train
|
def get_song_urls(song_input):
"""
Gather all urls, titles for a search query
from youtube
"""
YOUTUBECLASS = 'spf-prefetch'
html = requests.get("https://www.youtube.com/results",
params={'search_query': song_input})
soup = BeautifulSoup(html.text, 'html.parser')
|
python
|
{
"resource": ""
}
|
q3111
|
download_song
|
train
|
def download_song(song_url, song_title):
"""
Download a song using youtube url and song title
"""
outtmpl = song_title + '.%(ext)s'
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': outtmpl,
'postprocessors': [
{'key': 'FFmpegExtractAudio','preferredcodec': 'mp3',
|
python
|
{
"resource": ""
}
|
q3112
|
add_album_art
|
train
|
def add_album_art(file_name, album_art):
"""
Add album_art in .mp3's tags
"""
img = requests.get(album_art, stream=True) # Gets album art from url
img = img.raw
audio = EasyMP3(file_name, ID3=ID3)
try:
audio.add_tags()
except _util.error:
pass
audio.tags.add(
APIC(
encoding=3, # UTF-8
mime='image/png',
|
python
|
{
"resource": ""
}
|
q3113
|
add_metadata
|
train
|
def add_metadata(file_name, title, artist, album):
"""
As the method name suggests
"""
tags = EasyMP3(file_name)
if title:
tags["title"] = title
if artist:
|
python
|
{
"resource": ""
}
|
q3114
|
revert_metadata
|
train
|
def revert_metadata(files):
"""
Removes all tags from a mp3 file
"""
for file_path in files:
|
python
|
{
"resource": ""
}
|
q3115
|
UserVaultManager.get_user_vault_instance_or_none
|
train
|
def get_user_vault_instance_or_none(self, user):
"""Returns a vault_id string or None"""
qset = self.filter(user=user)
if not qset:
return None
|
python
|
{
"resource": ""
}
|
q3116
|
UserVaultManager.charge
|
train
|
def charge(self, user, vault_id=None):
"""If vault_id is not passed this will assume that there is only one instane of user and vault_id in the
|
python
|
{
"resource": ""
}
|
q3117
|
UserCCDetailsForm.save
|
train
|
def save(self, prepend_vault_id=''):
"""
Adds or updates a users CC to the vault.
@prepend_vault_id: any string to prepend all vault id's with in case the same braintree account is used by
multiple projects/apps.
"""
assert self.is_valid()
cc_details_map = { # cc details
'number': self.cleaned_data['cc_number'],
'cardholder_name': self.cleaned_data['name'],
'expiration_date': '%s/%s' %\
(self.cleaned_data['expiration_month'], self.cleaned_data['expiration_year']),
'cvv': self.cleaned_data['cvv'],
'billing_address': {
'postal_code': self.cleaned_data['zip_code'],
}
}
if self.__user_vault:
try:
# get customer info, its credit card and then update that credit card
response = Customer.find(self.__user_vault.vault_id)
cc_info = response.credit_cards[0]
return CreditCard.update(cc_info.token, params=cc_details_map)
except Exception, e:
logging.error('Was not able to get customer from vault. %s' % e)
|
python
|
{
"resource": ""
}
|
q3118
|
Events.resolve_incident
|
train
|
def resolve_incident(self, incident_key,
description=None, details=None):
""" Causes the referenced incident to enter resolved state.
Send a resolve event when the problem that caused the initial
trigger has been fixed.
|
python
|
{
"resource": ""
}
|
q3119
|
clean_response
|
train
|
def clean_response(response):
'''Recurse through dictionary and replace any keys "self" with
"self_"'''
if type(response) is list:
for elem in response:
clean_response(elem)
elif type(response) is dict:
for key, val in response.items():
if key ==
|
python
|
{
"resource": ""
}
|
q3120
|
PagerDuty.acknowledge_incident
|
train
|
def acknowledge_incident(self, service_key, incident_key,
description=None, details=None):
""" Causes the referenced incident to enter the acknowledged state.
Send an acknowledge event when someone is presently working on the
incident.
|
python
|
{
"resource": ""
}
|
q3121
|
PagerDuty.trigger_incident
|
train
|
def trigger_incident(self, service_key, description,
incident_key=None, details=None,
client=None, client_url=None, contexts=None):
""" Report a new or ongoing problem. When PagerDuty receives a trigger,
it will either open a new incident, or add a new log entry to an
existing incident.
|
python
|
{
"resource": ""
}
|
q3122
|
try_fix_dataset
|
train
|
def try_fix_dataset(dataset):
"""Transpose the image data if it's in PIL format."""
if isinstance(dataset, numpy.ndarray):
if len(dataset.shape) == 3: # NumPy 3D
if dataset.shape[-1] == 3:
return dataset.transpose((2, 0, 1))
elif len(dataset.shape) == 4: # NumPy 4D
if dataset.shape[-1] == 3:
return dataset.transpose((0, 3, 1, 2))
# Otherwise couldn't fix it.
return dataset
# List of
|
python
|
{
"resource": ""
}
|
q3123
|
get_image
|
train
|
def get_image(dataset):
"""Convert the NumPy array to two nested lists with r,g,b tuples."""
dim, nrow, ncol = dataset.shape
uint8_dataset = dataset.astype('uint8')
if not (uint8_dataset == dataset).all():
message = (
"\nYour image was cast to a `uint8` (`<img>.astype(uint8)`), "
"but some information was lost.\nPlease check your gif and "
"convert to uint8 beforehand if the gif looks wrong."
)
warnings.warn(message)
image = [[
|
python
|
{
"resource": ""
}
|
q3124
|
get_colors
|
train
|
def get_colors(image):
"""Return a Counter containing each color and how often it appears.
"""
colors = Counter(pixel for row in image for pixel in row)
if len(colors) > 256:
msg = (
"The maximum number of distinct colors in a GIF is
|
python
|
{
"resource": ""
}
|
q3125
|
_get_global_color_table
|
train
|
def _get_global_color_table(colors):
"""Return a color table sorted in descending order of count.
"""
global_color_table = b''.join(c[0] for c in colors.most_common())
full_table_size = 2**(1+int(get_color_table_size(len(colors)), 2))
repeats = 3 *
|
python
|
{
"resource": ""
}
|
q3126
|
_get_image_data
|
train
|
def _get_image_data(image, colors):
"""Performs the LZW compression as described by Matthew Flickinger.
This isn't fast, but it works.
http://www.matthewflickinger.com/lab/whatsinagif/lzw_image_data.asp
"""
lzw_code_size, coded_bits = _lzw_encode(image, colors)
coded_bytes = ''.join(
'{{:0{}b}}'.format(nbits).format(val) for val, nbits in coded_bits)
coded_bytes = '0' * ((8 - len(coded_bytes)) % 8) + coded_bytes
coded_data = list(
reversed([
int(coded_bytes[8*i:8*(i+1)], 2)
for i in range(len(coded_bytes) // 8)
])
)
output = [struct.pack('<B',
|
python
|
{
"resource": ""
}
|
q3127
|
write_gif
|
train
|
def write_gif(dataset, filename, fps=10):
"""Write a NumPy array to GIF 89a format.
Or write a list of NumPy arrays to an animation (GIF 89a format).
- Positional arguments::
:param dataset: A NumPy arrayor list of arrays with shape
rgb x rows x cols and integer values in [0, 255].
:param filename: The output file that will contain the GIF image.
:param fps: The (integer) frames/second of the animation (default 10).
:type dataset: a NumPy array or list of NumPy arrays.
:return: None
- Example: a minimal array, with one red pixel, would look like this::
import numpy as np
one_red_pixel = np.array([[[255]], [[0]], [[0]]])
write_gif(one_red_pixel, 'red_pixel.gif')
..raises:: ValueError
"""
try:
|
python
|
{
"resource": ""
}
|
q3128
|
good_sequences_to_track
|
train
|
def good_sequences_to_track(flow, motion_threshold=1.0):
"""Get list of good frames to do tracking in.
Looking at the optical flow, this function chooses a span of frames
that fulfill certain criteria.
These include
* not being too short or too long
* not too low or too high mean flow magnitude
* a low max value (avoids motion blur)
Currently, the cost function for a sequence is hard coded. Sorry about that.
Parameters
-------------
flow : ndarray
The optical flow magnitude
motion_threshold : float
The maximum amount of motion to consider for sequence endpoints.
Returns
------------
sequences : list
Sorted list of (a, b, score) elements (highest scpre first) of sequences
where a sequence is frames with frame indices in the span [a, b].
"""
endpoints = []
in_low = False
for i, val in enumerate(flow):
if val < motion_threshold:
if not in_low:
endpoints.append(i)
in_low = True
else:
if in_low:
endpoints.append(i-1) # Previous was last in a low spot
in_low = False
def mean_score_func(m):
mu = 15
sigma = 8
top_val = normpdf(mu, mu, sigma)
return normpdf(m, mu, sigma) / top_val
def max_score_func(m):
mu = 40
sigma = 8
if m <= mu:
return 1.
else:
top_val = normpdf(mu, mu, sigma)
return normpdf(m, mu, sigma) / top_val
def length_score_func(l):
mu = 30
|
python
|
{
"resource": ""
}
|
q3129
|
AutoCalibrator.initialize
|
train
|
def initialize(self, gyro_rate, slices=None, skip_estimation=False):
"""Prepare calibrator for calibration
This method does three things:
1. Create slices from the video stream, if not already provided
2. Estimate time offset
3. Estimate rotation between camera and gyroscope
Parameters
------------------
gyro_rate : float
Estimated gyroscope sample rate
slices : list of Slice, optional
Slices to use for optimization
skip_estimation : bool
Do not estimate initial time offset and rotation.
Raises
--------------------
InitializationError
If the initialization fails
"""
self.params['user']['gyro_rate'] = gyro_rate
for p in ('gbias_x', 'gbias_y', 'gbias_z'):
self.params['initialized'][p] = 0.0
if slices is not None:
self.slices = slices
if self.slices is None:
self.slices = videoslice.Slice.from_stream_randomly(self.video)
logger.debug("Number of slices: {:d}".format(len(self.slices)))
if len(self.slices) < 2:
|
python
|
{
"resource": ""
}
|
q3130
|
AutoCalibrator.video_time_to_gyro_sample
|
train
|
def video_time_to_gyro_sample(self, t):
"""Convert video time to gyroscope sample index and interpolation factor
Parameters
-------------------
t : float
Video timestamp
Returns
--------------------
|
python
|
{
"resource": ""
}
|
q3131
|
AutoCalibrator.parameter
|
train
|
def parameter(self):
"""Return the current best value of a parameter"""
D = {}
|
python
|
{
"resource": ""
}
|
q3132
|
AutoCalibrator.print_params
|
train
|
def print_params(self):
"""Print the current best set of parameters"""
print("Parameters")
print("--------------------")
for
|
python
|
{
"resource": ""
}
|
q3133
|
AtanCameraModel.from_hdf
|
train
|
def from_hdf(cls, filename):
"""Load camera model params from a HDF5 file
The HDF5 file should contain the following datasets:
wc : (2,) float with distortion center
lgamma : float distortion parameter
readout : float readout value
size : (2,) int image size
fps : float frame rate
K : (3, 3) float camera matrix
|
python
|
{
"resource": ""
}
|
q3134
|
AtanCameraModel.invert
|
train
|
def invert(self, points):
"""Invert the distortion
Parameters
------------------
points : ndarray
Input image points
Returns
-----------------
ndarray
Undistorted points
"""
X = points if not points.ndim == 1 else points.reshape((points.size, 1))
|
python
|
{
"resource": ""
}
|
q3135
|
Kinect.purge_bad_timestamp_files
|
train
|
def purge_bad_timestamp_files(file_list):
"Given a list of image files, find bad frames, remove them and modify file_list"
MAX_INITIAL_BAD_FRAMES = 15
bad_ts = Kinect.detect_bad_timestamps(Kinect.timestamps_from_file_list(file_list))
# Trivial case
if not bad_ts:
return file_list
|
python
|
{
"resource": ""
}
|
q3136
|
Kinect.depth_file_for_nir_file
|
train
|
def depth_file_for_nir_file(video_filename, depth_file_list):
"""Returns the corresponding depth filename given a NIR filename"""
(root, filename) = os.path.split(video_filename)
needle_ts = int(filename.split('-')[2].split('.')[0])
haystack_ts_list = np.array(Kinect.timestamps_from_file_list(depth_file_list))
|
python
|
{
"resource": ""
}
|
q3137
|
Kinect.find_nir_file_with_missing_depth
|
train
|
def find_nir_file_with_missing_depth(video_file_list, depth_file_list):
"Remove all files without its own counterpart. Returns new lists of files"
new_video_list = []
new_depth_list = []
for fname in video_file_list:
try:
depth_file = Kinect.depth_file_for_nir_file(fname, depth_file_list)
new_video_list.append(fname)
new_depth_list.append(depth_file)
except IndexError: # Missing file
|
python
|
{
"resource": ""
}
|
q3138
|
fill_sampling
|
train
|
def fill_sampling(slice_list, N):
"""Given a list of slices, draw N samples such that each slice contributes as much as possible
Parameters
--------------------------
slice_list : list of Slice
List of slices
N : int
Number of samples to draw
"""
A = [len(s.inliers) for s in slice_list]
N_max = np.sum(A)
if N > N_max:
raise ValueError("Tried to draw {:d} samples from a pool of only {:d} items".format(N, N_max))
samples_from = np.zeros((len(A),), dtype='int') # Number of samples to draw from each group
remaining = N
while remaining > 0:
remaining_groups = np.flatnonzero(samples_from - np.array(A))
if remaining < len(remaining_groups):
np.random.shuffle(remaining_groups)
for g in remaining_groups[:remaining]:
samples_from[g] += 1
else:
# Give each group the allowed number of samples. Constrain to their max size.
to_each = max(1, int(remaining / len(remaining_groups)))
samples_from = np.min(np.vstack((samples_from + to_each, A)), axis=0)
|
python
|
{
"resource": ""
}
|
q3139
|
Slice.estimate_rotation
|
train
|
def estimate_rotation(self, camera, ransac_threshold=7.0):
"""Estimate the rotation between first and last frame
It uses RANSAC where the error metric is the reprojection error of the points
from the last frame to the first frame.
Parameters
-----------------
camera : CameraModel
Camera model
ransac_threshold : float
Distance threshold (in pixels) for a reprojected point to count as an inlier
"""
if self.axis is None:
x = self.points[:, 0, :].T
y = self.points[:, -1, :].T
inlier_ratio = 0.5
R, t, dist, idx = rotations.estimate_rotation_procrustes_ransac(x, y,
camera,
ransac_threshold,
inlier_ratio=inlier_ratio,
|
python
|
{
"resource": ""
}
|
q3140
|
Slice.from_stream_randomly
|
train
|
def from_stream_randomly(video_stream, step_bounds=(5, 15), length_bounds=(2, 15), max_start=None, min_distance=10, min_slice_points=10):
"""Create slices from a video stream using random sampling
Parameters
-----------------
video_stream : VideoStream
A video stream
step_bounds : tuple
Range bounds (inclusive) of possible step lengths
length_bounds : tuple
Range bounds (inclusive) of possible slice lengths
max_start : int
Maximum frame number to start from
min_distance : float
Minimum (initial) distance between tracked points
min_slice_points : int
Minimum number of points to keep a slice
Returns
-------------------
list of Slice
List of slices
"""
new_step = lambda: int(np.random.uniform(low=step_bounds[0], high=step_bounds[1]))
new_length = lambda: int(np.random.uniform(low=length_bounds[0], high=length_bounds[1]))
|
python
|
{
"resource": ""
}
|
q3141
|
estimate_rotation_procrustes_ransac
|
train
|
def estimate_rotation_procrustes_ransac(x, y, camera, threshold, inlier_ratio=0.75, do_translation=False):
"""Calculate rotation between two sets of image coordinates using ransac.
Inlier criteria is the reprojection error of y into image 1.
Parameters
-------------------------
x : array 2xN image coordinates in image 1
y : array 2xN image coordinates in image 2
camera : Camera model
threshold : float pixel distance threshold to accept as inlier
do_translation : bool Try to estimate the translation as well
Returns
------------------------
R : array 3x3 The rotation that best fulfills X = RY
t : array 3x1 translation if do_translation is False
residual : array pixel distances ||x - xhat|| where xhat ~ KRY (and lens distorsion)
inliers : array Indices of the points (in X and Y) that are RANSAC inliers
"""
assert x.shape == y.shape
assert x.shape[0] == 2
X = camera.unproject(x)
Y = camera.unproject(y)
data = np.vstack((X, Y, x))
assert data.shape[0] == 8
model_func = lambda data: procrustes(data[:3], data[3:6], remove_mean=do_translation)
def eval_func(model, data):
Y = data[3:6].reshape(3,-1)
x = data[6:].reshape(2,-1)
R, t = model
|
python
|
{
"resource": ""
}
|
q3142
|
RANSAC
|
train
|
def RANSAC(model_func, eval_func, data, num_points, num_iter, threshold, recalculate=False):
"""Apply RANSAC.
This RANSAC implementation will choose the best model based on the number of points in the consensus set. At evaluation time the model is created using num_points points. Then it will be recalculated using the points in the consensus set.
Parameters
------------
model_func: Takes a data parameter of size DxK where K is the number of points needed to construct the model and returns the model (Mx1 vector)
eval_func: Takes a model parameter (Lx1) and one or more data points (DxC, C>=1) and calculates the score of the point(s) relative to the selected model
|
python
|
{
"resource": ""
}
|
q3143
|
IMU.integrate
|
train
|
def integrate(self, pose_correction=np.eye(3), uniform=True):
"""Integrate angular velocity measurements to rotations.
Parameters
-------------
pose_correction : (3,3) ndarray, optional
Rotation matrix that describes the relative pose between the IMU and something else (e.g. camera).
uniform : bool
If True (default), assume uniform sample rate. This will use a faster integration method.
Returns
-------------
rotations : (4, N) ndarray
Rotations as unit quaternions with scalar as first element.
"""
if uniform:
dt = float(self.timestamps[1]-self.timestamps[0]) # Must be python float for fastintegrate to work
return fastintegrate.integrate_gyro_quaternion_uniform(self.gyro_data_corrected, dt)
else:
N = len(self.timestamps)
integrated = np.zeros((4, N))
integrated[:,0] = np.array([1, 0, 0, 0]) # Initial rotation (no rotation)
# Iterate over all
for i in range(1, len(self.timestamps)):
w = pose_correction.dot(self.gyro_data[:, i]) # Change
|
python
|
{
"resource": ""
}
|
q3144
|
GyroStream.from_csv
|
train
|
def from_csv(cls, filename):
"""Create gyro stream from CSV data
Load data from a CSV file.
The data must be formatted with three values per line: (x, y, z)
where x, y, z is the measured angular velocity (in radians) of the specified
|
python
|
{
"resource": ""
}
|
q3145
|
GyroStream.from_data
|
train
|
def from_data(cls, data):
"""Create gyroscope stream from data array
Parameters
-------------------
data : (N, 3) ndarray
Data array of angular velocities (rad/s)
|
python
|
{
"resource": ""
}
|
q3146
|
GyroStream.integrate
|
train
|
def integrate(self, dt):
"""Integrate gyro measurements to orientation using a uniform sample rate.
Parameters
-------------------
dt : float
Sample distance in seconds
Returns
|
python
|
{
"resource": ""
}
|
q3147
|
gaussian_kernel
|
train
|
def gaussian_kernel(gstd):
"""Generate odd sized truncated Gaussian
The generated filter kernel has a cutoff at $3\sigma$
and is normalized to sum to 1
Parameters
-------------
gstd : float
Standard deviation of filter
Returns
-------------
g : ndarray
|
python
|
{
"resource": ""
}
|
q3148
|
subsample
|
train
|
def subsample(time_series, downsample_factor):
"""Subsample with Gaussian prefilter
The prefilter will have the filter size $\sigma_g=.5*ssfactor$
Parameters
--------------
time_series : ndarray
Input signal
downsample_factor : float
Downsampling factor
Returns
--------------
ts_out : ndarray
The downsampled signal
"""
Ns = np.int(np.floor(np.size(time_series)/downsample_factor))
g = gaussian_kernel(0.5*downsample_factor)
ts_blur
|
python
|
{
"resource": ""
}
|
q3149
|
upsample
|
train
|
def upsample(time_series, scaling_factor):
"""Upsample using linear interpolation
The function uses replication of the value at edges
Parameters
--------------
time_series : ndarray
Input signal
scaling_factor : float
The factor to upsample with
Returns
--------------
ts_out : ndarray
The upsampled signal
"""
Ns0 = np.size(time_series)
Ns = np.int(np.floor(np.size(time_series)*scaling_factor))
ts_out = np.zeros((Ns,1), dtype='float64')
for k in
|
python
|
{
"resource": ""
}
|
q3150
|
find_shift_pyr
|
train
|
def find_shift_pyr(ts1,ts2,nlevels):
"""
Find shift that best aligns two time series
The shift that aligns the timeseries ts1 with ts2.
This is sought using zero mean normalized cross correlation (ZNCC) in a coarse to fine search with an octave pyramid on nlevels levels.
Parameters
----------------
ts1 : list_like
The first timeseries
ts2 : list_like
The seconds timeseries
nlevels : int
Number of levels in pyramid
Returns
----------------
ts1_shift : float
How many samples to shift ts1 to align with ts2
|
python
|
{
"resource": ""
}
|
q3151
|
to_rot_matrix
|
train
|
def to_rot_matrix(r):
"Convert combined axis angle vector to rotation matrix"
theta = np.linalg.norm(r)
v = r/theta
|
python
|
{
"resource": ""
}
|
q3152
|
add_pass_thru
|
train
|
def add_pass_thru(pass_thrus):
""" Decorator adds explicit pass-through visit and depart methods
"""
def meth(self, node):
pass
def dec(cls):
for element_name in pass_thrus:
for meth_prefix in ('visit_', 'depart_'):
|
python
|
{
"resource": ""
}
|
q3153
|
IndentLevel.write
|
train
|
def write(self):
""" Add ``self.contents`` with current ``prefix`` and ``first_prefix``
Add processed ``self.contents`` to ``self.base``. The first line has
``first_prefix`` prepended, further lines have ``prefix`` prepended.
Empty (all whitespace) lines get written as bare carriage returns, to
avoid ugly extra whitespace.
"""
string = ''.join(self.content)
lines = string.splitlines(True)
if len(lines) == 0:
return
|
python
|
{
"resource": ""
}
|
q3154
|
Wallet.identifier
|
train
|
def identifier(self):
"""Get the identifier for this node.
Extended keys can be identified by the Hash160 (RIPEMD160 after SHA256)
of the public key's `key`. This corresponds exactly to the data used in
traditional Bitcoin addresses. It is not advised to represent this data
in base58 format though, as it may be interpreted as an address that
|
python
|
{
"resource": ""
}
|
q3155
|
Wallet.get_child
|
train
|
def get_child(self, child_number, is_prime=None, as_private=True):
"""Derive a child key.
:param child_number: The number of the child key to compute
:type child_number: int
:param is_prime: If True, the child is calculated via private
derivation. If False, then public derivation is used. If None,
then it is figured out from the value of child_number.
:type is_prime: bool, defaults to None
:param as_private: If True, strips private key from the result.
Defaults to False. If there is no private key present, this is
ignored.
:type as_private: bool
Positive child_numbers (>= 0, < 2,147,483,648) produce publicly
derived children. (prime=False)
Negative numbers (> -2,147,483,648, < 0) use private derivation.
(prime=True)
NOTE: Python can't do -0, so if you want the privately derived 0th
child you need to manually set is_prime=True.
NOTE: negative numbered children are provided as a convenience
because nobody wants to remember the above numbers. Negative numbers
are considered 'prime children', which is described in the BIP32 spec
as a leading 1 in a 32 bit unsigned int.
This derivation is fully described at
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#child-key-derivation-functions # nopep8
"""
boundary = 0x80000000
# Note: If this boundary check gets removed, then children above
# the boundary should use private (prime) derivation.
if abs(child_number) >= boundary:
raise ValueError("Invalid child number %s" % child_number)
# If is_prime isn't set, then we can infer it from the child_number
if is_prime is None:
# Prime children are either < 0 or > 0x80000000
if child_number < 0:
child_number = abs(child_number)
is_prime = True
else:
is_prime =
|
python
|
{
"resource": ""
}
|
q3156
|
Wallet.crack_private_key
|
train
|
def crack_private_key(self, child_private_key):
"""Crack the parent private key given a child private key.
BIP32 has a vulnerability/feature that allows you to recover the
master private key if you're given a master public key and any of its
publicly-derived child private keys. This is a pretty serious security
vulnerability that looks as innocuous as this:
>>> w = Wallet.new_random_wallet()
>>> child = w.get_child(0, is_prime=False)
>>> w_pub = w.public_copy()
>>> assert w_pub.private_key is None
>>> master_public_key = w_pub.serialize_b58(private=False)
>>> # Now you put master_public_key on your website
>>> # and give somebody a private key
>>> public_master = Wallet.deserialize(master_public_key)
>>> cracked_private_master = public_master.crack_private_key(child)
>>> assert w == cracked_private_master # :(
Implementation details from http://bitcoinmagazine.com/8396/deterministic-wallets-advantages-flaw/ # nopep8
"""
if self.private_key:
raise AssertionError("You already know the private key")
if child_private_key.parent_fingerprint != self.fingerprint:
raise ValueError("This is not a valid child")
if child_private_key.child_number >= 0x80000000:
raise ValueError(
"Cannot crack private keys from private derivation")
# Duplicate the public child derivation
child_number_hex =
|
python
|
{
"resource": ""
}
|
q3157
|
_pypi_push
|
train
|
def _pypi_push(dist):
"""Push created package to PyPI.
Requires the following defined environment variables:
- TWINE_USERNAME: The PyPI username to upload this package under
- TWINE_PASSWORD: The password to the user's account
Args:
dist (str):
The distribution to push. Must be a valid directory; shell globs are
NOT allowed.
"""
# Register all distributions and wheels with PyPI. We have to list the dist
# directory and register each file individually because `twine` doesn't
# handle globs.
for filename in os.listdir(dist):
full_path =
|
python
|
{
"resource": ""
}
|
q3158
|
deploy
|
train
|
def deploy(target):
"""Deploys the package and documentation.
Proceeds in the following steps:
1. Ensures proper environment variables are set and checks that we are on Circle CI
2. Tags the repository with the new version
3. Creates a standard distribution and a wheel
4. Updates version.py to have the proper version
5. Commits the ChangeLog, AUTHORS, and version.py file
6. Pushes to PyPI
7. Pushes the tags and newly committed files
Raises:
`EnvironmentError`:
- Not running on CircleCI
- `*_PYPI_USERNAME` and/or `*_PYPI_PASSWORD` environment variables
are missing
- Attempting to deploy to production from a branch that isn't master
"""
# Ensure proper environment
if not os.getenv(CIRCLECI_ENV_VAR): # pragma: no cover
raise EnvironmentError('Must be on CircleCI to run this script')
current_branch = os.getenv('CIRCLE_BRANCH')
if (target == 'PROD') and (current_branch != 'master'):
raise EnvironmentError(
f'Refusing to deploy to production from branch {current_branch!r}. '
f'Production deploys can only be made from master.')
if target in ('PROD', 'TEST'):
pypi_username = os.getenv(f'{target}_PYPI_USERNAME')
pypi_password = os.getenv(f'{target}_PYPI_PASSWORD')
else:
raise ValueError(f"Deploy target must be 'PROD' or 'TEST', got {target!r}.")
if not (pypi_username and pypi_password): # pragma: no cover
raise EnvironmentError(
f"Missing '{target}_PYPI_USERNAME' and/or '{target}_PYPI_PASSWORD' "
f"environment variables. These are required to push to PyPI.")
# Twine requires these environment variables to be set. Subprocesses will
# inherit these when we invoke them, so no need to pass them on the command
# line. We want to avoid that in case something's logging each command run.
os.environ['TWINE_USERNAME'] =
|
python
|
{
"resource": ""
}
|
q3159
|
_get_triplet
|
train
|
def _get_triplet(dd):
"""Return a triplet from a dialogue dictionary.
:param dd: Dialogue dictionary.
:type dd: Dict[str, str]
:return: (query, response, error response)
:rtype: (str, str |
|
python
|
{
"resource": ""
}
|
q3160
|
_load
|
train
|
def _load(content_or_fp):
"""YAML Parse a file or str and check version.
"""
try:
data = yaml.load(content_or_fp, Loader=yaml.loader.BaseLoader)
except Exception as e:
raise type(e)('Malformed yaml file:\n%r' % format_exc())
try:
ver = data['spec']
except:
raise ValueError('The file does not specify a spec version')
try:
ver = tuple(map(int, (ver.split("."))))
except:
raise ValueError("Invalid spec version format. Expect 'X.Y'"
" (X and
|
python
|
{
"resource": ""
}
|
q3161
|
parse_resource
|
train
|
def parse_resource(name):
"""Parse a resource file
"""
with closing(pkg_resources.resource_stream(__name__, name)) as fp:
|
python
|
{
"resource": ""
}
|
q3162
|
update_component
|
train
|
def update_component(name, comp, component_dict):
"""Get a component from a component dict.
"""
for dia in component_dict.get('dialogues', ()):
try:
comp.add_dialogue(*_get_pair(dia))
except Exception as e:
msg = 'In device %s, malformed dialogue %s\n%r'
raise Exception(msg % (name, dia, e))
for prop_name, prop_dict in component_dict.get('properties', {}).items():
try:
getter = (_get_pair(prop_dict['getter'])
if 'getter' in prop_dict else None)
setter = (_get_triplet(prop_dict['setter'])
|
python
|
{
"resource": ""
}
|
q3163
|
get_bases
|
train
|
def get_bases(definition_dict, loader):
"""Collect dependencies.
"""
bases = definition_dict.get('bases', ())
if bases:
bases = (loader.get_comp_dict(required_version=SPEC_VERSION_TUPLE[0],
|
python
|
{
"resource": ""
}
|
q3164
|
get_channel
|
train
|
def get_channel(device, ch_name, channel_dict, loader, resource_dict):
"""Get a channels from a channels dictionary.
:param name: name of the device
:param device_dict: device dictionary
:rtype: Device
"""
channel_dict = get_bases(channel_dict,
|
python
|
{
"resource": ""
}
|
q3165
|
get_device
|
train
|
def get_device(name, device_dict, loader, resource_dict):
"""Get a device from a device dictionary.
:param name: name of the device
:param device_dict: device dictionary
:rtype: Device
"""
device = Device(name, device_dict.get('delimiter', ';').encode('utf-8'))
device_dict = get_bases(device_dict, loader)
err = device_dict.get('error', {})
device.add_error_handler(err)
for itype, eom_dict in device_dict.get('eom', {}).items():
device.add_eom(itype, *_get_pair(eom_dict))
|
python
|
{
"resource": ""
}
|
q3166
|
get_devices
|
train
|
def get_devices(filename, bundled):
"""Get a Devices object from a file.
:param filename: full path of the file to parse or name of the resource.
:param is_resource: boolean indicating if it is a resource.
:rtype: Devices
"""
loader = Loader(filename, bundled)
data = loader.data
devices = Devices()
# Iterate through the resources and generate each individual device
# on demand.
for resource_name, resource_dict in data.get('resources', {}).items():
device_name = resource_dict['device']
dd = loader.get_device_dict(device_name,
|
python
|
{
"resource": ""
}
|
q3167
|
ChannelProperty.init_value
|
train
|
def init_value(self, string_value):
"""Create an empty defaultdict holding the default value.
"""
|
python
|
{
"resource": ""
}
|
q3168
|
ChannelProperty.set_value
|
train
|
def set_value(self, string_value):
"""Set the current value for a channel.
"""
|
python
|
{
"resource": ""
}
|
q3169
|
Channels.add_dialogue
|
train
|
def add_dialogue(self, query, response):
"""Add dialogue to channel.
:param query: query string
:param response: response string
|
python
|
{
"resource": ""
}
|
q3170
|
Channels.add_property
|
train
|
def add_property(self, name, default_value, getter_pair, setter_triplet,
specs):
"""Add property to channel
:param name: property name
:param default_value: default value as string
:param getter_pair: (query, response)
:param setter_triplet: (query, response, error)
:param specs: specification of the Property
"""
self._properties[name] = ChannelProperty(self, name,
default_value, specs)
|
python
|
{
"resource": ""
}
|
q3171
|
Channels.match
|
train
|
def match(self, query):
"""Try to find a match for a query in the channel commands.
"""
if not self.can_select:
ch_id = self._device._properties['selected_channel'].get_value()
if ch_id in self._ids:
self._selected = ch_id
else:
return
response = self._match_dialog(query,
self._dialogues['__default__'])
if response is not None:
return response
response = self._match_getters(query,
self._getters['__default__'])
if response is not None:
return response
else:
for ch_id in self._ids:
self._selected
|
python
|
{
"resource": ""
}
|
q3172
|
Channels._match_setters
|
train
|
def _match_setters(self, query):
"""Try to find a match
"""
q = query.decode('utf-8')
for name, parser, response, error_response in self._setters:
try:
parsed = parser(q)
logger.debug('Found response in setter of %s' % name)
except ValueError:
continue
try:
if isinstance(parsed, dict) and 'ch_id' in parsed:
self._selected = parsed['ch_id']
|
python
|
{
"resource": ""
}
|
q3173
|
Session.get_session_class
|
train
|
def get_session_class(cls, interface_type, resource_class):
"""Return the session class for a given interface type and resource class.
:type interface_type: constants.InterfaceType
:type resource_class: str
:return: Session
"""
|
python
|
{
"resource": ""
}
|
q3174
|
Session.register
|
train
|
def register(cls, interface_type, resource_class):
"""Register a session class for a given interface type and resource class.
:type interface_type: constants.InterfaceType
:type resource_class: str
"""
def _internal(python_class):
if (interface_type, resource_class) in cls._session_classes:
|
python
|
{
"resource": ""
}
|
q3175
|
to_bytes
|
train
|
def to_bytes(val):
"""Takes a text message and return a tuple
"""
if val is NoResponse:
return val
val
|
python
|
{
"resource": ""
}
|
q3176
|
Property.validate_value
|
train
|
def validate_value(self, string_value):
"""Validate that a value match the Property specs.
"""
specs = self.specs
if 'type' in specs:
value = specs['type'](string_value)
|
python
|
{
"resource": ""
}
|
q3177
|
Component._match_dialog
|
train
|
def _match_dialog(self, query, dialogues=None):
"""Tries to match in dialogues
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
|
python
|
{
"resource": ""
}
|
q3178
|
Component._match_getters
|
train
|
def _match_getters(self, query, getters=None):
"""Tries to match in getters
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if getters is None:
getters = self._getters
if query in getters:
name, response = getters[query]
|
python
|
{
"resource": ""
}
|
q3179
|
Component._match_setters
|
train
|
def _match_setters(self, query):
"""Tries to match in setters
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
q = query.decode('utf-8')
for name, parser, response, error_response in self._setters:
try:
value = parser(q)
logger.debug('Found response in setter of %s' % name)
except ValueError:
|
python
|
{
"resource": ""
}
|
q3180
|
Device.add_error_handler
|
train
|
def add_error_handler(self, error_input):
"""Add error handler to the device
"""
if isinstance(error_input, dict):
error_response = error_input.get('response', {})
cerr = error_response.get('command_error', NoResponse)
qerr = error_response.get('query_error', NoResponse)
response_dict = {'command_error': cerr,
'query_error': qerr}
register_list = error_input.get('status_register', [])
for register_dict in register_list:
|
python
|
{
"resource": ""
}
|
q3181
|
Device.add_eom
|
train
|
def add_eom(self, type_class, query_termination, response_termination):
"""Add default end of message for a given interface type and resource class.
:param type_class: interface type and resource class as strings joined by space
:param query_termination: end of message used in queries.
:param response_termination: end of message used in responses.
"""
interface_type,
|
python
|
{
"resource": ""
}
|
q3182
|
Device.write
|
train
|
def write(self, data):
"""Write data into the device input buffer.
:param data: single element byte
:type data: bytes
"""
logger.debug('Writing into device input buffer: %r' % data)
if not isinstance(data, bytes):
raise TypeError('data must be an instance of bytes')
if len(data) != 1:
msg = 'data must have a length of 1, not %d'
raise ValueError(msg % len(data))
self._input_buffer.extend(data)
|
python
|
{
"resource": ""
}
|
q3183
|
Device.read
|
train
|
def read(self):
"""Return a single byte from the output buffer
"""
if self._output_buffer:
|
python
|
{
"resource": ""
}
|
q3184
|
Device._match
|
train
|
def _match(self, query):
"""Tries to match in dialogues, getters and setters and subcomponents
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
response = self._match_dialog(query)
if response is not None:
return response
response = self._match_getters(query)
if response is not None:
return response
response = self._match_registers(query)
if response is not None:
return response
|
python
|
{
"resource": ""
}
|
q3185
|
Device._match_registers
|
train
|
def _match_registers(self, query):
"""Tries to match in status registers
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if query in self._status_registers:
register
|
python
|
{
"resource": ""
}
|
q3186
|
Device._match_errors_queues
|
train
|
def _match_errors_queues(self, query):
"""Tries to match in error queues
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if query in self._error_queues:
|
python
|
{
"resource": ""
}
|
q3187
|
Devices.add_device
|
train
|
def add_device(self, resource_name, device):
"""Bind device to resource name
"""
if device.resource_name is not None:
|
python
|
{
"resource": ""
}
|
q3188
|
SequenceCursorPagination.get_ordering
|
train
|
def get_ordering(self, *args, **kwargs):
"""Take whatever the expected ordering is and then first order by QuerySet."""
result = super(SequenceCursorPagination, self).get_ordering(*args, **kwargs)
# Because paginate_queryset sets self.ordering after reading it...we
# need to only modify it sometimes. (This allows re-use of
|
python
|
{
"resource": ""
}
|
q3189
|
SequenceCursorPagination.decode_cursor
|
train
|
def decode_cursor(self, request):
"""
Given a request with a cursor, return a `Cursor` instance.
Differs from the standard CursorPagination to handle a tuple in the
position field.
"""
# Determine if we have a cursor, and if so then decode it.
encoded = request.query_params.get(self.cursor_query_param)
if encoded is None:
return None
try:
querystring = b64decode(encoded.encode('ascii')).decode('ascii')
tokens = urlparse.parse_qs(querystring, keep_blank_values=True)
offset = tokens.get('o', ['0'])[0]
offset = _positive_int(offset, cutoff=self.offset_cutoff)
reverse =
|
python
|
{
"resource": ""
}
|
q3190
|
multiply_iterables
|
train
|
def multiply_iterables(it1, it2):
"""
Element-wise iterables multiplications.
"""
assert len(it1) == len(it2),\
"Can not
|
python
|
{
"resource": ""
}
|
q3191
|
ComparatorMixin._generate_comparator
|
train
|
def _generate_comparator(cls, field_names):
"""
Construct a comparator function based on the field names. The comparator
returns the first non-zero comparison value.
Inputs:
field_names (iterable of strings): The field names to sort on.
Returns:
A comparator function.
"""
# Ensure that field names is a list and not a tuple.
field_names = list(field_names)
# For fields that start with a '-', reverse the ordering of the
# comparison.
reverses = [1] * len(field_names)
for i, field_name in enumerate(field_names):
if field_name[0] == '-':
reverses[i] = -1
field_names[i] = field_name[1:]
field_names = [f.replace(LOOKUP_SEP, '.') for f in field_names]
def comparator(i1, i2):
# Get a tuple of values for comparison.
v1 = attrgetter(*field_names)(i1)
v2 = attrgetter(*field_names)(i2)
# If there's only one arg supplied, attrgetter returns a single
|
python
|
{
"resource": ""
}
|
q3192
|
QuerySetSequence._filter_or_exclude_querysets
|
train
|
def _filter_or_exclude_querysets(self, negate, **kwargs):
"""
Similar to QuerySet._filter_or_exclude, but run over the QuerySets in
the QuerySetSequence instead of over each QuerySet's fields.
"""
# Ensure negate is a boolean.
negate = bool(negate)
for kwarg, value in kwargs.items():
parts = kwarg.split(LOOKUP_SEP)
# Ensure this is being used to filter QuerySets.
if parts[0] != '#':
raise ValueError("Keyword '%s' is not a valid keyword to filter over, "
"it must begin with '#'." % kwarg)
# Don't allow __ multiple times.
if len(parts) > 2:
raise ValueError("Keyword '%s' must not contain multiple "
"lookup seperators." % kwarg)
# The actual lookup is the second part.
try:
lookup = parts[1]
except IndexError:
lookup = 'exact'
# Math operators that all have the same logic.
LOOKUP_TO_OPERATOR = {
'exact': eq,
'iexact': eq,
'gt': gt,
'gte': ge,
'lt': lt,
'lte': le,
}
try:
operator = LOOKUP_TO_OPERATOR[lookup]
# These expect integers, this matches the logic in
# IntegerField.get_prep_value(). (Essentially treat the '#'
# field as an IntegerField.)
if value is not None:
value = int(value)
self._queryset_idxs = filter(lambda i: operator(i, value) != negate, self._queryset_idxs)
continue
except KeyError:
# It wasn't one of the above operators, keep trying.
pass
# Some of these seem to get handled as bytes.
if lookup in ('contains', 'icontains'):
value = six.text_type(value)
self._queryset_idxs = filter(lambda i: (value in six.text_type(i)) != negate, self._queryset_idxs)
|
python
|
{
"resource": ""
}
|
q3193
|
RollingCache.decode
|
train
|
def decode(self, name, as_map_key=False):
"""Always returns the name"""
if is_cache_key(name) and
|
python
|
{
"resource": ""
}
|
q3194
|
RollingCache.encode
|
train
|
def encode(self, name, as_map_key=False):
"""Returns the name the first time and the key after that"""
if name in self.key_to_value:
|
python
|
{
"resource": ""
}
|
q3195
|
read_chunk
|
train
|
def read_chunk(stream):
"""Ignore whitespace outside of strings. If we hit a string, read it in
its entirety.
"""
chunk = stream.read(1)
while chunk in SKIP:
chunk = stream.read(1)
if chunk == "\"":
chunk += stream.read(1)
while not
|
python
|
{
"resource": ""
}
|
q3196
|
yield_json
|
train
|
def yield_json(stream):
"""Uses array and object delimiter counts for balancing.
"""
buff = u""
arr_count = 0
obj_count = 0
while True:
buff += read_chunk(stream)
# If we finish parsing all objs or arrays, yield a finished JSON
# entity.
if buff.endswith('{'):
obj_count += 1
if buff.endswith('['):
arr_count += 1
if buff.endswith(']'):
arr_count -= 1
|
python
|
{
"resource": ""
}
|
q3197
|
Marshaler.are_stringable_keys
|
train
|
def are_stringable_keys(self, m):
"""Test whether the keys within a map are stringable - a simple map,
that can be optimized and whose keys can be cached
"""
for x in m.keys():
|
python
|
{
"resource": ""
}
|
q3198
|
Marshaler.marshal_top
|
train
|
def marshal_top(self, obj, cache=None):
"""Given a complete object that needs to be marshaled into Transit
data, and optionally a cache, dispatch accordingly, and flush the data
directly into the IO stream.
"""
if not cache:
cache = RollingCache()
handler = self.handlers[obj]
tag = handler.tag(obj)
if tag:
if len(tag) == 1:
|
python
|
{
"resource": ""
}
|
q3199
|
Marshaler.dispatch_map
|
train
|
def dispatch_map(self, rep, as_map_key, cache):
"""Used to determine and dipatch the writing of a map - a simple
map with strings as keys, or a complex map, whose keys are also
compound types.
"""
if
|
python
|
{
"resource": ""
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.