_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q1700
DataGenerator.from_config
train
def from_config(self, k, v): """ Hook method that allows converting values from the dictionary. :param k: the key in the dictionary :type k: str :param v: the value :type v: object :return: the potentially parsed value :rtype: object """ if k == "setup": return from_commandline(v, classname=to_commandline(datagen.DataGenerator())) return super(DataGenerator, self).from_config(k, v)
python
{ "resource": "" }
q1701
SimpleExperiment.configure_splitevaluator
train
def configure_splitevaluator(self): """ Configures and returns the SplitEvaluator and Classifier instance as tuple. :return: evaluator and classifier :rtype: tuple """ if self.classification: speval = javabridge.make_instance("weka/experiment/ClassifierSplitEvaluator", "()V") else: speval = javabridge.make_instance("weka/experiment/RegressionSplitEvaluator", "()V") classifier = javabridge.call(speval, "getClassifier", "()Lweka/classifiers/Classifier;") return speval, classifier
python
{ "resource": "" }
q1702
SimpleExperiment.setup
train
def setup(self): """ Initializes the experiment. """ # basic options javabridge.call( self.jobject, "setPropertyArray", "(Ljava/lang/Object;)V", javabridge.get_env().make_object_array(0, javabridge.get_env().find_class("weka/classifiers/Classifier"))) javabridge.call( self.jobject, "setUsePropertyIterator", "(Z)V", True) javabridge.call( self.jobject, "setRunLower", "(I)V", 1) javabridge.call( self.jobject, "setRunUpper", "(I)V", self.runs) # setup result producer rproducer, prop_path = self.configure_resultproducer() javabridge.call( self.jobject, "setResultProducer", "(Lweka/experiment/ResultProducer;)V", rproducer) javabridge.call( self.jobject, "setPropertyPath", "([Lweka/experiment/PropertyNode;)V", prop_path) # classifiers classifiers = javabridge.get_env().make_object_array( len(self.classifiers), javabridge.get_env().find_class("weka/classifiers/Classifier")) for i, classifier in enumerate(self.classifiers): if type(classifier) is Classifier: javabridge.get_env().set_object_array_element( classifiers, i, classifier.jobject) else: javabridge.get_env().set_object_array_element( classifiers, i, from_commandline(classifier).jobject) javabridge.call( self.jobject, "setPropertyArray", "(Ljava/lang/Object;)V", classifiers) # datasets datasets = javabridge.make_instance("javax/swing/DefaultListModel", "()V") for dataset in self.datasets: f = javabridge.make_instance("java/io/File", "(Ljava/lang/String;)V", dataset) javabridge.call(datasets, "addElement", "(Ljava/lang/Object;)V", f) javabridge.call( self.jobject, "setDatasets", "(Ljavax/swing/DefaultListModel;)V", datasets) # output file if str(self.result).lower().endswith(".arff"): rlistener = javabridge.make_instance("weka/experiment/InstancesResultListener", "()V") elif str(self.result).lower().endswith(".csv"): rlistener = javabridge.make_instance("weka/experiment/CSVResultListener", "()V") else: raise Exception("Unhandled output format for results: " + self.result) rfile = javabridge.make_instance("java/io/File", "(Ljava/lang/String;)V", self.result) javabridge.call( rlistener, "setOutputFile", "(Ljava/io/File;)V", rfile) javabridge.call( self.jobject, "setResultListener", "(Lweka/experiment/ResultListener;)V", rlistener)
python
{ "resource": "" }
q1703
SimpleExperiment.run
train
def run(self): """ Executes the experiment. """ logger.info("Initializing...") javabridge.call(self.jobject, "initialize", "()V") logger.info("Running...") javabridge.call(self.jobject, "runExperiment", "()V") logger.info("Finished...") javabridge.call(self.jobject, "postProcess", "()V")
python
{ "resource": "" }
q1704
SimpleExperiment.load
train
def load(cls, filename): """ Loads the experiment from disk. :param filename: the filename of the experiment to load :type filename: str :return: the experiment :rtype: Experiment """ jobject = javabridge.static_call( "weka/experiment/Experiment", "read", "(Ljava/lang/String;)Lweka/experiment/Experiment;", filename) return Experiment(jobject=jobject)
python
{ "resource": "" }
q1705
SimpleRandomSplitExperiment.configure_resultproducer
train
def configure_resultproducer(self): """ Configures and returns the ResultProducer and PropertyPath as tuple. :return: producer and property path :rtype: tuple """ rproducer = javabridge.make_instance("weka/experiment/RandomSplitResultProducer", "()V") javabridge.call(rproducer, "setRandomizeData", "(Z)V", not self.preserve_order) javabridge.call(rproducer, "setTrainPercent", "(D)V", self.percentage) speval, classifier = self.configure_splitevaluator() javabridge.call(rproducer, "setSplitEvaluator", "(Lweka/experiment/SplitEvaluator;)V", speval) prop_path = javabridge.get_env().make_object_array( 2, javabridge.get_env().find_class("weka/experiment/PropertyNode")) cls = javabridge.get_env().find_class("weka/experiment/RandomSplitResultProducer") desc = javabridge.make_instance( "java/beans/PropertyDescriptor", "(Ljava/lang/String;Ljava/lang/Class;)V", "splitEvaluator", cls) node = javabridge.make_instance( "weka/experiment/PropertyNode", "(Ljava/lang/Object;Ljava/beans/PropertyDescriptor;Ljava/lang/Class;)V", speval, desc, cls) javabridge.get_env().set_object_array_element(prop_path, 0, node) cls = javabridge.get_env().get_object_class(speval) desc = javabridge.make_instance( "java/beans/PropertyDescriptor", "(Ljava/lang/String;Ljava/lang/Class;)V", "classifier", cls) node = javabridge.make_instance( "weka/experiment/PropertyNode", "(Ljava/lang/Object;Ljava/beans/PropertyDescriptor;Ljava/lang/Class;)V", javabridge.call(speval, "getClass", "()Ljava/lang/Class;"), desc, cls) javabridge.get_env().set_object_array_element(prop_path, 1, node) return rproducer, prop_path
python
{ "resource": "" }
q1706
ResultMatrix.set_row_name
train
def set_row_name(self, index, name): """ Sets the row name. :param index: the 0-based row index :type index: int :param name: the name of the row :type name: str """ javabridge.call(self.jobject, "setRowName", "(ILjava/lang/String;)V", index, name)
python
{ "resource": "" }
q1707
ResultMatrix.set_col_name
train
def set_col_name(self, index, name): """ Sets the column name. :param index: the 0-based row index :type index: int :param name: the name of the column :type name: str """ javabridge.call(self.jobject, "setColName", "(ILjava/lang/String;)V", index, name)
python
{ "resource": "" }
q1708
RCRequest.validate
train
def validate(self): """Checks that at least required params exist""" required = ['token', 'content'] valid_data = { 'exp_record': (['type', 'format'], 'record', 'Exporting record but content is not record'), 'imp_record': (['type', 'overwriteBehavior', 'data', 'format'], 'record', 'Importing record but content is not record'), 'metadata': (['format'], 'metadata', 'Requesting metadata but content != metadata'), 'exp_file': (['action', 'record', 'field'], 'file', 'Exporting file but content is not file'), 'imp_file': (['action', 'record', 'field'], 'file', 'Importing file but content is not file'), 'del_file': (['action', 'record', 'field'], 'file', 'Deleteing file but content is not file'), 'exp_event': (['format'], 'event', 'Exporting events but content is not event'), 'exp_arm': (['format'], 'arm', 'Exporting arms but content is not arm'), 'exp_fem': (['format'], 'formEventMapping', 'Exporting form-event mappings but content != formEventMapping'), 'exp_user': (['format'], 'user', 'Exporting users but content is not user'), 'exp_survey_participant_list': (['instrument'], 'participantList', 'Exporting Survey Participant List but content != participantList'), 'version': (['format'], 'version', 'Requesting version but content != version') } extra, req_content, err_msg = valid_data[self.type] required.extend(extra) required = set(required) pl_keys = set(self.payload.keys()) # if req is not subset of payload keys, this call is wrong if not set(required) <= pl_keys: # what is not in pl_keys? not_pre = required - pl_keys raise RCAPIError("Required keys: %s" % ', '.join(not_pre)) # Check content, raise with err_msg if not good try: if self.payload['content'] != req_content: raise RCAPIError(err_msg) except KeyError: raise RCAPIError('content not in payload')
python
{ "resource": "" }
q1709
RCRequest.execute
train
def execute(self, **kwargs): """Execute the API request and return data Parameters ---------- kwargs : passed to requests.post() Returns ------- response : list, str data object from JSON decoding process if format=='json', else return raw string (ie format=='csv'|'xml') """ r = post(self.url, data=self.payload, **kwargs) # Raise if we need to self.raise_for_status(r) content = self.get_content(r) return content, r.headers
python
{ "resource": "" }
q1710
RCRequest.get_content
train
def get_content(self, r): """Abstraction for grabbing content from a returned response""" if self.type == 'exp_file': # don't use the decoded r.text return r.content elif self.type == 'version': return r.content else: if self.fmt == 'json': content = {} # Decode try: # Watch out for bad/empty json content = json.loads(r.text, strict=False) except ValueError as e: if not self.expect_empty_json(): # reraise for requests that shouldn't send empty json raise ValueError(e) finally: return content else: return r.text
python
{ "resource": "" }
q1711
RCRequest.raise_for_status
train
def raise_for_status(self, r): """Given a response, raise for bad status for certain actions Some redcap api methods don't return error messages that the user could test for or otherwise use. Therefore, we need to do the testing ourself Raising for everything wouldn't let the user see the (hopefully helpful) error message""" if self.type in ('metadata', 'exp_file', 'imp_file', 'del_file'): r.raise_for_status() # see http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html # specifically 10.5 if 500 <= r.status_code < 600: raise RedcapError(r.content)
python
{ "resource": "" }
q1712
Project.__basepl
train
def __basepl(self, content, rec_type='flat', format='json'): """Return a dictionary which can be used as is or added to for payloads""" d = {'token': self.token, 'content': content, 'format': format} if content not in ['metadata', 'file']: d['type'] = rec_type return d
python
{ "resource": "" }
q1713
Project.filter_metadata
train
def filter_metadata(self, key): """ Return a list of values for the metadata key from each field of the project's metadata. Parameters ---------- key: str A known key in the metadata structure Returns ------- filtered : attribute list from each field """ filtered = [field[key] for field in self.metadata if key in field] if len(filtered) == 0: raise KeyError("Key not found in metadata") return filtered
python
{ "resource": "" }
q1714
Project.export_fem
train
def export_fem(self, arms=None, format='json', df_kwargs=None): """ Export the project's form to event mapping Parameters ---------- arms : list Limit exported form event mappings to these arm numbers format : (``'json'``), ``'csv'``, ``'xml'`` Return the form event mappings in native objects, csv or xml, ``'df''`` will return a ``pandas.DataFrame`` df_kwargs : dict Passed to pandas.read_csv to control construction of returned DataFrame Returns ------- fem : list, str, ``pandas.DataFrame`` form-event mapping for the project """ ret_format = format if format == 'df': from pandas import read_csv ret_format = 'csv' pl = self.__basepl('formEventMapping', format=ret_format) to_add = [arms] str_add = ['arms'] for key, data in zip(str_add, to_add): if data: pl[key] = ','.join(data) response, _ = self._call_api(pl, 'exp_fem') if format in ('json', 'csv', 'xml'): return response elif format == 'df': if not df_kwargs: return read_csv(StringIO(response)) else: return read_csv(StringIO(response), **df_kwargs)
python
{ "resource": "" }
q1715
Project.export_metadata
train
def export_metadata(self, fields=None, forms=None, format='json', df_kwargs=None): """ Export the project's metadata Parameters ---------- fields : list Limit exported metadata to these fields forms : list Limit exported metadata to these forms format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Return the metadata in native objects, csv or xml. ``'df'`` will return a ``pandas.DataFrame``. df_kwargs : dict Passed to ``pandas.read_csv`` to control construction of returned DataFrame. by default ``{'index_col': 'field_name'}`` Returns ------- metadata : list, str, ``pandas.DataFrame`` metadata sttructure for the project. """ ret_format = format if format == 'df': from pandas import read_csv ret_format = 'csv' pl = self.__basepl('metadata', format=ret_format) to_add = [fields, forms] str_add = ['fields', 'forms'] for key, data in zip(str_add, to_add): if data: pl[key] = ','.join(data) response, _ = self._call_api(pl, 'metadata') if format in ('json', 'csv', 'xml'): return response elif format == 'df': if not df_kwargs: df_kwargs = {'index_col': 'field_name'} return read_csv(StringIO(response), **df_kwargs)
python
{ "resource": "" }
q1716
Project.export_records
train
def export_records(self, records=None, fields=None, forms=None, events=None, raw_or_label='raw', event_name='label', format='json', export_survey_fields=False, export_data_access_groups=False, df_kwargs=None, export_checkbox_labels=False, filter_logic=None): """ Export data from the REDCap project. Parameters ---------- records : list array of record names specifying specific records to export. by default, all records are exported fields : list array of field names specifying specific fields to pull by default, all fields are exported forms : list array of form names to export. If in the web UI, the form name has a space in it, replace the space with an underscore by default, all forms are exported events : list an array of unique event names from which to export records :note: this only applies to longitudinal projects raw_or_label : (``'raw'``), ``'label'``, ``'both'`` export the raw coded values or labels for the options of multiple choice fields, or both event_name : (``'label'``), ``'unique'`` export the unique event name or the event label format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Format of returned data. ``'json'`` returns json-decoded objects while ``'csv'`` and ``'xml'`` return other formats. ``'df'`` will attempt to return a ``pandas.DataFrame``. export_survey_fields : (``False``), True specifies whether or not to export the survey identifier field (e.g., "redcap_survey_identifier") or survey timestamp fields (e.g., form_name+"_timestamp") when surveys are utilized in the project. export_data_access_groups : (``False``), ``True`` specifies whether or not to export the ``"redcap_data_access_group"`` field when data access groups are utilized in the project. :note: This flag is only viable if the user whose token is being used to make the API request is *not* in a data access group. If the user is in a group, then this flag will revert to its default value. df_kwargs : dict Passed to ``pandas.read_csv`` to control construction of returned DataFrame. by default, ``{'index_col': self.def_field}`` export_checkbox_labels : (``False``), ``True`` specify whether to export checkbox values as their label on export. filter_logic : string specify the filterLogic to be sent to the API. Returns ------- data : list, str, ``pandas.DataFrame`` exported data """ ret_format = format if format == 'df': from pandas import read_csv ret_format = 'csv' pl = self.__basepl('record', format=ret_format) fields = self.backfill_fields(fields, forms) keys_to_add = (records, fields, forms, events, raw_or_label, event_name, export_survey_fields, export_data_access_groups, export_checkbox_labels) str_keys = ('records', 'fields', 'forms', 'events', 'rawOrLabel', 'eventName', 'exportSurveyFields', 'exportDataAccessGroups', 'exportCheckboxLabel') for key, data in zip(str_keys, keys_to_add): if data: # Make a url-ok string if key in ('fields', 'records', 'forms', 'events'): pl[key] = ','.join(data) else: pl[key] = data if filter_logic: pl["filterLogic"] = filter_logic response, _ = self._call_api(pl, 'exp_record') if format in ('json', 'csv', 'xml'): return response elif format == 'df': if not df_kwargs: if self.is_longitudinal(): df_kwargs = {'index_col': [self.def_field, 'redcap_event_name']} else: df_kwargs = {'index_col': self.def_field} buf = StringIO(response) df = read_csv(buf, **df_kwargs) buf.close() return df
python
{ "resource": "" }
q1717
Project.__meta_metadata
train
def __meta_metadata(self, field, key): """Return the value for key for the field in the metadata""" mf = '' try: mf = str([f[key] for f in self.metadata if f['field_name'] == field][0]) except IndexError: print("%s not in metadata field:%s" % (key, field)) return mf else: return mf
python
{ "resource": "" }
q1718
Project.filter
train
def filter(self, query, output_fields=None): """Query the database and return subject information for those who match the query logic Parameters ---------- query: Query or QueryGroup Query(Group) object to process output_fields: list The fields desired for matching subjects Returns ------- A list of dictionaries whose keys contains at least the default field and at most each key passed in with output_fields, each dictionary representing a surviving row in the database. """ query_keys = query.fields() if not set(query_keys).issubset(set(self.field_names)): raise ValueError("One or more query keys not in project keys") query_keys.append(self.def_field) data = self.export_records(fields=query_keys) matches = query.filter(data, self.def_field) if matches: # if output_fields is empty, we'll download all fields, which is # not desired, so we limit download to def_field if not output_fields: output_fields = [self.def_field] # But if caller passed a string and not list, we need to listify if isinstance(output_fields, basestring): output_fields = [output_fields] return self.export_records(records=matches, fields=output_fields) else: # If there are no matches, then sending an empty list to # export_records will actually return all rows, which is not # what we want return []
python
{ "resource": "" }
q1719
Project.names_labels
train
def names_labels(self, do_print=False): """Simple helper function to get all field names and labels """ if do_print: for name, label in zip(self.field_names, self.field_labels): print('%s --> %s' % (str(name), str(label))) return self.field_names, self.field_labels
python
{ "resource": "" }
q1720
Project.import_records
train
def import_records(self, to_import, overwrite='normal', format='json', return_format='json', return_content='count', date_format='YMD', force_auto_number=False): """ Import data into the RedCap Project Parameters ---------- to_import : array of dicts, csv/xml string, ``pandas.DataFrame`` :note: If you pass a csv or xml string, you should use the ``format`` parameter appropriately. :note: Keys of the dictionaries should be subset of project's, fields, but this isn't a requirement. If you provide keys that aren't defined fields, the returned response will contain an ``'error'`` key. overwrite : ('normal'), 'overwrite' ``'overwrite'`` will erase values previously stored in the database if not specified in the to_import dictionaries. format : ('json'), 'xml', 'csv' Format of incoming data. By default, to_import will be json-encoded return_format : ('json'), 'csv', 'xml' Response format. By default, response will be json-decoded. return_content : ('count'), 'ids', 'nothing' By default, the response contains a 'count' key with the number of records just imported. By specifying 'ids', a list of ids imported will be returned. 'nothing' will only return the HTTP status code and no message. date_format : ('YMD'), 'DMY', 'MDY' Describes the formatting of dates. By default, date strings are formatted as 'YYYY-MM-DD' corresponding to 'YMD'. If date strings are formatted as 'MM/DD/YYYY' set this parameter as 'MDY' and if formatted as 'DD/MM/YYYY' set as 'DMY'. No other formattings are allowed. force_auto_number : ('False') Enables automatic assignment of record IDs of imported records by REDCap. If this is set to true, and auto-numbering for records is enabled for the project, auto-numbering of imported records will be enabled. Returns ------- response : dict, str response from REDCap API, json-decoded if ``return_format`` == ``'json'`` """ pl = self.__basepl('record') if hasattr(to_import, 'to_csv'): # We'll assume it's a df buf = StringIO() if self.is_longitudinal(): csv_kwargs = {'index_label': [self.def_field, 'redcap_event_name']} else: csv_kwargs = {'index_label': self.def_field} to_import.to_csv(buf, **csv_kwargs) pl['data'] = buf.getvalue() buf.close() format = 'csv' elif format == 'json': pl['data'] = json.dumps(to_import, separators=(',', ':')) else: # don't do anything to csv/xml pl['data'] = to_import pl['overwriteBehavior'] = overwrite pl['format'] = format pl['returnFormat'] = return_format pl['returnContent'] = return_content pl['dateFormat'] = date_format pl['forceAutoNumber'] = force_auto_number response = self._call_api(pl, 'imp_record')[0] if 'error' in response: raise RedcapError(str(response)) return response
python
{ "resource": "" }
q1721
Project.export_file
train
def export_file(self, record, field, event=None, return_format='json'): """ Export the contents of a file stored for a particular record Notes ----- Unlike other export methods, this works on a single record. Parameters ---------- record : str record ID field : str field name containing the file to be exported. event: str for longitudinal projects, specify the unique event here return_format: ('json'), 'csv', 'xml' format of error message Returns ------- content : bytes content of the file content_map : dict content-type dictionary """ self._check_file_field(field) # load up payload pl = self.__basepl(content='file', format=return_format) # there's no format field in this call del pl['format'] pl['returnFormat'] = return_format pl['action'] = 'export' pl['field'] = field pl['record'] = record if event: pl['event'] = event content, headers = self._call_api(pl, 'exp_file') #REDCap adds some useful things in content-type if 'content-type' in headers: splat = [kv.strip() for kv in headers['content-type'].split(';')] kv = [(kv.split('=')[0], kv.split('=')[1].replace('"', '')) for kv in splat if '=' in kv] content_map = dict(kv) else: content_map = {} return content, content_map
python
{ "resource": "" }
q1722
Project.import_file
train
def import_file(self, record, field, fname, fobj, event=None, return_format='json'): """ Import the contents of a file represented by fobj to a particular records field Parameters ---------- record : str record ID field : str field name where the file will go fname : str file name visible in REDCap UI fobj : file object file object as returned by `open` event : str for longitudinal projects, specify the unique event here return_format : ('json'), 'csv', 'xml' format of error message Returns ------- response : response from server as specified by ``return_format`` """ self._check_file_field(field) # load up payload pl = self.__basepl(content='file', format=return_format) # no format in this call del pl['format'] pl['returnFormat'] = return_format pl['action'] = 'import' pl['field'] = field pl['record'] = record if event: pl['event'] = event file_kwargs = {'files': {'file': (fname, fobj)}} return self._call_api(pl, 'imp_file', **file_kwargs)[0]
python
{ "resource": "" }
q1723
Project.delete_file
train
def delete_file(self, record, field, return_format='json', event=None): """ Delete a file from REDCap Notes ----- There is no undo button to this. Parameters ---------- record : str record ID field : str field name return_format : (``'json'``), ``'csv'``, ``'xml'`` return format for error message event : str If longitudinal project, event to delete file from Returns ------- response : dict, str response from REDCap after deleting file """ self._check_file_field(field) # Load up payload pl = self.__basepl(content='file', format=return_format) del pl['format'] pl['returnFormat'] = return_format pl['action'] = 'delete' pl['record'] = record pl['field'] = field if event: pl['event'] = event return self._call_api(pl, 'del_file')[0]
python
{ "resource": "" }
q1724
Project._check_file_field
train
def _check_file_field(self, field): """Check that field exists and is a file field""" is_field = field in self.field_names is_file = self.__meta_metadata(field, 'field_type') == 'file' if not (is_field and is_file): msg = "'%s' is not a field or not a 'file' field" % field raise ValueError(msg) else: return True
python
{ "resource": "" }
q1725
Project.export_users
train
def export_users(self, format='json'): """ Export the users of the Project Notes ----- Each user will have the following keys: * ``'firstname'`` : User's first name * ``'lastname'`` : User's last name * ``'email'`` : Email address * ``'username'`` : User's username * ``'expiration'`` : Project access expiration date * ``'data_access_group'`` : data access group ID * ``'data_export'`` : (0=no access, 2=De-Identified, 1=Full Data Set) * ``'forms'`` : a list of dicts with a single key as the form name and value is an integer describing that user's form rights, where: 0=no access, 1=view records/responses and edit records (survey responses are read-only), 2=read only, and 3=edit survey responses, Parameters ---------- format : (``'json'``), ``'csv'``, ``'xml'`` response return format Returns ------- users: list, str list of users dicts when ``'format'='json'``, otherwise a string """ pl = self.__basepl(content='user', format=format) return self._call_api(pl, 'exp_user')[0]
python
{ "resource": "" }
q1726
Project.export_survey_participant_list
train
def export_survey_participant_list(self, instrument, event=None, format='json'): """ Export the Survey Participant List Notes ----- The passed instrument must be set up as a survey instrument. Parameters ---------- instrument: str Name of instrument as seen in second column of Data Dictionary. event: str Unique event name, only used in longitudinal projects format: (json, xml, csv), json by default Format of returned data """ pl = self.__basepl(content='participantList', format=format) pl['instrument'] = instrument if event: pl['event'] = event return self._call_api(pl, 'exp_survey_participant_list')
python
{ "resource": "" }
q1727
create_new_username
train
def create_new_username(ip, devicetype=None, timeout=_DEFAULT_TIMEOUT): """Interactive helper function to generate a new anonymous username. Args: ip: ip address of the bridge devicetype (optional): devicetype to register with the bridge. If unprovided, generates a device type based on the local hostname. timeout (optional, default=5): request timeout in seconds Raises: QhueException if something went wrong with username generation (for example, if the bridge button wasn't pressed). """ res = Resource(_api_url(ip), timeout) prompt = "Press the Bridge button, then press Return: " # Deal with one of the sillier python3 changes if sys.version_info.major == 2: _ = raw_input(prompt) else: _ = input(prompt) if devicetype is None: devicetype = "qhue#{}".format(getfqdn()) # raises QhueException if something went wrong response = res(devicetype=devicetype, http_method="post") return response[0]["success"]["username"]
python
{ "resource": "" }
q1728
GordonRouter.run
train
async def run(self): """Entrypoint to route messages between plugins.""" logging.info('Starting message router...') coroutines = set() while True: coro = self._poll_channel() coroutines.add(coro) _, coroutines = await asyncio.wait(coroutines, timeout=0.1)
python
{ "resource": "" }
q1729
shutdown
train
async def shutdown(sig, loop): """Gracefully cancel current tasks when app receives a shutdown signal.""" logging.info(f'Received exit signal {sig.name}...') tasks = [task for task in asyncio.Task.all_tasks() if task is not asyncio.tasks.Task.current_task()] for task in tasks: logging.debug(f'Cancelling task: {task}') task.cancel() results = await asyncio.gather(*tasks, return_exceptions=True) logging.debug(f'Done awaiting cancelled tasks, results: {results}') loop.stop() logging.info('Shutdown complete.')
python
{ "resource": "" }
q1730
_deep_merge_dict
train
def _deep_merge_dict(a, b): """Additively merge right side dict into left side dict.""" for k, v in b.items(): if k in a and isinstance(a[k], dict) and isinstance(v, dict): _deep_merge_dict(a[k], v) else: a[k] = v
python
{ "resource": "" }
q1731
load_plugins
train
def load_plugins(config, plugin_kwargs): """ Discover and instantiate plugins. Args: config (dict): loaded configuration for the Gordon service. plugin_kwargs (dict): keyword arguments to give to plugins during instantiation. Returns: Tuple of 3 lists: list of names of plugins, list of instantiated plugin objects, and any errors encountered while loading/instantiating plugins. A tuple of three empty lists is returned if there are no plugins found or activated in gordon config. """ installed_plugins = _gather_installed_plugins() metrics_plugin = _get_metrics_plugin(config, installed_plugins) if metrics_plugin: plugin_kwargs['metrics'] = metrics_plugin active_plugins = _get_activated_plugins(config, installed_plugins) if not active_plugins: return [], [], [], None plugin_namespaces = _get_plugin_config_keys(active_plugins) plugin_configs = _load_plugin_configs(plugin_namespaces, config) plugin_names, plugins, errors = _init_plugins( active_plugins, installed_plugins, plugin_configs, plugin_kwargs) return plugin_names, plugins, errors, plugin_kwargs
python
{ "resource": "" }
q1732
UDPClientProtocol.connection_made
train
def connection_made(self, transport): """Create connection, use to send message and close. Args: transport (asyncio.DatagramTransport): Transport used for sending. """ self.transport = transport self.transport.sendto(self.message) self.transport.close()
python
{ "resource": "" }
q1733
UDPClient.send
train
async def send(self, metric): """Transform metric to JSON bytestring and send to server. Args: metric (dict): Complete metric to send as JSON. """ message = json.dumps(metric).encode('utf-8') await self.loop.create_datagram_endpoint( lambda: UDPClientProtocol(message), remote_addr=(self.ip, self.port))
python
{ "resource": "" }
q1734
RecordChecker.check_record
train
async def check_record(self, record, timeout=60): """Measures the time for a DNS record to become available. Query a provided DNS server multiple times until the reply matches the information in the record or until timeout is reached. Args: record (dict): DNS record as a dict with record properties. timeout (int): Time threshold to query the DNS server. """ start_time = time.time() name, rr_data, r_type, ttl = self._extract_record_data(record) r_type_code = async_dns.types.get_code(r_type) resolvable_record = False retries = 0 sleep_time = 5 while not resolvable_record and \ timeout > retries * sleep_time: retries += 1 resolver_res = await self._resolver.query(name, r_type_code) possible_ans = resolver_res.an resolvable_record = \ await self._check_resolver_ans(possible_ans, name, rr_data, ttl, r_type_code) if not resolvable_record: await asyncio.sleep(sleep_time) if not resolvable_record: logging.info( f'Sending metric record-checker-failed: {record}.') else: final_time = float(time.time() - start_time) success_msg = (f'This record: {record} took {final_time} to ' 'register.') logging.info(success_msg)
python
{ "resource": "" }
q1735
RecordChecker._check_resolver_ans
train
async def _check_resolver_ans( self, dns_answer_list, record_name, record_data_list, record_ttl, record_type_code): """Check if resolver answer is equal to record data. Args: dns_answer_list (list): DNS answer list contains record objects. record_name (str): Record name. record_data_list (list): List of data values for the record. record_ttl (int): Record time-to-live info. record_type_code (int): Record type code. Returns: boolean indicating if DNS answer data is equal to record data. """ type_filtered_list = [ ans for ans in dns_answer_list if ans.qtype == record_type_code ] # check to see that type_filtered_lst has # the same number of records as record_data_list if len(type_filtered_list) != len(record_data_list): return False # check each record data is equal to the given data for rec in type_filtered_list: conditions = [rec.name == record_name, rec.ttl == record_ttl, rec.data in record_data_list] # if ans record data is not equal # to the given data return False if not all(conditions): return False return True
python
{ "resource": "" }
q1736
LoggerAdapter.log
train
def log(self, metric): """Format and output metric. Args: metric (dict): Complete metric. """ message = self.LOGFMT.format(**metric) if metric['context']: message += ' context: {context}'.format(context=metric['context']) self._logger.log(self.level, message)
python
{ "resource": "" }
q1737
Atbash.encipher
train
def encipher(self,string,keep_punct=False): """Encipher string using Atbash cipher. Example:: ciphertext = Atbash().encipher(plaintext) :param string: The string to encipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The enciphered string. """ if not keep_punct: string = self.remove_punctuation(string) ret = '' for c in string.upper(): if c.isalpha(): ret += self.key[self.a2i(c)] else: ret += c return ret
python
{ "resource": "" }
q1738
PolybiusSquare.encipher
train
def encipher(self,string): """Encipher string using Polybius square cipher according to initialised key. Example:: ciphertext = Polybius('APCZWRLFBDKOTYUQGENHXMIVS',5,'MKSBU').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. The ciphertext will be twice the length of the plaintext. """ string = self.remove_punctuation(string)#,filter='[^'+self.key+']') ret = '' for c in range(0,len(string)): ret += self.encipher_char(string[c]) return ret
python
{ "resource": "" }
q1739
PolybiusSquare.decipher
train
def decipher(self,string): """Decipher string using Polybius square cipher according to initialised key. Example:: plaintext = Polybius('APCZWRLFBDKOTYUQGENHXMIVS',5,'MKSBU').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. The plaintext will be half the length of the ciphertext. """ string = self.remove_punctuation(string)#,filter='[^'+self.chars+']') ret = '' for i in range(0,len(string),2): ret += self.decipher_pair(string[i:i+2]) return ret
python
{ "resource": "" }
q1740
ADFGVX.decipher
train
def decipher(self,string): """Decipher string using ADFGVX cipher according to initialised key information. Punctuation and whitespace are removed from the input. Example:: plaintext = ADFGVX('ph0qg64mea1yl2nofdxkr3cvs5zw7bj9uti8','HELLO').decipher(ciphertext) :param string: The string to decipher. :returns: The enciphered string. """ step2 = ColTrans(self.keyword).decipher(string) step1 = PolybiusSquare(self.key,size=6,chars='ADFGVX').decipher(step2) return step1
python
{ "resource": "" }
q1741
Enigma.encipher
train
def encipher(self,string): """Encipher string using Enigma M3 cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Enigma(settings=('A','A','A'),rotors=(1,2,3),reflector='B', ringstellung=('F','V','N'),steckers=[('P','O'),('M','L'), ('I','U'),('K','J'),('N','H'),('Y','T'),('G','B'),('V','F'), ('R','E'),('D','C')])).encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = self.remove_punctuation(string) ret = '' for c in string.upper(): if c.isalpha(): ret += self.encipher_char(c) else: ret += c return ret
python
{ "resource": "" }
q1742
ic
train
def ic(ctext): ''' takes ciphertext, calculates index of coincidence.''' counts = ngram_count(ctext,N=1) icval = 0 for k in counts.keys(): icval += counts[k]*(counts[k]-1) icval /= (len(ctext)*(len(ctext)-1)) return icval
python
{ "resource": "" }
q1743
restore_punctuation
train
def restore_punctuation(original,modified): ''' If punctuation was accidently removed, use this function to restore it. requires the orignial string with punctuation. ''' ret = '' count = 0 try: for c in original: if c.isalpha(): ret+=modified[count] count+=1 else: ret+=c except IndexError: print('restore_punctuation: strings must have same number of alphabetic chars') raise return ret
python
{ "resource": "" }
q1744
Playfair.encipher
train
def encipher(self, string): """Encipher string using Playfair cipher according to initialised key. Punctuation and whitespace are removed from the input. If the input plaintext is not an even number of characters, an 'X' will be appended. Example:: ciphertext = Playfair(key='zgptfoihmuwdrcnykeqaxvsbl').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = self.remove_punctuation(string) string = re.sub(r'[J]', 'I', string) if len(string) % 2 == 1: string += 'X' ret = '' for c in range(0, len(string), 2): ret += self.encipher_pair(string[c], string[c + 1]) return ret
python
{ "resource": "" }
q1745
Playfair.decipher
train
def decipher(self, string): """Decipher string using Playfair cipher according to initialised key. Punctuation and whitespace are removed from the input. The ciphertext should be an even number of characters. If the input ciphertext is not an even number of characters, an 'X' will be appended. Example:: plaintext = Playfair(key='zgptfoihmuwdrcnykeqaxvsbl').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. """ string = self.remove_punctuation(string) if len(string) % 2 == 1: string += 'X' ret = '' for c in range(0, len(string), 2): ret += self.decipher_pair(string[c], string[c + 1]) return ret
python
{ "resource": "" }
q1746
Delastelle.encipher
train
def encipher(self,string): """Encipher string using Delastelle cipher according to initialised key. Example:: ciphertext = Delastelle('APCZ WRLFBDKOTYUQGENHXMIVS').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. The ciphertext will be 3 times the length of the plaintext. """ string = self.remove_punctuation(string,filter='[^'+self.key+']') ctext = "" for c in string: ctext += ''.join([str(i) for i in L2IND[c]]) return ctext
python
{ "resource": "" }
q1747
Delastelle.decipher
train
def decipher(self,string): """Decipher string using Delastelle cipher according to initialised key. Example:: plaintext = Delastelle('APCZ WRLFBDKOTYUQGENHXMIVS').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. The plaintext will be 1/3 the length of the ciphertext. """ string = self.remove_punctuation(string,filter='[^'+self.chars+']') ret = '' for i in range(0,len(string),3): ind = tuple([int(string[i+k]) for k in [0,1,2]]) ret += IND2L[ind] return ret
python
{ "resource": "" }
q1748
Foursquare.encipher
train
def encipher(self,string): """Encipher string using Foursquare cipher according to initialised key. Punctuation and whitespace are removed from the input. If the input plaintext is not an even number of characters, an 'X' will be appended. Example:: ciphertext = Foursquare(key1='zgptfoihmuwdrcnykeqaxvsbl',key2='mfnbdcrhsaxyogvituewlqzkp').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = self.remove_punctuation(string) if len(string)%2 == 1: string = string + 'X' ret = '' for c in range(0,len(string.upper()),2): a,b = self.encipher_pair(string[c],string[c+1]) ret += a + b return ret
python
{ "resource": "" }
q1749
Foursquare.decipher
train
def decipher(self,string): """Decipher string using Foursquare cipher according to initialised key. Punctuation and whitespace are removed from the input. The ciphertext should be an even number of characters. If the input ciphertext is not an even number of characters, an 'X' will be appended. Example:: plaintext = Foursquare(key1='zgptfoihmuwdrcnykeqaxvsbl',key2='mfnbdcrhsaxyogvituewlqzkp').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. """ string = self.remove_punctuation(string) if len(string)%2 == 1: string = string + 'X' ret = '' for c in range(0,len(string.upper()),2): a,b = self.decipher_pair(string[c],string[c+1]) ret += a + b return ret
python
{ "resource": "" }
q1750
Rot13.encipher
train
def encipher(self,string,keep_punct=False): r"""Encipher string using rot13 cipher. Example:: ciphertext = Rot13().encipher(plaintext) :param string: The string to encipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The enciphered string. """ if not keep_punct: string = self.remove_punctuation(string) ret = '' for c in string: if c.isalpha(): ret += self.i2a( self.a2i(c) + 13 ) else: ret += c return ret
python
{ "resource": "" }
q1751
Porta.encipher
train
def encipher(self,string): """Encipher string using Porta cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Porta('HELLO').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = self.remove_punctuation(string) ret = '' for (i,c) in enumerate(string): i = i%len(self.key) if self.key[i] in 'AB': ret += 'NOPQRSTUVWXYZABCDEFGHIJKLM'[self.a2i(c)] elif self.key[i] in 'YZ': ret += 'ZNOPQRSTUVWXYBCDEFGHIJKLMA'[self.a2i(c)] elif self.key[i] in 'WX': ret += 'YZNOPQRSTUVWXCDEFGHIJKLMAB'[self.a2i(c)] elif self.key[i] in 'UV': ret += 'XYZNOPQRSTUVWDEFGHIJKLMABC'[self.a2i(c)] elif self.key[i] in 'ST': ret += 'WXYZNOPQRSTUVEFGHIJKLMABCD'[self.a2i(c)] elif self.key[i] in 'QR': ret += 'VWXYZNOPQRSTUFGHIJKLMABCDE'[self.a2i(c)] elif self.key[i] in 'OP': ret += 'UVWXYZNOPQRSTGHIJKLMABCDEF'[self.a2i(c)] elif self.key[i] in 'MN': ret += 'TUVWXYZNOPQRSHIJKLMABCDEFG'[self.a2i(c)] elif self.key[i] in 'KL': ret += 'STUVWXYZNOPQRIJKLMABCDEFGH'[self.a2i(c)] elif self.key[i] in 'IJ': ret += 'RSTUVWXYZNOPQJKLMABCDEFGHI'[self.a2i(c)] elif self.key[i] in 'GH': ret += 'QRSTUVWXYZNOPKLMABCDEFGHIJ'[self.a2i(c)] elif self.key[i] in 'EF': ret += 'PQRSTUVWXYZNOLMABCDEFGHIJK'[self.a2i(c)] elif self.key[i] in 'CD': ret += 'OPQRSTUVWXYZNMABCDEFGHIJKL'[self.a2i(c)] return ret
python
{ "resource": "" }
q1752
M209.encipher
train
def encipher(self,message): """Encipher string using M209 cipher according to initialised key. Punctuation and whitespace are removed from the input. Example (continuing from the example above):: ciphertext = m.encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ message = self.remove_punctuation(message) effective_ch = [0,0,0,0,0,0,0] # these are the wheels which are effective currently, 1 for yes, 0 no # -the zero at the beginning is extra, indicates lug was in pos 0 ret = '' # from now we no longer need the wheel starts, we can just increment the actual key for j in range(len(message)): shift = 0 effective_ch[0] = 0; effective_ch[1] = self.wheel_1_settings[self.actual_key[0]] effective_ch[2] = self.wheel_2_settings[self.actual_key[1]] effective_ch[3] = self.wheel_3_settings[self.actual_key[2]] effective_ch[4] = self.wheel_4_settings[self.actual_key[3]] effective_ch[5] = self.wheel_5_settings[self.actual_key[4]] effective_ch[6] = self.wheel_6_settings[self.actual_key[5]] for i in range(0,27): # implements the cylindrical drum with lugs on it if effective_ch[self.lug_positions[i][0]] or effective_ch[self.lug_positions[i][1]]: shift+=1 # shift has been found, now actually encrypt letter ret += self.subst(message[j],key='ZYXWVUTSRQPONMLKJIHGFEDCBA',offset=-shift); # encrypt letter self.advance_key(); # advance the key wheels return ret
python
{ "resource": "" }
q1753
FracMorse.encipher
train
def encipher(self,string): """Encipher string using FracMorse cipher according to initialised key. Example:: ciphertext = FracMorse('ROUNDTABLECFGHIJKMPQSVWXYZ').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = string.upper() #print string morsestr = self.enmorse(string) # make sure the morse string is a multiple of 3 in length if len(morsestr) % 3 == 1: morsestr = morsestr[0:-1] elif len(morsestr) % 3 == 2: morsestr = morsestr + 'x' #print morsestr mapping = dict(zip(self.table,self.key)) ctext = "" for i in range(0,len(morsestr),3): ctext += mapping[morsestr[i:i+3]] return ctext
python
{ "resource": "" }
q1754
FracMorse.decipher
train
def decipher(self,string): """Decipher string using FracMorse cipher according to initialised key. Example:: plaintext = FracMorse('ROUNDTABLECFGHIJKMPQSVWXYZ').decipher(ciphertext) :param string: The string to decipher. :returns: The enciphered string. """ string = string.upper() mapping = dict(zip(self.key,self.table)) ptext = "" for i in string: ptext += mapping[i] return self.demorse(ptext)
python
{ "resource": "" }
q1755
ColTrans.encipher
train
def encipher(self,string): """Encipher string using Columnar Transposition cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = ColTrans('GERMAN').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = self.remove_punctuation(string) ret = '' ind = self.sortind(self.keyword) for i in range(len(self.keyword)): ret += string[ind.index(i)::len(self.keyword)] return ret
python
{ "resource": "" }
q1756
ColTrans.decipher
train
def decipher(self,string): '''Decipher string using Columnar Transposition cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: plaintext = ColTrans('GERMAN').decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. ''' string = self.remove_punctuation(string) ret = ['_']*len(string) L,M = len(string),len(self.keyword) ind = self.unsortind(self.keyword) upto = 0 for i in range(len(self.keyword)): thiscollen = (int)(L/M) if ind[i]< L%M: thiscollen += 1 ret[ind[i]::M] = string[upto:upto+thiscollen] upto += thiscollen return ''.join(ret)
python
{ "resource": "" }
q1757
Railfence.encipher
train
def encipher(self,string,keep_punct=False): """Encipher string using Railfence cipher according to initialised key. Example:: ciphertext = Railfence(3).encipher(plaintext) :param string: The string to encipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The enciphered string. """ if not keep_punct: string = self.remove_punctuation(string) return ''.join(self.buildfence(string, self.key))
python
{ "resource": "" }
q1758
Railfence.decipher
train
def decipher(self,string,keep_punct=False): """Decipher string using Railfence cipher according to initialised key. Example:: plaintext = Railfence(3).decipher(ciphertext) :param string: The string to decipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The deciphered string. """ if not keep_punct: string = self.remove_punctuation(string) ind = range(len(string)) pos = self.buildfence(ind, self.key) return ''.join(string[pos.index(i)] for i in ind)
python
{ "resource": "" }
q1759
Affine.decipher
train
def decipher(self,string,keep_punct=False): """Decipher string using affine cipher according to initialised key. Example:: plaintext = Affine(a,b).decipher(ciphertext) :param string: The string to decipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The deciphered string. """ if not keep_punct: string = self.remove_punctuation(string) ret = '' for c in string: if c.isalpha(): ret += self.i2a(self.inva*(self.a2i(c) - self.b)) else: ret += c return ret
python
{ "resource": "" }
q1760
Autokey.encipher
train
def encipher(self,string): """Encipher string using Autokey cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Autokey('HELLO').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = self.remove_punctuation(string) ret = '' for (i,c) in enumerate(string): if i<len(self.key): offset = self.a2i(self.key[i]) else: offset = self.a2i(string[i-len(self.key)]) ret += self.i2a(self.a2i(c)+offset) return ret
python
{ "resource": "" }
q1761
Bifid.encipher
train
def encipher(self,string): """Encipher string using Bifid cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: ciphertext = Bifid('phqgmeaylnofdxkrcvszwbuti',5).encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. """ string = self.remove_punctuation(string) step1 = self.pb.encipher(string) evens = step1[::2] odds = step1[1::2] step2 = [] for i in range(0,len(string),self.period): step2 += evens[i:int(i+self.period)] step2 += odds[i:int(i+self.period)] return self.pb.decipher(''.join(step2))
python
{ "resource": "" }
q1762
Bifid.decipher
train
def decipher(self,string): """Decipher string using Bifid cipher according to initialised key. Punctuation and whitespace are removed from the input. Example:: plaintext = Bifid('phqgmeaylnofdxkrcvszwbuti',5).decipher(ciphertext) :param string: The string to decipher. :returns: The deciphered string. """ ret = '' string = string.upper() rowseq,colseq = [],[] # take blocks of length period, reform rowseq,colseq from them for i in range(0,len(string),self.period): tempseq = [] for j in range(0,self.period): if i+j >= len(string): continue tempseq.append(int(self.key.index(string[i + j]) / 5)) tempseq.append(int(self.key.index(string[i + j]) % 5)) rowseq.extend(tempseq[0:int(len(tempseq)/2)]) colseq.extend(tempseq[int(len(tempseq)/2):]) for i in range(len(rowseq)): ret += self.key[rowseq[i]*5 + colseq[i]] return ret
python
{ "resource": "" }
q1763
SimpleSubstitution.decipher
train
def decipher(self,string,keep_punct=False): """Decipher string using Simple Substitution cipher according to initialised key. Example:: plaintext = SimpleSubstitution('AJPCZWRLFBDKOTYUQGENHXMIVS').decipher(ciphertext) :param string: The string to decipher. :param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False. :returns: The deciphered string. """ # if we have not yet calculated the inverse key, calculate it now if self.invkey == '': for i in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ': self.invkey += self.i2a(self.key.index(i)) if not keep_punct: string = self.remove_punctuation(string) ret = '' for c in string.upper(): if c.isalpha(): ret += self.invkey[self.a2i(c)] else: ret += c return ret
python
{ "resource": "" }
q1764
kron
train
def kron(a, b): """Kronecker product of two TT-matrices or two TT-vectors""" if hasattr(a, '__kron__'): return a.__kron__(b) if a is None: return b else: raise ValueError( 'Kron is waiting for two TT-vectors or two TT-matrices')
python
{ "resource": "" }
q1765
dot
train
def dot(a, b): """Dot product of two TT-matrices or two TT-vectors""" if hasattr(a, '__dot__'): return a.__dot__(b) if a is None: return b else: raise ValueError( 'Dot is waiting for two TT-vectors or two TT- matrices')
python
{ "resource": "" }
q1766
mkron
train
def mkron(a, *args): """Kronecker product of all the arguments""" if not isinstance(a, list): a = [a] a = list(a) # copy list for i in args: if isinstance(i, list): a.extend(i) else: a.append(i) c = _vector.vector() c.d = 0 c.n = _np.array([], dtype=_np.int32) c.r = _np.array([], dtype=_np.int32) c.core = [] for t in a: thetensor = t.tt if isinstance(t, _matrix.matrix) else t c.d += thetensor.d c.n = _np.concatenate((c.n, thetensor.n)) c.r = _np.concatenate((c.r[:-1], thetensor.r)) c.core = _np.concatenate((c.core, thetensor.core)) c.get_ps() return c
python
{ "resource": "" }
q1767
concatenate
train
def concatenate(*args): """Concatenates given TT-vectors. For two tensors :math:`X(i_1,\\ldots,i_d),Y(i_1,\\ldots,i_d)` returns :math:`(d+1)`-dimensional tensor :math:`Z(i_0,i_1,\\ldots,i_d)`, :math:`i_0=\\overline{0,1}`, such that .. math:: Z(0, i_1, \\ldots, i_d) = X(i_1, \\ldots, i_d), Z(1, i_1, \\ldots, i_d) = Y(i_1, \\ldots, i_d). """ tmp = _np.array([[1] + [0] * (len(args) - 1)]) result = kron(_vector.vector(tmp), args[0]) for i in range(1, len(args)): result += kron(_vector.vector(_np.array([[0] * i + [1] + [0] * (len(args) - i - 1)])), args[i]) return result
python
{ "resource": "" }
q1768
sum
train
def sum(a, axis=-1): """Sum TT-vector over specified axes""" d = a.d crs = _vector.vector.to_list(a.tt if isinstance(a, _matrix.matrix) else a) if axis < 0: axis = range(a.d) elif isinstance(axis, int): axis = [axis] axis = list(axis)[::-1] for ax in axis: crs[ax] = _np.sum(crs[ax], axis=1) rleft, rright = crs[ax].shape if (rleft >= rright or rleft < rright and ax + 1 >= d) and ax > 0: crs[ax - 1] = _np.tensordot(crs[ax - 1], crs[ax], axes=(2, 0)) elif ax + 1 < d: crs[ax + 1] = _np.tensordot(crs[ax], crs[ax + 1], axes=(1, 0)) else: return _np.sum(crs[ax]) crs.pop(ax) d -= 1 return _vector.vector.from_list(crs)
python
{ "resource": "" }
q1769
ones
train
def ones(n, d=None): """ Creates a TT-vector of all ones""" c = _vector.vector() if d is None: c.n = _np.array(n, dtype=_np.int32) c.d = c.n.size else: c.n = _np.array([n] * d, dtype=_np.int32) c.d = d c.r = _np.ones((c.d + 1,), dtype=_np.int32) c.get_ps() c.core = _np.ones(c.ps[c.d] - 1) return c
python
{ "resource": "" }
q1770
rand
train
def rand(n, d=None, r=2, samplefunc=_np.random.randn): """Generate a random d-dimensional TT-vector with ranks ``r``. Distribution to sample cores is provided by the samplefunc. Default is to sample from normal distribution. """ n0 = _np.asanyarray(n, dtype=_np.int32) r0 = _np.asanyarray(r, dtype=_np.int32) if d is None: d = n.size if n0.size is 1: n0 = _np.ones((d,), dtype=_np.int32) * n0 if r0.size is 1: r0 = _np.ones((d + 1,), dtype=_np.int32) * r0 r0[0] = 1 r0[d] = 1 c = _vector.vector() c.d = d c.n = n0 c.r = r0 c.get_ps() c.core = samplefunc(c.ps[d] - 1) return c
python
{ "resource": "" }
q1771
eye
train
def eye(n, d=None): """ Creates an identity TT-matrix""" c = _matrix.matrix() c.tt = _vector.vector() if d is None: n0 = _np.asanyarray(n, dtype=_np.int32) c.tt.d = n0.size else: n0 = _np.asanyarray([n] * d, dtype=_np.int32) c.tt.d = d c.n = n0.copy() c.m = n0.copy() c.tt.n = (c.n) * (c.m) c.tt.r = _np.ones((c.tt.d + 1,), dtype=_np.int32) c.tt.get_ps() c.tt.alloc_core() for i in xrange(c.tt.d): c.tt.core[ c.tt.ps[i] - 1:c.tt.ps[ i + 1] - 1] = _np.eye( c.n[i]).flatten() return c
python
{ "resource": "" }
q1772
cores_orthogonalization_step
train
def cores_orthogonalization_step(coresX, dim, left_to_right=True): """TT-Tensor X orthogonalization step. The function can change the shape of some cores. """ cc = coresX[dim] r1, n, r2 = cc.shape if left_to_right: # Left to right orthogonalization step. assert(0 <= dim < len(coresX) - 1) cc, rr = np.linalg.qr(reshape(cc, (-1, r2))) r2 = cc.shape[1] coresX[dim] = reshape(cc, (r1, n, r2)) coresX[dim+1] = np.tensordot(rr, coresX[dim+1], 1) else: # Right to left orthogonalization step. assert(0 < dim < len(coresX)) cc, rr = np.linalg.qr(reshape(cc, (r1, -1)).T) r1 = cc.shape[1] coresX[dim] = reshape(cc.T, (r1, n, r2)) coresX[dim-1] = np.tensordot(coresX[dim-1], rr.T, 1) return coresX
python
{ "resource": "" }
q1773
unfolding
train
def unfolding(tens, i): """Compute the i-th unfolding of a tensor.""" return reshape(tens.full(), (np.prod(tens.n[0:(i+1)]), -1))
python
{ "resource": "" }
q1774
gcd
train
def gcd(a, b): '''Greatest common divider''' f = _np.frompyfunc(_fractions.gcd, 2, 1) return f(a, b)
python
{ "resource": "" }
q1775
ksl
train
def ksl(A, y0, tau, verb=1, scheme='symm', space=8, rmax=2000, use_normest=1): """ Dynamical tensor-train approximation based on projector splitting This function performs one step of dynamical tensor-train approximation for the equation .. math :: \\frac{dy}{dt} = A y, \\quad y(0) = y_0 and outputs approximation for :math:`y(\\tau)` :References: 1. Christian Lubich, Ivan Oseledets, and Bart Vandereycken. Time integration of tensor trains. arXiv preprint 1407.2042, 2014. http://arxiv.org/abs/1407.2042 2. Christian Lubich and Ivan V. Oseledets. A projector-splitting integrator for dynamical low-rank approximation. BIT, 54(1):171-188, 2014. http://dx.doi.org/10.1007/s10543-013-0454-0 :param A: Matrix in the TT-format :type A: matrix :param y0: Initial condition in the TT-format, :type y0: tensor :param tau: Timestep :type tau: float :param scheme: The integration scheme, possible values: 'symm' -- second order, 'first' -- first order :type scheme: str :param space: Maximal dimension of the Krylov space for the local EXPOKIT solver. :type space: int :param use_normest: Use matrix norm estimation instead of the true 1-norm in KSL procedure. 0 -use true norm, 1 - Higham norm estimator, 2 - fixed norm=1.0 (for testing purposes only) :type use_normest: int, default: 1 :rtype: tensor :Example: >>> import tt >>> import tt.ksl >>> import numpy as np >>> d = 8 >>> a = tt.qlaplace_dd([d, d, d]) >>> y0, ev = tt.eigb.eigb(a, tt.rand(2 , 24, 2), 1e-6, verb=0) Solving a block eigenvalue problem Looking for 1 eigenvalues with accuracy 1E-06 swp: 1 er = 1.1408 rmax:2 swp: 2 er = 190.01 rmax:2 swp: 3 er = 2.72582E-08 rmax:2 Total number of matvecs: 0 >>> y1 = tt.ksl.ksl(a, y0, 1e-2) Solving a real-valued dynamical problem with tau=1E-02 >>> print tt.dot(y1, y0) / (y1.norm() * y0.norm()) - 1 #Eigenvectors should not change 0.0 """ y0 = y0.round(1e-14) # This will fix ranks # to be no more than maximal reasonable. # Fortran part doesn't handle excessive ranks ry = y0.r.copy() if scheme is 'symm': tp = 2 else: tp = 1 usenrm = int(use_normest) # Check for dtype y = tt.vector() if np.iscomplex(A.tt.core).any() or np.iscomplex(y0.core).any(): dyn_tt.dyn_tt.ztt_ksl( y0.d, A.n, A.m, A.tt.r, A.tt.core + 0j, y0.core + 0j, ry, tau, rmax, 0, 10, verb, tp, space, usenrm ) y.core = dyn_tt.dyn_tt.zresult_core.copy() else: A.tt.core = np.real(A.tt.core) y0.core = np.real(y0.core) dyn_tt.dyn_tt.tt_ksl( y0.d, A.n, A.m, A.tt.r, A.tt.core, y0.core, ry, tau, rmax, 0, 10, verb, tp, space, usenrm ) y.core = dyn_tt.dyn_tt.dresult_core.copy() dyn_tt.dyn_tt.deallocate_result() y.d = y0.d y.n = A.n.copy() y.r = ry y.get_ps() return y
python
{ "resource": "" }
q1776
diag_ksl
train
def diag_ksl(A, y0, tau, verb=1, scheme='symm', space=8, rmax=2000): """ Dynamical tensor-train approximation based on projector splitting This function performs one step of dynamical tensor-train approximation with diagonal matrix, i.e. it solves the equation for the equation .. math :: \\frac{dy}{dt} = V y, \\quad y(0) = y_0 and outputs approximation for :math:`y(\\tau)` :References: 1. Christian Lubich, Ivan Oseledets, and Bart Vandereycken. Time integration of tensor trains. arXiv preprint 1407.2042, 2014. http://arxiv.org/abs/1407.2042 2. Christian Lubich and Ivan V. Oseledets. A projector-splitting integrator for dynamical low-rank approximation. BIT, 54(1):171-188, 2014. http://dx.doi.org/10.1007/s10543-013-0454-0 :param A: Matrix in the TT-format :type A: matrix :param y0: Initial condition in the TT-format, :type y0: tensor :param tau: Timestep :type tau: float :param scheme: The integration scheme, possible values: 'symm' -- second order, 'first' -- first order :type scheme: str :param space: Maximal dimension of the Krylov space for the local EXPOKIT solver. :type space: int :rtype: tensor :Example: >>> import tt >>> import tt.ksl >>> import numpy as np >>> d = 8 >>> a = tt.qlaplace_dd([d, d, d]) >>> y0, ev = tt.eigb.eigb(a, tt.rand(2 , 24, 2), 1e-6, verb=0) Solving a block eigenvalue problem Looking for 1 eigenvalues with accuracy 1E-06 swp: 1 er = 1.1408 rmax:2 swp: 2 er = 190.01 rmax:2 swp: 3 er = 2.72582E-08 rmax:2 Total number of matvecs: 0 >>> y1 = tt.ksl.ksl(a, y0, 1e-2) Solving a real-valued dynamical problem with tau=1E-02 >>> print tt.dot(y1, y0) / (y1.norm() * y0.norm()) - 1 #Eigenvectors should not change 0.0 """ y0 = y0.round(1e-14) # This will fix ranks # to be no more than maximal reasonable. # Fortran part doesn't handle excessive ranks ry = y0.r.copy() if scheme is 'symm': tp = 2 else: tp = 1 # Check for dtype y = tt.vector() if np.iscomplex(A.core).any() or np.iscomplex(y0.core).any(): dyn_tt.dyn_diag_tt.ztt_diag_ksl( y0.d, A.n, A.r, A.core + 0j, y0.core + 0j, ry, tau, rmax, 0, 10, verb, tp, space) y.core = dyn_tt.dyn_diag_tt.zresult_core.copy() else: A.core = np.real(A.core) y0.core = np.real(y0.core) dyn_tt.dyn_diag_tt.dtt_diag_ksl( y0.d, A.n, A.r, A.core, y0.core, ry, tau, rmax, 0, 10, verb, tp, space) y.core = dyn_tt.dyn_diag_tt.dresult_core.copy() dyn_tt.dyn_diag_tt.deallocate_result() y.d = y0.d y.n = A.n.copy() y.r = ry y.get_ps() return y
python
{ "resource": "" }
q1777
matrix.T
train
def T(self): """Transposed TT-matrix""" mycrs = matrix.to_list(self) trans_crs = [] for cr in mycrs: trans_crs.append(_np.transpose(cr, [0, 2, 1, 3])) return matrix.from_list(trans_crs)
python
{ "resource": "" }
q1778
matrix.real
train
def real(self): """Return real part of a matrix.""" return matrix(self.tt.real(), n=self.n, m=self.m)
python
{ "resource": "" }
q1779
matrix.imag
train
def imag(self): """Return imaginary part of a matrix.""" return matrix(self.tt.imag(), n=self.n, m=self.m)
python
{ "resource": "" }
q1780
matrix.c2r
train
def c2r(self): """Get real matrix from complex one suitable for solving complex linear system with real solver. For matrix :math:`M(i_1,j_1,\\ldots,i_d,j_d) = \\Re M + i\\Im M` returns (d+1)-dimensional matrix :math:`\\tilde{M}(i_1,j_1,\\ldots,i_d,j_d,i_{d+1},j_{d+1})` of form :math:`\\begin{bmatrix}\\Re M & -\\Im M \\\\ \\Im M & \\Re M \\end{bmatrix}`. This function is useful for solving complex linear system :math:`\\mathcal{A}X = B` with real solver by transforming it into .. math:: \\begin{bmatrix}\\Re\\mathcal{A} & -\\Im\\mathcal{A} \\\\ \\Im\\mathcal{A} & \\Re\\mathcal{A} \\end{bmatrix} \\begin{bmatrix}\\Re X \\\\ \\Im X\\end{bmatrix} = \\begin{bmatrix}\\Re B \\\\ \\Im B\\end{bmatrix}. """ return matrix(a=self.tt.__complex_op('M'), n=_np.concatenate( (self.n, [2])), m=_np.concatenate((self.m, [2])))
python
{ "resource": "" }
q1781
matrix.round
train
def round(self, eps=1e-14, rmax=100000): """ Computes an approximation to a TT-matrix in with accuracy EPS """ c = matrix() c.tt = self.tt.round(eps, rmax) c.n = self.n.copy() c.m = self.m.copy() return c
python
{ "resource": "" }
q1782
matrix.copy
train
def copy(self): """ Creates a copy of the TT-matrix """ c = matrix() c.tt = self.tt.copy() c.n = self.n.copy() c.m = self.m.copy() return c
python
{ "resource": "" }
q1783
matrix.full
train
def full(self): """ Transforms a TT-matrix into a full matrix""" N = self.n.prod() M = self.m.prod() a = self.tt.full() d = self.tt.d sz = _np.vstack((self.n, self.m)).flatten('F') a = a.reshape(sz, order='F') # Design a permutation prm = _np.arange(2 * d) prm = prm.reshape((d, 2), order='F') prm = prm.transpose() prm = prm.flatten('F') # Get the inverse permutation iprm = [0] * (2 * d) for i in xrange(2 * d): iprm[prm[i]] = i a = a.transpose(iprm).reshape(N, M, order='F') a = a.reshape(N, M) return a
python
{ "resource": "" }
q1784
vector.from_list
train
def from_list(a, order='F'): """Generate TT-vectorr object from given TT cores. :param a: List of TT cores. :type a: list :returns: vector -- TT-vector constructed from the given cores. """ d = len(a) # Number of cores res = vector() n = _np.zeros(d, dtype=_np.int32) r = _np.zeros(d+1, dtype=_np.int32) cr = _np.array([]) for i in xrange(d): cr = _np.concatenate((cr, a[i].flatten(order))) r[i] = a[i].shape[0] r[i+1] = a[i].shape[2] n[i] = a[i].shape[1] res.d = d res.n = n res.r = r res.core = cr res.get_ps() return res
python
{ "resource": "" }
q1785
vector.erank
train
def erank(self): """ Effective rank of the TT-vector """ r = self.r n = self.n d = self.d if d <= 1: er = 0e0 else: sz = _np.dot(n * r[0:d], r[1:]) if sz == 0: er = 0e0 else: b = r[0] * n[0] + n[d - 1] * r[d] if d is 2: er = sz * 1.0 / b else: a = _np.sum(n[1:d - 1]) er = (_np.sqrt(b * b + 4 * a * sz) - b) / (2 * a) return er
python
{ "resource": "" }
q1786
vector.rmean
train
def rmean(self): """ Calculates the mean rank of a TT-vector.""" if not _np.all(self.n): return 0 # Solving quadratic equation ar^2 + br + c = 0; a = _np.sum(self.n[1:-1]) b = self.n[0] + self.n[-1] c = - _np.sum(self.n * self.r[1:] * self.r[:-1]) D = b ** 2 - 4 * a * c r = 0.5 * (-b + _np.sqrt(D)) / a return r
python
{ "resource": "" }
q1787
eigb
train
def eigb(A, y0, eps, rmax=150, nswp=20, max_full_size=1000, verb=1): """ Approximate computation of minimal eigenvalues in tensor train format This function uses alternating least-squares algorithm for the computation of several minimal eigenvalues. If you want maximal eigenvalues, just send -A to the function. :Reference: S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V. Savostyanov. Computation of extreme eigenvalues in higher dimensions using block tensor train format. Computer Phys. Comm., 185(4):1207-1216, 2014. http://dx.doi.org/10.1016/j.cpc.2013.12.017 :param A: Matrix in the TT-format :type A: matrix :param y0: Initial guess in the block TT-format, r(d+1) is the number of eigenvalues sought :type y0: tensor :param eps: Accuracy required :type eps: float :param rmax: Maximal rank :type rmax: int :param kickrank: Addition rank, the larger the more robus the method, :type kickrank: int :rtype: A tuple (ev, tensor), where ev is a list of eigenvalues, tensor is an approximation to eigenvectors. :Example: >>> import tt >>> import tt.eigb >>> d = 8; f = 3 >>> r = [8] * (d * f + 1); r[d * f] = 8; r[0] = 1 >>> x = tt.rand(n, d * f, r) >>> a = tt.qlaplace_dd([8, 8, 8]) >>> sol, ev = tt.eigb.eigb(a, x, 1e-6, verb=0) Solving a block eigenvalue problem Looking for 8 eigenvalues with accuracy 1E-06 swp: 1 er = 35.93 rmax:19 swp: 2 er = 4.51015E-04 rmax:18 swp: 3 er = 1.87584E-12 rmax:17 Total number of matvecs: 0 >>> print ev [ 0.00044828 0.00089654 0.00089654 0.00089654 0.0013448 0.0013448 0.0013448 0.00164356] """ ry = y0.r.copy() lam = tt_eigb.tt_block_eig.tt_eigb(y0.d, A.n, A.m, A.tt.r, A.tt.core, y0.core, ry, eps, rmax, ry[y0.d], 0, nswp, max_full_size, verb) y = tensor() y.d = y0.d y.n = A.n.copy() y.r = ry y.core = tt_eigb.tt_block_eig.result_core.copy() tt_eigb.tt_block_eig.deallocate_result() y.get_ps() return y, lam
python
{ "resource": "" }
q1788
encode_for_locale
train
def encode_for_locale(s): """ Encode text items for system locale. If encoding fails, fall back to ASCII. """ try: return s.encode(LOCALE_ENCODING, 'ignore') except (AttributeError, UnicodeDecodeError): return s.decode('ascii', 'ignore').encode(LOCALE_ENCODING)
python
{ "resource": "" }
q1789
fib
train
def fib(n): """Terrible Fibonacci number generator.""" v = n.value return v if v < 2 else fib2(PythonInt(v-1)) + fib(PythonInt(v-2))
python
{ "resource": "" }
q1790
Brain.format_message
train
def format_message(self, msg, botreply=False): """Format a user's message for safe processing. This runs substitutions on the message and strips out any remaining symbols (depending on UTF-8 mode). :param str msg: The user's message. :param bool botreply: Whether this formatting is being done for the bot's last reply (e.g. in a ``%Previous`` command). :return str: The formatted message. """ # Make sure the string is Unicode for Python 2. if sys.version_info[0] < 3 and isinstance(msg, str): msg = msg.decode() # Lowercase it. msg = msg.lower() # Run substitutions on it. msg = self.substitute(msg, "sub") # In UTF-8 mode, only strip metacharacters and HTML brackets # (to protect from obvious XSS attacks). if self.utf8: msg = re.sub(RE.utf8_meta, '', msg) msg = re.sub(self.master.unicode_punctuation, '', msg) # For the bot's reply, also strip common punctuation. if botreply: msg = re.sub(RE.utf8_punct, '', msg) else: # For everything else, strip all non-alphanumerics. msg = utils.strip_nasties(msg) msg = msg.strip() # Strip leading and trailing white space msg = RE.ws.sub(" ",msg) # Replace the multiple whitespaces by single whitespace return msg
python
{ "resource": "" }
q1791
Brain.do_expand_array
train
def do_expand_array(self, array_name, depth=0): """Do recurrent array expansion, returning a set of keywords. Exception is thrown when there are cyclical dependencies between arrays or if the ``@array`` name references an undefined array. :param str array_name: The name of the array to expand. :param int depth: The recursion depth counter. :return set: The final set of array entries. """ if depth > self.master._depth: raise Exception("deep recursion detected") if not array_name in self.master._array: raise Exception("array '%s' not defined" % (array_name)) ret = list(self.master._array[array_name]) for array in self.master._array[array_name]: if array.startswith('@'): ret.remove(array) expanded = self.do_expand_array(array[1:], depth+1) ret.extend(expanded) return set(ret)
python
{ "resource": "" }
q1792
Brain.expand_array
train
def expand_array(self, array_name): """Expand variables and return a set of keywords. :param str array_name: The name of the array to expand. :return list: The final array contents. Warning is issued when exceptions occur.""" ret = self.master._array[array_name] if array_name in self.master._array else [] try: ret = self.do_expand_array(array_name) except Exception as e: self.warn("Error expanding array '%s': %s" % (array_name, str(e))) return ret
python
{ "resource": "" }
q1793
Brain.substitute
train
def substitute(self, msg, kind): """Run a kind of substitution on a message. :param str msg: The message to run substitutions against. :param str kind: The kind of substitution to run, one of ``subs`` or ``person``. """ # Safety checking. if 'lists' not in self.master._sorted: raise RepliesNotSortedError("You must call sort_replies() once you are done loading RiveScript documents") if kind not in self.master._sorted["lists"]: raise RepliesNotSortedError("You must call sort_replies() once you are done loading RiveScript documents") # Get the substitution map. subs = None if kind == 'sub': subs = self.master._sub else: subs = self.master._person # Make placeholders each time we substitute something. ph = [] i = 0 for pattern in self.master._sorted["lists"][kind]: result = subs[pattern] # Make a placeholder. ph.append(result) placeholder = "\x00%d\x00" % i i += 1 cache = self.master._regexc[kind][pattern] msg = re.sub(cache["sub1"], placeholder, msg) msg = re.sub(cache["sub2"], placeholder + r'\1', msg) msg = re.sub(cache["sub3"], r'\1' + placeholder + r'\2', msg) msg = re.sub(cache["sub4"], r'\1' + placeholder, msg) placeholders = re.findall(RE.placeholder, msg) for match in placeholders: i = int(match) result = ph[i] msg = msg.replace('\x00' + match + '\x00', result) # Strip & return. return msg.strip()
python
{ "resource": "" }
q1794
PyRiveObjects.load
train
def load(self, name, code): """Prepare a Python code object given by the RiveScript interpreter. :param str name: The name of the Python object macro. :param []str code: The Python source code for the object macro. """ # We need to make a dynamic Python method. source = "def RSOBJ(rs, args):\n" for line in code: source = source + "\t" + line + "\n" source += "self._objects[name] = RSOBJ\n" try: exec(source) # self._objects[name] = RSOBJ except Exception as e: print("Failed to load code from object", name) print("The error given was: ", e)
python
{ "resource": "" }
q1795
PyRiveObjects.call
train
def call(self, rs, name, user, fields): """Invoke a previously loaded object. :param RiveScript rs: the parent RiveScript instance. :param str name: The name of the object macro to be called. :param str user: The user ID invoking the object macro. :param []str fields: Array of words sent as the object's arguments. :return str: The output of the object macro. """ # Call the dynamic method. if name not in self._objects: return '[ERR: Object Not Found]' func = self._objects[name] reply = '' try: reply = func(rs, fields) if reply is None: reply = '' except Exception as e: raise PythonObjectError("Error executing Python object: " + str(e)) return text_type(reply)
python
{ "resource": "" }
q1796
get_topic_triggers
train
def get_topic_triggers(rs, topic, thats, depth=0, inheritance=0, inherited=False): """Recursively scan a topic and return a list of all triggers. Arguments: rs (RiveScript): A reference to the parent RiveScript instance. topic (str): The original topic name. thats (bool): Are we getting triggers for 'previous' replies? depth (int): Recursion step counter. inheritance (int): The inheritance level counter, for topics that inherit other topics. inherited (bool): Whether the current topic is inherited by others. Returns: []str: List of all triggers found. """ # Break if we're in too deep. if depth > rs._depth: rs._warn("Deep recursion while scanning topic inheritance") # Keep in mind here that there is a difference between 'includes' and # 'inherits' -- topics that inherit other topics are able to OVERRIDE # triggers that appear in the inherited topic. This means that if the top # topic has a trigger of simply '*', then NO triggers are capable of # matching in ANY inherited topic, because even though * has the lowest # priority, it has an automatic priority over all inherited topics. # # The getTopicTriggers method takes this into account. All topics that # inherit other topics will have their triggers prefixed with a fictional # {inherits} tag, which would start at {inherits=0} and increment if this # topic has other inheriting topics. So we can use this tag to make sure # topics that inherit things will have their triggers always be on top of # the stack, from inherits=0 to inherits=n. # Important info about the depth vs inheritance params to this function: # depth increments by 1 each time this function recursively calls itrs. # inheritance increments by 1 only when this topic inherits another # topic. # # This way, '> topic alpha includes beta inherits gamma' will have this # effect: # alpha and beta's triggers are combined together into one matching # pool, and then those triggers have higher matching priority than # gamma's. # # The inherited option is True if this is a recursive call, from a topic # that inherits other topics. This forces the {inherits} tag to be added # to the triggers. This only applies when the top topic 'includes' # another topic. rs._say("\tCollecting trigger list for topic " + topic + "(depth=" + str(depth) + "; inheritance=" + str(inheritance) + "; " + "inherited=" + str(inherited) + ")") # topic: the name of the topic # depth: starts at 0 and ++'s with each recursion # Topic doesn't exist? if not topic in rs._topics: rs._warn("Inherited or included topic {} doesn't exist or has no triggers".format( topic )) return [] # Collect an array of triggers to return. triggers = [] # Get those that exist in this topic directly. inThisTopic = [] if not thats: # The non-that structure is {topic}->[array of triggers] if topic in rs._topics: for trigger in rs._topics[topic]: inThisTopic.append([ trigger["trigger"], trigger ]) else: # The 'that' structure is: {topic}->{cur trig}->{prev trig}->{trig info} if topic in rs._thats.keys(): for curtrig in rs._thats[topic].keys(): for previous, pointer in rs._thats[topic][curtrig].items(): inThisTopic.append([ pointer["trigger"], pointer ]) # Does this topic include others? if topic in rs._includes: # Check every included topic. for includes in rs._includes[topic]: rs._say("\t\tTopic " + topic + " includes " + includes) triggers.extend(get_topic_triggers(rs, includes, thats, (depth + 1), inheritance, True)) # Does this topic inherit others? if topic in rs._lineage: # Check every inherited topic. for inherits in rs._lineage[topic]: rs._say("\t\tTopic " + topic + " inherits " + inherits) triggers.extend(get_topic_triggers(rs, inherits, thats, (depth + 1), (inheritance + 1), False)) # Collect the triggers for *this* topic. If this topic inherits any # other topics, it means that this topic's triggers have higher # priority than those in any inherited topics. Enforce this with an # {inherits} tag. if topic in rs._lineage or inherited: for trigger in inThisTopic: rs._say("\t\tPrefixing trigger with {inherits=" + str(inheritance) + "}" + trigger[0]) triggers.append(["{inherits=" + str(inheritance) + "}" + trigger[0], trigger[1]]) else: triggers.extend(inThisTopic) return triggers
python
{ "resource": "" }
q1797
word_count
train
def word_count(trigger, all=False): """Count the words that aren't wildcards or options in a trigger. :param str trigger: The trigger to count words for. :param bool all: Count purely based on whitespace separators, or consider wildcards not to be their own words. :return int: The word count.""" words = [] if all: words = re.split(RE.ws, trigger) else: words = re.split(RE.wilds_and_optionals, trigger) wc = 0 # Word count for word in words: if len(word) > 0: wc += 1 return wc
python
{ "resource": "" }
q1798
PerlObject.load
train
def load(self, name, code): """Prepare a Perl code object given by the RS interpreter.""" source = "\n".join(code) self._objects[name] = source
python
{ "resource": "" }
q1799
hello_rivescript
train
def hello_rivescript(): """Receive an inbound SMS and send a reply from RiveScript.""" from_number = request.values.get("From", "unknown") message = request.values.get("Body") reply = "(Internal error)" # Get a reply from RiveScript. if message: reply = bot.reply(from_number, message) # Send the response. resp = twilio.twiml.Response() resp.message(reply) return str(resp)
python
{ "resource": "" }