_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q3800
AsciiFormatter.format
train
def format(self, model: AssetAllocationModel, full: bool = False): """ Returns the view-friendly output of the aa model """ self.full = full # Header output = f"Asset Allocation model, total: {model.currency} {model.total_amount:,.2f}\n" # Column Headers for column in self.columns: name = column['name'] if not self.full and name == "loc.cur.": # Skip local currency if not displaying stocks. continue width = column["width"] output += f"{name:^{width}}" output += "\n" output += f"-------------------------------------------------------------------------------\n" # Asset classes view_model = ModelMapper(model).map_to_linear(self.full) for row in view_model: output += self.__format_row(row) + "\n" return output
python
{ "resource": "" }
q3801
AsciiFormatter.__format_row
train
def __format_row(self, row: AssetAllocationViewModel): """ display-format one row Formats one Asset Class record """ output = "" index = 0 # Name value = row.name # Indent according to depth. for _ in range(0, row.depth): value = f" {value}" output += self.append_text_column(value, index) # Set Allocation value = "" index += 1 if row.set_allocation > 0: value = f"{row.set_allocation:.2f}" output += self.append_num_column(value, index) # Current Allocation value = "" index += 1 if row.curr_allocation > Decimal(0): value = f"{row.curr_allocation:.2f}" output += self.append_num_column(value, index) # Allocation difference, percentage value = "" index += 1 if row.alloc_diff_perc.copy_abs() > Decimal(0): value = f"{row.alloc_diff_perc:.0f} %" output += self.append_num_column(value, index) # Allocated value index += 1 value = "" if row.set_value: value = f"{row.set_value:,.0f}" output += self.append_num_column(value, index) # Current Value index += 1 value = f"{row.curr_value:,.0f}" output += self.append_num_column(value, index) # Value in security's currency. Show only if displaying full model, with stocks. index += 1 if self.full: value = "" if row.curr_value_own_currency: value = f"({row.curr_value_own_currency:,.0f}" value += f" {row.own_currency}" value += ")" output += self.append_num_column(value, index) # https://en.wikipedia.org/wiki/ANSI_escape_code # CSI="\x1B[" # red = 31, green = 32 # output += CSI+"31;40m" + "Colored Text" + CSI + "0m" # Value diff index += 1 value = "" if row.diff_value: value = f"{row.diff_value:,.0f}" # Color the output # value = f"{CSI};40m{value}{CSI};40m" output += self.append_num_column(value, index) return output
python
{ "resource": "" }
q3802
AssetClassMapper.map_entity
train
def map_entity(self, entity: dal.AssetClass): """ maps data from entity -> object """ obj = model.AssetClass() obj.id = entity.id obj.parent_id = entity.parentid obj.name = entity.name obj.allocation = entity.allocation obj.sort_order = entity.sortorder #entity.stock_links #entity.diff_adjustment if entity.parentid == None: obj.depth = 0 return obj
python
{ "resource": "" }
q3803
ModelMapper.map_to_linear
train
def map_to_linear(self, with_stocks: bool=False): """ Maps the tree to a linear representation suitable for display """ result = [] for ac in self.model.classes: rows = self.__get_ac_tree(ac, with_stocks) result += rows return result
python
{ "resource": "" }
q3804
ModelMapper.__get_ac_tree
train
def __get_ac_tree(self, ac: model.AssetClass, with_stocks: bool): """ formats the ac tree - entity with child elements """ output = [] output.append(self.__get_ac_row(ac)) for child in ac.classes: output += self.__get_ac_tree(child, with_stocks) if with_stocks: for stock in ac.stocks: row = None if isinstance(stock, Stock): row = self.__get_stock_row(stock, ac.depth + 1) elif isinstance(stock, CashBalance): row = self.__get_cash_row(stock, ac.depth + 1) output.append(row) return output
python
{ "resource": "" }
q3805
ModelMapper.__get_ac_row
train
def __get_ac_row(self, ac: model.AssetClass) -> AssetAllocationViewModel: """ Formats one Asset Class record """ view_model = AssetAllocationViewModel() view_model.depth = ac.depth # Name view_model.name = ac.name view_model.set_allocation = ac.allocation view_model.curr_allocation = ac.curr_alloc view_model.diff_allocation = ac.alloc_diff view_model.alloc_diff_perc = ac.alloc_diff_perc # value view_model.curr_value = ac.curr_value # expected value view_model.set_value = ac.alloc_value # diff view_model.diff_value = ac.value_diff return view_model
python
{ "resource": "" }
q3806
AppAggregate.create_asset_class
train
def create_asset_class(self, item: AssetClass): """ Inserts the record """ session = self.open_session() session.add(item) session.commit()
python
{ "resource": "" }
q3807
AppAggregate.add_stock_to_class
train
def add_stock_to_class(self, assetclass_id: int, symbol: str): """ Add a stock link to an asset class """ assert isinstance(symbol, str) assert isinstance(assetclass_id, int) item = AssetClassStock() item.assetclassid = assetclass_id item.symbol = symbol session = self.open_session() session.add(item) self.save() return item
python
{ "resource": "" }
q3808
AppAggregate.delete
train
def delete(self, id: int): """ Delete asset class """ assert isinstance(id, int) self.open_session() to_delete = self.get(id) self.session.delete(to_delete) self.save()
python
{ "resource": "" }
q3809
AppAggregate.find_unallocated_holdings
train
def find_unallocated_holdings(self): """ Identifies any holdings that are not included in asset allocation """ # Get linked securities session = self.open_session() linked_entities = session.query(AssetClassStock).all() linked = [] # linked = map(lambda x: f"{x.symbol}", linked_entities) for item in linked_entities: linked.append(item.symbol) # Get all securities with balance > 0. from .stocks import StocksInfo stocks = StocksInfo() stocks.logger = self.logger holdings = stocks.get_symbols_with_positive_balances() # Find those which are not included in the stock links. non_alloc = [] index = -1 for item in holdings: try: index = linked.index(item) self.logger.debug(index) except ValueError: non_alloc.append(item) return non_alloc
python
{ "resource": "" }
q3810
AppAggregate.get
train
def get(self, id: int) -> AssetClass: """ Loads Asset Class """ self.open_session() item = self.session.query(AssetClass).filter( AssetClass.id == id).first() return item
python
{ "resource": "" }
q3811
AppAggregate.open_session
train
def open_session(self): """ Opens a db session and returns it """ from .dal import get_session cfg = Config() cfg.logger = self.logger db_path = cfg.get(ConfigKeys.asset_allocation_database_path) self.session = get_session(db_path) return self.session
python
{ "resource": "" }
q3812
AppAggregate.get_asset_allocation
train
def get_asset_allocation(self): """ Creates and populates the Asset Allocation model. The main function of the app. """ # load from db # TODO set the base currency base_currency = "EUR" loader = AssetAllocationLoader(base_currency=base_currency) loader.logger = self.logger model = loader.load_tree_from_db() model.validate() # securities # read stock links loader.load_stock_links() # read stock quantities from GnuCash loader.load_stock_quantity() # Load cash balances loader.load_cash_balances() # loader.session # read prices from Prices database loader.load_stock_prices() # recalculate stock values into base currency loader.recalculate_stock_values_into_base() # calculate model.calculate_current_value() model.calculate_set_values() model.calculate_current_allocation() # return the model for display return model
python
{ "resource": "" }
q3813
AppAggregate.validate_model
train
def validate_model(self): """ Validate the model """ model: AssetAllocationModel = self.get_asset_allocation_model() model.logger = self.logger valid = model.validate() if valid: print(f"The model is valid. Congratulations") else: print(f"The model is invalid.")
python
{ "resource": "" }
q3814
AppAggregate.export_symbols
train
def export_symbols(self): """ Exports all used symbols """ session = self.open_session() links = session.query(AssetClassStock).order_by( AssetClassStock.symbol).all() output = [] for link in links: output.append(link.symbol + '\n') # Save output to a text file. with open("symbols.txt", mode='w') as file: file.writelines(output) print("Symbols exported to symbols.txt")
python
{ "resource": "" }
q3815
Config.__read_config
train
def __read_config(self, file_path: str): """ Read the config file """ if not os.path.exists(file_path): raise FileNotFoundError("File path not found: %s", file_path) # check if file exists if not os.path.isfile(file_path): log(ERROR, "file not found: %s", file_path) raise FileNotFoundError("configuration file not found %s", file_path) self.config.read(file_path)
python
{ "resource": "" }
q3816
Config.__create_user_config
train
def __create_user_config(self): """ Copy the config template into user's directory """ src_path = self.__get_config_template_path() src = os.path.abspath(src_path) if not os.path.exists(src): log(ERROR, "Config template not found %s", src) raise FileNotFoundError() dst = os.path.abspath(self.get_config_path()) shutil.copyfile(src, dst) if not os.path.exists(dst): raise FileNotFoundError("Config file could not be copied to user dir!")
python
{ "resource": "" }
q3817
set
train
def set(aadb, cur): """ Sets the values in the config file """ cfg = Config() edited = False if aadb: cfg.set(ConfigKeys.asset_allocation_database_path, aadb) print(f"The database has been set to {aadb}.") edited = True if cur: cfg.set(ConfigKeys.default_currency, cur) edited = True if edited: print(f"Changes saved.") else: print(f"No changes were made.") print(f"Use --help parameter for more information.")
python
{ "resource": "" }
q3818
get
train
def get(aadb: str): """ Retrieves a value from config """ if (aadb): cfg = Config() value = cfg.get(ConfigKeys.asset_allocation_database_path) click.echo(value) if not aadb: click.echo("Use --help for more information.")
python
{ "resource": "" }
q3819
_AssetBase.fullname
train
def fullname(self): """ includes the full path with parent names """ prefix = "" if self.parent: if self.parent.fullname: prefix = self.parent.fullname + ":" else: # Only the root does not have a parent. In that case we also don't need a name. return "" return prefix + self.name
python
{ "resource": "" }
q3820
Stock.asset_class
train
def asset_class(self) -> str: """ Returns the full asset class path for this stock """ result = self.parent.name if self.parent else "" # Iterate to the top asset class and add names. cursor = self.parent while cursor: result = cursor.name + ":" + result cursor = cursor.parent return result
python
{ "resource": "" }
q3821
AssetClass.child_allocation
train
def child_allocation(self): """ The sum of all child asset classes' allocations """ sum = Decimal(0) if self.classes: for child in self.classes: sum += child.child_allocation else: # This is not a branch but a leaf. Return own allocation. sum = self.allocation return sum
python
{ "resource": "" }
q3822
AssetAllocationModel.get_class_by_id
train
def get_class_by_id(self, ac_id: int) -> AssetClass: """ Finds the asset class by id """ assert isinstance(ac_id, int) # iterate recursively for ac in self.asset_classes: if ac.id == ac_id: return ac # if nothing returned so far. return None
python
{ "resource": "" }
q3823
AssetAllocationModel.get_cash_asset_class
train
def get_cash_asset_class(self) -> AssetClass: """ Find the cash asset class by name. """ for ac in self.asset_classes: if ac.name.lower() == "cash": return ac return None
python
{ "resource": "" }
q3824
AssetAllocationModel.validate
train
def validate(self) -> bool: """ Validate that the values match. Incomplete! """ # Asset class allocation should match the sum of children's allocations. # Each group should be compared. sum = Decimal(0) # Go through each asset class, not just the top level. for ac in self.asset_classes: if ac.classes: # get the sum of all the children's allocations child_alloc_sum = ac.child_allocation # compare to set allocation if ac.allocation != child_alloc_sum: message = f"The sum of child allocations {child_alloc_sum:.2f} invalid for {ac}!" self.logger.warning(message) print(message) return False # also make sure that the sum of 1st level children matches 100 for ac in self.classes: sum += ac.allocation if sum != Decimal(100): message = f"The sum of all allocations ({sum:.2f}) does not equal 100!" self.logger.warning(message) print(message) return False return True
python
{ "resource": "" }
q3825
AssetAllocationModel.calculate_set_values
train
def calculate_set_values(self): """ Calculate the expected totals based on set allocations """ for ac in self.asset_classes: ac.alloc_value = self.total_amount * ac.allocation / Decimal(100)
python
{ "resource": "" }
q3826
AssetAllocationModel.calculate_current_allocation
train
def calculate_current_allocation(self): """ Calculates the current allocation % based on the value """ for ac in self.asset_classes: ac.curr_alloc = ac.curr_value * 100 / self.total_amount
python
{ "resource": "" }
q3827
AssetAllocationModel.calculate_current_value
train
def calculate_current_value(self): """ Add all the stock values and assign to the asset classes """ # must be recursive total = Decimal(0) for ac in self.classes: self.__calculate_current_value(ac) total += ac.curr_value self.total_amount = total
python
{ "resource": "" }
q3828
AssetAllocationModel.__calculate_current_value
train
def __calculate_current_value(self, asset_class: AssetClass): """ Calculate totals for asset class by adding all the children values """ # Is this the final asset class, the one with stocks? if asset_class.stocks: # add all the stocks stocks_sum = Decimal(0) for stock in asset_class.stocks: # recalculate into base currency! stocks_sum += stock.value_in_base_currency asset_class.curr_value = stocks_sum if asset_class.classes: # load totals for child classes for child in asset_class.classes: self.__calculate_current_value(child) asset_class.curr_value += child.curr_value
python
{ "resource": "" }
q3829
CurrencyConverter.load_currency
train
def load_currency(self, mnemonic: str): """ load the latest rate for the given mnemonic; expressed in the base currency """ # , base_currency: str <= ignored for now. if self.rate and self.rate.currency == mnemonic: # Already loaded. return app = PriceDbApplication() # TODO use the base_currency parameter for the query #33 symbol = SecuritySymbol("CURRENCY", mnemonic) self.rate = app.get_latest_price(symbol) if not self.rate: raise ValueError(f"No rate found for {mnemonic}!")
python
{ "resource": "" }
q3830
show
train
def show(format, full): """ Print current allocation to the console. """ # load asset allocation app = AppAggregate() app.logger = logger model = app.get_asset_allocation() if format == "ascii": formatter = AsciiFormatter() elif format == "html": formatter = HtmlFormatter else: raise ValueError(f"Unknown formatter {format}") # formatters can display stock information with --full output = formatter.format(model, full=full) print(output)
python
{ "resource": "" }
q3831
AssetAllocationLoader.load_cash_balances
train
def load_cash_balances(self): """ Loads cash balances from GnuCash book and recalculates into the default currency """ from gnucash_portfolio.accounts import AccountsAggregate, AccountAggregate cfg = self.__get_config() cash_root_name = cfg.get(ConfigKeys.cash_root) # Load cash from all accounts under the root. gc_db = self.config.get(ConfigKeys.gnucash_book_path) with open_book(gc_db, open_if_lock=True) as book: svc = AccountsAggregate(book) root_account = svc.get_by_fullname(cash_root_name) acct_svc = AccountAggregate(book, root_account) cash_balances = acct_svc.load_cash_balances_with_children(cash_root_name) # Treat each sum per currency as a Stock, for display in full mode. self.__store_cash_balances_per_currency(cash_balances)
python
{ "resource": "" }
q3832
AssetAllocationLoader.__store_cash_balances_per_currency
train
def __store_cash_balances_per_currency(self, cash_balances): """ Store balance per currency as Stock records under Cash class """ cash = self.model.get_cash_asset_class() for cur_symbol in cash_balances: item = CashBalance(cur_symbol) item.parent = cash quantity = cash_balances[cur_symbol]["total"] item.value = Decimal(quantity) item.currency = cur_symbol # self.logger.debug(f"adding {item}") cash.stocks.append(item) self.model.stocks.append(item)
python
{ "resource": "" }
q3833
AssetAllocationLoader.load_tree_from_db
train
def load_tree_from_db(self) -> AssetAllocationModel: """ Reads the asset allocation data only, and constructs the AA tree """ self.model = AssetAllocationModel() # currency self.model.currency = self.__get_config().get(ConfigKeys.default_currency) # Asset Classes db = self.__get_session() first_level = ( db.query(dal.AssetClass) .filter(dal.AssetClass.parentid == None) .order_by(dal.AssetClass.sortorder) .all() ) # create tree for entity in first_level: ac = self.__map_entity(entity) self.model.classes.append(ac) # Add to index self.model.asset_classes.append(ac) # append child classes recursively self.__load_child_classes(ac) return self.model
python
{ "resource": "" }
q3834
AssetAllocationLoader.load_stock_links
train
def load_stock_links(self): """ Read stock links into the model """ links = self.__get_session().query(dal.AssetClassStock).all() for entity in links: # log(DEBUG, f"adding {entity.symbol} to {entity.assetclassid}") # mapping stock: Stock = Stock(entity.symbol) # find parent classes by id and assign children parent: AssetClass = self.model.get_class_by_id(entity.assetclassid) if parent: # Assign to parent. parent.stocks.append(stock) # Add to index for easy reference self.model.stocks.append(stock)
python
{ "resource": "" }
q3835
AssetAllocationLoader.load_stock_quantity
train
def load_stock_quantity(self): """ Loads quantities for all stocks """ info = StocksInfo(self.config) for stock in self.model.stocks: stock.quantity = info.load_stock_quantity(stock.symbol) info.gc_book.close()
python
{ "resource": "" }
q3836
AssetAllocationLoader.load_stock_prices
train
def load_stock_prices(self): """ Load latest prices for securities """ from pricedb import SecuritySymbol info = StocksInfo(self.config) for item in self.model.stocks: symbol = SecuritySymbol("", "") symbol.parse(item.symbol) price: PriceModel = info.load_latest_price(symbol) if not price: # Use a dummy price of 1, effectively keeping the original amount. price = PriceModel() price.currency = self.config.get(ConfigKeys.default_currency) price.value = Decimal(1) item.price = price.value if isinstance(item, Stock): item.currency = price.currency # Do not set currency for Cash balance records. info.close_databases()
python
{ "resource": "" }
q3837
AssetAllocationLoader.recalculate_stock_values_into_base
train
def recalculate_stock_values_into_base(self): """ Loads the exchange rates and recalculates stock holding values into base currency """ from .currency import CurrencyConverter conv = CurrencyConverter() cash = self.model.get_cash_asset_class() for stock in self.model.stocks: if stock.currency != self.base_currency: # Recalculate into base currency conv.load_currency(stock.currency) assert isinstance(stock.value, Decimal) val_base = stock.value * conv.rate.value else: # Already in base currency. val_base = stock.value stock.value_in_base_currency = val_base
python
{ "resource": "" }
q3838
AssetAllocationLoader.__map_entity
train
def __map_entity(self, entity: dal.AssetClass) -> AssetClass: """ maps the entity onto the model object """ mapper = self.__get_mapper() ac = mapper.map_entity(entity) return ac
python
{ "resource": "" }
q3839
AssetAllocationLoader.__get_session
train
def __get_session(self): """ Opens a db session """ db_path = self.__get_config().get(ConfigKeys.asset_allocation_database_path) self.session = dal.get_session(db_path) return self.session
python
{ "resource": "" }
q3840
AssetAllocationLoader.__load_asset_class
train
def __load_asset_class(self, ac_id: int): """ Loads Asset Class entity """ # open database db = self.__get_session() entity = db.query(dal.AssetClass).filter(dal.AssetClass.id == ac_id).first() return entity
python
{ "resource": "" }
q3841
get_session
train
def get_session(db_path: str): """ Creates and opens a database session """ # cfg = Config() # db_path = cfg.get(ConfigKeys.asset_allocation_database_path) # connection con_str = "sqlite:///" + db_path # Display all SQLite info with echo. engine = create_engine(con_str, echo=False) # create metadata (?) Base.metadata.create_all(engine) # create session Session = sessionmaker(bind=engine) session = Session() return session
python
{ "resource": "" }
q3842
add
train
def add(name): """ Add new Asset Class """ item = AssetClass() item.name = name app = AppAggregate() app.create_asset_class(item) print(f"Asset class {name} created.")
python
{ "resource": "" }
q3843
edit
train
def edit(id: int, parent: int, alloc: Decimal): """ Edit asset class """ saved = False # load app = AppAggregate() item = app.get(id) if not item: raise KeyError("Asset Class with id %s not found.", id) if parent: assert parent != id, "Parent can not be set to self." # TODO check if parent exists? item.parentid = parent saved = True # click.echo(f"parent set to {parent}") if alloc: assert alloc != Decimal(0) item.allocation = alloc saved = True app.save() if saved: click.echo("Data saved.") else: click.echo("No data modified. Use --help to see possible parameters.")
python
{ "resource": "" }
q3844
my_list
train
def my_list(): """ Lists all asset classes """ session = AppAggregate().open_session() classes = session.query(AssetClass).all() for item in classes: print(item)
python
{ "resource": "" }
q3845
tree
train
def tree(): """ Display a tree of asset classes """ session = AppAggregate().open_session() classes = session.query(AssetClass).all() # Get the root classes root = [] for ac in classes: if ac.parentid is None: root.append(ac) # logger.debug(ac.parentid) # header print_row("id", "asset class", "allocation", "level") print(f"-------------------------------") for ac in root: print_item_with_children(ac, classes, 0)
python
{ "resource": "" }
q3846
print_item_with_children
train
def print_item_with_children(ac, classes, level): """ Print the given item and all children items """ print_row(ac.id, ac.name, f"{ac.allocation:,.2f}", level) print_children_recursively(classes, ac, level + 1)
python
{ "resource": "" }
q3847
print_children_recursively
train
def print_children_recursively(all_items, for_item, level): """ Print asset classes recursively """ children = [child for child in all_items if child.parentid == for_item.id] for child in children: #message = f"{for_item.name}({for_item.id}) is a parent to {child.name}({child.id})" indent = " " * level * 2 id_col = f"{indent} {child.id}" print_row(id_col, child.name, f"{child.allocation:,.2f}", level) # Process children. print_children_recursively(all_items, child, level+1)
python
{ "resource": "" }
q3848
print_row
train
def print_row(*argv): """ Print one row of data """ #for i in range(0, len(argv)): # row += f"{argv[i]}" # columns row = "" # id row += f"{argv[0]:<3}" # name row += f" {argv[1]:<13}" # allocation row += f" {argv[2]:>5}" # level #row += f"{argv[3]}" print(row)
python
{ "resource": "" }
q3849
render_html
train
def render_html(input_text, **context): """ A module-level convenience method that creates a default bbcode parser, and renders the input string as HTML. """ global g_parser if g_parser is None: g_parser = Parser() return g_parser.format(input_text, **context)
python
{ "resource": "" }
q3850
Parser.add_simple_formatter
train
def add_simple_formatter(self, tag_name, format_string, **kwargs): """ Installs a formatter that takes the tag options dictionary, puts a value key in it, and uses it as a format dictionary to the given format string. """ def _render(name, value, options, parent, context): fmt = {} if options: fmt.update(options) fmt.update({'value': value}) return format_string % fmt self.add_formatter(tag_name, _render, **kwargs)
python
{ "resource": "" }
q3851
Parser._newline_tokenize
train
def _newline_tokenize(self, data): """ Given a string that does not contain any tags, this function will return a list of NEWLINE and DATA tokens such that if you concatenate their data, you will have the original string. """ parts = data.split('\n') tokens = [] for num, part in enumerate(parts): if part: tokens.append((self.TOKEN_DATA, None, None, part)) if num < (len(parts) - 1): tokens.append((self.TOKEN_NEWLINE, None, None, '\n')) return tokens
python
{ "resource": "" }
q3852
Parser._link_replace
train
def _link_replace(self, match, **context): """ Callback for re.sub to replace link text with markup. Turns out using a callback function is actually faster than using backrefs, plus this lets us provide a hook for user customization. linker_takes_context=True means that the linker gets passed context like a standard format function. """ url = match.group(0) if self.linker: if self.linker_takes_context: return self.linker(url, context) else: return self.linker(url) else: href = url if '://' not in href: href = 'http://' + href # Escape quotes to avoid XSS, let the browser escape the rest. return self.url_template.format(href=href.replace('"', '%22'), text=url)
python
{ "resource": "" }
q3853
Parser._transform
train
def _transform(self, data, escape_html, replace_links, replace_cosmetic, transform_newlines, **context): """ Transforms the input string based on the options specified, taking into account whether the option is enabled globally for this parser. """ url_matches = {} if self.replace_links and replace_links: # If we're replacing links in the text (i.e. not those in [url] tags) then we need to be # careful to pull them out before doing any escaping or cosmetic replacement. pos = 0 while True: match = _url_re.search(data, pos) if not match: break # Replace any link with a token that we can substitute back in after replacements. token = '{{ bbcode-link-%s }}' % len(url_matches) url_matches[token] = self._link_replace(match, **context) start, end = match.span() data = data[:start] + token + data[end:] # To be perfectly accurate, this should probably be len(data[:start] + token), but # start will work, because the token itself won't match as a URL. pos = start if escape_html: data = self._replace(data, self.REPLACE_ESCAPE) if replace_cosmetic: data = self._replace(data, self.REPLACE_COSMETIC) # Now put the replaced links back in the text. for token, replacement in url_matches.items(): data = data.replace(token, replacement) if transform_newlines: data = data.replace('\n', '\r') return data
python
{ "resource": "" }
q3854
Parser.format
train
def format(self, data, **context): """ Formats the input text using any installed renderers. Any context keyword arguments given here will be passed along to the render functions as a context dictionary. """ tokens = self.tokenize(data) full_context = self.default_context.copy() full_context.update(context) return self._format_tokens(tokens, None, **full_context).replace('\r', self.newline)
python
{ "resource": "" }
q3855
Parser.strip
train
def strip(self, data, strip_newlines=False): """ Strips out any tags from the input text, using the same tokenization as the formatter. """ text = [] for token_type, tag_name, tag_opts, token_text in self.tokenize(data): if token_type == self.TOKEN_DATA: text.append(token_text) elif token_type == self.TOKEN_NEWLINE and not strip_newlines: text.append(token_text) return ''.join(text)
python
{ "resource": "" }
q3856
mode_in_range
train
def mode_in_range(a, axis=0, tol=1E-3): """Find the mode of values to within a certain range""" a_trunc = a // tol vals, counts = mode(a_trunc, axis) mask = (a_trunc == vals) # mean of each row return np.sum(a * mask, axis) / np.sum(mask, axis)
python
{ "resource": "" }
q3857
PeriodicModeler.score_frequency_grid
train
def score_frequency_grid(self, f0, df, N): """Compute the score on a frequency grid. Some models can compute results faster if the inputs are passed in this manner. Parameters ---------- f0, df, N : (float, float, int) parameters describing the frequency grid freq = f0 + df * arange(N) Note that these are frequencies, not angular frequencies. Returns ------- score : ndarray the length-N array giving the score at each frequency """ return self._score_frequency_grid(f0, df, N)
python
{ "resource": "" }
q3858
PeriodicModeler.periodogram_auto
train
def periodogram_auto(self, oversampling=5, nyquist_factor=3, return_periods=True): """Compute the periodogram on an automatically-determined grid This function uses heuristic arguments to choose a suitable frequency grid for the data. Note that depending on the data window function, the model may be sensitive to periodicity at higher frequencies than this function returns! The final number of frequencies will be Nf = oversampling * nyquist_factor * len(t) / 2 Parameters ---------- oversampling : float the number of samples per approximate peak width nyquist_factor : float the highest frequency, in units of the nyquist frequency for points spread uniformly through the data range. Returns ------- period : ndarray the grid of periods power : ndarray the power at each frequency """ N = len(self.t) T = np.max(self.t) - np.min(self.t) df = 1. / T / oversampling f0 = df Nf = int(0.5 * oversampling * nyquist_factor * N) freq = f0 + df * np.arange(Nf) return 1. / freq, self._score_frequency_grid(f0, df, Nf)
python
{ "resource": "" }
q3859
PeriodicModeler.score
train
def score(self, periods=None): """Compute the periodogram for the given period or periods Parameters ---------- periods : float or array_like Array of periods at which to compute the periodogram. Returns ------- scores : np.ndarray Array of normalized powers (between 0 and 1) for each period. Shape of scores matches the shape of the provided periods. """ periods = np.asarray(periods) return self._score(periods.ravel()).reshape(periods.shape)
python
{ "resource": "" }
q3860
PeriodicModeler.best_period
train
def best_period(self): """Lazy evaluation of the best period given the model""" if self._best_period is None: self._best_period = self._calc_best_period() return self._best_period
python
{ "resource": "" }
q3861
PeriodicModeler.find_best_periods
train
def find_best_periods(self, n_periods=5, return_scores=False): """Find the top several best periods for the model""" return self.optimizer.find_best_periods(self, n_periods, return_scores=return_scores)
python
{ "resource": "" }
q3862
LeastSquaresMixin._construct_X_M
train
def _construct_X_M(self, omega, **kwargs): """Construct the weighted normal matrix of the problem""" X = self._construct_X(omega, weighted=True, **kwargs) M = np.dot(X.T, X) if getattr(self, 'regularization', None) is not None: diag = M.ravel(order='K')[::M.shape[0] + 1] if self.regularize_by_trace: diag += diag.sum() * np.asarray(self.regularization) else: diag += np.asarray(self.regularization) return X, M
python
{ "resource": "" }
q3863
LombScargle._construct_X
train
def _construct_X(self, omega, weighted=True, **kwargs): """Construct the design matrix for the problem""" t = kwargs.get('t', self.t) dy = kwargs.get('dy', self.dy) fit_offset = kwargs.get('fit_offset', self.fit_offset) if fit_offset: offsets = [np.ones(len(t))] else: offsets = [] cols = sum(([np.sin((i + 1) * omega * t), np.cos((i + 1) * omega * t)] for i in range(self.Nterms)), offsets) if weighted: return np.transpose(np.vstack(cols) / dy) else: return np.transpose(np.vstack(cols))
python
{ "resource": "" }
q3864
BaseTemplateModeler._interpolated_template
train
def _interpolated_template(self, templateid): """Return an interpolator for the given template""" phase, y = self._get_template_by_id(templateid) # double-check that phase ranges from 0 to 1 assert phase.min() >= 0 assert phase.max() <= 1 # at the start and end points, we need to add ~5 points to make sure # the spline & derivatives wrap appropriately phase = np.concatenate([phase[-5:] - 1, phase, phase[:5] + 1]) y = np.concatenate([y[-5:], y, y[:5]]) # Univariate spline allows for derivatives; use this! return UnivariateSpline(phase, y, s=0, k=5)
python
{ "resource": "" }
q3865
BaseTemplateModeler._eval_templates
train
def _eval_templates(self, period): """Evaluate the best template for the given period""" theta_best = [self._optimize(period, tmpid) for tmpid, _ in enumerate(self.templates)] chi2 = [self._chi2(theta, period, tmpid) for tmpid, theta in enumerate(theta_best)] return theta_best, chi2
python
{ "resource": "" }
q3866
BaseTemplateModeler._model
train
def _model(self, t, theta, period, tmpid): """Compute model at t for the given parameters, period, & template""" template = self.templates[tmpid] phase = (t / period - theta[2]) % 1 return theta[0] + theta[1] * template(phase)
python
{ "resource": "" }
q3867
BaseTemplateModeler._chi2
train
def _chi2(self, theta, period, tmpid, return_gradient=False): """ Compute the chi2 for the given parameters, period, & template Optionally return the gradient for faster optimization """ template = self.templates[tmpid] phase = (self.t / period - theta[2]) % 1 model = theta[0] + theta[1] * template(phase) chi2 = (((model - self.y) / self.dy) ** 2).sum() if return_gradient: grad = 2 * (model - self.y) / self.dy ** 2 gradient = np.array([np.sum(grad), np.sum(grad * template(phase)), -np.sum(grad * theta[1] * template.derivative(1)(phase))]) return chi2, gradient else: return chi2
python
{ "resource": "" }
q3868
BaseTemplateModeler._optimize
train
def _optimize(self, period, tmpid, use_gradient=True): """Optimize the model for the given period & template""" theta_0 = [self.y.min(), self.y.max() - self.y.min(), 0] result = minimize(self._chi2, theta_0, jac=bool(use_gradient), bounds=[(None, None), (0, None), (None, None)], args=(period, tmpid, use_gradient)) return result.x
python
{ "resource": "" }
q3869
factorial
train
def factorial(N): """Compute the factorial of N. If N <= 10, use a fast lookup table; otherwise use scipy.special.factorial """ if N < len(FACTORIALS): return FACTORIALS[N] else: from scipy import special return int(special.factorial(N))
python
{ "resource": "" }
q3870
RRLyraeGenerated.observed
train
def observed(self, band, corrected=True): """Return observed values in the given band Parameters ---------- band : str desired bandpass: should be one of ['u', 'g', 'r', 'i', 'z'] corrected : bool (optional) If true, correct for extinction Returns ------- t, mag, dmag : ndarrays The times, magnitudes, and magnitude errors for the specified band. """ if band not in 'ugriz': raise ValueError("band='{0}' not recognized".format(band)) i = 'ugriz'.find(band) t, y, dy = self.lcdata.get_lightcurve(self.lcid, return_1d=False) if corrected: ext = self.obsmeta['rExt'] * self.ext_correction[band] else: ext = 0 return t[:, i], y[:, i] - ext, dy[:, i]
python
{ "resource": "" }
q3871
RRLyraeGenerated.generated
train
def generated(self, band, t, err=None, corrected=True): """Return generated magnitudes in the specified band Parameters ---------- band : str desired bandpass: should be one of ['u', 'g', 'r', 'i', 'z'] t : array_like array of times (in days) err : float or array_like gaussian error in observations corrected : bool (optional) If true, correct for extinction Returns ------- mag : ndarray magnitudes at the specified times under the generated model. """ t = np.asarray(t) num = self.meta[band + 'T'] mu = self.meta[band + '0'] amp = self.meta[band + 'A'] t0 = self.meta[band + 'E'] # if there are nans or infinities, mask them bad_vals = np.isnan(t) | np.isinf(t) t[bad_vals] = t0 if corrected: ext = 0 else: ext = self.obsmeta['rExt'] * self.ext_correction[band] func = self._template_func(num, band, mu + ext, amp) mag = func(((t - t0) / self.period) % 1) mag[bad_vals] = np.nan if err is not None: mag += self.rng.normal(0, err, t.shape) return mag
python
{ "resource": "" }
q3872
fetch_rrlyrae
train
def fetch_rrlyrae(partial=False, **kwargs): """Fetch RR Lyrae light curves from Sesar 2010 Parameters ---------- partial : bool (optional) If true, return the partial dataset (reduced to 1 band per night) Returns ------- rrlyrae : :class:`RRLyraeLC` object This object contains pointers to the RR Lyrae data. Other Parameters ---------------- data_home : str (optional) Specify the local cache directory for the dataset. If not used, it will default to the ``astroML`` default location. url : str (optional) Specify the URL of the datasets. Defaults to webpage associated with Sesar 2010. force_download : bool (optional) If true, then force re-downloading data even if it is already cached locally. Default is False. Examples -------- >>> rrlyrae = fetch_rrlyrae() >>> rrlyrae.ids[:5] [1013184, 1019544, 1027882, 1052471, 1056152] >>> lcid = rrlyrae.ids[0] >>> t, mag, dmag, bands = rrlyrae.get_lightcurve(lcid) >>> t[:4] array([ 51081.347856, 51081.349522, 51081.346189, 51081.347022]) >>> mag[:4] array([ 18.702, 17.553, 17.236, 17.124]) >>> dmag[:4] array([ 0.021, 0.005, 0.005, 0.006]) >>> list(bands[:4]) ['u', 'g', 'r', 'i'] """ if partial: return PartialRRLyraeLC('table1.tar.gz', cache_kwargs=kwargs) else: return RRLyraeLC('table1.tar.gz', cache_kwargs=kwargs)
python
{ "resource": "" }
q3873
fetch_rrlyrae_lc_params
train
def fetch_rrlyrae_lc_params(**kwargs): """Fetch data from table 2 of Sesar 2010 This table includes observationally-derived parameters for all the Sesar 2010 lightcurves. """ save_loc = _get_download_or_cache('table2.dat.gz', **kwargs) dtype = [('id', 'i'), ('type', 'S2'), ('P', 'f'), ('uA', 'f'), ('u0', 'f'), ('uE', 'f'), ('uT', 'f'), ('gA', 'f'), ('g0', 'f'), ('gE', 'f'), ('gT', 'f'), ('rA', 'f'), ('r0', 'f'), ('rE', 'f'), ('rT', 'f'), ('iA', 'f'), ('i0', 'f'), ('iE', 'f'), ('iT', 'f'), ('zA', 'f'), ('z0', 'f'), ('zE', 'f'), ('zT', 'f')] return np.loadtxt(save_loc, dtype=dtype)
python
{ "resource": "" }
q3874
fetch_rrlyrae_fitdata
train
def fetch_rrlyrae_fitdata(**kwargs): """Fetch data from table 3 of Sesar 2010 This table includes parameters derived from template fits to all the Sesar 2010 lightcurves. """ save_loc = _get_download_or_cache('table3.dat.gz', **kwargs) dtype = [('id', 'i'), ('RA', 'f'), ('DEC', 'f'), ('rExt', 'f'), ('d', 'f'), ('RGC', 'f'), ('u', 'f'), ('g', 'f'), ('r', 'f'), ('i', 'f'), ('z', 'f'), ('V', 'f'), ('ugmin', 'f'), ('ugmin_err', 'f'), ('grmin', 'f'), ('grmin_err', 'f')] return np.loadtxt(save_loc, dtype=dtype)
python
{ "resource": "" }
q3875
RRLyraeLC.get_lightcurve
train
def get_lightcurve(self, star_id, return_1d=True): """Get the light curves for the given ID Parameters ---------- star_id : int A valid integer star id representing an object in the dataset return_1d : boolean (default=True) Specify whether to return 1D arrays of (t, y, dy, filts) or 2D arrays of (t, y, dy) where each column is a filter. Returns ------- t, y, dy : np.ndarrays (if return_1d == False) Times, magnitudes, and magnitude errors. The shape of each array is [Nobs, 5], where the columns refer to [u,g,r,i,z] bands. Non-observations are indicated by NaN. t, y, dy, filts : np.ndarrays (if return_1d == True) Times, magnitudes, magnitude errors, and filters The shape of each array is [Nobs], and non-observations are filtered out. """ filename = '{0}/{1}.dat'.format(self.dirname, star_id) try: data = np.loadtxt(self.data.extractfile(filename)) except KeyError: raise ValueError("invalid star id: {0}".format(star_id)) RA = data[:, 0] DEC = data[:, 1] t = data[:, 2::3] y = data[:, 3::3] dy = data[:, 4::3] nans = (y == -99.99) t[nans] = np.nan y[nans] = np.nan dy[nans] = np.nan if return_1d: t, y, dy, filts = np.broadcast_arrays(t, y, dy, ['u', 'g', 'r', 'i', 'z']) good = ~np.isnan(t) return t[good], y[good], dy[good], filts[good] else: return t, y, dy
python
{ "resource": "" }
q3876
RRLyraeLC.get_metadata
train
def get_metadata(self, lcid): """Get the parameters derived from the fit for the given id. This is table 2 of Sesar 2010 """ if self._metadata is None: self._metadata = fetch_rrlyrae_lc_params() i = np.where(self._metadata['id'] == lcid)[0] if len(i) == 0: raise ValueError("invalid lcid: {0}".format(lcid)) return self._metadata[i[0]]
python
{ "resource": "" }
q3877
RRLyraeLC.get_obsmeta
train
def get_obsmeta(self, lcid): """Get the observation metadata for the given id. This is table 3 of Sesar 2010 """ if self._obsdata is None: self._obsdata = fetch_rrlyrae_fitdata() i = np.where(self._obsdata['id'] == lcid)[0] if len(i) == 0: raise ValueError("invalid lcid: {0}".format(lcid)) return self._obsdata[i[0]]
python
{ "resource": "" }
q3878
RRLyraeTemplates.get_template
train
def get_template(self, template_id): """Get a particular lightcurve template Parameters ---------- template_id : str id of desired template Returns ------- phase : ndarray array of phases mag : ndarray array of normalized magnitudes """ try: data = np.loadtxt(self.data.extractfile(template_id + '.dat')) except KeyError: raise ValueError("invalid star id: {0}".format(template_id)) return data[:, 0], data[:, 1]
python
{ "resource": "" }
q3879
TCXParser.hr_avg
train
def hr_avg(self): """Average heart rate of the workout""" hr_data = self.hr_values() return int(sum(hr_data) / len(hr_data))
python
{ "resource": "" }
q3880
TCXParser.ascent
train
def ascent(self): """Returns ascent of workout in meters""" total_ascent = 0.0 altitude_data = self.altitude_points() for i in range(len(altitude_data) - 1): diff = altitude_data[i+1] - altitude_data[i] if diff > 0.0: total_ascent += diff return total_ascent
python
{ "resource": "" }
q3881
TCXParser.descent
train
def descent(self): """Returns descent of workout in meters""" total_descent = 0.0 altitude_data = self.altitude_points() for i in range(len(altitude_data) - 1): diff = altitude_data[i+1] - altitude_data[i] if diff < 0.0: total_descent += abs(diff) return total_descent
python
{ "resource": "" }
q3882
keywords_special_characters
train
def keywords_special_characters(keywords): """ Confirms that the keywords don't contain special characters Args: keywords (str) Raises: django.forms.ValidationError """ invalid_chars = '!\"#$%&\'()*+-./:;<=>?@[\\]^_{|}~\t\n' if any(char in invalid_chars for char in keywords): raise ValidationError(MESSAGE_KEYWORD_SPECIAL_CHARS)
python
{ "resource": "" }
q3883
image_format
train
def image_format(value): """ Confirms that the uploaded image is of supported format. Args: value (File): The file with an `image` property containing the image Raises: django.forms.ValidationError """ if value.image.format.upper() not in constants.ALLOWED_IMAGE_FORMATS: raise ValidationError(MESSAGE_INVALID_IMAGE_FORMAT)
python
{ "resource": "" }
q3884
no_company_with_insufficient_companies_house_data
train
def no_company_with_insufficient_companies_house_data(value): """ Confirms that the company number is not for for a company that Companies House does not hold information on. Args: value (string): The company number to check. Raises: django.forms.ValidationError """ for prefix, name in company_types_with_insufficient_companies_house_data: if value.upper().startswith(prefix): raise ValidationError( MESSAGE_INSUFFICIENT_DATA, params={'name': name} )
python
{ "resource": "" }
q3885
remove_liers
train
def remove_liers(points): """ Removes obvious noise points Checks time consistency, removing points that appear out of order Args: points (:obj:`list` of :obj:`Point`) Returns: :obj:`list` of :obj:`Point` """ result = [points[0]] for i in range(1, len(points) - 2): prv = points[i-1] crr = points[i] nxt = points[i+1] if prv.time <= crr.time and crr.time <= nxt.time: result.append(crr) result.append(points[-1]) return result
python
{ "resource": "" }
q3886
Segment.bounds
train
def bounds(self, thr=0, lower_index=0, upper_index=-1): """ Computes the bounds of the segment, or part of it Args: lower_index (int, optional): Start index. Defaults to 0 upper_index (int, optional): End index. Defaults to 0 Returns: :obj:`tuple` of :obj:`float`: Bounds of the (sub)segment, such that (min_lat, min_lon, max_lat, max_lon) """ points = self.points[lower_index:upper_index] min_lat = float("inf") min_lon = float("inf") max_lat = -float("inf") max_lon = -float("inf") for point in points: min_lat = min(min_lat, point.lat) min_lon = min(min_lon, point.lon) max_lat = max(max_lat, point.lat) max_lon = max(max_lon, point.lon) return (min_lat - thr, min_lon - thr, max_lat + thr, max_lon + thr)
python
{ "resource": "" }
q3887
Segment.smooth
train
def smooth(self, noise, strategy=INVERSE_STRATEGY): """ In-place smoothing See smooth_segment function Args: noise (float): Noise expected strategy (int): Strategy to use. Either smooth.INVERSE_STRATEGY or smooth.EXTRAPOLATE_STRATEGY Returns: :obj:`Segment` """ if strategy is INVERSE_STRATEGY: self.points = with_inverse(self.points, noise) elif strategy is EXTRAPOLATE_STRATEGY: self.points = with_extrapolation(self.points, noise, 30) elif strategy is NO_STRATEGY: self.points = with_no_strategy(self.points, noise) return self
python
{ "resource": "" }
q3888
Segment.simplify
train
def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False): """ In-place segment simplification See `drp` and `compression` modules Args: eps (float): Distance threshold for the `drp` function max_dist_error (float): Max distance error, in meters max_speed_error (float): Max speed error, in km/h topology_only (bool, optional): True to only keep topology, not considering times when simplifying. Defaults to False. Returns: :obj:`Segment` """ if topology_only: self.points = drp(self.points, eps) else: self.points = spt(self.points, max_dist_error, max_speed_error) return self
python
{ "resource": "" }
q3889
Segment.compute_metrics
train
def compute_metrics(self): """ Computes metrics for each point Returns: :obj:`Segment`: self """ for prev, point in pairwise(self.points): point.compute_metrics(prev) return self
python
{ "resource": "" }
q3890
Segment.infer_location
train
def infer_location( self, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ): """In-place location inferring See infer_location function Args: Returns: :obj:`Segment`: self """ self.location_from = infer_location( self.points[0], location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ) self.location_to = infer_location( self.points[-1], location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ) return self
python
{ "resource": "" }
q3891
Segment.infer_transportation_mode
train
def infer_transportation_mode(self, clf, min_time): """In-place transportation mode inferring See infer_transportation_mode function Args: Returns: :obj:`Segment`: self """ self.transportation_modes = speed_clustering(clf, self.points, min_time) return self
python
{ "resource": "" }
q3892
Segment.merge_and_fit
train
def merge_and_fit(self, segment): """ Merges another segment with this one, ordering the points based on a distance heuristic Args: segment (:obj:`Segment`): Segment to merge with Returns: :obj:`Segment`: self """ self.points = sort_segment_points(self.points, segment.points) return self
python
{ "resource": "" }
q3893
Segment.closest_point_to
train
def closest_point_to(self, point, thr=20.0): """ Finds the closest point in the segment to a given point Args: point (:obj:`Point`) thr (float, optional): Distance threshold, in meters, to be considered the same point. Defaults to 20.0 Returns: (int, Point): Index of the point. -1 if doesn't exist. A point is given if it's along the segment """ i = 0 point_arr = point.gen2arr() def closest_in_line(pointA, pointB): temp = closest_point(pointA.gen2arr(), pointB.gen2arr(), point_arr) return Point(temp[1], temp[0], None) for (p_a, p_b) in pairwise(self.points): candidate = closest_in_line(p_a, p_b) if candidate.distance(point) <= thr: if p_a.distance(point) <= thr: return i, p_a elif p_b.distance(point) <= thr: return i + 1, p_b else: return i, candidate i = i + 1 return -1, None
python
{ "resource": "" }
q3894
Segment.slice
train
def slice(self, start, end): """ Creates a copy of the current segment between indexes. If end > start, points are reverted Args: start (int): Start index end (int): End index Returns: :obj:`Segment` """ reverse = False if start > end: temp = start start = end end = temp reverse = True seg = self.copy() seg.points = seg.points[start:end+1] if reverse: seg.points = list(reversed(seg.points)) return seg
python
{ "resource": "" }
q3895
Segment.to_json
train
def to_json(self): """ Converts segment to a JSON serializable format Returns: :obj:`dict` """ points = [point.to_json() for point in self.points] return { 'points': points, 'transportationModes': self.transportation_modes, 'locationFrom': self.location_from.to_json() if self.location_from != None else None, 'locationTo': self.location_to.to_json() if self.location_to != None else None }
python
{ "resource": "" }
q3896
Segment.from_gpx
train
def from_gpx(gpx_segment): """ Creates a segment from a GPX format. No preprocessing is done. Arguments: gpx_segment (:obj:`gpxpy.GPXTrackSegment`) Return: :obj:`Segment` """ points = [] for point in gpx_segment.points: points.append(Point.from_gpx(point)) return Segment(points)
python
{ "resource": "" }
q3897
Segment.from_json
train
def from_json(json): """ Creates a segment from a JSON file. No preprocessing is done. Arguments: json (:obj:`dict`): JSON representation. See to_json. Return: :obj:`Segment` """ points = [] for point in json['points']: points.append(Point.from_json(point)) return Segment(points)
python
{ "resource": "" }
q3898
extrapolate_points
train
def extrapolate_points(points, n_points): """ Extrapolate a number of points, based on the first ones Args: points (:obj:`list` of :obj:`Point`) n_points (int): number of points to extrapolate Returns: :obj:`list` of :obj:`Point` """ points = points[:n_points] lat = [] lon = [] last = None for point in points: if last is not None: lat.append(last.lat-point.lat) lon.append(last.lon-point.lon) last = point dts = np.mean([p.dt for p in points]) lons = np.mean(lon) lats = np.mean(lat) gen_sample = [] last = points[0] for _ in range(n_points): point = Point(last.lat+lats, last.lon+lons, None) point.dt = dts # point.compute_metrics(last) gen_sample.append(point) last = point return gen_sample
python
{ "resource": "" }
q3899
with_extrapolation
train
def with_extrapolation(points, noise, n_points): """ Smooths a set of points, but it extrapolates some points at the beginning Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point` """ n_points = 10 return kalman_filter(extrapolate_points(points, n_points) + points, noise)[n_points:]
python
{ "resource": "" }