_id
stringlengths 2
7
| title
stringlengths 1
88
| partition
stringclasses 3
values | text
stringlengths 75
19.8k
| language
stringclasses 1
value | meta_information
dict |
---|---|---|---|---|---|
q277100
|
BoltArraySpark.repartition
|
test
|
def repartition(self, npartitions):
"""
Repartitions the underlying RDD
Parameters
----------
npartitions : int
Number of partitions to repartion the underlying RDD to
"""
rdd = self._rdd.repartition(npartitions)
return self._constructor(rdd, ordered=False).__finalize__(self)
|
python
|
{
"resource": ""
}
|
q277101
|
BoltArraySpark.stack
|
test
|
def stack(self, size=None):
"""
Aggregates records of a distributed array.
Stacking should improve the performance of vectorized operations,
but the resulting StackedArray object only exposes a restricted set
of operations (e.g. map, reduce). The unstack method can be used
to restore the full bolt array.
Parameters
----------
size : int, optional, default=None
The maximum size for each stack (number of original records),
will aggregate groups of records per partition up to this size,
if None will aggregate all records on each partition.
Returns
-------
StackedArray
"""
stk = StackedArray(self._rdd, shape=self.shape, split=self.split)
return stk.stack(size)
|
python
|
{
"resource": ""
}
|
q277102
|
BoltArraySpark._align
|
test
|
def _align(self, axis):
"""
Align spark bolt array so that axes for iteration are in the keys.
This operation is applied before most functional operators.
It ensures that the specified axes are valid, and swaps
key/value axes so that functional operators can be applied
over the correct records.
Parameters
----------
axis: tuple[int]
One or more axes that wil be iterated over by a functional operator
Returns
-------
BoltArraySpark
"""
# ensure that the specified axes are valid
inshape(self.shape, axis)
# find the value axes that should be moved into the keys (axis >= split)
tokeys = [(a - self.split) for a in axis if a >= self.split]
# find the key axes that should be moved into the values (axis < split)
tovalues = [a for a in range(self.split) if a not in axis]
if tokeys or tovalues:
return self.swap(tovalues, tokeys)
else:
return self
|
python
|
{
"resource": ""
}
|
q277103
|
BoltArraySpark.first
|
test
|
def first(self):
"""
Return the first element of an array
"""
from bolt.local.array import BoltArrayLocal
rdd = self._rdd if self._ordered else self._rdd.sortByKey()
return BoltArrayLocal(rdd.values().first())
|
python
|
{
"resource": ""
}
|
q277104
|
BoltArraySpark._stat
|
test
|
def _stat(self, axis=None, func=None, name=None, keepdims=False):
"""
Compute a statistic over an axis.
Can provide either a function (for use in a reduce)
or a name (for use by a stat counter).
Parameters
----------
axis : tuple or int, optional, default=None
Axis to compute statistic over, if None
will compute over all axes
func : function, optional, default=None
Function for reduce, see BoltArraySpark.reduce
name : str
A named statistic, see StatCounter
keepdims : boolean, optional, default=False
Keep axis remaining after operation with size 1.
"""
if axis is None:
axis = list(range(len(self.shape)))
axis = tupleize(axis)
if func and not name:
return self.reduce(func, axis, keepdims)
if name and not func:
from bolt.local.array import BoltArrayLocal
swapped = self._align(axis)
def reducer(left, right):
return left.combine(right)
counter = swapped._rdd.values()\
.mapPartitions(lambda i: [StatCounter(values=i, stats=name)])\
.treeReduce(reducer, depth=3)
arr = getattr(counter, name)
if keepdims:
for i in axis:
arr = expand_dims(arr, axis=i)
return BoltArrayLocal(arr).toscalar()
else:
raise ValueError('Must specify either a function or a statistic name.')
|
python
|
{
"resource": ""
}
|
q277105
|
BoltArraySpark.mean
|
test
|
def mean(self, axis=None, keepdims=False):
"""
Return the mean of the array over the given axis.
Parameters
----------
axis : tuple or int, optional, default=None
Axis to compute statistic over, if None
will compute over all axes
keepdims : boolean, optional, default=False
Keep axis remaining after operation with size 1.
"""
return self._stat(axis, name='mean', keepdims=keepdims)
|
python
|
{
"resource": ""
}
|
q277106
|
BoltArraySpark.var
|
test
|
def var(self, axis=None, keepdims=False):
"""
Return the variance of the array over the given axis.
Parameters
----------
axis : tuple or int, optional, default=None
Axis to compute statistic over, if None
will compute over all axes
keepdims : boolean, optional, default=False
Keep axis remaining after operation with size 1.
"""
return self._stat(axis, name='variance', keepdims=keepdims)
|
python
|
{
"resource": ""
}
|
q277107
|
BoltArraySpark.std
|
test
|
def std(self, axis=None, keepdims=False):
"""
Return the standard deviation of the array over the given axis.
Parameters
----------
axis : tuple or int, optional, default=None
Axis to compute statistic over, if None
will compute over all axes
keepdims : boolean, optional, default=False
Keep axis remaining after operation with size 1.
"""
return self._stat(axis, name='stdev', keepdims=keepdims)
|
python
|
{
"resource": ""
}
|
q277108
|
BoltArraySpark.sum
|
test
|
def sum(self, axis=None, keepdims=False):
"""
Return the sum of the array over the given axis.
Parameters
----------
axis : tuple or int, optional, default=None
Axis to compute statistic over, if None
will compute over all axes
keepdims : boolean, optional, default=False
Keep axis remaining after operation with size 1.
"""
from operator import add
return self._stat(axis, func=add, keepdims=keepdims)
|
python
|
{
"resource": ""
}
|
q277109
|
BoltArraySpark.max
|
test
|
def max(self, axis=None, keepdims=False):
"""
Return the maximum of the array over the given axis.
Parameters
----------
axis : tuple or int, optional, default=None
Axis to compute statistic over, if None
will compute over all axes
keepdims : boolean, optional, default=False
Keep axis remaining after operation with size 1.
"""
from numpy import maximum
return self._stat(axis, func=maximum, keepdims=keepdims)
|
python
|
{
"resource": ""
}
|
q277110
|
BoltArraySpark.min
|
test
|
def min(self, axis=None, keepdims=False):
"""
Return the minimum of the array over the given axis.
Parameters
----------
axis : tuple or int, optional, default=None
Axis to compute statistic over, if None
will compute over all axes
keepdims : boolean, optional, default=False
Keep axis remaining after operation with size 1.
"""
from numpy import minimum
return self._stat(axis, func=minimum, keepdims=keepdims)
|
python
|
{
"resource": ""
}
|
q277111
|
BoltArraySpark.chunk
|
test
|
def chunk(self, size="150", axis=None, padding=None):
"""
Chunks records of a distributed array.
Chunking breaks arrays into subarrays, using an specified
size of chunks along each value dimension. Can alternatively
specify an average chunk byte size (in kilobytes) and the size of
chunks (as ints) will be computed automatically.
Parameters
----------
size : tuple, int, or str, optional, default = "150"
A string giving the size in kilobytes, or a tuple with the size
of chunks along each dimension.
axis : int or tuple, optional, default = None
One or more axis to chunk array along, if None
will use all axes,
padding: tuple or int, default = None
Number of elements per dimension that will overlap with the adjacent chunk.
If a tuple, specifies padding along each chunked dimension; if a int, same
padding will be applied to all chunked dimensions.
Returns
-------
ChunkedArray
"""
if type(size) is not str:
size = tupleize((size))
axis = tupleize((axis))
padding = tupleize((padding))
from bolt.spark.chunk import ChunkedArray
chnk = ChunkedArray(rdd=self._rdd, shape=self._shape, split=self._split, dtype=self._dtype)
return chnk._chunk(size, axis, padding)
|
python
|
{
"resource": ""
}
|
q277112
|
BoltArraySpark.swap
|
test
|
def swap(self, kaxes, vaxes, size="150"):
"""
Swap axes from keys to values.
This is the core operation underlying shape manipulation
on the Spark bolt array. It exchanges an arbitrary set of axes
between the keys and the valeus. If either is None, will only
move axes in one direction (from keys to values, or values to keys).
Keys moved to values will be placed immediately after the split;
values moved to keys will be placed immediately before the split.
Parameters
----------
kaxes : tuple
Axes from keys to move to values
vaxes : tuple
Axes from values to move to keys
size : tuple or int, optional, default = "150"
Can either provide a string giving the size in kilobytes,
or a tuple with the number of chunks along each
value dimension being moved
Returns
-------
BoltArraySpark
"""
kaxes = asarray(tupleize(kaxes), 'int')
vaxes = asarray(tupleize(vaxes), 'int')
if type(size) is not str:
size = tupleize(size)
if len(kaxes) == self.keys.ndim and len(vaxes) == 0:
raise ValueError('Cannot perform a swap that would '
'end up with all data on a single key')
if len(kaxes) == 0 and len(vaxes) == 0:
return self
from bolt.spark.chunk import ChunkedArray
chunks = self.chunk(size)
swapped = chunks.keys_to_values(kaxes).values_to_keys([v+len(kaxes) for v in vaxes])
barray = swapped.unchunk()
return barray
|
python
|
{
"resource": ""
}
|
q277113
|
BoltArraySpark.transpose
|
test
|
def transpose(self, *axes):
"""
Return an array with the axes transposed.
This operation will incur a swap unless the
desiured permutation can be obtained
only by transpoing the keys or the values.
Parameters
----------
axes : None, tuple of ints, or n ints
If None, will reverse axis order.
"""
if len(axes) == 0:
p = arange(self.ndim-1, -1, -1)
else:
p = asarray(argpack(axes))
istransposeable(p, range(self.ndim))
split = self.split
# compute the keys/value axes that need to be swapped
new_keys, new_values = p[:split], p[split:]
swapping_keys = sort(new_values[new_values < split])
swapping_values = sort(new_keys[new_keys >= split])
stationary_keys = sort(new_keys[new_keys < split])
stationary_values = sort(new_values[new_values >= split])
# compute the permutation that the swap causes
p_swap = r_[stationary_keys, swapping_values, swapping_keys, stationary_values]
# compute the extra permutation (p_x) on top of this that
# needs to happen to get the full permutation desired
p_swap_inv = argsort(p_swap)
p_x = p_swap_inv[p]
p_keys, p_values = p_x[:split], p_x[split:]-split
# perform the swap and the the within key/value permutations
arr = self.swap(swapping_keys, swapping_values-split)
arr = arr.keys.transpose(tuple(p_keys.tolist()))
arr = arr.values.transpose(tuple(p_values.tolist()))
return arr
|
python
|
{
"resource": ""
}
|
q277114
|
BoltArraySpark.swapaxes
|
test
|
def swapaxes(self, axis1, axis2):
"""
Return the array with two axes interchanged.
Parameters
----------
axis1 : int
The first axis to swap
axis2 : int
The second axis to swap
"""
p = list(range(self.ndim))
p[axis1] = axis2
p[axis2] = axis1
return self.transpose(p)
|
python
|
{
"resource": ""
}
|
q277115
|
BoltArraySpark.reshape
|
test
|
def reshape(self, *shape):
"""
Return an array with the same data but a new shape.
Currently only supports reshaping that independently
reshapes the keys, or the values, or both.
Parameters
----------
shape : tuple of ints, or n ints
New shape
"""
new = argpack(shape)
isreshapeable(new, self.shape)
if new == self.shape:
return self
i = self._reshapebasic(new)
if i == -1:
raise NotImplementedError("Currently no support for reshaping between "
"keys and values for BoltArraySpark")
else:
new_key_shape, new_value_shape = new[:i], new[i:]
return self.keys.reshape(new_key_shape).values.reshape(new_value_shape)
|
python
|
{
"resource": ""
}
|
q277116
|
BoltArraySpark._reshapebasic
|
test
|
def _reshapebasic(self, shape):
"""
Check if the requested reshape can be broken into independant reshapes
on the keys and values. If it can, returns the index in the new shape
separating keys from values, otherwise returns -1
"""
new = tupleize(shape)
old_key_size = prod(self.keys.shape)
old_value_size = prod(self.values.shape)
for i in range(len(new)):
new_key_size = prod(new[:i])
new_value_size = prod(new[i:])
if new_key_size == old_key_size and new_value_size == old_value_size:
return i
return -1
|
python
|
{
"resource": ""
}
|
q277117
|
BoltArraySpark.squeeze
|
test
|
def squeeze(self, axis=None):
"""
Remove one or more single-dimensional axes from the array.
Parameters
----------
axis : tuple or int
One or more singleton axes to remove.
"""
if not any([d == 1 for d in self.shape]):
return self
if axis is None:
drop = where(asarray(self.shape) == 1)[0]
elif isinstance(axis, int):
drop = asarray((axis,))
elif isinstance(axis, tuple):
drop = asarray(axis)
else:
raise ValueError("an integer or tuple is required for the axis")
if any([self.shape[i] > 1 for i in drop]):
raise ValueError("cannot select an axis to squeeze out which has size greater than one")
if any(asarray(drop) < self.split):
kmask = set([d for d in drop if d < self.split])
kfunc = lambda k: tuple([kk for ii, kk in enumerate(k) if ii not in kmask])
else:
kfunc = lambda k: k
if any(asarray(drop) >= self.split):
vmask = tuple([d - self.split for d in drop if d >= self.split])
vfunc = lambda v: v.squeeze(vmask)
else:
vfunc = lambda v: v
rdd = self._rdd.map(lambda kv: (kfunc(kv[0]), vfunc(kv[1])))
shape = tuple([ss for ii, ss in enumerate(self.shape) if ii not in drop])
split = len([d for d in range(self.keys.ndim) if d not in drop])
return self._constructor(rdd, shape=shape, split=split).__finalize__(self)
|
python
|
{
"resource": ""
}
|
q277118
|
BoltArraySpark.astype
|
test
|
def astype(self, dtype, casting='unsafe'):
"""
Cast the array to a specified type.
Parameters
----------
dtype : str or dtype
Typecode or data-type to cast the array to (see numpy)
"""
rdd = self._rdd.mapValues(lambda v: v.astype(dtype, 'K', casting))
return self._constructor(rdd, dtype=dtype).__finalize__(self)
|
python
|
{
"resource": ""
}
|
q277119
|
BoltArraySpark.clip
|
test
|
def clip(self, min=None, max=None):
"""
Clip values above and below.
Parameters
----------
min : scalar or array-like
Minimum value. If array, will be broadcasted
max : scalar or array-like
Maximum value. If array, will be broadcasted.
"""
rdd = self._rdd.mapValues(lambda v: v.clip(min=min, max=max))
return self._constructor(rdd).__finalize__(self)
|
python
|
{
"resource": ""
}
|
q277120
|
BoltArraySpark.toarray
|
test
|
def toarray(self):
"""
Returns the contents as a local array.
Will likely cause memory problems for large objects.
"""
rdd = self._rdd if self._ordered else self._rdd.sortByKey()
x = rdd.values().collect()
return asarray(x).reshape(self.shape)
|
python
|
{
"resource": ""
}
|
q277121
|
tupleize
|
test
|
def tupleize(arg):
"""
Coerce singletons and lists and ndarrays to tuples.
Parameters
----------
arg : tuple, list, ndarray, or singleton
Item to coerce
"""
if arg is None:
return None
if not isinstance(arg, (tuple, list, ndarray, Iterable)):
return tuple((arg,))
elif isinstance(arg, (list, ndarray)):
return tuple(arg)
elif isinstance(arg, Iterable) and not isinstance(arg, str):
return tuple(arg)
else:
return arg
|
python
|
{
"resource": ""
}
|
q277122
|
argpack
|
test
|
def argpack(args):
"""
Coerce a list of arguments to a tuple.
Parameters
----------
args : tuple or nested tuple
Pack arguments into a tuple, converting ((,...),) or (,) -> (,)
"""
if isinstance(args[0], (tuple, list, ndarray)):
return tupleize(args[0])
elif isinstance(args[0], Iterable) and not isinstance(args[0], str):
# coerce any iterable into a list before calling tupleize (Python 3 compatibility)
return tupleize(list(args[0]))
else:
return tuple(args)
|
python
|
{
"resource": ""
}
|
q277123
|
inshape
|
test
|
def inshape(shape, axes):
"""
Checks to see if a list of axes are contained within an array shape.
Parameters
----------
shape : tuple[int]
the shape of a BoltArray
axes : tuple[int]
the axes to check against shape
"""
valid = all([(axis < len(shape)) and (axis >= 0) for axis in axes])
if not valid:
raise ValueError("axes not valid for an ndarray of shape: %s" % str(shape))
|
python
|
{
"resource": ""
}
|
q277124
|
allclose
|
test
|
def allclose(a, b):
"""
Test that a and b are close and match in shape.
Parameters
----------
a : ndarray
First array to check
b : ndarray
First array to check
"""
from numpy import allclose
return (a.shape == b.shape) and allclose(a, b)
|
python
|
{
"resource": ""
}
|
q277125
|
listify
|
test
|
def listify(lst, dim):
"""
Flatten lists of indices and ensure bounded by a known dim.
Parameters
----------
lst : list
List of integer indices
dim : tuple
Bounds for indices
"""
if not all([l.dtype == int for l in lst]):
raise ValueError("indices must be integers")
if npany(asarray(lst) >= dim):
raise ValueError("indices out of bounds for axis with size %s" % dim)
return lst.flatten()
|
python
|
{
"resource": ""
}
|
q277126
|
slicify
|
test
|
def slicify(slc, dim):
"""
Force a slice to have defined start, stop, and step from a known dim.
Start and stop will always be positive. Step may be negative.
There is an exception where a negative step overflows the stop needs to have
the default value set to -1. This is the only case of a negative start/stop
value.
Parameters
----------
slc : slice or int
The slice to modify, or int to convert to a slice
dim : tuple
Bound for slice
"""
if isinstance(slc, slice):
# default limits
start = 0 if slc.start is None else slc.start
stop = dim if slc.stop is None else slc.stop
step = 1 if slc.step is None else slc.step
# account for negative indices
if start < 0: start += dim
if stop < 0: stop += dim
# account for over-flowing the bounds
if step > 0:
if start < 0: start = 0
if stop > dim: stop = dim
else:
if stop < 0: stop = -1
if start > dim: start = dim-1
return slice(start, stop, step)
elif isinstance(slc, int):
if slc < 0:
slc += dim
return slice(slc, slc+1, 1)
else:
raise ValueError("Type for slice %s not recongized" % type(slc))
|
python
|
{
"resource": ""
}
|
q277127
|
istransposeable
|
test
|
def istransposeable(new, old):
"""
Check to see if a proposed tuple of axes is a valid permutation
of an old set of axes. Checks length, axis repetion, and bounds.
Parameters
----------
new : tuple
tuple of proposed axes
old : tuple
tuple of old axes
"""
new, old = tupleize(new), tupleize(old)
if not len(new) == len(old):
raise ValueError("Axes do not match axes of keys")
if not len(set(new)) == len(set(old)):
raise ValueError("Repeated axes")
if any(n < 0 for n in new) or max(new) > len(old) - 1:
raise ValueError("Invalid axes")
|
python
|
{
"resource": ""
}
|
q277128
|
isreshapeable
|
test
|
def isreshapeable(new, old):
"""
Check to see if a proposed tuple of axes is a valid reshaping of
the old axes by ensuring that they can be factored.
Parameters
----------
new : tuple
tuple of proposed axes
old : tuple
tuple of old axes
"""
new, old = tupleize(new), tupleize(old)
if not prod(new) == prod(old):
raise ValueError("Total size of new keys must remain unchanged")
|
python
|
{
"resource": ""
}
|
q277129
|
allstack
|
test
|
def allstack(vals, depth=0):
"""
If an ndarray has been split into multiple chunks by splitting it along
each axis at a number of locations, this function rebuilds the
original array from chunks.
Parameters
----------
vals : nested lists of ndarrays
each level of nesting of the lists representing a dimension of
the original array.
"""
if type(vals[0]) is ndarray:
return concatenate(vals, axis=depth)
else:
return concatenate([allstack(x, depth+1) for x in vals], axis=depth)
|
python
|
{
"resource": ""
}
|
q277130
|
iterexpand
|
test
|
def iterexpand(arry, extra):
"""
Expand dimensions by iteratively append empty axes.
Parameters
----------
arry : ndarray
The original array
extra : int
The number of empty axes to append
"""
for d in range(arry.ndim, arry.ndim+extra):
arry = expand_dims(arry, axis=d)
return arry
|
python
|
{
"resource": ""
}
|
q277131
|
zip_with_index
|
test
|
def zip_with_index(rdd):
"""
Alternate version of Spark's zipWithIndex that eagerly returns count.
"""
starts = [0]
if rdd.getNumPartitions() > 1:
nums = rdd.mapPartitions(lambda it: [sum(1 for _ in it)]).collect()
count = sum(nums)
for i in range(len(nums) - 1):
starts.append(starts[-1] + nums[i])
else:
count = rdd.count()
def func(k, it):
for i, v in enumerate(it, starts[k]):
yield v, i
return count, rdd.mapPartitionsWithIndex(func)
|
python
|
{
"resource": ""
}
|
q277132
|
wrapped
|
test
|
def wrapped(f):
"""
Decorator to append routed docstrings
"""
import inspect
def extract(func):
append = ""
args = inspect.getargspec(func)
for i, a in enumerate(args.args):
if i < (len(args) - len(args.defaults)):
append += str(a) + ", "
else:
default = args.defaults[i-len(args.defaults)]
if hasattr(default, "__name__"):
default = default.__name__
else:
default = str(default)
append += str(a) + "=" + default + ", "
append = append[:-2] + ")"
return append
doc = f.__doc__ + "\n"
doc += " local -> array(" + extract(getattr(ConstructLocal, f.__name__)) + "\n"
doc += " spark -> array(" + extract(getattr(ConstructSpark, f.__name__)) + "\n"
f.__doc__ = doc
return f
|
python
|
{
"resource": ""
}
|
q277133
|
lookup
|
test
|
def lookup(*args, **kwargs):
"""
Use arguments to route constructor.
Applies a series of checks on arguments to identify constructor,
starting with known keyword arguments, and then applying
constructor-specific checks
"""
if 'mode' in kwargs:
mode = kwargs['mode']
if mode not in constructors:
raise ValueError('Mode %s not supported' % mode)
del kwargs['mode']
return constructors[mode]
else:
for mode, constructor in constructors:
if constructor._argcheck(*args, **kwargs):
return constructor
return ConstructLocal
|
python
|
{
"resource": ""
}
|
q277134
|
Keys.reshape
|
test
|
def reshape(self, *shape):
"""
Reshape just the keys of a BoltArraySpark, returning a
new BoltArraySpark.
Parameters
----------
shape : tuple
New proposed axes.
"""
new = argpack(shape)
old = self.shape
isreshapeable(new, old)
if new == old:
return self._barray
def f(k):
return unravel_index(ravel_multi_index(k, old), new)
newrdd = self._barray._rdd.map(lambda kv: (f(kv[0]), kv[1]))
newsplit = len(new)
newshape = new + self._barray.values.shape
return BoltArraySpark(newrdd, shape=newshape, split=newsplit).__finalize__(self._barray)
|
python
|
{
"resource": ""
}
|
q277135
|
Keys.transpose
|
test
|
def transpose(self, *axes):
"""
Transpose just the keys of a BoltArraySpark, returning a
new BoltArraySpark.
Parameters
----------
axes : tuple
New proposed axes.
"""
new = argpack(axes)
old = range(self.ndim)
istransposeable(new, old)
if new == old:
return self._barray
def f(k):
return tuple(k[i] for i in new)
newrdd = self._barray._rdd.map(lambda kv: (f(kv[0]), kv[1]))
newshape = tuple(self.shape[i] for i in new) + self._barray.values.shape
return BoltArraySpark(newrdd, shape=newshape, ordered=False).__finalize__(self._barray)
|
python
|
{
"resource": ""
}
|
q277136
|
Values.reshape
|
test
|
def reshape(self, *shape):
"""
Reshape just the values of a BoltArraySpark, returning a
new BoltArraySpark.
Parameters
----------
shape : tuple
New proposed axes.
"""
new = argpack(shape)
old = self.shape
isreshapeable(new, old)
if new == old:
return self._barray
def f(v):
return v.reshape(new)
newrdd = self._barray._rdd.mapValues(f)
newshape = self._barray.keys.shape + new
return BoltArraySpark(newrdd, shape=newshape).__finalize__(self._barray)
|
python
|
{
"resource": ""
}
|
q277137
|
Values.transpose
|
test
|
def transpose(self, *axes):
"""
Transpose just the values of a BoltArraySpark, returning a
new BoltArraySpark.
Parameters
----------
axes : tuple
New proposed axes.
"""
new = argpack(axes)
old = range(self.ndim)
istransposeable(new, old)
if new == old:
return self._barray
def f(v):
return v.transpose(new)
newrdd = self._barray._rdd.mapValues(f)
newshape = self._barray.keys.shape + tuple(self.shape[i] for i in new)
return BoltArraySpark(newrdd, shape=newshape).__finalize__(self._barray)
|
python
|
{
"resource": ""
}
|
q277138
|
ConstructLocal.ones
|
test
|
def ones(shape, dtype=float64, order='C'):
"""
Create a local bolt array of ones.
Parameters
----------
shape : tuple
Dimensions of the desired array
dtype : data-type, optional, default=float64
The desired data-type for the array. (see numpy)
order : {'C', 'F', 'A'}, optional, default='C'
The order of the array. (see numpy)
Returns
-------
BoltArrayLocal
"""
from numpy import ones
return ConstructLocal._wrap(ones, shape, dtype, order)
|
python
|
{
"resource": ""
}
|
q277139
|
ConstructLocal.zeros
|
test
|
def zeros(shape, dtype=float64, order='C'):
"""
Create a local bolt array of zeros.
Parameters
----------
shape : tuple
Dimensions of the desired array.
dtype : data-type, optional, default=float64
The desired data-type for the array. (see numpy)
order : {'C', 'F', 'A'}, optional, default='C'
The order of the array. (see numpy)
Returns
-------
BoltArrayLocal
"""
from numpy import zeros
return ConstructLocal._wrap(zeros, shape, dtype, order)
|
python
|
{
"resource": ""
}
|
q277140
|
ConstructLocal.concatenate
|
test
|
def concatenate(arrays, axis=0):
"""
Join a sequence of arrays together.
Parameters
----------
arrays : tuple
A sequence of array-like e.g. (a1, a2, ...)
axis : int, optional, default=0
The axis along which the arrays will be joined.
Returns
-------
BoltArrayLocal
"""
if not isinstance(arrays, tuple):
raise ValueError("data type not understood")
arrays = tuple([asarray(a) for a in arrays])
from numpy import concatenate
return BoltArrayLocal(concatenate(arrays, axis))
|
python
|
{
"resource": ""
}
|
q277141
|
discrete_likelihood
|
test
|
def discrete_likelihood(data, xmin, alpha):
"""
Equation B.8 in Clauset
Given a data set, an xmin value, and an alpha "scaling parameter", computes
the log-likelihood (the value to be maximized)
"""
if not scipyOK:
raise ImportError("Can't import scipy. Need scipy for zeta function.")
from scipy.special import zeta as zeta
zz = data[data>=xmin]
nn = len(zz)
sum_log_data = np.log(zz).sum()
zeta = zeta(alpha, xmin)
L_of_alpha = -1*nn*log(zeta) - alpha * sum_log_data
return L_of_alpha
|
python
|
{
"resource": ""
}
|
q277142
|
most_likely_alpha
|
test
|
def most_likely_alpha(data, xmin, alpharange=(1.5,3.5), n_alpha=201):
"""
Return the most likely alpha for the data given an xmin
"""
alpha_vector = np.linspace(alpharange[0],alpharange[1],n_alpha)
return alpha_vector[discrete_max_likelihood_arg(data, xmin,
alpharange=alpharange,
n_alpha=n_alpha)]
|
python
|
{
"resource": ""
}
|
q277143
|
discrete_alpha_mle
|
test
|
def discrete_alpha_mle(data, xmin):
"""
Equation B.17 of Clauset et al 2009
The Maximum Likelihood Estimator of the "scaling parameter" alpha in the
discrete case is similar to that in the continuous case
"""
# boolean indices of positive data
gexmin = (data>=xmin)
nn = gexmin.sum()
if nn < 2:
return 0
xx = data[gexmin]
alpha = 1.0 + float(nn) * (sum(log(xx/(float(xmin)-0.5))))**-1
return alpha
|
python
|
{
"resource": ""
}
|
q277144
|
discrete_best_alpha
|
test
|
def discrete_best_alpha(data, alpharangemults=(0.9,1.1), n_alpha=201, approximate=True, verbose=True):
"""
Use the maximum L to determine the most likely value of alpha
*alpharangemults* [ 2-tuple ]
Pair of values indicating multiplicative factors above and below the
approximate alpha from the MLE alpha to use when determining the
"exact" alpha (by directly maximizing the likelihood function)
"""
xmins = np.unique(data)
if approximate:
alpha_of_xmin = [ discrete_alpha_mle(data,xmin) for xmin in xmins ]
else:
alpha_approx = [ discrete_alpha_mle(data,xmin) for xmin in xmins ]
alpharanges = [(0.9*a,1.1*a) for a in alpha_approx]
alpha_of_xmin = [ most_likely_alpha(data,xmin,alpharange=ar,n_alpha=n_alpha) for xmin,ar in zip(xmins,alpharanges) ]
ksvalues = [ discrete_ksD(data, xmin, alpha) for xmin,alpha in zip(xmins,alpha_of_xmin) ]
best_index = argmin(ksvalues)
best_alpha = alpha_of_xmin[best_index]
best_xmin = xmins[best_index]
best_ks = ksvalues[best_index]
best_likelihood = discrete_likelihood(data, best_xmin, best_alpha)
if verbose:
print("alpha = %f xmin = %f ksD = %f L = %f (n<x) = %i (n>=x) = %i" % (
best_alpha, best_xmin, best_ks, best_likelihood,
(data<best_xmin).sum(), (data>=best_xmin).sum()))
return best_alpha,best_xmin,best_ks,best_likelihood
|
python
|
{
"resource": ""
}
|
q277145
|
plfit.discrete_best_alpha
|
test
|
def discrete_best_alpha(self, alpharangemults=(0.9,1.1), n_alpha=201,
approximate=True, verbose=True, finite=True):
"""
Use the maximum likelihood to determine the most likely value of alpha
*alpharangemults* [ 2-tuple ]
Pair of values indicating multiplicative factors above and below the
approximate alpha from the MLE alpha to use when determining the
"exact" alpha (by directly maximizing the likelihood function)
*n_alpha* [ int ]
Number of alpha values to use when measuring. Larger number is more accurate.
*approximate* [ bool ]
If False, try to "zoom-in" around the MLE alpha and get the exact
best alpha value within some range around the approximate best
*vebose* [ bool ]
*finite* [ bool ]
Correction for finite data?
"""
data = self.data
self._xmins = xmins = np.unique(data)
if approximate:
alpha_of_xmin = [ discrete_alpha_mle(data,xmin) for xmin in xmins ]
else:
alpha_approx = [ discrete_alpha_mle(data,xmin) for xmin in xmins ]
alpharanges = [(0.9*a,1.1*a) for a in alpha_approx]
alpha_of_xmin = [ most_likely_alpha(data,xmin,alpharange=ar,n_alpha=n_alpha)
for xmin,ar in zip(xmins,alpharanges) ]
ksvalues = np.array([discrete_ksD(data, xmin, alpha)
for xmin,alpha in zip(xmins,alpha_of_xmin)
])
self._alpha_values = np.array(alpha_of_xmin)
self._xmin_kstest = ksvalues
ksvalues[np.isnan(ksvalues)] = np.inf
best_index = argmin(ksvalues)
self._alpha = best_alpha = alpha_of_xmin[best_index]
self._xmin = best_xmin = xmins[best_index]
self._ks = best_ks = ksvalues[best_index]
self._likelihood = best_likelihood = discrete_likelihood(data, best_xmin, best_alpha)
if finite:
self._alpha = self._alpha*(n-1.)/n+1./n
if verbose:
print("alpha = %f xmin = %f ksD = %f L = %f (n<x) = %i (n>=x) = %i" % (
best_alpha, best_xmin, best_ks, best_likelihood,
(data<best_xmin).sum(), (data>=best_xmin).sum()))
self._ngtx = n = (self.data>=self._xmin).sum()
self._alphaerr = (self._alpha-1.0)/np.sqrt(n)
if scipyOK:
self._ks_prob = scipy.stats.ksone.sf(self._ks, n)
return best_alpha,best_xmin,best_ks,best_likelihood
|
python
|
{
"resource": ""
}
|
q277146
|
plfit.plotppf
|
test
|
def plotppf(self,x=None,xmin=None,alpha=None,dolog=True,**kwargs):
"""
Plots the power-law-predicted value on the Y-axis against the real
values along the X-axis. Can be used as a diagnostic of the fit
quality.
"""
if not(xmin): xmin=self._xmin
if not(alpha): alpha=self._alpha
if not(x): x=np.sort(self.data[self.data>xmin])
else: x=np.sort(x[x>xmin])
# N = M^(-alpha+1)
# M = N^(1/(-alpha+1))
m0 = min(x)
N = (1.0+np.arange(len(x)))[::-1]
xmodel = m0 * N**(1/(1-alpha)) / max(N)**(1/(1-alpha))
if dolog:
pylab.loglog(x,xmodel,'.',**kwargs)
pylab.gca().set_xlim(min(x),max(x))
pylab.gca().set_ylim(min(x),max(x))
else:
pylab.plot(x,xmodel,'.',**kwargs)
pylab.plot([min(x),max(x)],[min(x),max(x)],'k--')
pylab.xlabel("Real Value")
pylab.ylabel("Power-Law Model Value")
|
python
|
{
"resource": ""
}
|
q277147
|
plfit.lognormal
|
test
|
def lognormal(self,doprint=True):
"""
Use the maximum likelihood estimator for a lognormal distribution to
produce the best-fit lognormal parameters
"""
# N = float(self.data.shape[0])
# mu = log(self.data).sum() / N
# sigmasquared = ( ( log(self.data) - mu )**2 ).sum() / N
# self.lognormal_mu = mu
# self.lognormal_sigma = np.sqrt(sigmasquared)
# self.lognormal_likelihood = -N/2. * log(np.pi*2) - N/2. * log(sigmasquared) - 1/(2*sigmasquared) * (( self.data - mu )**2).sum()
# if doprint:
# print "Best fit lognormal is exp( -(x-%g)^2 / (2*%g^2)" % (mu,np.sqrt(sigmasquared))
# print "Likelihood: %g" % (self.lognormal_likelihood)
if scipyOK:
fitpars = scipy.stats.lognorm.fit(self.data)
self.lognormal_dist = scipy.stats.lognorm(*fitpars)
self.lognormal_ksD,self.lognormal_ksP = scipy.stats.kstest(self.data,self.lognormal_dist.cdf)
# nnlf = NEGATIVE log likelihood
self.lognormal_likelihood = -1*scipy.stats.lognorm.nnlf(fitpars,self.data)
# Is this the right likelihood ratio?
# Definition of L from eqn. B3 of Clauset et al 2009:
# L = log(p(x|alpha))
# _nnlf from scipy.stats.distributions:
# -sum(log(self._pdf(x, *args)),axis=0)
# Assuming the pdf and p(x|alpha) are both non-inverted, it looks
# like the _nnlf and L have opposite signs, which would explain the
# likelihood ratio I've used here:
self.power_lognorm_likelihood = (self._likelihood + self.lognormal_likelihood)
# a previous version had 2*(above). That is the correct form if you want the likelihood ratio
# statistic "D": http://en.wikipedia.org/wiki/Likelihood-ratio_test
# The above explanation makes sense, since nnlf is the *negative* log likelihood function:
## nnlf -- negative log likelihood function (to minimize)
#
# Assuming we want the ratio between the POSITIVE likelihoods, the D statistic is:
# D = -2 log( L_power / L_lognormal )
self.likelihood_ratio_D = -2 * (log(self._likelihood/self.lognormal_likelihood))
if doprint:
print("Lognormal KS D: %g p(D): %g" % (self.lognormal_ksD,self.lognormal_ksP), end=' ')
print(" Likelihood Ratio Statistic (powerlaw/lognormal): %g" % self.likelihood_ratio_D)
print("At this point, have a look at Clauset et al 2009 Appendix C: determining sigma(likelihood_ratio)")
|
python
|
{
"resource": ""
}
|
q277148
|
sanitize_turbo
|
test
|
def sanitize_turbo(html, allowed_tags=TURBO_ALLOWED_TAGS, allowed_attrs=TURBO_ALLOWED_ATTRS):
"""Sanitizes HTML, removing not allowed tags and attributes.
:param str|unicode html:
:param list allowed_tags: List of allowed tags.
:param dict allowed_attrs: Dictionary with attributes allowed for tags.
:rtype: unicode
"""
return clean(html, tags=allowed_tags, attributes=allowed_attrs, strip=True)
|
python
|
{
"resource": ""
}
|
q277149
|
YandexTurboFeed.configure_analytics_yandex
|
test
|
def configure_analytics_yandex(self, ident, params=None):
"""Configure Yandex Metrika analytics counter.
:param str|unicode ident: Metrika counter ID.
:param dict params: Additional params.
"""
params = params or {}
data = {
'type': 'Yandex',
'id': ident,
}
if params:
data['params'] = '%s' % params
self.analytics.append(data)
|
python
|
{
"resource": ""
}
|
q277150
|
LabelWidget.tag_list
|
test
|
def tag_list(self, tags):
"""
Generates a list of tags identifying those previously selected.
Returns a list of tuples of the form (<tag name>, <CSS class name>).
Uses the string names rather than the tags themselves in order to work
with tag lists built from forms not fully submitted.
"""
return [
(tag.name, "selected taggit-tag" if tag.name in tags else "taggit-tag")
for tag in self.model.objects.all()
]
|
python
|
{
"resource": ""
}
|
q277151
|
SSHKey.hash_md5
|
test
|
def hash_md5(self):
"""Calculate md5 fingerprint.
Shamelessly copied from http://stackoverflow.com/questions/6682815/deriving-an-ssh-fingerprint-from-a-public-key-in-python
For specification, see RFC4716, section 4."""
fp_plain = hashlib.md5(self._decoded_key).hexdigest()
return "MD5:" + ':'.join(a + b for a, b in zip(fp_plain[::2], fp_plain[1::2]))
|
python
|
{
"resource": ""
}
|
q277152
|
SSHKey.hash_sha256
|
test
|
def hash_sha256(self):
"""Calculate sha256 fingerprint."""
fp_plain = hashlib.sha256(self._decoded_key).digest()
return (b"SHA256:" + base64.b64encode(fp_plain).replace(b"=", b"")).decode("utf-8")
|
python
|
{
"resource": ""
}
|
q277153
|
SSHKey.hash_sha512
|
test
|
def hash_sha512(self):
"""Calculates sha512 fingerprint."""
fp_plain = hashlib.sha512(self._decoded_key).digest()
return (b"SHA512:" + base64.b64encode(fp_plain).replace(b"=", b"")).decode("utf-8")
|
python
|
{
"resource": ""
}
|
q277154
|
SSHKey._parse_long
|
test
|
def _parse_long(cls, data):
"""Calculate two's complement."""
if sys.version < '3':
# this does not exist in python 3 - undefined-variable disabled to make pylint happier.
ret = long(0) # pylint:disable=undefined-variable
for byte in data:
ret = (ret << 8) + ord(byte)
else:
ret = 0
for byte in data:
ret = (ret << 8) + byte
return ret
|
python
|
{
"resource": ""
}
|
q277155
|
SSHKey.decode_key
|
test
|
def decode_key(cls, pubkey_content):
"""Decode base64 coded part of the key."""
try:
decoded_key = base64.b64decode(pubkey_content.encode("ascii"))
except (TypeError, binascii.Error):
raise MalformedDataError("Unable to decode the key")
return decoded_key
|
python
|
{
"resource": ""
}
|
q277156
|
SSHKey.parse_options
|
test
|
def parse_options(self, options):
"""Parses ssh options string."""
quote_open = False
parsed_options = {}
def parse_add_single_option(opt):
"""Parses and validates a single option, and adds it to parsed_options field."""
if "=" in opt:
opt_name, opt_value = opt.split("=", 1)
opt_value = opt_value.replace('"', '')
else:
opt_name = opt
opt_value = True
if " " in opt_name or not self.OPTION_NAME_RE.match(opt_name):
raise InvalidOptionNameError("%s is not valid option name." % opt_name)
if self.strict_mode:
for valid_opt_name, value_required in self.OPTIONS_SPEC:
if opt_name.lower() == valid_opt_name:
if value_required and opt_value is True:
raise MissingMandatoryOptionValueError("%s is missing mandatory value." % opt_name)
break
else:
raise UnknownOptionNameError("%s is unrecognized option name." % opt_name)
if opt_name not in parsed_options:
parsed_options[opt_name] = []
parsed_options[opt_name].append(opt_value)
start_of_current_opt = 0
i = 1 # Need to be set for empty options strings
for i, character in enumerate(options):
if character == '"': # only double quotes are allowed, no need to care about single quotes
quote_open = not quote_open
if quote_open:
continue
if character == ",":
opt = options[start_of_current_opt:i]
parse_add_single_option(opt)
start_of_current_opt = i + 1
# Data begins after the first space
if start_of_current_opt + 1 != i:
opt = options[start_of_current_opt:]
parse_add_single_option(opt)
if quote_open:
raise InvalidOptionsError("Unbalanced quotes.")
return parsed_options
|
python
|
{
"resource": ""
}
|
q277157
|
SSHKey._process_ssh_rsa
|
test
|
def _process_ssh_rsa(self, data):
"""Parses ssh-rsa public keys."""
current_position, raw_e = self._unpack_by_int(data, 0)
current_position, raw_n = self._unpack_by_int(data, current_position)
unpacked_e = self._parse_long(raw_e)
unpacked_n = self._parse_long(raw_n)
self.rsa = RSAPublicNumbers(unpacked_e, unpacked_n).public_key(default_backend())
self.bits = self.rsa.key_size
if self.strict_mode:
min_length = self.RSA_MIN_LENGTH_STRICT
max_length = self.RSA_MAX_LENGTH_STRICT
else:
min_length = self.RSA_MIN_LENGTH_LOOSE
max_length = self.RSA_MAX_LENGTH_LOOSE
if self.bits < min_length:
raise TooShortKeyError(
"%s key data can not be shorter than %s bits (was %s)" % (self.key_type, min_length, self.bits)
)
if self.bits > max_length:
raise TooLongKeyError(
"%s key data can not be longer than %s bits (was %s)" % (self.key_type, max_length, self.bits)
)
return current_position
|
python
|
{
"resource": ""
}
|
q277158
|
SSHKey._process_ssh_dss
|
test
|
def _process_ssh_dss(self, data):
"""Parses ssh-dsa public keys."""
data_fields = {}
current_position = 0
for item in ("p", "q", "g", "y"):
current_position, value = self._unpack_by_int(data, current_position)
data_fields[item] = self._parse_long(value)
q_bits = self._bits_in_number(data_fields["q"])
p_bits = self._bits_in_number(data_fields["p"])
if q_bits != self.DSA_N_LENGTH:
raise InvalidKeyError("Incorrect DSA key parameters: bits(p)=%s, q=%s" % (self.bits, q_bits))
if self.strict_mode:
min_length = self.DSA_MIN_LENGTH_STRICT
max_length = self.DSA_MAX_LENGTH_STRICT
else:
min_length = self.DSA_MIN_LENGTH_LOOSE
max_length = self.DSA_MAX_LENGTH_LOOSE
if p_bits < min_length:
raise TooShortKeyError("%s key can not be shorter than %s bits (was %s)" % (self.key_type, min_length, p_bits))
if p_bits > max_length:
raise TooLongKeyError(
"%s key data can not be longer than %s bits (was %s)" % (self.key_type, max_length, p_bits)
)
dsa_parameters = DSAParameterNumbers(data_fields["p"], data_fields["q"], data_fields["g"])
self.dsa = DSAPublicNumbers(data_fields["y"], dsa_parameters).public_key(default_backend())
self.bits = self.dsa.key_size
return current_position
|
python
|
{
"resource": ""
}
|
q277159
|
SSHKey._process_ecdsa_sha
|
test
|
def _process_ecdsa_sha(self, data):
"""Parses ecdsa-sha public keys."""
current_position, curve_information = self._unpack_by_int(data, 0)
if curve_information not in self.ECDSA_CURVE_DATA:
raise NotImplementedError("Invalid curve type: %s" % curve_information)
curve, hash_algorithm = self.ECDSA_CURVE_DATA[curve_information]
current_position, key_data = self._unpack_by_int(data, current_position)
try:
# data starts with \x04, which should be discarded.
ecdsa_key = ecdsa.VerifyingKey.from_string(key_data[1:], curve, hash_algorithm)
except AssertionError:
raise InvalidKeyError("Invalid ecdsa key")
self.bits = int(curve_information.replace(b"nistp", b""))
self.ecdsa = ecdsa_key
return current_position
|
python
|
{
"resource": ""
}
|
q277160
|
SSHKey._process_ed25516
|
test
|
def _process_ed25516(self, data):
"""Parses ed25516 keys.
There is no (apparent) way to validate ed25519 keys. This only
checks data length (256 bits), but does not try to validate
the key in any way."""
current_position, verifying_key = self._unpack_by_int(data, 0)
verifying_key_length = len(verifying_key) * 8
verifying_key = self._parse_long(verifying_key)
if verifying_key < 0:
raise InvalidKeyError("ed25519 verifying key must be >0.")
self.bits = verifying_key_length
if self.bits != 256:
raise InvalidKeyLengthError("ed25519 keys must be 256 bits (was %s bits)" % self.bits)
return current_position
|
python
|
{
"resource": ""
}
|
q277161
|
SSHKey.parse
|
test
|
def parse(self, keydata=None):
"""Validates SSH public key.
Throws exception for invalid keys. Otherwise returns None.
Populates key_type, bits and bits fields.
For rsa keys, see field "rsa" for raw public key data.
For dsa keys, see field "dsa".
For ecdsa keys, see field "ecdsa"."""
if keydata is None:
if self.keydata is None:
raise ValueError("Key data must be supplied either in constructor or to parse()")
keydata = self.keydata
else:
self.reset()
self.keydata = keydata
if keydata.startswith("---- BEGIN SSH2 PUBLIC KEY ----"):
# SSH2 key format
key_type = None # There is no redundant key-type field - skip comparing plain-text and encoded data.
pubkey_content = "".join([line for line in keydata.split("\n") if ":" not in line and "----" not in line])
else:
key_parts = self._split_key(keydata)
key_type = key_parts[0]
pubkey_content = key_parts[1]
self._decoded_key = self.decode_key(pubkey_content)
# Check key type
current_position, unpacked_key_type = self._unpack_by_int(self._decoded_key, 0)
if key_type is not None and key_type != unpacked_key_type.decode():
raise InvalidTypeError("Keytype mismatch: %s != %s" % (key_type, unpacked_key_type))
self.key_type = unpacked_key_type
key_data_length = self._process_key(self._decoded_key[current_position:])
current_position = current_position + key_data_length
if current_position != len(self._decoded_key):
raise MalformedDataError("Leftover data: %s bytes" % (len(self._decoded_key) - current_position))
if self.disallow_options and self.options:
raise InvalidOptionsError("Options are disallowed.")
|
python
|
{
"resource": ""
}
|
q277162
|
InitContext.step
|
test
|
def step(self, input_token=None):
"""Performs a step to establish the context as an initiator.
This method should be called in a loop and fed input tokens from the acceptor, and its
output tokens should be sent to the acceptor, until this context's :attr:`established`
attribute is True.
:param input_token: The input token from the acceptor (omit this param or pass None on
the first call).
:type input_token: bytes
:returns: either a byte string with the next token to send to the acceptor,
or None if there is no further token to send to the acceptor.
:raises: :exc:`~gssapi.error.GSSException` if there is an error establishing the context.
"""
minor_status = ffi.new('OM_uint32[1]')
if input_token:
input_token_buffer = ffi.new('gss_buffer_desc[1]')
input_token_buffer[0].length = len(input_token)
c_str_input_token = ffi.new('char[]', input_token)
input_token_buffer[0].value = c_str_input_token
else:
input_token_buffer = ffi.cast('gss_buffer_t', C.GSS_C_NO_BUFFER)
if isinstance(self._desired_mech, OID):
desired_mech = ffi.addressof(self._desired_mech._oid)
else:
desired_mech = ffi.cast('gss_OID', C.GSS_C_NO_OID)
actual_mech = ffi.new('gss_OID[1]')
output_token_buffer = ffi.new('gss_buffer_desc[1]')
actual_flags = ffi.new('OM_uint32[1]')
actual_time = ffi.new('OM_uint32[1]')
if self._cred_object is not None:
cred = self._cred_object._cred[0]
else:
cred = ffi.cast('gss_cred_id_t', C.GSS_C_NO_CREDENTIAL)
retval = C.gss_init_sec_context(
minor_status,
cred,
self._ctx,
self.peer_name._name[0],
desired_mech,
self._req_flags,
self._time_req,
self._channel_bindings,
input_token_buffer,
actual_mech,
output_token_buffer,
actual_flags,
actual_time
)
try:
if output_token_buffer[0].length != 0:
out_token = _buf_to_str(output_token_buffer[0])
else:
out_token = None
if GSS_ERROR(retval):
if minor_status[0] and actual_mech[0]:
raise _exception_for_status(retval, minor_status[0], actual_mech[0], out_token)
else:
raise _exception_for_status(retval, minor_status[0], None, out_token)
self.established = not (retval & C.GSS_S_CONTINUE_NEEDED)
self.flags = actual_flags[0]
if actual_mech[0]:
self.mech_type = OID(actual_mech[0][0])
return out_token
except:
if self._ctx[0]:
C.gss_delete_sec_context(
minor_status,
self._ctx,
ffi.cast('gss_buffer_t', C.GSS_C_NO_BUFFER)
)
self._reset_flags()
raise
finally:
if output_token_buffer[0].length != 0:
C.gss_release_buffer(minor_status, output_token_buffer)
|
python
|
{
"resource": ""
}
|
q277163
|
AcceptContext.step
|
test
|
def step(self, input_token):
"""Performs a step to establish the context as an acceptor.
This method should be called in a loop and fed input tokens from the initiator, and its
output tokens should be sent to the initiator, until this context's :attr:`established`
attribute is True.
:param input_token: The input token from the initiator (required).
:type input_token: bytes
:returns: either a byte string with the next token to send to the initiator,
or None if there is no further token to send to the initiator.
:raises: :exc:`~gssapi.error.GSSException` if there is an error establishing the context.
"""
minor_status = ffi.new('OM_uint32[1]')
input_token_buffer = ffi.new('gss_buffer_desc[1]')
input_token_buffer[0].length = len(input_token)
c_str_import_token = ffi.new('char[]', input_token)
input_token_buffer[0].value = c_str_import_token
mech_type = ffi.new('gss_OID[1]')
output_token_buffer = ffi.new('gss_buffer_desc[1]')
src_name_handle = ffi.new('gss_name_t[1]')
actual_flags = ffi.new('OM_uint32[1]')
time_rec = ffi.new('OM_uint32[1]')
delegated_cred_handle = ffi.new('gss_cred_id_t[1]')
if self._cred_object is not None:
cred = self._cred_object._cred[0]
else:
cred = ffi.cast('gss_cred_id_t', C.GSS_C_NO_CREDENTIAL)
retval = C.gss_accept_sec_context(
minor_status,
self._ctx,
cred,
input_token_buffer,
self._channel_bindings,
src_name_handle,
mech_type,
output_token_buffer,
actual_flags,
time_rec,
delegated_cred_handle
)
if src_name_handle[0]:
src_name = MechName(src_name_handle, mech_type[0]) # make sure src_name is GC'd
try:
if output_token_buffer[0].length != 0:
out_token = _buf_to_str(output_token_buffer[0])
else:
out_token = None
if GSS_ERROR(retval):
if minor_status[0] and mech_type[0]:
raise _exception_for_status(retval, minor_status[0], mech_type[0], out_token)
else:
raise _exception_for_status(retval, minor_status[0], None, out_token)
self.established = not (retval & C.GSS_S_CONTINUE_NEEDED)
self.flags = actual_flags[0]
if (self.flags & C.GSS_C_DELEG_FLAG):
self.delegated_cred = Credential(delegated_cred_handle)
if mech_type[0]:
self.mech_type = OID(mech_type[0][0])
if src_name_handle[0]:
src_name._mech_type = self.mech_type
self.peer_name = src_name
return out_token
except:
if self._ctx:
C.gss_delete_sec_context(
minor_status,
self._ctx,
ffi.cast('gss_buffer_t', C.GSS_C_NO_BUFFER)
)
self._reset_flags()
raise
finally:
if output_token_buffer[0].length != 0:
C.gss_release_buffer(minor_status, output_token_buffer)
# if self.delegated_cred is present, it will handle gss_release_cred:
if delegated_cred_handle[0] and not self.delegated_cred:
C.gss_release_cred(minor_status, delegated_cred_handle)
|
python
|
{
"resource": ""
}
|
q277164
|
Credential.mechs
|
test
|
def mechs(self):
"""
The set of mechanisms supported by the credential.
:type: :class:`~gssapi.oids.OIDSet`
"""
if not self._mechs:
self._mechs = self._inquire(False, False, False, True)[3]
return self._mechs
|
python
|
{
"resource": ""
}
|
q277165
|
Credential.store
|
test
|
def store(self, usage=None, mech=None, overwrite=False, default=False, cred_store=None):
"""
Stores this credential into a 'credential store'. It can either store this credential in
the default credential store, or into a specific credential store specified by a set of
mechanism-specific key-value pairs. The former method of operation requires that the
underlying GSSAPI implementation supports the ``gss_store_cred`` C function, the latter
method requires support for the ``gss_store_cred_into`` C function.
:param usage: Optional parameter specifying whether to store the initiator, acceptor, or
both usages of this credential. Defaults to the value of this credential's
:attr:`usage` property.
:type usage: One of :data:`~gssapi.C_INITIATE`, :data:`~gssapi.C_ACCEPT` or
:data:`~gssapi.C_BOTH`
:param mech: Optional parameter specifying a single mechanism to store the credential
element for. If not supplied, all mechanisms' elements in this credential will be
stored.
:type mech: :class:`~gssapi.oids.OID`
:param overwrite: If True, indicates that any credential for the same principal in the
credential store should be overwritten with this credential.
:type overwrite: bool
:param default: If True, this credential should be made available as the default
credential when stored, for acquisition when no `desired_name` parameter is passed
to :class:`Credential` or for use when no credential is passed to
:class:`~gssapi.ctx.InitContext` or :class:`~gssapi.ctx.AcceptContext`. This is only
an advisory parameter to the GSSAPI implementation.
:type default: bool
:param cred_store: Optional dict or list of (key, value) pairs indicating the credential
store to use. The interpretation of these values will be mechanism-specific.
:type cred_store: dict, or list of (str, str)
:returns: A pair of values indicating the set of mechanism OIDs for which credential
elements were successfully stored, and the usage of the credential that was stored.
:rtype: tuple(:class:`~gssapi.oids.OIDSet`, int)
:raises: :exc:`~gssapi.error.GSSException` if there is a problem with storing the
credential.
:exc:`NotImplementedError` if the underlying GSSAPI implementation does not
support the ``gss_store_cred`` or ``gss_store_cred_into`` C functions.
"""
if usage is None:
usage = self.usage
if isinstance(mech, OID):
oid_ptr = ffi.addressof(mech._oid)
else:
oid_ptr = ffi.cast('gss_OID', C.GSS_C_NO_OID)
minor_status = ffi.new('OM_uint32[1]')
elements_stored = ffi.new('gss_OID_set[1]')
usage_stored = ffi.new('gss_cred_usage_t[1]')
if cred_store is None:
if not hasattr(C, 'gss_store_cred'):
raise NotImplementedError("The GSSAPI implementation does not support "
"gss_store_cred")
retval = C.gss_store_cred(
minor_status,
self._cred[0],
ffi.cast('gss_cred_usage_t', usage),
oid_ptr,
ffi.cast('OM_uint32', overwrite),
ffi.cast('OM_uint32', default),
elements_stored,
usage_stored
)
else:
if not hasattr(C, 'gss_store_cred_into'):
raise NotImplementedError("The GSSAPI implementation does not support "
"gss_store_cred_into")
c_strings, elements, cred_store_kv_set = _make_kv_set(cred_store)
retval = C.gss_store_cred_into(
minor_status,
self._cred[0],
ffi.cast('gss_cred_usage_t', usage),
oid_ptr,
ffi.cast('OM_uint32', overwrite),
ffi.cast('OM_uint32', default),
cred_store_kv_set,
elements_stored,
usage_stored
)
try:
if GSS_ERROR(retval):
if oid_ptr:
raise _exception_for_status(retval, minor_status[0], oid_ptr)
else:
raise _exception_for_status(retval, minor_status[0])
except:
if elements_stored[0]:
C.gss_release_oid_set(minor_status, elements_stored)
raise
return (OIDSet(elements_stored), usage_stored[0])
|
python
|
{
"resource": ""
}
|
q277166
|
main
|
test
|
def main(properties=properties, options=options, **custom_options):
"""Imports and runs setup function with given properties."""
return init(**dict(options, **custom_options))(**properties)
|
python
|
{
"resource": ""
}
|
q277167
|
init
|
test
|
def init(
dist='dist',
minver=None,
maxver=None,
use_markdown_readme=True,
use_stdeb=False,
use_distribute=False,
):
"""Imports and returns a setup function.
If use_markdown_readme is set,
then README.md is added to setuptools READMES list.
If use_stdeb is set on a Debian based system,
then module stdeb is imported.
Stdeb supports building deb packages on Debian based systems.
The package should only be installed on the same system version
it was built on, though. See http://github.com/astraw/stdeb.
If use_distribute is set, then distribute_setup.py is imported.
"""
if not minver == maxver == None:
import sys
if not minver <= sys.version < (maxver or 'Any'):
sys.stderr.write(
'%s: requires python version in <%s, %s), not %s\n' % (
sys.argv[0], minver or 'any', maxver or 'any', sys.version.split()[0]))
sys.exit(1)
if use_distribute:
from distribute_setup import use_setuptools
use_setuptools(to_dir=dist)
from setuptools import setup
else:
try:
from setuptools import setup
except ImportError:
from distutils.core import setup
if use_markdown_readme:
try:
import setuptools.command.sdist
setuptools.command.sdist.READMES = tuple(list(getattr(setuptools.command.sdist, 'READMES', ()))
+ ['README.md'])
except ImportError:
pass
if use_stdeb:
import platform
if 'debian' in platform.dist():
try:
import stdeb
except ImportError:
pass
return setup
|
python
|
{
"resource": ""
}
|
q277168
|
_create_file
|
test
|
def _create_file():
"""
Returns a file handle which is used to record audio
"""
f = wave.open('audio.wav', mode='wb')
f.setnchannels(2)
p = pyaudio.PyAudio()
f.setsampwidth(p.get_sample_size(pyaudio.paInt16))
f.setframerate(p.get_default_input_device_info()['defaultSampleRate'])
try:
yield f
finally:
f.close()
|
python
|
{
"resource": ""
}
|
q277169
|
djfrontend_h5bp_css
|
test
|
def djfrontend_h5bp_css(version=None):
"""
Returns HTML5 Boilerplate CSS file.
Included in HTML5 Boilerplate.
"""
if version is None:
version = getattr(settings, 'DJFRONTEND_H5BP_CSS', DJFRONTEND_H5BP_CSS_DEFAULT)
return format_html(
'<link rel="stylesheet" href="{0}djfrontend/css/h5bp/{1}/h5bp.css">',
_static_url, version)
|
python
|
{
"resource": ""
}
|
q277170
|
djfrontend_normalize
|
test
|
def djfrontend_normalize(version=None):
"""
Returns Normalize CSS file.
Included in HTML5 Boilerplate.
"""
if version is None:
version = getattr(settings, 'DJFRONTEND_NORMALIZE', DJFRONTEND_NORMALIZE_DEFAULT)
return format_html(
'<link rel="stylesheet" href="{0}djfrontend/css/normalize/{1}/normalize.css">',
_static_url, version)
|
python
|
{
"resource": ""
}
|
q277171
|
djfrontend_fontawesome
|
test
|
def djfrontend_fontawesome(version=None):
"""
Returns Font Awesome CSS file.
TEMPLATE_DEBUG returns full file, otherwise returns minified file.
"""
if version is None:
version = getattr(settings, 'DJFRONTEND_FONTAWESOME', DJFRONTEND_FONTAWESOME_DEFAULT)
return format_html(
'<link rel="stylesheet" href="{0}djfrontend/css/fontawesome/{1}/font-awesome{2}.css">',
_static_url, version, _min)
|
python
|
{
"resource": ""
}
|
q277172
|
djfrontend_modernizr
|
test
|
def djfrontend_modernizr(version=None):
"""
Returns Modernizr JavaScript file according to version number.
TEMPLATE_DEBUG returns full file, otherwise returns minified file.
Included in HTML5 Boilerplate.
"""
if version is None:
version = getattr(settings, 'DJFRONTEND_MODERNIZR', DJFRONTEND_MODERNIZR_DEFAULT)
if getattr(settings, 'TEMPLATE_DEBUG', False):
template = '<script src="{static}djfrontend/js/modernizr/{v}/modernizr.js"></script>'
else:
template = (
'<script src="//cdnjs.cloudflare.com/ajax/libs/modernizr/{v}/modernizr.min.js"></script>\n'
'<script>window.Modernizr || document.write(\'<script src="{static}djfrontend/js/modernizr/{v}/modernizr.min.js"><\/script>\')</script>')
return format_html(template, static=_static_url, v=version)
|
python
|
{
"resource": ""
}
|
q277173
|
djfrontend_jquery
|
test
|
def djfrontend_jquery(version=None):
"""
Returns jQuery JavaScript file according to version number.
TEMPLATE_DEBUG returns full file, otherwise returns minified file from Google CDN with local fallback.
Included in HTML5 Boilerplate.
"""
if version is None:
version = getattr(settings, 'DJFRONTEND_JQUERY', DJFRONTEND_JQUERY_DEFAULT)
if getattr(settings, 'TEMPLATE_DEBUG', False):
template = '<script src="{static}djfrontend/js/jquery/{v}/jquery.js"></script>'
else:
template = (
'<script src="//ajax.googleapis.com/ajax/libs/jquery/{v}/jquery.min.js"></script>'
'<script>window.jQuery || document.write(\'<script src="{static}djfrontend/js/jquery/{v}/jquery.min.js"><\/script>\')</script>')
return format_html(template, static=_static_url, v=version)
|
python
|
{
"resource": ""
}
|
q277174
|
djfrontend_jqueryui
|
test
|
def djfrontend_jqueryui(version=None):
"""
Returns the jQuery UI plugin file according to version number.
TEMPLATE_DEBUG returns full file, otherwise returns minified file from Google CDN with local fallback.
"""
if version is None:
version = getattr(settings, 'DJFRONTEND_JQUERYUI', DJFRONTEND_JQUERYUI_DEFAULT)
if getattr(settings, 'TEMPLATE_DEBUG', False):
return format_html(
'<script src="{0}djfrontend/js/jquery/jqueryui/{1}/jquery-ui.js"></script>',
settings.STATIC_URL, version)
else:
return format_html(
'<script src="//ajax.googleapis.com/ajax/libs/jqueryui/{v}/jquery-ui.min.js"></script>'
'<script>window.jQuery.ui || document.write(\'<script src="{static}djfrontend/js/jquery/jqueryui/{v}/jquery-ui.min.js"><\/script>\')</script>',
static=_static_url, v=version)
|
python
|
{
"resource": ""
}
|
q277175
|
djfrontend_jquery_datatables
|
test
|
def djfrontend_jquery_datatables(version=None):
"""
Returns the jQuery DataTables plugin file according to version number.
TEMPLATE_DEBUG returns full file, otherwise returns minified file.
"""
if version is None:
if not getattr(settings, 'DJFRONTEND_JQUERY_DATATABLES', False):
version = getattr(settings, 'DJFRONTEND_JQUERY_DATATABLES_VERSION', DJFRONTEND_JQUERY_DATATABLES_VERSION_DEFAULT)
else:
version = getattr(settings, 'DJFRONTEND_JQUERY_DATATABLES', DJFRONTEND_JQUERY_DATATABLES_VERSION_DEFAULT)
if getattr(settings, 'TEMPLATE_DEBUG', False):
template = '<script src="{static}djfrontend/js/jquery/jquery.dataTables/{v}/jquery.dataTables.js"></script>'
else:
template = (
'<script src="//cdnjs.cloudflare.com/ajax/libs/datatables/{v}/jquery.dataTables.min.js"></script>'
'<script>window.jQuery.fn.DataTable || document.write(\'<script src="{static}djfrontend/js/jquery/jquery.dataTables/{v}/jquery.dataTables.min.js"><\/script>\')</script>')
return format_html(template, static=_static_url, v=version)
|
python
|
{
"resource": ""
}
|
q277176
|
djfrontend_jquery_datatables_css
|
test
|
def djfrontend_jquery_datatables_css(version=None):
"""
Returns the jQuery DataTables CSS file according to version number.
"""
if version is None:
if not getattr(settings, 'DJFRONTEND_JQUERY_DATATABLES_CSS', False):
version = getattr(settings, 'DJFRONTEND_JQUERY_DATATABLES_VERSION', DJFRONTEND_JQUERY_DATATABLES_VERSION_DEFAULT)
else:
version = getattr(settings, 'DJFRONTEND_JQUERY_DATATABLES_CSS', DJFRONTEND_JQUERY_DATATABLES_VERSION_DEFAULT)
return format_html(
'<link rel="stylesheet" href="{static}djfrontend/css/jquery/jquery.dataTables/{v}/jquery.dataTables{min}.css">',
static=_static_url, v=version, min=_min)
|
python
|
{
"resource": ""
}
|
q277177
|
djfrontend_jquery_datatables_themeroller
|
test
|
def djfrontend_jquery_datatables_themeroller(version=None):
"""
Returns the jQuery DataTables ThemeRoller CSS file according to version number.
"""
if version is None:
if not getattr(settings, 'DJFRONTEND_JQUERY_DATATABLES_THEMEROLLER', False):
version = getattr(settings, 'DJFRONTEND_JQUERY_DATATABLES_VERSION', DJFRONTEND_JQUERY_DATATABLES_VERSION_DEFAULT)
else:
version = getattr(settings, 'DJFRONTEND_JQUERY_DATATABLES_THEMEROLLER', DJFRONTEND_JQUERY_DATATABLES_VERSION_DEFAULT)
return format_html(
'<link rel="stylesheet" href="href="{static}djfrontend/css/jquery/jquery.dataTables/{v}/jquery.dataTables_themeroller.min.css">',
static=_static_url, v=version)
|
python
|
{
"resource": ""
}
|
q277178
|
djfrontend_jquery_formset
|
test
|
def djfrontend_jquery_formset(version=None):
"""
Returns the jQuery Dynamic Formset plugin file according to version number.
TEMPLATE_DEBUG returns full file, otherwise returns minified file.
"""
if version is None:
version = getattr(settings, 'DJFRONTEND_JQUERY_FORMSET', DJFRONTEND_JQUERY_FORMSET_DEFAULT)
if getattr(settings, 'TEMPLATE_DEBUG', False):
template = '<script src="{static}djfrontend/js/jquery/jquery.formset/{v}/jquery.formset.js"></script>'
else:
template = (
'<script src="//cdnjs.cloudflare.com/ajax/libs/jquery.formset/{v}/jquery.formset.min.js"></script>\n'
'<script>window.jQuery.fn.formset || document.write(\'<script src="{static}djfrontend/js/jquery/jquery.formset/{v}/jquery.formset.min.js"><\/script>\')</script>')
return format_html(template, static=_static_url, v=version)
|
python
|
{
"resource": ""
}
|
q277179
|
djfrontend_jquery_scrollto
|
test
|
def djfrontend_jquery_scrollto(version=None):
"""
Returns the jQuery ScrollTo plugin file according to version number.
TEMPLATE_DEBUG returns full file, otherwise returns minified file.
"""
if version is None:
version = getattr(settings, 'DJFRONTEND_JQUERY_SCROLLTO', DJFRONTEND_JQUERY_SCROLLTO_DEFAULT)
if getattr(settings, 'TEMPLATE_DEBUG', False):
template = '<script src="{static}djfrontend/js/jquery/jquery.scrollTo/{v}/jquery.scrollTo.js"></script>'
else:
template = (
'<script src="//cdnjs.cloudflare.com/ajax/libs/jquery-scrollTo/{v}/jquery.scrollTo.min.js"></script>'
'<script>window.jQuery.fn.scrollTo || document.write(\'<script src="{static}djfrontend/js/jquery/jquery.scrollTo/{v}/jquery.scrollTo.min.js"><\/script>\')</script>')
return format_html(template, static=_static_url, v=version)
|
python
|
{
"resource": ""
}
|
q277180
|
djfrontend_jquery_smoothscroll
|
test
|
def djfrontend_jquery_smoothscroll(version=None):
"""
Returns the jQuery Smooth Scroll plugin file according to version number.
TEMPLATE_DEBUG returns full file, otherwise returns minified file.
"""
if version is None:
version = getattr(settings, 'DJFRONTEND_JQUERY_SMOOTHSCROLL', DJFRONTEND_JQUERY_SMOOTHSCROLL_DEFAULT)
if getattr(settings, 'TEMPLATE_DEBUG', False):
template = '<script src="{static}djfrontend/js/jquery/jquery.smooth-scroll/{v}/jquery.smooth-scroll.js"></script>'
else:
template = (
'<script src="//cdnjs.cloudflare.com/ajax/libs/jquery-smooth-scroll/{v}/jquery.smooth-scroll.min.js"></script>'
'<script>window.jQuery.fn.smoothScroll || document.write(\'<script src="{static}djfrontend/js/jquery/jquery.smooth-scroll/{v}/jquery.smooth-scroll.min.js"><\/script>\')</script>')
return format_html(template, static=_static_url, v=version)
|
python
|
{
"resource": ""
}
|
q277181
|
djfrontend_twbs_css
|
test
|
def djfrontend_twbs_css(version=None):
"""
Returns Twitter Bootstrap CSS file.
TEMPLATE_DEBUG returns full file, otherwise returns minified file.
"""
if version is None:
if not getattr(settings, 'DJFRONTEND_TWBS_CSS', False):
version = getattr(settings, 'DJFRONTEND_TWBS_VERSION', DJFRONTEND_TWBS_VERSION_DEFAULT)
else:
version = getattr(settings, 'DJFRONTEND_TWBS_CSS', DJFRONTEND_TWBS_VERSION_DEFAULT)
return format_html(
'<link rel="stylesheet" href="{static}djfrontend/css/twbs/{v}/bootstrap{min}.css">',
static=_static_url, v=version, min=_min)
|
python
|
{
"resource": ""
}
|
q277182
|
djfrontend_ga
|
test
|
def djfrontend_ga(account=None):
"""
Returns Google Analytics asynchronous snippet.
Use DJFRONTEND_GA_SETDOMAINNAME to set domain for multiple, or cross-domain tracking.
Set DJFRONTEND_GA_SETALLOWLINKER to use _setAllowLinker method on target site for cross-domain tracking.
Included in HTML5 Boilerplate.
"""
if account is None:
account = getattr(settings, 'DJFRONTEND_GA', False)
if account:
if getattr(settings, 'TEMPLATE_DEBUG', False):
return ''
else:
if getattr(settings, 'DJFRONTEND_GA_SETDOMAINNAME', False):
if getattr(settings, 'DJFRONTEND_GA_SETALLOWLINKER', False):
return mark_safe(
'<script>(function(i,s,o,g,r,a,m){i["GoogleAnalyticsObject"]=r;i[r]=i[r]||function(){(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)})(window,document,"script","//www.google-analytics.com/analytics.js","ga");ga("require", "linker");ga("linker:autoLink", ["%s"]);ga("create", "%s", "auto", {"allowLinker": true});ga("send", "pageview");</script>' %
(settings.DJFRONTEND_GA_SETDOMAINNAME, account))
else:
return mark_safe(
'<script>(function(i,s,o,g,r,a,m){i["GoogleAnalyticsObject"]=r;i[r]=i[r]||function(){(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)})(window,document,"script","//www.google-analytics.com/analytics.js","ga");ga("create", "%s", "%s");ga("send", "pageview");</script>' %
(account, settings.DJFRONTEND_GA_SETDOMAINNAME))
else:
return mark_safe(
'<script>(function(i,s,o,g,r,a,m){i["GoogleAnalyticsObject"]=r;i[r]=i[r]||function(){(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)})(window,document,"script","//www.google-analytics.com/analytics.js","ga");ga("create", "%s", "auto");ga("send", "pageview");</script>' % account)
else:
return ''
|
python
|
{
"resource": ""
}
|
q277183
|
CodeMirrorTextarea.render
|
test
|
def render(self, name, value, attrs=None):
u"""Render CodeMirrorTextarea"""
if self.js_var_format is not None:
js_var_bit = 'var %s = ' % (self.js_var_format % name)
else:
js_var_bit = ''
output = [super(CodeMirrorTextarea, self).render(name, value, attrs),
'<script type="text/javascript">%sCodeMirror.fromTextArea(document.getElementById(%s), %s);</script>' %
(js_var_bit, '"id_%s"' % name, self.option_json)]
return mark_safe('\n'.join(output))
|
python
|
{
"resource": ""
}
|
q277184
|
iter_auth_hashes
|
test
|
def iter_auth_hashes(user, purpose, minutes_valid):
"""
Generate auth tokens tied to user and specified purpose.
The hash expires at midnight on the minute of now + minutes_valid, such
that when minutes_valid=1 you get *at least* 1 minute to use the token.
"""
now = timezone.now().replace(microsecond=0, second=0)
for minute in range(minutes_valid + 1):
yield hashlib.sha1(
'%s:%s:%s:%s:%s' % (
now - datetime.timedelta(minutes=minute),
user.password,
purpose,
user.pk,
settings.SECRET_KEY,
),
).hexdigest()
|
python
|
{
"resource": ""
}
|
q277185
|
calc_expiry_time
|
test
|
def calc_expiry_time(minutes_valid):
"""Return specific time an auth_hash will expire."""
return (
timezone.now() + datetime.timedelta(minutes=minutes_valid + 1)
).replace(second=0, microsecond=0)
|
python
|
{
"resource": ""
}
|
q277186
|
get_user_token
|
test
|
def get_user_token(user, purpose, minutes_valid):
"""Return login token info for given user."""
token = ''.join(
dumps([
user.get_username(),
get_auth_hash(user, purpose),
]).encode('base64').split('\n')
)
return {
'id': get_meteor_id(user),
'token': token,
'tokenExpires': calc_expiry_time(minutes_valid),
}
|
python
|
{
"resource": ""
}
|
q277187
|
Users.serialize
|
test
|
def serialize(self, obj, *args, **kwargs):
"""Serialize user as per Meteor accounts serialization."""
# use default serialization, then modify to suit our needs.
data = super(Users, self).serialize(obj, *args, **kwargs)
# everything that isn't handled explicitly ends up in `profile`
profile = data.pop('fields')
profile.setdefault('name', obj.get_full_name())
fields = data['fields'] = {
'username': obj.get_username(),
'emails': [],
'profile': profile,
'permissions': sorted(self.model.get_all_permissions(obj)),
}
# clear out sensitive data
for sensitive in [
'password',
'user_permissions_ids',
'is_active',
'is_staff',
'is_superuser',
'groups_ids',
]:
profile.pop(sensitive, None)
# createdAt (default is django.contrib.auth.models.User.date_joined)
try:
fields['createdAt'] = profile.pop('date_joined')
except KeyError:
date_joined = getattr(
obj, 'get_date_joined',
lambda: getattr(obj, 'date_joined', None)
)()
if date_joined:
fields['createdAt'] = date_joined
# email (default is django.contrib.auth.models.User.email)
try:
email = profile.pop('email')
except KeyError:
email = getattr(
obj, 'get_email',
lambda: getattr(obj, 'email', None)
)()
if email:
fields['emails'].append({'address': email, 'verified': True})
return data
|
python
|
{
"resource": ""
}
|
q277188
|
Users.deserialize_profile
|
test
|
def deserialize_profile(profile, key_prefix='', pop=False):
"""De-serialize user profile fields into concrete model fields."""
result = {}
if pop:
getter = profile.pop
else:
getter = profile.get
def prefixed(name):
"""Return name prefixed by `key_prefix`."""
return '%s%s' % (key_prefix, name)
for key in profile.keys():
val = getter(key)
if key == prefixed('name'):
result['full_name'] = val
else:
raise MeteorError(400, 'Bad profile key: %r' % key)
return result
|
python
|
{
"resource": ""
}
|
q277189
|
Users.update
|
test
|
def update(self, selector, update, options=None):
"""Update user data."""
# we're ignoring the `options` argument at this time
del options
user = get_object(
self.model, selector['_id'],
pk=this.user_id,
)
profile_update = self.deserialize_profile(
update['$set'], key_prefix='profile.', pop=True,
)
if len(update['$set']) != 0:
raise MeteorError(400, 'Invalid update fields: %r')
for key, val in profile_update.items():
setattr(user, key, val)
user.save()
|
python
|
{
"resource": ""
}
|
q277190
|
Auth.auth_failed
|
test
|
def auth_failed(**credentials):
"""Consistent fail so we don't provide attackers with valuable info."""
if credentials:
user_login_failed.send_robust(
sender=__name__,
credentials=auth._clean_credentials(credentials),
)
raise MeteorError(403, 'Authentication failed.')
|
python
|
{
"resource": ""
}
|
q277191
|
Auth.validated_user
|
test
|
def validated_user(cls, token, purpose, minutes_valid):
"""Resolve and validate auth token, returns user object."""
try:
username, auth_hash = loads(token.decode('base64'))
except (ValueError, Error):
cls.auth_failed(token=token)
try:
user = cls.user_model.objects.get(**{
cls.user_model.USERNAME_FIELD: username,
'is_active': True,
})
user.backend = 'django.contrib.auth.backends.ModelBackend'
except cls.user_model.DoesNotExist:
cls.auth_failed(username=username, token=token)
if auth_hash not in iter_auth_hashes(user, purpose, minutes_valid):
cls.auth_failed(username=username, token=token)
return user
|
python
|
{
"resource": ""
}
|
q277192
|
Auth.check_secure
|
test
|
def check_secure():
"""Check request, return False if using SSL or local connection."""
if this.request.is_secure():
return True # using SSL
elif this.request.META['REMOTE_ADDR'] in [
'localhost',
'127.0.0.1',
]:
return True # localhost
raise MeteorError(403, 'Authentication refused without SSL.')
|
python
|
{
"resource": ""
}
|
q277193
|
Auth.get_username
|
test
|
def get_username(self, user):
"""Retrieve username from user selector."""
if isinstance(user, basestring):
return user
elif isinstance(user, dict) and len(user) == 1:
[(key, val)] = user.items()
if key == 'username' or (key == self.user_model.USERNAME_FIELD):
# username provided directly
return val
elif key in ('email', 'emails.address'):
email_field = getattr(self.user_model, 'EMAIL_FIELD', 'email')
if self.user_model.USERNAME_FIELD == email_field:
return val # email is username
# find username by email
return self.user_model.objects.values_list(
self.user_model.USERNAME_FIELD, flat=True,
).get(**{email_field: val})
elif key in ('id', 'pk'):
# find username by primary key (ID)
return self.user_model.objects.values_list(
self.user_model.USERNAME_FIELD, flat=True,
).get(
pk=val,
)
else:
raise MeteorError(400, 'Invalid user lookup: %r' % key)
else:
raise MeteorError(400, 'Invalid user expression: %r' % user)
|
python
|
{
"resource": ""
}
|
q277194
|
Auth.create_user
|
test
|
def create_user(self, params):
"""Register a new user account."""
receivers = create_user.send(
sender=__name__,
request=this.request,
params=params,
)
if len(receivers) == 0:
raise NotImplementedError(
'Handler for `create_user` not registered.'
)
user = receivers[0][1]
user = auth.authenticate(
username=user.get_username(), password=params['password'],
)
self.do_login(user)
return get_user_token(
user=user, purpose=HashPurpose.RESUME_LOGIN,
minutes_valid=HASH_MINUTES_VALID[HashPurpose.RESUME_LOGIN],
)
|
python
|
{
"resource": ""
}
|
q277195
|
Auth.do_login
|
test
|
def do_login(self, user):
"""Login a user."""
this.user_id = user.pk
this.user_ddp_id = get_meteor_id(user)
# silent subscription (sans sub/nosub msg) to LoggedInUser pub
this.user_sub_id = meteor_random_id()
API.do_sub(this.user_sub_id, 'LoggedInUser', silent=True)
self.update_subs(user.pk)
user_logged_in.send(
sender=user.__class__, request=this.request, user=user,
)
|
python
|
{
"resource": ""
}
|
q277196
|
Auth.do_logout
|
test
|
def do_logout(self):
"""Logout a user."""
# silent unsubscription (sans sub/nosub msg) from LoggedInUser pub
API.do_unsub(this.user_sub_id, silent=True)
del this.user_sub_id
self.update_subs(None)
user_logged_out.send(
sender=self.user_model, request=this.request, user=this.user,
)
this.user_id = None
this.user_ddp_id = None
|
python
|
{
"resource": ""
}
|
q277197
|
Auth.login
|
test
|
def login(self, params):
"""Login either with resume token or password."""
if 'password' in params:
return self.login_with_password(params)
elif 'resume' in params:
return self.login_with_resume_token(params)
else:
self.auth_failed(**params)
|
python
|
{
"resource": ""
}
|
q277198
|
Auth.login_with_password
|
test
|
def login_with_password(self, params):
"""Authenticate using credentials supplied in params."""
# never allow insecure login
self.check_secure()
username = self.get_username(params['user'])
password = self.get_password(params['password'])
user = auth.authenticate(username=username, password=password)
if user is not None:
# the password verified for the user
if user.is_active:
self.do_login(user)
return get_user_token(
user=user, purpose=HashPurpose.RESUME_LOGIN,
minutes_valid=HASH_MINUTES_VALID[HashPurpose.RESUME_LOGIN],
)
# Call to `authenticate` couldn't verify the username and password.
# It will have sent the `user_login_failed` signal, no need to pass the
# `username` argument to auth_failed().
self.auth_failed()
|
python
|
{
"resource": ""
}
|
q277199
|
Auth.login_with_resume_token
|
test
|
def login_with_resume_token(self, params):
"""
Login with existing resume token.
Either the token is valid and the user is logged in, or the token is
invalid and a non-specific ValueError("Login failed.") exception is
raised - don't be tempted to give clues to attackers as to why their
logins are invalid!
"""
# never allow insecure login
self.check_secure()
# pull the username and auth_hash from the token
user = self.validated_user(
params['resume'], purpose=HashPurpose.RESUME_LOGIN,
minutes_valid=HASH_MINUTES_VALID[HashPurpose.RESUME_LOGIN],
)
self.do_login(user)
return get_user_token(
user=user, purpose=HashPurpose.RESUME_LOGIN,
minutes_valid=HASH_MINUTES_VALID[HashPurpose.RESUME_LOGIN],
)
|
python
|
{
"resource": ""
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.