index
int64
0
100k
blob_id
stringlengths
40
40
code
stringlengths
7
7.27M
steps
listlengths
1
1.25k
error
bool
2 classes
98,300
dcce2a88b5c518aa5f11dbf7b01bea2a9faa6805
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### bl_info = { "name": "Cell Fracture", "author": "ideasman42, phymec, Sergey Sharybin", "version": (0, 1), "blender": (2, 70, 0), "location": "Edit panel of Tools tab, in Object mode, 3D View tools", "description": "Fractured Object, Bomb, Projectile, Recorder", "warning": "", "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/" "Scripts/Object/CellFracture", "category": "Object"} #if "bpy" in locals(): # import importlib # importlib.reload(fracture_cell_setup) import bpy from bpy.props import ( StringProperty, BoolProperty, IntProperty, FloatProperty, FloatVectorProperty, EnumProperty, ) from bpy.types import Operator def main_object(context, obj, level, **kw): import random # pull out some args kw_copy = kw.copy() use_recenter = kw_copy.pop("use_recenter") use_remove_original = kw_copy.pop("use_remove_original") recursion = kw_copy.pop("recursion") recursion_source_limit = kw_copy.pop("recursion_source_limit") recursion_clamp = kw_copy.pop("recursion_clamp") recursion_chance = kw_copy.pop("recursion_chance") recursion_chance_select = kw_copy.pop("recursion_chance_select") use_layer_next = kw_copy.pop("use_layer_next") use_layer_index = kw_copy.pop("use_layer_index") group_name = kw_copy.pop("group_name") use_island_split = kw_copy.pop("use_island_split") use_debug_bool = kw_copy.pop("use_debug_bool") use_interior_vgroup = kw_copy.pop("use_interior_vgroup") use_sharp_edges = kw_copy.pop("use_sharp_edges") use_sharp_edges_apply = kw_copy.pop("use_sharp_edges_apply") collection = context.collection if level != 0: kw_copy["source_limit"] = recursion_source_limit from . import fracture_cell_setup # not essential but selection is visual distraction. obj.select_set(False) if kw_copy["use_debug_redraw"]: obj_display_type_prev = obj.display_type obj.display_type = 'WIRE' objects = fracture_cell_setup.cell_fracture_objects(context, obj, **kw_copy) objects = fracture_cell_setup.cell_fracture_boolean(context, obj, objects, use_island_split=use_island_split, use_interior_hide=(use_interior_vgroup or use_sharp_edges), use_debug_bool=use_debug_bool, use_debug_redraw=kw_copy["use_debug_redraw"], level=level, ) # must apply after boolean. if use_recenter: bpy.ops.object.origin_set({"selected_editable_objects": objects}, type='ORIGIN_GEOMETRY', center='MEDIAN') if level == 0: for level_sub in range(1, recursion + 1): objects_recurse_input = [(i, o) for i, o in enumerate(objects)] if recursion_chance != 1.0: from mathutils import Vector if recursion_chance_select == 'RANDOM': random.shuffle(objects_recurse_input) elif recursion_chance_select in {'SIZE_MIN', 'SIZE_MAX'}: objects_recurse_input.sort(key=lambda ob_pair: (Vector(ob_pair[1].bound_box[0]) - Vector(ob_pair[1].bound_box[6])).length_squared) if recursion_chance_select == 'SIZE_MAX': objects_recurse_input.reverse() elif recursion_chance_select in {'CURSOR_MIN', 'CURSOR_MAX'}: c = scene.cursor_location.copy() objects_recurse_input.sort(key=lambda ob_pair: (ob_pair[1].location - c).length_squared) if recursion_chance_select == 'CURSOR_MAX': objects_recurse_input.reverse() objects_recurse_input[int(recursion_chance * len(objects_recurse_input)):] = [] objects_recurse_input.sort() # reverse index values so we can remove from original list. objects_recurse_input.reverse() objects_recursive = [] for i, obj_cell in objects_recurse_input: assert(objects[i] is obj_cell) objects_recursive += main_object(context, obj_cell, level_sub, **kw) if use_remove_original: collection.objects.unlink(obj_cell) del objects[i] if recursion_clamp and len(objects) + len(objects_recursive) >= recursion_clamp: break objects.extend(objects_recursive) if recursion_clamp and len(objects) > recursion_clamp: break #-------------- # Level Options if level == 0: # import pdb; pdb.set_trace() if use_interior_vgroup or use_sharp_edges: fracture_cell_setup.cell_fracture_interior_handle(objects, use_interior_vgroup=use_interior_vgroup, use_sharp_edges=use_sharp_edges, use_sharp_edges_apply=use_sharp_edges_apply, ) #-------------- # Scene Options # layer layers_new = None if use_layer_index != 0: layers_new = [False] * 20 layers_new[use_layer_index - 1] = True elif use_layer_next: layers_new = [False] * 20 layers_new[(obj.layers[:].index(True) + 1) % 20] = True if layers_new is not None: for obj_cell in objects: obj_cell.layers = layers_new # group if group_name: group = bpy.data.collections.get(group_name) if group is None: group = bpy.data.collections.new(group_name) group_objects = group.objects[:] for obj_cell in objects: if obj_cell not in group_objects: group.objects.link(obj_cell) if kw_copy["use_debug_redraw"]: obj.display_type = obj_display_type_prev # testing only! # obj.hide = True return objects def main(context, **kw): import time t = time.time() objects_context = context.selected_editable_objects kw_copy = kw.copy() # mass mass_mode = kw_copy.pop("mass_mode") mass = kw_copy.pop("mass") objects = [] for obj in objects_context: if obj.type == 'MESH': objects += main_object(context, obj, 0, **kw_copy) bpy.ops.object.select_all(action='DESELECT') for obj_cell in objects: obj_cell.select_set(True) if mass_mode == 'UNIFORM': for obj_cell in objects: obj_cell.game.mass = mass elif mass_mode == 'VOLUME': from mathutils import Vector def _get_volume(obj_cell): def _getObjectBBMinMax(): min_co = Vector((1000000.0, 1000000.0, 1000000.0)) max_co = -min_co matrix = obj_cell.matrix_world for i in range(0, 8): bb_vec = obj_cell.matrix_world * Vector(obj_cell.bound_box[i]) min_co[0] = min(bb_vec[0], min_co[0]) min_co[1] = min(bb_vec[1], min_co[1]) min_co[2] = min(bb_vec[2], min_co[2]) max_co[0] = max(bb_vec[0], max_co[0]) max_co[1] = max(bb_vec[1], max_co[1]) max_co[2] = max(bb_vec[2], max_co[2]) return (min_co, max_co) def _getObjectVolume(): min_co, max_co = _getObjectBBMinMax() x = max_co[0] - min_co[0] y = max_co[1] - min_co[1] z = max_co[2] - min_co[2] volume = x * y * z return volume return _getObjectVolume() obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects] obj_volume_tot = sum(obj_volume_ls) if obj_volume_tot > 0.0: mass_fac = mass / obj_volume_tot for i, obj_cell in enumerate(objects): obj_cell.game.mass = obj_volume_ls[i] * mass_fac else: assert(0) print("Done! %d objects in %.4f sec" % (len(objects), time.time() - t)) class FractureCell(Operator): bl_idname = "object.add_fracture_cell_objects" bl_label = "Cell fracture selected mesh objects" bl_options = {'PRESET'} # ------------------------------------------------------------------------- # Source Options source: EnumProperty( name="Source", items=(('VERT_OWN', "Own Verts", "Use own vertices"), ('VERT_CHILD', "Child Verts", "Use child object vertices"), ('PARTICLE_OWN', "Own Particles", ("All particle systems of the " "source object")), ('PARTICLE_CHILD', "Child Particles", ("All particle systems of the " "child objects")), ('PENCIL', "Grease Pencil", "This object's grease pencil"), ), options={'ENUM_FLAG'}, default={'PARTICLE_OWN'}, ) source_limit: IntProperty( name="Source Limit", description="Limit the number of input points, 0 for unlimited", min=0, max=5000, default=100, ) source_noise: FloatProperty( name="Noise", description="Randomize point distribution", min=0.0, max=1.0, default=0.0, ) cell_scale: FloatVectorProperty( name="Scale", description="Scale Cell Shape", size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0), ) # ------------------------------------------------------------------------- # Recursion recursion: IntProperty( name="Recursion", description="Break shards recursively", min=0, max=5000, default=0, ) recursion_source_limit: IntProperty( name="Source Limit", description="Limit the number of input points, 0 for unlimited (applies to recursion only)", min=0, max=5000, default=8, ) recursion_clamp: IntProperty( name="Clamp Recursion", description="Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables", min=0, max=10000, default=250, ) recursion_chance: FloatProperty( name="Random Factor", description="Likelihood of recursion", min=0.0, max=1.0, default=0.25, ) recursion_chance_select: EnumProperty( name="Recurse Over", items=(('RANDOM', "Random", ""), ('SIZE_MIN', "Small", "Recursively subdivide smaller objects"), ('SIZE_MAX', "Big", "Recursively subdivide bigger objects"), ('CURSOR_MIN', "Cursor Close", "Recursively subdivide objects closer to the cursor"), ('CURSOR_MAX', "Cursor Far", "Recursively subdivide objects farther from the cursor"), ), default='SIZE_MIN', ) # ------------------------------------------------------------------------- # Mesh Data Options use_smooth_faces: BoolProperty( name="Smooth Faces", default=False, ) use_sharp_edges: BoolProperty( name="Sharp Edges", description="Set sharp edges when disabled", default=True, ) use_sharp_edges_apply: BoolProperty( name="Apply Split Edge", description="Split sharp hard edges", default=True, ) use_data_match: BoolProperty( name="Match Data", description="Match original mesh materials and data layers", default=True, ) use_island_split: BoolProperty( name="Split Islands", description="Split disconnected meshes", default=True, ) margin: FloatProperty( name="Margin", description="Gaps for the fracture (gives more stable physics)", min=0.0, max=1.0, default=0.001, ) material_index: IntProperty( name="Material", description="Material index for interior faces", default=0, ) use_interior_vgroup: BoolProperty( name="Interior VGroup", description="Create a vertex group for interior verts", default=False, ) # ------------------------------------------------------------------------- # Physics Options mass_mode: EnumProperty( name="Mass Mode", items=(('VOLUME', "Volume", "Objects get part of specified mass based on their volume"), ('UNIFORM', "Uniform", "All objects get the specified mass"), ), default='VOLUME', ) mass: FloatProperty( name="Mass", description="Mass to give created objects", min=0.001, max=1000.0, default=1.0, ) # ------------------------------------------------------------------------- # Object Options use_recenter: BoolProperty( name="Recenter", description="Recalculate the center points after splitting", default=True, ) use_remove_original: BoolProperty( name="Remove Original", description="Removes the parents used to create the shatter", default=True, ) # ------------------------------------------------------------------------- # Scene Options # # .. different from object options in that this controls how the objects # are setup in the scene. use_layer_index: IntProperty( name="Layer Index", description="Layer to add the objects into or 0 for existing", default=0, min=0, max=20, ) use_layer_next: BoolProperty( name="Next Layer", description="At the object into the next layer (layer index overrides)", default=True, ) group_name: StringProperty( name="Group", description="Create objects int a group " "(use existing or create new)", ) # ------------------------------------------------------------------------- # Debug use_debug_points: BoolProperty( name="Debug Points", description="Create mesh data showing the points used for fracture", default=False, ) use_debug_redraw: BoolProperty( name="Show Progress Realtime", description="Redraw as fracture is done", default=True, ) use_debug_bool: BoolProperty( name="Debug Boolean", description="Skip applying the boolean modifier", default=False, ) def execute(self, context): keywords = self.as_keywords() # ignore=("blah",) main(context, **keywords) return {'FINISHED'} def invoke(self, context, event): print(self.recursion_chance_select) wm = context.window_manager return wm.invoke_props_dialog(self, width=600) def draw(self, context): layout = self.layout box = layout.box() col = box.column() col.label(text="Point Source") rowsub = col.row() rowsub.prop(self, "source") rowsub = col.row() rowsub.prop(self, "source_limit") rowsub.prop(self, "source_noise") rowsub = col.row() rowsub.prop(self, "cell_scale") box = layout.box() col = box.column() col.label(text="Recursive Shatter") rowsub = col.row(align=True) rowsub.prop(self, "recursion") rowsub.prop(self, "recursion_source_limit") rowsub.prop(self, "recursion_clamp") rowsub = col.row() rowsub.prop(self, "recursion_chance") rowsub.prop(self, "recursion_chance_select", expand=True) box = layout.box() col = box.column() col.label(text="Mesh Data") rowsub = col.row() rowsub.prop(self, "use_smooth_faces") rowsub.prop(self, "use_sharp_edges") rowsub.prop(self, "use_sharp_edges_apply") rowsub.prop(self, "use_data_match") rowsub = col.row() # on same row for even layout but infact are not all that related rowsub.prop(self, "material_index") rowsub.prop(self, "use_interior_vgroup") # could be own section, control how we subdiv rowsub.prop(self, "margin") rowsub.prop(self, "use_island_split") box = layout.box() col = box.column() col.label(text="Physics") rowsub = col.row(align=True) rowsub.prop(self, "mass_mode") rowsub.prop(self, "mass") box = layout.box() col = box.column() col.label(text="Object") rowsub = col.row(align=True) rowsub.prop(self, "use_recenter") box = layout.box() col = box.column() col.label(text="Scene") rowsub = col.row(align=True) rowsub.prop(self, "use_layer_index") rowsub.prop(self, "use_layer_next") rowsub.prop(self, "group_name") box = layout.box() col = box.column() col.label(text="Debug") rowsub = col.row(align=True) rowsub.prop(self, "use_debug_redraw") rowsub.prop(self, "use_debug_points") rowsub.prop(self, "use_debug_bool") def menu_func(self, context): layout = self.layout layout.label(text="Cell Fracture:") layout.operator("object.add_fracture_cell_objects", text="Cell Fracture") def register(): bpy.utils.register_class(FractureCell) bpy.types.VIEW3D_PT_tools_object.append(menu_func) def unregister(): bpy.utils.unregister_class(FractureCell) bpy.types.VIEW3D_PT_tools_object.remove(menu_func) if __name__ == "__main__": register()
[ "# ##### BEGIN GPL LICENSE BLOCK #####\n#\n# This program is free software; you can redistribute it and/or\n# modify it under the terms of the GNU General Public License\n# as published by the Free Software Foundation; either version 2\n# of the License, or (at your option) any later version.\n#\n# This program is distributed in the hope that it will be useful,\n# but WITHOUT ANY WARRANTY; without even the implied warranty of\n# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n# GNU General Public License for more details.\n#\n# You should have received a copy of the GNU General Public License\n# along with this program; if not, write to the Free Software Foundation,\n# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.\n#\n# ##### END GPL LICENSE BLOCK #####\n\nbl_info = {\n \"name\": \"Cell Fracture\",\n \"author\": \"ideasman42, phymec, Sergey Sharybin\",\n \"version\": (0, 1),\n \"blender\": (2, 70, 0),\n \"location\": \"Edit panel of Tools tab, in Object mode, 3D View tools\",\n \"description\": \"Fractured Object, Bomb, Projectile, Recorder\",\n \"warning\": \"\",\n \"wiki_url\": \"http://wiki.blender.org/index.php/Extensions:2.6/Py/\"\n \"Scripts/Object/CellFracture\",\n \"category\": \"Object\"}\n\n\n#if \"bpy\" in locals():\n# import importlib\n# importlib.reload(fracture_cell_setup)\n\nimport bpy\nfrom bpy.props import (\n StringProperty,\n BoolProperty,\n IntProperty,\n FloatProperty,\n FloatVectorProperty,\n EnumProperty,\n )\n\nfrom bpy.types import Operator\n\ndef main_object(context, obj, level, **kw):\n import random\n\n # pull out some args\n kw_copy = kw.copy()\n use_recenter = kw_copy.pop(\"use_recenter\")\n use_remove_original = kw_copy.pop(\"use_remove_original\")\n recursion = kw_copy.pop(\"recursion\")\n recursion_source_limit = kw_copy.pop(\"recursion_source_limit\")\n recursion_clamp = kw_copy.pop(\"recursion_clamp\")\n recursion_chance = kw_copy.pop(\"recursion_chance\")\n recursion_chance_select = kw_copy.pop(\"recursion_chance_select\")\n use_layer_next = kw_copy.pop(\"use_layer_next\")\n use_layer_index = kw_copy.pop(\"use_layer_index\")\n group_name = kw_copy.pop(\"group_name\")\n use_island_split = kw_copy.pop(\"use_island_split\")\n use_debug_bool = kw_copy.pop(\"use_debug_bool\")\n use_interior_vgroup = kw_copy.pop(\"use_interior_vgroup\")\n use_sharp_edges = kw_copy.pop(\"use_sharp_edges\")\n use_sharp_edges_apply = kw_copy.pop(\"use_sharp_edges_apply\")\n\n collection = context.collection\n\n if level != 0:\n kw_copy[\"source_limit\"] = recursion_source_limit\n\n from . import fracture_cell_setup\n\n # not essential but selection is visual distraction.\n obj.select_set(False)\n\n if kw_copy[\"use_debug_redraw\"]:\n obj_display_type_prev = obj.display_type\n obj.display_type = 'WIRE'\n\n objects = fracture_cell_setup.cell_fracture_objects(context, obj, **kw_copy)\n objects = fracture_cell_setup.cell_fracture_boolean(context, obj, objects,\n use_island_split=use_island_split,\n use_interior_hide=(use_interior_vgroup or use_sharp_edges),\n use_debug_bool=use_debug_bool,\n use_debug_redraw=kw_copy[\"use_debug_redraw\"],\n level=level,\n )\n\n # must apply after boolean.\n if use_recenter:\n bpy.ops.object.origin_set({\"selected_editable_objects\": objects},\n type='ORIGIN_GEOMETRY', center='MEDIAN')\n\n if level == 0:\n for level_sub in range(1, recursion + 1):\n\n objects_recurse_input = [(i, o) for i, o in enumerate(objects)]\n\n if recursion_chance != 1.0:\n from mathutils import Vector\n if recursion_chance_select == 'RANDOM':\n random.shuffle(objects_recurse_input)\n elif recursion_chance_select in {'SIZE_MIN', 'SIZE_MAX'}:\n objects_recurse_input.sort(key=lambda ob_pair:\n (Vector(ob_pair[1].bound_box[0]) -\n Vector(ob_pair[1].bound_box[6])).length_squared)\n if recursion_chance_select == 'SIZE_MAX':\n objects_recurse_input.reverse()\n elif recursion_chance_select in {'CURSOR_MIN', 'CURSOR_MAX'}:\n c = scene.cursor_location.copy()\n objects_recurse_input.sort(key=lambda ob_pair:\n (ob_pair[1].location - c).length_squared)\n if recursion_chance_select == 'CURSOR_MAX':\n objects_recurse_input.reverse()\n\n objects_recurse_input[int(recursion_chance * len(objects_recurse_input)):] = []\n objects_recurse_input.sort()\n\n # reverse index values so we can remove from original list.\n objects_recurse_input.reverse()\n\n objects_recursive = []\n for i, obj_cell in objects_recurse_input:\n assert(objects[i] is obj_cell)\n objects_recursive += main_object(context, obj_cell, level_sub, **kw)\n if use_remove_original:\n collection.objects.unlink(obj_cell)\n del objects[i]\n if recursion_clamp and len(objects) + len(objects_recursive) >= recursion_clamp:\n break\n objects.extend(objects_recursive)\n\n if recursion_clamp and len(objects) > recursion_clamp:\n break\n\n #--------------\n # Level Options\n if level == 0:\n # import pdb; pdb.set_trace()\n if use_interior_vgroup or use_sharp_edges:\n fracture_cell_setup.cell_fracture_interior_handle(objects,\n use_interior_vgroup=use_interior_vgroup,\n use_sharp_edges=use_sharp_edges,\n use_sharp_edges_apply=use_sharp_edges_apply,\n )\n\n #--------------\n # Scene Options\n\n # layer\n layers_new = None\n if use_layer_index != 0:\n layers_new = [False] * 20\n layers_new[use_layer_index - 1] = True\n elif use_layer_next:\n layers_new = [False] * 20\n layers_new[(obj.layers[:].index(True) + 1) % 20] = True\n\n if layers_new is not None:\n for obj_cell in objects:\n obj_cell.layers = layers_new\n\n # group\n if group_name:\n group = bpy.data.collections.get(group_name)\n if group is None:\n group = bpy.data.collections.new(group_name)\n group_objects = group.objects[:]\n for obj_cell in objects:\n if obj_cell not in group_objects:\n group.objects.link(obj_cell)\n\n if kw_copy[\"use_debug_redraw\"]:\n obj.display_type = obj_display_type_prev\n\n # testing only!\n # obj.hide = True\n return objects\n\n\ndef main(context, **kw):\n import time\n t = time.time()\n objects_context = context.selected_editable_objects\n\n kw_copy = kw.copy()\n\n # mass\n mass_mode = kw_copy.pop(\"mass_mode\")\n mass = kw_copy.pop(\"mass\")\n\n objects = []\n for obj in objects_context:\n if obj.type == 'MESH':\n objects += main_object(context, obj, 0, **kw_copy)\n\n bpy.ops.object.select_all(action='DESELECT')\n for obj_cell in objects:\n obj_cell.select_set(True)\n\n if mass_mode == 'UNIFORM':\n for obj_cell in objects:\n obj_cell.game.mass = mass\n elif mass_mode == 'VOLUME':\n from mathutils import Vector\n def _get_volume(obj_cell):\n def _getObjectBBMinMax():\n min_co = Vector((1000000.0, 1000000.0, 1000000.0))\n max_co = -min_co\n matrix = obj_cell.matrix_world\n for i in range(0, 8):\n bb_vec = obj_cell.matrix_world * Vector(obj_cell.bound_box[i])\n min_co[0] = min(bb_vec[0], min_co[0])\n min_co[1] = min(bb_vec[1], min_co[1])\n min_co[2] = min(bb_vec[2], min_co[2])\n max_co[0] = max(bb_vec[0], max_co[0])\n max_co[1] = max(bb_vec[1], max_co[1])\n max_co[2] = max(bb_vec[2], max_co[2])\n return (min_co, max_co)\n\n def _getObjectVolume():\n min_co, max_co = _getObjectBBMinMax()\n x = max_co[0] - min_co[0]\n y = max_co[1] - min_co[1]\n z = max_co[2] - min_co[2]\n volume = x * y * z\n return volume\n\n return _getObjectVolume()\n\n\n obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects]\n obj_volume_tot = sum(obj_volume_ls)\n if obj_volume_tot > 0.0:\n mass_fac = mass / obj_volume_tot\n for i, obj_cell in enumerate(objects):\n obj_cell.game.mass = obj_volume_ls[i] * mass_fac\n else:\n assert(0)\n\n print(\"Done! %d objects in %.4f sec\" % (len(objects), time.time() - t))\n\n\nclass FractureCell(Operator):\n bl_idname = \"object.add_fracture_cell_objects\"\n bl_label = \"Cell fracture selected mesh objects\"\n bl_options = {'PRESET'}\n\n # -------------------------------------------------------------------------\n # Source Options\n source: EnumProperty(\n name=\"Source\",\n items=(('VERT_OWN', \"Own Verts\", \"Use own vertices\"),\n ('VERT_CHILD', \"Child Verts\", \"Use child object vertices\"),\n ('PARTICLE_OWN', \"Own Particles\", (\"All particle systems of the \"\n \"source object\")),\n ('PARTICLE_CHILD', \"Child Particles\", (\"All particle systems of the \"\n \"child objects\")),\n ('PENCIL', \"Grease Pencil\", \"This object's grease pencil\"),\n ),\n options={'ENUM_FLAG'},\n default={'PARTICLE_OWN'},\n )\n\n source_limit: IntProperty(\n name=\"Source Limit\",\n description=\"Limit the number of input points, 0 for unlimited\",\n min=0, max=5000,\n default=100,\n )\n\n source_noise: FloatProperty(\n name=\"Noise\",\n description=\"Randomize point distribution\",\n min=0.0, max=1.0,\n default=0.0,\n )\n\n cell_scale: FloatVectorProperty(\n name=\"Scale\",\n description=\"Scale Cell Shape\",\n size=3,\n min=0.0, max=1.0,\n default=(1.0, 1.0, 1.0),\n )\n\n # -------------------------------------------------------------------------\n # Recursion\n\n recursion: IntProperty(\n name=\"Recursion\",\n description=\"Break shards recursively\",\n min=0, max=5000,\n default=0,\n )\n\n recursion_source_limit: IntProperty(\n name=\"Source Limit\",\n description=\"Limit the number of input points, 0 for unlimited (applies to recursion only)\",\n min=0, max=5000,\n default=8,\n )\n\n recursion_clamp: IntProperty(\n name=\"Clamp Recursion\",\n description=\"Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables\",\n min=0, max=10000,\n default=250,\n )\n\n recursion_chance: FloatProperty(\n name=\"Random Factor\",\n description=\"Likelihood of recursion\",\n min=0.0, max=1.0,\n default=0.25,\n )\n\n recursion_chance_select: EnumProperty(\n name=\"Recurse Over\",\n items=(('RANDOM', \"Random\", \"\"),\n ('SIZE_MIN', \"Small\", \"Recursively subdivide smaller objects\"),\n ('SIZE_MAX', \"Big\", \"Recursively subdivide bigger objects\"),\n ('CURSOR_MIN', \"Cursor Close\", \"Recursively subdivide objects closer to the cursor\"),\n ('CURSOR_MAX', \"Cursor Far\", \"Recursively subdivide objects farther from the cursor\"),\n ),\n default='SIZE_MIN',\n )\n\n # -------------------------------------------------------------------------\n # Mesh Data Options\n\n use_smooth_faces: BoolProperty(\n name=\"Smooth Faces\",\n default=False,\n )\n\n use_sharp_edges: BoolProperty(\n name=\"Sharp Edges\",\n description=\"Set sharp edges when disabled\",\n default=True,\n )\n\n use_sharp_edges_apply: BoolProperty(\n name=\"Apply Split Edge\",\n description=\"Split sharp hard edges\",\n default=True,\n )\n\n use_data_match: BoolProperty(\n name=\"Match Data\",\n description=\"Match original mesh materials and data layers\",\n default=True,\n )\n\n use_island_split: BoolProperty(\n name=\"Split Islands\",\n description=\"Split disconnected meshes\",\n default=True,\n )\n\n margin: FloatProperty(\n name=\"Margin\",\n description=\"Gaps for the fracture (gives more stable physics)\",\n min=0.0, max=1.0,\n default=0.001,\n )\n\n material_index: IntProperty(\n name=\"Material\",\n description=\"Material index for interior faces\",\n default=0,\n )\n\n use_interior_vgroup: BoolProperty(\n name=\"Interior VGroup\",\n description=\"Create a vertex group for interior verts\",\n default=False,\n )\n\n # -------------------------------------------------------------------------\n # Physics Options\n\n mass_mode: EnumProperty(\n name=\"Mass Mode\",\n items=(('VOLUME', \"Volume\", \"Objects get part of specified mass based on their volume\"),\n ('UNIFORM', \"Uniform\", \"All objects get the specified mass\"),\n ),\n default='VOLUME',\n )\n\n mass: FloatProperty(\n name=\"Mass\",\n description=\"Mass to give created objects\",\n min=0.001, max=1000.0,\n default=1.0,\n )\n\n\n # -------------------------------------------------------------------------\n # Object Options\n\n use_recenter: BoolProperty(\n name=\"Recenter\",\n description=\"Recalculate the center points after splitting\",\n default=True,\n )\n\n use_remove_original: BoolProperty(\n name=\"Remove Original\",\n description=\"Removes the parents used to create the shatter\",\n default=True,\n )\n\n # -------------------------------------------------------------------------\n # Scene Options\n #\n # .. different from object options in that this controls how the objects\n # are setup in the scene.\n\n use_layer_index: IntProperty(\n name=\"Layer Index\",\n description=\"Layer to add the objects into or 0 for existing\",\n default=0,\n min=0, max=20,\n )\n\n use_layer_next: BoolProperty(\n name=\"Next Layer\",\n description=\"At the object into the next layer (layer index overrides)\",\n default=True,\n )\n\n group_name: StringProperty(\n name=\"Group\",\n description=\"Create objects int a group \"\n \"(use existing or create new)\",\n )\n\n # -------------------------------------------------------------------------\n # Debug\n use_debug_points: BoolProperty(\n name=\"Debug Points\",\n description=\"Create mesh data showing the points used for fracture\",\n default=False,\n )\n\n use_debug_redraw: BoolProperty(\n name=\"Show Progress Realtime\",\n description=\"Redraw as fracture is done\",\n default=True,\n )\n\n use_debug_bool: BoolProperty(\n name=\"Debug Boolean\",\n description=\"Skip applying the boolean modifier\",\n default=False,\n )\n\n def execute(self, context):\n keywords = self.as_keywords() # ignore=(\"blah\",)\n\n main(context, **keywords)\n\n return {'FINISHED'}\n\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text=\"Point Source\")\n rowsub = col.row()\n rowsub.prop(self, \"source\")\n rowsub = col.row()\n rowsub.prop(self, \"source_limit\")\n rowsub.prop(self, \"source_noise\")\n rowsub = col.row()\n rowsub.prop(self, \"cell_scale\")\n\n box = layout.box()\n col = box.column()\n col.label(text=\"Recursive Shatter\")\n rowsub = col.row(align=True)\n rowsub.prop(self, \"recursion\")\n rowsub.prop(self, \"recursion_source_limit\")\n rowsub.prop(self, \"recursion_clamp\")\n rowsub = col.row()\n rowsub.prop(self, \"recursion_chance\")\n rowsub.prop(self, \"recursion_chance_select\", expand=True)\n\n box = layout.box()\n col = box.column()\n col.label(text=\"Mesh Data\")\n rowsub = col.row()\n rowsub.prop(self, \"use_smooth_faces\")\n rowsub.prop(self, \"use_sharp_edges\")\n rowsub.prop(self, \"use_sharp_edges_apply\")\n rowsub.prop(self, \"use_data_match\")\n rowsub = col.row()\n\n # on same row for even layout but infact are not all that related\n rowsub.prop(self, \"material_index\")\n rowsub.prop(self, \"use_interior_vgroup\")\n\n # could be own section, control how we subdiv\n rowsub.prop(self, \"margin\")\n rowsub.prop(self, \"use_island_split\")\n\n\n box = layout.box()\n col = box.column()\n col.label(text=\"Physics\")\n rowsub = col.row(align=True)\n rowsub.prop(self, \"mass_mode\")\n rowsub.prop(self, \"mass\")\n\n\n box = layout.box()\n col = box.column()\n col.label(text=\"Object\")\n rowsub = col.row(align=True)\n rowsub.prop(self, \"use_recenter\")\n\n\n box = layout.box()\n col = box.column()\n col.label(text=\"Scene\")\n rowsub = col.row(align=True)\n rowsub.prop(self, \"use_layer_index\")\n rowsub.prop(self, \"use_layer_next\")\n rowsub.prop(self, \"group_name\")\n\n box = layout.box()\n col = box.column()\n col.label(text=\"Debug\")\n rowsub = col.row(align=True)\n rowsub.prop(self, \"use_debug_redraw\")\n rowsub.prop(self, \"use_debug_points\")\n rowsub.prop(self, \"use_debug_bool\")\n\n\ndef menu_func(self, context):\n layout = self.layout\n layout.label(text=\"Cell Fracture:\")\n layout.operator(\"object.add_fracture_cell_objects\",\n text=\"Cell Fracture\")\n\n\ndef register():\n bpy.utils.register_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.append(menu_func)\n\n\ndef unregister():\n bpy.utils.unregister_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.remove(menu_func)\n\n\nif __name__ == \"__main__\":\n register()\n", "bl_info = {'name': 'Cell Fracture', 'author':\n 'ideasman42, phymec, Sergey Sharybin', 'version': (0, 1), 'blender': (2,\n 70, 0), 'location':\n 'Edit panel of Tools tab, in Object mode, 3D View tools', 'description':\n 'Fractured Object, Bomb, Projectile, Recorder', 'warning': '',\n 'wiki_url':\n 'http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Object/CellFracture'\n , 'category': 'Object'}\nimport bpy\nfrom bpy.props import StringProperty, BoolProperty, IntProperty, FloatProperty, FloatVectorProperty, EnumProperty\nfrom bpy.types import Operator\n\n\ndef main_object(context, obj, level, **kw):\n import random\n kw_copy = kw.copy()\n use_recenter = kw_copy.pop('use_recenter')\n use_remove_original = kw_copy.pop('use_remove_original')\n recursion = kw_copy.pop('recursion')\n recursion_source_limit = kw_copy.pop('recursion_source_limit')\n recursion_clamp = kw_copy.pop('recursion_clamp')\n recursion_chance = kw_copy.pop('recursion_chance')\n recursion_chance_select = kw_copy.pop('recursion_chance_select')\n use_layer_next = kw_copy.pop('use_layer_next')\n use_layer_index = kw_copy.pop('use_layer_index')\n group_name = kw_copy.pop('group_name')\n use_island_split = kw_copy.pop('use_island_split')\n use_debug_bool = kw_copy.pop('use_debug_bool')\n use_interior_vgroup = kw_copy.pop('use_interior_vgroup')\n use_sharp_edges = kw_copy.pop('use_sharp_edges')\n use_sharp_edges_apply = kw_copy.pop('use_sharp_edges_apply')\n collection = context.collection\n if level != 0:\n kw_copy['source_limit'] = recursion_source_limit\n from . import fracture_cell_setup\n obj.select_set(False)\n if kw_copy['use_debug_redraw']:\n obj_display_type_prev = obj.display_type\n obj.display_type = 'WIRE'\n objects = fracture_cell_setup.cell_fracture_objects(context, obj, **kw_copy\n )\n objects = fracture_cell_setup.cell_fracture_boolean(context, obj,\n objects, use_island_split=use_island_split, use_interior_hide=\n use_interior_vgroup or use_sharp_edges, use_debug_bool=\n use_debug_bool, use_debug_redraw=kw_copy['use_debug_redraw'], level\n =level)\n if use_recenter:\n bpy.ops.object.origin_set({'selected_editable_objects': objects},\n type='ORIGIN_GEOMETRY', center='MEDIAN')\n if level == 0:\n for level_sub in range(1, recursion + 1):\n objects_recurse_input = [(i, o) for i, o in enumerate(objects)]\n if recursion_chance != 1.0:\n from mathutils import Vector\n if recursion_chance_select == 'RANDOM':\n random.shuffle(objects_recurse_input)\n elif recursion_chance_select in {'SIZE_MIN', 'SIZE_MAX'}:\n objects_recurse_input.sort(key=lambda ob_pair: (Vector(\n ob_pair[1].bound_box[0]) - Vector(ob_pair[1].\n bound_box[6])).length_squared)\n if recursion_chance_select == 'SIZE_MAX':\n objects_recurse_input.reverse()\n elif recursion_chance_select in {'CURSOR_MIN', 'CURSOR_MAX'}:\n c = scene.cursor_location.copy()\n objects_recurse_input.sort(key=lambda ob_pair: (ob_pair\n [1].location - c).length_squared)\n if recursion_chance_select == 'CURSOR_MAX':\n objects_recurse_input.reverse()\n objects_recurse_input[int(recursion_chance * len(\n objects_recurse_input)):] = []\n objects_recurse_input.sort()\n objects_recurse_input.reverse()\n objects_recursive = []\n for i, obj_cell in objects_recurse_input:\n assert objects[i] is obj_cell\n objects_recursive += main_object(context, obj_cell,\n level_sub, **kw)\n if use_remove_original:\n collection.objects.unlink(obj_cell)\n del objects[i]\n if recursion_clamp and len(objects) + len(objects_recursive\n ) >= recursion_clamp:\n break\n objects.extend(objects_recursive)\n if recursion_clamp and len(objects) > recursion_clamp:\n break\n if level == 0:\n if use_interior_vgroup or use_sharp_edges:\n fracture_cell_setup.cell_fracture_interior_handle(objects,\n use_interior_vgroup=use_interior_vgroup, use_sharp_edges=\n use_sharp_edges, use_sharp_edges_apply=use_sharp_edges_apply)\n layers_new = None\n if use_layer_index != 0:\n layers_new = [False] * 20\n layers_new[use_layer_index - 1] = True\n elif use_layer_next:\n layers_new = [False] * 20\n layers_new[(obj.layers[:].index(True) + 1) % 20] = True\n if layers_new is not None:\n for obj_cell in objects:\n obj_cell.layers = layers_new\n if group_name:\n group = bpy.data.collections.get(group_name)\n if group is None:\n group = bpy.data.collections.new(group_name)\n group_objects = group.objects[:]\n for obj_cell in objects:\n if obj_cell not in group_objects:\n group.objects.link(obj_cell)\n if kw_copy['use_debug_redraw']:\n obj.display_type = obj_display_type_prev\n return objects\n\n\ndef main(context, **kw):\n import time\n t = time.time()\n objects_context = context.selected_editable_objects\n kw_copy = kw.copy()\n mass_mode = kw_copy.pop('mass_mode')\n mass = kw_copy.pop('mass')\n objects = []\n for obj in objects_context:\n if obj.type == 'MESH':\n objects += main_object(context, obj, 0, **kw_copy)\n bpy.ops.object.select_all(action='DESELECT')\n for obj_cell in objects:\n obj_cell.select_set(True)\n if mass_mode == 'UNIFORM':\n for obj_cell in objects:\n obj_cell.game.mass = mass\n elif mass_mode == 'VOLUME':\n from mathutils import Vector\n\n def _get_volume(obj_cell):\n\n def _getObjectBBMinMax():\n min_co = Vector((1000000.0, 1000000.0, 1000000.0))\n max_co = -min_co\n matrix = obj_cell.matrix_world\n for i in range(0, 8):\n bb_vec = obj_cell.matrix_world * Vector(obj_cell.\n bound_box[i])\n min_co[0] = min(bb_vec[0], min_co[0])\n min_co[1] = min(bb_vec[1], min_co[1])\n min_co[2] = min(bb_vec[2], min_co[2])\n max_co[0] = max(bb_vec[0], max_co[0])\n max_co[1] = max(bb_vec[1], max_co[1])\n max_co[2] = max(bb_vec[2], max_co[2])\n return min_co, max_co\n\n def _getObjectVolume():\n min_co, max_co = _getObjectBBMinMax()\n x = max_co[0] - min_co[0]\n y = max_co[1] - min_co[1]\n z = max_co[2] - min_co[2]\n volume = x * y * z\n return volume\n return _getObjectVolume()\n obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects]\n obj_volume_tot = sum(obj_volume_ls)\n if obj_volume_tot > 0.0:\n mass_fac = mass / obj_volume_tot\n for i, obj_cell in enumerate(objects):\n obj_cell.game.mass = obj_volume_ls[i] * mass_fac\n else:\n assert 0\n print('Done! %d objects in %.4f sec' % (len(objects), time.time() - t))\n\n\nclass FractureCell(Operator):\n bl_idname = 'object.add_fracture_cell_objects'\n bl_label = 'Cell fracture selected mesh objects'\n bl_options = {'PRESET'}\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\ndef menu_func(self, context):\n layout = self.layout\n layout.label(text='Cell Fracture:')\n layout.operator('object.add_fracture_cell_objects', text='Cell Fracture')\n\n\ndef register():\n bpy.utils.register_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.append(menu_func)\n\n\ndef unregister():\n bpy.utils.unregister_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.remove(menu_func)\n\n\nif __name__ == '__main__':\n register()\n", "bl_info = {'name': 'Cell Fracture', 'author':\n 'ideasman42, phymec, Sergey Sharybin', 'version': (0, 1), 'blender': (2,\n 70, 0), 'location':\n 'Edit panel of Tools tab, in Object mode, 3D View tools', 'description':\n 'Fractured Object, Bomb, Projectile, Recorder', 'warning': '',\n 'wiki_url':\n 'http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Object/CellFracture'\n , 'category': 'Object'}\n<import token>\n\n\ndef main_object(context, obj, level, **kw):\n import random\n kw_copy = kw.copy()\n use_recenter = kw_copy.pop('use_recenter')\n use_remove_original = kw_copy.pop('use_remove_original')\n recursion = kw_copy.pop('recursion')\n recursion_source_limit = kw_copy.pop('recursion_source_limit')\n recursion_clamp = kw_copy.pop('recursion_clamp')\n recursion_chance = kw_copy.pop('recursion_chance')\n recursion_chance_select = kw_copy.pop('recursion_chance_select')\n use_layer_next = kw_copy.pop('use_layer_next')\n use_layer_index = kw_copy.pop('use_layer_index')\n group_name = kw_copy.pop('group_name')\n use_island_split = kw_copy.pop('use_island_split')\n use_debug_bool = kw_copy.pop('use_debug_bool')\n use_interior_vgroup = kw_copy.pop('use_interior_vgroup')\n use_sharp_edges = kw_copy.pop('use_sharp_edges')\n use_sharp_edges_apply = kw_copy.pop('use_sharp_edges_apply')\n collection = context.collection\n if level != 0:\n kw_copy['source_limit'] = recursion_source_limit\n from . import fracture_cell_setup\n obj.select_set(False)\n if kw_copy['use_debug_redraw']:\n obj_display_type_prev = obj.display_type\n obj.display_type = 'WIRE'\n objects = fracture_cell_setup.cell_fracture_objects(context, obj, **kw_copy\n )\n objects = fracture_cell_setup.cell_fracture_boolean(context, obj,\n objects, use_island_split=use_island_split, use_interior_hide=\n use_interior_vgroup or use_sharp_edges, use_debug_bool=\n use_debug_bool, use_debug_redraw=kw_copy['use_debug_redraw'], level\n =level)\n if use_recenter:\n bpy.ops.object.origin_set({'selected_editable_objects': objects},\n type='ORIGIN_GEOMETRY', center='MEDIAN')\n if level == 0:\n for level_sub in range(1, recursion + 1):\n objects_recurse_input = [(i, o) for i, o in enumerate(objects)]\n if recursion_chance != 1.0:\n from mathutils import Vector\n if recursion_chance_select == 'RANDOM':\n random.shuffle(objects_recurse_input)\n elif recursion_chance_select in {'SIZE_MIN', 'SIZE_MAX'}:\n objects_recurse_input.sort(key=lambda ob_pair: (Vector(\n ob_pair[1].bound_box[0]) - Vector(ob_pair[1].\n bound_box[6])).length_squared)\n if recursion_chance_select == 'SIZE_MAX':\n objects_recurse_input.reverse()\n elif recursion_chance_select in {'CURSOR_MIN', 'CURSOR_MAX'}:\n c = scene.cursor_location.copy()\n objects_recurse_input.sort(key=lambda ob_pair: (ob_pair\n [1].location - c).length_squared)\n if recursion_chance_select == 'CURSOR_MAX':\n objects_recurse_input.reverse()\n objects_recurse_input[int(recursion_chance * len(\n objects_recurse_input)):] = []\n objects_recurse_input.sort()\n objects_recurse_input.reverse()\n objects_recursive = []\n for i, obj_cell in objects_recurse_input:\n assert objects[i] is obj_cell\n objects_recursive += main_object(context, obj_cell,\n level_sub, **kw)\n if use_remove_original:\n collection.objects.unlink(obj_cell)\n del objects[i]\n if recursion_clamp and len(objects) + len(objects_recursive\n ) >= recursion_clamp:\n break\n objects.extend(objects_recursive)\n if recursion_clamp and len(objects) > recursion_clamp:\n break\n if level == 0:\n if use_interior_vgroup or use_sharp_edges:\n fracture_cell_setup.cell_fracture_interior_handle(objects,\n use_interior_vgroup=use_interior_vgroup, use_sharp_edges=\n use_sharp_edges, use_sharp_edges_apply=use_sharp_edges_apply)\n layers_new = None\n if use_layer_index != 0:\n layers_new = [False] * 20\n layers_new[use_layer_index - 1] = True\n elif use_layer_next:\n layers_new = [False] * 20\n layers_new[(obj.layers[:].index(True) + 1) % 20] = True\n if layers_new is not None:\n for obj_cell in objects:\n obj_cell.layers = layers_new\n if group_name:\n group = bpy.data.collections.get(group_name)\n if group is None:\n group = bpy.data.collections.new(group_name)\n group_objects = group.objects[:]\n for obj_cell in objects:\n if obj_cell not in group_objects:\n group.objects.link(obj_cell)\n if kw_copy['use_debug_redraw']:\n obj.display_type = obj_display_type_prev\n return objects\n\n\ndef main(context, **kw):\n import time\n t = time.time()\n objects_context = context.selected_editable_objects\n kw_copy = kw.copy()\n mass_mode = kw_copy.pop('mass_mode')\n mass = kw_copy.pop('mass')\n objects = []\n for obj in objects_context:\n if obj.type == 'MESH':\n objects += main_object(context, obj, 0, **kw_copy)\n bpy.ops.object.select_all(action='DESELECT')\n for obj_cell in objects:\n obj_cell.select_set(True)\n if mass_mode == 'UNIFORM':\n for obj_cell in objects:\n obj_cell.game.mass = mass\n elif mass_mode == 'VOLUME':\n from mathutils import Vector\n\n def _get_volume(obj_cell):\n\n def _getObjectBBMinMax():\n min_co = Vector((1000000.0, 1000000.0, 1000000.0))\n max_co = -min_co\n matrix = obj_cell.matrix_world\n for i in range(0, 8):\n bb_vec = obj_cell.matrix_world * Vector(obj_cell.\n bound_box[i])\n min_co[0] = min(bb_vec[0], min_co[0])\n min_co[1] = min(bb_vec[1], min_co[1])\n min_co[2] = min(bb_vec[2], min_co[2])\n max_co[0] = max(bb_vec[0], max_co[0])\n max_co[1] = max(bb_vec[1], max_co[1])\n max_co[2] = max(bb_vec[2], max_co[2])\n return min_co, max_co\n\n def _getObjectVolume():\n min_co, max_co = _getObjectBBMinMax()\n x = max_co[0] - min_co[0]\n y = max_co[1] - min_co[1]\n z = max_co[2] - min_co[2]\n volume = x * y * z\n return volume\n return _getObjectVolume()\n obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects]\n obj_volume_tot = sum(obj_volume_ls)\n if obj_volume_tot > 0.0:\n mass_fac = mass / obj_volume_tot\n for i, obj_cell in enumerate(objects):\n obj_cell.game.mass = obj_volume_ls[i] * mass_fac\n else:\n assert 0\n print('Done! %d objects in %.4f sec' % (len(objects), time.time() - t))\n\n\nclass FractureCell(Operator):\n bl_idname = 'object.add_fracture_cell_objects'\n bl_label = 'Cell fracture selected mesh objects'\n bl_options = {'PRESET'}\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\ndef menu_func(self, context):\n layout = self.layout\n layout.label(text='Cell Fracture:')\n layout.operator('object.add_fracture_cell_objects', text='Cell Fracture')\n\n\ndef register():\n bpy.utils.register_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.append(menu_func)\n\n\ndef unregister():\n bpy.utils.unregister_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.remove(menu_func)\n\n\nif __name__ == '__main__':\n register()\n", "<assignment token>\n<import token>\n\n\ndef main_object(context, obj, level, **kw):\n import random\n kw_copy = kw.copy()\n use_recenter = kw_copy.pop('use_recenter')\n use_remove_original = kw_copy.pop('use_remove_original')\n recursion = kw_copy.pop('recursion')\n recursion_source_limit = kw_copy.pop('recursion_source_limit')\n recursion_clamp = kw_copy.pop('recursion_clamp')\n recursion_chance = kw_copy.pop('recursion_chance')\n recursion_chance_select = kw_copy.pop('recursion_chance_select')\n use_layer_next = kw_copy.pop('use_layer_next')\n use_layer_index = kw_copy.pop('use_layer_index')\n group_name = kw_copy.pop('group_name')\n use_island_split = kw_copy.pop('use_island_split')\n use_debug_bool = kw_copy.pop('use_debug_bool')\n use_interior_vgroup = kw_copy.pop('use_interior_vgroup')\n use_sharp_edges = kw_copy.pop('use_sharp_edges')\n use_sharp_edges_apply = kw_copy.pop('use_sharp_edges_apply')\n collection = context.collection\n if level != 0:\n kw_copy['source_limit'] = recursion_source_limit\n from . import fracture_cell_setup\n obj.select_set(False)\n if kw_copy['use_debug_redraw']:\n obj_display_type_prev = obj.display_type\n obj.display_type = 'WIRE'\n objects = fracture_cell_setup.cell_fracture_objects(context, obj, **kw_copy\n )\n objects = fracture_cell_setup.cell_fracture_boolean(context, obj,\n objects, use_island_split=use_island_split, use_interior_hide=\n use_interior_vgroup or use_sharp_edges, use_debug_bool=\n use_debug_bool, use_debug_redraw=kw_copy['use_debug_redraw'], level\n =level)\n if use_recenter:\n bpy.ops.object.origin_set({'selected_editable_objects': objects},\n type='ORIGIN_GEOMETRY', center='MEDIAN')\n if level == 0:\n for level_sub in range(1, recursion + 1):\n objects_recurse_input = [(i, o) for i, o in enumerate(objects)]\n if recursion_chance != 1.0:\n from mathutils import Vector\n if recursion_chance_select == 'RANDOM':\n random.shuffle(objects_recurse_input)\n elif recursion_chance_select in {'SIZE_MIN', 'SIZE_MAX'}:\n objects_recurse_input.sort(key=lambda ob_pair: (Vector(\n ob_pair[1].bound_box[0]) - Vector(ob_pair[1].\n bound_box[6])).length_squared)\n if recursion_chance_select == 'SIZE_MAX':\n objects_recurse_input.reverse()\n elif recursion_chance_select in {'CURSOR_MIN', 'CURSOR_MAX'}:\n c = scene.cursor_location.copy()\n objects_recurse_input.sort(key=lambda ob_pair: (ob_pair\n [1].location - c).length_squared)\n if recursion_chance_select == 'CURSOR_MAX':\n objects_recurse_input.reverse()\n objects_recurse_input[int(recursion_chance * len(\n objects_recurse_input)):] = []\n objects_recurse_input.sort()\n objects_recurse_input.reverse()\n objects_recursive = []\n for i, obj_cell in objects_recurse_input:\n assert objects[i] is obj_cell\n objects_recursive += main_object(context, obj_cell,\n level_sub, **kw)\n if use_remove_original:\n collection.objects.unlink(obj_cell)\n del objects[i]\n if recursion_clamp and len(objects) + len(objects_recursive\n ) >= recursion_clamp:\n break\n objects.extend(objects_recursive)\n if recursion_clamp and len(objects) > recursion_clamp:\n break\n if level == 0:\n if use_interior_vgroup or use_sharp_edges:\n fracture_cell_setup.cell_fracture_interior_handle(objects,\n use_interior_vgroup=use_interior_vgroup, use_sharp_edges=\n use_sharp_edges, use_sharp_edges_apply=use_sharp_edges_apply)\n layers_new = None\n if use_layer_index != 0:\n layers_new = [False] * 20\n layers_new[use_layer_index - 1] = True\n elif use_layer_next:\n layers_new = [False] * 20\n layers_new[(obj.layers[:].index(True) + 1) % 20] = True\n if layers_new is not None:\n for obj_cell in objects:\n obj_cell.layers = layers_new\n if group_name:\n group = bpy.data.collections.get(group_name)\n if group is None:\n group = bpy.data.collections.new(group_name)\n group_objects = group.objects[:]\n for obj_cell in objects:\n if obj_cell not in group_objects:\n group.objects.link(obj_cell)\n if kw_copy['use_debug_redraw']:\n obj.display_type = obj_display_type_prev\n return objects\n\n\ndef main(context, **kw):\n import time\n t = time.time()\n objects_context = context.selected_editable_objects\n kw_copy = kw.copy()\n mass_mode = kw_copy.pop('mass_mode')\n mass = kw_copy.pop('mass')\n objects = []\n for obj in objects_context:\n if obj.type == 'MESH':\n objects += main_object(context, obj, 0, **kw_copy)\n bpy.ops.object.select_all(action='DESELECT')\n for obj_cell in objects:\n obj_cell.select_set(True)\n if mass_mode == 'UNIFORM':\n for obj_cell in objects:\n obj_cell.game.mass = mass\n elif mass_mode == 'VOLUME':\n from mathutils import Vector\n\n def _get_volume(obj_cell):\n\n def _getObjectBBMinMax():\n min_co = Vector((1000000.0, 1000000.0, 1000000.0))\n max_co = -min_co\n matrix = obj_cell.matrix_world\n for i in range(0, 8):\n bb_vec = obj_cell.matrix_world * Vector(obj_cell.\n bound_box[i])\n min_co[0] = min(bb_vec[0], min_co[0])\n min_co[1] = min(bb_vec[1], min_co[1])\n min_co[2] = min(bb_vec[2], min_co[2])\n max_co[0] = max(bb_vec[0], max_co[0])\n max_co[1] = max(bb_vec[1], max_co[1])\n max_co[2] = max(bb_vec[2], max_co[2])\n return min_co, max_co\n\n def _getObjectVolume():\n min_co, max_co = _getObjectBBMinMax()\n x = max_co[0] - min_co[0]\n y = max_co[1] - min_co[1]\n z = max_co[2] - min_co[2]\n volume = x * y * z\n return volume\n return _getObjectVolume()\n obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects]\n obj_volume_tot = sum(obj_volume_ls)\n if obj_volume_tot > 0.0:\n mass_fac = mass / obj_volume_tot\n for i, obj_cell in enumerate(objects):\n obj_cell.game.mass = obj_volume_ls[i] * mass_fac\n else:\n assert 0\n print('Done! %d objects in %.4f sec' % (len(objects), time.time() - t))\n\n\nclass FractureCell(Operator):\n bl_idname = 'object.add_fracture_cell_objects'\n bl_label = 'Cell fracture selected mesh objects'\n bl_options = {'PRESET'}\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\ndef menu_func(self, context):\n layout = self.layout\n layout.label(text='Cell Fracture:')\n layout.operator('object.add_fracture_cell_objects', text='Cell Fracture')\n\n\ndef register():\n bpy.utils.register_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.append(menu_func)\n\n\ndef unregister():\n bpy.utils.unregister_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.remove(menu_func)\n\n\nif __name__ == '__main__':\n register()\n", "<assignment token>\n<import token>\n\n\ndef main_object(context, obj, level, **kw):\n import random\n kw_copy = kw.copy()\n use_recenter = kw_copy.pop('use_recenter')\n use_remove_original = kw_copy.pop('use_remove_original')\n recursion = kw_copy.pop('recursion')\n recursion_source_limit = kw_copy.pop('recursion_source_limit')\n recursion_clamp = kw_copy.pop('recursion_clamp')\n recursion_chance = kw_copy.pop('recursion_chance')\n recursion_chance_select = kw_copy.pop('recursion_chance_select')\n use_layer_next = kw_copy.pop('use_layer_next')\n use_layer_index = kw_copy.pop('use_layer_index')\n group_name = kw_copy.pop('group_name')\n use_island_split = kw_copy.pop('use_island_split')\n use_debug_bool = kw_copy.pop('use_debug_bool')\n use_interior_vgroup = kw_copy.pop('use_interior_vgroup')\n use_sharp_edges = kw_copy.pop('use_sharp_edges')\n use_sharp_edges_apply = kw_copy.pop('use_sharp_edges_apply')\n collection = context.collection\n if level != 0:\n kw_copy['source_limit'] = recursion_source_limit\n from . import fracture_cell_setup\n obj.select_set(False)\n if kw_copy['use_debug_redraw']:\n obj_display_type_prev = obj.display_type\n obj.display_type = 'WIRE'\n objects = fracture_cell_setup.cell_fracture_objects(context, obj, **kw_copy\n )\n objects = fracture_cell_setup.cell_fracture_boolean(context, obj,\n objects, use_island_split=use_island_split, use_interior_hide=\n use_interior_vgroup or use_sharp_edges, use_debug_bool=\n use_debug_bool, use_debug_redraw=kw_copy['use_debug_redraw'], level\n =level)\n if use_recenter:\n bpy.ops.object.origin_set({'selected_editable_objects': objects},\n type='ORIGIN_GEOMETRY', center='MEDIAN')\n if level == 0:\n for level_sub in range(1, recursion + 1):\n objects_recurse_input = [(i, o) for i, o in enumerate(objects)]\n if recursion_chance != 1.0:\n from mathutils import Vector\n if recursion_chance_select == 'RANDOM':\n random.shuffle(objects_recurse_input)\n elif recursion_chance_select in {'SIZE_MIN', 'SIZE_MAX'}:\n objects_recurse_input.sort(key=lambda ob_pair: (Vector(\n ob_pair[1].bound_box[0]) - Vector(ob_pair[1].\n bound_box[6])).length_squared)\n if recursion_chance_select == 'SIZE_MAX':\n objects_recurse_input.reverse()\n elif recursion_chance_select in {'CURSOR_MIN', 'CURSOR_MAX'}:\n c = scene.cursor_location.copy()\n objects_recurse_input.sort(key=lambda ob_pair: (ob_pair\n [1].location - c).length_squared)\n if recursion_chance_select == 'CURSOR_MAX':\n objects_recurse_input.reverse()\n objects_recurse_input[int(recursion_chance * len(\n objects_recurse_input)):] = []\n objects_recurse_input.sort()\n objects_recurse_input.reverse()\n objects_recursive = []\n for i, obj_cell in objects_recurse_input:\n assert objects[i] is obj_cell\n objects_recursive += main_object(context, obj_cell,\n level_sub, **kw)\n if use_remove_original:\n collection.objects.unlink(obj_cell)\n del objects[i]\n if recursion_clamp and len(objects) + len(objects_recursive\n ) >= recursion_clamp:\n break\n objects.extend(objects_recursive)\n if recursion_clamp and len(objects) > recursion_clamp:\n break\n if level == 0:\n if use_interior_vgroup or use_sharp_edges:\n fracture_cell_setup.cell_fracture_interior_handle(objects,\n use_interior_vgroup=use_interior_vgroup, use_sharp_edges=\n use_sharp_edges, use_sharp_edges_apply=use_sharp_edges_apply)\n layers_new = None\n if use_layer_index != 0:\n layers_new = [False] * 20\n layers_new[use_layer_index - 1] = True\n elif use_layer_next:\n layers_new = [False] * 20\n layers_new[(obj.layers[:].index(True) + 1) % 20] = True\n if layers_new is not None:\n for obj_cell in objects:\n obj_cell.layers = layers_new\n if group_name:\n group = bpy.data.collections.get(group_name)\n if group is None:\n group = bpy.data.collections.new(group_name)\n group_objects = group.objects[:]\n for obj_cell in objects:\n if obj_cell not in group_objects:\n group.objects.link(obj_cell)\n if kw_copy['use_debug_redraw']:\n obj.display_type = obj_display_type_prev\n return objects\n\n\ndef main(context, **kw):\n import time\n t = time.time()\n objects_context = context.selected_editable_objects\n kw_copy = kw.copy()\n mass_mode = kw_copy.pop('mass_mode')\n mass = kw_copy.pop('mass')\n objects = []\n for obj in objects_context:\n if obj.type == 'MESH':\n objects += main_object(context, obj, 0, **kw_copy)\n bpy.ops.object.select_all(action='DESELECT')\n for obj_cell in objects:\n obj_cell.select_set(True)\n if mass_mode == 'UNIFORM':\n for obj_cell in objects:\n obj_cell.game.mass = mass\n elif mass_mode == 'VOLUME':\n from mathutils import Vector\n\n def _get_volume(obj_cell):\n\n def _getObjectBBMinMax():\n min_co = Vector((1000000.0, 1000000.0, 1000000.0))\n max_co = -min_co\n matrix = obj_cell.matrix_world\n for i in range(0, 8):\n bb_vec = obj_cell.matrix_world * Vector(obj_cell.\n bound_box[i])\n min_co[0] = min(bb_vec[0], min_co[0])\n min_co[1] = min(bb_vec[1], min_co[1])\n min_co[2] = min(bb_vec[2], min_co[2])\n max_co[0] = max(bb_vec[0], max_co[0])\n max_co[1] = max(bb_vec[1], max_co[1])\n max_co[2] = max(bb_vec[2], max_co[2])\n return min_co, max_co\n\n def _getObjectVolume():\n min_co, max_co = _getObjectBBMinMax()\n x = max_co[0] - min_co[0]\n y = max_co[1] - min_co[1]\n z = max_co[2] - min_co[2]\n volume = x * y * z\n return volume\n return _getObjectVolume()\n obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects]\n obj_volume_tot = sum(obj_volume_ls)\n if obj_volume_tot > 0.0:\n mass_fac = mass / obj_volume_tot\n for i, obj_cell in enumerate(objects):\n obj_cell.game.mass = obj_volume_ls[i] * mass_fac\n else:\n assert 0\n print('Done! %d objects in %.4f sec' % (len(objects), time.time() - t))\n\n\nclass FractureCell(Operator):\n bl_idname = 'object.add_fracture_cell_objects'\n bl_label = 'Cell fracture selected mesh objects'\n bl_options = {'PRESET'}\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\ndef menu_func(self, context):\n layout = self.layout\n layout.label(text='Cell Fracture:')\n layout.operator('object.add_fracture_cell_objects', text='Cell Fracture')\n\n\ndef register():\n bpy.utils.register_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.append(menu_func)\n\n\ndef unregister():\n bpy.utils.unregister_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.remove(menu_func)\n\n\n<code token>\n", "<assignment token>\n<import token>\n\n\ndef main_object(context, obj, level, **kw):\n import random\n kw_copy = kw.copy()\n use_recenter = kw_copy.pop('use_recenter')\n use_remove_original = kw_copy.pop('use_remove_original')\n recursion = kw_copy.pop('recursion')\n recursion_source_limit = kw_copy.pop('recursion_source_limit')\n recursion_clamp = kw_copy.pop('recursion_clamp')\n recursion_chance = kw_copy.pop('recursion_chance')\n recursion_chance_select = kw_copy.pop('recursion_chance_select')\n use_layer_next = kw_copy.pop('use_layer_next')\n use_layer_index = kw_copy.pop('use_layer_index')\n group_name = kw_copy.pop('group_name')\n use_island_split = kw_copy.pop('use_island_split')\n use_debug_bool = kw_copy.pop('use_debug_bool')\n use_interior_vgroup = kw_copy.pop('use_interior_vgroup')\n use_sharp_edges = kw_copy.pop('use_sharp_edges')\n use_sharp_edges_apply = kw_copy.pop('use_sharp_edges_apply')\n collection = context.collection\n if level != 0:\n kw_copy['source_limit'] = recursion_source_limit\n from . import fracture_cell_setup\n obj.select_set(False)\n if kw_copy['use_debug_redraw']:\n obj_display_type_prev = obj.display_type\n obj.display_type = 'WIRE'\n objects = fracture_cell_setup.cell_fracture_objects(context, obj, **kw_copy\n )\n objects = fracture_cell_setup.cell_fracture_boolean(context, obj,\n objects, use_island_split=use_island_split, use_interior_hide=\n use_interior_vgroup or use_sharp_edges, use_debug_bool=\n use_debug_bool, use_debug_redraw=kw_copy['use_debug_redraw'], level\n =level)\n if use_recenter:\n bpy.ops.object.origin_set({'selected_editable_objects': objects},\n type='ORIGIN_GEOMETRY', center='MEDIAN')\n if level == 0:\n for level_sub in range(1, recursion + 1):\n objects_recurse_input = [(i, o) for i, o in enumerate(objects)]\n if recursion_chance != 1.0:\n from mathutils import Vector\n if recursion_chance_select == 'RANDOM':\n random.shuffle(objects_recurse_input)\n elif recursion_chance_select in {'SIZE_MIN', 'SIZE_MAX'}:\n objects_recurse_input.sort(key=lambda ob_pair: (Vector(\n ob_pair[1].bound_box[0]) - Vector(ob_pair[1].\n bound_box[6])).length_squared)\n if recursion_chance_select == 'SIZE_MAX':\n objects_recurse_input.reverse()\n elif recursion_chance_select in {'CURSOR_MIN', 'CURSOR_MAX'}:\n c = scene.cursor_location.copy()\n objects_recurse_input.sort(key=lambda ob_pair: (ob_pair\n [1].location - c).length_squared)\n if recursion_chance_select == 'CURSOR_MAX':\n objects_recurse_input.reverse()\n objects_recurse_input[int(recursion_chance * len(\n objects_recurse_input)):] = []\n objects_recurse_input.sort()\n objects_recurse_input.reverse()\n objects_recursive = []\n for i, obj_cell in objects_recurse_input:\n assert objects[i] is obj_cell\n objects_recursive += main_object(context, obj_cell,\n level_sub, **kw)\n if use_remove_original:\n collection.objects.unlink(obj_cell)\n del objects[i]\n if recursion_clamp and len(objects) + len(objects_recursive\n ) >= recursion_clamp:\n break\n objects.extend(objects_recursive)\n if recursion_clamp and len(objects) > recursion_clamp:\n break\n if level == 0:\n if use_interior_vgroup or use_sharp_edges:\n fracture_cell_setup.cell_fracture_interior_handle(objects,\n use_interior_vgroup=use_interior_vgroup, use_sharp_edges=\n use_sharp_edges, use_sharp_edges_apply=use_sharp_edges_apply)\n layers_new = None\n if use_layer_index != 0:\n layers_new = [False] * 20\n layers_new[use_layer_index - 1] = True\n elif use_layer_next:\n layers_new = [False] * 20\n layers_new[(obj.layers[:].index(True) + 1) % 20] = True\n if layers_new is not None:\n for obj_cell in objects:\n obj_cell.layers = layers_new\n if group_name:\n group = bpy.data.collections.get(group_name)\n if group is None:\n group = bpy.data.collections.new(group_name)\n group_objects = group.objects[:]\n for obj_cell in objects:\n if obj_cell not in group_objects:\n group.objects.link(obj_cell)\n if kw_copy['use_debug_redraw']:\n obj.display_type = obj_display_type_prev\n return objects\n\n\ndef main(context, **kw):\n import time\n t = time.time()\n objects_context = context.selected_editable_objects\n kw_copy = kw.copy()\n mass_mode = kw_copy.pop('mass_mode')\n mass = kw_copy.pop('mass')\n objects = []\n for obj in objects_context:\n if obj.type == 'MESH':\n objects += main_object(context, obj, 0, **kw_copy)\n bpy.ops.object.select_all(action='DESELECT')\n for obj_cell in objects:\n obj_cell.select_set(True)\n if mass_mode == 'UNIFORM':\n for obj_cell in objects:\n obj_cell.game.mass = mass\n elif mass_mode == 'VOLUME':\n from mathutils import Vector\n\n def _get_volume(obj_cell):\n\n def _getObjectBBMinMax():\n min_co = Vector((1000000.0, 1000000.0, 1000000.0))\n max_co = -min_co\n matrix = obj_cell.matrix_world\n for i in range(0, 8):\n bb_vec = obj_cell.matrix_world * Vector(obj_cell.\n bound_box[i])\n min_co[0] = min(bb_vec[0], min_co[0])\n min_co[1] = min(bb_vec[1], min_co[1])\n min_co[2] = min(bb_vec[2], min_co[2])\n max_co[0] = max(bb_vec[0], max_co[0])\n max_co[1] = max(bb_vec[1], max_co[1])\n max_co[2] = max(bb_vec[2], max_co[2])\n return min_co, max_co\n\n def _getObjectVolume():\n min_co, max_co = _getObjectBBMinMax()\n x = max_co[0] - min_co[0]\n y = max_co[1] - min_co[1]\n z = max_co[2] - min_co[2]\n volume = x * y * z\n return volume\n return _getObjectVolume()\n obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects]\n obj_volume_tot = sum(obj_volume_ls)\n if obj_volume_tot > 0.0:\n mass_fac = mass / obj_volume_tot\n for i, obj_cell in enumerate(objects):\n obj_cell.game.mass = obj_volume_ls[i] * mass_fac\n else:\n assert 0\n print('Done! %d objects in %.4f sec' % (len(objects), time.time() - t))\n\n\nclass FractureCell(Operator):\n bl_idname = 'object.add_fracture_cell_objects'\n bl_label = 'Cell fracture selected mesh objects'\n bl_options = {'PRESET'}\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\n<function token>\n\n\ndef register():\n bpy.utils.register_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.append(menu_func)\n\n\ndef unregister():\n bpy.utils.unregister_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.remove(menu_func)\n\n\n<code token>\n", "<assignment token>\n<import token>\n\n\ndef main_object(context, obj, level, **kw):\n import random\n kw_copy = kw.copy()\n use_recenter = kw_copy.pop('use_recenter')\n use_remove_original = kw_copy.pop('use_remove_original')\n recursion = kw_copy.pop('recursion')\n recursion_source_limit = kw_copy.pop('recursion_source_limit')\n recursion_clamp = kw_copy.pop('recursion_clamp')\n recursion_chance = kw_copy.pop('recursion_chance')\n recursion_chance_select = kw_copy.pop('recursion_chance_select')\n use_layer_next = kw_copy.pop('use_layer_next')\n use_layer_index = kw_copy.pop('use_layer_index')\n group_name = kw_copy.pop('group_name')\n use_island_split = kw_copy.pop('use_island_split')\n use_debug_bool = kw_copy.pop('use_debug_bool')\n use_interior_vgroup = kw_copy.pop('use_interior_vgroup')\n use_sharp_edges = kw_copy.pop('use_sharp_edges')\n use_sharp_edges_apply = kw_copy.pop('use_sharp_edges_apply')\n collection = context.collection\n if level != 0:\n kw_copy['source_limit'] = recursion_source_limit\n from . import fracture_cell_setup\n obj.select_set(False)\n if kw_copy['use_debug_redraw']:\n obj_display_type_prev = obj.display_type\n obj.display_type = 'WIRE'\n objects = fracture_cell_setup.cell_fracture_objects(context, obj, **kw_copy\n )\n objects = fracture_cell_setup.cell_fracture_boolean(context, obj,\n objects, use_island_split=use_island_split, use_interior_hide=\n use_interior_vgroup or use_sharp_edges, use_debug_bool=\n use_debug_bool, use_debug_redraw=kw_copy['use_debug_redraw'], level\n =level)\n if use_recenter:\n bpy.ops.object.origin_set({'selected_editable_objects': objects},\n type='ORIGIN_GEOMETRY', center='MEDIAN')\n if level == 0:\n for level_sub in range(1, recursion + 1):\n objects_recurse_input = [(i, o) for i, o in enumerate(objects)]\n if recursion_chance != 1.0:\n from mathutils import Vector\n if recursion_chance_select == 'RANDOM':\n random.shuffle(objects_recurse_input)\n elif recursion_chance_select in {'SIZE_MIN', 'SIZE_MAX'}:\n objects_recurse_input.sort(key=lambda ob_pair: (Vector(\n ob_pair[1].bound_box[0]) - Vector(ob_pair[1].\n bound_box[6])).length_squared)\n if recursion_chance_select == 'SIZE_MAX':\n objects_recurse_input.reverse()\n elif recursion_chance_select in {'CURSOR_MIN', 'CURSOR_MAX'}:\n c = scene.cursor_location.copy()\n objects_recurse_input.sort(key=lambda ob_pair: (ob_pair\n [1].location - c).length_squared)\n if recursion_chance_select == 'CURSOR_MAX':\n objects_recurse_input.reverse()\n objects_recurse_input[int(recursion_chance * len(\n objects_recurse_input)):] = []\n objects_recurse_input.sort()\n objects_recurse_input.reverse()\n objects_recursive = []\n for i, obj_cell in objects_recurse_input:\n assert objects[i] is obj_cell\n objects_recursive += main_object(context, obj_cell,\n level_sub, **kw)\n if use_remove_original:\n collection.objects.unlink(obj_cell)\n del objects[i]\n if recursion_clamp and len(objects) + len(objects_recursive\n ) >= recursion_clamp:\n break\n objects.extend(objects_recursive)\n if recursion_clamp and len(objects) > recursion_clamp:\n break\n if level == 0:\n if use_interior_vgroup or use_sharp_edges:\n fracture_cell_setup.cell_fracture_interior_handle(objects,\n use_interior_vgroup=use_interior_vgroup, use_sharp_edges=\n use_sharp_edges, use_sharp_edges_apply=use_sharp_edges_apply)\n layers_new = None\n if use_layer_index != 0:\n layers_new = [False] * 20\n layers_new[use_layer_index - 1] = True\n elif use_layer_next:\n layers_new = [False] * 20\n layers_new[(obj.layers[:].index(True) + 1) % 20] = True\n if layers_new is not None:\n for obj_cell in objects:\n obj_cell.layers = layers_new\n if group_name:\n group = bpy.data.collections.get(group_name)\n if group is None:\n group = bpy.data.collections.new(group_name)\n group_objects = group.objects[:]\n for obj_cell in objects:\n if obj_cell not in group_objects:\n group.objects.link(obj_cell)\n if kw_copy['use_debug_redraw']:\n obj.display_type = obj_display_type_prev\n return objects\n\n\ndef main(context, **kw):\n import time\n t = time.time()\n objects_context = context.selected_editable_objects\n kw_copy = kw.copy()\n mass_mode = kw_copy.pop('mass_mode')\n mass = kw_copy.pop('mass')\n objects = []\n for obj in objects_context:\n if obj.type == 'MESH':\n objects += main_object(context, obj, 0, **kw_copy)\n bpy.ops.object.select_all(action='DESELECT')\n for obj_cell in objects:\n obj_cell.select_set(True)\n if mass_mode == 'UNIFORM':\n for obj_cell in objects:\n obj_cell.game.mass = mass\n elif mass_mode == 'VOLUME':\n from mathutils import Vector\n\n def _get_volume(obj_cell):\n\n def _getObjectBBMinMax():\n min_co = Vector((1000000.0, 1000000.0, 1000000.0))\n max_co = -min_co\n matrix = obj_cell.matrix_world\n for i in range(0, 8):\n bb_vec = obj_cell.matrix_world * Vector(obj_cell.\n bound_box[i])\n min_co[0] = min(bb_vec[0], min_co[0])\n min_co[1] = min(bb_vec[1], min_co[1])\n min_co[2] = min(bb_vec[2], min_co[2])\n max_co[0] = max(bb_vec[0], max_co[0])\n max_co[1] = max(bb_vec[1], max_co[1])\n max_co[2] = max(bb_vec[2], max_co[2])\n return min_co, max_co\n\n def _getObjectVolume():\n min_co, max_co = _getObjectBBMinMax()\n x = max_co[0] - min_co[0]\n y = max_co[1] - min_co[1]\n z = max_co[2] - min_co[2]\n volume = x * y * z\n return volume\n return _getObjectVolume()\n obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects]\n obj_volume_tot = sum(obj_volume_ls)\n if obj_volume_tot > 0.0:\n mass_fac = mass / obj_volume_tot\n for i, obj_cell in enumerate(objects):\n obj_cell.game.mass = obj_volume_ls[i] * mass_fac\n else:\n assert 0\n print('Done! %d objects in %.4f sec' % (len(objects), time.time() - t))\n\n\nclass FractureCell(Operator):\n bl_idname = 'object.add_fracture_cell_objects'\n bl_label = 'Cell fracture selected mesh objects'\n bl_options = {'PRESET'}\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\n<function token>\n\n\ndef register():\n bpy.utils.register_class(FractureCell)\n bpy.types.VIEW3D_PT_tools_object.append(menu_func)\n\n\n<function token>\n<code token>\n", "<assignment token>\n<import token>\n\n\ndef main_object(context, obj, level, **kw):\n import random\n kw_copy = kw.copy()\n use_recenter = kw_copy.pop('use_recenter')\n use_remove_original = kw_copy.pop('use_remove_original')\n recursion = kw_copy.pop('recursion')\n recursion_source_limit = kw_copy.pop('recursion_source_limit')\n recursion_clamp = kw_copy.pop('recursion_clamp')\n recursion_chance = kw_copy.pop('recursion_chance')\n recursion_chance_select = kw_copy.pop('recursion_chance_select')\n use_layer_next = kw_copy.pop('use_layer_next')\n use_layer_index = kw_copy.pop('use_layer_index')\n group_name = kw_copy.pop('group_name')\n use_island_split = kw_copy.pop('use_island_split')\n use_debug_bool = kw_copy.pop('use_debug_bool')\n use_interior_vgroup = kw_copy.pop('use_interior_vgroup')\n use_sharp_edges = kw_copy.pop('use_sharp_edges')\n use_sharp_edges_apply = kw_copy.pop('use_sharp_edges_apply')\n collection = context.collection\n if level != 0:\n kw_copy['source_limit'] = recursion_source_limit\n from . import fracture_cell_setup\n obj.select_set(False)\n if kw_copy['use_debug_redraw']:\n obj_display_type_prev = obj.display_type\n obj.display_type = 'WIRE'\n objects = fracture_cell_setup.cell_fracture_objects(context, obj, **kw_copy\n )\n objects = fracture_cell_setup.cell_fracture_boolean(context, obj,\n objects, use_island_split=use_island_split, use_interior_hide=\n use_interior_vgroup or use_sharp_edges, use_debug_bool=\n use_debug_bool, use_debug_redraw=kw_copy['use_debug_redraw'], level\n =level)\n if use_recenter:\n bpy.ops.object.origin_set({'selected_editable_objects': objects},\n type='ORIGIN_GEOMETRY', center='MEDIAN')\n if level == 0:\n for level_sub in range(1, recursion + 1):\n objects_recurse_input = [(i, o) for i, o in enumerate(objects)]\n if recursion_chance != 1.0:\n from mathutils import Vector\n if recursion_chance_select == 'RANDOM':\n random.shuffle(objects_recurse_input)\n elif recursion_chance_select in {'SIZE_MIN', 'SIZE_MAX'}:\n objects_recurse_input.sort(key=lambda ob_pair: (Vector(\n ob_pair[1].bound_box[0]) - Vector(ob_pair[1].\n bound_box[6])).length_squared)\n if recursion_chance_select == 'SIZE_MAX':\n objects_recurse_input.reverse()\n elif recursion_chance_select in {'CURSOR_MIN', 'CURSOR_MAX'}:\n c = scene.cursor_location.copy()\n objects_recurse_input.sort(key=lambda ob_pair: (ob_pair\n [1].location - c).length_squared)\n if recursion_chance_select == 'CURSOR_MAX':\n objects_recurse_input.reverse()\n objects_recurse_input[int(recursion_chance * len(\n objects_recurse_input)):] = []\n objects_recurse_input.sort()\n objects_recurse_input.reverse()\n objects_recursive = []\n for i, obj_cell in objects_recurse_input:\n assert objects[i] is obj_cell\n objects_recursive += main_object(context, obj_cell,\n level_sub, **kw)\n if use_remove_original:\n collection.objects.unlink(obj_cell)\n del objects[i]\n if recursion_clamp and len(objects) + len(objects_recursive\n ) >= recursion_clamp:\n break\n objects.extend(objects_recursive)\n if recursion_clamp and len(objects) > recursion_clamp:\n break\n if level == 0:\n if use_interior_vgroup or use_sharp_edges:\n fracture_cell_setup.cell_fracture_interior_handle(objects,\n use_interior_vgroup=use_interior_vgroup, use_sharp_edges=\n use_sharp_edges, use_sharp_edges_apply=use_sharp_edges_apply)\n layers_new = None\n if use_layer_index != 0:\n layers_new = [False] * 20\n layers_new[use_layer_index - 1] = True\n elif use_layer_next:\n layers_new = [False] * 20\n layers_new[(obj.layers[:].index(True) + 1) % 20] = True\n if layers_new is not None:\n for obj_cell in objects:\n obj_cell.layers = layers_new\n if group_name:\n group = bpy.data.collections.get(group_name)\n if group is None:\n group = bpy.data.collections.new(group_name)\n group_objects = group.objects[:]\n for obj_cell in objects:\n if obj_cell not in group_objects:\n group.objects.link(obj_cell)\n if kw_copy['use_debug_redraw']:\n obj.display_type = obj_display_type_prev\n return objects\n\n\ndef main(context, **kw):\n import time\n t = time.time()\n objects_context = context.selected_editable_objects\n kw_copy = kw.copy()\n mass_mode = kw_copy.pop('mass_mode')\n mass = kw_copy.pop('mass')\n objects = []\n for obj in objects_context:\n if obj.type == 'MESH':\n objects += main_object(context, obj, 0, **kw_copy)\n bpy.ops.object.select_all(action='DESELECT')\n for obj_cell in objects:\n obj_cell.select_set(True)\n if mass_mode == 'UNIFORM':\n for obj_cell in objects:\n obj_cell.game.mass = mass\n elif mass_mode == 'VOLUME':\n from mathutils import Vector\n\n def _get_volume(obj_cell):\n\n def _getObjectBBMinMax():\n min_co = Vector((1000000.0, 1000000.0, 1000000.0))\n max_co = -min_co\n matrix = obj_cell.matrix_world\n for i in range(0, 8):\n bb_vec = obj_cell.matrix_world * Vector(obj_cell.\n bound_box[i])\n min_co[0] = min(bb_vec[0], min_co[0])\n min_co[1] = min(bb_vec[1], min_co[1])\n min_co[2] = min(bb_vec[2], min_co[2])\n max_co[0] = max(bb_vec[0], max_co[0])\n max_co[1] = max(bb_vec[1], max_co[1])\n max_co[2] = max(bb_vec[2], max_co[2])\n return min_co, max_co\n\n def _getObjectVolume():\n min_co, max_co = _getObjectBBMinMax()\n x = max_co[0] - min_co[0]\n y = max_co[1] - min_co[1]\n z = max_co[2] - min_co[2]\n volume = x * y * z\n return volume\n return _getObjectVolume()\n obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects]\n obj_volume_tot = sum(obj_volume_ls)\n if obj_volume_tot > 0.0:\n mass_fac = mass / obj_volume_tot\n for i, obj_cell in enumerate(objects):\n obj_cell.game.mass = obj_volume_ls[i] * mass_fac\n else:\n assert 0\n print('Done! %d objects in %.4f sec' % (len(objects), time.time() - t))\n\n\nclass FractureCell(Operator):\n bl_idname = 'object.add_fracture_cell_objects'\n bl_label = 'Cell fracture selected mesh objects'\n bl_options = {'PRESET'}\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<assignment token>\n<import token>\n<function token>\n\n\ndef main(context, **kw):\n import time\n t = time.time()\n objects_context = context.selected_editable_objects\n kw_copy = kw.copy()\n mass_mode = kw_copy.pop('mass_mode')\n mass = kw_copy.pop('mass')\n objects = []\n for obj in objects_context:\n if obj.type == 'MESH':\n objects += main_object(context, obj, 0, **kw_copy)\n bpy.ops.object.select_all(action='DESELECT')\n for obj_cell in objects:\n obj_cell.select_set(True)\n if mass_mode == 'UNIFORM':\n for obj_cell in objects:\n obj_cell.game.mass = mass\n elif mass_mode == 'VOLUME':\n from mathutils import Vector\n\n def _get_volume(obj_cell):\n\n def _getObjectBBMinMax():\n min_co = Vector((1000000.0, 1000000.0, 1000000.0))\n max_co = -min_co\n matrix = obj_cell.matrix_world\n for i in range(0, 8):\n bb_vec = obj_cell.matrix_world * Vector(obj_cell.\n bound_box[i])\n min_co[0] = min(bb_vec[0], min_co[0])\n min_co[1] = min(bb_vec[1], min_co[1])\n min_co[2] = min(bb_vec[2], min_co[2])\n max_co[0] = max(bb_vec[0], max_co[0])\n max_co[1] = max(bb_vec[1], max_co[1])\n max_co[2] = max(bb_vec[2], max_co[2])\n return min_co, max_co\n\n def _getObjectVolume():\n min_co, max_co = _getObjectBBMinMax()\n x = max_co[0] - min_co[0]\n y = max_co[1] - min_co[1]\n z = max_co[2] - min_co[2]\n volume = x * y * z\n return volume\n return _getObjectVolume()\n obj_volume_ls = [_get_volume(obj_cell) for obj_cell in objects]\n obj_volume_tot = sum(obj_volume_ls)\n if obj_volume_tot > 0.0:\n mass_fac = mass / obj_volume_tot\n for i, obj_cell in enumerate(objects):\n obj_cell.game.mass = obj_volume_ls[i] * mass_fac\n else:\n assert 0\n print('Done! %d objects in %.4f sec' % (len(objects), time.time() - t))\n\n\nclass FractureCell(Operator):\n bl_idname = 'object.add_fracture_cell_objects'\n bl_label = 'Cell fracture selected mesh objects'\n bl_options = {'PRESET'}\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<assignment token>\n<import token>\n<function token>\n<function token>\n\n\nclass FractureCell(Operator):\n bl_idname = 'object.add_fracture_cell_objects'\n bl_label = 'Cell fracture selected mesh objects'\n bl_options = {'PRESET'}\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<assignment token>\n<import token>\n<function token>\n<function token>\n\n\nclass FractureCell(Operator):\n <assignment token>\n <assignment token>\n <assignment token>\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n\n def invoke(self, context, event):\n print(self.recursion_chance_select)\n wm = context.window_manager\n return wm.invoke_props_dialog(self, width=600)\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<assignment token>\n<import token>\n<function token>\n<function token>\n\n\nclass FractureCell(Operator):\n <assignment token>\n <assignment token>\n <assignment token>\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n <function token>\n\n def draw(self, context):\n layout = self.layout\n box = layout.box()\n col = box.column()\n col.label(text='Point Source')\n rowsub = col.row()\n rowsub.prop(self, 'source')\n rowsub = col.row()\n rowsub.prop(self, 'source_limit')\n rowsub.prop(self, 'source_noise')\n rowsub = col.row()\n rowsub.prop(self, 'cell_scale')\n box = layout.box()\n col = box.column()\n col.label(text='Recursive Shatter')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'recursion')\n rowsub.prop(self, 'recursion_source_limit')\n rowsub.prop(self, 'recursion_clamp')\n rowsub = col.row()\n rowsub.prop(self, 'recursion_chance')\n rowsub.prop(self, 'recursion_chance_select', expand=True)\n box = layout.box()\n col = box.column()\n col.label(text='Mesh Data')\n rowsub = col.row()\n rowsub.prop(self, 'use_smooth_faces')\n rowsub.prop(self, 'use_sharp_edges')\n rowsub.prop(self, 'use_sharp_edges_apply')\n rowsub.prop(self, 'use_data_match')\n rowsub = col.row()\n rowsub.prop(self, 'material_index')\n rowsub.prop(self, 'use_interior_vgroup')\n rowsub.prop(self, 'margin')\n rowsub.prop(self, 'use_island_split')\n box = layout.box()\n col = box.column()\n col.label(text='Physics')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'mass_mode')\n rowsub.prop(self, 'mass')\n box = layout.box()\n col = box.column()\n col.label(text='Object')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_recenter')\n box = layout.box()\n col = box.column()\n col.label(text='Scene')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_layer_index')\n rowsub.prop(self, 'use_layer_next')\n rowsub.prop(self, 'group_name')\n box = layout.box()\n col = box.column()\n col.label(text='Debug')\n rowsub = col.row(align=True)\n rowsub.prop(self, 'use_debug_redraw')\n rowsub.prop(self, 'use_debug_points')\n rowsub.prop(self, 'use_debug_bool')\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<assignment token>\n<import token>\n<function token>\n<function token>\n\n\nclass FractureCell(Operator):\n <assignment token>\n <assignment token>\n <assignment token>\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n\n def execute(self, context):\n keywords = self.as_keywords()\n main(context, **keywords)\n return {'FINISHED'}\n <function token>\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<assignment token>\n<import token>\n<function token>\n<function token>\n\n\nclass FractureCell(Operator):\n <assignment token>\n <assignment token>\n <assignment token>\n source: EnumProperty(name='Source', items=(('VERT_OWN', 'Own Verts',\n 'Use own vertices'), ('VERT_CHILD', 'Child Verts',\n 'Use child object vertices'), ('PARTICLE_OWN', 'Own Particles',\n 'All particle systems of the source object'), ('PARTICLE_CHILD',\n 'Child Particles', 'All particle systems of the child objects'), (\n 'PENCIL', 'Grease Pencil', \"This object's grease pencil\")), options\n ={'ENUM_FLAG'}, default={'PARTICLE_OWN'})\n source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited', min=0, max=\n 5000, default=100)\n source_noise: FloatProperty(name='Noise', description=\n 'Randomize point distribution', min=0.0, max=1.0, default=0.0)\n cell_scale: FloatVectorProperty(name='Scale', description=\n 'Scale Cell Shape', size=3, min=0.0, max=1.0, default=(1.0, 1.0, 1.0))\n recursion: IntProperty(name='Recursion', description=\n 'Break shards recursively', min=0, max=5000, default=0)\n recursion_source_limit: IntProperty(name='Source Limit', description=\n 'Limit the number of input points, 0 for unlimited (applies to recursion only)'\n , min=0, max=5000, default=8)\n recursion_clamp: IntProperty(name='Clamp Recursion', description=\n 'Finish recursion when this number of objects is reached (prevents recursing for extended periods of time), zero disables'\n , min=0, max=10000, default=250)\n recursion_chance: FloatProperty(name='Random Factor', description=\n 'Likelihood of recursion', min=0.0, max=1.0, default=0.25)\n recursion_chance_select: EnumProperty(name='Recurse Over', items=((\n 'RANDOM', 'Random', ''), ('SIZE_MIN', 'Small',\n 'Recursively subdivide smaller objects'), ('SIZE_MAX', 'Big',\n 'Recursively subdivide bigger objects'), ('CURSOR_MIN',\n 'Cursor Close',\n 'Recursively subdivide objects closer to the cursor'), (\n 'CURSOR_MAX', 'Cursor Far',\n 'Recursively subdivide objects farther from the cursor')), default=\n 'SIZE_MIN')\n use_smooth_faces: BoolProperty(name='Smooth Faces', default=False)\n use_sharp_edges: BoolProperty(name='Sharp Edges', description=\n 'Set sharp edges when disabled', default=True)\n use_sharp_edges_apply: BoolProperty(name='Apply Split Edge',\n description='Split sharp hard edges', default=True)\n use_data_match: BoolProperty(name='Match Data', description=\n 'Match original mesh materials and data layers', default=True)\n use_island_split: BoolProperty(name='Split Islands', description=\n 'Split disconnected meshes', default=True)\n margin: FloatProperty(name='Margin', description=\n 'Gaps for the fracture (gives more stable physics)', min=0.0, max=\n 1.0, default=0.001)\n material_index: IntProperty(name='Material', description=\n 'Material index for interior faces', default=0)\n use_interior_vgroup: BoolProperty(name='Interior VGroup', description=\n 'Create a vertex group for interior verts', default=False)\n mass_mode: EnumProperty(name='Mass Mode', items=(('VOLUME', 'Volume',\n 'Objects get part of specified mass based on their volume'), (\n 'UNIFORM', 'Uniform', 'All objects get the specified mass')),\n default='VOLUME')\n mass: FloatProperty(name='Mass', description=\n 'Mass to give created objects', min=0.001, max=1000.0, default=1.0)\n use_recenter: BoolProperty(name='Recenter', description=\n 'Recalculate the center points after splitting', default=True)\n use_remove_original: BoolProperty(name='Remove Original', description=\n 'Removes the parents used to create the shatter', default=True)\n use_layer_index: IntProperty(name='Layer Index', description=\n 'Layer to add the objects into or 0 for existing', default=0, min=0,\n max=20)\n use_layer_next: BoolProperty(name='Next Layer', description=\n 'At the object into the next layer (layer index overrides)',\n default=True)\n group_name: StringProperty(name='Group', description=\n 'Create objects int a group (use existing or create new)')\n use_debug_points: BoolProperty(name='Debug Points', description=\n 'Create mesh data showing the points used for fracture', default=False)\n use_debug_redraw: BoolProperty(name='Show Progress Realtime',\n description='Redraw as fracture is done', default=True)\n use_debug_bool: BoolProperty(name='Debug Boolean', description=\n 'Skip applying the boolean modifier', default=False)\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<code token>\n", "<assignment token>\n<import token>\n<function token>\n<function token>\n<class token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,301
78bf2e85dfc38fa356ea0261a15ad9e475e3e629
p1 = '/etc/bash.bashrc' try: with open(p1) as bash: # with open('a.bashrc', 'r') as bash: file_text = bash.readlines() uncomm_http = 'export http_proxy="http://proxy22.iitd.ac.in:3128"\n' comm_http = '#' + uncomm_http if comm_http in file_text: pass elif uncomm_http in file_text: file_text.remove(uncomm_http) file_text.append(comm_http) else: pass with open(p1, 'w') as bash: bash.writelines(file_text) uncomm_https = 'export https_proxy="https://proxy22.iitd.ac.in:3128"\n' comm_https = '#' + uncomm_https if comm_https in file_text: pass elif uncomm_https in file_text: file_text.remove(uncomm_https) file_text.append(comm_https) else: pass with open(p1, 'w') as bash: bash.writelines(file_text) except: print("No file named "+p1) ########################################################## # for apt p1 = '/etc/apt/apt.conf' try: with open(p1) as bash: # with open('a.bashrc', 'r') as bash: file_text = bash.readlines() uncomm_http = 'Acquire::http { Proxy "http://proxy22.iitd.ac.in:3128"; }\n' comm_http = '#' + uncomm_http if comm_http in file_text: pass elif uncomm_http in file_text: file_text.remove(uncomm_http) file_text.append(comm_http) else: pass with open(p1, 'w') as bash: bash.writelines(file_text) uncomm_https = 'Acquire::https { Proxy "https://proxy22.iitd.ac.in:3128"; }\n' comm_https = '#' + uncomm_https if comm_https in file_text: pass elif uncomm_https in file_text: file_text.remove(uncomm_https) file_text.append(comm_https) else: pass with open(p1, 'w') as bash: bash.writelines(file_text) except: print("No file named "+p1)
[ "p1 = '/etc/bash.bashrc'\n\ntry:\n\twith open(p1) as bash:\n\t # with open('a.bashrc', 'r') as bash:\n\t file_text = bash.readlines()\n\n\tuncomm_http = 'export http_proxy=\"http://proxy22.iitd.ac.in:3128\"\\n'\n\tcomm_http = '#' + uncomm_http\n\n\tif comm_http in file_text:\n\t pass\n\telif uncomm_http in file_text:\n\t file_text.remove(uncomm_http)\n\t file_text.append(comm_http)\n\telse:\n\t pass\n\n\twith open(p1, 'w') as bash:\n\t bash.writelines(file_text)\n\n\tuncomm_https = 'export https_proxy=\"https://proxy22.iitd.ac.in:3128\"\\n'\n\tcomm_https = '#' + uncomm_https\n\n\tif comm_https in file_text:\n\t pass\n\telif uncomm_https in file_text:\n\t file_text.remove(uncomm_https)\n\t file_text.append(comm_https)\n\telse:\n\t pass\n\n\twith open(p1, 'w') as bash:\n\t bash.writelines(file_text)\nexcept:\n\tprint(\"No file named \"+p1)\n\n##########################################################\n\n# for apt\n\n\np1 = '/etc/apt/apt.conf'\ntry:\n\twith open(p1) as bash:\n\t # with open('a.bashrc', 'r') as bash:\n\t file_text = bash.readlines()\n\n\tuncomm_http = 'Acquire::http { Proxy \"http://proxy22.iitd.ac.in:3128\"; }\\n'\n\tcomm_http = '#' + uncomm_http\n\n\tif comm_http in file_text:\n\t pass\n\telif uncomm_http in file_text:\n\t file_text.remove(uncomm_http)\n\t file_text.append(comm_http)\n\telse:\n\t pass\n\n\twith open(p1, 'w') as bash:\n\t bash.writelines(file_text)\n\n\tuncomm_https = 'Acquire::https { Proxy \"https://proxy22.iitd.ac.in:3128\"; }\\n'\n\tcomm_https = '#' + uncomm_https\n\n\tif comm_https in file_text:\n\t pass\n\telif uncomm_https in file_text:\n\t file_text.remove(uncomm_https)\n\t file_text.append(comm_https)\n\telse:\n\t pass\n\n\twith open(p1, 'w') as bash:\n\t bash.writelines(file_text)\nexcept:\n\tprint(\"No file named \"+p1)\n", "p1 = '/etc/bash.bashrc'\ntry:\n with open(p1) as bash:\n file_text = bash.readlines()\n uncomm_http = 'export http_proxy=\"http://proxy22.iitd.ac.in:3128\"\\n'\n comm_http = '#' + uncomm_http\n if comm_http in file_text:\n pass\n elif uncomm_http in file_text:\n file_text.remove(uncomm_http)\n file_text.append(comm_http)\n else:\n pass\n with open(p1, 'w') as bash:\n bash.writelines(file_text)\n uncomm_https = 'export https_proxy=\"https://proxy22.iitd.ac.in:3128\"\\n'\n comm_https = '#' + uncomm_https\n if comm_https in file_text:\n pass\n elif uncomm_https in file_text:\n file_text.remove(uncomm_https)\n file_text.append(comm_https)\n else:\n pass\n with open(p1, 'w') as bash:\n bash.writelines(file_text)\nexcept:\n print('No file named ' + p1)\np1 = '/etc/apt/apt.conf'\ntry:\n with open(p1) as bash:\n file_text = bash.readlines()\n uncomm_http = 'Acquire::http { Proxy \"http://proxy22.iitd.ac.in:3128\"; }\\n'\n comm_http = '#' + uncomm_http\n if comm_http in file_text:\n pass\n elif uncomm_http in file_text:\n file_text.remove(uncomm_http)\n file_text.append(comm_http)\n else:\n pass\n with open(p1, 'w') as bash:\n bash.writelines(file_text)\n uncomm_https = (\n 'Acquire::https { Proxy \"https://proxy22.iitd.ac.in:3128\"; }\\n')\n comm_https = '#' + uncomm_https\n if comm_https in file_text:\n pass\n elif uncomm_https in file_text:\n file_text.remove(uncomm_https)\n file_text.append(comm_https)\n else:\n pass\n with open(p1, 'w') as bash:\n bash.writelines(file_text)\nexcept:\n print('No file named ' + p1)\n", "<assignment token>\ntry:\n with open(p1) as bash:\n file_text = bash.readlines()\n uncomm_http = 'export http_proxy=\"http://proxy22.iitd.ac.in:3128\"\\n'\n comm_http = '#' + uncomm_http\n if comm_http in file_text:\n pass\n elif uncomm_http in file_text:\n file_text.remove(uncomm_http)\n file_text.append(comm_http)\n else:\n pass\n with open(p1, 'w') as bash:\n bash.writelines(file_text)\n uncomm_https = 'export https_proxy=\"https://proxy22.iitd.ac.in:3128\"\\n'\n comm_https = '#' + uncomm_https\n if comm_https in file_text:\n pass\n elif uncomm_https in file_text:\n file_text.remove(uncomm_https)\n file_text.append(comm_https)\n else:\n pass\n with open(p1, 'w') as bash:\n bash.writelines(file_text)\nexcept:\n print('No file named ' + p1)\n<assignment token>\ntry:\n with open(p1) as bash:\n file_text = bash.readlines()\n uncomm_http = 'Acquire::http { Proxy \"http://proxy22.iitd.ac.in:3128\"; }\\n'\n comm_http = '#' + uncomm_http\n if comm_http in file_text:\n pass\n elif uncomm_http in file_text:\n file_text.remove(uncomm_http)\n file_text.append(comm_http)\n else:\n pass\n with open(p1, 'w') as bash:\n bash.writelines(file_text)\n uncomm_https = (\n 'Acquire::https { Proxy \"https://proxy22.iitd.ac.in:3128\"; }\\n')\n comm_https = '#' + uncomm_https\n if comm_https in file_text:\n pass\n elif uncomm_https in file_text:\n file_text.remove(uncomm_https)\n file_text.append(comm_https)\n else:\n pass\n with open(p1, 'w') as bash:\n bash.writelines(file_text)\nexcept:\n print('No file named ' + p1)\n", "<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,302
462b01b0e02c704ea1481e257c89248f6786ff52
# BJ2549 루빅의 사각형 import sys from pprint import pprint sys.stdin = open('input.txt','r') cnt = 0 # 오른쪽으로 움직이는 함수, x 행을 n번 움직인다. def moveR(x, n): global cnt tempX = mat[x] cnt += n for i in range(4): tempX[i] = mat[x][x+n % 4] if x + n < 4: tempX[i] = mat[x][x+n] elif x + n >= 4: tempX[i] = mat[x][x+n-4] # 아랫쪽으로 움직이는 함수, y 열을 n번 움직인다. def moveD(x,y,n): global cnt tempY = [mat[x][y],] pass mat = [list(map(int,input().split())) for _ in range(4)] mat2 = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]] temp = {} temp2 = [[(0,0)]*4 for _ in range(4)] for x in range(4): for y in range(4): temp[mat2[x][y]] = (x,y) print(temp) for x in range(4): for y in range(4): if mat[x][y] != mat2[x][y]: x2, y2 = temp[mat[x][y]] print(mat[x][y],x,y) dx = 0 dy = 0 if x2 > x: dx = x2-x elif x > x2: dx = 4 - (x - x2) if y2 > y: dy = y2-y elif y > y2: dy = 4 - (y - y2) temp2[x][y] = (dx,dy) pprint(temp2) for x in range(4): for y in range(4): if mat[x][y] != mat2[x][y]: x2, y2 = temp[mat[x][y]] # print(mat[x][y],(x,y),temp[mat[x][y]]) dx = 0 dy = 0 if x2 > x: dx = x2-x elif x > x2: dx = 4 - (x - x2) if y2 > y: dy = y2-y elif y > y2: dy = 4 - (y - y2) temp2[x][y] = (dx,dy) pprint(temp2) mv = [] for x in range(4): for y in range(4): if temp2[x][y]: print(mv) a,b = temp2[x][y] if a: pprint(temp2) do = 1 # print(a,b) for i in range(4): c,d = temp2[i][y] if a == c: do = 1 else: do = 0 if do: mv.append((2, y+1, a)) for j in range(4): e,f = temp2[j][y] if f: # print((a+j) % 4) temp2[j][y] = 0 temp2[(a + j) % 4][y] = (0,f) else: temp2[j][y] = 0 # print(mv) # print(temp2) elif b: pprint(temp2) do = 1 for l in range(4): x3,y3 = temp2[x][l] if b == y3: do = 1 else: do = 0 if do: mv.append((1, x+1, b)) for k in range(4): g,h = temp2[x][k] if g: temp2[x][k] = 0 temp2[x][(b+k) % 4] = (g,0) else: temp2[x][k] = 0 # temp2[x][k] = (g,0) print(len(mv)) for move in mv: for m in move: print(m,end=' ') print()
[ "# BJ2549 루빅의 사각형\n\nimport sys\nfrom pprint import pprint\nsys.stdin = open('input.txt','r')\n\ncnt = 0\n# 오른쪽으로 움직이는 함수, x 행을 n번 움직인다. \ndef moveR(x, n):\n global cnt\n tempX = mat[x]\n cnt += n\n for i in range(4):\n tempX[i] = mat[x][x+n % 4]\n if x + n < 4:\n tempX[i] = mat[x][x+n]\n elif x + n >= 4:\n tempX[i] = mat[x][x+n-4]\n\n# 아랫쪽으로 움직이는 함수, y 열을 n번 움직인다. \ndef moveD(x,y,n):\n global cnt\n tempY = [mat[x][y],]\n pass\n\n\nmat = [list(map(int,input().split())) for _ in range(4)]\nmat2 = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]\ntemp = {}\ntemp2 = [[(0,0)]*4 for _ in range(4)]\nfor x in range(4):\n for y in range(4):\n temp[mat2[x][y]] = (x,y)\nprint(temp)\n\nfor x in range(4):\n for y in range(4):\n if mat[x][y] != mat2[x][y]:\n x2, y2 = temp[mat[x][y]]\n print(mat[x][y],x,y)\n dx = 0\n dy = 0\n if x2 > x:\n dx = x2-x\n elif x > x2:\n dx = 4 - (x - x2)\n if y2 > y:\n dy = y2-y\n elif y > y2:\n dy = 4 - (y - y2)\n temp2[x][y] = (dx,dy)\npprint(temp2)\n\nfor x in range(4):\n for y in range(4):\n if mat[x][y] != mat2[x][y]:\n x2, y2 = temp[mat[x][y]]\n # print(mat[x][y],(x,y),temp[mat[x][y]])\n dx = 0\n dy = 0\n if x2 > x:\n dx = x2-x\n elif x > x2:\n dx = 4 - (x - x2)\n if y2 > y:\n dy = y2-y\n elif y > y2:\n dy = 4 - (y - y2)\n temp2[x][y] = (dx,dy)\n \npprint(temp2)\nmv = []\nfor x in range(4):\n for y in range(4):\n if temp2[x][y]:\n print(mv)\n a,b = temp2[x][y]\n if a:\n pprint(temp2)\n do = 1\n # print(a,b)\n for i in range(4):\n c,d = temp2[i][y]\n if a == c:\n do = 1\n else:\n do = 0\n if do:\n mv.append((2, y+1, a))\n for j in range(4):\n e,f = temp2[j][y]\n if f:\n # print((a+j) % 4)\n temp2[j][y] = 0\n temp2[(a + j) % 4][y] = (0,f)\n else:\n temp2[j][y] = 0\n # print(mv)\n # print(temp2)\n elif b:\n pprint(temp2)\n do = 1\n for l in range(4):\n x3,y3 = temp2[x][l]\n if b == y3:\n do = 1\n else:\n do = 0\n if do:\n mv.append((1, x+1, b))\n for k in range(4):\n g,h = temp2[x][k]\n if g:\n temp2[x][k] = 0 \n temp2[x][(b+k) % 4] = (g,0)\n else:\n temp2[x][k] = 0\n # temp2[x][k] = (g,0)\n\nprint(len(mv))\nfor move in mv:\n for m in move:\n print(m,end=' ')\n print()\n", "import sys\nfrom pprint import pprint\nsys.stdin = open('input.txt', 'r')\ncnt = 0\n\n\ndef moveR(x, n):\n global cnt\n tempX = mat[x]\n cnt += n\n for i in range(4):\n tempX[i] = mat[x][x + n % 4]\n if x + n < 4:\n tempX[i] = mat[x][x + n]\n elif x + n >= 4:\n tempX[i] = mat[x][x + n - 4]\n\n\ndef moveD(x, y, n):\n global cnt\n tempY = [mat[x][y]]\n pass\n\n\nmat = [list(map(int, input().split())) for _ in range(4)]\nmat2 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]\ntemp = {}\ntemp2 = [([(0, 0)] * 4) for _ in range(4)]\nfor x in range(4):\n for y in range(4):\n temp[mat2[x][y]] = x, y\nprint(temp)\nfor x in range(4):\n for y in range(4):\n if mat[x][y] != mat2[x][y]:\n x2, y2 = temp[mat[x][y]]\n print(mat[x][y], x, y)\n dx = 0\n dy = 0\n if x2 > x:\n dx = x2 - x\n elif x > x2:\n dx = 4 - (x - x2)\n if y2 > y:\n dy = y2 - y\n elif y > y2:\n dy = 4 - (y - y2)\n temp2[x][y] = dx, dy\npprint(temp2)\nfor x in range(4):\n for y in range(4):\n if mat[x][y] != mat2[x][y]:\n x2, y2 = temp[mat[x][y]]\n dx = 0\n dy = 0\n if x2 > x:\n dx = x2 - x\n elif x > x2:\n dx = 4 - (x - x2)\n if y2 > y:\n dy = y2 - y\n elif y > y2:\n dy = 4 - (y - y2)\n temp2[x][y] = dx, dy\npprint(temp2)\nmv = []\nfor x in range(4):\n for y in range(4):\n if temp2[x][y]:\n print(mv)\n a, b = temp2[x][y]\n if a:\n pprint(temp2)\n do = 1\n for i in range(4):\n c, d = temp2[i][y]\n if a == c:\n do = 1\n else:\n do = 0\n if do:\n mv.append((2, y + 1, a))\n for j in range(4):\n e, f = temp2[j][y]\n if f:\n temp2[j][y] = 0\n temp2[(a + j) % 4][y] = 0, f\n else:\n temp2[j][y] = 0\n elif b:\n pprint(temp2)\n do = 1\n for l in range(4):\n x3, y3 = temp2[x][l]\n if b == y3:\n do = 1\n else:\n do = 0\n if do:\n mv.append((1, x + 1, b))\n for k in range(4):\n g, h = temp2[x][k]\n if g:\n temp2[x][k] = 0\n temp2[x][(b + k) % 4] = g, 0\n else:\n temp2[x][k] = 0\nprint(len(mv))\nfor move in mv:\n for m in move:\n print(m, end=' ')\n print()\n", "<import token>\nsys.stdin = open('input.txt', 'r')\ncnt = 0\n\n\ndef moveR(x, n):\n global cnt\n tempX = mat[x]\n cnt += n\n for i in range(4):\n tempX[i] = mat[x][x + n % 4]\n if x + n < 4:\n tempX[i] = mat[x][x + n]\n elif x + n >= 4:\n tempX[i] = mat[x][x + n - 4]\n\n\ndef moveD(x, y, n):\n global cnt\n tempY = [mat[x][y]]\n pass\n\n\nmat = [list(map(int, input().split())) for _ in range(4)]\nmat2 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]\ntemp = {}\ntemp2 = [([(0, 0)] * 4) for _ in range(4)]\nfor x in range(4):\n for y in range(4):\n temp[mat2[x][y]] = x, y\nprint(temp)\nfor x in range(4):\n for y in range(4):\n if mat[x][y] != mat2[x][y]:\n x2, y2 = temp[mat[x][y]]\n print(mat[x][y], x, y)\n dx = 0\n dy = 0\n if x2 > x:\n dx = x2 - x\n elif x > x2:\n dx = 4 - (x - x2)\n if y2 > y:\n dy = y2 - y\n elif y > y2:\n dy = 4 - (y - y2)\n temp2[x][y] = dx, dy\npprint(temp2)\nfor x in range(4):\n for y in range(4):\n if mat[x][y] != mat2[x][y]:\n x2, y2 = temp[mat[x][y]]\n dx = 0\n dy = 0\n if x2 > x:\n dx = x2 - x\n elif x > x2:\n dx = 4 - (x - x2)\n if y2 > y:\n dy = y2 - y\n elif y > y2:\n dy = 4 - (y - y2)\n temp2[x][y] = dx, dy\npprint(temp2)\nmv = []\nfor x in range(4):\n for y in range(4):\n if temp2[x][y]:\n print(mv)\n a, b = temp2[x][y]\n if a:\n pprint(temp2)\n do = 1\n for i in range(4):\n c, d = temp2[i][y]\n if a == c:\n do = 1\n else:\n do = 0\n if do:\n mv.append((2, y + 1, a))\n for j in range(4):\n e, f = temp2[j][y]\n if f:\n temp2[j][y] = 0\n temp2[(a + j) % 4][y] = 0, f\n else:\n temp2[j][y] = 0\n elif b:\n pprint(temp2)\n do = 1\n for l in range(4):\n x3, y3 = temp2[x][l]\n if b == y3:\n do = 1\n else:\n do = 0\n if do:\n mv.append((1, x + 1, b))\n for k in range(4):\n g, h = temp2[x][k]\n if g:\n temp2[x][k] = 0\n temp2[x][(b + k) % 4] = g, 0\n else:\n temp2[x][k] = 0\nprint(len(mv))\nfor move in mv:\n for m in move:\n print(m, end=' ')\n print()\n", "<import token>\n<assignment token>\n\n\ndef moveR(x, n):\n global cnt\n tempX = mat[x]\n cnt += n\n for i in range(4):\n tempX[i] = mat[x][x + n % 4]\n if x + n < 4:\n tempX[i] = mat[x][x + n]\n elif x + n >= 4:\n tempX[i] = mat[x][x + n - 4]\n\n\ndef moveD(x, y, n):\n global cnt\n tempY = [mat[x][y]]\n pass\n\n\n<assignment token>\nfor x in range(4):\n for y in range(4):\n temp[mat2[x][y]] = x, y\nprint(temp)\nfor x in range(4):\n for y in range(4):\n if mat[x][y] != mat2[x][y]:\n x2, y2 = temp[mat[x][y]]\n print(mat[x][y], x, y)\n dx = 0\n dy = 0\n if x2 > x:\n dx = x2 - x\n elif x > x2:\n dx = 4 - (x - x2)\n if y2 > y:\n dy = y2 - y\n elif y > y2:\n dy = 4 - (y - y2)\n temp2[x][y] = dx, dy\npprint(temp2)\nfor x in range(4):\n for y in range(4):\n if mat[x][y] != mat2[x][y]:\n x2, y2 = temp[mat[x][y]]\n dx = 0\n dy = 0\n if x2 > x:\n dx = x2 - x\n elif x > x2:\n dx = 4 - (x - x2)\n if y2 > y:\n dy = y2 - y\n elif y > y2:\n dy = 4 - (y - y2)\n temp2[x][y] = dx, dy\npprint(temp2)\n<assignment token>\nfor x in range(4):\n for y in range(4):\n if temp2[x][y]:\n print(mv)\n a, b = temp2[x][y]\n if a:\n pprint(temp2)\n do = 1\n for i in range(4):\n c, d = temp2[i][y]\n if a == c:\n do = 1\n else:\n do = 0\n if do:\n mv.append((2, y + 1, a))\n for j in range(4):\n e, f = temp2[j][y]\n if f:\n temp2[j][y] = 0\n temp2[(a + j) % 4][y] = 0, f\n else:\n temp2[j][y] = 0\n elif b:\n pprint(temp2)\n do = 1\n for l in range(4):\n x3, y3 = temp2[x][l]\n if b == y3:\n do = 1\n else:\n do = 0\n if do:\n mv.append((1, x + 1, b))\n for k in range(4):\n g, h = temp2[x][k]\n if g:\n temp2[x][k] = 0\n temp2[x][(b + k) % 4] = g, 0\n else:\n temp2[x][k] = 0\nprint(len(mv))\nfor move in mv:\n for m in move:\n print(m, end=' ')\n print()\n", "<import token>\n<assignment token>\n\n\ndef moveR(x, n):\n global cnt\n tempX = mat[x]\n cnt += n\n for i in range(4):\n tempX[i] = mat[x][x + n % 4]\n if x + n < 4:\n tempX[i] = mat[x][x + n]\n elif x + n >= 4:\n tempX[i] = mat[x][x + n - 4]\n\n\ndef moveD(x, y, n):\n global cnt\n tempY = [mat[x][y]]\n pass\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n\n\ndef moveD(x, y, n):\n global cnt\n tempY = [mat[x][y]]\n pass\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,303
a851c4501197c7029be0107c7a244c82e6c225aa
from program.models import Program, Picture from operators.models import Operator from django.contrib import admin admin.site.register(Program) admin.site.register(Picture) admin.site.register(Operator)
[ "from program.models import Program, Picture\nfrom operators.models import Operator\nfrom django.contrib import admin\n\nadmin.site.register(Program)\nadmin.site.register(Picture)\nadmin.site.register(Operator)", "from program.models import Program, Picture\nfrom operators.models import Operator\nfrom django.contrib import admin\nadmin.site.register(Program)\nadmin.site.register(Picture)\nadmin.site.register(Operator)\n", "<import token>\nadmin.site.register(Program)\nadmin.site.register(Picture)\nadmin.site.register(Operator)\n", "<import token>\n<code token>\n" ]
false
98,304
d67d1dd46dfb65de5623068d77cf362299710be0
import cv2 import numpy as np import random import torch def view_dataset(dset): """ :param dset: img: torch.Size([3, 512, 640]) bboxes: torch.Size([12, 4]) labels: torch.Size([12, 1]) masks: torch.Size([12, 510, 621]) :return: """ cv2.namedWindow('img') for idx in range(len(dset)): img, bboxes, labels, masks = dset.__getitem__(idx) img = img.numpy().transpose(1,2,0) bboxes = bboxes.numpy() labels = labels.numpy() masks = masks.numpy() for i in range(bboxes.shape[0]): y1, x1, y2, x2 = bboxes[i,:] cv2.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), 2, lineType=1) # view segmentation cur_gt_mask = masks[i, :, :] mask = np.zeros(cur_gt_mask.shape, dtype=np.float32) mask[cur_gt_mask == 1] = 1. color = (random.random(), random.random(), random.random()) mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2) mskd = img * mask clmsk = np.ones(mask.shape) * mask clmsk[:, :, 0] = clmsk[:, :, 0] * color[0] * 256 clmsk[:, :, 1] = clmsk[:, :, 1] * color[1] * 256 clmsk[:, :, 2] = clmsk[:, :, 2] * color[2] * 256 img = img + 0.8 * clmsk - 0.8 * mskd ########################### cv2.imshow('img', np.uint8(img)) k = cv2.waitKey(0) if k & 0xFF == ord('q'): cv2.destroyAllWindows() exit() cv2.destroyAllWindows() def view_detections(inputs, detections): """ :param inputs: torch.Size([2, 3, 512, 640]) :param detections: torch.Size([2, 2, 200, 5]) :return: """ cv2.namedWindow('img') for i in range(inputs.shape[0]): img = inputs[i,:,:,:].data.cpu().numpy().transpose(1,2,0) img = np.uint8(img).copy() det = detections[i,1,:,:] mask = det[:, 0].gt(0.).expand(5, det.size(0)).t() det = torch.masked_select(det, mask).view(-1, 5) if det.shape[0] == 0: continue boxes = det[:, 1:].cpu().numpy() scores = det[:, 0].cpu().numpy() for box, score in zip(boxes, scores): y1, x1, y2, x2 = box y1 = int(y1) x1 = int(x1) y2 = int(y2) x2 = int(x2) cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2, 2) cv2.putText(img, "%.2f" % score, (x1, y1 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255)) cv2.imshow('img', img) k = cv2.waitKey(0) if k&0xFF==ord('q'): cv2.destroyAllWindows() exit() cv2.destroyAllWindows()
[ "import cv2\nimport numpy as np\nimport random\nimport torch\n\ndef view_dataset(dset):\n \"\"\"\n :param dset:\n img: torch.Size([3, 512, 640])\n bboxes: torch.Size([12, 4])\n labels: torch.Size([12, 1])\n masks: torch.Size([12, 510, 621])\n :return:\n \"\"\"\n cv2.namedWindow('img')\n for idx in range(len(dset)):\n img, bboxes, labels, masks = dset.__getitem__(idx)\n img = img.numpy().transpose(1,2,0)\n bboxes = bboxes.numpy()\n labels = labels.numpy()\n masks = masks.numpy()\n for i in range(bboxes.shape[0]):\n y1, x1, y2, x2 = bboxes[i,:]\n cv2.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), 2, lineType=1)\n\n # view segmentation\n cur_gt_mask = masks[i, :, :]\n mask = np.zeros(cur_gt_mask.shape, dtype=np.float32)\n mask[cur_gt_mask == 1] = 1.\n color = (random.random(), random.random(), random.random())\n mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)\n mskd = img * mask\n clmsk = np.ones(mask.shape) * mask\n clmsk[:, :, 0] = clmsk[:, :, 0] * color[0] * 256\n clmsk[:, :, 1] = clmsk[:, :, 1] * color[1] * 256\n clmsk[:, :, 2] = clmsk[:, :, 2] * color[2] * 256\n img = img + 0.8 * clmsk - 0.8 * mskd\n ###########################\n\n cv2.imshow('img', np.uint8(img))\n k = cv2.waitKey(0)\n if k & 0xFF == ord('q'):\n cv2.destroyAllWindows()\n exit()\n cv2.destroyAllWindows()\n\n\ndef view_detections(inputs, detections):\n \"\"\"\n :param inputs: torch.Size([2, 3, 512, 640])\n :param detections: torch.Size([2, 2, 200, 5])\n :return:\n \"\"\"\n cv2.namedWindow('img')\n for i in range(inputs.shape[0]):\n img = inputs[i,:,:,:].data.cpu().numpy().transpose(1,2,0)\n img = np.uint8(img).copy()\n det = detections[i,1,:,:]\n\n mask = det[:, 0].gt(0.).expand(5, det.size(0)).t()\n det = torch.masked_select(det, mask).view(-1, 5)\n if det.shape[0] == 0:\n continue\n boxes = det[:, 1:].cpu().numpy()\n scores = det[:, 0].cpu().numpy()\n for box, score in zip(boxes, scores):\n y1, x1, y2, x2 = box\n y1 = int(y1)\n x1 = int(x1)\n y2 = int(y2)\n x2 = int(x2)\n\n cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2, 2)\n cv2.putText(img,\n \"%.2f\" % score,\n (x1, y1 + 20),\n cv2.FONT_HERSHEY_SIMPLEX,\n 0.6,\n (255, 255, 255))\n\n cv2.imshow('img', img)\n k = cv2.waitKey(0)\n if k&0xFF==ord('q'):\n cv2.destroyAllWindows()\n exit()\n cv2.destroyAllWindows()\n", "import cv2\nimport numpy as np\nimport random\nimport torch\n\n\ndef view_dataset(dset):\n \"\"\"\n :param dset:\n img: torch.Size([3, 512, 640])\n bboxes: torch.Size([12, 4])\n labels: torch.Size([12, 1])\n masks: torch.Size([12, 510, 621])\n :return:\n \"\"\"\n cv2.namedWindow('img')\n for idx in range(len(dset)):\n img, bboxes, labels, masks = dset.__getitem__(idx)\n img = img.numpy().transpose(1, 2, 0)\n bboxes = bboxes.numpy()\n labels = labels.numpy()\n masks = masks.numpy()\n for i in range(bboxes.shape[0]):\n y1, x1, y2, x2 = bboxes[i, :]\n cv2.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), 2,\n lineType=1)\n cur_gt_mask = masks[i, :, :]\n mask = np.zeros(cur_gt_mask.shape, dtype=np.float32)\n mask[cur_gt_mask == 1] = 1.0\n color = random.random(), random.random(), random.random()\n mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)\n mskd = img * mask\n clmsk = np.ones(mask.shape) * mask\n clmsk[:, :, 0] = clmsk[:, :, 0] * color[0] * 256\n clmsk[:, :, 1] = clmsk[:, :, 1] * color[1] * 256\n clmsk[:, :, 2] = clmsk[:, :, 2] * color[2] * 256\n img = img + 0.8 * clmsk - 0.8 * mskd\n cv2.imshow('img', np.uint8(img))\n k = cv2.waitKey(0)\n if k & 255 == ord('q'):\n cv2.destroyAllWindows()\n exit()\n cv2.destroyAllWindows()\n\n\ndef view_detections(inputs, detections):\n \"\"\"\n :param inputs: torch.Size([2, 3, 512, 640])\n :param detections: torch.Size([2, 2, 200, 5])\n :return:\n \"\"\"\n cv2.namedWindow('img')\n for i in range(inputs.shape[0]):\n img = inputs[i, :, :, :].data.cpu().numpy().transpose(1, 2, 0)\n img = np.uint8(img).copy()\n det = detections[i, 1, :, :]\n mask = det[:, 0].gt(0.0).expand(5, det.size(0)).t()\n det = torch.masked_select(det, mask).view(-1, 5)\n if det.shape[0] == 0:\n continue\n boxes = det[:, 1:].cpu().numpy()\n scores = det[:, 0].cpu().numpy()\n for box, score in zip(boxes, scores):\n y1, x1, y2, x2 = box\n y1 = int(y1)\n x1 = int(x1)\n y2 = int(y2)\n x2 = int(x2)\n cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2, 2)\n cv2.putText(img, '%.2f' % score, (x1, y1 + 20), cv2.\n FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255))\n cv2.imshow('img', img)\n k = cv2.waitKey(0)\n if k & 255 == ord('q'):\n cv2.destroyAllWindows()\n exit()\n cv2.destroyAllWindows()\n", "<import token>\n\n\ndef view_dataset(dset):\n \"\"\"\n :param dset:\n img: torch.Size([3, 512, 640])\n bboxes: torch.Size([12, 4])\n labels: torch.Size([12, 1])\n masks: torch.Size([12, 510, 621])\n :return:\n \"\"\"\n cv2.namedWindow('img')\n for idx in range(len(dset)):\n img, bboxes, labels, masks = dset.__getitem__(idx)\n img = img.numpy().transpose(1, 2, 0)\n bboxes = bboxes.numpy()\n labels = labels.numpy()\n masks = masks.numpy()\n for i in range(bboxes.shape[0]):\n y1, x1, y2, x2 = bboxes[i, :]\n cv2.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), 2,\n lineType=1)\n cur_gt_mask = masks[i, :, :]\n mask = np.zeros(cur_gt_mask.shape, dtype=np.float32)\n mask[cur_gt_mask == 1] = 1.0\n color = random.random(), random.random(), random.random()\n mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)\n mskd = img * mask\n clmsk = np.ones(mask.shape) * mask\n clmsk[:, :, 0] = clmsk[:, :, 0] * color[0] * 256\n clmsk[:, :, 1] = clmsk[:, :, 1] * color[1] * 256\n clmsk[:, :, 2] = clmsk[:, :, 2] * color[2] * 256\n img = img + 0.8 * clmsk - 0.8 * mskd\n cv2.imshow('img', np.uint8(img))\n k = cv2.waitKey(0)\n if k & 255 == ord('q'):\n cv2.destroyAllWindows()\n exit()\n cv2.destroyAllWindows()\n\n\ndef view_detections(inputs, detections):\n \"\"\"\n :param inputs: torch.Size([2, 3, 512, 640])\n :param detections: torch.Size([2, 2, 200, 5])\n :return:\n \"\"\"\n cv2.namedWindow('img')\n for i in range(inputs.shape[0]):\n img = inputs[i, :, :, :].data.cpu().numpy().transpose(1, 2, 0)\n img = np.uint8(img).copy()\n det = detections[i, 1, :, :]\n mask = det[:, 0].gt(0.0).expand(5, det.size(0)).t()\n det = torch.masked_select(det, mask).view(-1, 5)\n if det.shape[0] == 0:\n continue\n boxes = det[:, 1:].cpu().numpy()\n scores = det[:, 0].cpu().numpy()\n for box, score in zip(boxes, scores):\n y1, x1, y2, x2 = box\n y1 = int(y1)\n x1 = int(x1)\n y2 = int(y2)\n x2 = int(x2)\n cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2, 2)\n cv2.putText(img, '%.2f' % score, (x1, y1 + 20), cv2.\n FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255))\n cv2.imshow('img', img)\n k = cv2.waitKey(0)\n if k & 255 == ord('q'):\n cv2.destroyAllWindows()\n exit()\n cv2.destroyAllWindows()\n", "<import token>\n<function token>\n\n\ndef view_detections(inputs, detections):\n \"\"\"\n :param inputs: torch.Size([2, 3, 512, 640])\n :param detections: torch.Size([2, 2, 200, 5])\n :return:\n \"\"\"\n cv2.namedWindow('img')\n for i in range(inputs.shape[0]):\n img = inputs[i, :, :, :].data.cpu().numpy().transpose(1, 2, 0)\n img = np.uint8(img).copy()\n det = detections[i, 1, :, :]\n mask = det[:, 0].gt(0.0).expand(5, det.size(0)).t()\n det = torch.masked_select(det, mask).view(-1, 5)\n if det.shape[0] == 0:\n continue\n boxes = det[:, 1:].cpu().numpy()\n scores = det[:, 0].cpu().numpy()\n for box, score in zip(boxes, scores):\n y1, x1, y2, x2 = box\n y1 = int(y1)\n x1 = int(x1)\n y2 = int(y2)\n x2 = int(x2)\n cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2, 2)\n cv2.putText(img, '%.2f' % score, (x1, y1 + 20), cv2.\n FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255))\n cv2.imshow('img', img)\n k = cv2.waitKey(0)\n if k & 255 == ord('q'):\n cv2.destroyAllWindows()\n exit()\n cv2.destroyAllWindows()\n", "<import token>\n<function token>\n<function token>\n" ]
false
98,305
cda59a5c677b22bfd59f53cf5a8218588adbcf77
# -*- coding: utf-8 -*- ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. """Definition for tokens, languages, documents and doclists, to store the results of extraction, and express in XML. For the XML format see dochandler.py """ __author__ = """ [email protected] (Richard Sproat) [email protected] (Kristy Hollingshead) """ import xml.sax.saxutils from math import sqrt from __init__ import BASE_ import documents XML_HEADER_ = '<?xml version="1.0" encoding="UTF-8"?>' LANG_INDENT_ = ' ' * 4 TOKEN_INDENT_ = ' ' * 6 def SumProd(x, y): return sum(map(lambda x, y: x * y, x, y)) class Token: """A token is a term extracted from text, with attributes count, pronunciation, morphological decomposition """ def __init__(self, string): try: self.string_ = string.encode('utf-8') except UnicodeDecodeError: self.string_ = string self.count_ = 1 self.morphs_ = [] self.pronunciations_ = [] self.frequencies_ = [] self.langid_ = '' def __eq__(self, other): skey = self.EncodeForHash() okey = other.EncodeForHash() return skey == okey def __repr__(self): return '#<%s %d %s %s %s>' % (self.string_, self.count_, self.morphs_, self.pronunciations_, self.langid_) def XmlEncode(self): xml_string_ = '<token count="%d" morphs="%s" prons="%s">%s</token>' morphs = ' '.join(self.morphs_) morphs = xml.sax.saxutils.escape(morphs) prons = ' ; '.join(self.pronunciations_) prons = xml.sax.saxutils.escape(prons) string_ = xml.sax.saxutils.escape(self.string_) xml_result = xml_string_ % (self.count_, morphs, prons, string_) return TOKEN_INDENT_ + xml_result def EncodeForHash(self): return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()), ' '.join(self.Pronunciations()), self.LangId()) def String(self): return self.string_ def SetCount(self, count): self.count_ = count def IncrementCount(self, increment = 1): self.count_ += increment def Count(self): return self.count_ def AddPronunciation(self, pron): if pron not in self.pronunciations_: try: self.pronunciations_.append(pron.encode('utf-8')) except UnicodeDecodeError: self.pronunciations_.append(pron) def Pronunciations(self): return self.pronunciations_ def SetMorphs(self, morphs): self.morphs_ = [] for m in morphs: try: self.morphs_.append(m.encode('utf-8')) except UnicodeDecodeError: self.morphs_.append(m) def Morphs(self): return self.morphs_ def SetLangId(self, lang): self.langid_ = lang def LangId(self): return self.langid_ class TokenFreqStats: """Holder for token frequency-statistics such as relative frequency-counts and variance. """ def __init__(self, tok): self.token_ = tok self.frequencies_ = [] self.freqsum_ = 0 self.freqsumsq_ = 0 self.variance_ = 0 def __repr__(self): return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_, self.freqsum_, self.freqsumsq_, self.variance_) def Token(self): return self.token_ def Frequencies(self): return self.frequencies_ def AddFrequency(self, f): self.frequencies_.append(f) def SetFrequencies(self, freq): self.frequencies_ = [] for f in freq: self.frequencies_.append(f) def NormFrequencies(self): self.frequencies_ = [float(f) for f in self.frequencies_] sumfreqs = float(sum(self.frequencies_)) if sumfreqs != 0.0: self.frequencies_ = [f/sumfreqs for f in self.frequencies_] def CalcFreqStats(self): n = len(self.frequencies_) self.freqsum_ = float(sum(self.frequencies_)) self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_) self.variance_ = self.freqsumsq_/n - (self.freqsum_**2)/(n**2) def FreqSum(self): return self.freqsum_ def FreqVariance(self): return self.variance_ class DocTokenStats: """Holder for Doclist-specific token statistics, such as frequency counts. Also allows for calculation of pairwise comparison metrics such as Pearson's correlation. """ def __init__(self, doclist=None): if doclist is None: self.doclist_ = documents.Doclist() else: self.doclist_ = doclist self.n_ = len(self.doclist_.Docs()) self.tokstats_ = {} def InitTokenStats(self, tok): tstats = TokenFreqStats(tok) tfreq = [] for doc in self.doclist_.Docs(): c = 0 for lang in doc.Langs(): if tok.LangId() != lang.Id(): continue tmptok = lang.MatchToken(tok) if tmptok is not None: c += tmptok.Count() tfreq.append(c) tstats.SetFrequencies(tfreq) tstats.NormFrequencies() tstats.CalcFreqStats() self.tokstats_[tok.EncodeForHash()] = tstats return tstats def AddTokenStats(self, tstats): tokhash = tstats.Token().EncodeForHash() if tokhash not in self.tokstats_: self.tokstats_[tokhash] = tstats def GetTokenStats(self, tok): try: return self.tokstats_[tok.EncodeForHash()] except KeyError: return self.InitTokenStats(tok) def TokenStats(self): return self.tokstats_.values() def SetN(self, n): self.n_ = n def GetN(self): return self.n_ def PearsonsCorrelation(self, token1, token2): stats1 = self.GetTokenStats(token1) stats2 = self.GetTokenStats(token2) freq1 = stats1.Frequencies() freq2 = stats2.Frequencies() sumxy = sum(map(lambda x, y: x * y, freq1, freq2)) covxy = sumxy/float(self.n_) - \ (stats1.FreqSum()*stats2.FreqSum())/float(self.n_**2) try: rho = covxy/sqrt(stats1.FreqVariance()*stats2.FreqVariance()) except ZeroDivisionError: rho = 0.0 #print x.String(),y.String(),sumx2,sumy2,varx,vary,sumxy,covxy,rho return rho class Lang: """Holder for tokens in a language. """ def __init__(self): self.id_ = '' self.tokens_ = [] def XmlEncode(self): if len(self.tokens_) == 0: return '' xml_string_ = '<lang id="%s">\n%s\n%s</lang>' xml_tokens = [] for token_ in self.Tokens(): xml_tokens.append(token_.XmlEncode()) xml_result = xml_string_ % (self.id_, '\n'.join(xml_tokens), LANG_INDENT_) return LANG_INDENT_ + xml_result def Id(self): return self.id_ def SetId(self, id): self.id_ = id.encode('utf-8') def Tokens(self): return self.tokens_ def SetTokens(self, tokens): self.tokens_ = [] for t in tokens: self.AddToken(t) def AddToken(self, token, merge=False): """If an identical token already exists in dictionary, will merge tokens and cumulate their counts. Checks to see that morphology and pronunciations are identical, otherwise the tokens will not be merged. """ token.SetLangId(self.id_) if not merge: self.tokens_.append(token) else: exists = self.MatchToken(token) if exists is None: self.tokens_.append(token) else: exists.IncrementCount(token.Count()) def MatchToken(self, token): try: i = self.tokens_.index(token) return self.tokens_[i] except ValueError: return None def CompactTokens(self): """Merge identical tokens and cumulate their counts. Checks to see that morphology and pronunciations are identical, otherwise the tokens will not be merged. """ map = {} for token_ in self.tokens_: hash_string = token_.EncodeForHash() try: map[hash_string].append(token_) except KeyError: map[hash_string] = [token_] ntokens = [] keys = map.keys() keys.sort() for k in keys: token_ = map[k][0] for otoken in map[k][1:]: token_.IncrementCount(otoken.Count()) ntokens.append(token_) self.tokens_ = ntokens
[ "# -*- coding: utf-8 -*-\n\n## Licensed under the Apache License, Version 2.0 (the \"License\");\n## you may not use this file except in compliance with the License.\n## You may obtain a copy of the License at\n##\n## http://www.apache.org/licenses/LICENSE-2.0\n##\n## Unless required by applicable law or agreed to in writing, software\n## distributed under the License is distributed on an \"AS IS\" BASIS,\n## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n## See the License for the specific language governing permissions and\n## limitations under the License.\n\n\"\"\"Definition for tokens, languages, documents and doclists, to store\nthe results of extraction, and express in XML.\n\nFor the XML format see dochandler.py\n\"\"\"\n\n__author__ = \"\"\"\[email protected] (Richard Sproat)\[email protected] (Kristy Hollingshead)\n\"\"\"\n\nimport xml.sax.saxutils\nfrom math import sqrt\nfrom __init__ import BASE_\nimport documents\n\nXML_HEADER_ = '<?xml version=\"1.0\" encoding=\"UTF-8\"?>'\nLANG_INDENT_ = ' ' * 4\nTOKEN_INDENT_ = ' ' * 6\n\ndef SumProd(x, y):\n return sum(map(lambda x, y: x * y, x, y))\n\nclass Token:\n \"\"\"A token is a term extracted from text, with attributes\n count, pronunciation, morphological decomposition\n \"\"\"\n def __init__(self, string):\n try: self.string_ = string.encode('utf-8')\n except UnicodeDecodeError: self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n\n def __eq__(self, other):\n skey = self.EncodeForHash()\n okey = other.EncodeForHash()\n return skey == okey\n\n def __repr__(self):\n return '#<%s %d %s %s %s>' % (self.string_,\n self.count_,\n self.morphs_,\n self.pronunciations_,\n self.langid_)\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(),\n ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()),\n self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n\n def IncrementCount(self, increment = 1):\n self.count_ += increment\n\n def Count(self):\n return self.count_\n\n def AddPronunciation(self, pron):\n if pron not in self.pronunciations_:\n try: self.pronunciations_.append(pron.encode('utf-8'))\n except UnicodeDecodeError: self.pronunciations_.append(pron)\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try: self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError: self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_,\n self.frequencies_,\n self.freqsum_,\n self.freqsumsq_,\n self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [f/sumfreqs for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_/n - (self.freqsum_**2)/(n**2)\n\n def FreqSum(self):\n return self.freqsum_\n \n def FreqVariance(self):\n return self.variance_\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else: self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id(): continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try: return self.tokstats_[tok.EncodeForHash()]\n except KeyError: return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy/float(self.n_) - \\\n (stats1.FreqSum()*stats2.FreqSum())/float(self.n_**2)\n try:\n rho = covxy/sqrt(stats1.FreqVariance()*stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n #print x.String(),y.String(),sumx2,sumy2,varx,vary,sumxy,covxy,rho\n return rho\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0: return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try: map[hash_string].append(token_)\n except KeyError: map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n\n", "<docstring token>\n__author__ = \"\"\"\[email protected] (Richard Sproat)\[email protected] (Kristy Hollingshead)\n\"\"\"\nimport xml.sax.saxutils\nfrom math import sqrt\nfrom __init__ import BASE_\nimport documents\nXML_HEADER_ = '<?xml version=\"1.0\" encoding=\"UTF-8\"?>'\nLANG_INDENT_ = ' ' * 4\nTOKEN_INDENT_ = ' ' * 6\n\n\ndef SumProd(x, y):\n return sum(map(lambda x, y: x * y, x, y))\n\n\nclass Token:\n \"\"\"A token is a term extracted from text, with attributes\n count, pronunciation, morphological decomposition\n \"\"\"\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n\n def __eq__(self, other):\n skey = self.EncodeForHash()\n okey = other.EncodeForHash()\n return skey == okey\n\n def __repr__(self):\n return '#<%s %d %s %s %s>' % (self.string_, self.count_, self.\n morphs_, self.pronunciations_, self.langid_)\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()), self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n\n def IncrementCount(self, increment=1):\n self.count_ += increment\n\n def Count(self):\n return self.count_\n\n def AddPronunciation(self, pron):\n if pron not in self.pronunciations_:\n try:\n self.pronunciations_.append(pron.encode('utf-8'))\n except UnicodeDecodeError:\n self.pronunciations_.append(pron)\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n__author__ = \"\"\"\[email protected] (Richard Sproat)\[email protected] (Kristy Hollingshead)\n\"\"\"\n<import token>\nXML_HEADER_ = '<?xml version=\"1.0\" encoding=\"UTF-8\"?>'\nLANG_INDENT_ = ' ' * 4\nTOKEN_INDENT_ = ' ' * 6\n\n\ndef SumProd(x, y):\n return sum(map(lambda x, y: x * y, x, y))\n\n\nclass Token:\n \"\"\"A token is a term extracted from text, with attributes\n count, pronunciation, morphological decomposition\n \"\"\"\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n\n def __eq__(self, other):\n skey = self.EncodeForHash()\n okey = other.EncodeForHash()\n return skey == okey\n\n def __repr__(self):\n return '#<%s %d %s %s %s>' % (self.string_, self.count_, self.\n morphs_, self.pronunciations_, self.langid_)\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()), self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n\n def IncrementCount(self, increment=1):\n self.count_ += increment\n\n def Count(self):\n return self.count_\n\n def AddPronunciation(self, pron):\n if pron not in self.pronunciations_:\n try:\n self.pronunciations_.append(pron.encode('utf-8'))\n except UnicodeDecodeError:\n self.pronunciations_.append(pron)\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n\n\ndef SumProd(x, y):\n return sum(map(lambda x, y: x * y, x, y))\n\n\nclass Token:\n \"\"\"A token is a term extracted from text, with attributes\n count, pronunciation, morphological decomposition\n \"\"\"\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n\n def __eq__(self, other):\n skey = self.EncodeForHash()\n okey = other.EncodeForHash()\n return skey == okey\n\n def __repr__(self):\n return '#<%s %d %s %s %s>' % (self.string_, self.count_, self.\n morphs_, self.pronunciations_, self.langid_)\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()), self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n\n def IncrementCount(self, increment=1):\n self.count_ += increment\n\n def Count(self):\n return self.count_\n\n def AddPronunciation(self, pron):\n if pron not in self.pronunciations_:\n try:\n self.pronunciations_.append(pron.encode('utf-8'))\n except UnicodeDecodeError:\n self.pronunciations_.append(pron)\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n \"\"\"A token is a term extracted from text, with attributes\n count, pronunciation, morphological decomposition\n \"\"\"\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n\n def __eq__(self, other):\n skey = self.EncodeForHash()\n okey = other.EncodeForHash()\n return skey == okey\n\n def __repr__(self):\n return '#<%s %d %s %s %s>' % (self.string_, self.count_, self.\n morphs_, self.pronunciations_, self.langid_)\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()), self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n\n def IncrementCount(self, increment=1):\n self.count_ += increment\n\n def Count(self):\n return self.count_\n\n def AddPronunciation(self, pron):\n if pron not in self.pronunciations_:\n try:\n self.pronunciations_.append(pron.encode('utf-8'))\n except UnicodeDecodeError:\n self.pronunciations_.append(pron)\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n\n def __eq__(self, other):\n skey = self.EncodeForHash()\n okey = other.EncodeForHash()\n return skey == okey\n\n def __repr__(self):\n return '#<%s %d %s %s %s>' % (self.string_, self.count_, self.\n morphs_, self.pronunciations_, self.langid_)\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()), self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n\n def IncrementCount(self, increment=1):\n self.count_ += increment\n\n def Count(self):\n return self.count_\n\n def AddPronunciation(self, pron):\n if pron not in self.pronunciations_:\n try:\n self.pronunciations_.append(pron.encode('utf-8'))\n except UnicodeDecodeError:\n self.pronunciations_.append(pron)\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n <function token>\n\n def __repr__(self):\n return '#<%s %d %s %s %s>' % (self.string_, self.count_, self.\n morphs_, self.pronunciations_, self.langid_)\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()), self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n\n def IncrementCount(self, increment=1):\n self.count_ += increment\n\n def Count(self):\n return self.count_\n\n def AddPronunciation(self, pron):\n if pron not in self.pronunciations_:\n try:\n self.pronunciations_.append(pron.encode('utf-8'))\n except UnicodeDecodeError:\n self.pronunciations_.append(pron)\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n <function token>\n\n def __repr__(self):\n return '#<%s %d %s %s %s>' % (self.string_, self.count_, self.\n morphs_, self.pronunciations_, self.langid_)\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()), self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n <function token>\n\n def Count(self):\n return self.count_\n\n def AddPronunciation(self, pron):\n if pron not in self.pronunciations_:\n try:\n self.pronunciations_.append(pron.encode('utf-8'))\n except UnicodeDecodeError:\n self.pronunciations_.append(pron)\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n <function token>\n\n def __repr__(self):\n return '#<%s %d %s %s %s>' % (self.string_, self.count_, self.\n morphs_, self.pronunciations_, self.langid_)\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()), self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n <function token>\n\n def Count(self):\n return self.count_\n <function token>\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n\n def EncodeForHash(self):\n return '%s<%s><%s><%s>' % (self.String(), ' '.join(self.Morphs()),\n ' '.join(self.Pronunciations()), self.LangId())\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n <function token>\n\n def Count(self):\n return self.count_\n <function token>\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n <function token>\n\n def Count(self):\n return self.count_\n <function token>\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n\n def String(self):\n return self.string_\n\n def SetCount(self, count):\n self.count_ = count\n <function token>\n <function token>\n <function token>\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n\n def String(self):\n return self.string_\n <function token>\n <function token>\n <function token>\n <function token>\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n\n def __init__(self, string):\n try:\n self.string_ = string.encode('utf-8')\n except UnicodeDecodeError:\n self.string_ = string\n self.count_ = 1\n self.morphs_ = []\n self.pronunciations_ = []\n self.frequencies_ = []\n self.langid_ = ''\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n\n def Morphs(self):\n return self.morphs_\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def Pronunciations(self):\n return self.pronunciations_\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n <function token>\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n <function token>\n\n def SetLangId(self, lang):\n self.langid_ = lang\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def SetMorphs(self, morphs):\n self.morphs_ = []\n for m in morphs:\n try:\n self.morphs_.append(m.encode('utf-8'))\n except UnicodeDecodeError:\n self.morphs_.append(m)\n <function token>\n <function token>\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def LangId(self):\n return self.langid_\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def XmlEncode(self):\n xml_string_ = '<token count=\"%d\" morphs=\"%s\" prons=\"%s\">%s</token>'\n morphs = ' '.join(self.morphs_)\n morphs = xml.sax.saxutils.escape(morphs)\n prons = ' ; '.join(self.pronunciations_)\n prons = xml.sax.saxutils.escape(prons)\n string_ = xml.sax.saxutils.escape(self.string_)\n xml_result = xml_string_ % (self.count_, morphs, prons, string_)\n return TOKEN_INDENT_ + xml_result\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n\n\nclass Token:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n \"\"\"Holder for token frequency-statistics such as\n relative frequency-counts and variance.\n \"\"\"\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n\n def Token(self):\n return self.token_\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n <function token>\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n\n def FreqSum(self):\n return self.freqsum_\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n <function token>\n\n def Frequencies(self):\n return self.frequencies_\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n <function token>\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n <function token>\n <function token>\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n\n def CalcFreqStats(self):\n n = len(self.frequencies_)\n self.freqsum_ = float(sum(self.frequencies_))\n self.freqsumsq_ = SumProd(self.frequencies_, self.frequencies_)\n self.variance_ = self.freqsumsq_ / n - self.freqsum_ ** 2 / n ** 2\n <function token>\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n <function token>\n <function token>\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n\n def NormFrequencies(self):\n self.frequencies_ = [float(f) for f in self.frequencies_]\n sumfreqs = float(sum(self.frequencies_))\n if sumfreqs != 0.0:\n self.frequencies_ = [(f / sumfreqs) for f in self.frequencies_]\n <function token>\n <function token>\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n\n def __repr__(self):\n return '#<%s %s %.6f %.6f %.6f>' % (self.token_, self.frequencies_,\n self.freqsum_, self.freqsumsq_, self.variance_)\n <function token>\n <function token>\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n <function token>\n <function token>\n <function token>\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n <function token>\n <function token>\n <function token>\n\n def AddFrequency(self, f):\n self.frequencies_.append(f)\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n <function token>\n <function token>\n <function token>\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n\n def __init__(self, tok):\n self.token_ = tok\n self.frequencies_ = []\n self.freqsum_ = 0\n self.freqsumsq_ = 0\n self.variance_ = 0\n <function token>\n <function token>\n <function token>\n <function token>\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n <function token>\n <function token>\n <function token>\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def SetFrequencies(self, freq):\n self.frequencies_ = []\n for f in freq:\n self.frequencies_.append(f)\n <function token>\n <function token>\n <function token>\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def FreqVariance(self):\n return self.variance_\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n\n\nclass TokenFreqStats:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n \"\"\"Holder for Doclist-specific token statistics, such as frequency\n counts. Also allows for calculation of pairwise comparison metrics\n such as Pearson's correlation.\n \"\"\"\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n <docstring token>\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n\n def SetN(self, n):\n self.n_ = n\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n <docstring token>\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n\n def InitTokenStats(self, tok):\n tstats = TokenFreqStats(tok)\n tfreq = []\n for doc in self.doclist_.Docs():\n c = 0\n for lang in doc.Langs():\n if tok.LangId() != lang.Id():\n continue\n tmptok = lang.MatchToken(tok)\n if tmptok is not None:\n c += tmptok.Count()\n tfreq.append(c)\n tstats.SetFrequencies(tfreq)\n tstats.NormFrequencies()\n tstats.CalcFreqStats()\n self.tokstats_[tok.EncodeForHash()] = tstats\n return tstats\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n <function token>\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n <docstring token>\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n <function token>\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n <function token>\n\n def GetN(self):\n return self.n_\n\n def PearsonsCorrelation(self, token1, token2):\n stats1 = self.GetTokenStats(token1)\n stats2 = self.GetTokenStats(token2)\n freq1 = stats1.Frequencies()\n freq2 = stats2.Frequencies()\n sumxy = sum(map(lambda x, y: x * y, freq1, freq2))\n covxy = sumxy / float(self.n_) - stats1.FreqSum() * stats2.FreqSum(\n ) / float(self.n_ ** 2)\n try:\n rho = covxy / sqrt(stats1.FreqVariance() * stats2.FreqVariance())\n except ZeroDivisionError:\n rho = 0.0\n return rho\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n <docstring token>\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n <function token>\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n <function token>\n\n def GetN(self):\n return self.n_\n <function token>\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n <docstring token>\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n <function token>\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n\n def GetTokenStats(self, tok):\n try:\n return self.tokstats_[tok.EncodeForHash()]\n except KeyError:\n return self.InitTokenStats(tok)\n\n def TokenStats(self):\n return self.tokstats_.values()\n <function token>\n <function token>\n <function token>\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n <docstring token>\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n <function token>\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n <function token>\n\n def TokenStats(self):\n return self.tokstats_.values()\n <function token>\n <function token>\n <function token>\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n <docstring token>\n\n def __init__(self, doclist=None):\n if doclist is None:\n self.doclist_ = documents.Doclist()\n else:\n self.doclist_ = doclist\n self.n_ = len(self.doclist_.Docs())\n self.tokstats_ = {}\n <function token>\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n <docstring token>\n <function token>\n <function token>\n\n def AddTokenStats(self, tstats):\n tokhash = tstats.Token().EncodeForHash()\n if tokhash not in self.tokstats_:\n self.tokstats_[tokhash] = tstats\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n\n\nclass DocTokenStats:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n \"\"\"Holder for tokens in a language.\n \"\"\"\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n\n def MatchToken(self, token):\n try:\n i = self.tokens_.index(token)\n return self.tokens_[i]\n except ValueError:\n return None\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n <function token>\n\n def CompactTokens(self):\n \"\"\"Merge identical tokens and cumulate their counts. Checks to see\n that morphology and pronunciations are identical, otherwise the\n tokens will not be merged.\n \"\"\"\n map = {}\n for token_ in self.tokens_:\n hash_string = token_.EncodeForHash()\n try:\n map[hash_string].append(token_)\n except KeyError:\n map[hash_string] = [token_]\n ntokens = []\n keys = map.keys()\n keys.sort()\n for k in keys:\n token_ = map[k][0]\n for otoken in map[k][1:]:\n token_.IncrementCount(otoken.Count())\n ntokens.append(token_)\n self.tokens_ = ntokens\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n\n def XmlEncode(self):\n if len(self.tokens_) == 0:\n return ''\n xml_string_ = '<lang id=\"%s\">\\n%s\\n%s</lang>'\n xml_tokens = []\n for token_ in self.Tokens():\n xml_tokens.append(token_.XmlEncode())\n xml_result = xml_string_ % (self.id_, '\\n'.join(xml_tokens),\n LANG_INDENT_)\n return LANG_INDENT_ + xml_result\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n <function token>\n <function token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n <function token>\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n\n def Tokens(self):\n return self.tokens_\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n <function token>\n <function token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n <function token>\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n <function token>\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n\n def AddToken(self, token, merge=False):\n \"\"\"If an identical token already exists in dictionary,\n will merge tokens and cumulate their counts. Checks to\n see that morphology and pronunciations are identical,\n otherwise the tokens will not be merged.\n \"\"\"\n token.SetLangId(self.id_)\n if not merge:\n self.tokens_.append(token)\n else:\n exists = self.MatchToken(token)\n if exists is None:\n self.tokens_.append(token)\n else:\n exists.IncrementCount(token.Count())\n <function token>\n <function token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n <function token>\n\n def Id(self):\n return self.id_\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n <function token>\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n <function token>\n <function token>\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n <function token>\n\n def SetTokens(self, tokens):\n self.tokens_ = []\n for t in tokens:\n self.AddToken(t)\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n <function token>\n <function token>\n\n def SetId(self, id):\n self.id_ = id.encode('utf-8')\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n\n def __init__(self):\n self.id_ = ''\n self.tokens_ = []\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Lang:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<assignment token>\n<import token>\n<assignment token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n" ]
false
98,306
9a421c88dc25adb6ef52fb64f81321ec4f310b84
# -*- coding: utf-8 -*- """Interface for Customer Service Incident """ from immunarray.lims import messageFactory as _ from immunarray.lims.interfaces import BaseModel from zope import schema class ICustomerServiceCall(BaseModel): """Interface for Customer Service Call objects CSC """ csc_client = schema.Choice( title=_(u"Client"), description=_(u"Client"), required=True, values=[_(u'Quarantined'), _(u'Released')], ) csc_instance = schema.Choice( title=_(u"Instance Type"), description=_(u"Instance Type"), required=True, values=[_(u'Quarantined'), _(u'Released')], ) csc_datetime = schema.Datetime( title=_(u"Date and Time of Instance"), description=_(u"Date and Time of Instance"), required=False, ) csc_follow_up_needed = schema.Bool( title=_(u"Is Follow Up Needed"), description=_(u"Is Follow Up Needed"), required=False, ) csc_status = schema.Choice( title=_(u"Status of CSI"), description=_(u"Status of CSI"), required=True, values=[_(u'Open'), _(u'Closed'), _(u'Held')], ) csc_details = schema.Text( title=_(u"Details of CSI"), description=_(u"Details of CSI"), required=False, )
[ "# -*- coding: utf-8 -*-\n\"\"\"Interface for Customer Service Incident\n\"\"\"\n\nfrom immunarray.lims import messageFactory as _\nfrom immunarray.lims.interfaces import BaseModel\nfrom zope import schema\n\n\nclass ICustomerServiceCall(BaseModel):\n \"\"\"Interface for Customer Service Call objects CSC\n \"\"\"\n csc_client = schema.Choice(\n title=_(u\"Client\"),\n description=_(u\"Client\"),\n required=True,\n values=[_(u'Quarantined'), _(u'Released')],\n )\n csc_instance = schema.Choice(\n title=_(u\"Instance Type\"),\n description=_(u\"Instance Type\"),\n required=True,\n values=[_(u'Quarantined'), _(u'Released')],\n )\n csc_datetime = schema.Datetime(\n title=_(u\"Date and Time of Instance\"),\n description=_(u\"Date and Time of Instance\"),\n required=False,\n )\n csc_follow_up_needed = schema.Bool(\n title=_(u\"Is Follow Up Needed\"),\n description=_(u\"Is Follow Up Needed\"),\n required=False,\n )\n csc_status = schema.Choice(\n title=_(u\"Status of CSI\"),\n description=_(u\"Status of CSI\"),\n required=True,\n values=[_(u'Open'), _(u'Closed'), _(u'Held')],\n )\n csc_details = schema.Text(\n title=_(u\"Details of CSI\"),\n description=_(u\"Details of CSI\"),\n required=False,\n )\n", "<docstring token>\nfrom immunarray.lims import messageFactory as _\nfrom immunarray.lims.interfaces import BaseModel\nfrom zope import schema\n\n\nclass ICustomerServiceCall(BaseModel):\n \"\"\"Interface for Customer Service Call objects CSC\n \"\"\"\n csc_client = schema.Choice(title=_(u'Client'), description=_(u'Client'),\n required=True, values=[_(u'Quarantined'), _(u'Released')])\n csc_instance = schema.Choice(title=_(u'Instance Type'), description=_(\n u'Instance Type'), required=True, values=[_(u'Quarantined'), _(\n u'Released')])\n csc_datetime = schema.Datetime(title=_(u'Date and Time of Instance'),\n description=_(u'Date and Time of Instance'), required=False)\n csc_follow_up_needed = schema.Bool(title=_(u'Is Follow Up Needed'),\n description=_(u'Is Follow Up Needed'), required=False)\n csc_status = schema.Choice(title=_(u'Status of CSI'), description=_(\n u'Status of CSI'), required=True, values=[_(u'Open'), _(u'Closed'),\n _(u'Held')])\n csc_details = schema.Text(title=_(u'Details of CSI'), description=_(\n u'Details of CSI'), required=False)\n", "<docstring token>\n<import token>\n\n\nclass ICustomerServiceCall(BaseModel):\n \"\"\"Interface for Customer Service Call objects CSC\n \"\"\"\n csc_client = schema.Choice(title=_(u'Client'), description=_(u'Client'),\n required=True, values=[_(u'Quarantined'), _(u'Released')])\n csc_instance = schema.Choice(title=_(u'Instance Type'), description=_(\n u'Instance Type'), required=True, values=[_(u'Quarantined'), _(\n u'Released')])\n csc_datetime = schema.Datetime(title=_(u'Date and Time of Instance'),\n description=_(u'Date and Time of Instance'), required=False)\n csc_follow_up_needed = schema.Bool(title=_(u'Is Follow Up Needed'),\n description=_(u'Is Follow Up Needed'), required=False)\n csc_status = schema.Choice(title=_(u'Status of CSI'), description=_(\n u'Status of CSI'), required=True, values=[_(u'Open'), _(u'Closed'),\n _(u'Held')])\n csc_details = schema.Text(title=_(u'Details of CSI'), description=_(\n u'Details of CSI'), required=False)\n", "<docstring token>\n<import token>\n\n\nclass ICustomerServiceCall(BaseModel):\n <docstring token>\n csc_client = schema.Choice(title=_(u'Client'), description=_(u'Client'),\n required=True, values=[_(u'Quarantined'), _(u'Released')])\n csc_instance = schema.Choice(title=_(u'Instance Type'), description=_(\n u'Instance Type'), required=True, values=[_(u'Quarantined'), _(\n u'Released')])\n csc_datetime = schema.Datetime(title=_(u'Date and Time of Instance'),\n description=_(u'Date and Time of Instance'), required=False)\n csc_follow_up_needed = schema.Bool(title=_(u'Is Follow Up Needed'),\n description=_(u'Is Follow Up Needed'), required=False)\n csc_status = schema.Choice(title=_(u'Status of CSI'), description=_(\n u'Status of CSI'), required=True, values=[_(u'Open'), _(u'Closed'),\n _(u'Held')])\n csc_details = schema.Text(title=_(u'Details of CSI'), description=_(\n u'Details of CSI'), required=False)\n", "<docstring token>\n<import token>\n\n\nclass ICustomerServiceCall(BaseModel):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n", "<docstring token>\n<import token>\n<class token>\n" ]
false
98,307
92a8ea61d471afa8360a32870e7e69d3a3f1f042
# Ensure a class has only one instance and provide a global point of access to it. # Use when there must by only one instance of a class. class Person: __instance = None @staticmethod def getInstance(): if Person.__instance == None: Person() return Person.__instance def __init__(self): if Person.__instance != None: raise Exception("This class is a singleton!") Person.__instance = self def main(): p = Person() print p same_p = p.getInstance() print same_p # Standard boilerplate to call the main() function. if __name__ == '__main__': main()
[ "# Ensure a class has only one instance and provide a global point of access to it.\n\n# Use when there must by only one instance of a class.\n\nclass Person:\n __instance = None\n @staticmethod\n def getInstance():\n if Person.__instance == None:\n Person()\n return Person.__instance\n\n def __init__(self):\n if Person.__instance != None:\n raise Exception(\"This class is a singleton!\")\n \n Person.__instance = self\n\ndef main():\n p = Person()\n print p\n \n same_p = p.getInstance()\n print same_p\n\n# Standard boilerplate to call the main() function.\nif __name__ == '__main__':\n main()\n\n \n" ]
true
98,308
122d7c9aa3a72b65bffc3a4905a14bf8ee68b896
#!/usr/bin/env python3 # -*- utf-8 -*- import numpy as np class TreeNode: def __init__(self, name, num_occur, parent): self.name = name self.count = num_occur self.node_link = None self.parent = parent self.children = {} def inc(self, num_occur): self.count += num_occur def disp(self, ind=1): print(' ' * ind, self.name, ' ', self.count) for child in self.children.values(): child.disp(ind + 1) def create_tree(data_set, min_sup=1): header = {} for trans in data_set: for item in trans: header[item] = header.get(item, 0) + data_set[trans] header = {k: v for k, v in header.items() if v >= min_sup} freq_item_set = set(header.keys()) if len(freq_item_set) == 0: return None, None for k in header: header[k] = [header[k], None] ret_tree = TreeNode('Null Set', 1, None) for trans, count in data_set.items(): local_d = {} for item in trans: if item in freq_item_set: local_d[item] = header[item][0] if len(local_d) > 0: ordered_items = [v[0] for v in sorted(local_d.items(), key=lambda p: p[1], reverse=True)] update_tree(ordered_items, ret_tree, header, count) print('222') return ret_tree, header def update_tree(items, in_tree, header, count): if items[0] in in_tree.children: in_tree.children[items[0]].inc(count) else: in_tree.children[items[0]] = TreeNode(items[0], count, in_tree) if header[items[0]][1] is None: header[items[0]][1] = in_tree.children[items[0]] else: update_header(header[items[0]][1], in_tree.children[items[0]]) if len(items) > 1: update_tree(items[1::], in_tree.children[items[0]], header, count) def update_header(node2test, target_node): while node2test.node_link is not None: node2test = node2test.node_link node2test.node_link = target_node def load_simple_data(): return [['r', 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']] def create_init_set(data_set): ret_dict = {} for trans in data_set: ret_dict[frozenset(trans)] = 1 return ret_dict if __name__ == '__main__': pass
[ "#!/usr/bin/env python3\n# -*- utf-8 -*-\n\nimport numpy as np\n\n\nclass TreeNode:\n def __init__(self, name, num_occur, parent):\n self.name = name\n self.count = num_occur\n self.node_link = None\n self.parent = parent\n self.children = {}\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\ndef create_tree(data_set, min_sup=1):\n header = {}\n for trans in data_set:\n for item in trans:\n header[item] = header.get(item, 0) + data_set[trans]\n header = {k: v for k, v in header.items() if v >= min_sup}\n freq_item_set = set(header.keys())\n if len(freq_item_set) == 0:\n return None, None\n for k in header:\n header[k] = [header[k], None]\n ret_tree = TreeNode('Null Set', 1, None)\n for trans, count in data_set.items():\n local_d = {}\n for item in trans:\n if item in freq_item_set:\n local_d[item] = header[item][0]\n if len(local_d) > 0:\n ordered_items = [v[0] for v in sorted(local_d.items(), key=lambda p: p[1], reverse=True)]\n update_tree(ordered_items, ret_tree, header, count)\n print('222')\n return ret_tree, header\n\n\ndef update_tree(items, in_tree, header, count):\n if items[0] in in_tree.children:\n in_tree.children[items[0]].inc(count)\n else:\n in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)\n if header[items[0]][1] is None:\n header[items[0]][1] = in_tree.children[items[0]]\n else:\n update_header(header[items[0]][1], in_tree.children[items[0]])\n if len(items) > 1:\n update_tree(items[1::], in_tree.children[items[0]], header, count)\n\n\ndef update_header(node2test, target_node):\n while node2test.node_link is not None:\n node2test = node2test.node_link\n node2test.node_link = target_node\n\n\ndef load_simple_data():\n return [['r', 'z', 'h', 'j', 'p'],\n ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],\n ['z'],\n ['r', 'x', 'n', 'o', 's'],\n ['y', 'r', 'x', 'z', 'q', 't', 'p'],\n ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]\n\n\ndef create_init_set(data_set):\n ret_dict = {}\n for trans in data_set:\n ret_dict[frozenset(trans)] = 1\n return ret_dict\n\n\nif __name__ == '__main__':\n pass\n", "import numpy as np\n\n\nclass TreeNode:\n\n def __init__(self, name, num_occur, parent):\n self.name = name\n self.count = num_occur\n self.node_link = None\n self.parent = parent\n self.children = {}\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\ndef create_tree(data_set, min_sup=1):\n header = {}\n for trans in data_set:\n for item in trans:\n header[item] = header.get(item, 0) + data_set[trans]\n header = {k: v for k, v in header.items() if v >= min_sup}\n freq_item_set = set(header.keys())\n if len(freq_item_set) == 0:\n return None, None\n for k in header:\n header[k] = [header[k], None]\n ret_tree = TreeNode('Null Set', 1, None)\n for trans, count in data_set.items():\n local_d = {}\n for item in trans:\n if item in freq_item_set:\n local_d[item] = header[item][0]\n if len(local_d) > 0:\n ordered_items = [v[0] for v in sorted(local_d.items(), key=lambda\n p: p[1], reverse=True)]\n update_tree(ordered_items, ret_tree, header, count)\n print('222')\n return ret_tree, header\n\n\ndef update_tree(items, in_tree, header, count):\n if items[0] in in_tree.children:\n in_tree.children[items[0]].inc(count)\n else:\n in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)\n if header[items[0]][1] is None:\n header[items[0]][1] = in_tree.children[items[0]]\n else:\n update_header(header[items[0]][1], in_tree.children[items[0]])\n if len(items) > 1:\n update_tree(items[1:], in_tree.children[items[0]], header, count)\n\n\ndef update_header(node2test, target_node):\n while node2test.node_link is not None:\n node2test = node2test.node_link\n node2test.node_link = target_node\n\n\ndef load_simple_data():\n return [['r', 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't',\n 's'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q',\n 't', 'p'], ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]\n\n\ndef create_init_set(data_set):\n ret_dict = {}\n for trans in data_set:\n ret_dict[frozenset(trans)] = 1\n return ret_dict\n\n\nif __name__ == '__main__':\n pass\n", "<import token>\n\n\nclass TreeNode:\n\n def __init__(self, name, num_occur, parent):\n self.name = name\n self.count = num_occur\n self.node_link = None\n self.parent = parent\n self.children = {}\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\ndef create_tree(data_set, min_sup=1):\n header = {}\n for trans in data_set:\n for item in trans:\n header[item] = header.get(item, 0) + data_set[trans]\n header = {k: v for k, v in header.items() if v >= min_sup}\n freq_item_set = set(header.keys())\n if len(freq_item_set) == 0:\n return None, None\n for k in header:\n header[k] = [header[k], None]\n ret_tree = TreeNode('Null Set', 1, None)\n for trans, count in data_set.items():\n local_d = {}\n for item in trans:\n if item in freq_item_set:\n local_d[item] = header[item][0]\n if len(local_d) > 0:\n ordered_items = [v[0] for v in sorted(local_d.items(), key=lambda\n p: p[1], reverse=True)]\n update_tree(ordered_items, ret_tree, header, count)\n print('222')\n return ret_tree, header\n\n\ndef update_tree(items, in_tree, header, count):\n if items[0] in in_tree.children:\n in_tree.children[items[0]].inc(count)\n else:\n in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)\n if header[items[0]][1] is None:\n header[items[0]][1] = in_tree.children[items[0]]\n else:\n update_header(header[items[0]][1], in_tree.children[items[0]])\n if len(items) > 1:\n update_tree(items[1:], in_tree.children[items[0]], header, count)\n\n\ndef update_header(node2test, target_node):\n while node2test.node_link is not None:\n node2test = node2test.node_link\n node2test.node_link = target_node\n\n\ndef load_simple_data():\n return [['r', 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't',\n 's'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q',\n 't', 'p'], ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]\n\n\ndef create_init_set(data_set):\n ret_dict = {}\n for trans in data_set:\n ret_dict[frozenset(trans)] = 1\n return ret_dict\n\n\nif __name__ == '__main__':\n pass\n", "<import token>\n\n\nclass TreeNode:\n\n def __init__(self, name, num_occur, parent):\n self.name = name\n self.count = num_occur\n self.node_link = None\n self.parent = parent\n self.children = {}\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\ndef create_tree(data_set, min_sup=1):\n header = {}\n for trans in data_set:\n for item in trans:\n header[item] = header.get(item, 0) + data_set[trans]\n header = {k: v for k, v in header.items() if v >= min_sup}\n freq_item_set = set(header.keys())\n if len(freq_item_set) == 0:\n return None, None\n for k in header:\n header[k] = [header[k], None]\n ret_tree = TreeNode('Null Set', 1, None)\n for trans, count in data_set.items():\n local_d = {}\n for item in trans:\n if item in freq_item_set:\n local_d[item] = header[item][0]\n if len(local_d) > 0:\n ordered_items = [v[0] for v in sorted(local_d.items(), key=lambda\n p: p[1], reverse=True)]\n update_tree(ordered_items, ret_tree, header, count)\n print('222')\n return ret_tree, header\n\n\ndef update_tree(items, in_tree, header, count):\n if items[0] in in_tree.children:\n in_tree.children[items[0]].inc(count)\n else:\n in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)\n if header[items[0]][1] is None:\n header[items[0]][1] = in_tree.children[items[0]]\n else:\n update_header(header[items[0]][1], in_tree.children[items[0]])\n if len(items) > 1:\n update_tree(items[1:], in_tree.children[items[0]], header, count)\n\n\ndef update_header(node2test, target_node):\n while node2test.node_link is not None:\n node2test = node2test.node_link\n node2test.node_link = target_node\n\n\ndef load_simple_data():\n return [['r', 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't',\n 's'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q',\n 't', 'p'], ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]\n\n\ndef create_init_set(data_set):\n ret_dict = {}\n for trans in data_set:\n ret_dict[frozenset(trans)] = 1\n return ret_dict\n\n\n<code token>\n", "<import token>\n\n\nclass TreeNode:\n\n def __init__(self, name, num_occur, parent):\n self.name = name\n self.count = num_occur\n self.node_link = None\n self.parent = parent\n self.children = {}\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\n<function token>\n\n\ndef update_tree(items, in_tree, header, count):\n if items[0] in in_tree.children:\n in_tree.children[items[0]].inc(count)\n else:\n in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)\n if header[items[0]][1] is None:\n header[items[0]][1] = in_tree.children[items[0]]\n else:\n update_header(header[items[0]][1], in_tree.children[items[0]])\n if len(items) > 1:\n update_tree(items[1:], in_tree.children[items[0]], header, count)\n\n\ndef update_header(node2test, target_node):\n while node2test.node_link is not None:\n node2test = node2test.node_link\n node2test.node_link = target_node\n\n\ndef load_simple_data():\n return [['r', 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't',\n 's'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q',\n 't', 'p'], ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]\n\n\ndef create_init_set(data_set):\n ret_dict = {}\n for trans in data_set:\n ret_dict[frozenset(trans)] = 1\n return ret_dict\n\n\n<code token>\n", "<import token>\n\n\nclass TreeNode:\n\n def __init__(self, name, num_occur, parent):\n self.name = name\n self.count = num_occur\n self.node_link = None\n self.parent = parent\n self.children = {}\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\n<function token>\n\n\ndef update_tree(items, in_tree, header, count):\n if items[0] in in_tree.children:\n in_tree.children[items[0]].inc(count)\n else:\n in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)\n if header[items[0]][1] is None:\n header[items[0]][1] = in_tree.children[items[0]]\n else:\n update_header(header[items[0]][1], in_tree.children[items[0]])\n if len(items) > 1:\n update_tree(items[1:], in_tree.children[items[0]], header, count)\n\n\ndef update_header(node2test, target_node):\n while node2test.node_link is not None:\n node2test = node2test.node_link\n node2test.node_link = target_node\n\n\n<function token>\n\n\ndef create_init_set(data_set):\n ret_dict = {}\n for trans in data_set:\n ret_dict[frozenset(trans)] = 1\n return ret_dict\n\n\n<code token>\n", "<import token>\n\n\nclass TreeNode:\n\n def __init__(self, name, num_occur, parent):\n self.name = name\n self.count = num_occur\n self.node_link = None\n self.parent = parent\n self.children = {}\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\n<function token>\n\n\ndef update_tree(items, in_tree, header, count):\n if items[0] in in_tree.children:\n in_tree.children[items[0]].inc(count)\n else:\n in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)\n if header[items[0]][1] is None:\n header[items[0]][1] = in_tree.children[items[0]]\n else:\n update_header(header[items[0]][1], in_tree.children[items[0]])\n if len(items) > 1:\n update_tree(items[1:], in_tree.children[items[0]], header, count)\n\n\n<function token>\n<function token>\n\n\ndef create_init_set(data_set):\n ret_dict = {}\n for trans in data_set:\n ret_dict[frozenset(trans)] = 1\n return ret_dict\n\n\n<code token>\n", "<import token>\n\n\nclass TreeNode:\n\n def __init__(self, name, num_occur, parent):\n self.name = name\n self.count = num_occur\n self.node_link = None\n self.parent = parent\n self.children = {}\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef create_init_set(data_set):\n ret_dict = {}\n for trans in data_set:\n ret_dict[frozenset(trans)] = 1\n return ret_dict\n\n\n<code token>\n", "<import token>\n\n\nclass TreeNode:\n\n def __init__(self, name, num_occur, parent):\n self.name = name\n self.count = num_occur\n self.node_link = None\n self.parent = parent\n self.children = {}\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass TreeNode:\n <function token>\n\n def inc(self, num_occur):\n self.count += num_occur\n\n def disp(self, ind=1):\n print(' ' * ind, self.name, ' ', self.count)\n for child in self.children.values():\n child.disp(ind + 1)\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass TreeNode:\n <function token>\n\n def inc(self, num_occur):\n self.count += num_occur\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass TreeNode:\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<import token>\n<class token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,309
d96734dfc098851192365f2009c3a663d97356ee
import cv2 import glfw import importlib import numpy as np import pkgutil import tasks import time import torch import igl from evaluator import Evaluator from glfw_controller import * from image_view import * from mesh_view import MultiMeshModel from mesh_view import MultiMeshView from multiprocessing import Process from video_capture import VideoCapture from torch.autograd import Variable from tasks.camera_to_image import CfgLoader import graphics_math as gm def render_image(model, pose): pose = torch.from_numpy( np.reshape(poses[0], (1, 1, 1, 7)).astype(np.float32) ) pose = Variable(pose).cpu() img = model(pose) return img def checker_board(): return cv2.cvtColor(cv2.imread("checkerboard.jpg"), cv2.COLOR_BGR2RGB) def to_img(x): x = 0.5 * (x + 1) x = x.clamp(0, 1) x = x.view(x.size(0), 3, 128, 128) return x def to_numpy_img(x): x = to_img(x) x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x x = np.transpose(x, (1, 2, 0)) x *= 255.0 x = np.clip(x, 0.0, 255.0) x = x.astype(np.uint8) x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB) return x def to_torch_pose(x): x = torch.from_numpy(np.reshape(x, (1, 1, 1, 7)).astype(np.float32)) x = Variable(x).cpu() return x def read_poses(pose_file): lines = open(pose_file).read().splitlines() poses = [[float(z) for z in x.split()[1:]] for x in lines] return poses def axes(): return ( np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]), np.array([0, 1, 0, 2, 0, 3]), np.array( [[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]] ), ) def update_axes(which, angle, orientation): axis = orientation[:, which] transformation = gm.rotate(angle, axis) orientation = transformation.dot(orientation) return orientation load_configuration = True load_model = True load_weights = True load_frames = True load_poses = True if load_configuration: print(f"Loading configuration ...") cfg = CfgLoader().get_cfg("cpu") if load_model: print("Loading model ...") model = cfg["model"] if load_weights: print("Loading model weights ...") weights_file = cfg["weights_file"] model.load_state_dict(torch.load(f"./{weights_file}")) poses_file = ( f'{cfg["target_dir"]}/poses.txt' if load_configuration else "targets/camera_to_image/poses.txt" ) movie_file = ( f'{cfg["target_dir"]}/movie.mov' if load_configuration else "targets/camera_to_image/movie.mov" ) if load_frames: print(f"Loading frames: ./{movie_file} ...") frames = VideoCapture(f"./{movie_file}") if load_poses: print(f"Loading poses: ./{poses_file} ...") poses = read_poses(f"./{poses_file}") poses = [ [float(x) for x in l.split()[1:]] for l in open(poses_file).read().splitlines() ] poses = np.array(poses) print("Finding bounding sphere ...") translations = np.zeros((poses.shape[0], 4)) translations[:, 0:3] = poses[:, 0:3] translations[:, 3] = 1 quaternions = poses[:, 3:7] # lights = poses[:, 7:] vertices = translations[:, 0:3] points = translations.T num_points = translations.shape[0] A = 2 * points A[3, :] = 1 f = np.zeros((1, num_points)) for i in range(num_points): f[0, i] = np.linalg.norm(points[0:3, i]) ** 2 C, res, rank, svals = np.linalg.lstsq(A.T, f.T, rcond=None) radius = (np.linalg.norm(C[0:3]) ** 2 + C[3]) ** (1 / 2) print(f"C = {C}, R = {((np.linalg.norm(C[0:3]) ** 2) + C[3]) ** (1/2)}") print(f"C[0] = {C[0]}, C[1] = {C[1]}, C[2] = {C[2]}") app = GlfwApp() app.init() multi_controller = GlfwMultiController() width, height = 640, 480 xpos, ypos, title = 0, 0, "Camera" point_fragment_shader = "point_fragment.glsl" point_vertex_shader = "point_vertex.glsl" vertices = np.concatenate((vertices, np.array([vertices[0, :]]))) big_point = np.array([[0, 0, 0]]) multi_mesh_model = MultiMeshModel( [ { "name": "bounding_sphere", "type": "mesh", "mesh": "sphere.obj", "M": gm.uniform_scale(5.0).dot(gm.translate(0, -0.1, 0)), "fragment": "wireframe_fragment.glsl", "vertex": "wireframe_vertex.glsl", "geometry": "wireframe_geometry.glsl", "color": np.array([1.0, 1.0, 1.0]), "opacity": 0.5, }, { "name": "points", "type": "points", "mesh": vertices, "M": gm.uniform_scale(0.5 / radius).dot( gm.translate(-C[0], -C[1], -C[2]) ), "fragment": "point_fragment.glsl", "vertex": "point_vertex.glsl", "geometry": None, "color": np.array([1.0, 0.0, 0.0]), }, { "name": "axes", "type": "lines", "mesh": axes(), "R": np.eye(4), "T": gm.translate(0, 0, 0), "scale": gm.uniform_scale(0.20), "M": gm.uniform_scale(0.20), "fragment": "line_fragment.glsl", "vertex": "line_vertex.glsl", "geometry": "line_geometry.glsl", "color": np.array([0.0, 1.0, 0.0]), }, ] ) class KeyCallbackHandler: def __init__(self, data): self.data = data def update_orientation(self, name, which, angle): obj = self.data.name_to_mesh_info[name] R = obj["R"] axis = np.expand_dims(R[:, which][0:3], 0).T # import pdb # pdb.set_trace() M = gm.rotate(angle, axis) obj["R"] = gm.rotate(angle, axis).dot(R) def update_translation(self, name, tx, ty, tz): obj = self.data.name_to_mesh_info[name] obj["T"] = gm.translate(tx, ty, tz).dot(obj["T"]) def update_model_matrix(self, name): obj = self.data.name_to_mesh_info[name] obj["M"] = np.linalg.multi_dot([obj["T"], obj["R"], obj["scale"]]) def key_handler(self, key, scancode, action, mods): if key == glfw.KEY_W and action == glfw.PRESS: self.update_translation("axes", 0, 0, 0.025) elif key == glfw.KEY_A and action == glfw.PRESS: self.update_translation("axes", -0.025, 0, 0) elif key == glfw.KEY_S and action == glfw.PRESS: self.update_translation("axes", 0, 0, -0.025) elif key == glfw.KEY_D and action == glfw.PRESS: self.update_translation("axes", 0.025, 0, 0.0) elif key == glfw.KEY_R and action == glfw.PRESS: self.update_translation("axes", 0, 0.025, 0.0) elif key == glfw.KEY_F and action == glfw.PRESS: self.update_translation("axes", 0, -0.025, 0.0) elif key == glfw.KEY_U and action == glfw.PRESS: self.update_orientation("axes", 0, 0.25) elif key == glfw.KEY_J and action == glfw.PRESS: self.update_orientation("axes", 0, -0.25) elif key == glfw.KEY_H and action == glfw.PRESS: self.update_orientation("axes", 1, 0.25) elif key == glfw.KEY_K and action == glfw.PRESS: self.update_orientation("axes", 1, -0.25) elif key == glfw.KEY_O and action == glfw.PRESS: self.update_orientation("axes", 2, 0.25) elif key == glfw.KEY_L and action == glfw.PRESS: self.update_orientation("axes", 2, -0.25) elif key == glfw.KEY_SPACE and action == glfw.PRESS: print("Render!") obj = self.data.name_to_mesh_info["axes"] self.update_model_matrix("axes") multi_mesh_view = MultiMeshView() eye = [0.0, 0.0, 2.0, 1.0] at = [0.0, 0.0, 0.0, 1.0] up = [0.0, 1.0, 0.0, 1.0] fov = 45.0 near = 0.0001 far = 100 light_position = [0.0, 0.0, 4.0] multi_mesh_view.set_camera(eye, at, up, fov, near, far) multi_mesh_view.set_light_position(light_position) mesh_controller = GlfwController( width, height, xpos, ypos, title, multi_mesh_view, multi_mesh_model ) mesh_controller.register_user_key_callback(KeyCallbackHandler(multi_mesh_model)) multi_controller.add(mesh_controller) image_fragment_shader = "image_fragment.glsl" image_vertex_shader = "image_vertex.glsl" output_image = ( to_numpy_img(model(to_torch_pose(poses[0]))) if load_model else checker_board() ) image_model = ImageModel(output_image) image_view = ImageView(image_fragment_shader, image_vertex_shader) image_controller = GlfwController( 400, 300, 500, 100, "Image View", image_view, image_model ) multi_controller.add(image_controller) multi_controller.run()
[ "import cv2\nimport glfw\nimport importlib\nimport numpy as np\nimport pkgutil\nimport tasks\nimport time\nimport torch\nimport igl\n\nfrom evaluator import Evaluator\nfrom glfw_controller import *\nfrom image_view import *\nfrom mesh_view import MultiMeshModel\nfrom mesh_view import MultiMeshView\nfrom multiprocessing import Process\nfrom video_capture import VideoCapture\nfrom torch.autograd import Variable\n\nfrom tasks.camera_to_image import CfgLoader\n\nimport graphics_math as gm\n\n\ndef render_image(model, pose):\n pose = torch.from_numpy(\n np.reshape(poses[0], (1, 1, 1, 7)).astype(np.float32)\n )\n pose = Variable(pose).cpu()\n img = model(pose)\n return img\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread(\"checkerboard.jpg\"), cv2.COLOR_BGR2RGB)\n\n\ndef to_img(x):\n x = 0.5 * (x + 1)\n x = x.clamp(0, 1)\n x = x.view(x.size(0), 3, 128, 128)\n return x\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\ndef to_torch_pose(x):\n x = torch.from_numpy(np.reshape(x, (1, 1, 1, 7)).astype(np.float32))\n x = Variable(x).cpu()\n return x\n\n\ndef read_poses(pose_file):\n lines = open(pose_file).read().splitlines()\n poses = [[float(z) for z in x.split()[1:]] for x in lines]\n return poses\n\n\ndef axes():\n return (\n np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]),\n np.array([0, 1, 0, 2, 0, 3]),\n np.array(\n [[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]]\n ),\n )\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\nload_configuration = True\nload_model = True \nload_weights = True \nload_frames = True \nload_poses = True \nif load_configuration:\n print(f\"Loading configuration ...\")\n cfg = CfgLoader().get_cfg(\"cpu\")\n if load_model:\n print(\"Loading model ...\")\n model = cfg[\"model\"]\n if load_weights:\n print(\"Loading model weights ...\")\n weights_file = cfg[\"weights_file\"]\n model.load_state_dict(torch.load(f\"./{weights_file}\"))\n\nposes_file = (\n f'{cfg[\"target_dir\"]}/poses.txt'\n if load_configuration\n else \"targets/camera_to_image/poses.txt\"\n)\nmovie_file = (\n f'{cfg[\"target_dir\"]}/movie.mov'\n if load_configuration\n else \"targets/camera_to_image/movie.mov\"\n)\n\nif load_frames:\n print(f\"Loading frames: ./{movie_file} ...\")\n frames = VideoCapture(f\"./{movie_file}\")\n\nif load_poses:\n print(f\"Loading poses: ./{poses_file} ...\")\n poses = read_poses(f\"./{poses_file}\")\n poses = [\n [float(x) for x in l.split()[1:]]\n for l in open(poses_file).read().splitlines()\n ]\n poses = np.array(poses)\n\nprint(\"Finding bounding sphere ...\")\ntranslations = np.zeros((poses.shape[0], 4))\ntranslations[:, 0:3] = poses[:, 0:3]\ntranslations[:, 3] = 1\nquaternions = poses[:, 3:7]\n# lights = poses[:, 7:]\nvertices = translations[:, 0:3]\n\npoints = translations.T\nnum_points = translations.shape[0]\nA = 2 * points\nA[3, :] = 1\nf = np.zeros((1, num_points))\n\nfor i in range(num_points):\n f[0, i] = np.linalg.norm(points[0:3, i]) ** 2\n\nC, res, rank, svals = np.linalg.lstsq(A.T, f.T, rcond=None)\nradius = (np.linalg.norm(C[0:3]) ** 2 + C[3]) ** (1 / 2)\nprint(f\"C = {C}, R = {((np.linalg.norm(C[0:3]) ** 2) + C[3]) ** (1/2)}\")\nprint(f\"C[0] = {C[0]}, C[1] = {C[1]}, C[2] = {C[2]}\")\n\napp = GlfwApp()\napp.init()\n\nmulti_controller = GlfwMultiController()\nwidth, height = 640, 480\nxpos, ypos, title = 0, 0, \"Camera\"\n\npoint_fragment_shader = \"point_fragment.glsl\"\npoint_vertex_shader = \"point_vertex.glsl\"\n\nvertices = np.concatenate((vertices, np.array([vertices[0, :]])))\nbig_point = np.array([[0, 0, 0]])\nmulti_mesh_model = MultiMeshModel(\n [\n {\n \"name\": \"bounding_sphere\",\n \"type\": \"mesh\",\n \"mesh\": \"sphere.obj\",\n \"M\": gm.uniform_scale(5.0).dot(gm.translate(0, -0.1, 0)),\n \"fragment\": \"wireframe_fragment.glsl\",\n \"vertex\": \"wireframe_vertex.glsl\",\n \"geometry\": \"wireframe_geometry.glsl\",\n \"color\": np.array([1.0, 1.0, 1.0]),\n \"opacity\": 0.5,\n },\n {\n \"name\": \"points\",\n \"type\": \"points\",\n \"mesh\": vertices,\n \"M\": gm.uniform_scale(0.5 / radius).dot(\n gm.translate(-C[0], -C[1], -C[2])\n ),\n \"fragment\": \"point_fragment.glsl\",\n \"vertex\": \"point_vertex.glsl\",\n \"geometry\": None,\n \"color\": np.array([1.0, 0.0, 0.0]),\n },\n {\n \"name\": \"axes\",\n \"type\": \"lines\",\n \"mesh\": axes(),\n \"R\": np.eye(4),\n \"T\": gm.translate(0, 0, 0),\n \"scale\": gm.uniform_scale(0.20),\n \"M\": gm.uniform_scale(0.20),\n \"fragment\": \"line_fragment.glsl\",\n \"vertex\": \"line_vertex.glsl\",\n \"geometry\": \"line_geometry.glsl\",\n \"color\": np.array([0.0, 1.0, 0.0]),\n },\n ]\n)\n\n\nclass KeyCallbackHandler:\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj[\"R\"]\n axis = np.expand_dims(R[:, which][0:3], 0).T\n # import pdb\n # pdb.set_trace()\n M = gm.rotate(angle, axis)\n obj[\"R\"] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj[\"T\"] = gm.translate(tx, ty, tz).dot(obj[\"T\"])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj[\"M\"] = np.linalg.multi_dot([obj[\"T\"], obj[\"R\"], obj[\"scale\"]])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation(\"axes\", 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation(\"axes\", -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation(\"axes\", 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation(\"axes\", 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation(\"axes\", 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation(\"axes\", 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation(\"axes\", 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation(\"axes\", 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation(\"axes\", 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation(\"axes\", 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation(\"axes\", 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation(\"axes\", 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print(\"Render!\")\n obj = self.data.name_to_mesh_info[\"axes\"]\n self.update_model_matrix(\"axes\")\n\n\nmulti_mesh_view = MultiMeshView()\neye = [0.0, 0.0, 2.0, 1.0]\nat = [0.0, 0.0, 0.0, 1.0]\nup = [0.0, 1.0, 0.0, 1.0]\nfov = 45.0\nnear = 0.0001\nfar = 100\nlight_position = [0.0, 0.0, 4.0]\nmulti_mesh_view.set_camera(eye, at, up, fov, near, far)\nmulti_mesh_view.set_light_position(light_position)\n\nmesh_controller = GlfwController(\n width, height, xpos, ypos, title, multi_mesh_view, multi_mesh_model\n)\nmesh_controller.register_user_key_callback(KeyCallbackHandler(multi_mesh_model))\nmulti_controller.add(mesh_controller)\n\nimage_fragment_shader = \"image_fragment.glsl\"\nimage_vertex_shader = \"image_vertex.glsl\"\n\noutput_image = (\n to_numpy_img(model(to_torch_pose(poses[0])))\n if load_model\n else checker_board()\n)\n\nimage_model = ImageModel(output_image)\nimage_view = ImageView(image_fragment_shader, image_vertex_shader)\n\nimage_controller = GlfwController(\n 400, 300, 500, 100, \"Image View\", image_view, image_model\n)\nmulti_controller.add(image_controller)\n\nmulti_controller.run()\n", "import cv2\nimport glfw\nimport importlib\nimport numpy as np\nimport pkgutil\nimport tasks\nimport time\nimport torch\nimport igl\nfrom evaluator import Evaluator\nfrom glfw_controller import *\nfrom image_view import *\nfrom mesh_view import MultiMeshModel\nfrom mesh_view import MultiMeshView\nfrom multiprocessing import Process\nfrom video_capture import VideoCapture\nfrom torch.autograd import Variable\nfrom tasks.camera_to_image import CfgLoader\nimport graphics_math as gm\n\n\ndef render_image(model, pose):\n pose = torch.from_numpy(np.reshape(poses[0], (1, 1, 1, 7)).astype(np.\n float32))\n pose = Variable(pose).cpu()\n img = model(pose)\n return img\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread('checkerboard.jpg'), cv2.COLOR_BGR2RGB)\n\n\ndef to_img(x):\n x = 0.5 * (x + 1)\n x = x.clamp(0, 1)\n x = x.view(x.size(0), 3, 128, 128)\n return x\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\ndef to_torch_pose(x):\n x = torch.from_numpy(np.reshape(x, (1, 1, 1, 7)).astype(np.float32))\n x = Variable(x).cpu()\n return x\n\n\ndef read_poses(pose_file):\n lines = open(pose_file).read().splitlines()\n poses = [[float(z) for z in x.split()[1:]] for x in lines]\n return poses\n\n\ndef axes():\n return np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]), np.array([\n 0, 1, 0, 2, 0, 3]), np.array([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [\n 0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\nload_configuration = True\nload_model = True\nload_weights = True\nload_frames = True\nload_poses = True\nif load_configuration:\n print(f'Loading configuration ...')\n cfg = CfgLoader().get_cfg('cpu')\n if load_model:\n print('Loading model ...')\n model = cfg['model']\n if load_weights:\n print('Loading model weights ...')\n weights_file = cfg['weights_file']\n model.load_state_dict(torch.load(f'./{weights_file}'))\nposes_file = (f\"{cfg['target_dir']}/poses.txt\" if load_configuration else\n 'targets/camera_to_image/poses.txt')\nmovie_file = (f\"{cfg['target_dir']}/movie.mov\" if load_configuration else\n 'targets/camera_to_image/movie.mov')\nif load_frames:\n print(f'Loading frames: ./{movie_file} ...')\n frames = VideoCapture(f'./{movie_file}')\nif load_poses:\n print(f'Loading poses: ./{poses_file} ...')\n poses = read_poses(f'./{poses_file}')\n poses = [[float(x) for x in l.split()[1:]] for l in open(poses_file).\n read().splitlines()]\n poses = np.array(poses)\nprint('Finding bounding sphere ...')\ntranslations = np.zeros((poses.shape[0], 4))\ntranslations[:, 0:3] = poses[:, 0:3]\ntranslations[:, 3] = 1\nquaternions = poses[:, 3:7]\nvertices = translations[:, 0:3]\npoints = translations.T\nnum_points = translations.shape[0]\nA = 2 * points\nA[3, :] = 1\nf = np.zeros((1, num_points))\nfor i in range(num_points):\n f[0, i] = np.linalg.norm(points[0:3, i]) ** 2\nC, res, rank, svals = np.linalg.lstsq(A.T, f.T, rcond=None)\nradius = (np.linalg.norm(C[0:3]) ** 2 + C[3]) ** (1 / 2)\nprint(f'C = {C}, R = {(np.linalg.norm(C[0:3]) ** 2 + C[3]) ** (1 / 2)}')\nprint(f'C[0] = {C[0]}, C[1] = {C[1]}, C[2] = {C[2]}')\napp = GlfwApp()\napp.init()\nmulti_controller = GlfwMultiController()\nwidth, height = 640, 480\nxpos, ypos, title = 0, 0, 'Camera'\npoint_fragment_shader = 'point_fragment.glsl'\npoint_vertex_shader = 'point_vertex.glsl'\nvertices = np.concatenate((vertices, np.array([vertices[0, :]])))\nbig_point = np.array([[0, 0, 0]])\nmulti_mesh_model = MultiMeshModel([{'name': 'bounding_sphere', 'type':\n 'mesh', 'mesh': 'sphere.obj', 'M': gm.uniform_scale(5.0).dot(gm.\n translate(0, -0.1, 0)), 'fragment': 'wireframe_fragment.glsl', 'vertex':\n 'wireframe_vertex.glsl', 'geometry': 'wireframe_geometry.glsl', 'color':\n np.array([1.0, 1.0, 1.0]), 'opacity': 0.5}, {'name': 'points', 'type':\n 'points', 'mesh': vertices, 'M': gm.uniform_scale(0.5 / radius).dot(gm.\n translate(-C[0], -C[1], -C[2])), 'fragment': 'point_fragment.glsl',\n 'vertex': 'point_vertex.glsl', 'geometry': None, 'color': np.array([1.0,\n 0.0, 0.0])}, {'name': 'axes', 'type': 'lines', 'mesh': axes(), 'R': np.\n eye(4), 'T': gm.translate(0, 0, 0), 'scale': gm.uniform_scale(0.2), 'M':\n gm.uniform_scale(0.2), 'fragment': 'line_fragment.glsl', 'vertex':\n 'line_vertex.glsl', 'geometry': 'line_geometry.glsl', 'color': np.array\n ([0.0, 1.0, 0.0])}])\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\nmulti_mesh_view = MultiMeshView()\neye = [0.0, 0.0, 2.0, 1.0]\nat = [0.0, 0.0, 0.0, 1.0]\nup = [0.0, 1.0, 0.0, 1.0]\nfov = 45.0\nnear = 0.0001\nfar = 100\nlight_position = [0.0, 0.0, 4.0]\nmulti_mesh_view.set_camera(eye, at, up, fov, near, far)\nmulti_mesh_view.set_light_position(light_position)\nmesh_controller = GlfwController(width, height, xpos, ypos, title,\n multi_mesh_view, multi_mesh_model)\nmesh_controller.register_user_key_callback(KeyCallbackHandler(multi_mesh_model)\n )\nmulti_controller.add(mesh_controller)\nimage_fragment_shader = 'image_fragment.glsl'\nimage_vertex_shader = 'image_vertex.glsl'\noutput_image = to_numpy_img(model(to_torch_pose(poses[0]))\n ) if load_model else checker_board()\nimage_model = ImageModel(output_image)\nimage_view = ImageView(image_fragment_shader, image_vertex_shader)\nimage_controller = GlfwController(400, 300, 500, 100, 'Image View',\n image_view, image_model)\nmulti_controller.add(image_controller)\nmulti_controller.run()\n", "<import token>\n\n\ndef render_image(model, pose):\n pose = torch.from_numpy(np.reshape(poses[0], (1, 1, 1, 7)).astype(np.\n float32))\n pose = Variable(pose).cpu()\n img = model(pose)\n return img\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread('checkerboard.jpg'), cv2.COLOR_BGR2RGB)\n\n\ndef to_img(x):\n x = 0.5 * (x + 1)\n x = x.clamp(0, 1)\n x = x.view(x.size(0), 3, 128, 128)\n return x\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\ndef to_torch_pose(x):\n x = torch.from_numpy(np.reshape(x, (1, 1, 1, 7)).astype(np.float32))\n x = Variable(x).cpu()\n return x\n\n\ndef read_poses(pose_file):\n lines = open(pose_file).read().splitlines()\n poses = [[float(z) for z in x.split()[1:]] for x in lines]\n return poses\n\n\ndef axes():\n return np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]), np.array([\n 0, 1, 0, 2, 0, 3]), np.array([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [\n 0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\nload_configuration = True\nload_model = True\nload_weights = True\nload_frames = True\nload_poses = True\nif load_configuration:\n print(f'Loading configuration ...')\n cfg = CfgLoader().get_cfg('cpu')\n if load_model:\n print('Loading model ...')\n model = cfg['model']\n if load_weights:\n print('Loading model weights ...')\n weights_file = cfg['weights_file']\n model.load_state_dict(torch.load(f'./{weights_file}'))\nposes_file = (f\"{cfg['target_dir']}/poses.txt\" if load_configuration else\n 'targets/camera_to_image/poses.txt')\nmovie_file = (f\"{cfg['target_dir']}/movie.mov\" if load_configuration else\n 'targets/camera_to_image/movie.mov')\nif load_frames:\n print(f'Loading frames: ./{movie_file} ...')\n frames = VideoCapture(f'./{movie_file}')\nif load_poses:\n print(f'Loading poses: ./{poses_file} ...')\n poses = read_poses(f'./{poses_file}')\n poses = [[float(x) for x in l.split()[1:]] for l in open(poses_file).\n read().splitlines()]\n poses = np.array(poses)\nprint('Finding bounding sphere ...')\ntranslations = np.zeros((poses.shape[0], 4))\ntranslations[:, 0:3] = poses[:, 0:3]\ntranslations[:, 3] = 1\nquaternions = poses[:, 3:7]\nvertices = translations[:, 0:3]\npoints = translations.T\nnum_points = translations.shape[0]\nA = 2 * points\nA[3, :] = 1\nf = np.zeros((1, num_points))\nfor i in range(num_points):\n f[0, i] = np.linalg.norm(points[0:3, i]) ** 2\nC, res, rank, svals = np.linalg.lstsq(A.T, f.T, rcond=None)\nradius = (np.linalg.norm(C[0:3]) ** 2 + C[3]) ** (1 / 2)\nprint(f'C = {C}, R = {(np.linalg.norm(C[0:3]) ** 2 + C[3]) ** (1 / 2)}')\nprint(f'C[0] = {C[0]}, C[1] = {C[1]}, C[2] = {C[2]}')\napp = GlfwApp()\napp.init()\nmulti_controller = GlfwMultiController()\nwidth, height = 640, 480\nxpos, ypos, title = 0, 0, 'Camera'\npoint_fragment_shader = 'point_fragment.glsl'\npoint_vertex_shader = 'point_vertex.glsl'\nvertices = np.concatenate((vertices, np.array([vertices[0, :]])))\nbig_point = np.array([[0, 0, 0]])\nmulti_mesh_model = MultiMeshModel([{'name': 'bounding_sphere', 'type':\n 'mesh', 'mesh': 'sphere.obj', 'M': gm.uniform_scale(5.0).dot(gm.\n translate(0, -0.1, 0)), 'fragment': 'wireframe_fragment.glsl', 'vertex':\n 'wireframe_vertex.glsl', 'geometry': 'wireframe_geometry.glsl', 'color':\n np.array([1.0, 1.0, 1.0]), 'opacity': 0.5}, {'name': 'points', 'type':\n 'points', 'mesh': vertices, 'M': gm.uniform_scale(0.5 / radius).dot(gm.\n translate(-C[0], -C[1], -C[2])), 'fragment': 'point_fragment.glsl',\n 'vertex': 'point_vertex.glsl', 'geometry': None, 'color': np.array([1.0,\n 0.0, 0.0])}, {'name': 'axes', 'type': 'lines', 'mesh': axes(), 'R': np.\n eye(4), 'T': gm.translate(0, 0, 0), 'scale': gm.uniform_scale(0.2), 'M':\n gm.uniform_scale(0.2), 'fragment': 'line_fragment.glsl', 'vertex':\n 'line_vertex.glsl', 'geometry': 'line_geometry.glsl', 'color': np.array\n ([0.0, 1.0, 0.0])}])\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\nmulti_mesh_view = MultiMeshView()\neye = [0.0, 0.0, 2.0, 1.0]\nat = [0.0, 0.0, 0.0, 1.0]\nup = [0.0, 1.0, 0.0, 1.0]\nfov = 45.0\nnear = 0.0001\nfar = 100\nlight_position = [0.0, 0.0, 4.0]\nmulti_mesh_view.set_camera(eye, at, up, fov, near, far)\nmulti_mesh_view.set_light_position(light_position)\nmesh_controller = GlfwController(width, height, xpos, ypos, title,\n multi_mesh_view, multi_mesh_model)\nmesh_controller.register_user_key_callback(KeyCallbackHandler(multi_mesh_model)\n )\nmulti_controller.add(mesh_controller)\nimage_fragment_shader = 'image_fragment.glsl'\nimage_vertex_shader = 'image_vertex.glsl'\noutput_image = to_numpy_img(model(to_torch_pose(poses[0]))\n ) if load_model else checker_board()\nimage_model = ImageModel(output_image)\nimage_view = ImageView(image_fragment_shader, image_vertex_shader)\nimage_controller = GlfwController(400, 300, 500, 100, 'Image View',\n image_view, image_model)\nmulti_controller.add(image_controller)\nmulti_controller.run()\n", "<import token>\n\n\ndef render_image(model, pose):\n pose = torch.from_numpy(np.reshape(poses[0], (1, 1, 1, 7)).astype(np.\n float32))\n pose = Variable(pose).cpu()\n img = model(pose)\n return img\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread('checkerboard.jpg'), cv2.COLOR_BGR2RGB)\n\n\ndef to_img(x):\n x = 0.5 * (x + 1)\n x = x.clamp(0, 1)\n x = x.view(x.size(0), 3, 128, 128)\n return x\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\ndef to_torch_pose(x):\n x = torch.from_numpy(np.reshape(x, (1, 1, 1, 7)).astype(np.float32))\n x = Variable(x).cpu()\n return x\n\n\ndef read_poses(pose_file):\n lines = open(pose_file).read().splitlines()\n poses = [[float(z) for z in x.split()[1:]] for x in lines]\n return poses\n\n\ndef axes():\n return np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]), np.array([\n 0, 1, 0, 2, 0, 3]), np.array([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [\n 0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\n<assignment token>\nif load_configuration:\n print(f'Loading configuration ...')\n cfg = CfgLoader().get_cfg('cpu')\n if load_model:\n print('Loading model ...')\n model = cfg['model']\n if load_weights:\n print('Loading model weights ...')\n weights_file = cfg['weights_file']\n model.load_state_dict(torch.load(f'./{weights_file}'))\n<assignment token>\nif load_frames:\n print(f'Loading frames: ./{movie_file} ...')\n frames = VideoCapture(f'./{movie_file}')\nif load_poses:\n print(f'Loading poses: ./{poses_file} ...')\n poses = read_poses(f'./{poses_file}')\n poses = [[float(x) for x in l.split()[1:]] for l in open(poses_file).\n read().splitlines()]\n poses = np.array(poses)\nprint('Finding bounding sphere ...')\n<assignment token>\nfor i in range(num_points):\n f[0, i] = np.linalg.norm(points[0:3, i]) ** 2\n<assignment token>\nprint(f'C = {C}, R = {(np.linalg.norm(C[0:3]) ** 2 + C[3]) ** (1 / 2)}')\nprint(f'C[0] = {C[0]}, C[1] = {C[1]}, C[2] = {C[2]}')\n<assignment token>\napp.init()\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\nmulti_mesh_view.set_camera(eye, at, up, fov, near, far)\nmulti_mesh_view.set_light_position(light_position)\n<assignment token>\nmesh_controller.register_user_key_callback(KeyCallbackHandler(multi_mesh_model)\n )\nmulti_controller.add(mesh_controller)\n<assignment token>\nmulti_controller.add(image_controller)\nmulti_controller.run()\n", "<import token>\n\n\ndef render_image(model, pose):\n pose = torch.from_numpy(np.reshape(poses[0], (1, 1, 1, 7)).astype(np.\n float32))\n pose = Variable(pose).cpu()\n img = model(pose)\n return img\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread('checkerboard.jpg'), cv2.COLOR_BGR2RGB)\n\n\ndef to_img(x):\n x = 0.5 * (x + 1)\n x = x.clamp(0, 1)\n x = x.view(x.size(0), 3, 128, 128)\n return x\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\ndef to_torch_pose(x):\n x = torch.from_numpy(np.reshape(x, (1, 1, 1, 7)).astype(np.float32))\n x = Variable(x).cpu()\n return x\n\n\ndef read_poses(pose_file):\n lines = open(pose_file).read().splitlines()\n poses = [[float(z) for z in x.split()[1:]] for x in lines]\n return poses\n\n\ndef axes():\n return np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]), np.array([\n 0, 1, 0, 2, 0, 3]), np.array([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [\n 0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef render_image(model, pose):\n pose = torch.from_numpy(np.reshape(poses[0], (1, 1, 1, 7)).astype(np.\n float32))\n pose = Variable(pose).cpu()\n img = model(pose)\n return img\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread('checkerboard.jpg'), cv2.COLOR_BGR2RGB)\n\n\n<function token>\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\ndef to_torch_pose(x):\n x = torch.from_numpy(np.reshape(x, (1, 1, 1, 7)).astype(np.float32))\n x = Variable(x).cpu()\n return x\n\n\ndef read_poses(pose_file):\n lines = open(pose_file).read().splitlines()\n poses = [[float(z) for z in x.split()[1:]] for x in lines]\n return poses\n\n\ndef axes():\n return np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]), np.array([\n 0, 1, 0, 2, 0, 3]), np.array([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [\n 0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef render_image(model, pose):\n pose = torch.from_numpy(np.reshape(poses[0], (1, 1, 1, 7)).astype(np.\n float32))\n pose = Variable(pose).cpu()\n img = model(pose)\n return img\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread('checkerboard.jpg'), cv2.COLOR_BGR2RGB)\n\n\n<function token>\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\n<function token>\n\n\ndef read_poses(pose_file):\n lines = open(pose_file).read().splitlines()\n poses = [[float(z) for z in x.split()[1:]] for x in lines]\n return poses\n\n\ndef axes():\n return np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]), np.array([\n 0, 1, 0, 2, 0, 3]), np.array([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [\n 0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef render_image(model, pose):\n pose = torch.from_numpy(np.reshape(poses[0], (1, 1, 1, 7)).astype(np.\n float32))\n pose = Variable(pose).cpu()\n img = model(pose)\n return img\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread('checkerboard.jpg'), cv2.COLOR_BGR2RGB)\n\n\n<function token>\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\n<function token>\n<function token>\n\n\ndef axes():\n return np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]), np.array([\n 0, 1, 0, 2, 0, 3]), np.array([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [\n 0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread('checkerboard.jpg'), cv2.COLOR_BGR2RGB)\n\n\n<function token>\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\n<function token>\n<function token>\n\n\ndef axes():\n return np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]), np.array([\n 0, 1, 0, 2, 0, 3]), np.array([[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [\n 0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n\n\ndef checker_board():\n return cv2.cvtColor(cv2.imread('checkerboard.jpg'), cv2.COLOR_BGR2RGB)\n\n\n<function token>\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef to_numpy_img(x):\n x = to_img(x)\n x = x.detach().numpy().squeeze() if len(x.shape) == 4 else x\n x = np.transpose(x, (1, 2, 0))\n x *= 255.0\n x = np.clip(x, 0.0, 255.0)\n x = x.astype(np.uint8)\n x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)\n return x\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef update_axes(which, angle, orientation):\n axis = orientation[:, which]\n transformation = gm.rotate(angle, axis)\n orientation = transformation.dot(orientation)\n return orientation\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n\n def update_translation(self, name, tx, ty, tz):\n obj = self.data.name_to_mesh_info[name]\n obj['T'] = gm.translate(tx, ty, tz).dot(obj['T'])\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n <function token>\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n\n def key_handler(self, key, scancode, action, mods):\n if key == glfw.KEY_W and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, 0.025)\n elif key == glfw.KEY_A and action == glfw.PRESS:\n self.update_translation('axes', -0.025, 0, 0)\n elif key == glfw.KEY_S and action == glfw.PRESS:\n self.update_translation('axes', 0, 0, -0.025)\n elif key == glfw.KEY_D and action == glfw.PRESS:\n self.update_translation('axes', 0.025, 0, 0.0)\n elif key == glfw.KEY_R and action == glfw.PRESS:\n self.update_translation('axes', 0, 0.025, 0.0)\n elif key == glfw.KEY_F and action == glfw.PRESS:\n self.update_translation('axes', 0, -0.025, 0.0)\n elif key == glfw.KEY_U and action == glfw.PRESS:\n self.update_orientation('axes', 0, 0.25)\n elif key == glfw.KEY_J and action == glfw.PRESS:\n self.update_orientation('axes', 0, -0.25)\n elif key == glfw.KEY_H and action == glfw.PRESS:\n self.update_orientation('axes', 1, 0.25)\n elif key == glfw.KEY_K and action == glfw.PRESS:\n self.update_orientation('axes', 1, -0.25)\n elif key == glfw.KEY_O and action == glfw.PRESS:\n self.update_orientation('axes', 2, 0.25)\n elif key == glfw.KEY_L and action == glfw.PRESS:\n self.update_orientation('axes', 2, -0.25)\n elif key == glfw.KEY_SPACE and action == glfw.PRESS:\n print('Render!')\n obj = self.data.name_to_mesh_info['axes']\n self.update_model_matrix('axes')\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n\n def update_orientation(self, name, which, angle):\n obj = self.data.name_to_mesh_info[name]\n R = obj['R']\n axis = np.expand_dims(R[:, which][0:3], 0).T\n M = gm.rotate(angle, axis)\n obj['R'] = gm.rotate(angle, axis).dot(R)\n <function token>\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n <function token>\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n <function token>\n <function token>\n\n def update_model_matrix(self, name):\n obj = self.data.name_to_mesh_info[name]\n obj['M'] = np.linalg.multi_dot([obj['T'], obj['R'], obj['scale']])\n <function token>\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n\n def __init__(self, data):\n self.data = data\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\nclass KeyCallbackHandler:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<class token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,310
3bf0e6291f64e29d2d44a7534437e37f2cf2a0d8
# -*- coding: utf-8 -*- """ Created on Mon Apr 22 10:49:28 2019 @author: ma56473 """ from keras import backend as K from keras.layers import Layer # Custom loss function that takes multi-tensor input # Uses the function-in-function trick to bypass Keras restrictions def commitment_crossentropy(r1, r2, lambda_0, lambda_1, lambda_2): # Core function def loss(y_true, y_pred): return lambda_0 * K.binary_crossentropy(y_true, y_pred) + lambda_1 * r1 + lambda_2 * r2 # Return function return loss # Restricted commitment loss (using only R1) def r1_crossentropy(r1, lambda_1): # Core functioon def loss(y_true, y_pred): return K.binary_crossentropy(y_true, y_pred) + lambda_1 * r1 # Return function return loss # Trainable prototype layer with cosine-distance embedding class CosineEmbedding(Layer): def __init__(self, num_vectors, latent_dim, **kwargs): self.num_vectors = num_vectors self.latent_dim = latent_dim super(CosineEmbedding, self).__init__(**kwargs) def build(self, input_shape): # Trainable p vectors self.trainable_p = self.add_weight(name='trainable_p', shape=(self.num_vectors, self.latent_dim), initializer='glorot_uniform', trainable=True) super(CosineEmbedding, self).build(input_shape) # Main functionality goes here def call(self, x): # Cosine similarity via normalized inner products # Normalize batch norm_x = K.l2_normalize(x, axis=-1) # Normalize p vectors norm_trainable_p = K.l2_normalize(self.trainable_p, axis=-1) # Compute similarities trainable_dist = K.dot(norm_x, K.transpose(norm_trainable_p)) # Concatenated output distances = trainable_dist # If similarity, output negative max instead # R1 cost function (min over batch, sum over p) r1_cost = -K.mean(K.max(distances, axis=0), axis=-1) # R2 cost function (min over p, sum over batch) r2_cost = -K.mean(K.max(distances, axis=-1), axis=-1) # Return triplet return [distances, r1_cost, r2_cost] def compute_output_shape(self, input_shape): # Always returns scalars for the two extra terms return [(input_shape[0], self.num_vectors), (1,), (1,)] # Trainable prototype layer with Euclidean distance embedding class EuclideanEmbedding(Layer): def __init__(self, num_vectors, latent_dim, **kwargs): self.num_vectors = num_vectors self.latent_dim = latent_dim super(EuclideanEmbedding, self).__init__(**kwargs) def build(self, input_shape): # Trainable p vectors self.trainable_p = self.add_weight(name='trainable_p', shape=(self.num_vectors, self.latent_dim), initializer='glorot_uniform', trainable=True) super(EuclideanEmbedding, self).build(input_shape) # Main functionality goes here def call(self, x): # Use axis expansion on x for fast computation x_dim = K.expand_dims(x, axis=1) # Distance to trainable p vectors trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p), axis=-1)) # Concatenated output distances = trainable_dist # R1 cost function (min over batch, sum over p) r1_cost = K.mean(K.min(distances, axis=0), axis=-1) # R2 cost function (min over p, sum over batch) r2_cost = K.mean(K.min(distances, axis=-1), axis=-1) # Return triplet return [distances, r1_cost, r2_cost] def compute_output_shape(self, input_shape): # Always returns scalars for the two extra terms return [(input_shape[0], self.num_vectors), (1,), (1,)] # Trainable prototype layer with Euclidean distance embedding class L1Embedding(Layer): def __init__(self, num_vectors, latent_dim, **kwargs): self.num_vectors = num_vectors self.latent_dim = latent_dim super(L1Embedding, self).__init__(**kwargs) def build(self, input_shape): # Trainable p vectors self.trainable_p = self.add_weight(name='trainable_p', shape=(self.num_vectors, self.latent_dim), initializer='glorot_uniform', trainable=True) super(L1Embedding, self).build(input_shape) # Main functionality goes here def call(self, x): # Use axis expansion on x for fast computation x_dim = K.expand_dims(x, axis=1) # Distance to trainable p vectors trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1) # Concatenated output distances = trainable_dist # R1 cost function (min over batch, sum over p) r1_cost = K.mean(K.min(distances, axis=0), axis=-1) # R2 cost function (min over p, sum over batch) r2_cost = K.mean(K.min(distances, axis=-1), axis=-1) # Return triplet return [distances, r1_cost, r2_cost] def compute_output_shape(self, input_shape): # Always returns scalars for the two extra terms return [(input_shape[0], self.num_vectors), (1,), (1,)]
[ "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Mon Apr 22 10:49:28 2019\r\n\r\n@author: ma56473\r\n\"\"\"\r\n\r\nfrom keras import backend as K\r\nfrom keras.layers import Layer\r\n\r\n# Custom loss function that takes multi-tensor input\r\n# Uses the function-in-function trick to bypass Keras restrictions\r\ndef commitment_crossentropy(r1, r2, lambda_0, lambda_1, lambda_2):\r\n # Core function\r\n def loss(y_true, y_pred):\r\n return lambda_0 * K.binary_crossentropy(y_true, y_pred) + lambda_1 * r1 + lambda_2 * r2\r\n \r\n # Return function\r\n return loss\r\n\r\n# Restricted commitment loss (using only R1)\r\ndef r1_crossentropy(r1, lambda_1):\r\n # Core functioon\r\n def loss(y_true, y_pred):\r\n return K.binary_crossentropy(y_true, y_pred) + lambda_1 * r1\r\n \r\n # Return function\r\n return loss\r\n \r\n# Trainable prototype layer with cosine-distance embedding\r\nclass CosineEmbedding(Layer):\r\n def __init__(self, num_vectors, latent_dim, **kwargs):\r\n self.num_vectors = num_vectors\r\n self.latent_dim = latent_dim\r\n \r\n super(CosineEmbedding, self).__init__(**kwargs)\r\n\r\n def build(self, input_shape):\r\n # Trainable p vectors\r\n self.trainable_p = self.add_weight(name='trainable_p',\r\n shape=(self.num_vectors, self.latent_dim),\r\n initializer='glorot_uniform',\r\n trainable=True)\r\n\r\n super(CosineEmbedding, self).build(input_shape)\r\n \r\n # Main functionality goes here\r\n def call(self, x): \r\n # Cosine similarity via normalized inner products\r\n # Normalize batch\r\n norm_x = K.l2_normalize(x, axis=-1)\r\n # Normalize p vectors\r\n norm_trainable_p = K.l2_normalize(self.trainable_p, axis=-1)\r\n # Compute similarities\r\n trainable_dist = K.dot(norm_x, K.transpose(norm_trainable_p))\r\n\r\n # Concatenated output\r\n distances = trainable_dist\r\n \r\n # If similarity, output negative max instead\r\n # R1 cost function (min over batch, sum over p)\r\n r1_cost = -K.mean(K.max(distances, axis=0), axis=-1)\r\n \r\n # R2 cost function (min over p, sum over batch)\r\n r2_cost = -K.mean(K.max(distances, axis=-1), axis=-1)\r\n \r\n # Return triplet\r\n return [distances, r1_cost, r2_cost]\r\n \r\n def compute_output_shape(self, input_shape):\r\n # Always returns scalars for the two extra terms\r\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\r\n \r\n# Trainable prototype layer with Euclidean distance embedding\r\nclass EuclideanEmbedding(Layer):\r\n def __init__(self, num_vectors, latent_dim, **kwargs):\r\n self.num_vectors = num_vectors\r\n self.latent_dim = latent_dim\r\n \r\n super(EuclideanEmbedding, self).__init__(**kwargs)\r\n\r\n def build(self, input_shape):\r\n # Trainable p vectors\r\n self.trainable_p = self.add_weight(name='trainable_p',\r\n shape=(self.num_vectors, self.latent_dim),\r\n initializer='glorot_uniform',\r\n trainable=True)\r\n\r\n super(EuclideanEmbedding, self).build(input_shape)\r\n \r\n # Main functionality goes here\r\n def call(self, x): \r\n # Use axis expansion on x for fast computation\r\n x_dim = K.expand_dims(x, axis=1)\r\n # Distance to trainable p vectors\r\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p), axis=-1))\r\n\r\n # Concatenated output\r\n distances = trainable_dist\r\n \r\n # R1 cost function (min over batch, sum over p)\r\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\r\n \r\n # R2 cost function (min over p, sum over batch)\r\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\r\n \r\n # Return triplet\r\n return [distances, r1_cost, r2_cost]\r\n \r\n def compute_output_shape(self, input_shape):\r\n # Always returns scalars for the two extra terms\r\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\r\n \r\n# Trainable prototype layer with Euclidean distance embedding\r\nclass L1Embedding(Layer):\r\n def __init__(self, num_vectors, latent_dim, **kwargs):\r\n self.num_vectors = num_vectors\r\n self.latent_dim = latent_dim\r\n \r\n super(L1Embedding, self).__init__(**kwargs)\r\n\r\n def build(self, input_shape):\r\n # Trainable p vectors\r\n self.trainable_p = self.add_weight(name='trainable_p',\r\n shape=(self.num_vectors, self.latent_dim),\r\n initializer='glorot_uniform',\r\n trainable=True)\r\n\r\n super(L1Embedding, self).build(input_shape)\r\n \r\n # Main functionality goes here\r\n def call(self, x): \r\n # Use axis expansion on x for fast computation\r\n x_dim = K.expand_dims(x, axis=1)\r\n # Distance to trainable p vectors\r\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\r\n\r\n # Concatenated output\r\n distances = trainable_dist\r\n \r\n # R1 cost function (min over batch, sum over p)\r\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\r\n \r\n # R2 cost function (min over p, sum over batch)\r\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\r\n \r\n # Return triplet\r\n return [distances, r1_cost, r2_cost]\r\n \r\n def compute_output_shape(self, input_shape):\r\n # Always returns scalars for the two extra terms\r\n return [(input_shape[0], self.num_vectors), (1,), (1,)]", "<docstring token>\nfrom keras import backend as K\nfrom keras.layers import Layer\n\n\ndef commitment_crossentropy(r1, r2, lambda_0, lambda_1, lambda_2):\n\n def loss(y_true, y_pred):\n return lambda_0 * K.binary_crossentropy(y_true, y_pred\n ) + lambda_1 * r1 + lambda_2 * r2\n return loss\n\n\ndef r1_crossentropy(r1, lambda_1):\n\n def loss(y_true, y_pred):\n return K.binary_crossentropy(y_true, y_pred) + lambda_1 * r1\n return loss\n\n\nclass CosineEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(CosineEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(CosineEmbedding, self).build(input_shape)\n\n def call(self, x):\n norm_x = K.l2_normalize(x, axis=-1)\n norm_trainable_p = K.l2_normalize(self.trainable_p, axis=-1)\n trainable_dist = K.dot(norm_x, K.transpose(norm_trainable_p))\n distances = trainable_dist\n r1_cost = -K.mean(K.max(distances, axis=0), axis=-1)\n r2_cost = -K.mean(K.max(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n\n\ndef commitment_crossentropy(r1, r2, lambda_0, lambda_1, lambda_2):\n\n def loss(y_true, y_pred):\n return lambda_0 * K.binary_crossentropy(y_true, y_pred\n ) + lambda_1 * r1 + lambda_2 * r2\n return loss\n\n\ndef r1_crossentropy(r1, lambda_1):\n\n def loss(y_true, y_pred):\n return K.binary_crossentropy(y_true, y_pred) + lambda_1 * r1\n return loss\n\n\nclass CosineEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(CosineEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(CosineEmbedding, self).build(input_shape)\n\n def call(self, x):\n norm_x = K.l2_normalize(x, axis=-1)\n norm_trainable_p = K.l2_normalize(self.trainable_p, axis=-1)\n trainable_dist = K.dot(norm_x, K.transpose(norm_trainable_p))\n distances = trainable_dist\n r1_cost = -K.mean(K.max(distances, axis=0), axis=-1)\n r2_cost = -K.mean(K.max(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n\n\ndef commitment_crossentropy(r1, r2, lambda_0, lambda_1, lambda_2):\n\n def loss(y_true, y_pred):\n return lambda_0 * K.binary_crossentropy(y_true, y_pred\n ) + lambda_1 * r1 + lambda_2 * r2\n return loss\n\n\n<function token>\n\n\nclass CosineEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(CosineEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(CosineEmbedding, self).build(input_shape)\n\n def call(self, x):\n norm_x = K.l2_normalize(x, axis=-1)\n norm_trainable_p = K.l2_normalize(self.trainable_p, axis=-1)\n trainable_dist = K.dot(norm_x, K.transpose(norm_trainable_p))\n distances = trainable_dist\n r1_cost = -K.mean(K.max(distances, axis=0), axis=-1)\n r2_cost = -K.mean(K.max(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n\n\nclass CosineEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(CosineEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(CosineEmbedding, self).build(input_shape)\n\n def call(self, x):\n norm_x = K.l2_normalize(x, axis=-1)\n norm_trainable_p = K.l2_normalize(self.trainable_p, axis=-1)\n trainable_dist = K.dot(norm_x, K.transpose(norm_trainable_p))\n distances = trainable_dist\n r1_cost = -K.mean(K.max(distances, axis=0), axis=-1)\n r2_cost = -K.mean(K.max(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n\n\nclass CosineEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(CosineEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(CosineEmbedding, self).build(input_shape)\n <function token>\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n\n\nclass CosineEmbedding(Layer):\n <function token>\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(CosineEmbedding, self).build(input_shape)\n <function token>\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n\n\nclass CosineEmbedding(Layer):\n <function token>\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(CosineEmbedding, self).build(input_shape)\n <function token>\n <function token>\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n\n\nclass CosineEmbedding(Layer):\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sqrt(K.sum(K.square(x_dim - self.trainable_p),\n axis=-1))\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n <function token>\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n\n\nclass EuclideanEmbedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(EuclideanEmbedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n <function token>\n <function token>\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n\n\nclass EuclideanEmbedding(Layer):\n <function token>\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(EuclideanEmbedding, self).build(input_shape)\n <function token>\n <function token>\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n\n\nclass EuclideanEmbedding(Layer):\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n<class token>\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n\n def compute_output_shape(self, input_shape):\n return [(input_shape[0], self.num_vectors), (1,), (1,)]\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n<class token>\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n\n def call(self, x):\n x_dim = K.expand_dims(x, axis=1)\n trainable_dist = K.sum(K.abs(x_dim - self.trainable_p), axis=-1)\n distances = trainable_dist\n r1_cost = K.mean(K.min(distances, axis=0), axis=-1)\n r2_cost = K.mean(K.min(distances, axis=-1), axis=-1)\n return [distances, r1_cost, r2_cost]\n <function token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n<class token>\n\n\nclass L1Embedding(Layer):\n\n def __init__(self, num_vectors, latent_dim, **kwargs):\n self.num_vectors = num_vectors\n self.latent_dim = latent_dim\n super(L1Embedding, self).__init__(**kwargs)\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n<class token>\n\n\nclass L1Embedding(Layer):\n <function token>\n\n def build(self, input_shape):\n self.trainable_p = self.add_weight(name='trainable_p', shape=(self.\n num_vectors, self.latent_dim), initializer='glorot_uniform',\n trainable=True)\n super(L1Embedding, self).build(input_shape)\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n<class token>\n\n\nclass L1Embedding(Layer):\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n" ]
false
98,311
753994fe65b94828ba03b9289e3a452ba1913563
from elasticsearch import Elasticsearch from elasticsearch_dsl import Search, Q def esearch(firstname="", gender=""): # creating a connection to the Elasticsearch server and assign it to the client variable client = Elasticsearch() q = Q("bool", should=[Q("match", firstname=firstname), Q("match", gender=gender)], minimum_should_match=1) s = Search(using=client, index="bank").query(q)[0:20] response = s.execute() print('Total hits found.', response.hits.total) search = get_results(response) return search def getArticals(): client = Elasticsearch() res = Search(using=client, index="blog").query()[0:50] response = res.execute() print('Total hits found.', response.hits.total) results = [] i=0 for hit in response: i=+1 print('hit', i, hit) result_tuple = ( hit.title, hit.body, hit.tags) results.append(result_tuple) print(results) return results def getSearchData(title="", body=""): client = Elasticsearch() q = Q("bool", should=[Q("match", title=title), Q("match", body=body)], minimum_should_match=1) s = Search(using=client, index="blog").query(q)[0:20] response = s.execute() print("*****************", q, s) print('Total hits found.', response.hits.total, response) results = [] for hit in response: result_tuple = ( hit.title, hit.body, hit.tags) print(result_tuple) results.append(result_tuple) return results def get_results(response): results = [] for hit in response: result_tuple = (hit.firstname + ' ' + hit.lastname, hit.email, hit.gender, hit.address) results.append(result_tuple) return results if __name__ == '__main__': print("Opal guy details:\n", esearch(firstname = "opal")) print("the first 20 f gender details:\n", esearch(gender = "f"))
[ "from elasticsearch import Elasticsearch \nfrom elasticsearch_dsl import Search, Q \n\ndef esearch(firstname=\"\", gender=\"\"): \n\n # creating a connection to the Elasticsearch server and assign it to the client variable \n client = Elasticsearch() \n q = Q(\"bool\", should=[Q(\"match\", firstname=firstname), \n Q(\"match\", gender=gender)], minimum_should_match=1) \n s = Search(using=client, index=\"bank\").query(q)[0:20] \n response = s.execute()\n print('Total hits found.', response.hits.total) \n search = get_results(response) \n return search \n\ndef getArticals():\n client = Elasticsearch() \n \n res = Search(using=client, index=\"blog\").query()[0:50]\n response = res.execute()\n print('Total hits found.', response.hits.total) \n results = [] \n i=0\n for hit in response: \n i=+1\n print('hit', i, hit)\n result_tuple = ( hit.title, hit.body, hit.tags) \n results.append(result_tuple) \n\n print(results)\n return results \n\ndef getSearchData(title=\"\", body=\"\"):\n client = Elasticsearch() \n q = Q(\"bool\", should=[Q(\"match\", title=title), \n Q(\"match\", body=body)], minimum_should_match=1) \n s = Search(using=client, index=\"blog\").query(q)[0:20] \n \n response = s.execute()\n print(\"*****************\", q, s)\n print('Total hits found.', response.hits.total, response) \n results = [] \n \n for hit in response: \n \n result_tuple = ( hit.title, hit.body, hit.tags) \n print(result_tuple) \n results.append(result_tuple) \n return results \n\ndef get_results(response): \n\n results = [] \n for hit in response: \n result_tuple = (hit.firstname + ' ' + hit.lastname,\n hit.email, hit.gender, hit.address) \n results.append(result_tuple) \n return results\n\nif __name__ == '__main__': \n print(\"Opal guy details:\\n\", esearch(firstname = \"opal\"))\n print(\"the first 20 f gender details:\\n\", esearch(gender = \"f\"))", "from elasticsearch import Elasticsearch\nfrom elasticsearch_dsl import Search, Q\n\n\ndef esearch(firstname='', gender=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', firstname=firstname), Q('match',\n gender=gender)], minimum_should_match=1)\n s = Search(using=client, index='bank').query(q)[0:20]\n response = s.execute()\n print('Total hits found.', response.hits.total)\n search = get_results(response)\n return search\n\n\ndef getArticals():\n client = Elasticsearch()\n res = Search(using=client, index='blog').query()[0:50]\n response = res.execute()\n print('Total hits found.', response.hits.total)\n results = []\n i = 0\n for hit in response:\n i = +1\n print('hit', i, hit)\n result_tuple = hit.title, hit.body, hit.tags\n results.append(result_tuple)\n print(results)\n return results\n\n\ndef getSearchData(title='', body=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', title=title), Q('match', body=body)],\n minimum_should_match=1)\n s = Search(using=client, index='blog').query(q)[0:20]\n response = s.execute()\n print('*****************', q, s)\n print('Total hits found.', response.hits.total, response)\n results = []\n for hit in response:\n result_tuple = hit.title, hit.body, hit.tags\n print(result_tuple)\n results.append(result_tuple)\n return results\n\n\ndef get_results(response):\n results = []\n for hit in response:\n result_tuple = (hit.firstname + ' ' + hit.lastname, hit.email, hit.\n gender, hit.address)\n results.append(result_tuple)\n return results\n\n\nif __name__ == '__main__':\n print('Opal guy details:\\n', esearch(firstname='opal'))\n print('the first 20 f gender details:\\n', esearch(gender='f'))\n", "<import token>\n\n\ndef esearch(firstname='', gender=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', firstname=firstname), Q('match',\n gender=gender)], minimum_should_match=1)\n s = Search(using=client, index='bank').query(q)[0:20]\n response = s.execute()\n print('Total hits found.', response.hits.total)\n search = get_results(response)\n return search\n\n\ndef getArticals():\n client = Elasticsearch()\n res = Search(using=client, index='blog').query()[0:50]\n response = res.execute()\n print('Total hits found.', response.hits.total)\n results = []\n i = 0\n for hit in response:\n i = +1\n print('hit', i, hit)\n result_tuple = hit.title, hit.body, hit.tags\n results.append(result_tuple)\n print(results)\n return results\n\n\ndef getSearchData(title='', body=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', title=title), Q('match', body=body)],\n minimum_should_match=1)\n s = Search(using=client, index='blog').query(q)[0:20]\n response = s.execute()\n print('*****************', q, s)\n print('Total hits found.', response.hits.total, response)\n results = []\n for hit in response:\n result_tuple = hit.title, hit.body, hit.tags\n print(result_tuple)\n results.append(result_tuple)\n return results\n\n\ndef get_results(response):\n results = []\n for hit in response:\n result_tuple = (hit.firstname + ' ' + hit.lastname, hit.email, hit.\n gender, hit.address)\n results.append(result_tuple)\n return results\n\n\nif __name__ == '__main__':\n print('Opal guy details:\\n', esearch(firstname='opal'))\n print('the first 20 f gender details:\\n', esearch(gender='f'))\n", "<import token>\n\n\ndef esearch(firstname='', gender=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', firstname=firstname), Q('match',\n gender=gender)], minimum_should_match=1)\n s = Search(using=client, index='bank').query(q)[0:20]\n response = s.execute()\n print('Total hits found.', response.hits.total)\n search = get_results(response)\n return search\n\n\ndef getArticals():\n client = Elasticsearch()\n res = Search(using=client, index='blog').query()[0:50]\n response = res.execute()\n print('Total hits found.', response.hits.total)\n results = []\n i = 0\n for hit in response:\n i = +1\n print('hit', i, hit)\n result_tuple = hit.title, hit.body, hit.tags\n results.append(result_tuple)\n print(results)\n return results\n\n\ndef getSearchData(title='', body=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', title=title), Q('match', body=body)],\n minimum_should_match=1)\n s = Search(using=client, index='blog').query(q)[0:20]\n response = s.execute()\n print('*****************', q, s)\n print('Total hits found.', response.hits.total, response)\n results = []\n for hit in response:\n result_tuple = hit.title, hit.body, hit.tags\n print(result_tuple)\n results.append(result_tuple)\n return results\n\n\ndef get_results(response):\n results = []\n for hit in response:\n result_tuple = (hit.firstname + ' ' + hit.lastname, hit.email, hit.\n gender, hit.address)\n results.append(result_tuple)\n return results\n\n\n<code token>\n", "<import token>\n\n\ndef esearch(firstname='', gender=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', firstname=firstname), Q('match',\n gender=gender)], minimum_should_match=1)\n s = Search(using=client, index='bank').query(q)[0:20]\n response = s.execute()\n print('Total hits found.', response.hits.total)\n search = get_results(response)\n return search\n\n\ndef getArticals():\n client = Elasticsearch()\n res = Search(using=client, index='blog').query()[0:50]\n response = res.execute()\n print('Total hits found.', response.hits.total)\n results = []\n i = 0\n for hit in response:\n i = +1\n print('hit', i, hit)\n result_tuple = hit.title, hit.body, hit.tags\n results.append(result_tuple)\n print(results)\n return results\n\n\ndef getSearchData(title='', body=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', title=title), Q('match', body=body)],\n minimum_should_match=1)\n s = Search(using=client, index='blog').query(q)[0:20]\n response = s.execute()\n print('*****************', q, s)\n print('Total hits found.', response.hits.total, response)\n results = []\n for hit in response:\n result_tuple = hit.title, hit.body, hit.tags\n print(result_tuple)\n results.append(result_tuple)\n return results\n\n\n<function token>\n<code token>\n", "<import token>\n\n\ndef esearch(firstname='', gender=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', firstname=firstname), Q('match',\n gender=gender)], minimum_should_match=1)\n s = Search(using=client, index='bank').query(q)[0:20]\n response = s.execute()\n print('Total hits found.', response.hits.total)\n search = get_results(response)\n return search\n\n\n<function token>\n\n\ndef getSearchData(title='', body=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', title=title), Q('match', body=body)],\n minimum_should_match=1)\n s = Search(using=client, index='blog').query(q)[0:20]\n response = s.execute()\n print('*****************', q, s)\n print('Total hits found.', response.hits.total, response)\n results = []\n for hit in response:\n result_tuple = hit.title, hit.body, hit.tags\n print(result_tuple)\n results.append(result_tuple)\n return results\n\n\n<function token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef getSearchData(title='', body=''):\n client = Elasticsearch()\n q = Q('bool', should=[Q('match', title=title), Q('match', body=body)],\n minimum_should_match=1)\n s = Search(using=client, index='blog').query(q)[0:20]\n response = s.execute()\n print('*****************', q, s)\n print('Total hits found.', response.hits.total, response)\n results = []\n for hit in response:\n result_tuple = hit.title, hit.body, hit.tags\n print(result_tuple)\n results.append(result_tuple)\n return results\n\n\n<function token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,312
d1c596a2d364254347f4ef50df1216455cd906da
a=1 b=2 c=a+b print (a+b);print (c) print(c)
[ "\na=1\nb=2\nc=a+b\nprint (a+b);print (c)\nprint(c)", "a = 1\nb = 2\nc = a + b\nprint(a + b)\nprint(c)\nprint(c)\n", "<assignment token>\nprint(a + b)\nprint(c)\nprint(c)\n", "<assignment token>\n<code token>\n" ]
false
98,313
df233edfee820247a6899e707c3be83eb1d96254
import requests import numpy as np from .mini_dsfdr import dsfdr from .utils import debug, get_dbbact_server_address from collections import defaultdict def calour_enrichment(seqs1, seqs2, term_type="term"): ''' Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences) Parameters ---------- seqs1:list of str first set of sequences (ACGT) seqs1:list of str second set of sequences (ACGT) term_type : str (optional) type of the term to analyze for enrichment. can be: "term" : analyze the terms per annotation (not including parent terms) "annotation" : analyze the annotations associated with each sequence Returns ------- err : str empty if ok, otherwise the error encountered term_list : list of str the terms which are enriched pvals : list of float the p-value for each term odif : list of float the effect size for each term ''' import calour as ca db = ca.database._get_database_class('dbbact') # set the same seed (since we use a random permutation test) np.random.seed(2018) all_seqs = set(seqs1).union(set(seqs2)) seqs2 = list(all_seqs - set(seqs1)) if len(seqs2) == 0: return 'No sequences remaining in background fasta after removing the sequences of interest', None, None, None all_seqs = list(all_seqs) # get the annotations for the sequences info = {} info['sequence_terms'], info['sequence_annotations'], info['annotations'] = get_seq_annotations_fast(all_seqs) terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2, info['annotations'], info['sequence_annotations'], term_type=term_type) print(terms_df) return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif'] def getannotationstrings2(cann): """ get a nice string summary of a curation input: cann : dict from /sequences/get_annotations (one from the list) output: cdesc : str a short summary of each annotation """ cdesc = '' if cann['description']: cdesc += cann['description'] + ' (' if cann['annotationtype'] == 'diffexp': chigh = [] clow = [] call = [] for cdet in cann['details']: if cdet[0] == 'all': call.append(cdet[1]) continue if cdet[0] == 'low': clow.append(cdet[1]) continue if cdet[0] == 'high': chigh.append(cdet[1]) continue cdesc += ' high in ' for cval in chigh: cdesc += cval + ' ' cdesc += ' compared to ' for cval in clow: cdesc += cval + ' ' cdesc += ' in ' for cval in call: cdesc += cval + ' ' elif cann['annotationtype'] == 'isa': cdesc += ' is a ' for cdet in cann['details']: cdesc += 'cdet,' elif cann['annotationtype'] == 'contamination': cdesc += 'contamination' else: cdesc += cann['annotationtype'] + ' ' for cdet in cann['details']: cdesc = cdesc + ' ' + cdet[1] + ',' if len(cdesc) >= 1 and cdesc[-1] == ',': cdesc = cdesc[:-1] return cdesc def get_seq_annotations_fast(sequences): debug(2, 'get_seq_annotations_fast for %d sequences' % len(sequences)) rdata = {} rdata['sequences'] = sequences res = requests.get(get_dbbact_server_address() + '/sequences/get_fast_annotations', json=rdata) if res.status_code != 200: debug(5, 'error getting fast annotations for sequence list') return None, None, None res = res.json() debug(2, 'got %d total annotations' % len(res['annotations'])) sequence_terms = {} sequence_annotations = {} for cseq in sequences: sequence_terms[cseq] = [] sequence_annotations[cseq] = [] for cseqannotation in res['seqannotations']: cpos = cseqannotation[0] # need str since json dict is always string cseq = sequences[cpos] sequence_annotations[cseq].extend(cseqannotation[1]) for cannotation in cseqannotation[1]: for k, v in res['annotations'][str(cannotation)]['parents'].items(): if k == 'high' or k == 'all': for cterm in v: sequence_terms[cseq].append(cterm) elif k == 'low': for cterm in v: sequence_terms[cseq].append('-' + cterm) annotations = res['annotations'] # replace the string in the key with an int (since in json key is always str) keys = list(annotations.keys()) for cid in keys: annotations[int(cid)] = annotations.pop(cid) # count total associations total_annotations = 0 for cseq_annotations in sequence_annotations.values(): total_annotations += len(cseq_annotations) debug(2, 'Got %d associations' % total_annotations) return sequence_terms, sequence_annotations, annotations def _get_term_features(features, feature_terms): '''Get numpy array of score of each term for each feature Parameters ---------- features : list of str A list of DNA sequences feature_terms : dict of {feature: list of tuples of (term, amount)} The terms associated with each feature in exp feature (key) : str the feature (out of exp) to which the terms relate feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count) Returns ------- numpy array of T (terms) * F (features) total counts of each term (row) in each feature (column) list of str list of the terms corresponding to the numpy array rows ''' # get all terms terms = {} cpos = 0 for cfeature, ctermlist in feature_terms.items(): for cterm, ccount in ctermlist: if cterm not in terms: terms[cterm] = cpos cpos += 1 tot_features_inflated = 0 feature_pos = {} for cfeature in features: ctermlist = feature_terms[cfeature] feature_pos[cfeature] = tot_features_inflated tot_features_inflated += len(ctermlist) # populate the matrix res = np.zeros([len(terms), len(features)]) for idx, cfeature in enumerate(features): for cterm, ctermcount in feature_terms[cfeature]: res[terms[cterm], idx] += ctermcount term_list = sorted(terms, key=terms.get) debug(2, 'created terms X features matrix with %d terms (rows), %d features (columns)' % (res.shape[0], res.shape[1])) return res, term_list def _get_term_features_inflated(features, feature_terms): '''Get numpy array of score of each term for each feature. This is the inflated version (used for card mean) to overcome the different number of annotations per feature. But slower and not memory efficient Parameters ---------- features : list of str A list of DNA sequences feature_terms : dict of {feature: list of tuples of (term, amount)} The terms associated with each feature in exp feature (key) : str the feature (out of exp) to which the terms relate feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count) Returns ------- numpy array of T (terms) * F (inflated features) total counts of each term (row) in each feature (column) list of str list of the terms corresponding to the numpy array rows ''' # get all terms terms = {} cpos = 0 for cfeature, ctermlist in feature_terms.items(): for cterm, ccount in ctermlist: if cterm not in terms: terms[cterm] = cpos cpos += 1 tot_features_inflated = 0 feature_pos = {} for cfeature in features: ctermlist = feature_terms[cfeature] feature_pos[cfeature] = tot_features_inflated tot_features_inflated += len(ctermlist) res = np.zeros([len(terms), tot_features_inflated]) for cfeature in features: for cterm, ctermcount in feature_terms[cfeature]: res[terms[cterm], feature_pos[cfeature]] += ctermcount term_list = sorted(terms, key=terms.get) debug(2, 'created terms X features matrix with %d terms (rows), %d features (columns)' % (res.shape[0], res.shape[1])) return res, term_list def _get_all_annotation_string_counts(features, sequence_annotations, annotations): feature_annotations = {} for cseq, annotations_list in sequence_annotations.items(): if cseq not in features: continue newdesc = [] for cannotation in annotations_list: cdesc = getannotationstrings2(annotations[cannotation]) newdesc.append((cdesc, 1)) feature_annotations[cseq] = newdesc return feature_annotations def _get_all_term_counts(features, feature_annotations, annotations): '''Get counts of all terms associated with each feature Parameters ---------- features: list of str the sequences to get the terms for feature_annotations: dict of {feature (str): annotationIDs (list of int)) the list of annotations each feature appears in annotations: dict of {annotationsid (int): annotation details (dict)} all the annotations in the experiment Returns ------- dict of {feature (str): annotation counts (list of (term(str), count(int)))} ''' feature_terms = {} for cfeature in features: annotation_list = [annotations[x] for x in feature_annotations[cfeature]] feature_terms[cfeature] = get_annotation_term_counts(annotation_list) return feature_terms def get_annotation_term_counts(annotations): '''Get the annotation type corrected count for all terms in annotations Parameters ---------- annotations : list of dict list of annotations Returns ------- list of tuples (term, count) ''' term_count = defaultdict(int) for cannotation in annotations: if cannotation['annotationtype'] == 'common': for cdesc in cannotation['details']: term_count[cdesc[1]] += 1 continue if cannotation['annotationtype'] == 'dominant': for cdesc in cannotation['details']: term_count[cdesc[1]] += 2 continue if cannotation['annotationtype'] == 'other': for cdesc in cannotation['details']: term_count[cdesc[1]] += 0.5 continue if cannotation['annotationtype'] == 'contamination': term_count['contamination'] += 1 continue if cannotation['annotationtype'] in ['diffexp', 'positive correlation', 'negative correlation']: for cdesc in cannotation['details']: if cdesc[0] == 'all': term_count[cdesc[1]] += 1 continue if cdesc[0] == 'high': term_count[cdesc[1]] += 2 continue if cdesc[0] == 'low': term_count[cdesc[1]] -= 2 continue debug(4, 'unknown detail type %s encountered' % cdesc[0]) continue if cannotation['annotationtype'] == 'other': continue debug(4, 'unknown annotation type %s encountered' % cannotation['annotationtype']) res = [] for k, v in term_count.items(): # flip and add '-' to term if negative if v < 0: k = '-' + k v = -v res.append((k, v)) return res def enrichment(seqs1, seqs2, term_type="term"): ''' Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences) Parameters ---------- seqs1:list of str first set of sequences (ACGT) seqs1:list of str second set of sequences (ACGT) term_type : str (optional) type of the term to analyze for enrichment. can be: "term" : analyze the terms per annotation (not including parent terms) "annotation" : analyze the annotations associated with each sequence Returns ------- err : str empty if ok, otherwise the error encountered term_list : list of str the terms which are enriched pvals : list of float the p-value for each term odif : list of float the effect size for each term ''' # set the same seed (since we use a random permutation test) np.random.seed(2018) all_seqs = set(seqs1).union(set(seqs2)) seqs2 = list(all_seqs - set(seqs1)) if len(seqs2) == 0: return 'No sequences remaining in background fasta after removing the sequences of interest', None, None, None all_seqs = list(all_seqs) # get the annotations for the sequences info = {} info['sequence_terms'], info['sequence_annotations'], info['annotations'] = get_seq_annotations_fast(all_seqs) if term_type == 'term': debug(2, 'getting all_term counts') feature_terms = _get_all_term_counts(all_seqs, info['sequence_annotations'], info['annotations']) elif term_type == 'annotation': debug(2, 'getting all_annotation string counts') feature_terms = _get_all_annotation_string_counts(all_seqs, info['sequence_annotations'], info['annotations']) else: debug(8, 'strange term_type encountered: %s' % term_type) # count the total number of terms all_terms_set = set() for cterms in feature_terms.values(): for (cterm, ccount) in cterms: all_terms_set.add(cterm) debug(2, 'found %d terms associated with all sequences (%d)' % (len(all_terms_set), len(all_seqs))) debug(2, 'getting seqs1 feature array') feature_array, term_list = _get_term_features(seqs1, feature_terms) debug(2, 'getting seqs2 feature array') bg_array, term_list = _get_term_features(seqs2, feature_terms) debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape, feature_array.shape)) all_feature_array = np.hstack([feature_array, bg_array]) labels = np.zeros(all_feature_array.shape[1]) labels[:feature_array.shape[1]] = 1 debug(2, 'starting dsfdr for enrichment') keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff', transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr') keep = np.where(keep)[0] if len(keep) == 0: debug(2, 'no enriched terms found') term_list = np.array(term_list)[keep] odif = odif[keep] pvals = pvals[keep] si = np.argsort(odif) odif = odif[si] pvals = pvals[si] term_list = term_list[si] return '', term_list, pvals, odif
[ "import requests\n\nimport numpy as np\nfrom .mini_dsfdr import dsfdr\nfrom .utils import debug, get_dbbact_server_address\nfrom collections import defaultdict\n\n\ndef calour_enrichment(seqs1, seqs2, term_type=\"term\"):\n '''\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n '''\n import calour as ca\n\n db = ca.database._get_database_class('dbbact')\n\n # set the same seed (since we use a random permutation test)\n np.random.seed(2018)\n\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return 'No sequences remaining in background fasta after removing the sequences of interest', None, None, None\n all_seqs = list(all_seqs)\n\n # get the annotations for the sequences\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'] = get_seq_annotations_fast(all_seqs)\n\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2, info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\ndef getannotationstrings2(cann):\n \"\"\"\n get a nice string summary of a curation\n\n input:\n cann : dict from /sequences/get_annotations (one from the list)\n output:\n cdesc : str\n a short summary of each annotation\n \"\"\"\n cdesc = ''\n if cann['description']:\n cdesc += cann['description'] + ' ('\n if cann['annotationtype'] == 'diffexp':\n chigh = []\n clow = []\n call = []\n for cdet in cann['details']:\n if cdet[0] == 'all':\n call.append(cdet[1])\n continue\n if cdet[0] == 'low':\n clow.append(cdet[1])\n continue\n if cdet[0] == 'high':\n chigh.append(cdet[1])\n continue\n cdesc += ' high in '\n for cval in chigh:\n cdesc += cval + ' '\n cdesc += ' compared to '\n for cval in clow:\n cdesc += cval + ' '\n cdesc += ' in '\n for cval in call:\n cdesc += cval + ' '\n elif cann['annotationtype'] == 'isa':\n cdesc += ' is a '\n for cdet in cann['details']:\n cdesc += 'cdet,'\n elif cann['annotationtype'] == 'contamination':\n cdesc += 'contamination'\n else:\n cdesc += cann['annotationtype'] + ' '\n for cdet in cann['details']:\n cdesc = cdesc + ' ' + cdet[1] + ','\n\n if len(cdesc) >= 1 and cdesc[-1] == ',':\n cdesc = cdesc[:-1]\n return cdesc\n\n\ndef get_seq_annotations_fast(sequences):\n debug(2, 'get_seq_annotations_fast for %d sequences' % len(sequences))\n rdata = {}\n rdata['sequences'] = sequences\n res = requests.get(get_dbbact_server_address() + '/sequences/get_fast_annotations', json=rdata)\n if res.status_code != 200:\n debug(5, 'error getting fast annotations for sequence list')\n return None, None, None\n res = res.json()\n debug(2, 'got %d total annotations' % len(res['annotations']))\n\n sequence_terms = {}\n sequence_annotations = {}\n for cseq in sequences:\n sequence_terms[cseq] = []\n sequence_annotations[cseq] = []\n for cseqannotation in res['seqannotations']:\n cpos = cseqannotation[0]\n # need str since json dict is always string\n cseq = sequences[cpos]\n sequence_annotations[cseq].extend(cseqannotation[1])\n for cannotation in cseqannotation[1]:\n for k, v in res['annotations'][str(cannotation)]['parents'].items():\n if k == 'high' or k == 'all':\n for cterm in v:\n sequence_terms[cseq].append(cterm)\n elif k == 'low':\n for cterm in v:\n sequence_terms[cseq].append('-' + cterm)\n\n annotations = res['annotations']\n\n # replace the string in the key with an int (since in json key is always str)\n keys = list(annotations.keys())\n for cid in keys:\n annotations[int(cid)] = annotations.pop(cid)\n\n # count total associations\n total_annotations = 0\n for cseq_annotations in sequence_annotations.values():\n total_annotations += len(cseq_annotations)\n debug(2, 'Got %d associations' % total_annotations)\n\n return sequence_terms, sequence_annotations, annotations\n\n\ndef _get_term_features(features, feature_terms):\n '''Get numpy array of score of each term for each feature\n\n Parameters\n ----------\n features : list of str\n A list of DNA sequences\n feature_terms : dict of {feature: list of tuples of (term, amount)}\n The terms associated with each feature in exp\n feature (key) : str the feature (out of exp) to which the terms relate\n feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count)\n\n Returns\n -------\n numpy array of T (terms) * F (features)\n total counts of each term (row) in each feature (column)\n list of str\n list of the terms corresponding to the numpy array rows\n '''\n # get all terms\n terms = {}\n cpos = 0\n for cfeature, ctermlist in feature_terms.items():\n for cterm, ccount in ctermlist:\n if cterm not in terms:\n terms[cterm] = cpos\n cpos += 1\n\n tot_features_inflated = 0\n feature_pos = {}\n for cfeature in features:\n ctermlist = feature_terms[cfeature]\n feature_pos[cfeature] = tot_features_inflated\n tot_features_inflated += len(ctermlist)\n\n # populate the matrix\n res = np.zeros([len(terms), len(features)])\n for idx, cfeature in enumerate(features):\n for cterm, ctermcount in feature_terms[cfeature]:\n res[terms[cterm], idx] += ctermcount\n\n term_list = sorted(terms, key=terms.get)\n debug(2, 'created terms X features matrix with %d terms (rows), %d features (columns)' % (res.shape[0], res.shape[1]))\n return res, term_list\n\n\ndef _get_term_features_inflated(features, feature_terms):\n '''Get numpy array of score of each term for each feature. This is the inflated version (used for card mean) to overcome the different number of annotations per feature. But slower and not memory efficient\n\n Parameters\n ----------\n features : list of str\n A list of DNA sequences\n feature_terms : dict of {feature: list of tuples of (term, amount)}\n The terms associated with each feature in exp\n feature (key) : str the feature (out of exp) to which the terms relate\n feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count)\n\n Returns\n -------\n numpy array of T (terms) * F (inflated features)\n total counts of each term (row) in each feature (column)\n list of str\n list of the terms corresponding to the numpy array rows\n '''\n # get all terms\n terms = {}\n cpos = 0\n for cfeature, ctermlist in feature_terms.items():\n for cterm, ccount in ctermlist:\n if cterm not in terms:\n terms[cterm] = cpos\n cpos += 1\n\n tot_features_inflated = 0\n feature_pos = {}\n for cfeature in features:\n ctermlist = feature_terms[cfeature]\n feature_pos[cfeature] = tot_features_inflated\n tot_features_inflated += len(ctermlist)\n\n res = np.zeros([len(terms), tot_features_inflated])\n\n for cfeature in features:\n for cterm, ctermcount in feature_terms[cfeature]:\n res[terms[cterm], feature_pos[cfeature]] += ctermcount\n term_list = sorted(terms, key=terms.get)\n debug(2, 'created terms X features matrix with %d terms (rows), %d features (columns)' % (res.shape[0], res.shape[1]))\n return res, term_list\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations, annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\ndef _get_all_term_counts(features, feature_annotations, annotations):\n '''Get counts of all terms associated with each feature\n\n Parameters\n ----------\n features: list of str\n the sequences to get the terms for\n feature_annotations: dict of {feature (str): annotationIDs (list of int))\n the list of annotations each feature appears in\n annotations: dict of {annotationsid (int): annotation details (dict)}\n all the annotations in the experiment\n\n Returns\n -------\n dict of {feature (str): annotation counts (list of (term(str), count(int)))}\n '''\n feature_terms = {}\n for cfeature in features:\n annotation_list = [annotations[x] for x in feature_annotations[cfeature]]\n feature_terms[cfeature] = get_annotation_term_counts(annotation_list)\n return feature_terms\n\n\ndef get_annotation_term_counts(annotations):\n '''Get the annotation type corrected count for all terms in annotations\n\n Parameters\n ----------\n annotations : list of dict\n list of annotations\n\n Returns\n -------\n list of tuples (term, count)\n '''\n term_count = defaultdict(int)\n for cannotation in annotations:\n if cannotation['annotationtype'] == 'common':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 1\n continue\n if cannotation['annotationtype'] == 'dominant':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 2\n continue\n if cannotation['annotationtype'] == 'other':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 0.5\n continue\n if cannotation['annotationtype'] == 'contamination':\n term_count['contamination'] += 1\n continue\n if cannotation['annotationtype'] in ['diffexp', 'positive correlation', 'negative correlation']:\n for cdesc in cannotation['details']:\n if cdesc[0] == 'all':\n term_count[cdesc[1]] += 1\n continue\n if cdesc[0] == 'high':\n term_count[cdesc[1]] += 2\n continue\n if cdesc[0] == 'low':\n term_count[cdesc[1]] -= 2\n continue\n debug(4, 'unknown detail type %s encountered' % cdesc[0])\n continue\n if cannotation['annotationtype'] == 'other':\n continue\n debug(4, 'unknown annotation type %s encountered' % cannotation['annotationtype'])\n res = []\n for k, v in term_count.items():\n # flip and add '-' to term if negative\n if v < 0:\n k = '-' + k\n v = -v\n res.append((k, v))\n return res\n\n\ndef enrichment(seqs1, seqs2, term_type=\"term\"):\n '''\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n '''\n # set the same seed (since we use a random permutation test)\n np.random.seed(2018)\n\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return 'No sequences remaining in background fasta after removing the sequences of interest', None, None, None\n all_seqs = list(all_seqs)\n\n # get the annotations for the sequences\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'] = get_seq_annotations_fast(all_seqs)\n\n if term_type == 'term':\n debug(2, 'getting all_term counts')\n feature_terms = _get_all_term_counts(all_seqs, info['sequence_annotations'], info['annotations'])\n elif term_type == 'annotation':\n debug(2, 'getting all_annotation string counts')\n feature_terms = _get_all_annotation_string_counts(all_seqs, info['sequence_annotations'], info['annotations'])\n else:\n debug(8, 'strange term_type encountered: %s' % term_type)\n\n # count the total number of terms\n all_terms_set = set()\n for cterms in feature_terms.values():\n for (cterm, ccount) in cterms:\n all_terms_set.add(cterm)\n debug(2, 'found %d terms associated with all sequences (%d)' % (len(all_terms_set), len(all_seqs)))\n\n debug(2, 'getting seqs1 feature array')\n feature_array, term_list = _get_term_features(seqs1, feature_terms)\n debug(2, 'getting seqs2 feature array')\n bg_array, term_list = _get_term_features(seqs2, feature_terms)\n\n debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape, feature_array.shape))\n all_feature_array = np.hstack([feature_array, bg_array])\n\n labels = np.zeros(all_feature_array.shape[1])\n labels[:feature_array.shape[1]] = 1\n\n debug(2, 'starting dsfdr for enrichment')\n keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff', transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr')\n keep = np.where(keep)[0]\n if len(keep) == 0:\n debug(2, 'no enriched terms found')\n term_list = np.array(term_list)[keep]\n odif = odif[keep]\n pvals = pvals[keep]\n si = np.argsort(odif)\n odif = odif[si]\n pvals = pvals[si]\n term_list = term_list[si]\n return '', term_list, pvals, odif\n", "import requests\nimport numpy as np\nfrom .mini_dsfdr import dsfdr\nfrom .utils import debug, get_dbbact_server_address\nfrom collections import defaultdict\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\ndef getannotationstrings2(cann):\n \"\"\"\n get a nice string summary of a curation\n\n input:\n cann : dict from /sequences/get_annotations (one from the list)\n output:\n cdesc : str\n a short summary of each annotation\n \"\"\"\n cdesc = ''\n if cann['description']:\n cdesc += cann['description'] + ' ('\n if cann['annotationtype'] == 'diffexp':\n chigh = []\n clow = []\n call = []\n for cdet in cann['details']:\n if cdet[0] == 'all':\n call.append(cdet[1])\n continue\n if cdet[0] == 'low':\n clow.append(cdet[1])\n continue\n if cdet[0] == 'high':\n chigh.append(cdet[1])\n continue\n cdesc += ' high in '\n for cval in chigh:\n cdesc += cval + ' '\n cdesc += ' compared to '\n for cval in clow:\n cdesc += cval + ' '\n cdesc += ' in '\n for cval in call:\n cdesc += cval + ' '\n elif cann['annotationtype'] == 'isa':\n cdesc += ' is a '\n for cdet in cann['details']:\n cdesc += 'cdet,'\n elif cann['annotationtype'] == 'contamination':\n cdesc += 'contamination'\n else:\n cdesc += cann['annotationtype'] + ' '\n for cdet in cann['details']:\n cdesc = cdesc + ' ' + cdet[1] + ','\n if len(cdesc) >= 1 and cdesc[-1] == ',':\n cdesc = cdesc[:-1]\n return cdesc\n\n\ndef get_seq_annotations_fast(sequences):\n debug(2, 'get_seq_annotations_fast for %d sequences' % len(sequences))\n rdata = {}\n rdata['sequences'] = sequences\n res = requests.get(get_dbbact_server_address() +\n '/sequences/get_fast_annotations', json=rdata)\n if res.status_code != 200:\n debug(5, 'error getting fast annotations for sequence list')\n return None, None, None\n res = res.json()\n debug(2, 'got %d total annotations' % len(res['annotations']))\n sequence_terms = {}\n sequence_annotations = {}\n for cseq in sequences:\n sequence_terms[cseq] = []\n sequence_annotations[cseq] = []\n for cseqannotation in res['seqannotations']:\n cpos = cseqannotation[0]\n cseq = sequences[cpos]\n sequence_annotations[cseq].extend(cseqannotation[1])\n for cannotation in cseqannotation[1]:\n for k, v in res['annotations'][str(cannotation)]['parents'].items(\n ):\n if k == 'high' or k == 'all':\n for cterm in v:\n sequence_terms[cseq].append(cterm)\n elif k == 'low':\n for cterm in v:\n sequence_terms[cseq].append('-' + cterm)\n annotations = res['annotations']\n keys = list(annotations.keys())\n for cid in keys:\n annotations[int(cid)] = annotations.pop(cid)\n total_annotations = 0\n for cseq_annotations in sequence_annotations.values():\n total_annotations += len(cseq_annotations)\n debug(2, 'Got %d associations' % total_annotations)\n return sequence_terms, sequence_annotations, annotations\n\n\ndef _get_term_features(features, feature_terms):\n \"\"\"Get numpy array of score of each term for each feature\n\n Parameters\n ----------\n features : list of str\n A list of DNA sequences\n feature_terms : dict of {feature: list of tuples of (term, amount)}\n The terms associated with each feature in exp\n feature (key) : str the feature (out of exp) to which the terms relate\n feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count)\n\n Returns\n -------\n numpy array of T (terms) * F (features)\n total counts of each term (row) in each feature (column)\n list of str\n list of the terms corresponding to the numpy array rows\n \"\"\"\n terms = {}\n cpos = 0\n for cfeature, ctermlist in feature_terms.items():\n for cterm, ccount in ctermlist:\n if cterm not in terms:\n terms[cterm] = cpos\n cpos += 1\n tot_features_inflated = 0\n feature_pos = {}\n for cfeature in features:\n ctermlist = feature_terms[cfeature]\n feature_pos[cfeature] = tot_features_inflated\n tot_features_inflated += len(ctermlist)\n res = np.zeros([len(terms), len(features)])\n for idx, cfeature in enumerate(features):\n for cterm, ctermcount in feature_terms[cfeature]:\n res[terms[cterm], idx] += ctermcount\n term_list = sorted(terms, key=terms.get)\n debug(2, \n 'created terms X features matrix with %d terms (rows), %d features (columns)'\n % (res.shape[0], res.shape[1]))\n return res, term_list\n\n\ndef _get_term_features_inflated(features, feature_terms):\n \"\"\"Get numpy array of score of each term for each feature. This is the inflated version (used for card mean) to overcome the different number of annotations per feature. But slower and not memory efficient\n\n Parameters\n ----------\n features : list of str\n A list of DNA sequences\n feature_terms : dict of {feature: list of tuples of (term, amount)}\n The terms associated with each feature in exp\n feature (key) : str the feature (out of exp) to which the terms relate\n feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count)\n\n Returns\n -------\n numpy array of T (terms) * F (inflated features)\n total counts of each term (row) in each feature (column)\n list of str\n list of the terms corresponding to the numpy array rows\n \"\"\"\n terms = {}\n cpos = 0\n for cfeature, ctermlist in feature_terms.items():\n for cterm, ccount in ctermlist:\n if cterm not in terms:\n terms[cterm] = cpos\n cpos += 1\n tot_features_inflated = 0\n feature_pos = {}\n for cfeature in features:\n ctermlist = feature_terms[cfeature]\n feature_pos[cfeature] = tot_features_inflated\n tot_features_inflated += len(ctermlist)\n res = np.zeros([len(terms), tot_features_inflated])\n for cfeature in features:\n for cterm, ctermcount in feature_terms[cfeature]:\n res[terms[cterm], feature_pos[cfeature]] += ctermcount\n term_list = sorted(terms, key=terms.get)\n debug(2, \n 'created terms X features matrix with %d terms (rows), %d features (columns)'\n % (res.shape[0], res.shape[1]))\n return res, term_list\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations,\n annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\ndef _get_all_term_counts(features, feature_annotations, annotations):\n \"\"\"Get counts of all terms associated with each feature\n\n Parameters\n ----------\n features: list of str\n the sequences to get the terms for\n feature_annotations: dict of {feature (str): annotationIDs (list of int))\n the list of annotations each feature appears in\n annotations: dict of {annotationsid (int): annotation details (dict)}\n all the annotations in the experiment\n\n Returns\n -------\n dict of {feature (str): annotation counts (list of (term(str), count(int)))}\n \"\"\"\n feature_terms = {}\n for cfeature in features:\n annotation_list = [annotations[x] for x in feature_annotations[\n cfeature]]\n feature_terms[cfeature] = get_annotation_term_counts(annotation_list)\n return feature_terms\n\n\ndef get_annotation_term_counts(annotations):\n \"\"\"Get the annotation type corrected count for all terms in annotations\n\n Parameters\n ----------\n annotations : list of dict\n list of annotations\n\n Returns\n -------\n list of tuples (term, count)\n \"\"\"\n term_count = defaultdict(int)\n for cannotation in annotations:\n if cannotation['annotationtype'] == 'common':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 1\n continue\n if cannotation['annotationtype'] == 'dominant':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 2\n continue\n if cannotation['annotationtype'] == 'other':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 0.5\n continue\n if cannotation['annotationtype'] == 'contamination':\n term_count['contamination'] += 1\n continue\n if cannotation['annotationtype'] in ['diffexp',\n 'positive correlation', 'negative correlation']:\n for cdesc in cannotation['details']:\n if cdesc[0] == 'all':\n term_count[cdesc[1]] += 1\n continue\n if cdesc[0] == 'high':\n term_count[cdesc[1]] += 2\n continue\n if cdesc[0] == 'low':\n term_count[cdesc[1]] -= 2\n continue\n debug(4, 'unknown detail type %s encountered' % cdesc[0])\n continue\n if cannotation['annotationtype'] == 'other':\n continue\n debug(4, 'unknown annotation type %s encountered' % cannotation[\n 'annotationtype'])\n res = []\n for k, v in term_count.items():\n if v < 0:\n k = '-' + k\n v = -v\n res.append((k, v))\n return res\n\n\ndef enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n if term_type == 'term':\n debug(2, 'getting all_term counts')\n feature_terms = _get_all_term_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n elif term_type == 'annotation':\n debug(2, 'getting all_annotation string counts')\n feature_terms = _get_all_annotation_string_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n else:\n debug(8, 'strange term_type encountered: %s' % term_type)\n all_terms_set = set()\n for cterms in feature_terms.values():\n for cterm, ccount in cterms:\n all_terms_set.add(cterm)\n debug(2, 'found %d terms associated with all sequences (%d)' % (len(\n all_terms_set), len(all_seqs)))\n debug(2, 'getting seqs1 feature array')\n feature_array, term_list = _get_term_features(seqs1, feature_terms)\n debug(2, 'getting seqs2 feature array')\n bg_array, term_list = _get_term_features(seqs2, feature_terms)\n debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape,\n feature_array.shape))\n all_feature_array = np.hstack([feature_array, bg_array])\n labels = np.zeros(all_feature_array.shape[1])\n labels[:feature_array.shape[1]] = 1\n debug(2, 'starting dsfdr for enrichment')\n keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff',\n transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr')\n keep = np.where(keep)[0]\n if len(keep) == 0:\n debug(2, 'no enriched terms found')\n term_list = np.array(term_list)[keep]\n odif = odif[keep]\n pvals = pvals[keep]\n si = np.argsort(odif)\n odif = odif[si]\n pvals = pvals[si]\n term_list = term_list[si]\n return '', term_list, pvals, odif\n", "<import token>\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\ndef getannotationstrings2(cann):\n \"\"\"\n get a nice string summary of a curation\n\n input:\n cann : dict from /sequences/get_annotations (one from the list)\n output:\n cdesc : str\n a short summary of each annotation\n \"\"\"\n cdesc = ''\n if cann['description']:\n cdesc += cann['description'] + ' ('\n if cann['annotationtype'] == 'diffexp':\n chigh = []\n clow = []\n call = []\n for cdet in cann['details']:\n if cdet[0] == 'all':\n call.append(cdet[1])\n continue\n if cdet[0] == 'low':\n clow.append(cdet[1])\n continue\n if cdet[0] == 'high':\n chigh.append(cdet[1])\n continue\n cdesc += ' high in '\n for cval in chigh:\n cdesc += cval + ' '\n cdesc += ' compared to '\n for cval in clow:\n cdesc += cval + ' '\n cdesc += ' in '\n for cval in call:\n cdesc += cval + ' '\n elif cann['annotationtype'] == 'isa':\n cdesc += ' is a '\n for cdet in cann['details']:\n cdesc += 'cdet,'\n elif cann['annotationtype'] == 'contamination':\n cdesc += 'contamination'\n else:\n cdesc += cann['annotationtype'] + ' '\n for cdet in cann['details']:\n cdesc = cdesc + ' ' + cdet[1] + ','\n if len(cdesc) >= 1 and cdesc[-1] == ',':\n cdesc = cdesc[:-1]\n return cdesc\n\n\ndef get_seq_annotations_fast(sequences):\n debug(2, 'get_seq_annotations_fast for %d sequences' % len(sequences))\n rdata = {}\n rdata['sequences'] = sequences\n res = requests.get(get_dbbact_server_address() +\n '/sequences/get_fast_annotations', json=rdata)\n if res.status_code != 200:\n debug(5, 'error getting fast annotations for sequence list')\n return None, None, None\n res = res.json()\n debug(2, 'got %d total annotations' % len(res['annotations']))\n sequence_terms = {}\n sequence_annotations = {}\n for cseq in sequences:\n sequence_terms[cseq] = []\n sequence_annotations[cseq] = []\n for cseqannotation in res['seqannotations']:\n cpos = cseqannotation[0]\n cseq = sequences[cpos]\n sequence_annotations[cseq].extend(cseqannotation[1])\n for cannotation in cseqannotation[1]:\n for k, v in res['annotations'][str(cannotation)]['parents'].items(\n ):\n if k == 'high' or k == 'all':\n for cterm in v:\n sequence_terms[cseq].append(cterm)\n elif k == 'low':\n for cterm in v:\n sequence_terms[cseq].append('-' + cterm)\n annotations = res['annotations']\n keys = list(annotations.keys())\n for cid in keys:\n annotations[int(cid)] = annotations.pop(cid)\n total_annotations = 0\n for cseq_annotations in sequence_annotations.values():\n total_annotations += len(cseq_annotations)\n debug(2, 'Got %d associations' % total_annotations)\n return sequence_terms, sequence_annotations, annotations\n\n\ndef _get_term_features(features, feature_terms):\n \"\"\"Get numpy array of score of each term for each feature\n\n Parameters\n ----------\n features : list of str\n A list of DNA sequences\n feature_terms : dict of {feature: list of tuples of (term, amount)}\n The terms associated with each feature in exp\n feature (key) : str the feature (out of exp) to which the terms relate\n feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count)\n\n Returns\n -------\n numpy array of T (terms) * F (features)\n total counts of each term (row) in each feature (column)\n list of str\n list of the terms corresponding to the numpy array rows\n \"\"\"\n terms = {}\n cpos = 0\n for cfeature, ctermlist in feature_terms.items():\n for cterm, ccount in ctermlist:\n if cterm not in terms:\n terms[cterm] = cpos\n cpos += 1\n tot_features_inflated = 0\n feature_pos = {}\n for cfeature in features:\n ctermlist = feature_terms[cfeature]\n feature_pos[cfeature] = tot_features_inflated\n tot_features_inflated += len(ctermlist)\n res = np.zeros([len(terms), len(features)])\n for idx, cfeature in enumerate(features):\n for cterm, ctermcount in feature_terms[cfeature]:\n res[terms[cterm], idx] += ctermcount\n term_list = sorted(terms, key=terms.get)\n debug(2, \n 'created terms X features matrix with %d terms (rows), %d features (columns)'\n % (res.shape[0], res.shape[1]))\n return res, term_list\n\n\ndef _get_term_features_inflated(features, feature_terms):\n \"\"\"Get numpy array of score of each term for each feature. This is the inflated version (used for card mean) to overcome the different number of annotations per feature. But slower and not memory efficient\n\n Parameters\n ----------\n features : list of str\n A list of DNA sequences\n feature_terms : dict of {feature: list of tuples of (term, amount)}\n The terms associated with each feature in exp\n feature (key) : str the feature (out of exp) to which the terms relate\n feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count)\n\n Returns\n -------\n numpy array of T (terms) * F (inflated features)\n total counts of each term (row) in each feature (column)\n list of str\n list of the terms corresponding to the numpy array rows\n \"\"\"\n terms = {}\n cpos = 0\n for cfeature, ctermlist in feature_terms.items():\n for cterm, ccount in ctermlist:\n if cterm not in terms:\n terms[cterm] = cpos\n cpos += 1\n tot_features_inflated = 0\n feature_pos = {}\n for cfeature in features:\n ctermlist = feature_terms[cfeature]\n feature_pos[cfeature] = tot_features_inflated\n tot_features_inflated += len(ctermlist)\n res = np.zeros([len(terms), tot_features_inflated])\n for cfeature in features:\n for cterm, ctermcount in feature_terms[cfeature]:\n res[terms[cterm], feature_pos[cfeature]] += ctermcount\n term_list = sorted(terms, key=terms.get)\n debug(2, \n 'created terms X features matrix with %d terms (rows), %d features (columns)'\n % (res.shape[0], res.shape[1]))\n return res, term_list\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations,\n annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\ndef _get_all_term_counts(features, feature_annotations, annotations):\n \"\"\"Get counts of all terms associated with each feature\n\n Parameters\n ----------\n features: list of str\n the sequences to get the terms for\n feature_annotations: dict of {feature (str): annotationIDs (list of int))\n the list of annotations each feature appears in\n annotations: dict of {annotationsid (int): annotation details (dict)}\n all the annotations in the experiment\n\n Returns\n -------\n dict of {feature (str): annotation counts (list of (term(str), count(int)))}\n \"\"\"\n feature_terms = {}\n for cfeature in features:\n annotation_list = [annotations[x] for x in feature_annotations[\n cfeature]]\n feature_terms[cfeature] = get_annotation_term_counts(annotation_list)\n return feature_terms\n\n\ndef get_annotation_term_counts(annotations):\n \"\"\"Get the annotation type corrected count for all terms in annotations\n\n Parameters\n ----------\n annotations : list of dict\n list of annotations\n\n Returns\n -------\n list of tuples (term, count)\n \"\"\"\n term_count = defaultdict(int)\n for cannotation in annotations:\n if cannotation['annotationtype'] == 'common':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 1\n continue\n if cannotation['annotationtype'] == 'dominant':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 2\n continue\n if cannotation['annotationtype'] == 'other':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 0.5\n continue\n if cannotation['annotationtype'] == 'contamination':\n term_count['contamination'] += 1\n continue\n if cannotation['annotationtype'] in ['diffexp',\n 'positive correlation', 'negative correlation']:\n for cdesc in cannotation['details']:\n if cdesc[0] == 'all':\n term_count[cdesc[1]] += 1\n continue\n if cdesc[0] == 'high':\n term_count[cdesc[1]] += 2\n continue\n if cdesc[0] == 'low':\n term_count[cdesc[1]] -= 2\n continue\n debug(4, 'unknown detail type %s encountered' % cdesc[0])\n continue\n if cannotation['annotationtype'] == 'other':\n continue\n debug(4, 'unknown annotation type %s encountered' % cannotation[\n 'annotationtype'])\n res = []\n for k, v in term_count.items():\n if v < 0:\n k = '-' + k\n v = -v\n res.append((k, v))\n return res\n\n\ndef enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n if term_type == 'term':\n debug(2, 'getting all_term counts')\n feature_terms = _get_all_term_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n elif term_type == 'annotation':\n debug(2, 'getting all_annotation string counts')\n feature_terms = _get_all_annotation_string_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n else:\n debug(8, 'strange term_type encountered: %s' % term_type)\n all_terms_set = set()\n for cterms in feature_terms.values():\n for cterm, ccount in cterms:\n all_terms_set.add(cterm)\n debug(2, 'found %d terms associated with all sequences (%d)' % (len(\n all_terms_set), len(all_seqs)))\n debug(2, 'getting seqs1 feature array')\n feature_array, term_list = _get_term_features(seqs1, feature_terms)\n debug(2, 'getting seqs2 feature array')\n bg_array, term_list = _get_term_features(seqs2, feature_terms)\n debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape,\n feature_array.shape))\n all_feature_array = np.hstack([feature_array, bg_array])\n labels = np.zeros(all_feature_array.shape[1])\n labels[:feature_array.shape[1]] = 1\n debug(2, 'starting dsfdr for enrichment')\n keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff',\n transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr')\n keep = np.where(keep)[0]\n if len(keep) == 0:\n debug(2, 'no enriched terms found')\n term_list = np.array(term_list)[keep]\n odif = odif[keep]\n pvals = pvals[keep]\n si = np.argsort(odif)\n odif = odif[si]\n pvals = pvals[si]\n term_list = term_list[si]\n return '', term_list, pvals, odif\n", "<import token>\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\ndef getannotationstrings2(cann):\n \"\"\"\n get a nice string summary of a curation\n\n input:\n cann : dict from /sequences/get_annotations (one from the list)\n output:\n cdesc : str\n a short summary of each annotation\n \"\"\"\n cdesc = ''\n if cann['description']:\n cdesc += cann['description'] + ' ('\n if cann['annotationtype'] == 'diffexp':\n chigh = []\n clow = []\n call = []\n for cdet in cann['details']:\n if cdet[0] == 'all':\n call.append(cdet[1])\n continue\n if cdet[0] == 'low':\n clow.append(cdet[1])\n continue\n if cdet[0] == 'high':\n chigh.append(cdet[1])\n continue\n cdesc += ' high in '\n for cval in chigh:\n cdesc += cval + ' '\n cdesc += ' compared to '\n for cval in clow:\n cdesc += cval + ' '\n cdesc += ' in '\n for cval in call:\n cdesc += cval + ' '\n elif cann['annotationtype'] == 'isa':\n cdesc += ' is a '\n for cdet in cann['details']:\n cdesc += 'cdet,'\n elif cann['annotationtype'] == 'contamination':\n cdesc += 'contamination'\n else:\n cdesc += cann['annotationtype'] + ' '\n for cdet in cann['details']:\n cdesc = cdesc + ' ' + cdet[1] + ','\n if len(cdesc) >= 1 and cdesc[-1] == ',':\n cdesc = cdesc[:-1]\n return cdesc\n\n\ndef get_seq_annotations_fast(sequences):\n debug(2, 'get_seq_annotations_fast for %d sequences' % len(sequences))\n rdata = {}\n rdata['sequences'] = sequences\n res = requests.get(get_dbbact_server_address() +\n '/sequences/get_fast_annotations', json=rdata)\n if res.status_code != 200:\n debug(5, 'error getting fast annotations for sequence list')\n return None, None, None\n res = res.json()\n debug(2, 'got %d total annotations' % len(res['annotations']))\n sequence_terms = {}\n sequence_annotations = {}\n for cseq in sequences:\n sequence_terms[cseq] = []\n sequence_annotations[cseq] = []\n for cseqannotation in res['seqannotations']:\n cpos = cseqannotation[0]\n cseq = sequences[cpos]\n sequence_annotations[cseq].extend(cseqannotation[1])\n for cannotation in cseqannotation[1]:\n for k, v in res['annotations'][str(cannotation)]['parents'].items(\n ):\n if k == 'high' or k == 'all':\n for cterm in v:\n sequence_terms[cseq].append(cterm)\n elif k == 'low':\n for cterm in v:\n sequence_terms[cseq].append('-' + cterm)\n annotations = res['annotations']\n keys = list(annotations.keys())\n for cid in keys:\n annotations[int(cid)] = annotations.pop(cid)\n total_annotations = 0\n for cseq_annotations in sequence_annotations.values():\n total_annotations += len(cseq_annotations)\n debug(2, 'Got %d associations' % total_annotations)\n return sequence_terms, sequence_annotations, annotations\n\n\ndef _get_term_features(features, feature_terms):\n \"\"\"Get numpy array of score of each term for each feature\n\n Parameters\n ----------\n features : list of str\n A list of DNA sequences\n feature_terms : dict of {feature: list of tuples of (term, amount)}\n The terms associated with each feature in exp\n feature (key) : str the feature (out of exp) to which the terms relate\n feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count)\n\n Returns\n -------\n numpy array of T (terms) * F (features)\n total counts of each term (row) in each feature (column)\n list of str\n list of the terms corresponding to the numpy array rows\n \"\"\"\n terms = {}\n cpos = 0\n for cfeature, ctermlist in feature_terms.items():\n for cterm, ccount in ctermlist:\n if cterm not in terms:\n terms[cterm] = cpos\n cpos += 1\n tot_features_inflated = 0\n feature_pos = {}\n for cfeature in features:\n ctermlist = feature_terms[cfeature]\n feature_pos[cfeature] = tot_features_inflated\n tot_features_inflated += len(ctermlist)\n res = np.zeros([len(terms), len(features)])\n for idx, cfeature in enumerate(features):\n for cterm, ctermcount in feature_terms[cfeature]:\n res[terms[cterm], idx] += ctermcount\n term_list = sorted(terms, key=terms.get)\n debug(2, \n 'created terms X features matrix with %d terms (rows), %d features (columns)'\n % (res.shape[0], res.shape[1]))\n return res, term_list\n\n\n<function token>\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations,\n annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\ndef _get_all_term_counts(features, feature_annotations, annotations):\n \"\"\"Get counts of all terms associated with each feature\n\n Parameters\n ----------\n features: list of str\n the sequences to get the terms for\n feature_annotations: dict of {feature (str): annotationIDs (list of int))\n the list of annotations each feature appears in\n annotations: dict of {annotationsid (int): annotation details (dict)}\n all the annotations in the experiment\n\n Returns\n -------\n dict of {feature (str): annotation counts (list of (term(str), count(int)))}\n \"\"\"\n feature_terms = {}\n for cfeature in features:\n annotation_list = [annotations[x] for x in feature_annotations[\n cfeature]]\n feature_terms[cfeature] = get_annotation_term_counts(annotation_list)\n return feature_terms\n\n\ndef get_annotation_term_counts(annotations):\n \"\"\"Get the annotation type corrected count for all terms in annotations\n\n Parameters\n ----------\n annotations : list of dict\n list of annotations\n\n Returns\n -------\n list of tuples (term, count)\n \"\"\"\n term_count = defaultdict(int)\n for cannotation in annotations:\n if cannotation['annotationtype'] == 'common':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 1\n continue\n if cannotation['annotationtype'] == 'dominant':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 2\n continue\n if cannotation['annotationtype'] == 'other':\n for cdesc in cannotation['details']:\n term_count[cdesc[1]] += 0.5\n continue\n if cannotation['annotationtype'] == 'contamination':\n term_count['contamination'] += 1\n continue\n if cannotation['annotationtype'] in ['diffexp',\n 'positive correlation', 'negative correlation']:\n for cdesc in cannotation['details']:\n if cdesc[0] == 'all':\n term_count[cdesc[1]] += 1\n continue\n if cdesc[0] == 'high':\n term_count[cdesc[1]] += 2\n continue\n if cdesc[0] == 'low':\n term_count[cdesc[1]] -= 2\n continue\n debug(4, 'unknown detail type %s encountered' % cdesc[0])\n continue\n if cannotation['annotationtype'] == 'other':\n continue\n debug(4, 'unknown annotation type %s encountered' % cannotation[\n 'annotationtype'])\n res = []\n for k, v in term_count.items():\n if v < 0:\n k = '-' + k\n v = -v\n res.append((k, v))\n return res\n\n\ndef enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n if term_type == 'term':\n debug(2, 'getting all_term counts')\n feature_terms = _get_all_term_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n elif term_type == 'annotation':\n debug(2, 'getting all_annotation string counts')\n feature_terms = _get_all_annotation_string_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n else:\n debug(8, 'strange term_type encountered: %s' % term_type)\n all_terms_set = set()\n for cterms in feature_terms.values():\n for cterm, ccount in cterms:\n all_terms_set.add(cterm)\n debug(2, 'found %d terms associated with all sequences (%d)' % (len(\n all_terms_set), len(all_seqs)))\n debug(2, 'getting seqs1 feature array')\n feature_array, term_list = _get_term_features(seqs1, feature_terms)\n debug(2, 'getting seqs2 feature array')\n bg_array, term_list = _get_term_features(seqs2, feature_terms)\n debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape,\n feature_array.shape))\n all_feature_array = np.hstack([feature_array, bg_array])\n labels = np.zeros(all_feature_array.shape[1])\n labels[:feature_array.shape[1]] = 1\n debug(2, 'starting dsfdr for enrichment')\n keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff',\n transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr')\n keep = np.where(keep)[0]\n if len(keep) == 0:\n debug(2, 'no enriched terms found')\n term_list = np.array(term_list)[keep]\n odif = odif[keep]\n pvals = pvals[keep]\n si = np.argsort(odif)\n odif = odif[si]\n pvals = pvals[si]\n term_list = term_list[si]\n return '', term_list, pvals, odif\n", "<import token>\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\ndef getannotationstrings2(cann):\n \"\"\"\n get a nice string summary of a curation\n\n input:\n cann : dict from /sequences/get_annotations (one from the list)\n output:\n cdesc : str\n a short summary of each annotation\n \"\"\"\n cdesc = ''\n if cann['description']:\n cdesc += cann['description'] + ' ('\n if cann['annotationtype'] == 'diffexp':\n chigh = []\n clow = []\n call = []\n for cdet in cann['details']:\n if cdet[0] == 'all':\n call.append(cdet[1])\n continue\n if cdet[0] == 'low':\n clow.append(cdet[1])\n continue\n if cdet[0] == 'high':\n chigh.append(cdet[1])\n continue\n cdesc += ' high in '\n for cval in chigh:\n cdesc += cval + ' '\n cdesc += ' compared to '\n for cval in clow:\n cdesc += cval + ' '\n cdesc += ' in '\n for cval in call:\n cdesc += cval + ' '\n elif cann['annotationtype'] == 'isa':\n cdesc += ' is a '\n for cdet in cann['details']:\n cdesc += 'cdet,'\n elif cann['annotationtype'] == 'contamination':\n cdesc += 'contamination'\n else:\n cdesc += cann['annotationtype'] + ' '\n for cdet in cann['details']:\n cdesc = cdesc + ' ' + cdet[1] + ','\n if len(cdesc) >= 1 and cdesc[-1] == ',':\n cdesc = cdesc[:-1]\n return cdesc\n\n\ndef get_seq_annotations_fast(sequences):\n debug(2, 'get_seq_annotations_fast for %d sequences' % len(sequences))\n rdata = {}\n rdata['sequences'] = sequences\n res = requests.get(get_dbbact_server_address() +\n '/sequences/get_fast_annotations', json=rdata)\n if res.status_code != 200:\n debug(5, 'error getting fast annotations for sequence list')\n return None, None, None\n res = res.json()\n debug(2, 'got %d total annotations' % len(res['annotations']))\n sequence_terms = {}\n sequence_annotations = {}\n for cseq in sequences:\n sequence_terms[cseq] = []\n sequence_annotations[cseq] = []\n for cseqannotation in res['seqannotations']:\n cpos = cseqannotation[0]\n cseq = sequences[cpos]\n sequence_annotations[cseq].extend(cseqannotation[1])\n for cannotation in cseqannotation[1]:\n for k, v in res['annotations'][str(cannotation)]['parents'].items(\n ):\n if k == 'high' or k == 'all':\n for cterm in v:\n sequence_terms[cseq].append(cterm)\n elif k == 'low':\n for cterm in v:\n sequence_terms[cseq].append('-' + cterm)\n annotations = res['annotations']\n keys = list(annotations.keys())\n for cid in keys:\n annotations[int(cid)] = annotations.pop(cid)\n total_annotations = 0\n for cseq_annotations in sequence_annotations.values():\n total_annotations += len(cseq_annotations)\n debug(2, 'Got %d associations' % total_annotations)\n return sequence_terms, sequence_annotations, annotations\n\n\ndef _get_term_features(features, feature_terms):\n \"\"\"Get numpy array of score of each term for each feature\n\n Parameters\n ----------\n features : list of str\n A list of DNA sequences\n feature_terms : dict of {feature: list of tuples of (term, amount)}\n The terms associated with each feature in exp\n feature (key) : str the feature (out of exp) to which the terms relate\n feature_terms (value) : list of tuples of (str or int the terms associated with this feature, count)\n\n Returns\n -------\n numpy array of T (terms) * F (features)\n total counts of each term (row) in each feature (column)\n list of str\n list of the terms corresponding to the numpy array rows\n \"\"\"\n terms = {}\n cpos = 0\n for cfeature, ctermlist in feature_terms.items():\n for cterm, ccount in ctermlist:\n if cterm not in terms:\n terms[cterm] = cpos\n cpos += 1\n tot_features_inflated = 0\n feature_pos = {}\n for cfeature in features:\n ctermlist = feature_terms[cfeature]\n feature_pos[cfeature] = tot_features_inflated\n tot_features_inflated += len(ctermlist)\n res = np.zeros([len(terms), len(features)])\n for idx, cfeature in enumerate(features):\n for cterm, ctermcount in feature_terms[cfeature]:\n res[terms[cterm], idx] += ctermcount\n term_list = sorted(terms, key=terms.get)\n debug(2, \n 'created terms X features matrix with %d terms (rows), %d features (columns)'\n % (res.shape[0], res.shape[1]))\n return res, term_list\n\n\n<function token>\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations,\n annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\ndef _get_all_term_counts(features, feature_annotations, annotations):\n \"\"\"Get counts of all terms associated with each feature\n\n Parameters\n ----------\n features: list of str\n the sequences to get the terms for\n feature_annotations: dict of {feature (str): annotationIDs (list of int))\n the list of annotations each feature appears in\n annotations: dict of {annotationsid (int): annotation details (dict)}\n all the annotations in the experiment\n\n Returns\n -------\n dict of {feature (str): annotation counts (list of (term(str), count(int)))}\n \"\"\"\n feature_terms = {}\n for cfeature in features:\n annotation_list = [annotations[x] for x in feature_annotations[\n cfeature]]\n feature_terms[cfeature] = get_annotation_term_counts(annotation_list)\n return feature_terms\n\n\n<function token>\n\n\ndef enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n if term_type == 'term':\n debug(2, 'getting all_term counts')\n feature_terms = _get_all_term_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n elif term_type == 'annotation':\n debug(2, 'getting all_annotation string counts')\n feature_terms = _get_all_annotation_string_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n else:\n debug(8, 'strange term_type encountered: %s' % term_type)\n all_terms_set = set()\n for cterms in feature_terms.values():\n for cterm, ccount in cterms:\n all_terms_set.add(cterm)\n debug(2, 'found %d terms associated with all sequences (%d)' % (len(\n all_terms_set), len(all_seqs)))\n debug(2, 'getting seqs1 feature array')\n feature_array, term_list = _get_term_features(seqs1, feature_terms)\n debug(2, 'getting seqs2 feature array')\n bg_array, term_list = _get_term_features(seqs2, feature_terms)\n debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape,\n feature_array.shape))\n all_feature_array = np.hstack([feature_array, bg_array])\n labels = np.zeros(all_feature_array.shape[1])\n labels[:feature_array.shape[1]] = 1\n debug(2, 'starting dsfdr for enrichment')\n keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff',\n transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr')\n keep = np.where(keep)[0]\n if len(keep) == 0:\n debug(2, 'no enriched terms found')\n term_list = np.array(term_list)[keep]\n odif = odif[keep]\n pvals = pvals[keep]\n si = np.argsort(odif)\n odif = odif[si]\n pvals = pvals[si]\n term_list = term_list[si]\n return '', term_list, pvals, odif\n", "<import token>\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\ndef getannotationstrings2(cann):\n \"\"\"\n get a nice string summary of a curation\n\n input:\n cann : dict from /sequences/get_annotations (one from the list)\n output:\n cdesc : str\n a short summary of each annotation\n \"\"\"\n cdesc = ''\n if cann['description']:\n cdesc += cann['description'] + ' ('\n if cann['annotationtype'] == 'diffexp':\n chigh = []\n clow = []\n call = []\n for cdet in cann['details']:\n if cdet[0] == 'all':\n call.append(cdet[1])\n continue\n if cdet[0] == 'low':\n clow.append(cdet[1])\n continue\n if cdet[0] == 'high':\n chigh.append(cdet[1])\n continue\n cdesc += ' high in '\n for cval in chigh:\n cdesc += cval + ' '\n cdesc += ' compared to '\n for cval in clow:\n cdesc += cval + ' '\n cdesc += ' in '\n for cval in call:\n cdesc += cval + ' '\n elif cann['annotationtype'] == 'isa':\n cdesc += ' is a '\n for cdet in cann['details']:\n cdesc += 'cdet,'\n elif cann['annotationtype'] == 'contamination':\n cdesc += 'contamination'\n else:\n cdesc += cann['annotationtype'] + ' '\n for cdet in cann['details']:\n cdesc = cdesc + ' ' + cdet[1] + ','\n if len(cdesc) >= 1 and cdesc[-1] == ',':\n cdesc = cdesc[:-1]\n return cdesc\n\n\ndef get_seq_annotations_fast(sequences):\n debug(2, 'get_seq_annotations_fast for %d sequences' % len(sequences))\n rdata = {}\n rdata['sequences'] = sequences\n res = requests.get(get_dbbact_server_address() +\n '/sequences/get_fast_annotations', json=rdata)\n if res.status_code != 200:\n debug(5, 'error getting fast annotations for sequence list')\n return None, None, None\n res = res.json()\n debug(2, 'got %d total annotations' % len(res['annotations']))\n sequence_terms = {}\n sequence_annotations = {}\n for cseq in sequences:\n sequence_terms[cseq] = []\n sequence_annotations[cseq] = []\n for cseqannotation in res['seqannotations']:\n cpos = cseqannotation[0]\n cseq = sequences[cpos]\n sequence_annotations[cseq].extend(cseqannotation[1])\n for cannotation in cseqannotation[1]:\n for k, v in res['annotations'][str(cannotation)]['parents'].items(\n ):\n if k == 'high' or k == 'all':\n for cterm in v:\n sequence_terms[cseq].append(cterm)\n elif k == 'low':\n for cterm in v:\n sequence_terms[cseq].append('-' + cterm)\n annotations = res['annotations']\n keys = list(annotations.keys())\n for cid in keys:\n annotations[int(cid)] = annotations.pop(cid)\n total_annotations = 0\n for cseq_annotations in sequence_annotations.values():\n total_annotations += len(cseq_annotations)\n debug(2, 'Got %d associations' % total_annotations)\n return sequence_terms, sequence_annotations, annotations\n\n\n<function token>\n<function token>\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations,\n annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\ndef _get_all_term_counts(features, feature_annotations, annotations):\n \"\"\"Get counts of all terms associated with each feature\n\n Parameters\n ----------\n features: list of str\n the sequences to get the terms for\n feature_annotations: dict of {feature (str): annotationIDs (list of int))\n the list of annotations each feature appears in\n annotations: dict of {annotationsid (int): annotation details (dict)}\n all the annotations in the experiment\n\n Returns\n -------\n dict of {feature (str): annotation counts (list of (term(str), count(int)))}\n \"\"\"\n feature_terms = {}\n for cfeature in features:\n annotation_list = [annotations[x] for x in feature_annotations[\n cfeature]]\n feature_terms[cfeature] = get_annotation_term_counts(annotation_list)\n return feature_terms\n\n\n<function token>\n\n\ndef enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n if term_type == 'term':\n debug(2, 'getting all_term counts')\n feature_terms = _get_all_term_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n elif term_type == 'annotation':\n debug(2, 'getting all_annotation string counts')\n feature_terms = _get_all_annotation_string_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n else:\n debug(8, 'strange term_type encountered: %s' % term_type)\n all_terms_set = set()\n for cterms in feature_terms.values():\n for cterm, ccount in cterms:\n all_terms_set.add(cterm)\n debug(2, 'found %d terms associated with all sequences (%d)' % (len(\n all_terms_set), len(all_seqs)))\n debug(2, 'getting seqs1 feature array')\n feature_array, term_list = _get_term_features(seqs1, feature_terms)\n debug(2, 'getting seqs2 feature array')\n bg_array, term_list = _get_term_features(seqs2, feature_terms)\n debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape,\n feature_array.shape))\n all_feature_array = np.hstack([feature_array, bg_array])\n labels = np.zeros(all_feature_array.shape[1])\n labels[:feature_array.shape[1]] = 1\n debug(2, 'starting dsfdr for enrichment')\n keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff',\n transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr')\n keep = np.where(keep)[0]\n if len(keep) == 0:\n debug(2, 'no enriched terms found')\n term_list = np.array(term_list)[keep]\n odif = odif[keep]\n pvals = pvals[keep]\n si = np.argsort(odif)\n odif = odif[si]\n pvals = pvals[si]\n term_list = term_list[si]\n return '', term_list, pvals, odif\n", "<import token>\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\n<function token>\n\n\ndef get_seq_annotations_fast(sequences):\n debug(2, 'get_seq_annotations_fast for %d sequences' % len(sequences))\n rdata = {}\n rdata['sequences'] = sequences\n res = requests.get(get_dbbact_server_address() +\n '/sequences/get_fast_annotations', json=rdata)\n if res.status_code != 200:\n debug(5, 'error getting fast annotations for sequence list')\n return None, None, None\n res = res.json()\n debug(2, 'got %d total annotations' % len(res['annotations']))\n sequence_terms = {}\n sequence_annotations = {}\n for cseq in sequences:\n sequence_terms[cseq] = []\n sequence_annotations[cseq] = []\n for cseqannotation in res['seqannotations']:\n cpos = cseqannotation[0]\n cseq = sequences[cpos]\n sequence_annotations[cseq].extend(cseqannotation[1])\n for cannotation in cseqannotation[1]:\n for k, v in res['annotations'][str(cannotation)]['parents'].items(\n ):\n if k == 'high' or k == 'all':\n for cterm in v:\n sequence_terms[cseq].append(cterm)\n elif k == 'low':\n for cterm in v:\n sequence_terms[cseq].append('-' + cterm)\n annotations = res['annotations']\n keys = list(annotations.keys())\n for cid in keys:\n annotations[int(cid)] = annotations.pop(cid)\n total_annotations = 0\n for cseq_annotations in sequence_annotations.values():\n total_annotations += len(cseq_annotations)\n debug(2, 'Got %d associations' % total_annotations)\n return sequence_terms, sequence_annotations, annotations\n\n\n<function token>\n<function token>\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations,\n annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\ndef _get_all_term_counts(features, feature_annotations, annotations):\n \"\"\"Get counts of all terms associated with each feature\n\n Parameters\n ----------\n features: list of str\n the sequences to get the terms for\n feature_annotations: dict of {feature (str): annotationIDs (list of int))\n the list of annotations each feature appears in\n annotations: dict of {annotationsid (int): annotation details (dict)}\n all the annotations in the experiment\n\n Returns\n -------\n dict of {feature (str): annotation counts (list of (term(str), count(int)))}\n \"\"\"\n feature_terms = {}\n for cfeature in features:\n annotation_list = [annotations[x] for x in feature_annotations[\n cfeature]]\n feature_terms[cfeature] = get_annotation_term_counts(annotation_list)\n return feature_terms\n\n\n<function token>\n\n\ndef enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n if term_type == 'term':\n debug(2, 'getting all_term counts')\n feature_terms = _get_all_term_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n elif term_type == 'annotation':\n debug(2, 'getting all_annotation string counts')\n feature_terms = _get_all_annotation_string_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n else:\n debug(8, 'strange term_type encountered: %s' % term_type)\n all_terms_set = set()\n for cterms in feature_terms.values():\n for cterm, ccount in cterms:\n all_terms_set.add(cterm)\n debug(2, 'found %d terms associated with all sequences (%d)' % (len(\n all_terms_set), len(all_seqs)))\n debug(2, 'getting seqs1 feature array')\n feature_array, term_list = _get_term_features(seqs1, feature_terms)\n debug(2, 'getting seqs2 feature array')\n bg_array, term_list = _get_term_features(seqs2, feature_terms)\n debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape,\n feature_array.shape))\n all_feature_array = np.hstack([feature_array, bg_array])\n labels = np.zeros(all_feature_array.shape[1])\n labels[:feature_array.shape[1]] = 1\n debug(2, 'starting dsfdr for enrichment')\n keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff',\n transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr')\n keep = np.where(keep)[0]\n if len(keep) == 0:\n debug(2, 'no enriched terms found')\n term_list = np.array(term_list)[keep]\n odif = odif[keep]\n pvals = pvals[keep]\n si = np.argsort(odif)\n odif = odif[si]\n pvals = pvals[si]\n term_list = term_list[si]\n return '', term_list, pvals, odif\n", "<import token>\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\n<function token>\n\n\ndef get_seq_annotations_fast(sequences):\n debug(2, 'get_seq_annotations_fast for %d sequences' % len(sequences))\n rdata = {}\n rdata['sequences'] = sequences\n res = requests.get(get_dbbact_server_address() +\n '/sequences/get_fast_annotations', json=rdata)\n if res.status_code != 200:\n debug(5, 'error getting fast annotations for sequence list')\n return None, None, None\n res = res.json()\n debug(2, 'got %d total annotations' % len(res['annotations']))\n sequence_terms = {}\n sequence_annotations = {}\n for cseq in sequences:\n sequence_terms[cseq] = []\n sequence_annotations[cseq] = []\n for cseqannotation in res['seqannotations']:\n cpos = cseqannotation[0]\n cseq = sequences[cpos]\n sequence_annotations[cseq].extend(cseqannotation[1])\n for cannotation in cseqannotation[1]:\n for k, v in res['annotations'][str(cannotation)]['parents'].items(\n ):\n if k == 'high' or k == 'all':\n for cterm in v:\n sequence_terms[cseq].append(cterm)\n elif k == 'low':\n for cterm in v:\n sequence_terms[cseq].append('-' + cterm)\n annotations = res['annotations']\n keys = list(annotations.keys())\n for cid in keys:\n annotations[int(cid)] = annotations.pop(cid)\n total_annotations = 0\n for cseq_annotations in sequence_annotations.values():\n total_annotations += len(cseq_annotations)\n debug(2, 'Got %d associations' % total_annotations)\n return sequence_terms, sequence_annotations, annotations\n\n\n<function token>\n<function token>\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations,\n annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\n<function token>\n<function token>\n\n\ndef enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n if term_type == 'term':\n debug(2, 'getting all_term counts')\n feature_terms = _get_all_term_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n elif term_type == 'annotation':\n debug(2, 'getting all_annotation string counts')\n feature_terms = _get_all_annotation_string_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n else:\n debug(8, 'strange term_type encountered: %s' % term_type)\n all_terms_set = set()\n for cterms in feature_terms.values():\n for cterm, ccount in cterms:\n all_terms_set.add(cterm)\n debug(2, 'found %d terms associated with all sequences (%d)' % (len(\n all_terms_set), len(all_seqs)))\n debug(2, 'getting seqs1 feature array')\n feature_array, term_list = _get_term_features(seqs1, feature_terms)\n debug(2, 'getting seqs2 feature array')\n bg_array, term_list = _get_term_features(seqs2, feature_terms)\n debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape,\n feature_array.shape))\n all_feature_array = np.hstack([feature_array, bg_array])\n labels = np.zeros(all_feature_array.shape[1])\n labels[:feature_array.shape[1]] = 1\n debug(2, 'starting dsfdr for enrichment')\n keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff',\n transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr')\n keep = np.where(keep)[0]\n if len(keep) == 0:\n debug(2, 'no enriched terms found')\n term_list = np.array(term_list)[keep]\n odif = odif[keep]\n pvals = pvals[keep]\n si = np.argsort(odif)\n odif = odif[si]\n pvals = pvals[si]\n term_list = term_list[si]\n return '', term_list, pvals, odif\n", "<import token>\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations,\n annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\n<function token>\n<function token>\n\n\ndef enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n if term_type == 'term':\n debug(2, 'getting all_term counts')\n feature_terms = _get_all_term_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n elif term_type == 'annotation':\n debug(2, 'getting all_annotation string counts')\n feature_terms = _get_all_annotation_string_counts(all_seqs, info[\n 'sequence_annotations'], info['annotations'])\n else:\n debug(8, 'strange term_type encountered: %s' % term_type)\n all_terms_set = set()\n for cterms in feature_terms.values():\n for cterm, ccount in cterms:\n all_terms_set.add(cterm)\n debug(2, 'found %d terms associated with all sequences (%d)' % (len(\n all_terms_set), len(all_seqs)))\n debug(2, 'getting seqs1 feature array')\n feature_array, term_list = _get_term_features(seqs1, feature_terms)\n debug(2, 'getting seqs2 feature array')\n bg_array, term_list = _get_term_features(seqs2, feature_terms)\n debug(2, 'bgarray: %s, feature_array: %s' % (bg_array.shape,\n feature_array.shape))\n all_feature_array = np.hstack([feature_array, bg_array])\n labels = np.zeros(all_feature_array.shape[1])\n labels[:feature_array.shape[1]] = 1\n debug(2, 'starting dsfdr for enrichment')\n keep, odif, pvals = dsfdr(all_feature_array, labels, method='meandiff',\n transform_type=None, alpha=0.1, numperm=1000, fdr_method='dsfdr')\n keep = np.where(keep)[0]\n if len(keep) == 0:\n debug(2, 'no enriched terms found')\n term_list = np.array(term_list)[keep]\n odif = odif[keep]\n pvals = pvals[keep]\n si = np.argsort(odif)\n odif = odif[si]\n pvals = pvals[si]\n term_list = term_list[si]\n return '', term_list, pvals, odif\n", "<import token>\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef _get_all_annotation_string_counts(features, sequence_annotations,\n annotations):\n feature_annotations = {}\n for cseq, annotations_list in sequence_annotations.items():\n if cseq not in features:\n continue\n newdesc = []\n for cannotation in annotations_list:\n cdesc = getannotationstrings2(annotations[cannotation])\n newdesc.append((cdesc, 1))\n feature_annotations[cseq] = newdesc\n return feature_annotations\n\n\n<function token>\n<function token>\n<function token>\n", "<import token>\n\n\ndef calour_enrichment(seqs1, seqs2, term_type='term'):\n \"\"\"\n Do dbbact term and annotation enrichment analysis for 2 lists of sequences (comparing first to second list of sequences)\n\n Parameters\n ----------\n seqs1:list of str\n first set of sequences (ACGT)\n seqs1:list of str\n second set of sequences (ACGT)\n term_type : str (optional)\n type of the term to analyze for enrichment. can be:\n \"term\" : analyze the terms per annotation (not including parent terms)\n \"annotation\" : analyze the annotations associated with each sequence\n\n Returns\n -------\n err : str\n empty if ok, otherwise the error encountered\n term_list : list of str\n the terms which are enriched\n pvals : list of float\n the p-value for each term\n odif : list of float\n the effect size for each term\n \"\"\"\n import calour as ca\n db = ca.database._get_database_class('dbbact')\n np.random.seed(2018)\n all_seqs = set(seqs1).union(set(seqs2))\n seqs2 = list(all_seqs - set(seqs1))\n if len(seqs2) == 0:\n return (\n 'No sequences remaining in background fasta after removing the sequences of interest'\n , None, None, None)\n all_seqs = list(all_seqs)\n info = {}\n info['sequence_terms'], info['sequence_annotations'], info['annotations'\n ] = get_seq_annotations_fast(all_seqs)\n terms_df, resmat, features_df = db.db.term_enrichment(seqs1, seqs2,\n info['annotations'], info['sequence_annotations'], term_type=term_type)\n print(terms_df)\n return '', terms_df['feature'].values, terms_df['qval'], terms_df['odif']\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,314
975fc65f08368d59cb67e33f676f97842c7cec40
# importing files from spy_details import spy from start_chat import start_chat from spy_detail import spy_detail # program starts from here print("***************\n welcome!!!!.... \n***************") proceed = 1 while proceed: # checking while user want to proceed with default user or not and taking action according to it proceed = raw_input("\nwant to proceed with default user (y/n)") if proceed.lower() == 'y': proceed = 0 start_chat(spy) elif proceed.lower() == 'n': spy = spy_detail() proceed = 0 start_chat(spy) else: print "\n!!!!!!!!!!!!!!!\nENTER CAREFULLY\n!!!!!!!!!!!!!!!"
[ "# importing files\nfrom spy_details import spy\nfrom start_chat import start_chat\nfrom spy_detail import spy_detail\n\n# program starts from here\nprint(\"***************\\n welcome!!!!.... \\n***************\")\n\nproceed = 1\nwhile proceed:\n # checking while user want to proceed with default user or not and taking action according to it\n proceed = raw_input(\"\\nwant to proceed with default user (y/n)\")\n if proceed.lower() == 'y':\n proceed = 0\n start_chat(spy)\n\n elif proceed.lower() == 'n':\n spy = spy_detail()\n proceed = 0\n start_chat(spy)\n else:\n print \"\\n!!!!!!!!!!!!!!!\\nENTER CAREFULLY\\n!!!!!!!!!!!!!!!\"\n" ]
true
98,315
e13a47b45a00337ccf71a2e5bd7103e998839628
from django.apps import AppConfig class UsersConfig(AppConfig): name = 'users' verbose_name = '书城用户管理' verbose_plural = verbose_name
[ "from django.apps import AppConfig\n\n\nclass UsersConfig(AppConfig):\n name = 'users'\n verbose_name = '书城用户管理'\n verbose_plural = verbose_name\n", "<import token>\n\n\nclass UsersConfig(AppConfig):\n name = 'users'\n verbose_name = '书城用户管理'\n verbose_plural = verbose_name\n", "<import token>\n\n\nclass UsersConfig(AppConfig):\n <assignment token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
98,316
5340e044a97f9734e923212fcd2bb9a0a9d81dd9
from __future__ import print_function import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from googleapiclient.http import BatchHttpRequest from pprint import pprint from datetime import datetime import time import itertools import pandas as pd import logging import os def get_creds(): """ Authenticates the user either by existing pickle token, or generate new one // TODO add instruction on how to get the credentials.json :return: creds """ # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/gmail.readonly'] creds = None dir_pre = '../secrets' # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. logging.debug(f"searching for creds in path: {os.getcwd()}") if os.path.exists(os.path.join(dir_pre, 'token.pickle')): with open(os.path.join(dir_pre, 'token.pickle'), 'rb') as token: creds = pickle.load(token) logging.info('opening token.pickle') # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: logging.info('token expired, refreshing token') creds.refresh(Request()) else: logging.info('token not found, re authenticating ') flow = InstalledAppFlow.from_client_secrets_file(os.path.join(dir_pre, 'credentials.json'), SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open(os.path.join(dir_pre, 'token.pickle'), 'wb') as token: pickle.dump(creds, token) return creds def list_user_labels(service): """ :param service: List all labels the user has, default + custom """ logging.info('getting labels') labels = service.users().labels().list(userId='me').execute() label_list = [label['name'] for label in labels['labels']] return label_list def list_email_ids_by_label(service, label, max_results=500): """ :param service: :param label: :param max_results: :return: """ email_ids = set() next_page_token = '' try: while True: response = service.users().messages().list(userId='me', labelIds=label, maxResults=max_results, pageToken=next_page_token).execute() # extract id for msg_id in response['messages']: email_ids.add(msg_id['id']) logging.debug(f"total message ids: {len(email_ids)}") if 'nextPageToken' in response: print('next page token:', response['nextPageToken']) next_page_token = response['nextPageToken'] else: break # uncomment for testing cap 500 # break except: print('cannot get emails with this label', label) return email_ids def list_user_info(service): """ list basic user info :param service: :return: """ profile = service.users().getProfile(userId='me').execute() return profile
[ "from __future__ import print_function\nimport pickle\nimport os.path\nfrom googleapiclient.discovery import build\nfrom google_auth_oauthlib.flow import InstalledAppFlow\nfrom google.auth.transport.requests import Request\nfrom googleapiclient.http import BatchHttpRequest\nfrom pprint import pprint\nfrom datetime import datetime\nimport time\nimport itertools\nimport pandas as pd\nimport logging\nimport os\n\n\ndef get_creds():\n \"\"\"\n Authenticates the user either by existing pickle token, or generate new one\n // TODO add instruction on how to get the credentials.json\n :return: creds\n \"\"\"\n # If modifying these scopes, delete the file token.pickle.\n SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']\n creds = None\n dir_pre = '../secrets'\n # The file token.pickle stores the user's access and refresh tokens, and is\n # created automatically when the authorization flow completes for the first\n # time.\n logging.debug(f\"searching for creds in path: {os.getcwd()}\")\n if os.path.exists(os.path.join(dir_pre, 'token.pickle')):\n with open(os.path.join(dir_pre, 'token.pickle'), 'rb') as token:\n creds = pickle.load(token)\n logging.info('opening token.pickle')\n # If there are no (valid) credentials available, let the user log in.\n if not creds or not creds.valid:\n if creds and creds.expired and creds.refresh_token:\n logging.info('token expired, refreshing token')\n creds.refresh(Request())\n else:\n logging.info('token not found, re authenticating ')\n flow = InstalledAppFlow.from_client_secrets_file(os.path.join(dir_pre, 'credentials.json'), SCOPES)\n creds = flow.run_local_server(port=0)\n # Save the credentials for the next run\n with open(os.path.join(dir_pre, 'token.pickle'), 'wb') as token:\n pickle.dump(creds, token)\n\n return creds\n\n\ndef list_user_labels(service):\n \"\"\"\n :param service:\n List all labels the user has, default + custom\n \"\"\"\n logging.info('getting labels')\n labels = service.users().labels().list(userId='me').execute()\n label_list = [label['name'] for label in labels['labels']]\n\n return label_list\n\n\ndef list_email_ids_by_label(service, label, max_results=500):\n \"\"\"\n :param service:\n :param label:\n :param max_results:\n :return:\n \"\"\"\n\n email_ids = set()\n next_page_token = ''\n\n try:\n while True:\n response = service.users().messages().list(userId='me', labelIds=label, maxResults=max_results,\n pageToken=next_page_token).execute()\n # extract id\n for msg_id in response['messages']:\n email_ids.add(msg_id['id'])\n logging.debug(f\"total message ids: {len(email_ids)}\")\n\n if 'nextPageToken' in response:\n print('next page token:', response['nextPageToken'])\n next_page_token = response['nextPageToken']\n else:\n break\n # uncomment for testing cap 500\n # break\n except:\n print('cannot get emails with this label', label)\n return email_ids\n\ndef list_user_info(service):\n \"\"\"\n list basic user info\n :param service:\n :return:\n \"\"\"\n profile = service.users().getProfile(userId='me').execute()\n return profile\n", "from __future__ import print_function\nimport pickle\nimport os.path\nfrom googleapiclient.discovery import build\nfrom google_auth_oauthlib.flow import InstalledAppFlow\nfrom google.auth.transport.requests import Request\nfrom googleapiclient.http import BatchHttpRequest\nfrom pprint import pprint\nfrom datetime import datetime\nimport time\nimport itertools\nimport pandas as pd\nimport logging\nimport os\n\n\ndef get_creds():\n \"\"\"\n Authenticates the user either by existing pickle token, or generate new one\n // TODO add instruction on how to get the credentials.json\n :return: creds\n \"\"\"\n SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']\n creds = None\n dir_pre = '../secrets'\n logging.debug(f'searching for creds in path: {os.getcwd()}')\n if os.path.exists(os.path.join(dir_pre, 'token.pickle')):\n with open(os.path.join(dir_pre, 'token.pickle'), 'rb') as token:\n creds = pickle.load(token)\n logging.info('opening token.pickle')\n if not creds or not creds.valid:\n if creds and creds.expired and creds.refresh_token:\n logging.info('token expired, refreshing token')\n creds.refresh(Request())\n else:\n logging.info('token not found, re authenticating ')\n flow = InstalledAppFlow.from_client_secrets_file(os.path.join(\n dir_pre, 'credentials.json'), SCOPES)\n creds = flow.run_local_server(port=0)\n with open(os.path.join(dir_pre, 'token.pickle'), 'wb') as token:\n pickle.dump(creds, token)\n return creds\n\n\ndef list_user_labels(service):\n \"\"\"\n :param service:\n List all labels the user has, default + custom\n \"\"\"\n logging.info('getting labels')\n labels = service.users().labels().list(userId='me').execute()\n label_list = [label['name'] for label in labels['labels']]\n return label_list\n\n\ndef list_email_ids_by_label(service, label, max_results=500):\n \"\"\"\n :param service:\n :param label:\n :param max_results:\n :return:\n \"\"\"\n email_ids = set()\n next_page_token = ''\n try:\n while True:\n response = service.users().messages().list(userId='me',\n labelIds=label, maxResults=max_results, pageToken=\n next_page_token).execute()\n for msg_id in response['messages']:\n email_ids.add(msg_id['id'])\n logging.debug(f'total message ids: {len(email_ids)}')\n if 'nextPageToken' in response:\n print('next page token:', response['nextPageToken'])\n next_page_token = response['nextPageToken']\n else:\n break\n except:\n print('cannot get emails with this label', label)\n return email_ids\n\n\ndef list_user_info(service):\n \"\"\"\n list basic user info\n :param service:\n :return:\n \"\"\"\n profile = service.users().getProfile(userId='me').execute()\n return profile\n", "<import token>\n\n\ndef get_creds():\n \"\"\"\n Authenticates the user either by existing pickle token, or generate new one\n // TODO add instruction on how to get the credentials.json\n :return: creds\n \"\"\"\n SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']\n creds = None\n dir_pre = '../secrets'\n logging.debug(f'searching for creds in path: {os.getcwd()}')\n if os.path.exists(os.path.join(dir_pre, 'token.pickle')):\n with open(os.path.join(dir_pre, 'token.pickle'), 'rb') as token:\n creds = pickle.load(token)\n logging.info('opening token.pickle')\n if not creds or not creds.valid:\n if creds and creds.expired and creds.refresh_token:\n logging.info('token expired, refreshing token')\n creds.refresh(Request())\n else:\n logging.info('token not found, re authenticating ')\n flow = InstalledAppFlow.from_client_secrets_file(os.path.join(\n dir_pre, 'credentials.json'), SCOPES)\n creds = flow.run_local_server(port=0)\n with open(os.path.join(dir_pre, 'token.pickle'), 'wb') as token:\n pickle.dump(creds, token)\n return creds\n\n\ndef list_user_labels(service):\n \"\"\"\n :param service:\n List all labels the user has, default + custom\n \"\"\"\n logging.info('getting labels')\n labels = service.users().labels().list(userId='me').execute()\n label_list = [label['name'] for label in labels['labels']]\n return label_list\n\n\ndef list_email_ids_by_label(service, label, max_results=500):\n \"\"\"\n :param service:\n :param label:\n :param max_results:\n :return:\n \"\"\"\n email_ids = set()\n next_page_token = ''\n try:\n while True:\n response = service.users().messages().list(userId='me',\n labelIds=label, maxResults=max_results, pageToken=\n next_page_token).execute()\n for msg_id in response['messages']:\n email_ids.add(msg_id['id'])\n logging.debug(f'total message ids: {len(email_ids)}')\n if 'nextPageToken' in response:\n print('next page token:', response['nextPageToken'])\n next_page_token = response['nextPageToken']\n else:\n break\n except:\n print('cannot get emails with this label', label)\n return email_ids\n\n\ndef list_user_info(service):\n \"\"\"\n list basic user info\n :param service:\n :return:\n \"\"\"\n profile = service.users().getProfile(userId='me').execute()\n return profile\n", "<import token>\n\n\ndef get_creds():\n \"\"\"\n Authenticates the user either by existing pickle token, or generate new one\n // TODO add instruction on how to get the credentials.json\n :return: creds\n \"\"\"\n SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']\n creds = None\n dir_pre = '../secrets'\n logging.debug(f'searching for creds in path: {os.getcwd()}')\n if os.path.exists(os.path.join(dir_pre, 'token.pickle')):\n with open(os.path.join(dir_pre, 'token.pickle'), 'rb') as token:\n creds = pickle.load(token)\n logging.info('opening token.pickle')\n if not creds or not creds.valid:\n if creds and creds.expired and creds.refresh_token:\n logging.info('token expired, refreshing token')\n creds.refresh(Request())\n else:\n logging.info('token not found, re authenticating ')\n flow = InstalledAppFlow.from_client_secrets_file(os.path.join(\n dir_pre, 'credentials.json'), SCOPES)\n creds = flow.run_local_server(port=0)\n with open(os.path.join(dir_pre, 'token.pickle'), 'wb') as token:\n pickle.dump(creds, token)\n return creds\n\n\ndef list_user_labels(service):\n \"\"\"\n :param service:\n List all labels the user has, default + custom\n \"\"\"\n logging.info('getting labels')\n labels = service.users().labels().list(userId='me').execute()\n label_list = [label['name'] for label in labels['labels']]\n return label_list\n\n\n<function token>\n\n\ndef list_user_info(service):\n \"\"\"\n list basic user info\n :param service:\n :return:\n \"\"\"\n profile = service.users().getProfile(userId='me').execute()\n return profile\n", "<import token>\n\n\ndef get_creds():\n \"\"\"\n Authenticates the user either by existing pickle token, or generate new one\n // TODO add instruction on how to get the credentials.json\n :return: creds\n \"\"\"\n SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']\n creds = None\n dir_pre = '../secrets'\n logging.debug(f'searching for creds in path: {os.getcwd()}')\n if os.path.exists(os.path.join(dir_pre, 'token.pickle')):\n with open(os.path.join(dir_pre, 'token.pickle'), 'rb') as token:\n creds = pickle.load(token)\n logging.info('opening token.pickle')\n if not creds or not creds.valid:\n if creds and creds.expired and creds.refresh_token:\n logging.info('token expired, refreshing token')\n creds.refresh(Request())\n else:\n logging.info('token not found, re authenticating ')\n flow = InstalledAppFlow.from_client_secrets_file(os.path.join(\n dir_pre, 'credentials.json'), SCOPES)\n creds = flow.run_local_server(port=0)\n with open(os.path.join(dir_pre, 'token.pickle'), 'wb') as token:\n pickle.dump(creds, token)\n return creds\n\n\n<function token>\n<function token>\n\n\ndef list_user_info(service):\n \"\"\"\n list basic user info\n :param service:\n :return:\n \"\"\"\n profile = service.users().getProfile(userId='me').execute()\n return profile\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef list_user_info(service):\n \"\"\"\n list basic user info\n :param service:\n :return:\n \"\"\"\n profile = service.users().getProfile(userId='me').execute()\n return profile\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,317
d179834a2600b2489769f981943d0a71704bba27
import numpy as np import pandas from scipy import signal from scipy.stats import kurtosis from statsmodels.robust.scale import mad import pywt import pybursts import matplotlib.pyplot as plt class Kurtoburst(object): """ Class to detect the peak using the kurtoburst method.""" def __init__(self,filename): self.filename = filename self.raw_data = pandas.read_csv(self.filename) #self.colname = ' AU12_r' #sself.colname = ' AU06_r' #self.colname = ' AU07_r' self.colname = ' AU02_r' self.time = np.array(self.raw_data[' timestamp'][::10]) self.input = np.array(self.raw_data[self.colname][::10]) self.len = len(self.input) self.nwin = 51 self.wave_type = 'sym3' self.TK = 0.5 self.TT = 0.15 self.burst_s = 2 # burst s parameter self.burst_gamma = 0.05 # burst gamma parameters def remove_baseline(self): """Remove the base line using a Savitzky-Golay method""" print(" \t Apply Savitzky-Golay filter \t %d" %self.nwin) base_savgol = signal.savgol_filter(self.input, self.nwin, 1) self.input_nobase = self.input - base_savgol def denoise(self): """denoise the data using the 2stage kurtosis denoising""" #make sure the data has a len dividible by 2^2 self.len_swt = self.len while not (self.len_swt/4).is_integer(): self.len_swt -= 1 inp = self.input_nobase[:self.len_swt] self.wave = pywt.Wavelet(self.wave_type) nLevel = pywt.swt_max_level(self.len_swt) self.coeffs = pywt.swt(inp,self.wave,level=2) print(" \t Denoise STW coefficients \t %1.2f %1.2f" %(self.TK,self.TT)) (cA2, cD2), (cA1, cD1) = self.coeffs # rolling kurtosis k2 = self._rolling_kts(cD2,self.nwin) k1 = self._rolling_kts(cD1,self.nwin) # thresholding cD2[k2<self.TK] = 0 cD1[k1<self.TK] = 0 cA2[k2<self.TK] = 0 cA1[k1<self.TK] = 0 # universal threshold sigma_roll_1 = mad(cD1[cD1!=0])*np.ones(self.len_swt) uthresh_roll_1 = self.TT * sigma_roll_1 * np.sqrt(2*np.log(self.len_swt)) cD1[abs(cD1)<uthresh_roll_1] = 0 # universal threshold sigma_roll_2 = mad(cD2[cD2!=0])*np.ones(self.len_swt) uthresh_roll_2 = self.TT * sigma_roll_2 * np.sqrt(2*np.log(self.len_swt)) cD2[abs(cD2)<uthresh_roll_2] = 0 # final threshold cA1[cD1 == 0] = 0 cA2[cD2 == 0] = 0 self.denoised_coeffs = [(cA1,cD1),(cA2,cD2)] # denoise the data #self.input_denoised = self._iswt(self.denoised_coeffs,self.wave) self.input_denoised = pywt.iswt(self.denoised_coeffs,self.wave) def get_burst(self): """Detect bursts of activity.""" print('\t Detect bursts \t\t\t %d %1.2f' %(self.burst_s,self.burst_gamma)) # compute the cum sum of the positive values of the datan ... _tmp = np.copy(self.input_denoised) _tmp[_tmp<0] = 0 _tmp += 1E-12 self.input_cummulative = np.cumsum(_tmp) # decimation ... self.T_cummulative = np.copy(self.time[0:-1:10]) self.input_cummulative = self.input_cummulative[0:-1:10] # burst calculation self.burst = pybursts.kleinberg(self.input_cummulative,s=int(self.burst_s),gamma=self.burst_gamma) Tbursts = [] for b in self.burst: if b[0] == 1: ti = self.T_cummulative[np.argwhere(self.input_cummulative==b[1])[0]] tf = self.T_cummulative[np.argwhere(self.input_cummulative==b[2])[0]] Tbursts.append([ti[0],tf[0]]) ######################################## ## detect the peaks ######################################## x_peak_bursts = [] y_peak_bursts = [] print(Tbursts) if len(Tbursts)>0: for i in range(len(Tbursts)-1): ind_init = np.argmin(abs(self.time-Tbursts[i][1])) ind_final = np.argmin(abs(self.time-Tbursts[i+1][0])) x_peak_bursts.append( self.time[ ind_init + np.argmax(self.input_denoised[ind_init:ind_final])] ) y_peak_bursts.append( self.input[ind_init + np.argmax(self.input_denoised[ind_init:ind_final])] ) else: print('\t no peaks found in the bursts') self.xpeak = x_peak_bursts self.ypeak = y_peak_bursts @staticmethod def _rolling_kts(y,N): """Compute the rolling kurtosis.""" # number of points nPTS,N2 = len(y), int(N/2) # define the out kts = np.zeros(nPTS) # for all points comopute snr for i in range(nPTS): s,e = i-N2, i+N2 if s<0: s = 0 if s > nPTS-1: s = nPTS-1 win = np.ones(len(y[s:e])) kts[i] = kurtosis(win*y[s:e]) return kts def plot(self): plt.plot(self.time,self.input) #plt.plot(self.time,self.input_nobase-1,linewidth=0.5) plt.scatter(self.xpeak,self.ypeak,c='orange') ypeak = np.zeros_like(self.time) for p in self.xpeak: ypeak[self.time==p] = 0.5 plt.plot(self.time,ypeak-1,c='orange') #plt.plot(self.T_cummulative,self.input_cummulative) #plt.plot(self.time[:self.len_swt],self.input_denoised,c='black') plt.show() if __name__ == '__main__': filename = '003_VL.csv' kb = Kurtoburst(filename) kb.remove_baseline() kb.denoise() tb = kb.get_burst() kb.plot() print(tb)
[ "import numpy as np\nimport pandas\n\nfrom scipy import signal\nfrom scipy.stats import kurtosis\n\nfrom statsmodels.robust.scale import mad\n\nimport pywt\nimport pybursts\nimport matplotlib.pyplot as plt\n\nclass Kurtoburst(object):\n \"\"\" Class to detect the peak using the kurtoburst method.\"\"\"\n\n def __init__(self,filename):\n\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n #self.colname = ' AU12_r'\n #sself.colname = ' AU06_r'\n #self.colname = ' AU07_r'\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n\n self.burst_s = 2 # burst s parameter\n self.burst_gamma = 0.05 # burst gamma parameters\n\n def remove_baseline(self):\n \"\"\"Remove the base line using a Savitzky-Golay method\"\"\"\n\n print(\" \\t Apply Savitzky-Golay filter \\t %d\" %self.nwin)\n base_savgol = signal.savgol_filter(self.input, self.nwin, 1)\n self.input_nobase = self.input - base_savgol\n\n def denoise(self):\n \"\"\"denoise the data using the 2stage kurtosis denoising\"\"\"\n\n #make sure the data has a len dividible by 2^2\n self.len_swt = self.len\n while not (self.len_swt/4).is_integer():\n self.len_swt -= 1\n\n inp = self.input_nobase[:self.len_swt]\n self.wave = pywt.Wavelet(self.wave_type)\n nLevel = pywt.swt_max_level(self.len_swt)\n self.coeffs = pywt.swt(inp,self.wave,level=2)\n\n print(\" \\t Denoise STW coefficients \\t %1.2f %1.2f\" %(self.TK,self.TT))\n (cA2, cD2), (cA1, cD1) = self.coeffs\n\n # rolling kurtosis\n k2 = self._rolling_kts(cD2,self.nwin)\n k1 = self._rolling_kts(cD1,self.nwin)\n\n # thresholding\n cD2[k2<self.TK] = 0\n cD1[k1<self.TK] = 0\n\n cA2[k2<self.TK] = 0\n cA1[k1<self.TK] = 0\n\n # universal threshold\n sigma_roll_1 = mad(cD1[cD1!=0])*np.ones(self.len_swt)\n uthresh_roll_1 = self.TT * sigma_roll_1 * np.sqrt(2*np.log(self.len_swt))\n cD1[abs(cD1)<uthresh_roll_1] = 0\n\n # universal threshold\n sigma_roll_2 = mad(cD2[cD2!=0])*np.ones(self.len_swt)\n uthresh_roll_2 = self.TT * sigma_roll_2 * np.sqrt(2*np.log(self.len_swt))\n cD2[abs(cD2)<uthresh_roll_2] = 0\n\n # final threshold\n cA1[cD1 == 0] = 0\n cA2[cD2 == 0] = 0\n self.denoised_coeffs = [(cA1,cD1),(cA2,cD2)]\n\n # denoise the data\n #self.input_denoised = self._iswt(self.denoised_coeffs,self.wave)\n self.input_denoised = pywt.iswt(self.denoised_coeffs,self.wave)\n\n def get_burst(self):\n \"\"\"Detect bursts of activity.\"\"\"\n\n print('\\t Detect bursts \\t\\t\\t %d %1.2f' %(self.burst_s,self.burst_gamma))\n\n # compute the cum sum of the positive values of the datan ...\n _tmp = np.copy(self.input_denoised)\n _tmp[_tmp<0] = 0\n _tmp += 1E-12\n self.input_cummulative = np.cumsum(_tmp)\n\n # decimation ...\n self.T_cummulative = np.copy(self.time[0:-1:10])\n self.input_cummulative = self.input_cummulative[0:-1:10]\n\n # burst calculation\n self.burst = pybursts.kleinberg(self.input_cummulative,s=int(self.burst_s),gamma=self.burst_gamma)\n\n\n Tbursts = []\n for b in self.burst:\n if b[0] == 1:\n ti = self.T_cummulative[np.argwhere(self.input_cummulative==b[1])[0]]\n tf = self.T_cummulative[np.argwhere(self.input_cummulative==b[2])[0]]\n Tbursts.append([ti[0],tf[0]])\n\n ########################################\n ## detect the peaks\n ########################################\n x_peak_bursts = []\n y_peak_bursts = []\n print(Tbursts)\n if len(Tbursts)>0:\n for i in range(len(Tbursts)-1):\n ind_init = np.argmin(abs(self.time-Tbursts[i][1]))\n ind_final = np.argmin(abs(self.time-Tbursts[i+1][0]))\n\n x_peak_bursts.append( self.time[ ind_init + np.argmax(self.input_denoised[ind_init:ind_final])] )\n y_peak_bursts.append( self.input[ind_init + np.argmax(self.input_denoised[ind_init:ind_final])] )\n else:\n print('\\t no peaks found in the bursts')\n\n self.xpeak = x_peak_bursts\n self.ypeak = y_peak_bursts\n\n\n\n @staticmethod\n def _rolling_kts(y,N):\n \"\"\"Compute the rolling kurtosis.\"\"\"\n\n # number of points\n nPTS,N2 = len(y), int(N/2)\n\n # define the out\n kts = np.zeros(nPTS)\n\n # for all points comopute snr\n for i in range(nPTS):\n s,e = i-N2, i+N2\n if s<0:\n s = 0\n if s > nPTS-1:\n s = nPTS-1\n win = np.ones(len(y[s:e]))\n kts[i] = kurtosis(win*y[s:e])\n return kts\n\n def plot(self):\n plt.plot(self.time,self.input)\n #plt.plot(self.time,self.input_nobase-1,linewidth=0.5)\n plt.scatter(self.xpeak,self.ypeak,c='orange')\n ypeak = np.zeros_like(self.time)\n for p in self.xpeak:\n ypeak[self.time==p] = 0.5\n plt.plot(self.time,ypeak-1,c='orange')\n #plt.plot(self.T_cummulative,self.input_cummulative)\n #plt.plot(self.time[:self.len_swt],self.input_denoised,c='black')\n plt.show()\n\n\n\n\nif __name__ == '__main__':\n filename = '003_VL.csv'\n kb = Kurtoburst(filename)\n kb.remove_baseline()\n kb.denoise()\n tb = kb.get_burst()\n kb.plot()\n print(tb)", "import numpy as np\nimport pandas\nfrom scipy import signal\nfrom scipy.stats import kurtosis\nfrom statsmodels.robust.scale import mad\nimport pywt\nimport pybursts\nimport matplotlib.pyplot as plt\n\n\nclass Kurtoburst(object):\n \"\"\" Class to detect the peak using the kurtoburst method.\"\"\"\n\n def __init__(self, filename):\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n self.burst_s = 2\n self.burst_gamma = 0.05\n\n def remove_baseline(self):\n \"\"\"Remove the base line using a Savitzky-Golay method\"\"\"\n print(' \\t Apply Savitzky-Golay filter \\t %d' % self.nwin)\n base_savgol = signal.savgol_filter(self.input, self.nwin, 1)\n self.input_nobase = self.input - base_savgol\n\n def denoise(self):\n \"\"\"denoise the data using the 2stage kurtosis denoising\"\"\"\n self.len_swt = self.len\n while not (self.len_swt / 4).is_integer():\n self.len_swt -= 1\n inp = self.input_nobase[:self.len_swt]\n self.wave = pywt.Wavelet(self.wave_type)\n nLevel = pywt.swt_max_level(self.len_swt)\n self.coeffs = pywt.swt(inp, self.wave, level=2)\n print(' \\t Denoise STW coefficients \\t %1.2f %1.2f' % (self.TK,\n self.TT))\n (cA2, cD2), (cA1, cD1) = self.coeffs\n k2 = self._rolling_kts(cD2, self.nwin)\n k1 = self._rolling_kts(cD1, self.nwin)\n cD2[k2 < self.TK] = 0\n cD1[k1 < self.TK] = 0\n cA2[k2 < self.TK] = 0\n cA1[k1 < self.TK] = 0\n sigma_roll_1 = mad(cD1[cD1 != 0]) * np.ones(self.len_swt)\n uthresh_roll_1 = self.TT * sigma_roll_1 * np.sqrt(2 * np.log(self.\n len_swt))\n cD1[abs(cD1) < uthresh_roll_1] = 0\n sigma_roll_2 = mad(cD2[cD2 != 0]) * np.ones(self.len_swt)\n uthresh_roll_2 = self.TT * sigma_roll_2 * np.sqrt(2 * np.log(self.\n len_swt))\n cD2[abs(cD2) < uthresh_roll_2] = 0\n cA1[cD1 == 0] = 0\n cA2[cD2 == 0] = 0\n self.denoised_coeffs = [(cA1, cD1), (cA2, cD2)]\n self.input_denoised = pywt.iswt(self.denoised_coeffs, self.wave)\n\n def get_burst(self):\n \"\"\"Detect bursts of activity.\"\"\"\n print('\\t Detect bursts \\t\\t\\t %d %1.2f' % (self.burst_s, self.\n burst_gamma))\n _tmp = np.copy(self.input_denoised)\n _tmp[_tmp < 0] = 0\n _tmp += 1e-12\n self.input_cummulative = np.cumsum(_tmp)\n self.T_cummulative = np.copy(self.time[0:-1:10])\n self.input_cummulative = self.input_cummulative[0:-1:10]\n self.burst = pybursts.kleinberg(self.input_cummulative, s=int(self.\n burst_s), gamma=self.burst_gamma)\n Tbursts = []\n for b in self.burst:\n if b[0] == 1:\n ti = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[1])[0]]\n tf = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[2])[0]]\n Tbursts.append([ti[0], tf[0]])\n x_peak_bursts = []\n y_peak_bursts = []\n print(Tbursts)\n if len(Tbursts) > 0:\n for i in range(len(Tbursts) - 1):\n ind_init = np.argmin(abs(self.time - Tbursts[i][1]))\n ind_final = np.argmin(abs(self.time - Tbursts[i + 1][0]))\n x_peak_bursts.append(self.time[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n y_peak_bursts.append(self.input[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n else:\n print('\\t no peaks found in the bursts')\n self.xpeak = x_peak_bursts\n self.ypeak = y_peak_bursts\n\n @staticmethod\n def _rolling_kts(y, N):\n \"\"\"Compute the rolling kurtosis.\"\"\"\n nPTS, N2 = len(y), int(N / 2)\n kts = np.zeros(nPTS)\n for i in range(nPTS):\n s, e = i - N2, i + N2\n if s < 0:\n s = 0\n if s > nPTS - 1:\n s = nPTS - 1\n win = np.ones(len(y[s:e]))\n kts[i] = kurtosis(win * y[s:e])\n return kts\n\n def plot(self):\n plt.plot(self.time, self.input)\n plt.scatter(self.xpeak, self.ypeak, c='orange')\n ypeak = np.zeros_like(self.time)\n for p in self.xpeak:\n ypeak[self.time == p] = 0.5\n plt.plot(self.time, ypeak - 1, c='orange')\n plt.show()\n\n\nif __name__ == '__main__':\n filename = '003_VL.csv'\n kb = Kurtoburst(filename)\n kb.remove_baseline()\n kb.denoise()\n tb = kb.get_burst()\n kb.plot()\n print(tb)\n", "<import token>\n\n\nclass Kurtoburst(object):\n \"\"\" Class to detect the peak using the kurtoburst method.\"\"\"\n\n def __init__(self, filename):\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n self.burst_s = 2\n self.burst_gamma = 0.05\n\n def remove_baseline(self):\n \"\"\"Remove the base line using a Savitzky-Golay method\"\"\"\n print(' \\t Apply Savitzky-Golay filter \\t %d' % self.nwin)\n base_savgol = signal.savgol_filter(self.input, self.nwin, 1)\n self.input_nobase = self.input - base_savgol\n\n def denoise(self):\n \"\"\"denoise the data using the 2stage kurtosis denoising\"\"\"\n self.len_swt = self.len\n while not (self.len_swt / 4).is_integer():\n self.len_swt -= 1\n inp = self.input_nobase[:self.len_swt]\n self.wave = pywt.Wavelet(self.wave_type)\n nLevel = pywt.swt_max_level(self.len_swt)\n self.coeffs = pywt.swt(inp, self.wave, level=2)\n print(' \\t Denoise STW coefficients \\t %1.2f %1.2f' % (self.TK,\n self.TT))\n (cA2, cD2), (cA1, cD1) = self.coeffs\n k2 = self._rolling_kts(cD2, self.nwin)\n k1 = self._rolling_kts(cD1, self.nwin)\n cD2[k2 < self.TK] = 0\n cD1[k1 < self.TK] = 0\n cA2[k2 < self.TK] = 0\n cA1[k1 < self.TK] = 0\n sigma_roll_1 = mad(cD1[cD1 != 0]) * np.ones(self.len_swt)\n uthresh_roll_1 = self.TT * sigma_roll_1 * np.sqrt(2 * np.log(self.\n len_swt))\n cD1[abs(cD1) < uthresh_roll_1] = 0\n sigma_roll_2 = mad(cD2[cD2 != 0]) * np.ones(self.len_swt)\n uthresh_roll_2 = self.TT * sigma_roll_2 * np.sqrt(2 * np.log(self.\n len_swt))\n cD2[abs(cD2) < uthresh_roll_2] = 0\n cA1[cD1 == 0] = 0\n cA2[cD2 == 0] = 0\n self.denoised_coeffs = [(cA1, cD1), (cA2, cD2)]\n self.input_denoised = pywt.iswt(self.denoised_coeffs, self.wave)\n\n def get_burst(self):\n \"\"\"Detect bursts of activity.\"\"\"\n print('\\t Detect bursts \\t\\t\\t %d %1.2f' % (self.burst_s, self.\n burst_gamma))\n _tmp = np.copy(self.input_denoised)\n _tmp[_tmp < 0] = 0\n _tmp += 1e-12\n self.input_cummulative = np.cumsum(_tmp)\n self.T_cummulative = np.copy(self.time[0:-1:10])\n self.input_cummulative = self.input_cummulative[0:-1:10]\n self.burst = pybursts.kleinberg(self.input_cummulative, s=int(self.\n burst_s), gamma=self.burst_gamma)\n Tbursts = []\n for b in self.burst:\n if b[0] == 1:\n ti = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[1])[0]]\n tf = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[2])[0]]\n Tbursts.append([ti[0], tf[0]])\n x_peak_bursts = []\n y_peak_bursts = []\n print(Tbursts)\n if len(Tbursts) > 0:\n for i in range(len(Tbursts) - 1):\n ind_init = np.argmin(abs(self.time - Tbursts[i][1]))\n ind_final = np.argmin(abs(self.time - Tbursts[i + 1][0]))\n x_peak_bursts.append(self.time[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n y_peak_bursts.append(self.input[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n else:\n print('\\t no peaks found in the bursts')\n self.xpeak = x_peak_bursts\n self.ypeak = y_peak_bursts\n\n @staticmethod\n def _rolling_kts(y, N):\n \"\"\"Compute the rolling kurtosis.\"\"\"\n nPTS, N2 = len(y), int(N / 2)\n kts = np.zeros(nPTS)\n for i in range(nPTS):\n s, e = i - N2, i + N2\n if s < 0:\n s = 0\n if s > nPTS - 1:\n s = nPTS - 1\n win = np.ones(len(y[s:e]))\n kts[i] = kurtosis(win * y[s:e])\n return kts\n\n def plot(self):\n plt.plot(self.time, self.input)\n plt.scatter(self.xpeak, self.ypeak, c='orange')\n ypeak = np.zeros_like(self.time)\n for p in self.xpeak:\n ypeak[self.time == p] = 0.5\n plt.plot(self.time, ypeak - 1, c='orange')\n plt.show()\n\n\nif __name__ == '__main__':\n filename = '003_VL.csv'\n kb = Kurtoburst(filename)\n kb.remove_baseline()\n kb.denoise()\n tb = kb.get_burst()\n kb.plot()\n print(tb)\n", "<import token>\n\n\nclass Kurtoburst(object):\n \"\"\" Class to detect the peak using the kurtoburst method.\"\"\"\n\n def __init__(self, filename):\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n self.burst_s = 2\n self.burst_gamma = 0.05\n\n def remove_baseline(self):\n \"\"\"Remove the base line using a Savitzky-Golay method\"\"\"\n print(' \\t Apply Savitzky-Golay filter \\t %d' % self.nwin)\n base_savgol = signal.savgol_filter(self.input, self.nwin, 1)\n self.input_nobase = self.input - base_savgol\n\n def denoise(self):\n \"\"\"denoise the data using the 2stage kurtosis denoising\"\"\"\n self.len_swt = self.len\n while not (self.len_swt / 4).is_integer():\n self.len_swt -= 1\n inp = self.input_nobase[:self.len_swt]\n self.wave = pywt.Wavelet(self.wave_type)\n nLevel = pywt.swt_max_level(self.len_swt)\n self.coeffs = pywt.swt(inp, self.wave, level=2)\n print(' \\t Denoise STW coefficients \\t %1.2f %1.2f' % (self.TK,\n self.TT))\n (cA2, cD2), (cA1, cD1) = self.coeffs\n k2 = self._rolling_kts(cD2, self.nwin)\n k1 = self._rolling_kts(cD1, self.nwin)\n cD2[k2 < self.TK] = 0\n cD1[k1 < self.TK] = 0\n cA2[k2 < self.TK] = 0\n cA1[k1 < self.TK] = 0\n sigma_roll_1 = mad(cD1[cD1 != 0]) * np.ones(self.len_swt)\n uthresh_roll_1 = self.TT * sigma_roll_1 * np.sqrt(2 * np.log(self.\n len_swt))\n cD1[abs(cD1) < uthresh_roll_1] = 0\n sigma_roll_2 = mad(cD2[cD2 != 0]) * np.ones(self.len_swt)\n uthresh_roll_2 = self.TT * sigma_roll_2 * np.sqrt(2 * np.log(self.\n len_swt))\n cD2[abs(cD2) < uthresh_roll_2] = 0\n cA1[cD1 == 0] = 0\n cA2[cD2 == 0] = 0\n self.denoised_coeffs = [(cA1, cD1), (cA2, cD2)]\n self.input_denoised = pywt.iswt(self.denoised_coeffs, self.wave)\n\n def get_burst(self):\n \"\"\"Detect bursts of activity.\"\"\"\n print('\\t Detect bursts \\t\\t\\t %d %1.2f' % (self.burst_s, self.\n burst_gamma))\n _tmp = np.copy(self.input_denoised)\n _tmp[_tmp < 0] = 0\n _tmp += 1e-12\n self.input_cummulative = np.cumsum(_tmp)\n self.T_cummulative = np.copy(self.time[0:-1:10])\n self.input_cummulative = self.input_cummulative[0:-1:10]\n self.burst = pybursts.kleinberg(self.input_cummulative, s=int(self.\n burst_s), gamma=self.burst_gamma)\n Tbursts = []\n for b in self.burst:\n if b[0] == 1:\n ti = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[1])[0]]\n tf = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[2])[0]]\n Tbursts.append([ti[0], tf[0]])\n x_peak_bursts = []\n y_peak_bursts = []\n print(Tbursts)\n if len(Tbursts) > 0:\n for i in range(len(Tbursts) - 1):\n ind_init = np.argmin(abs(self.time - Tbursts[i][1]))\n ind_final = np.argmin(abs(self.time - Tbursts[i + 1][0]))\n x_peak_bursts.append(self.time[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n y_peak_bursts.append(self.input[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n else:\n print('\\t no peaks found in the bursts')\n self.xpeak = x_peak_bursts\n self.ypeak = y_peak_bursts\n\n @staticmethod\n def _rolling_kts(y, N):\n \"\"\"Compute the rolling kurtosis.\"\"\"\n nPTS, N2 = len(y), int(N / 2)\n kts = np.zeros(nPTS)\n for i in range(nPTS):\n s, e = i - N2, i + N2\n if s < 0:\n s = 0\n if s > nPTS - 1:\n s = nPTS - 1\n win = np.ones(len(y[s:e]))\n kts[i] = kurtosis(win * y[s:e])\n return kts\n\n def plot(self):\n plt.plot(self.time, self.input)\n plt.scatter(self.xpeak, self.ypeak, c='orange')\n ypeak = np.zeros_like(self.time)\n for p in self.xpeak:\n ypeak[self.time == p] = 0.5\n plt.plot(self.time, ypeak - 1, c='orange')\n plt.show()\n\n\n<code token>\n", "<import token>\n\n\nclass Kurtoburst(object):\n <docstring token>\n\n def __init__(self, filename):\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n self.burst_s = 2\n self.burst_gamma = 0.05\n\n def remove_baseline(self):\n \"\"\"Remove the base line using a Savitzky-Golay method\"\"\"\n print(' \\t Apply Savitzky-Golay filter \\t %d' % self.nwin)\n base_savgol = signal.savgol_filter(self.input, self.nwin, 1)\n self.input_nobase = self.input - base_savgol\n\n def denoise(self):\n \"\"\"denoise the data using the 2stage kurtosis denoising\"\"\"\n self.len_swt = self.len\n while not (self.len_swt / 4).is_integer():\n self.len_swt -= 1\n inp = self.input_nobase[:self.len_swt]\n self.wave = pywt.Wavelet(self.wave_type)\n nLevel = pywt.swt_max_level(self.len_swt)\n self.coeffs = pywt.swt(inp, self.wave, level=2)\n print(' \\t Denoise STW coefficients \\t %1.2f %1.2f' % (self.TK,\n self.TT))\n (cA2, cD2), (cA1, cD1) = self.coeffs\n k2 = self._rolling_kts(cD2, self.nwin)\n k1 = self._rolling_kts(cD1, self.nwin)\n cD2[k2 < self.TK] = 0\n cD1[k1 < self.TK] = 0\n cA2[k2 < self.TK] = 0\n cA1[k1 < self.TK] = 0\n sigma_roll_1 = mad(cD1[cD1 != 0]) * np.ones(self.len_swt)\n uthresh_roll_1 = self.TT * sigma_roll_1 * np.sqrt(2 * np.log(self.\n len_swt))\n cD1[abs(cD1) < uthresh_roll_1] = 0\n sigma_roll_2 = mad(cD2[cD2 != 0]) * np.ones(self.len_swt)\n uthresh_roll_2 = self.TT * sigma_roll_2 * np.sqrt(2 * np.log(self.\n len_swt))\n cD2[abs(cD2) < uthresh_roll_2] = 0\n cA1[cD1 == 0] = 0\n cA2[cD2 == 0] = 0\n self.denoised_coeffs = [(cA1, cD1), (cA2, cD2)]\n self.input_denoised = pywt.iswt(self.denoised_coeffs, self.wave)\n\n def get_burst(self):\n \"\"\"Detect bursts of activity.\"\"\"\n print('\\t Detect bursts \\t\\t\\t %d %1.2f' % (self.burst_s, self.\n burst_gamma))\n _tmp = np.copy(self.input_denoised)\n _tmp[_tmp < 0] = 0\n _tmp += 1e-12\n self.input_cummulative = np.cumsum(_tmp)\n self.T_cummulative = np.copy(self.time[0:-1:10])\n self.input_cummulative = self.input_cummulative[0:-1:10]\n self.burst = pybursts.kleinberg(self.input_cummulative, s=int(self.\n burst_s), gamma=self.burst_gamma)\n Tbursts = []\n for b in self.burst:\n if b[0] == 1:\n ti = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[1])[0]]\n tf = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[2])[0]]\n Tbursts.append([ti[0], tf[0]])\n x_peak_bursts = []\n y_peak_bursts = []\n print(Tbursts)\n if len(Tbursts) > 0:\n for i in range(len(Tbursts) - 1):\n ind_init = np.argmin(abs(self.time - Tbursts[i][1]))\n ind_final = np.argmin(abs(self.time - Tbursts[i + 1][0]))\n x_peak_bursts.append(self.time[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n y_peak_bursts.append(self.input[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n else:\n print('\\t no peaks found in the bursts')\n self.xpeak = x_peak_bursts\n self.ypeak = y_peak_bursts\n\n @staticmethod\n def _rolling_kts(y, N):\n \"\"\"Compute the rolling kurtosis.\"\"\"\n nPTS, N2 = len(y), int(N / 2)\n kts = np.zeros(nPTS)\n for i in range(nPTS):\n s, e = i - N2, i + N2\n if s < 0:\n s = 0\n if s > nPTS - 1:\n s = nPTS - 1\n win = np.ones(len(y[s:e]))\n kts[i] = kurtosis(win * y[s:e])\n return kts\n\n def plot(self):\n plt.plot(self.time, self.input)\n plt.scatter(self.xpeak, self.ypeak, c='orange')\n ypeak = np.zeros_like(self.time)\n for p in self.xpeak:\n ypeak[self.time == p] = 0.5\n plt.plot(self.time, ypeak - 1, c='orange')\n plt.show()\n\n\n<code token>\n", "<import token>\n\n\nclass Kurtoburst(object):\n <docstring token>\n\n def __init__(self, filename):\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n self.burst_s = 2\n self.burst_gamma = 0.05\n\n def remove_baseline(self):\n \"\"\"Remove the base line using a Savitzky-Golay method\"\"\"\n print(' \\t Apply Savitzky-Golay filter \\t %d' % self.nwin)\n base_savgol = signal.savgol_filter(self.input, self.nwin, 1)\n self.input_nobase = self.input - base_savgol\n\n def denoise(self):\n \"\"\"denoise the data using the 2stage kurtosis denoising\"\"\"\n self.len_swt = self.len\n while not (self.len_swt / 4).is_integer():\n self.len_swt -= 1\n inp = self.input_nobase[:self.len_swt]\n self.wave = pywt.Wavelet(self.wave_type)\n nLevel = pywt.swt_max_level(self.len_swt)\n self.coeffs = pywt.swt(inp, self.wave, level=2)\n print(' \\t Denoise STW coefficients \\t %1.2f %1.2f' % (self.TK,\n self.TT))\n (cA2, cD2), (cA1, cD1) = self.coeffs\n k2 = self._rolling_kts(cD2, self.nwin)\n k1 = self._rolling_kts(cD1, self.nwin)\n cD2[k2 < self.TK] = 0\n cD1[k1 < self.TK] = 0\n cA2[k2 < self.TK] = 0\n cA1[k1 < self.TK] = 0\n sigma_roll_1 = mad(cD1[cD1 != 0]) * np.ones(self.len_swt)\n uthresh_roll_1 = self.TT * sigma_roll_1 * np.sqrt(2 * np.log(self.\n len_swt))\n cD1[abs(cD1) < uthresh_roll_1] = 0\n sigma_roll_2 = mad(cD2[cD2 != 0]) * np.ones(self.len_swt)\n uthresh_roll_2 = self.TT * sigma_roll_2 * np.sqrt(2 * np.log(self.\n len_swt))\n cD2[abs(cD2) < uthresh_roll_2] = 0\n cA1[cD1 == 0] = 0\n cA2[cD2 == 0] = 0\n self.denoised_coeffs = [(cA1, cD1), (cA2, cD2)]\n self.input_denoised = pywt.iswt(self.denoised_coeffs, self.wave)\n\n def get_burst(self):\n \"\"\"Detect bursts of activity.\"\"\"\n print('\\t Detect bursts \\t\\t\\t %d %1.2f' % (self.burst_s, self.\n burst_gamma))\n _tmp = np.copy(self.input_denoised)\n _tmp[_tmp < 0] = 0\n _tmp += 1e-12\n self.input_cummulative = np.cumsum(_tmp)\n self.T_cummulative = np.copy(self.time[0:-1:10])\n self.input_cummulative = self.input_cummulative[0:-1:10]\n self.burst = pybursts.kleinberg(self.input_cummulative, s=int(self.\n burst_s), gamma=self.burst_gamma)\n Tbursts = []\n for b in self.burst:\n if b[0] == 1:\n ti = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[1])[0]]\n tf = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[2])[0]]\n Tbursts.append([ti[0], tf[0]])\n x_peak_bursts = []\n y_peak_bursts = []\n print(Tbursts)\n if len(Tbursts) > 0:\n for i in range(len(Tbursts) - 1):\n ind_init = np.argmin(abs(self.time - Tbursts[i][1]))\n ind_final = np.argmin(abs(self.time - Tbursts[i + 1][0]))\n x_peak_bursts.append(self.time[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n y_peak_bursts.append(self.input[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n else:\n print('\\t no peaks found in the bursts')\n self.xpeak = x_peak_bursts\n self.ypeak = y_peak_bursts\n <function token>\n\n def plot(self):\n plt.plot(self.time, self.input)\n plt.scatter(self.xpeak, self.ypeak, c='orange')\n ypeak = np.zeros_like(self.time)\n for p in self.xpeak:\n ypeak[self.time == p] = 0.5\n plt.plot(self.time, ypeak - 1, c='orange')\n plt.show()\n\n\n<code token>\n", "<import token>\n\n\nclass Kurtoburst(object):\n <docstring token>\n\n def __init__(self, filename):\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n self.burst_s = 2\n self.burst_gamma = 0.05\n\n def remove_baseline(self):\n \"\"\"Remove the base line using a Savitzky-Golay method\"\"\"\n print(' \\t Apply Savitzky-Golay filter \\t %d' % self.nwin)\n base_savgol = signal.savgol_filter(self.input, self.nwin, 1)\n self.input_nobase = self.input - base_savgol\n\n def denoise(self):\n \"\"\"denoise the data using the 2stage kurtosis denoising\"\"\"\n self.len_swt = self.len\n while not (self.len_swt / 4).is_integer():\n self.len_swt -= 1\n inp = self.input_nobase[:self.len_swt]\n self.wave = pywt.Wavelet(self.wave_type)\n nLevel = pywt.swt_max_level(self.len_swt)\n self.coeffs = pywt.swt(inp, self.wave, level=2)\n print(' \\t Denoise STW coefficients \\t %1.2f %1.2f' % (self.TK,\n self.TT))\n (cA2, cD2), (cA1, cD1) = self.coeffs\n k2 = self._rolling_kts(cD2, self.nwin)\n k1 = self._rolling_kts(cD1, self.nwin)\n cD2[k2 < self.TK] = 0\n cD1[k1 < self.TK] = 0\n cA2[k2 < self.TK] = 0\n cA1[k1 < self.TK] = 0\n sigma_roll_1 = mad(cD1[cD1 != 0]) * np.ones(self.len_swt)\n uthresh_roll_1 = self.TT * sigma_roll_1 * np.sqrt(2 * np.log(self.\n len_swt))\n cD1[abs(cD1) < uthresh_roll_1] = 0\n sigma_roll_2 = mad(cD2[cD2 != 0]) * np.ones(self.len_swt)\n uthresh_roll_2 = self.TT * sigma_roll_2 * np.sqrt(2 * np.log(self.\n len_swt))\n cD2[abs(cD2) < uthresh_roll_2] = 0\n cA1[cD1 == 0] = 0\n cA2[cD2 == 0] = 0\n self.denoised_coeffs = [(cA1, cD1), (cA2, cD2)]\n self.input_denoised = pywt.iswt(self.denoised_coeffs, self.wave)\n\n def get_burst(self):\n \"\"\"Detect bursts of activity.\"\"\"\n print('\\t Detect bursts \\t\\t\\t %d %1.2f' % (self.burst_s, self.\n burst_gamma))\n _tmp = np.copy(self.input_denoised)\n _tmp[_tmp < 0] = 0\n _tmp += 1e-12\n self.input_cummulative = np.cumsum(_tmp)\n self.T_cummulative = np.copy(self.time[0:-1:10])\n self.input_cummulative = self.input_cummulative[0:-1:10]\n self.burst = pybursts.kleinberg(self.input_cummulative, s=int(self.\n burst_s), gamma=self.burst_gamma)\n Tbursts = []\n for b in self.burst:\n if b[0] == 1:\n ti = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[1])[0]]\n tf = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[2])[0]]\n Tbursts.append([ti[0], tf[0]])\n x_peak_bursts = []\n y_peak_bursts = []\n print(Tbursts)\n if len(Tbursts) > 0:\n for i in range(len(Tbursts) - 1):\n ind_init = np.argmin(abs(self.time - Tbursts[i][1]))\n ind_final = np.argmin(abs(self.time - Tbursts[i + 1][0]))\n x_peak_bursts.append(self.time[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n y_peak_bursts.append(self.input[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n else:\n print('\\t no peaks found in the bursts')\n self.xpeak = x_peak_bursts\n self.ypeak = y_peak_bursts\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n\n\nclass Kurtoburst(object):\n <docstring token>\n\n def __init__(self, filename):\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n self.burst_s = 2\n self.burst_gamma = 0.05\n\n def remove_baseline(self):\n \"\"\"Remove the base line using a Savitzky-Golay method\"\"\"\n print(' \\t Apply Savitzky-Golay filter \\t %d' % self.nwin)\n base_savgol = signal.savgol_filter(self.input, self.nwin, 1)\n self.input_nobase = self.input - base_savgol\n <function token>\n\n def get_burst(self):\n \"\"\"Detect bursts of activity.\"\"\"\n print('\\t Detect bursts \\t\\t\\t %d %1.2f' % (self.burst_s, self.\n burst_gamma))\n _tmp = np.copy(self.input_denoised)\n _tmp[_tmp < 0] = 0\n _tmp += 1e-12\n self.input_cummulative = np.cumsum(_tmp)\n self.T_cummulative = np.copy(self.time[0:-1:10])\n self.input_cummulative = self.input_cummulative[0:-1:10]\n self.burst = pybursts.kleinberg(self.input_cummulative, s=int(self.\n burst_s), gamma=self.burst_gamma)\n Tbursts = []\n for b in self.burst:\n if b[0] == 1:\n ti = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[1])[0]]\n tf = self.T_cummulative[np.argwhere(self.input_cummulative ==\n b[2])[0]]\n Tbursts.append([ti[0], tf[0]])\n x_peak_bursts = []\n y_peak_bursts = []\n print(Tbursts)\n if len(Tbursts) > 0:\n for i in range(len(Tbursts) - 1):\n ind_init = np.argmin(abs(self.time - Tbursts[i][1]))\n ind_final = np.argmin(abs(self.time - Tbursts[i + 1][0]))\n x_peak_bursts.append(self.time[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n y_peak_bursts.append(self.input[ind_init + np.argmax(self.\n input_denoised[ind_init:ind_final])])\n else:\n print('\\t no peaks found in the bursts')\n self.xpeak = x_peak_bursts\n self.ypeak = y_peak_bursts\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n\n\nclass Kurtoburst(object):\n <docstring token>\n\n def __init__(self, filename):\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n self.burst_s = 2\n self.burst_gamma = 0.05\n\n def remove_baseline(self):\n \"\"\"Remove the base line using a Savitzky-Golay method\"\"\"\n print(' \\t Apply Savitzky-Golay filter \\t %d' % self.nwin)\n base_savgol = signal.savgol_filter(self.input, self.nwin, 1)\n self.input_nobase = self.input - base_savgol\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n\n\nclass Kurtoburst(object):\n <docstring token>\n\n def __init__(self, filename):\n self.filename = filename\n self.raw_data = pandas.read_csv(self.filename)\n self.colname = ' AU02_r'\n self.time = np.array(self.raw_data[' timestamp'][::10])\n self.input = np.array(self.raw_data[self.colname][::10])\n self.len = len(self.input)\n self.nwin = 51\n self.wave_type = 'sym3'\n self.TK = 0.5\n self.TT = 0.15\n self.burst_s = 2\n self.burst_gamma = 0.05\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n\n\nclass Kurtoburst(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<class token>\n<code token>\n" ]
false
98,318
3103f21a8e33608dd0c8a3a5f9693ff3593ed4b3
import os os.system("python random_walk.py --ZN 50 --HN 10 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_50_HN_10.gif") os.system("python random_walk.py --ZN 10 --HN 50 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_10_HN_50.gif") os.system("python random_walk.py --ZN 50 --HN 50 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_50_HN_50.gif")
[ "import os\n\nos.system(\"python random_walk.py --ZN 50 --HN 10 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_50_HN_10.gif\")\nos.system(\"python random_walk.py --ZN 10 --HN 50 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_10_HN_50.gif\")\nos.system(\"python random_walk.py --ZN 50 --HN 50 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_50_HN_50.gif\")\n", "import os\nos.system(\n 'python random_walk.py --ZN 50 --HN 10 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_50_HN_10.gif'\n )\nos.system(\n 'python random_walk.py --ZN 10 --HN 50 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_10_HN_50.gif'\n )\nos.system(\n 'python random_walk.py --ZN 50 --HN 50 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_50_HN_50.gif'\n )\n", "<import token>\nos.system(\n 'python random_walk.py --ZN 50 --HN 10 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_50_HN_10.gif'\n )\nos.system(\n 'python random_walk.py --ZN 10 --HN 50 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_10_HN_50.gif'\n )\nos.system(\n 'python random_walk.py --ZN 50 --HN 50 --S 200 --g 40 --ZK 0.4 --HI 0.3 --makeplot --savefile movies_KA/RW_ZN_50_HN_50.gif'\n )\n", "<import token>\n<code token>\n" ]
false
98,319
7c7845e49c6f9618442e041650cef38ef81de042
__author__ = 'Dom4n' import os import ftputil import glob import sensitive as s import time import threading def upload(): directory = 'F:/LOGS/html/' os.chdir(directory) nieudane = [] pool_sema = threading.BoundedSemaphore(4) pliki = glob.glob('*.html') if len(pliki) == 0: raise FileNotFoundError('BRAK PLIKOW!!!') tim = time.time() print('FTP -> START') with ftputil.FTPHost(s.ftp_host, s.ftp_login, s.ftp_pass) as ftp_host: for x in pliki: try: isok = ftp_host.upload_if_newer(x, ftp_host.curdir+'/all/'+x) if isok: print('upload pliku: '+x+' zakonczony powodzeniem') else: print('upload pliku: '+x+' NIEUDANY!!!!') nieudane.append(x) except Exception as e: print('nieudane przeslanie pliku: '+x) if len(nieudane) > 0: print('Nieprzeslane pliki:\n'+str(nieudane)) else: print('Wszystkie pliki przeslane!') tim = time.time() - tim print('Czas: '+str(tim)) print('FTP -> KONIEC')
[ "__author__ = 'Dom4n'\n\nimport os\nimport ftputil\nimport glob\nimport sensitive as s\nimport time\nimport threading\n\n\ndef upload():\n directory = 'F:/LOGS/html/'\n os.chdir(directory)\n nieudane = []\n pool_sema = threading.BoundedSemaphore(4)\n\n pliki = glob.glob('*.html')\n if len(pliki) == 0:\n raise FileNotFoundError('BRAK PLIKOW!!!')\n\n tim = time.time()\n print('FTP -> START')\n\n with ftputil.FTPHost(s.ftp_host, s.ftp_login, s.ftp_pass) as ftp_host:\n for x in pliki:\n try:\n isok = ftp_host.upload_if_newer(x, ftp_host.curdir+'/all/'+x)\n if isok:\n print('upload pliku: '+x+' zakonczony powodzeniem')\n else:\n print('upload pliku: '+x+' NIEUDANY!!!!')\n nieudane.append(x)\n except Exception as e:\n print('nieudane przeslanie pliku: '+x)\n\n if len(nieudane) > 0:\n print('Nieprzeslane pliki:\\n'+str(nieudane))\n else:\n print('Wszystkie pliki przeslane!')\n\n tim = time.time() - tim\n print('Czas: '+str(tim))\n print('FTP -> KONIEC')", "__author__ = 'Dom4n'\nimport os\nimport ftputil\nimport glob\nimport sensitive as s\nimport time\nimport threading\n\n\ndef upload():\n directory = 'F:/LOGS/html/'\n os.chdir(directory)\n nieudane = []\n pool_sema = threading.BoundedSemaphore(4)\n pliki = glob.glob('*.html')\n if len(pliki) == 0:\n raise FileNotFoundError('BRAK PLIKOW!!!')\n tim = time.time()\n print('FTP -> START')\n with ftputil.FTPHost(s.ftp_host, s.ftp_login, s.ftp_pass) as ftp_host:\n for x in pliki:\n try:\n isok = ftp_host.upload_if_newer(x, ftp_host.curdir +\n '/all/' + x)\n if isok:\n print('upload pliku: ' + x + ' zakonczony powodzeniem')\n else:\n print('upload pliku: ' + x + ' NIEUDANY!!!!')\n nieudane.append(x)\n except Exception as e:\n print('nieudane przeslanie pliku: ' + x)\n if len(nieudane) > 0:\n print('Nieprzeslane pliki:\\n' + str(nieudane))\n else:\n print('Wszystkie pliki przeslane!')\n tim = time.time() - tim\n print('Czas: ' + str(tim))\n print('FTP -> KONIEC')\n", "__author__ = 'Dom4n'\n<import token>\n\n\ndef upload():\n directory = 'F:/LOGS/html/'\n os.chdir(directory)\n nieudane = []\n pool_sema = threading.BoundedSemaphore(4)\n pliki = glob.glob('*.html')\n if len(pliki) == 0:\n raise FileNotFoundError('BRAK PLIKOW!!!')\n tim = time.time()\n print('FTP -> START')\n with ftputil.FTPHost(s.ftp_host, s.ftp_login, s.ftp_pass) as ftp_host:\n for x in pliki:\n try:\n isok = ftp_host.upload_if_newer(x, ftp_host.curdir +\n '/all/' + x)\n if isok:\n print('upload pliku: ' + x + ' zakonczony powodzeniem')\n else:\n print('upload pliku: ' + x + ' NIEUDANY!!!!')\n nieudane.append(x)\n except Exception as e:\n print('nieudane przeslanie pliku: ' + x)\n if len(nieudane) > 0:\n print('Nieprzeslane pliki:\\n' + str(nieudane))\n else:\n print('Wszystkie pliki przeslane!')\n tim = time.time() - tim\n print('Czas: ' + str(tim))\n print('FTP -> KONIEC')\n", "<assignment token>\n<import token>\n\n\ndef upload():\n directory = 'F:/LOGS/html/'\n os.chdir(directory)\n nieudane = []\n pool_sema = threading.BoundedSemaphore(4)\n pliki = glob.glob('*.html')\n if len(pliki) == 0:\n raise FileNotFoundError('BRAK PLIKOW!!!')\n tim = time.time()\n print('FTP -> START')\n with ftputil.FTPHost(s.ftp_host, s.ftp_login, s.ftp_pass) as ftp_host:\n for x in pliki:\n try:\n isok = ftp_host.upload_if_newer(x, ftp_host.curdir +\n '/all/' + x)\n if isok:\n print('upload pliku: ' + x + ' zakonczony powodzeniem')\n else:\n print('upload pliku: ' + x + ' NIEUDANY!!!!')\n nieudane.append(x)\n except Exception as e:\n print('nieudane przeslanie pliku: ' + x)\n if len(nieudane) > 0:\n print('Nieprzeslane pliki:\\n' + str(nieudane))\n else:\n print('Wszystkie pliki przeslane!')\n tim = time.time() - tim\n print('Czas: ' + str(tim))\n print('FTP -> KONIEC')\n", "<assignment token>\n<import token>\n<function token>\n" ]
false
98,320
fb20e3f4bc237c777ce45523b0ca1439e956df4c
from django.urls import path from . import views app_name = "slackapp" urlpatterns = [ #path('', views.slackmessage, name = "slackapp"), path('reminders/', views.get_reminders, name = "reminders"), path('reminder/create/', views.create_reminder, name = "reminder_create"), path('reminder/<str:id>/delete/', views.delete_reminder, name = "reminder_delete"), path('users/', views.get_users, name='users'), path('user/by_email/<str:email>/',views.user_by_email, name='user_by_email') #path('slackappp/', views.SlackView.as_view(), name="slackapp_"), #path('misreminderss/', views.MisReminders.as_view(), name="misreminderss") ]
[ "from django.urls import path\nfrom . import views\n\napp_name = \"slackapp\"\nurlpatterns = [\n #path('', views.slackmessage, name = \"slackapp\"),\n path('reminders/', views.get_reminders, name = \"reminders\"),\n path('reminder/create/', views.create_reminder, name = \"reminder_create\"),\n path('reminder/<str:id>/delete/', views.delete_reminder, name = \"reminder_delete\"),\n\n path('users/', views.get_users, name='users'),\n path('user/by_email/<str:email>/',views.user_by_email, name='user_by_email')\n \n #path('slackappp/', views.SlackView.as_view(), name=\"slackapp_\"),\n #path('misreminderss/', views.MisReminders.as_view(), name=\"misreminderss\")\n]", "from django.urls import path\nfrom . import views\napp_name = 'slackapp'\nurlpatterns = [path('reminders/', views.get_reminders, name='reminders'),\n path('reminder/create/', views.create_reminder, name='reminder_create'),\n path('reminder/<str:id>/delete/', views.delete_reminder, name=\n 'reminder_delete'), path('users/', views.get_users, name='users'), path\n ('user/by_email/<str:email>/', views.user_by_email, name='user_by_email')]\n", "<import token>\napp_name = 'slackapp'\nurlpatterns = [path('reminders/', views.get_reminders, name='reminders'),\n path('reminder/create/', views.create_reminder, name='reminder_create'),\n path('reminder/<str:id>/delete/', views.delete_reminder, name=\n 'reminder_delete'), path('users/', views.get_users, name='users'), path\n ('user/by_email/<str:email>/', views.user_by_email, name='user_by_email')]\n", "<import token>\n<assignment token>\n" ]
false
98,321
916e845454c378b9df5534b2e61b1dd7fe5566cc
import time from deu_ruim.domain.entities.story import * from deu_ruim.domain.value.location import * class StoryService(): def __init__(self, story_repository): self.story_repository = story_repository def create_story(self, title, description, lat, lon, category, tags=[]): story = Story(None, title, description, Location(lat, lon), category, tags) return self.story_repository.persist_story(story) def search_story(self, tags, time_max=None): return self.story_repository.search_stories(set(tags), time_max or time.time()) def disqualify_story(self, story_id): story = self.story_repository.find_story(story_id) if story != None: story.disqualify() self.story_repository.persist_story(story) return story return None def get_stories(self, time): return self.story_repository.get_stories(time) def get_all_stories(self): return self.story_repository.get_all_stories()
[ "import time\nfrom deu_ruim.domain.entities.story import *\nfrom deu_ruim.domain.value.location import *\n\nclass StoryService():\n def __init__(self, story_repository):\n self.story_repository = story_repository\n\n def create_story(self, title, description, lat, lon, category, tags=[]):\n story = Story(None, title, description, Location(lat, lon), category, tags)\n return self.story_repository.persist_story(story)\n\n def search_story(self, tags, time_max=None):\n return self.story_repository.search_stories(set(tags), time_max or time.time())\n \n def disqualify_story(self, story_id):\n story = self.story_repository.find_story(story_id)\n if story != None:\n story.disqualify()\n self.story_repository.persist_story(story)\n return story\n return None\n\n def get_stories(self, time):\n return self.story_repository.get_stories(time)\n\n def get_all_stories(self):\n return self.story_repository.get_all_stories()\n", "import time\nfrom deu_ruim.domain.entities.story import *\nfrom deu_ruim.domain.value.location import *\n\n\nclass StoryService:\n\n def __init__(self, story_repository):\n self.story_repository = story_repository\n\n def create_story(self, title, description, lat, lon, category, tags=[]):\n story = Story(None, title, description, Location(lat, lon),\n category, tags)\n return self.story_repository.persist_story(story)\n\n def search_story(self, tags, time_max=None):\n return self.story_repository.search_stories(set(tags), time_max or\n time.time())\n\n def disqualify_story(self, story_id):\n story = self.story_repository.find_story(story_id)\n if story != None:\n story.disqualify()\n self.story_repository.persist_story(story)\n return story\n return None\n\n def get_stories(self, time):\n return self.story_repository.get_stories(time)\n\n def get_all_stories(self):\n return self.story_repository.get_all_stories()\n", "<import token>\n\n\nclass StoryService:\n\n def __init__(self, story_repository):\n self.story_repository = story_repository\n\n def create_story(self, title, description, lat, lon, category, tags=[]):\n story = Story(None, title, description, Location(lat, lon),\n category, tags)\n return self.story_repository.persist_story(story)\n\n def search_story(self, tags, time_max=None):\n return self.story_repository.search_stories(set(tags), time_max or\n time.time())\n\n def disqualify_story(self, story_id):\n story = self.story_repository.find_story(story_id)\n if story != None:\n story.disqualify()\n self.story_repository.persist_story(story)\n return story\n return None\n\n def get_stories(self, time):\n return self.story_repository.get_stories(time)\n\n def get_all_stories(self):\n return self.story_repository.get_all_stories()\n", "<import token>\n\n\nclass StoryService:\n\n def __init__(self, story_repository):\n self.story_repository = story_repository\n <function token>\n\n def search_story(self, tags, time_max=None):\n return self.story_repository.search_stories(set(tags), time_max or\n time.time())\n\n def disqualify_story(self, story_id):\n story = self.story_repository.find_story(story_id)\n if story != None:\n story.disqualify()\n self.story_repository.persist_story(story)\n return story\n return None\n\n def get_stories(self, time):\n return self.story_repository.get_stories(time)\n\n def get_all_stories(self):\n return self.story_repository.get_all_stories()\n", "<import token>\n\n\nclass StoryService:\n <function token>\n <function token>\n\n def search_story(self, tags, time_max=None):\n return self.story_repository.search_stories(set(tags), time_max or\n time.time())\n\n def disqualify_story(self, story_id):\n story = self.story_repository.find_story(story_id)\n if story != None:\n story.disqualify()\n self.story_repository.persist_story(story)\n return story\n return None\n\n def get_stories(self, time):\n return self.story_repository.get_stories(time)\n\n def get_all_stories(self):\n return self.story_repository.get_all_stories()\n", "<import token>\n\n\nclass StoryService:\n <function token>\n <function token>\n <function token>\n\n def disqualify_story(self, story_id):\n story = self.story_repository.find_story(story_id)\n if story != None:\n story.disqualify()\n self.story_repository.persist_story(story)\n return story\n return None\n\n def get_stories(self, time):\n return self.story_repository.get_stories(time)\n\n def get_all_stories(self):\n return self.story_repository.get_all_stories()\n", "<import token>\n\n\nclass StoryService:\n <function token>\n <function token>\n <function token>\n\n def disqualify_story(self, story_id):\n story = self.story_repository.find_story(story_id)\n if story != None:\n story.disqualify()\n self.story_repository.persist_story(story)\n return story\n return None\n\n def get_stories(self, time):\n return self.story_repository.get_stories(time)\n <function token>\n", "<import token>\n\n\nclass StoryService:\n <function token>\n <function token>\n <function token>\n\n def disqualify_story(self, story_id):\n story = self.story_repository.find_story(story_id)\n if story != None:\n story.disqualify()\n self.story_repository.persist_story(story)\n return story\n return None\n <function token>\n <function token>\n", "<import token>\n\n\nclass StoryService:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,322
52dca1edcbb03d0c265e47bed04f825e91f4cf20
from .random_sampler import random_sampler
[ "from .random_sampler import random_sampler\n", "<import token>\n" ]
false
98,323
443bc435274aaa95cacd165d030fbd8bcc5c81dd
#encoding=utf8 from sklearn.ensemble import RandomForestClassifier from model.base_model import Model from sklearn.cross_validation import cross_val_predict from sklearn.metrics import classification_report import logging class RandomForestClassification(Model): def __init__(self): Model.__init__(self) self.model = RandomForestClassifier(n_jobs=-1, random_state=2016, verbose=1) def fit(self, x_train, y_train, need_transform_label=False): param_grid = {'n_estimators': [100, 200]} self.model = self.grid_search_fit_(self.model, param_grid, x_train, y_train) def predict(self, x_test, need_transform_label=False): return self.model.predict(x_test)
[ "#encoding=utf8\n\nfrom sklearn.ensemble import RandomForestClassifier\nfrom model.base_model import Model\nfrom sklearn.cross_validation import cross_val_predict\nfrom sklearn.metrics import classification_report\nimport logging\n\n\n\nclass RandomForestClassification(Model):\n\n def __init__(self):\n Model.__init__(self)\n self.model = RandomForestClassifier(n_jobs=-1, random_state=2016, verbose=1)\n\n def fit(self, x_train, y_train, need_transform_label=False):\n param_grid = {'n_estimators': [100, 200]}\n self.model = self.grid_search_fit_(self.model, param_grid, x_train, y_train)\n\n def predict(self, x_test, need_transform_label=False):\n return self.model.predict(x_test)", "from sklearn.ensemble import RandomForestClassifier\nfrom model.base_model import Model\nfrom sklearn.cross_validation import cross_val_predict\nfrom sklearn.metrics import classification_report\nimport logging\n\n\nclass RandomForestClassification(Model):\n\n def __init__(self):\n Model.__init__(self)\n self.model = RandomForestClassifier(n_jobs=-1, random_state=2016,\n verbose=1)\n\n def fit(self, x_train, y_train, need_transform_label=False):\n param_grid = {'n_estimators': [100, 200]}\n self.model = self.grid_search_fit_(self.model, param_grid, x_train,\n y_train)\n\n def predict(self, x_test, need_transform_label=False):\n return self.model.predict(x_test)\n", "<import token>\n\n\nclass RandomForestClassification(Model):\n\n def __init__(self):\n Model.__init__(self)\n self.model = RandomForestClassifier(n_jobs=-1, random_state=2016,\n verbose=1)\n\n def fit(self, x_train, y_train, need_transform_label=False):\n param_grid = {'n_estimators': [100, 200]}\n self.model = self.grid_search_fit_(self.model, param_grid, x_train,\n y_train)\n\n def predict(self, x_test, need_transform_label=False):\n return self.model.predict(x_test)\n", "<import token>\n\n\nclass RandomForestClassification(Model):\n <function token>\n\n def fit(self, x_train, y_train, need_transform_label=False):\n param_grid = {'n_estimators': [100, 200]}\n self.model = self.grid_search_fit_(self.model, param_grid, x_train,\n y_train)\n\n def predict(self, x_test, need_transform_label=False):\n return self.model.predict(x_test)\n", "<import token>\n\n\nclass RandomForestClassification(Model):\n <function token>\n\n def fit(self, x_train, y_train, need_transform_label=False):\n param_grid = {'n_estimators': [100, 200]}\n self.model = self.grid_search_fit_(self.model, param_grid, x_train,\n y_train)\n <function token>\n", "<import token>\n\n\nclass RandomForestClassification(Model):\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,324
c02b365cce48770a0789adf15b346f7744de2e6f
def solution(strings, n): return sorted(sorted(strings), key=lambda x: x[n]) # return sorted(strings, key=lambda x: x[n]+x[:]) # 이 방법도 있음. strings = ["sun", "bed", "car"] strings1 = ["abce", "abcd", "cdx"] n = 1 print(solution(strings, n)) n1 = 2 print(solution(strings1, n1))
[ "def solution(strings, n):\n return sorted(sorted(strings), key=lambda x: x[n])\n # return sorted(strings, key=lambda x: x[n]+x[:]) # 이 방법도 있음.\n\n\nstrings = [\"sun\", \"bed\", \"car\"]\nstrings1 = [\"abce\", \"abcd\", \"cdx\"]\n\nn = 1\nprint(solution(strings, n))\nn1 = 2\nprint(solution(strings1, n1))\n", "def solution(strings, n):\n return sorted(sorted(strings), key=lambda x: x[n])\n\n\nstrings = ['sun', 'bed', 'car']\nstrings1 = ['abce', 'abcd', 'cdx']\nn = 1\nprint(solution(strings, n))\nn1 = 2\nprint(solution(strings1, n1))\n", "def solution(strings, n):\n return sorted(sorted(strings), key=lambda x: x[n])\n\n\n<assignment token>\nprint(solution(strings, n))\n<assignment token>\nprint(solution(strings1, n1))\n", "def solution(strings, n):\n return sorted(sorted(strings), key=lambda x: x[n])\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,325
0a4d4b6af406d2a520645e030ecee308594e1a4d
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2017-07-17 17:10 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Dashboard', '0016_auto_20170717_1216'), ] operations = [ migrations.RenameField( model_name='change', old_name='denial_exp', new_name='customer_deny_exp', ), migrations.AddField( model_name='change', name='internal_deny_exp', field=models.CharField(max_length=1000, null=True), ), ]
[ "# -*- coding: utf-8 -*-\n# Generated by Django 1.9.1 on 2017-07-17 17:10\nfrom __future__ import unicode_literals\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('Dashboard', '0016_auto_20170717_1216'),\n ]\n\n operations = [\n migrations.RenameField(\n model_name='change',\n old_name='denial_exp',\n new_name='customer_deny_exp',\n ),\n migrations.AddField(\n model_name='change',\n name='internal_deny_exp',\n field=models.CharField(max_length=1000, null=True),\n ),\n ]\n", "from __future__ import unicode_literals\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('Dashboard', '0016_auto_20170717_1216')]\n operations = [migrations.RenameField(model_name='change', old_name=\n 'denial_exp', new_name='customer_deny_exp'), migrations.AddField(\n model_name='change', name='internal_deny_exp', field=models.\n CharField(max_length=1000, null=True))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('Dashboard', '0016_auto_20170717_1216')]\n operations = [migrations.RenameField(model_name='change', old_name=\n 'denial_exp', new_name='customer_deny_exp'), migrations.AddField(\n model_name='change', name='internal_deny_exp', field=models.\n CharField(max_length=1000, null=True))]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
98,326
f1724358841e1913a3a601b4a2f25f056e34f683
import requests print(requests.get("https://bbs.csdn.net/forums/ios").text)
[ "import requests\n\nprint(requests.get(\"https://bbs.csdn.net/forums/ios\").text)", "import requests\nprint(requests.get('https://bbs.csdn.net/forums/ios').text)\n", "<import token>\nprint(requests.get('https://bbs.csdn.net/forums/ios').text)\n", "<import token>\n<code token>\n" ]
false
98,327
675fa5291c6aecebba0f85c6e1f173a93f786954
import sys import time for r in range(0,20): time.sleep(15) print("doorStayedOpen", flush = True) time.sleep(5) print("doorClosed", flush = True)
[ "import sys\nimport time\n\n\nfor r in range(0,20):\n time.sleep(15)\n print(\"doorStayedOpen\", flush = True)\n time.sleep(5)\n print(\"doorClosed\", flush = True)\n\n\n \n\n", "import sys\nimport time\nfor r in range(0, 20):\n time.sleep(15)\n print('doorStayedOpen', flush=True)\n time.sleep(5)\n print('doorClosed', flush=True)\n", "<import token>\nfor r in range(0, 20):\n time.sleep(15)\n print('doorStayedOpen', flush=True)\n time.sleep(5)\n print('doorClosed', flush=True)\n", "<import token>\n<code token>\n" ]
false
98,328
cce35afc9f5fdc2197acdff8c23d89fac37ce954
#! /usr/bin/env python from geometry_msgs.msg import PoseStamped import rospy def wait_for_time(): """Wait for simulated time to begin. """ while rospy.Time().now().to_sec() == 0: pass class ArTagReader(object): def __init__(self): self.markers = [] def callback(self, msg): self.markers = msg.markers def main(): # wait_for_time() start = PoseStamped() start.header.frame_id = 'base_link' start.pose.position.x = 0.5 start.pose.position.y = 0.5 start.pose.position.z = 0.75 reader = ArTagReader() print reader sub = rospy.Subscriber(reader.callback) # Subscribe to AR tag poses, use reader.callback while len(reader.markers) == 0: rospy.sleep(0.1) for marker in reader.markers: print reader.markers # # error = arm.move_to_pose(???) # if error is None: # rospy.loginfo('Moved to marker {}'.format(marker.id)) # return # else: # rospy.logwarn('Failed to move to marker {}'.format(marker.id)) # rospy.logerr('Failed to move to any markers!') if __name__ == '__main__': main()
[ "#! /usr/bin/env python\n\nfrom geometry_msgs.msg import PoseStamped\nimport rospy\n\n\ndef wait_for_time():\n \"\"\"Wait for simulated time to begin.\n \"\"\"\n while rospy.Time().now().to_sec() == 0:\n pass\n\n\nclass ArTagReader(object):\n def __init__(self):\n self.markers = []\n\n def callback(self, msg):\n self.markers = msg.markers\n\n\ndef main():\n # wait_for_time()\n\n start = PoseStamped()\n start.header.frame_id = 'base_link'\n start.pose.position.x = 0.5\n start.pose.position.y = 0.5\n start.pose.position.z = 0.75\n\n \n reader = ArTagReader()\n print reader\n sub = rospy.Subscriber(reader.callback) # Subscribe to AR tag poses, use reader.callback\n \n while len(reader.markers) == 0:\n rospy.sleep(0.1)\n \n for marker in reader.markers:\n\n print reader.markers\n # # error = arm.move_to_pose(???)\n # if error is None:\n # rospy.loginfo('Moved to marker {}'.format(marker.id))\n # return\n # else:\n # rospy.logwarn('Failed to move to marker {}'.format(marker.id))\n # rospy.logerr('Failed to move to any markers!')\n\n\nif __name__ == '__main__':\n main()" ]
true
98,329
9dcfe569da7a913d1350ce50dc3c73ab0a178fac
import shutil import luigi from qgreenland.constants.paths import FETCH_DATASETS_DIR, PRIVATE_ARCHIVE_DIR from qgreenland.models.config.asset import ( CmrAsset, HttpAsset, ManualAsset, RepositoryAsset, ) from qgreenland.util.cmr import get_cmr_granule from qgreenland.util.command import interpolate_args, run_qgr_command from qgreenland.util.config.config import get_config from qgreenland.util.edl import create_earthdata_authenticated_session as make_session from qgreenland.util.layer import datasource_dirname from qgreenland.util.luigi.target import temporary_path_dir from qgreenland.util.request import fetch_and_write_file # TODO: call this 'FetchDataset'? 'FetchAsset'? class FetchTask(luigi.Task): dataset_id = luigi.Parameter() asset_id = luigi.Parameter() @property def output_name(self): return datasource_dirname( dataset_id=self.dataset_cfg.id, asset_id=self.asset_cfg.id, ) @property def dataset_cfg(self): config = get_config() return config.datasets[self.dataset_id] @property def asset_cfg(self): return self.dataset_cfg.assets[self.asset_id] class FetchCmrGranule(FetchTask): session = None def output(self): path = FETCH_DATASETS_DIR / self.output_name return luigi.LocalTarget(path) def run(self): if type(self.asset_cfg) is not CmrAsset: raise RuntimeError(f"Expected CMR asset. Received: {self.asset_cfg}") granule = get_cmr_granule( granule_ur=self.asset_cfg.granule_ur, collection_concept_id=self.asset_cfg.collection_concept_id, ) with temporary_path_dir(self.output()) as temp_path: for url in granule.urls: if not self.session: self.session = make_session(hosts=[url], verify=True) fetch_and_write_file( url, output_dir=temp_path, session=self.session, ) class FetchDataFiles(FetchTask): def output(self): return luigi.LocalTarget( FETCH_DATASETS_DIR / self.output_name, format=luigi.format.Nop, ) def run(self): if type(self.asset_cfg) is not HttpAsset: raise RuntimeError(f"Expected HTTP asset. Received: {self.asset_cfg}") with temporary_path_dir(self.output()) as temp_path: for url in self.asset_cfg.urls: fetch_and_write_file( url, output_dir=temp_path, verify=self.asset_cfg.verify_tls, ) class FetchLocalDataFiles(FetchTask): """Fetch data that's already on the local installation. e.g. "Manual" assets which are downloaded by humans, "Repository" assets which are present in this git repo. """ def output(self): return luigi.LocalTarget( FETCH_DATASETS_DIR / self.output_name, format=luigi.format.Nop, ) def run(self): if isinstance(self.asset_cfg, RepositoryAsset): with temporary_path_dir(self.output()) as temp_path: evaluated_filepath = self.asset_cfg.filepath.eval() out_path = temp_path / evaluated_filepath.name shutil.copy2(evaluated_filepath, out_path) elif isinstance(self.asset_cfg, ManualAsset): local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id with temporary_path_dir(self.output()) as temp_path: shutil.copytree(local_dir, temp_path, dirs_exist_ok=True) else: raise RuntimeError( "You selected an unsupported access_method:" f" {type(self.asset_cfg)}", ) class FetchDataWithCommand(FetchTask): """Fetch data using a command, writing to '{output_dir}'.""" def output(self): return luigi.LocalTarget( FETCH_DATASETS_DIR / self.output_name, format=luigi.format.Nop, ) def run(self): with temporary_path_dir(self.output()) as temp_path: run_qgr_command( interpolate_args( self.asset_cfg.args, output_dir=temp_path, ), )
[ "import shutil\n\nimport luigi\n\nfrom qgreenland.constants.paths import FETCH_DATASETS_DIR, PRIVATE_ARCHIVE_DIR\nfrom qgreenland.models.config.asset import (\n CmrAsset,\n HttpAsset,\n ManualAsset,\n RepositoryAsset,\n)\nfrom qgreenland.util.cmr import get_cmr_granule\nfrom qgreenland.util.command import interpolate_args, run_qgr_command\nfrom qgreenland.util.config.config import get_config\nfrom qgreenland.util.edl import create_earthdata_authenticated_session as make_session\nfrom qgreenland.util.layer import datasource_dirname\nfrom qgreenland.util.luigi.target import temporary_path_dir\nfrom qgreenland.util.request import fetch_and_write_file\n\n\n# TODO: call this 'FetchDataset'? 'FetchAsset'?\nclass FetchTask(luigi.Task):\n dataset_id = luigi.Parameter()\n asset_id = luigi.Parameter()\n\n @property\n def output_name(self):\n return datasource_dirname(\n dataset_id=self.dataset_cfg.id,\n asset_id=self.asset_cfg.id,\n )\n\n @property\n def dataset_cfg(self):\n config = get_config()\n return config.datasets[self.dataset_id]\n\n @property\n def asset_cfg(self):\n return self.dataset_cfg.assets[self.asset_id]\n\n\nclass FetchCmrGranule(FetchTask):\n session = None\n\n def output(self):\n path = FETCH_DATASETS_DIR / self.output_name\n return luigi.LocalTarget(path)\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(f\"Expected CMR asset. Received: {self.asset_cfg}\")\n\n granule = get_cmr_granule(\n granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id,\n )\n\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n\n fetch_and_write_file(\n url,\n output_dir=temp_path,\n session=self.session,\n )\n\n\nclass FetchDataFiles(FetchTask):\n def output(self):\n return luigi.LocalTarget(\n FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop,\n )\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(f\"Expected HTTP asset. Received: {self.asset_cfg}\")\n\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(\n url,\n output_dir=temp_path,\n verify=self.asset_cfg.verify_tls,\n )\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(\n FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop,\n )\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n\n else:\n raise RuntimeError(\n \"You selected an unsupported access_method:\" f\" {type(self.asset_cfg)}\",\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(\n FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop,\n )\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(\n interpolate_args(\n self.asset_cfg.args,\n output_dir=temp_path,\n ),\n )\n", "import shutil\nimport luigi\nfrom qgreenland.constants.paths import FETCH_DATASETS_DIR, PRIVATE_ARCHIVE_DIR\nfrom qgreenland.models.config.asset import CmrAsset, HttpAsset, ManualAsset, RepositoryAsset\nfrom qgreenland.util.cmr import get_cmr_granule\nfrom qgreenland.util.command import interpolate_args, run_qgr_command\nfrom qgreenland.util.config.config import get_config\nfrom qgreenland.util.edl import create_earthdata_authenticated_session as make_session\nfrom qgreenland.util.layer import datasource_dirname\nfrom qgreenland.util.luigi.target import temporary_path_dir\nfrom qgreenland.util.request import fetch_and_write_file\n\n\nclass FetchTask(luigi.Task):\n dataset_id = luigi.Parameter()\n asset_id = luigi.Parameter()\n\n @property\n def output_name(self):\n return datasource_dirname(dataset_id=self.dataset_cfg.id, asset_id=\n self.asset_cfg.id)\n\n @property\n def dataset_cfg(self):\n config = get_config()\n return config.datasets[self.dataset_id]\n\n @property\n def asset_cfg(self):\n return self.dataset_cfg.assets[self.asset_id]\n\n\nclass FetchCmrGranule(FetchTask):\n session = None\n\n def output(self):\n path = FETCH_DATASETS_DIR / self.output_name\n return luigi.LocalTarget(path)\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(\n f'Expected CMR asset. Received: {self.asset_cfg}')\n granule = get_cmr_granule(granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id)\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n fetch_and_write_file(url, output_dir=temp_path, session=\n self.session)\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n\n\nclass FetchTask(luigi.Task):\n dataset_id = luigi.Parameter()\n asset_id = luigi.Parameter()\n\n @property\n def output_name(self):\n return datasource_dirname(dataset_id=self.dataset_cfg.id, asset_id=\n self.asset_cfg.id)\n\n @property\n def dataset_cfg(self):\n config = get_config()\n return config.datasets[self.dataset_id]\n\n @property\n def asset_cfg(self):\n return self.dataset_cfg.assets[self.asset_id]\n\n\nclass FetchCmrGranule(FetchTask):\n session = None\n\n def output(self):\n path = FETCH_DATASETS_DIR / self.output_name\n return luigi.LocalTarget(path)\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(\n f'Expected CMR asset. Received: {self.asset_cfg}')\n granule = get_cmr_granule(granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id)\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n fetch_and_write_file(url, output_dir=temp_path, session=\n self.session)\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n\n\nclass FetchTask(luigi.Task):\n <assignment token>\n <assignment token>\n\n @property\n def output_name(self):\n return datasource_dirname(dataset_id=self.dataset_cfg.id, asset_id=\n self.asset_cfg.id)\n\n @property\n def dataset_cfg(self):\n config = get_config()\n return config.datasets[self.dataset_id]\n\n @property\n def asset_cfg(self):\n return self.dataset_cfg.assets[self.asset_id]\n\n\nclass FetchCmrGranule(FetchTask):\n session = None\n\n def output(self):\n path = FETCH_DATASETS_DIR / self.output_name\n return luigi.LocalTarget(path)\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(\n f'Expected CMR asset. Received: {self.asset_cfg}')\n granule = get_cmr_granule(granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id)\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n fetch_and_write_file(url, output_dir=temp_path, session=\n self.session)\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n\n\nclass FetchTask(luigi.Task):\n <assignment token>\n <assignment token>\n\n @property\n def output_name(self):\n return datasource_dirname(dataset_id=self.dataset_cfg.id, asset_id=\n self.asset_cfg.id)\n\n @property\n def dataset_cfg(self):\n config = get_config()\n return config.datasets[self.dataset_id]\n <function token>\n\n\nclass FetchCmrGranule(FetchTask):\n session = None\n\n def output(self):\n path = FETCH_DATASETS_DIR / self.output_name\n return luigi.LocalTarget(path)\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(\n f'Expected CMR asset. Received: {self.asset_cfg}')\n granule = get_cmr_granule(granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id)\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n fetch_and_write_file(url, output_dir=temp_path, session=\n self.session)\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n\n\nclass FetchTask(luigi.Task):\n <assignment token>\n <assignment token>\n <function token>\n\n @property\n def dataset_cfg(self):\n config = get_config()\n return config.datasets[self.dataset_id]\n <function token>\n\n\nclass FetchCmrGranule(FetchTask):\n session = None\n\n def output(self):\n path = FETCH_DATASETS_DIR / self.output_name\n return luigi.LocalTarget(path)\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(\n f'Expected CMR asset. Received: {self.asset_cfg}')\n granule = get_cmr_granule(granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id)\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n fetch_and_write_file(url, output_dir=temp_path, session=\n self.session)\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n\n\nclass FetchTask(luigi.Task):\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n\nclass FetchCmrGranule(FetchTask):\n session = None\n\n def output(self):\n path = FETCH_DATASETS_DIR / self.output_name\n return luigi.LocalTarget(path)\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(\n f'Expected CMR asset. Received: {self.asset_cfg}')\n granule = get_cmr_granule(granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id)\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n fetch_and_write_file(url, output_dir=temp_path, session=\n self.session)\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n\n\nclass FetchCmrGranule(FetchTask):\n session = None\n\n def output(self):\n path = FETCH_DATASETS_DIR / self.output_name\n return luigi.LocalTarget(path)\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(\n f'Expected CMR asset. Received: {self.asset_cfg}')\n granule = get_cmr_granule(granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id)\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n fetch_and_write_file(url, output_dir=temp_path, session=\n self.session)\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n\n\nclass FetchCmrGranule(FetchTask):\n <assignment token>\n\n def output(self):\n path = FETCH_DATASETS_DIR / self.output_name\n return luigi.LocalTarget(path)\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(\n f'Expected CMR asset. Received: {self.asset_cfg}')\n granule = get_cmr_granule(granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id)\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n fetch_and_write_file(url, output_dir=temp_path, session=\n self.session)\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n\n\nclass FetchCmrGranule(FetchTask):\n <assignment token>\n <function token>\n\n def run(self):\n if type(self.asset_cfg) is not CmrAsset:\n raise RuntimeError(\n f'Expected CMR asset. Received: {self.asset_cfg}')\n granule = get_cmr_granule(granule_ur=self.asset_cfg.granule_ur,\n collection_concept_id=self.asset_cfg.collection_concept_id)\n with temporary_path_dir(self.output()) as temp_path:\n for url in granule.urls:\n if not self.session:\n self.session = make_session(hosts=[url], verify=True)\n fetch_and_write_file(url, output_dir=temp_path, session=\n self.session)\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n\n\nclass FetchCmrGranule(FetchTask):\n <assignment token>\n <function token>\n <function token>\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if type(self.asset_cfg) is not HttpAsset:\n raise RuntimeError(\n f'Expected HTTP asset. Received: {self.asset_cfg}')\n with temporary_path_dir(self.output()) as temp_path:\n for url in self.asset_cfg.urls:\n fetch_and_write_file(url, output_dir=temp_path, verify=self\n .asset_cfg.verify_tls)\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n\n\nclass FetchDataFiles(FetchTask):\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n <function token>\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n\n\nclass FetchDataFiles(FetchTask):\n <function token>\n <function token>\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass FetchLocalDataFiles(FetchTask):\n \"\"\"Fetch data that's already on the local installation.\n\n e.g. \"Manual\" assets which are downloaded by humans, \"Repository\" assets\n which are present in this git repo.\n \"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass FetchLocalDataFiles(FetchTask):\n <docstring token>\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n if isinstance(self.asset_cfg, RepositoryAsset):\n with temporary_path_dir(self.output()) as temp_path:\n evaluated_filepath = self.asset_cfg.filepath.eval()\n out_path = temp_path / evaluated_filepath.name\n shutil.copy2(evaluated_filepath, out_path)\n elif isinstance(self.asset_cfg, ManualAsset):\n local_dir = PRIVATE_ARCHIVE_DIR / self.dataset_cfg.id\n with temporary_path_dir(self.output()) as temp_path:\n shutil.copytree(local_dir, temp_path, dirs_exist_ok=True)\n else:\n raise RuntimeError(\n f'You selected an unsupported access_method: {type(self.asset_cfg)}'\n )\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass FetchLocalDataFiles(FetchTask):\n <docstring token>\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n <function token>\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n<class token>\n\n\nclass FetchLocalDataFiles(FetchTask):\n <docstring token>\n <function token>\n <function token>\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FetchDataWithCommand(FetchTask):\n \"\"\"Fetch data using a command, writing to '{output_dir}'.\"\"\"\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FetchDataWithCommand(FetchTask):\n <docstring token>\n\n def output(self):\n return luigi.LocalTarget(FETCH_DATASETS_DIR / self.output_name,\n format=luigi.format.Nop)\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FetchDataWithCommand(FetchTask):\n <docstring token>\n <function token>\n\n def run(self):\n with temporary_path_dir(self.output()) as temp_path:\n run_qgr_command(interpolate_args(self.asset_cfg.args,\n output_dir=temp_path))\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FetchDataWithCommand(FetchTask):\n <docstring token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n" ]
false
98,330
8f7b591fd1a87f5ba307d8b8b4d8652e2551ba66
import numpy as np import pandas as pd from sklearn.svm import SVR import random from sklearn import cross_validation from sklearn.metrics import mean_squared_error data2013 = pd.read_csv('expamles20_0.txt').ix[0:93] data2014 = pd.read_csv('data_2014.txt') features2013 = data2013.drop('odds',axis=1) features2014 = data2014.drop('odds',axis=1) target2013 = data2013['odds'] target2014 = data2014['odds'] class_ = [] for i in range(10): class_.append(pd.read_csv('class_'+str(i)+'.txt')['name'].values) svr_model = SVR(kernel='rbf', C=1e2, gamma=0.05) i = random.randint(0,len(class_[0])-1) j = random.randint(0,len(class_[1])-1) k = random.randint(0,len(class_[2])-1) l = random.randint(0,len(class_[3])-1) m = random.randint(0,len(class_[4])-1) n = random.randint(0,len(class_[5])-1) p = random.randint(0,len(class_[6])-1) q = random.randint(0,len(class_[7])-1) s = random.randint(0,len(class_[8])-1) t = random.randint(0,len(class_[9])-1) cv_avr = [] for fold in range(10): X_train, X_test, y_train, y_test = cross_validation.train_test_split( features2013[[class_[0][i],class_[1][j], class_[2][k],class_[3][l], class_[4][m],class_[5][n], class_[6][p],class_[7][q], class_[8][s],class_[9][t]]],target2013, test_size=0.15, random_state=fold) #evaluate fitness function SVRmodel = SVR(C=1e2, gamma=0.05, kernel='rbf') SVRmodel.fit(X_train,y_train) cv_avr.append(SVRmodel.score(X_test,y_test)) R2 = 1.0*sum(cv_avr)/len(cv_avr) f = open('KMdata10.txt','wb') f.write('generation,train,validation,test,validmse,testmse\n') f2 = open('features10.txt','wb') iteration = 0 while (R2 < 0.9 and iteration < 500): old = i,j,k,l,m,n,p,q,s,t r = random.random() if r < 0.2: i = random.randint(0,len(class_[0])-1) elif r < 0.3: j = random.randint(0,len(class_[1])-1) elif r < 0.5: k = random.randint(0,len(class_[2])-1) elif r < 0.55: l = random.randint(0,len(class_[3])-1) elif r < 0.65: m = random.randint(0,len(class_[4])-1) elif r < 0.7: n = random.randint(0,len(class_[5])-1) elif r < 0.75: p = random.randint(0,len(class_[6])-1) elif r < 0.85: q = random.randint(0,len(class_[7])-1) elif r < 0.9: s = random.randint(0,len(class_[8])-1) else: t = random.randint(0,len(class_[9])-1) r = random.random() if r < 0.2: i = random.randint(0,len(class_[0])-1) elif r < 0.3: j = random.randint(0,len(class_[1])-1) elif r < 0.5: k = random.randint(0,len(class_[2])-1) elif r < 0.55: l = random.randint(0,len(class_[3])-1) elif r < 0.65: m = random.randint(0,len(class_[4])-1) elif r < 0.7: n = random.randint(0,len(class_[5])-1) elif r < 0.75: p = random.randint(0,len(class_[6])-1) elif r < 0.85: q = random.randint(0,len(class_[7])-1) elif r < 0.9: s = random.randint(0,len(class_[8])-1) else: t = random.randint(0,len(class_[9])-1) cv_avr = [] mse_avr = [] tr_avr = [] for fold in range(5): X_train, X_test, y_train, y_test = cross_validation.train_test_split( features2013[[class_[0][i],class_[1][j], class_[2][k],class_[3][l], class_[4][m],class_[5][n], class_[6][p],class_[7][q], class_[8][s],class_[9][t]]],target2013, test_size=0.15, random_state=fold) #evaluate fitness function SVRmodel = SVR(C=1e2,gamma=0.05, kernel='rbf') SVRmodel.fit(X_train,y_train) tr_avr.append(SVRmodel.score(X_train,y_train)) cv_avr.append(SVRmodel.score(X_test,y_test)) mse_avr.append(mean_squared_error(SVRmodel.predict(X_test),y_test)) tr_R2 = 1.0*sum(tr_avr)/len(tr_avr) newR2 = 1.0*sum(cv_avr)/len(cv_avr) mse = 1.0*sum(mse_avr)/len(mse_avr) if newR2 <= R2: i,j,k,l,m,n,p,q,s,t = old print iteration print i,j,k,l,m # print features2013[[class_[0][i],class_[1][j],class_[2][k],class_[3][l],class_[4][m]]].columns print newR2 SVRmodel = SVR(C=1e2, gamma=0.05, kernel='rbf') SVRmodel.fit(features2013[[class_[0][i],class_[1][j], class_[2][k],class_[3][l], class_[4][m],class_[5][n], class_[6][p],class_[7][q], class_[8][s],class_[9][t]]],target2013) test_R2 = SVRmodel.score(features2014[[class_[0][i],class_[1][j], class_[2][k],class_[3][l], class_[4][m],class_[5][n], class_[6][p],class_[7][q], class_[8][s],class_[9][t]]],target2014) test_mse = mean_squared_error(SVRmodel.predict(features2014[[class_[0][i],class_[1][j], class_[2][k],class_[3][l], class_[4][m],class_[5][n], class_[6][p],class_[7][q], class_[8][s],class_[9][t]]]),target2014) f.write(str(iteration)+','+str(tr_R2)+','+str(newR2)+','+str(test_R2)+','+str(mse)+','+str(test_mse)+'\n') f2.write('iteration: '+str(iteration)+'\n') f2.write('features: '+'\n') for ii in range(10): f2.write('\t'+str(features2013[[class_[0][i],class_[1][j], class_[2][k],class_[3][l], class_[4][m],class_[5][n], class_[6][p],class_[7][q], class_[8][s],class_[9][t]]].columns.values[ii])+'\n') f2.write('\n') R2 = newR2 iteration += 1 f.close() f2.close()
[ "import numpy as np\nimport pandas as pd\nfrom sklearn.svm import SVR\nimport random\nfrom sklearn import cross_validation\nfrom sklearn.metrics import mean_squared_error\n\ndata2013 = pd.read_csv('expamles20_0.txt').ix[0:93]\ndata2014 = pd.read_csv('data_2014.txt')\n\nfeatures2013 = data2013.drop('odds',axis=1)\nfeatures2014 = data2014.drop('odds',axis=1)\n\ntarget2013 = data2013['odds']\ntarget2014 = data2014['odds']\n\nclass_ = []\nfor i in range(10):\n\tclass_.append(pd.read_csv('class_'+str(i)+'.txt')['name'].values)\n\nsvr_model = SVR(kernel='rbf', C=1e2, gamma=0.05)\n\ni = random.randint(0,len(class_[0])-1)\nj = random.randint(0,len(class_[1])-1)\nk = random.randint(0,len(class_[2])-1)\nl = random.randint(0,len(class_[3])-1)\nm = random.randint(0,len(class_[4])-1)\nn = random.randint(0,len(class_[5])-1)\np = random.randint(0,len(class_[6])-1)\nq = random.randint(0,len(class_[7])-1)\ns = random.randint(0,len(class_[8])-1)\nt = random.randint(0,len(class_[9])-1)\n\ncv_avr = []\nfor fold in range(10):\n\tX_train, X_test, y_train, y_test = cross_validation.train_test_split(\n \tfeatures2013[[class_[0][i],class_[1][j],\n\t\tclass_[2][k],class_[3][l],\n\t\tclass_[4][m],class_[5][n],\n\t\tclass_[6][p],class_[7][q],\n\t\tclass_[8][s],class_[9][t]]],target2013, test_size=0.15, random_state=fold)\n\t#evaluate fitness function\n\tSVRmodel = SVR(C=1e2, gamma=0.05, kernel='rbf')\n\tSVRmodel.fit(X_train,y_train)\n\tcv_avr.append(SVRmodel.score(X_test,y_test))\nR2 = 1.0*sum(cv_avr)/len(cv_avr)\n\nf = open('KMdata10.txt','wb')\nf.write('generation,train,validation,test,validmse,testmse\\n')\nf2 = open('features10.txt','wb')\niteration = 0\n\nwhile (R2 < 0.9 and iteration < 500):\n\told = i,j,k,l,m,n,p,q,s,t\n\tr = random.random()\n\tif r < 0.2:\n\t\ti = random.randint(0,len(class_[0])-1)\n\telif r < 0.3:\n\t\tj = random.randint(0,len(class_[1])-1)\n\telif r < 0.5:\n\t\tk = random.randint(0,len(class_[2])-1)\n\telif r < 0.55:\n\t\tl = random.randint(0,len(class_[3])-1)\n\telif r < 0.65:\n\t\tm = random.randint(0,len(class_[4])-1)\n\telif r < 0.7:\n\t\tn = random.randint(0,len(class_[5])-1)\n\telif r < 0.75:\n\t\tp = random.randint(0,len(class_[6])-1)\n\telif r < 0.85:\n\t\tq = random.randint(0,len(class_[7])-1)\n\telif r < 0.9:\n\t\ts = random.randint(0,len(class_[8])-1)\n\telse:\n\t\tt = random.randint(0,len(class_[9])-1)\n\n\tr = random.random()\n\tif r < 0.2:\n\t\ti = random.randint(0,len(class_[0])-1)\n\telif r < 0.3:\n\t\tj = random.randint(0,len(class_[1])-1)\n\telif r < 0.5:\n\t\tk = random.randint(0,len(class_[2])-1)\n\telif r < 0.55:\n\t\tl = random.randint(0,len(class_[3])-1)\n\telif r < 0.65:\n\t\tm = random.randint(0,len(class_[4])-1)\n\telif r < 0.7:\n\t\tn = random.randint(0,len(class_[5])-1)\n\telif r < 0.75:\n\t\tp = random.randint(0,len(class_[6])-1)\n\telif r < 0.85:\n\t\tq = random.randint(0,len(class_[7])-1)\n\telif r < 0.9:\n\t\ts = random.randint(0,len(class_[8])-1)\n\telse:\n\t\tt = random.randint(0,len(class_[9])-1)\n\n\tcv_avr = []\n\tmse_avr = []\n\ttr_avr = []\n\tfor fold in range(5):\n\t\tX_train, X_test, y_train, y_test = cross_validation.train_test_split(\n\t \tfeatures2013[[class_[0][i],class_[1][j],\n\t\t\tclass_[2][k],class_[3][l],\n\t\t\tclass_[4][m],class_[5][n],\n\t\t\tclass_[6][p],class_[7][q],\n\t\t\tclass_[8][s],class_[9][t]]],target2013, test_size=0.15, random_state=fold)\n\t\t#evaluate fitness function\n\t\tSVRmodel = SVR(C=1e2,gamma=0.05, kernel='rbf')\n\t\tSVRmodel.fit(X_train,y_train)\n\t\ttr_avr.append(SVRmodel.score(X_train,y_train))\n\t\tcv_avr.append(SVRmodel.score(X_test,y_test))\n\t\tmse_avr.append(mean_squared_error(SVRmodel.predict(X_test),y_test))\n\ttr_R2 = 1.0*sum(tr_avr)/len(tr_avr)\n\tnewR2 = 1.0*sum(cv_avr)/len(cv_avr)\n\tmse = 1.0*sum(mse_avr)/len(mse_avr)\n\n\tif newR2 <= R2:\n\t\ti,j,k,l,m,n,p,q,s,t = old\n\t\n\tprint iteration\n\tprint i,j,k,l,m\n\t# print features2013[[class_[0][i],class_[1][j],class_[2][k],class_[3][l],class_[4][m]]].columns\n\tprint newR2\n\n\tSVRmodel = SVR(C=1e2, gamma=0.05, kernel='rbf')\n\tSVRmodel.fit(features2013[[class_[0][i],class_[1][j],\n\t\t\tclass_[2][k],class_[3][l],\n\t\t\tclass_[4][m],class_[5][n],\n\t\t\tclass_[6][p],class_[7][q],\n\t\t\tclass_[8][s],class_[9][t]]],target2013)\n\ttest_R2 = SVRmodel.score(features2014[[class_[0][i],class_[1][j],\n\t\t\tclass_[2][k],class_[3][l],\n\t\t\tclass_[4][m],class_[5][n],\n\t\t\tclass_[6][p],class_[7][q],\n\t\t\tclass_[8][s],class_[9][t]]],target2014)\n\ttest_mse = mean_squared_error(SVRmodel.predict(features2014[[class_[0][i],class_[1][j],\n\t\t\tclass_[2][k],class_[3][l],\n\t\t\tclass_[4][m],class_[5][n],\n\t\t\tclass_[6][p],class_[7][q],\n\t\t\tclass_[8][s],class_[9][t]]]),target2014)\n\t\n\tf.write(str(iteration)+','+str(tr_R2)+','+str(newR2)+','+str(test_R2)+','+str(mse)+','+str(test_mse)+'\\n')\n\tf2.write('iteration: '+str(iteration)+'\\n')\n\tf2.write('features: '+'\\n')\n\tfor ii in range(10):\n\t\tf2.write('\\t'+str(features2013[[class_[0][i],class_[1][j],\n\t\t\tclass_[2][k],class_[3][l],\n\t\t\tclass_[4][m],class_[5][n],\n\t\t\tclass_[6][p],class_[7][q],\n\t\t\tclass_[8][s],class_[9][t]]].columns.values[ii])+'\\n')\n\tf2.write('\\n')\n\tR2 = newR2\n\n\titeration += 1\n\nf.close()\nf2.close()\n" ]
true
98,331
acf756711d97764ebd226aeafb84db93a79e3d92
__author__ = 'Joseph Conlin' """ Tests for page objects """ from TestBrowser import TestBrowser from HeaderPage import Header from TheatersPage import Theaters import TheaterDetailPage from FileInput import ReadExcel import unittest from random import randint # Setup some common test variables _headerSearchText = "Provo, UT" _headerSearchTextNoSpaces = "ABC123" class HeaderTests(unittest.TestCase): def setUp(self): self.driver = TestBrowser().get_browser() self.header = Header(self.driver) def tearDown(self): self.driver.quit() def test_search(self): currentPage = self.driver.current_url self.header.do_search(_headerSearchTextNoSpaces) newPage = self.driver.current_url self.assertNotEqual(currentPage, newPage, "Searching did not navigate to a new page") def test_search_random_input_from_excel(self): # Get a random row greater than 0 to avoid the header and get that search data from the default input file # [0] is the search string, [1] is the theater index, [2] is theater name, [3] is zip code index = randint(1,6) input = ReadExcel.get_sheet_values() searchText = input[index][0] expectedZip = str(input[index][3]) currentPage = self.driver.current_url self.header.do_search(searchText) newPage = self.driver.current_url self.assertNotEqual(currentPage, newPage, "Searching did not navigate to a new page") self.assertIn(expectedZip, self.driver.page_source, "Expected zip code not found in results page") class TheatersTests(unittest.TestCase): def setUp(self): self.driver = TestBrowser().get_browser() # For internal testing purposes, navigate to the theater search results page self.header = Header(self.driver) self.header.do_search(_headerSearchText) self.theaters = Theaters(self.driver) def tearDown(self): self.driver.quit() def test_theaters_list(self): self.assertNotEqual(0, len(self.theaters.theatersList), "Did not create theaters list") self.assertNotEqual(0, len(self.theaters.theatersList[0]), "Did not get a valid list of theaters") class TheaterDetailTests(unittest.TestCase): def setUp(self): self.driver = TestBrowser().get_browser() # For internal testing purposes, navigate to a theater details page self.header = Header(self.driver) self.header.do_search(_headerSearchText) self.theaters = Theaters(self.driver) self.theater = TheaterDetailPage.TheaterDetail(self.driver) self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver) def tearDown(self): self.driver.quit() def test_change_days(self): currentSelectDate = self.theaterCalendar.selectedDate self.theaterCalendar.click_date_by_index(2) newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver) newSelectDate = newTheaterCalendar.selectedDate self.assertNotEqual(currentSelectDate, newSelectDate, "Selecting a different day did not navigate to a new page") def test_movies_list_different_days(self): currentMovieList = self.theater.theaterMoviesList currentSelectDate = self.theaterCalendar.selectedDate self.theaterCalendar.click_date_by_index(1) newTheater = TheaterDetailPage.TheaterDetail(self.driver) newMovieList = newTheater.theaterMoviesList newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver) newSelectDate = newTheaterCalendar.selectedDate self.assertNotEqual(currentSelectDate+currentMovieList[0].movieShowTimeList[0], newSelectDate+newMovieList[0].movieShowTimeList[0], "Movie date and time from today matches movie date and time from tomorrow") def test_search_random_input_from_excel(self): # Get a random row greater than 0 to avoid the header and get that search data from the default input file # [0] is the search string, [1] is the theater index, [2] is theater name, [3] is zip code index = randint(1,6) input = ReadExcel.get_sheet_values() searchText = input[index][0] theaterIndex = input[index][1] theaterText = input[index][2] if(_headerSearchText != searchText): # Setup did a different search than we want - redo the search and update the variables self.header = Header(self.driver) self.header.do_search(searchText) self.theaters = Theaters(self.driver) self.theater = TheaterDetailPage.TheaterDetail(self.driver, theaterIndex) theaterName = self.theater.theaterName self.assertIn(theaterText.lower(), theaterName.lower(), "Did not end up on theater detail page for selected theater") if __name__ == '__main__': # suite = unittest.TestLoader().loadTestsFromTestCase(HeaderTests) testsToRun = [ HeaderTests, TheatersTests, TheaterDetailTests, ] suite = unittest.TestSuite([unittest.TestLoader().loadTestsFromTestCase(test) for test in testsToRun]) unittest.TextTestRunner(verbosity=2).run(suite)
[ "__author__ = 'Joseph Conlin'\n\"\"\"\nTests for page objects\n\"\"\"\nfrom TestBrowser import TestBrowser\nfrom HeaderPage import Header\nfrom TheatersPage import Theaters\nimport TheaterDetailPage\nfrom FileInput import ReadExcel\n\nimport unittest\nfrom random import randint\n\n# Setup some common test variables\n_headerSearchText = \"Provo, UT\"\n_headerSearchTextNoSpaces = \"ABC123\"\n\n\nclass HeaderTests(unittest.TestCase):\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_search(self):\n currentPage = self.driver.current_url\n self.header.do_search(_headerSearchTextNoSpaces)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage, \"Searching did not navigate to a new page\")\n\n def test_search_random_input_from_excel(self):\n # Get a random row greater than 0 to avoid the header and get that search data from the default input file\n # [0] is the search string, [1] is the theater index, [2] is theater name, [3] is zip code\n index = randint(1,6)\n input = ReadExcel.get_sheet_values()\n\n searchText = input[index][0]\n expectedZip = str(input[index][3])\n currentPage = self.driver.current_url\n self.header.do_search(searchText)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage, \"Searching did not navigate to a new page\")\n self.assertIn(expectedZip, self.driver.page_source, \"Expected zip code not found in results page\")\n\n\nclass TheatersTests(unittest.TestCase):\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n # For internal testing purposes, navigate to the theater search results page\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList), \"Did not create theaters list\")\n self.assertNotEqual(0, len(self.theaters.theatersList[0]), \"Did not get a valid list of theaters\")\n\n\nclass TheaterDetailTests(unittest.TestCase):\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n # For internal testing purposes, navigate to a theater details page\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n \"Selecting a different day did not navigate to a new page\")\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate+currentMovieList[0].movieShowTimeList[0],\n newSelectDate+newMovieList[0].movieShowTimeList[0],\n \"Movie date and time from today matches movie date and time from tomorrow\")\n\n def test_search_random_input_from_excel(self):\n # Get a random row greater than 0 to avoid the header and get that search data from the default input file\n # [0] is the search string, [1] is the theater index, [2] is theater name, [3] is zip code\n index = randint(1,6)\n input = ReadExcel.get_sheet_values()\n\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n\n if(_headerSearchText != searchText):\n # Setup did a different search than we want - redo the search and update the variables\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver, theaterIndex)\n\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n \"Did not end up on theater detail page for selected theater\")\n\n\nif __name__ == '__main__':\n # suite = unittest.TestLoader().loadTestsFromTestCase(HeaderTests)\n testsToRun = [\n HeaderTests,\n TheatersTests,\n TheaterDetailTests,\n ]\n suite = unittest.TestSuite([unittest.TestLoader().loadTestsFromTestCase(test) for test in testsToRun])\n unittest.TextTestRunner(verbosity=2).run(suite)\n", "__author__ = 'Joseph Conlin'\n<docstring token>\nfrom TestBrowser import TestBrowser\nfrom HeaderPage import Header\nfrom TheatersPage import Theaters\nimport TheaterDetailPage\nfrom FileInput import ReadExcel\nimport unittest\nfrom random import randint\n_headerSearchText = 'Provo, UT'\n_headerSearchTextNoSpaces = 'ABC123'\n\n\nclass HeaderTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_search(self):\n currentPage = self.driver.current_url\n self.header.do_search(_headerSearchTextNoSpaces)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n expectedZip = str(input[index][3])\n currentPage = self.driver.current_url\n self.header.do_search(searchText)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n self.assertIn(expectedZip, self.driver.page_source,\n 'Expected zip code not found in results page')\n\n\nclass TheatersTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\nif __name__ == '__main__':\n testsToRun = [HeaderTests, TheatersTests, TheaterDetailTests]\n suite = unittest.TestSuite([unittest.TestLoader().loadTestsFromTestCase\n (test) for test in testsToRun])\n unittest.TextTestRunner(verbosity=2).run(suite)\n", "__author__ = 'Joseph Conlin'\n<docstring token>\n<import token>\n_headerSearchText = 'Provo, UT'\n_headerSearchTextNoSpaces = 'ABC123'\n\n\nclass HeaderTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_search(self):\n currentPage = self.driver.current_url\n self.header.do_search(_headerSearchTextNoSpaces)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n expectedZip = str(input[index][3])\n currentPage = self.driver.current_url\n self.header.do_search(searchText)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n self.assertIn(expectedZip, self.driver.page_source,\n 'Expected zip code not found in results page')\n\n\nclass TheatersTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\nif __name__ == '__main__':\n testsToRun = [HeaderTests, TheatersTests, TheaterDetailTests]\n suite = unittest.TestSuite([unittest.TestLoader().loadTestsFromTestCase\n (test) for test in testsToRun])\n unittest.TextTestRunner(verbosity=2).run(suite)\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass HeaderTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_search(self):\n currentPage = self.driver.current_url\n self.header.do_search(_headerSearchTextNoSpaces)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n expectedZip = str(input[index][3])\n currentPage = self.driver.current_url\n self.header.do_search(searchText)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n self.assertIn(expectedZip, self.driver.page_source,\n 'Expected zip code not found in results page')\n\n\nclass TheatersTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\nif __name__ == '__main__':\n testsToRun = [HeaderTests, TheatersTests, TheaterDetailTests]\n suite = unittest.TestSuite([unittest.TestLoader().loadTestsFromTestCase\n (test) for test in testsToRun])\n unittest.TextTestRunner(verbosity=2).run(suite)\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass HeaderTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_search(self):\n currentPage = self.driver.current_url\n self.header.do_search(_headerSearchTextNoSpaces)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n expectedZip = str(input[index][3])\n currentPage = self.driver.current_url\n self.header.do_search(searchText)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n self.assertIn(expectedZip, self.driver.page_source,\n 'Expected zip code not found in results page')\n\n\nclass TheatersTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass HeaderTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_search(self):\n currentPage = self.driver.current_url\n self.header.do_search(_headerSearchTextNoSpaces)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n <function token>\n\n\nclass TheatersTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass HeaderTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n <function token>\n\n def test_search(self):\n currentPage = self.driver.current_url\n self.header.do_search(_headerSearchTextNoSpaces)\n newPage = self.driver.current_url\n self.assertNotEqual(currentPage, newPage,\n 'Searching did not navigate to a new page')\n <function token>\n\n\nclass TheatersTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass HeaderTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n <function token>\n <function token>\n <function token>\n\n\nclass TheatersTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass HeaderTests(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass TheatersTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass TheatersTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass TheatersTests(unittest.TestCase):\n <function token>\n\n def tearDown(self):\n self.driver.quit()\n\n def test_theaters_list(self):\n self.assertNotEqual(0, len(self.theaters.theatersList),\n 'Did not create theaters list')\n self.assertNotEqual(0, len(self.theaters.theatersList[0]),\n 'Did not get a valid list of theaters')\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass TheatersTests(unittest.TestCase):\n <function token>\n\n def tearDown(self):\n self.driver.quit()\n <function token>\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass TheatersTests(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass TheaterDetailTests(unittest.TestCase):\n\n def setUp(self):\n self.driver = TestBrowser().get_browser()\n self.header = Header(self.driver)\n self.header.do_search(_headerSearchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver)\n self.theaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass TheaterDetailTests(unittest.TestCase):\n <function token>\n\n def tearDown(self):\n self.driver.quit()\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass TheaterDetailTests(unittest.TestCase):\n <function token>\n <function token>\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n\n def test_search_random_input_from_excel(self):\n index = randint(1, 6)\n input = ReadExcel.get_sheet_values()\n searchText = input[index][0]\n theaterIndex = input[index][1]\n theaterText = input[index][2]\n if _headerSearchText != searchText:\n self.header = Header(self.driver)\n self.header.do_search(searchText)\n self.theaters = Theaters(self.driver)\n self.theater = TheaterDetailPage.TheaterDetail(self.driver,\n theaterIndex)\n theaterName = self.theater.theaterName\n self.assertIn(theaterText.lower(), theaterName.lower(),\n 'Did not end up on theater detail page for selected theater')\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass TheaterDetailTests(unittest.TestCase):\n <function token>\n <function token>\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n\n def test_movies_list_different_days(self):\n currentMovieList = self.theater.theaterMoviesList\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(1)\n newTheater = TheaterDetailPage.TheaterDetail(self.driver)\n newMovieList = newTheater.theaterMoviesList\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate + currentMovieList[0].\n movieShowTimeList[0], newSelectDate + newMovieList[0].\n movieShowTimeList[0],\n 'Movie date and time from today matches movie date and time from tomorrow'\n )\n <function token>\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass TheaterDetailTests(unittest.TestCase):\n <function token>\n <function token>\n\n def test_change_days(self):\n currentSelectDate = self.theaterCalendar.selectedDate\n self.theaterCalendar.click_date_by_index(2)\n newTheaterCalendar = TheaterDetailPage.TheaterCalendar(self.driver)\n newSelectDate = newTheaterCalendar.selectedDate\n self.assertNotEqual(currentSelectDate, newSelectDate,\n 'Selecting a different day did not navigate to a new page')\n <function token>\n <function token>\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass TheaterDetailTests(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<code token>\n" ]
false
98,332
f96dc14b831445b25ed320390de1cf841a43c39c
from twisted.internet import defer from fluiddb.api.util import getCategoryAndAction, getOperation from fluiddb.common.types_thrift.ttypes import ( TNonexistentTag, TBadRequest, TNonexistentNamespace, TPathPermissionDenied, TPolicyAndExceptions, TInvalidPolicy, TNoSuchUser, TInvalidUsername) from fluiddb.data.exceptions import UnknownUserError from fluiddb.data.permission import Operation, Policy from fluiddb.model.exceptions import ( UnknownPathError, UserNotAllowedInExceptionError) from fluiddb.security.exceptions import PermissionDeniedError from fluiddb.security.permission import SecurePermissionAPI class FacadePermissionMixin(object): def getPermission(self, session, category, action, path): """Get permissions for a given path. @param session: The L{AuthenticatedSession} for the request. @param category: A C{unicode} indicating the category of the permission. @param action: A C{unicode} indicating the action of the permission. @param path: The L{Namespace.path} or L{Tag.path} to get permissions from. @raise TBadRequest: Raised if the given C{action} or C{category} are invalid. @raise TNonexistentNamespace: Raised if the given L{Namespace} path does not exist. @raise TNonexistentTag: Raised if the given L{Tag} path does not exist. @raise TPathPermissionDenied: Raised if the user does not have C{CONTROL} permissions on the given L{Namespace} or L{Tag}. @return: A C{Deferred} that will fire with a L{TPolicyAndExceptions} object containing the policy and exceptions list for the requested permission. """ path = path.decode('utf-8') try: operation = getOperation(category, action) except KeyError as error: session.log.exception(error) error = TBadRequest( 'Action %r not possible on category %r.' % (action, category)) return defer.fail(error) def run(): permissions = SecurePermissionAPI(session.auth.user) try: result = permissions.get([(path, operation)]) except UnknownPathError as error: session.log.exception(error) unknownPath = error.paths[0] if operation in Operation.TAG_OPERATIONS: raise TNonexistentTag(unknownPath.encode('utf-8')) if operation in Operation.NAMESPACE_OPERATIONS: raise TNonexistentNamespace(unknownPath.encode('utf-8')) raise except PermissionDeniedError as error: session.log.exception(error) deniedPath, deniedOperation = error.pathsAndOperations[0] deniedCategory, deniedAction = getCategoryAndAction( deniedOperation) raise TPathPermissionDenied(deniedPath, deniedCategory, deniedAction) policy, exceptions = result[(path, operation)] policy = str(policy).lower() return TPolicyAndExceptions(policy=policy, exceptions=exceptions) return session.transact.run(run) def updatePermission(self, session, category, action, path, policyAndExceptions): """Update permissions for a given path. @param session: The L{AuthenticatedSession} for the request. @param category: A C{unicode} indicating the category of the permission. @param action: A C{unicode} indicating the action of the permission. @param path: The L{Namespace.path} or L{Tag.path} to get permissions from. @param policyAndExceptions: A L{TPolicyAndExceptions} object containing the policy and exceptions list for the permission. @raise TBadRequest: Raised if the given C{action} or C{category} are invalid. @raise TInvalidPolicy: Raised if the policy given in C{policyAndExceptions} is invalid. @raise TNonexistentNamespace: Raised if the given L{Namespace} path does not exist. @raise TNonexistentTag: Raised if the given L{Tag} path does not exist. @raise TPathPermissionDenied: Raised if the user does not have C{CONTROL} permissions on the given L{Namespace} or L{Tag}. @return: A C{Deferred} that will fire with a C{None} if the operation was successful. """ path = path.decode('utf-8') try: operation = getOperation(category, action) except KeyError as error: session.log.exception(error) error = TBadRequest( 'Action %r not possible on category %r.' % (action, category)) return defer.fail(error) policy = policyAndExceptions.policy if policy not in ('open', 'closed'): return defer.fail(TInvalidPolicy()) policy = Policy.OPEN if policy == 'open' else Policy.CLOSED exceptions = policyAndExceptions.exceptions def run(): permissions = SecurePermissionAPI(session.auth.user) try: permissions.set([(path, operation, policy, exceptions)]) except UnknownPathError as error: session.log.exception(error) unknownPath = error.paths[0] if operation in Operation.TAG_OPERATIONS: raise TNonexistentTag(unknownPath.encode('utf-8')) if operation in Operation.NAMESPACE_OPERATIONS: raise TNonexistentNamespace(unknownPath.encode('utf-8')) raise except UnknownUserError as error: # FIXME There could be more than one unknown username, but # TNoSuchUser can only be passed a single username, so we'll # only pass the first one. Ideally, we'd be able to pass all # of them. raise TNoSuchUser(error.usernames[0].encode('utf-8')) except UserNotAllowedInExceptionError as error: raise TInvalidUsername(str(error)) except PermissionDeniedError as error: session.log.exception(error) deniedPath, deniedOperation = error.pathsAndOperations[0] deniedCategory, deniedAction = getCategoryAndAction( deniedOperation) raise TPathPermissionDenied(deniedPath, deniedCategory, deniedAction) return session.transact.run(run)
[ "from twisted.internet import defer\n\nfrom fluiddb.api.util import getCategoryAndAction, getOperation\nfrom fluiddb.common.types_thrift.ttypes import (\n TNonexistentTag, TBadRequest, TNonexistentNamespace, TPathPermissionDenied,\n TPolicyAndExceptions, TInvalidPolicy, TNoSuchUser, TInvalidUsername)\nfrom fluiddb.data.exceptions import UnknownUserError\nfrom fluiddb.data.permission import Operation, Policy\nfrom fluiddb.model.exceptions import (\n UnknownPathError, UserNotAllowedInExceptionError)\nfrom fluiddb.security.exceptions import PermissionDeniedError\nfrom fluiddb.security.permission import SecurePermissionAPI\n\n\nclass FacadePermissionMixin(object):\n\n def getPermission(self, session, category, action, path):\n \"\"\"Get permissions for a given path.\n\n @param session: The L{AuthenticatedSession} for the request.\n @param category: A C{unicode} indicating the category of the\n permission.\n @param action: A C{unicode} indicating the action of the permission.\n @param path: The L{Namespace.path} or L{Tag.path} to get permissions\n from.\n @raise TBadRequest: Raised if the given C{action} or C{category} are\n invalid.\n @raise TNonexistentNamespace: Raised if the given L{Namespace} path\n does not exist.\n @raise TNonexistentTag: Raised if the given L{Tag} path does not exist.\n @raise TPathPermissionDenied: Raised if the user does not have\n C{CONTROL} permissions on the given L{Namespace} or L{Tag}.\n @return: A C{Deferred} that will fire with a L{TPolicyAndExceptions}\n object containing the policy and exceptions list for the requested\n permission.\n \"\"\"\n path = path.decode('utf-8')\n\n try:\n operation = getOperation(category, action)\n except KeyError as error:\n session.log.exception(error)\n error = TBadRequest(\n 'Action %r not possible on category %r.' % (action, category))\n return defer.fail(error)\n\n def run():\n permissions = SecurePermissionAPI(session.auth.user)\n try:\n result = permissions.get([(path, operation)])\n except UnknownPathError as error:\n session.log.exception(error)\n unknownPath = error.paths[0]\n if operation in Operation.TAG_OPERATIONS:\n raise TNonexistentTag(unknownPath.encode('utf-8'))\n if operation in Operation.NAMESPACE_OPERATIONS:\n raise TNonexistentNamespace(unknownPath.encode('utf-8'))\n raise\n except PermissionDeniedError as error:\n session.log.exception(error)\n deniedPath, deniedOperation = error.pathsAndOperations[0]\n deniedCategory, deniedAction = getCategoryAndAction(\n deniedOperation)\n raise TPathPermissionDenied(deniedPath, deniedCategory,\n deniedAction)\n\n policy, exceptions = result[(path, operation)]\n policy = str(policy).lower()\n return TPolicyAndExceptions(policy=policy, exceptions=exceptions)\n\n return session.transact.run(run)\n\n def updatePermission(self, session, category, action, path,\n policyAndExceptions):\n \"\"\"Update permissions for a given path.\n\n @param session: The L{AuthenticatedSession} for the request.\n @param category: A C{unicode} indicating the category of the\n permission.\n @param action: A C{unicode} indicating the action of the permission.\n @param path: The L{Namespace.path} or L{Tag.path} to get permissions\n from.\n @param policyAndExceptions: A L{TPolicyAndExceptions} object containing\n the policy and exceptions list for the permission.\n @raise TBadRequest: Raised if the given C{action} or C{category} are\n invalid.\n @raise TInvalidPolicy: Raised if the policy given in\n C{policyAndExceptions} is invalid.\n @raise TNonexistentNamespace: Raised if the given L{Namespace} path\n does not exist.\n @raise TNonexistentTag: Raised if the given L{Tag} path does not exist.\n @raise TPathPermissionDenied: Raised if the user does not have\n C{CONTROL} permissions on the given L{Namespace} or L{Tag}.\n @return: A C{Deferred} that will fire with a C{None} if the operation\n was successful.\n \"\"\"\n path = path.decode('utf-8')\n\n try:\n operation = getOperation(category, action)\n except KeyError as error:\n session.log.exception(error)\n error = TBadRequest(\n 'Action %r not possible on category %r.' % (action, category))\n return defer.fail(error)\n\n policy = policyAndExceptions.policy\n if policy not in ('open', 'closed'):\n return defer.fail(TInvalidPolicy())\n policy = Policy.OPEN if policy == 'open' else Policy.CLOSED\n exceptions = policyAndExceptions.exceptions\n\n def run():\n permissions = SecurePermissionAPI(session.auth.user)\n try:\n permissions.set([(path, operation, policy, exceptions)])\n except UnknownPathError as error:\n session.log.exception(error)\n unknownPath = error.paths[0]\n if operation in Operation.TAG_OPERATIONS:\n raise TNonexistentTag(unknownPath.encode('utf-8'))\n if operation in Operation.NAMESPACE_OPERATIONS:\n raise TNonexistentNamespace(unknownPath.encode('utf-8'))\n raise\n except UnknownUserError as error:\n # FIXME There could be more than one unknown username, but\n # TNoSuchUser can only be passed a single username, so we'll\n # only pass the first one. Ideally, we'd be able to pass all\n # of them.\n raise TNoSuchUser(error.usernames[0].encode('utf-8'))\n except UserNotAllowedInExceptionError as error:\n raise TInvalidUsername(str(error))\n except PermissionDeniedError as error:\n session.log.exception(error)\n deniedPath, deniedOperation = error.pathsAndOperations[0]\n deniedCategory, deniedAction = getCategoryAndAction(\n deniedOperation)\n raise TPathPermissionDenied(deniedPath, deniedCategory,\n deniedAction)\n\n return session.transact.run(run)\n", "from twisted.internet import defer\nfrom fluiddb.api.util import getCategoryAndAction, getOperation\nfrom fluiddb.common.types_thrift.ttypes import TNonexistentTag, TBadRequest, TNonexistentNamespace, TPathPermissionDenied, TPolicyAndExceptions, TInvalidPolicy, TNoSuchUser, TInvalidUsername\nfrom fluiddb.data.exceptions import UnknownUserError\nfrom fluiddb.data.permission import Operation, Policy\nfrom fluiddb.model.exceptions import UnknownPathError, UserNotAllowedInExceptionError\nfrom fluiddb.security.exceptions import PermissionDeniedError\nfrom fluiddb.security.permission import SecurePermissionAPI\n\n\nclass FacadePermissionMixin(object):\n\n def getPermission(self, session, category, action, path):\n \"\"\"Get permissions for a given path.\n\n @param session: The L{AuthenticatedSession} for the request.\n @param category: A C{unicode} indicating the category of the\n permission.\n @param action: A C{unicode} indicating the action of the permission.\n @param path: The L{Namespace.path} or L{Tag.path} to get permissions\n from.\n @raise TBadRequest: Raised if the given C{action} or C{category} are\n invalid.\n @raise TNonexistentNamespace: Raised if the given L{Namespace} path\n does not exist.\n @raise TNonexistentTag: Raised if the given L{Tag} path does not exist.\n @raise TPathPermissionDenied: Raised if the user does not have\n C{CONTROL} permissions on the given L{Namespace} or L{Tag}.\n @return: A C{Deferred} that will fire with a L{TPolicyAndExceptions}\n object containing the policy and exceptions list for the requested\n permission.\n \"\"\"\n path = path.decode('utf-8')\n try:\n operation = getOperation(category, action)\n except KeyError as error:\n session.log.exception(error)\n error = TBadRequest('Action %r not possible on category %r.' %\n (action, category))\n return defer.fail(error)\n\n def run():\n permissions = SecurePermissionAPI(session.auth.user)\n try:\n result = permissions.get([(path, operation)])\n except UnknownPathError as error:\n session.log.exception(error)\n unknownPath = error.paths[0]\n if operation in Operation.TAG_OPERATIONS:\n raise TNonexistentTag(unknownPath.encode('utf-8'))\n if operation in Operation.NAMESPACE_OPERATIONS:\n raise TNonexistentNamespace(unknownPath.encode('utf-8'))\n raise\n except PermissionDeniedError as error:\n session.log.exception(error)\n deniedPath, deniedOperation = error.pathsAndOperations[0]\n deniedCategory, deniedAction = getCategoryAndAction(\n deniedOperation)\n raise TPathPermissionDenied(deniedPath, deniedCategory,\n deniedAction)\n policy, exceptions = result[path, operation]\n policy = str(policy).lower()\n return TPolicyAndExceptions(policy=policy, exceptions=exceptions)\n return session.transact.run(run)\n\n def updatePermission(self, session, category, action, path,\n policyAndExceptions):\n \"\"\"Update permissions for a given path.\n\n @param session: The L{AuthenticatedSession} for the request.\n @param category: A C{unicode} indicating the category of the\n permission.\n @param action: A C{unicode} indicating the action of the permission.\n @param path: The L{Namespace.path} or L{Tag.path} to get permissions\n from.\n @param policyAndExceptions: A L{TPolicyAndExceptions} object containing\n the policy and exceptions list for the permission.\n @raise TBadRequest: Raised if the given C{action} or C{category} are\n invalid.\n @raise TInvalidPolicy: Raised if the policy given in\n C{policyAndExceptions} is invalid.\n @raise TNonexistentNamespace: Raised if the given L{Namespace} path\n does not exist.\n @raise TNonexistentTag: Raised if the given L{Tag} path does not exist.\n @raise TPathPermissionDenied: Raised if the user does not have\n C{CONTROL} permissions on the given L{Namespace} or L{Tag}.\n @return: A C{Deferred} that will fire with a C{None} if the operation\n was successful.\n \"\"\"\n path = path.decode('utf-8')\n try:\n operation = getOperation(category, action)\n except KeyError as error:\n session.log.exception(error)\n error = TBadRequest('Action %r not possible on category %r.' %\n (action, category))\n return defer.fail(error)\n policy = policyAndExceptions.policy\n if policy not in ('open', 'closed'):\n return defer.fail(TInvalidPolicy())\n policy = Policy.OPEN if policy == 'open' else Policy.CLOSED\n exceptions = policyAndExceptions.exceptions\n\n def run():\n permissions = SecurePermissionAPI(session.auth.user)\n try:\n permissions.set([(path, operation, policy, exceptions)])\n except UnknownPathError as error:\n session.log.exception(error)\n unknownPath = error.paths[0]\n if operation in Operation.TAG_OPERATIONS:\n raise TNonexistentTag(unknownPath.encode('utf-8'))\n if operation in Operation.NAMESPACE_OPERATIONS:\n raise TNonexistentNamespace(unknownPath.encode('utf-8'))\n raise\n except UnknownUserError as error:\n raise TNoSuchUser(error.usernames[0].encode('utf-8'))\n except UserNotAllowedInExceptionError as error:\n raise TInvalidUsername(str(error))\n except PermissionDeniedError as error:\n session.log.exception(error)\n deniedPath, deniedOperation = error.pathsAndOperations[0]\n deniedCategory, deniedAction = getCategoryAndAction(\n deniedOperation)\n raise TPathPermissionDenied(deniedPath, deniedCategory,\n deniedAction)\n return session.transact.run(run)\n", "<import token>\n\n\nclass FacadePermissionMixin(object):\n\n def getPermission(self, session, category, action, path):\n \"\"\"Get permissions for a given path.\n\n @param session: The L{AuthenticatedSession} for the request.\n @param category: A C{unicode} indicating the category of the\n permission.\n @param action: A C{unicode} indicating the action of the permission.\n @param path: The L{Namespace.path} or L{Tag.path} to get permissions\n from.\n @raise TBadRequest: Raised if the given C{action} or C{category} are\n invalid.\n @raise TNonexistentNamespace: Raised if the given L{Namespace} path\n does not exist.\n @raise TNonexistentTag: Raised if the given L{Tag} path does not exist.\n @raise TPathPermissionDenied: Raised if the user does not have\n C{CONTROL} permissions on the given L{Namespace} or L{Tag}.\n @return: A C{Deferred} that will fire with a L{TPolicyAndExceptions}\n object containing the policy and exceptions list for the requested\n permission.\n \"\"\"\n path = path.decode('utf-8')\n try:\n operation = getOperation(category, action)\n except KeyError as error:\n session.log.exception(error)\n error = TBadRequest('Action %r not possible on category %r.' %\n (action, category))\n return defer.fail(error)\n\n def run():\n permissions = SecurePermissionAPI(session.auth.user)\n try:\n result = permissions.get([(path, operation)])\n except UnknownPathError as error:\n session.log.exception(error)\n unknownPath = error.paths[0]\n if operation in Operation.TAG_OPERATIONS:\n raise TNonexistentTag(unknownPath.encode('utf-8'))\n if operation in Operation.NAMESPACE_OPERATIONS:\n raise TNonexistentNamespace(unknownPath.encode('utf-8'))\n raise\n except PermissionDeniedError as error:\n session.log.exception(error)\n deniedPath, deniedOperation = error.pathsAndOperations[0]\n deniedCategory, deniedAction = getCategoryAndAction(\n deniedOperation)\n raise TPathPermissionDenied(deniedPath, deniedCategory,\n deniedAction)\n policy, exceptions = result[path, operation]\n policy = str(policy).lower()\n return TPolicyAndExceptions(policy=policy, exceptions=exceptions)\n return session.transact.run(run)\n\n def updatePermission(self, session, category, action, path,\n policyAndExceptions):\n \"\"\"Update permissions for a given path.\n\n @param session: The L{AuthenticatedSession} for the request.\n @param category: A C{unicode} indicating the category of the\n permission.\n @param action: A C{unicode} indicating the action of the permission.\n @param path: The L{Namespace.path} or L{Tag.path} to get permissions\n from.\n @param policyAndExceptions: A L{TPolicyAndExceptions} object containing\n the policy and exceptions list for the permission.\n @raise TBadRequest: Raised if the given C{action} or C{category} are\n invalid.\n @raise TInvalidPolicy: Raised if the policy given in\n C{policyAndExceptions} is invalid.\n @raise TNonexistentNamespace: Raised if the given L{Namespace} path\n does not exist.\n @raise TNonexistentTag: Raised if the given L{Tag} path does not exist.\n @raise TPathPermissionDenied: Raised if the user does not have\n C{CONTROL} permissions on the given L{Namespace} or L{Tag}.\n @return: A C{Deferred} that will fire with a C{None} if the operation\n was successful.\n \"\"\"\n path = path.decode('utf-8')\n try:\n operation = getOperation(category, action)\n except KeyError as error:\n session.log.exception(error)\n error = TBadRequest('Action %r not possible on category %r.' %\n (action, category))\n return defer.fail(error)\n policy = policyAndExceptions.policy\n if policy not in ('open', 'closed'):\n return defer.fail(TInvalidPolicy())\n policy = Policy.OPEN if policy == 'open' else Policy.CLOSED\n exceptions = policyAndExceptions.exceptions\n\n def run():\n permissions = SecurePermissionAPI(session.auth.user)\n try:\n permissions.set([(path, operation, policy, exceptions)])\n except UnknownPathError as error:\n session.log.exception(error)\n unknownPath = error.paths[0]\n if operation in Operation.TAG_OPERATIONS:\n raise TNonexistentTag(unknownPath.encode('utf-8'))\n if operation in Operation.NAMESPACE_OPERATIONS:\n raise TNonexistentNamespace(unknownPath.encode('utf-8'))\n raise\n except UnknownUserError as error:\n raise TNoSuchUser(error.usernames[0].encode('utf-8'))\n except UserNotAllowedInExceptionError as error:\n raise TInvalidUsername(str(error))\n except PermissionDeniedError as error:\n session.log.exception(error)\n deniedPath, deniedOperation = error.pathsAndOperations[0]\n deniedCategory, deniedAction = getCategoryAndAction(\n deniedOperation)\n raise TPathPermissionDenied(deniedPath, deniedCategory,\n deniedAction)\n return session.transact.run(run)\n", "<import token>\n\n\nclass FacadePermissionMixin(object):\n <function token>\n\n def updatePermission(self, session, category, action, path,\n policyAndExceptions):\n \"\"\"Update permissions for a given path.\n\n @param session: The L{AuthenticatedSession} for the request.\n @param category: A C{unicode} indicating the category of the\n permission.\n @param action: A C{unicode} indicating the action of the permission.\n @param path: The L{Namespace.path} or L{Tag.path} to get permissions\n from.\n @param policyAndExceptions: A L{TPolicyAndExceptions} object containing\n the policy and exceptions list for the permission.\n @raise TBadRequest: Raised if the given C{action} or C{category} are\n invalid.\n @raise TInvalidPolicy: Raised if the policy given in\n C{policyAndExceptions} is invalid.\n @raise TNonexistentNamespace: Raised if the given L{Namespace} path\n does not exist.\n @raise TNonexistentTag: Raised if the given L{Tag} path does not exist.\n @raise TPathPermissionDenied: Raised if the user does not have\n C{CONTROL} permissions on the given L{Namespace} or L{Tag}.\n @return: A C{Deferred} that will fire with a C{None} if the operation\n was successful.\n \"\"\"\n path = path.decode('utf-8')\n try:\n operation = getOperation(category, action)\n except KeyError as error:\n session.log.exception(error)\n error = TBadRequest('Action %r not possible on category %r.' %\n (action, category))\n return defer.fail(error)\n policy = policyAndExceptions.policy\n if policy not in ('open', 'closed'):\n return defer.fail(TInvalidPolicy())\n policy = Policy.OPEN if policy == 'open' else Policy.CLOSED\n exceptions = policyAndExceptions.exceptions\n\n def run():\n permissions = SecurePermissionAPI(session.auth.user)\n try:\n permissions.set([(path, operation, policy, exceptions)])\n except UnknownPathError as error:\n session.log.exception(error)\n unknownPath = error.paths[0]\n if operation in Operation.TAG_OPERATIONS:\n raise TNonexistentTag(unknownPath.encode('utf-8'))\n if operation in Operation.NAMESPACE_OPERATIONS:\n raise TNonexistentNamespace(unknownPath.encode('utf-8'))\n raise\n except UnknownUserError as error:\n raise TNoSuchUser(error.usernames[0].encode('utf-8'))\n except UserNotAllowedInExceptionError as error:\n raise TInvalidUsername(str(error))\n except PermissionDeniedError as error:\n session.log.exception(error)\n deniedPath, deniedOperation = error.pathsAndOperations[0]\n deniedCategory, deniedAction = getCategoryAndAction(\n deniedOperation)\n raise TPathPermissionDenied(deniedPath, deniedCategory,\n deniedAction)\n return session.transact.run(run)\n", "<import token>\n\n\nclass FacadePermissionMixin(object):\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,333
cb95ef7cece27bd87aea1e8bb359f81d56fb662a
from xml.etree import ElementTree as et import paxb as pb def test_root_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <test_model> <element1>value1</element1> </test_model> ''' @pb.model(name='test_model') class TestModel: element1 = pb.field() model = pb.from_xml(TestModel, xml) assert model.element1 == 'value1' def test_attribute_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel attrib1="value1" attrib2="value2"/> ''' @pb.model class TestModel: attrib1 = pb.attr() attrib2 = pb.attr() model = pb.from_xml(TestModel, xml) assert model.attrib1 == 'value1' assert model.attrib2 == 'value2' def test_attribute_deserialization_with_name(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel attribute1="value1" attribute2="value2"/> ''' @pb.model class TestModel: attrib1 = pb.attr(name='attribute1') attrib2 = pb.attr(name='attribute2') model = pb.from_xml(TestModel, xml) assert model.attrib1 == 'value1' assert model.attrib2 == 'value2' def test_element_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <element1>value1</element1> <element2>value2</element2> </TestModel> ''' @pb.model class TestModel: element1 = pb.field() element2 = pb.field() model = pb.from_xml(TestModel, xml) assert model.element1 == 'value1' assert model.element2 == 'value2' def test_element_deserialization_with_name(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <element1>value1</element1> <element2>value2</element2> </TestModel> ''' @pb.model class TestModel: elem1 = pb.field(name='element1') elem2 = pb.field(name='element2') model = pb.from_xml(TestModel, xml) assert model.elem1 == 'value1' assert model.elem2 == 'value2' def test_wrapper_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <wrapper1> <wrapper2> <element1>value1</element1> </wrapper2> </wrapper1> </TestModel> ''' @pb.model class TestModel: element1 = pb.wrap('wrapper1', pb.wrap('wrapper2', pb.field())) model = pb.from_xml(TestModel, xml) assert model.element1 == 'value1' def test_wrapper_deserialization_with_path(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <wrapper1> <wrapper2> <element1>value1</element1> </wrapper2> </wrapper1> </TestModel> ''' @pb.model class TestModel: element1 = pb.wrap('wrapper1/wrapper2', pb.field()) model = pb.from_xml(TestModel, xml) assert model.element1 == 'value1' def test_inheritance_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestRootModel> <TestBaseModel> <element1>value1</element1> </TestBaseModel> <TestExtendedModel> <element1>value2</element1> <element2>value3</element2> </TestExtendedModel> </TestRootModel> ''' @pb.model class TestBaseModel: element1 = pb.field() @pb.model class TestExtendedModel(TestBaseModel): element2 = pb.field() @pb.model class TestRootModel: model1 = pb.nested(TestBaseModel) model2 = pb.nested(TestExtendedModel) model = pb.from_xml(TestRootModel, xml) assert model.model1.element1 == 'value1' assert model.model2.element1 == 'value2' assert model.model2.element2 == 'value3' def test_nested_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <NestedModel1> <NestedModel2> <element>value</element> </NestedModel2> </NestedModel1> </TestModel> ''' @pb.model class NestedModel2: element = pb.field() @pb.model class NestedModel1: nested = pb.nested(NestedModel2) @pb.model class TestModel: nested = pb.nested(NestedModel1) model = pb.from_xml(TestModel, xml) assert model.nested.nested.element == 'value' def test_element_list_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <element1>value1</element1> <element1>value2</element1> </TestModel> ''' @pb.model class TestModel: element1 = pb.as_list(pb.field()) model = pb.from_xml(TestModel, xml) assert model.element1 == ['value1', 'value2'] def test_wrapper_list_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <wrapper> <element>value1</element> </wrapper> <wrapper> <element>value2</element> </wrapper> </TestModel> ''' @pb.model class TestModel: elements = pb.as_list(pb.wrap('wrapper', pb.field('element'))) model = pb.from_xml(TestModel, xml) assert model.elements == ['value1', 'value2'] def test_nested_list_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <NestedModel> <element>value1</element> </NestedModel> <NestedModel> <element>value2</element> </NestedModel> </TestModel> ''' @pb.model class NestedModel: element = pb.field() @pb.model class TestModel: elements = pb.as_list(pb.nested(NestedModel)) model = pb.from_xml(TestModel, xml) assert len(model.elements) == 2 assert model.elements[0].element == 'value1' assert model.elements[1].element == 'value2' def test_list_of_list_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <element1> <element2>value1</element2> <element2>value2</element2> </element1> <element1> <element2>value3</element2> <element2>value4</element2> </element1> </TestModel> ''' @pb.model class TestModel: elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field('element2')))) model = pb.from_xml(TestModel, xml) assert model.elements[0][0] == 'value1' assert model.elements[0][1] == 'value2' assert model.elements[1][0] == 'value3' assert model.elements[1][1] == 'value4' def test_namespaces_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <testns1:TestModel xmlns:testns1="http://www.test1.org" xmlns:testns2="http://www.test2.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.test.com schema.xsd"> <element1>value1</element1> <testns1:element2>value2</testns1:element2> <testns2:element3>value3</testns2:element3> <testns1:element4 xmlns:testns2="http://www.test22.org"> <element5>value5</element5> <testns2:element6>value6</testns2:element6> </testns1:element4> </testns1:TestModel> ''' @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'}) class TestModel: schema = pb.attribute('schemaLocation', ns='xsi') element1 = pb.field(ns='') element2 = pb.field() element3 = pb.field(ns='testns2') element5 = pb.wrap('element4', pb.field(ns='')) element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={'testns2': 'http://www.test22.org'}) model = pb.from_xml(TestModel, xml, ns_map={ 'testns1': 'http://www.test1.org', 'xsi': 'http://www.w3.org/2001/XMLSchema-instance', }) assert model.schema == 'http://www.test.com schema.xsd' assert model.element1 == 'value1' assert model.element2 == 'value2' assert model.element3 == 'value3' assert model.element5 == 'value5' assert model.element6 == 'value6' def test_complex_xml_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <envelope xmlns="http://www.test.org" xmlns:doc="http://www.test1.org" xmlns:data="http://www.test2.org"> <doc:user name="Alexey" surname="Ivanov" age="26"> <doc:contacts> <doc:phone>+79204563539</doc:phone> <doc:email>[email protected]</doc:email> <doc:email>[email protected]</doc:email> </doc:contacts> <doc:documents> <doc:passport series="3127" number="836815"/> </doc:documents> <data:occupations xmlns:data="http://www.test22.org"> <data:occupation title="yandex"> <data:address>Moscow</data:address> <data:employees>8854</data:employees> </data:occupation> <data:occupation title="skbkontur"> <data:address>Yekaterinburg</data:address> <data:employees>7742</data:employees> </data:occupation> </data:occupations> </doc:user> </envelope> ''' @pb.model(name='occupation', ns='data', ns_map={'data': 'http://www.test22.org'}) class Occupation: title = pb.attr() address = pb.field() employees = pb.field(converter=int) @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'}) class User: name = pb.attr() surname = pb.attr() age = pb.attr(converter=int) phone = pb.wrap('contacts', pb.field()) emails = pb.wrap('contacts', pb.as_list(pb.field(name='email'))) passport_series = pb.wrap('documents/passport', pb.attr('series')) passport_number = pb.wrap('documents/passport', pb.attr('number')) occupations = pb.wrap( 'occupations', pb.lst(pb.nested(Occupation)), ns='data', ns_map={'data': 'http://www.test22.org'} ) citizenship = pb.field(default='RU') xml = et.fromstring(xml) user = pb.from_xml(User, xml) assert user.name == 'Alexey' assert user.surname == 'Ivanov' assert user.age == 26 assert user.phone == '+79204563539' assert user.emails == ['[email protected]', '[email protected]'] assert user.passport_series == '3127' assert user.passport_number == '836815' assert len(user.occupations) == 2 assert user.occupations[0].title == 'yandex' assert user.occupations[0].address == 'Moscow' assert user.occupations[0].employees == 8854 assert user.occupations[1].title == 'skbkontur' assert user.occupations[1].address == 'Yekaterinburg' assert user.occupations[1].employees == 7742 assert user.citizenship == 'RU' def test_indexes_deserialization(): xml = '''<?xml version="1.0" encoding="utf-8"?> <root> <element>value1</element> <element>value2</element> <wrapper> <element>value3</element> </wrapper> <wrapper> <element>value4</element> </wrapper> <nested> <element>value5</element> </nested> <nested> <element>value6</element> </nested> </root> ''' @pb.model(name='nested') class Nested: field = pb.field('element') @pb.model(name='root') class TestModel: field1 = pb.field('element', idx=1) field2 = pb.field('element', idx=2) field3 = pb.wrap('wrapper', pb.field('element'), idx=1) field4 = pb.wrap('wrapper', pb.field('element'), idx=2) nested1 = pb.nested(Nested, idx=1) nested2 = pb.nested(Nested, idx=2) model = pb.from_xml(TestModel, xml) assert model.field1 == 'value1' assert model.field2 == 'value2' assert model.field3 == 'value3' assert model.field4 == 'value4' assert model.nested1.field == 'value5' assert model.nested2.field == 'value6' def test_nested_default(): xml = '''<?xml version="1.0" encoding="utf-8"?> <test_model> </test_model> ''' @pb.model(name='nested_model') class NestedModel: field = pb.field() @pb.model(name='test_model') class TestModel: nested = pb.nested(NestedModel, default=None) obj = pb.from_xml(TestModel, xml) assert obj.nested is None def test_field_default(): xml = '''<?xml version="1.0" encoding="utf-8"?> <test_model> </test_model> ''' @pb.model(name='test_model') class TestModel: field = pb.field(default=None) obj = pb.from_xml(TestModel, xml) assert obj.field is None def test_attribute_default(): xml = '''<?xml version="1.0" encoding="utf-8"?> <test_model> </test_model> ''' @pb.model(name='test_model') class TestModel: attrib = pb.attr(default=None) obj = pb.from_xml(TestModel, xml) assert obj.attrib is None def test_private_attributes(): xml = '''<?xml version="1.0" encoding="utf-8"?> <TestModel> <field1>value1</field1> <field2>value2</field2> </TestModel> ''' @pb.model() class TestModel: _field1 = pb.field(name='field1') __field2 = pb.field(name='field2') obj = pb.from_xml(TestModel, xml) assert obj._field1 == 'value1' assert obj._TestModel__field2 == 'value2' def test_dict_deserialization(): @pb.model class Nested: fields = pb.as_list(pb.field()) @pb.model class TestModel: field = pb.field() nested = pb.as_list(pb.nested(Nested)) data = { 'field': 'value1', 'nested': [ { 'fields': ['value21', 'value22'], }, { 'fields': ['value31', 'value32'], }, ] } obj = TestModel(**data) assert obj.field == 'value1' assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(fields=['value31', 'value32'])]
[ "from xml.etree import ElementTree as et\nimport paxb as pb\n\n\ndef test_root_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n '''\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n '''\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_attribute_deserialization_with_name():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attribute1=\"value1\" attribute2=\"value2\"/>\n '''\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr(name='attribute1')\n attrib2 = pb.attr(name='attribute2')\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_element_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n '''\n\n @pb.model\n class TestModel:\n element1 = pb.field()\n element2 = pb.field()\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n\n\ndef test_element_deserialization_with_name():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n '''\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\ndef test_wrapper_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n '''\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1', pb.wrap('wrapper2', pb.field()))\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.element1 == 'value1'\n\n\ndef test_wrapper_deserialization_with_path():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n '''\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n '''\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n\n model = pb.from_xml(TestRootModel, xml)\n\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n '''\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n '''\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n '''\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.elements == ['value1', 'value2']\n\n\ndef test_nested_list_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel>\n <element>value1</element>\n </NestedModel>\n <NestedModel>\n <element>value2</element>\n </NestedModel>\n </TestModel>\n '''\n\n @pb.model\n class NestedModel:\n element = pb.field()\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.nested(NestedModel))\n\n model = pb.from_xml(TestModel, xml)\n\n assert len(model.elements) == 2\n assert model.elements[0].element == 'value1'\n assert model.elements[1].element == 'value2'\n\n\ndef test_list_of_list_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n '''\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field('element2'))))\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n '''\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={'testns2': 'http://www.test22.org'})\n\n model = pb.from_xml(TestModel, xml, ns_map={\n 'testns1': 'http://www.test1.org',\n 'xsi': 'http://www.w3.org/2001/XMLSchema-instance',\n })\n\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n '''\n\n @pb.model(name='occupation', ns='data', ns_map={'data': 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n\n occupations = pb.wrap(\n 'occupations', pb.lst(pb.nested(Occupation)), ns='data', ns_map={'data': 'http://www.test22.org'}\n )\n\n citizenship = pb.field(default='RU')\n\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n\n assert len(user.occupations) == 2\n\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n\n assert user.citizenship == 'RU'\n\n\ndef test_indexes_deserialization():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <root>\n <element>value1</element>\n <element>value2</element>\n\n <wrapper>\n <element>value3</element>\n </wrapper>\n <wrapper>\n <element>value4</element>\n </wrapper>\n\n <nested>\n <element>value5</element>\n </nested>\n <nested>\n <element>value6</element>\n </nested>\n </root>\n '''\n\n @pb.model(name='nested')\n class Nested:\n field = pb.field('element')\n\n @pb.model(name='root')\n class TestModel:\n field1 = pb.field('element', idx=1)\n field2 = pb.field('element', idx=2)\n\n field3 = pb.wrap('wrapper', pb.field('element'), idx=1)\n field4 = pb.wrap('wrapper', pb.field('element'), idx=2)\n\n nested1 = pb.nested(Nested, idx=1)\n nested2 = pb.nested(Nested, idx=2)\n\n model = pb.from_xml(TestModel, xml)\n\n assert model.field1 == 'value1'\n assert model.field2 == 'value2'\n assert model.field3 == 'value3'\n assert model.field4 == 'value4'\n assert model.nested1.field == 'value5'\n assert model.nested2.field == 'value6'\n\n\ndef test_nested_default():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n '''\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\ndef test_field_default():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n '''\n\n @pb.model(name='test_model')\n class TestModel:\n field = pb.field(default=None)\n\n obj = pb.from_xml(TestModel, xml)\n assert obj.field is None\n\n\ndef test_attribute_default():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n '''\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\ndef test_private_attributes():\n xml = '''<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <field1>value1</field1>\n <field2>value2</field2>\n </TestModel>\n '''\n\n @pb.model()\n class TestModel:\n _field1 = pb.field(name='field1')\n __field2 = pb.field(name='field2')\n\n obj = pb.from_xml(TestModel, xml)\n\n assert obj._field1 == 'value1'\n assert obj._TestModel__field2 == 'value2'\n\n\ndef test_dict_deserialization():\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n\n data = {\n 'field': 'value1',\n 'nested': [\n {\n 'fields': ['value21', 'value22'],\n },\n {\n 'fields': ['value31', 'value32'],\n },\n ]\n }\n\n obj = TestModel(**data)\n\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(fields=['value31', 'value32'])]\n", "from xml.etree import ElementTree as et\nimport paxb as pb\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_attribute_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attribute1=\"value1\" attribute2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr(name='attribute1')\n attrib2 = pb.attr(name='attribute2')\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_element_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.field()\n element2 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\ndef test_wrapper_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1', pb.wrap('wrapper2', pb.field()))\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\ndef test_nested_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel>\n <element>value1</element>\n </NestedModel>\n <NestedModel>\n <element>value2</element>\n </NestedModel>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel:\n element = pb.field()\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.nested(NestedModel))\n model = pb.from_xml(TestModel, xml)\n assert len(model.elements) == 2\n assert model.elements[0].element == 'value1'\n assert model.elements[1].element == 'value2'\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\ndef test_indexes_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <root>\n <element>value1</element>\n <element>value2</element>\n\n <wrapper>\n <element>value3</element>\n </wrapper>\n <wrapper>\n <element>value4</element>\n </wrapper>\n\n <nested>\n <element>value5</element>\n </nested>\n <nested>\n <element>value6</element>\n </nested>\n </root>\n \"\"\"\n\n\n @pb.model(name='nested')\n class Nested:\n field = pb.field('element')\n\n\n @pb.model(name='root')\n class TestModel:\n field1 = pb.field('element', idx=1)\n field2 = pb.field('element', idx=2)\n field3 = pb.wrap('wrapper', pb.field('element'), idx=1)\n field4 = pb.wrap('wrapper', pb.field('element'), idx=2)\n nested1 = pb.nested(Nested, idx=1)\n nested2 = pb.nested(Nested, idx=2)\n model = pb.from_xml(TestModel, xml)\n assert model.field1 == 'value1'\n assert model.field2 == 'value2'\n assert model.field3 == 'value3'\n assert model.field4 == 'value4'\n assert model.nested1.field == 'value5'\n assert model.nested2.field == 'value6'\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\ndef test_field_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n field = pb.field(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.field is None\n\n\ndef test_attribute_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\ndef test_private_attributes():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <field1>value1</field1>\n <field2>value2</field2>\n </TestModel>\n \"\"\"\n\n\n @pb.model()\n class TestModel:\n _field1 = pb.field(name='field1')\n __field2 = pb.field(name='field2')\n obj = pb.from_xml(TestModel, xml)\n assert obj._field1 == 'value1'\n assert obj._TestModel__field2 == 'value2'\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_attribute_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attribute1=\"value1\" attribute2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr(name='attribute1')\n attrib2 = pb.attr(name='attribute2')\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_element_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.field()\n element2 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\ndef test_wrapper_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1', pb.wrap('wrapper2', pb.field()))\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\ndef test_nested_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel>\n <element>value1</element>\n </NestedModel>\n <NestedModel>\n <element>value2</element>\n </NestedModel>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel:\n element = pb.field()\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.nested(NestedModel))\n model = pb.from_xml(TestModel, xml)\n assert len(model.elements) == 2\n assert model.elements[0].element == 'value1'\n assert model.elements[1].element == 'value2'\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\ndef test_indexes_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <root>\n <element>value1</element>\n <element>value2</element>\n\n <wrapper>\n <element>value3</element>\n </wrapper>\n <wrapper>\n <element>value4</element>\n </wrapper>\n\n <nested>\n <element>value5</element>\n </nested>\n <nested>\n <element>value6</element>\n </nested>\n </root>\n \"\"\"\n\n\n @pb.model(name='nested')\n class Nested:\n field = pb.field('element')\n\n\n @pb.model(name='root')\n class TestModel:\n field1 = pb.field('element', idx=1)\n field2 = pb.field('element', idx=2)\n field3 = pb.wrap('wrapper', pb.field('element'), idx=1)\n field4 = pb.wrap('wrapper', pb.field('element'), idx=2)\n nested1 = pb.nested(Nested, idx=1)\n nested2 = pb.nested(Nested, idx=2)\n model = pb.from_xml(TestModel, xml)\n assert model.field1 == 'value1'\n assert model.field2 == 'value2'\n assert model.field3 == 'value3'\n assert model.field4 == 'value4'\n assert model.nested1.field == 'value5'\n assert model.nested2.field == 'value6'\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\ndef test_field_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n field = pb.field(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.field is None\n\n\ndef test_attribute_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\ndef test_private_attributes():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <field1>value1</field1>\n <field2>value2</field2>\n </TestModel>\n \"\"\"\n\n\n @pb.model()\n class TestModel:\n _field1 = pb.field(name='field1')\n __field2 = pb.field(name='field2')\n obj = pb.from_xml(TestModel, xml)\n assert obj._field1 == 'value1'\n assert obj._TestModel__field2 == 'value2'\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_attribute_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attribute1=\"value1\" attribute2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr(name='attribute1')\n attrib2 = pb.attr(name='attribute2')\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_element_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.field()\n element2 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\ndef test_wrapper_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1', pb.wrap('wrapper2', pb.field()))\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\ndef test_nested_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel>\n <element>value1</element>\n </NestedModel>\n <NestedModel>\n <element>value2</element>\n </NestedModel>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel:\n element = pb.field()\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.nested(NestedModel))\n model = pb.from_xml(TestModel, xml)\n assert len(model.elements) == 2\n assert model.elements[0].element == 'value1'\n assert model.elements[1].element == 'value2'\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\ndef test_field_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n field = pb.field(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.field is None\n\n\ndef test_attribute_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\ndef test_private_attributes():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <field1>value1</field1>\n <field2>value2</field2>\n </TestModel>\n \"\"\"\n\n\n @pb.model()\n class TestModel:\n _field1 = pb.field(name='field1')\n __field2 = pb.field(name='field2')\n obj = pb.from_xml(TestModel, xml)\n assert obj._field1 == 'value1'\n assert obj._TestModel__field2 == 'value2'\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_attribute_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attribute1=\"value1\" attribute2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr(name='attribute1')\n attrib2 = pb.attr(name='attribute2')\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_element_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.field()\n element2 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\ndef test_nested_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel>\n <element>value1</element>\n </NestedModel>\n <NestedModel>\n <element>value2</element>\n </NestedModel>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel:\n element = pb.field()\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.nested(NestedModel))\n model = pb.from_xml(TestModel, xml)\n assert len(model.elements) == 2\n assert model.elements[0].element == 'value1'\n assert model.elements[1].element == 'value2'\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\ndef test_field_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n field = pb.field(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.field is None\n\n\ndef test_attribute_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\ndef test_private_attributes():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <field1>value1</field1>\n <field2>value2</field2>\n </TestModel>\n \"\"\"\n\n\n @pb.model()\n class TestModel:\n _field1 = pb.field(name='field1')\n __field2 = pb.field(name='field2')\n obj = pb.from_xml(TestModel, xml)\n assert obj._field1 == 'value1'\n assert obj._TestModel__field2 == 'value2'\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_attribute_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attribute1=\"value1\" attribute2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr(name='attribute1')\n attrib2 = pb.attr(name='attribute2')\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\ndef test_nested_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel>\n <element>value1</element>\n </NestedModel>\n <NestedModel>\n <element>value2</element>\n </NestedModel>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel:\n element = pb.field()\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.nested(NestedModel))\n model = pb.from_xml(TestModel, xml)\n assert len(model.elements) == 2\n assert model.elements[0].element == 'value1'\n assert model.elements[1].element == 'value2'\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\ndef test_field_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n field = pb.field(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.field is None\n\n\ndef test_attribute_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\ndef test_private_attributes():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <field1>value1</field1>\n <field2>value2</field2>\n </TestModel>\n \"\"\"\n\n\n @pb.model()\n class TestModel:\n _field1 = pb.field(name='field1')\n __field2 = pb.field(name='field2')\n obj = pb.from_xml(TestModel, xml)\n assert obj._field1 == 'value1'\n assert obj._TestModel__field2 == 'value2'\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\ndef test_attribute_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attribute1=\"value1\" attribute2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr(name='attribute1')\n attrib2 = pb.attr(name='attribute2')\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\ndef test_field_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n field = pb.field(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.field is None\n\n\ndef test_attribute_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\ndef test_private_attributes():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <field1>value1</field1>\n <field2>value2</field2>\n </TestModel>\n \"\"\"\n\n\n @pb.model()\n class TestModel:\n _field1 = pb.field(name='field1')\n __field2 = pb.field(name='field2')\n obj = pb.from_xml(TestModel, xml)\n assert obj._field1 == 'value1'\n assert obj._TestModel__field2 == 'value2'\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\ndef test_field_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n field = pb.field(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.field is None\n\n\ndef test_attribute_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\ndef test_private_attributes():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <field1>value1</field1>\n <field2>value2</field2>\n </TestModel>\n \"\"\"\n\n\n @pb.model()\n class TestModel:\n _field1 = pb.field(name='field1')\n __field2 = pb.field(name='field2')\n obj = pb.from_xml(TestModel, xml)\n assert obj._field1 == 'value1'\n assert obj._TestModel__field2 == 'value2'\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\ndef test_field_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n field = pb.field(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.field is None\n\n\ndef test_attribute_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\n<function token>\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\n<function token>\n\n\ndef test_attribute_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n attrib = pb.attr(default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.attrib is None\n\n\n<function token>\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_inheritance_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestRootModel>\n <TestBaseModel>\n <element1>value1</element1>\n </TestBaseModel>\n <TestExtendedModel>\n <element1>value2</element1>\n <element2>value3</element2>\n </TestExtendedModel>\n </TestRootModel>\n \"\"\"\n\n\n @pb.model\n class TestBaseModel:\n element1 = pb.field()\n\n\n @pb.model\n class TestExtendedModel(TestBaseModel):\n element2 = pb.field()\n\n\n @pb.model\n class TestRootModel:\n model1 = pb.nested(TestBaseModel)\n model2 = pb.nested(TestExtendedModel)\n model = pb.from_xml(TestRootModel, xml)\n assert model.model1.element1 == 'value1'\n assert model.model2.element1 == 'value2'\n assert model.model2.element2 == 'value3'\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\ndef test_wrapper_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper>\n <element>value1</element>\n </wrapper>\n <wrapper>\n <element>value2</element>\n </wrapper>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('wrapper', pb.field('element')))\n model = pb.from_xml(TestModel, xml)\n assert model.elements == ['value1', 'value2']\n\n\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n\n\ndef test_element_deserialization_with_name():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element2>value2</element2>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elem1 = pb.field(name='element1')\n elem2 = pb.field(name='element2')\n model = pb.from_xml(TestModel, xml)\n assert model.elem1 == 'value1'\n assert model.elem2 == 'value2'\n\n\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef test_dict_deserialization():\n\n\n @pb.model\n class Nested:\n fields = pb.as_list(pb.field())\n\n\n @pb.model\n class TestModel:\n field = pb.field()\n nested = pb.as_list(pb.nested(Nested))\n data = {'field': 'value1', 'nested': [{'fields': ['value21', 'value22']\n }, {'fields': ['value31', 'value32']}]}\n obj = TestModel(**data)\n assert obj.field == 'value1'\n assert obj.nested == [Nested(fields=['value21', 'value22']), Nested(\n fields=['value31', 'value32'])]\n", "<import token>\n\n\ndef test_root_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n <element1>value1</element1>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='test_model')\n class TestModel:\n element1 = pb.field()\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n\n\ndef test_nested_default():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <test_model>\n </test_model>\n \"\"\"\n\n\n @pb.model(name='nested_model')\n class NestedModel:\n field = pb.field()\n\n\n @pb.model(name='test_model')\n class TestModel:\n nested = pb.nested(NestedModel, default=None)\n obj = pb.from_xml(TestModel, xml)\n assert obj.nested is None\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\ndef test_namespaces_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <testns1:TestModel xmlns:testns1=\"http://www.test1.org\"\n xmlns:testns2=\"http://www.test2.org\"\n xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n xsi:schemaLocation=\"http://www.test.com schema.xsd\">\n <element1>value1</element1>\n <testns1:element2>value2</testns1:element2>\n <testns2:element3>value3</testns2:element3>\n <testns1:element4 xmlns:testns2=\"http://www.test22.org\">\n <element5>value5</element5>\n <testns2:element6>value6</testns2:element6>\n </testns1:element4>\n </testns1:TestModel>\n \"\"\"\n\n\n @pb.model(ns='testns1', ns_map={'testns2': 'http://www.test2.org'})\n class TestModel:\n schema = pb.attribute('schemaLocation', ns='xsi')\n element1 = pb.field(ns='')\n element2 = pb.field()\n element3 = pb.field(ns='testns2')\n element5 = pb.wrap('element4', pb.field(ns=''))\n element6 = pb.wrap('element4', pb.field(ns='testns2'), ns_map={\n 'testns2': 'http://www.test22.org'})\n model = pb.from_xml(TestModel, xml, ns_map={'testns1':\n 'http://www.test1.org', 'xsi':\n 'http://www.w3.org/2001/XMLSchema-instance'})\n assert model.schema == 'http://www.test.com schema.xsd'\n assert model.element1 == 'value1'\n assert model.element2 == 'value2'\n assert model.element3 == 'value3'\n assert model.element5 == 'value5'\n assert model.element6 == 'value6'\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_wrapper_deserialization_with_path():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <wrapper1>\n <wrapper2>\n <element1>value1</element1>\n </wrapper2>\n </wrapper1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.wrap('wrapper1/wrapper2', pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == 'value1'\n\n\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\n<function token>\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n\n\ndef test_list_of_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>\n <element2>value1</element2>\n <element2>value2</element2>\n </element1>\n <element1>\n <element2>value3</element2>\n <element2>value4</element2>\n </element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n elements = pb.as_list(pb.wrap('element1', pb.as_list(pb.field(\n 'element2'))))\n model = pb.from_xml(TestModel, xml)\n assert model.elements[0][0] == 'value1'\n assert model.elements[0][1] == 'value2'\n assert model.elements[1][0] == 'value3'\n assert model.elements[1][1] == 'value4'\n\n\n<function token>\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n\n\ndef test_attribute_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel attrib1=\"value1\" attrib2=\"value2\"/>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n attrib1 = pb.attr()\n attrib2 = pb.attr()\n model = pb.from_xml(TestModel, xml)\n assert model.attrib1 == 'value1'\n assert model.attrib2 == 'value2'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_complex_xml_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <envelope xmlns=\"http://www.test.org\"\n xmlns:doc=\"http://www.test1.org\"\n xmlns:data=\"http://www.test2.org\">\n <doc:user name=\"Alexey\" surname=\"Ivanov\" age=\"26\">\n\n <doc:contacts>\n <doc:phone>+79204563539</doc:phone>\n <doc:email>[email protected]</doc:email>\n <doc:email>[email protected]</doc:email>\n </doc:contacts>\n\n <doc:documents>\n <doc:passport series=\"3127\" number=\"836815\"/>\n </doc:documents>\n\n <data:occupations xmlns:data=\"http://www.test22.org\">\n <data:occupation title=\"yandex\">\n <data:address>Moscow</data:address>\n <data:employees>8854</data:employees>\n </data:occupation>\n <data:occupation title=\"skbkontur\">\n <data:address>Yekaterinburg</data:address>\n <data:employees>7742</data:employees>\n </data:occupation>\n </data:occupations>\n\n </doc:user>\n </envelope>\n \"\"\"\n\n\n @pb.model(name='occupation', ns='data', ns_map={'data':\n 'http://www.test22.org'})\n class Occupation:\n title = pb.attr()\n address = pb.field()\n employees = pb.field(converter=int)\n\n\n @pb.model(name='user', ns='doc', ns_map={'doc': 'http://www.test1.org'})\n class User:\n name = pb.attr()\n surname = pb.attr()\n age = pb.attr(converter=int)\n phone = pb.wrap('contacts', pb.field())\n emails = pb.wrap('contacts', pb.as_list(pb.field(name='email')))\n passport_series = pb.wrap('documents/passport', pb.attr('series'))\n passport_number = pb.wrap('documents/passport', pb.attr('number'))\n occupations = pb.wrap('occupations', pb.lst(pb.nested(Occupation)),\n ns='data', ns_map={'data': 'http://www.test22.org'})\n citizenship = pb.field(default='RU')\n xml = et.fromstring(xml)\n user = pb.from_xml(User, xml)\n assert user.name == 'Alexey'\n assert user.surname == 'Ivanov'\n assert user.age == 26\n assert user.phone == '+79204563539'\n assert user.emails == ['[email protected]', '[email protected]']\n assert user.passport_series == '3127'\n assert user.passport_number == '836815'\n assert len(user.occupations) == 2\n assert user.occupations[0].title == 'yandex'\n assert user.occupations[0].address == 'Moscow'\n assert user.occupations[0].employees == 8854\n assert user.occupations[1].title == 'skbkontur'\n assert user.occupations[1].address == 'Yekaterinburg'\n assert user.occupations[1].employees == 7742\n assert user.citizenship == 'RU'\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_nested_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <NestedModel1>\n <NestedModel2>\n <element>value</element>\n </NestedModel2>\n </NestedModel1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class NestedModel2:\n element = pb.field()\n\n\n @pb.model\n class NestedModel1:\n nested = pb.nested(NestedModel2)\n\n\n @pb.model\n class TestModel:\n nested = pb.nested(NestedModel1)\n model = pb.from_xml(TestModel, xml)\n assert model.nested.nested.element == 'value'\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_element_list_deserialization():\n xml = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n <TestModel>\n <element1>value1</element1>\n <element1>value2</element1>\n </TestModel>\n \"\"\"\n\n\n @pb.model\n class TestModel:\n element1 = pb.as_list(pb.field())\n model = pb.from_xml(TestModel, xml)\n assert model.element1 == ['value1', 'value2']\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,334
d451e12cc8670e34afd4f081099cd18888bfb923
import random import unittest from selenium import webdriver from selenium.webdriver.common.keys import Keys from webdriver_manager.chrome import ChromeDriverManager from time import sleep from random import choice from string import ascii_letters # def phone(): # var_code = [+3896, +38050, +38097, +38098, +38073, +38099] # code = random.choice(var_code) # num = (random.randrange(10, 9000000, 5)) # result ='+'+str(code) + str(num) # return result mail_name = ['Olivia','Noah','Ethan','Mason','Logan','Lucas','Jacob','Jackson','Aiden', 'Jack', 'Luke', 'Elijah', 'Benjamin', 'James', 'William', 'Michael', 'Alexander', 'Oliver', 'Daniel', 'Henry', 'Owen', 'Gabriel', 'Matthew', 'Carter', 'Ryan', 'Wyatt', 'Andrew', 'Caleb', 'Jayden', 'Connor', 'Liam', 'Emma', 'Sophia', 'Ava', 'Isabella', 'Mia', 'Charlotte', 'Emily', 'Harper', 'Abigail', 'Madison', 'Avery', 'Ella', 'Madison', 'Lily', 'Chloe', 'Sofia', 'Evelyn', 'Hannah', 'Addison', 'Grace', 'Zoey', 'Aubrey', 'Aria', 'Zoe', 'Ellie', 'Audrey', 'Natalie', 'Elizabeth', 'Scarlett', ] domains = ['@gmail.com', '@mail.ru','@I.ua','@yahoo.com','@meta.ua', '@icloud.com', '@ukr.net','@yandex.ru'] def e_mail(): first_email_part = (''.join(choice(ascii_letters) for i in range(4))) second_email_part = random.choice(mail_name) final_part = random.choice(domains) result = str(first_email_part) + str(second_email_part)+ str(final_part) return result #_______________________EMAIL FUNCTION______________________________________ name_list = ['Иван', 'Гена', 'Кирилл', 'Валентина', 'Дима', 'Ашот', 'Андрей', 'Павел', 'Паисий', 'Пантелеймон', 'Парфений', 'Пафнутий', 'Пахомий', 'Пётр', 'Платон', 'Порфирий', 'Потап', 'Пров', 'Прокопий', 'Протасий', 'Прохор', 'Вазген', 'Эдурд', 'Виталик', 'Марина', 'Элона', 'Илья', 'Володя', 'Артем', 'Василий', 'Гриша', 'Леонид', 'Назар', 'Юрка', 'Алёна', 'Алина', 'Димас', 'Максим' ] def char_name(): name = random.choice(name_list) return name def phone(): var_code = [96, 50, 97, 98, 73, 99] code = random.choice(var_code) num = (random.randrange(9000000)) result = str(code) + str(num) return result #_________________Phone_function_________________ # print(char_name()) # print(str(phone())) #______________________________ site= 'xxx' account = '/html/body/div[1]/div[2]/nonutch/div/div[2]/div[2]/div/div[2]/div/a[1]' class some_site(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome() def test_TT_signUP(self): self.driver.get(site) self.driver.maximize_window() sleep(2) self.driver.find_element_by_xpath('//*[@id="mdl-subcribe-uk"]/button').click() self.driver.find_element_by_xpath(account).click() name=self.driver.find_element_by_id('render_form_name') name.send_keys(char_name()) sleep(3) email = self.driver.find_element_by_id('render_form_email') email.send_keys(e_mail()) sleep(5) fone = self.driver.find_element_by_id('render_form_phone') fone.send_keys(phone()) sleep(7) # # self.driver.find_element_by_class_name('select2-selection__rendered').click() #//*[@id="select2-render_form_office_id-container"] # sleep(2) # office = self.driver.find_element_by_class_name('select2-selection__rendered') # office.send_keys(Keys.DOWN) # sleep(3) # office.send_keys(Keys.ENTER) # sleep(2) self.driver.find_element_by_id('render_form_submit').click() sleep(50) # # def tearDown(self): # self.driver.quit() if __name__ == '__main__': unittest.main() # # # # # # # # # # # # # # # # # # # #
[ "import random\nimport unittest\nfrom selenium import webdriver\nfrom selenium.webdriver.common.keys import Keys\nfrom webdriver_manager.chrome import ChromeDriverManager\nfrom time import sleep\nfrom random import choice\nfrom string import ascii_letters\n\n# def phone():\n# var_code = [+3896, +38050, +38097, +38098, +38073, +38099]\n# code = random.choice(var_code)\n# num = (random.randrange(10, 9000000, 5))\n# result ='+'+str(code) + str(num)\n# return result\nmail_name = ['Olivia','Noah','Ethan','Mason','Logan','Lucas','Jacob','Jackson','Aiden',\n'Jack',\n'Luke',\n'Elijah',\n'Benjamin',\n'James',\n'William',\n'Michael',\n'Alexander',\n'Oliver',\n'Daniel',\n'Henry',\n'Owen',\n'Gabriel',\n'Matthew',\n'Carter',\n'Ryan',\n'Wyatt',\n'Andrew',\n'Caleb',\n'Jayden',\n'Connor',\n'Liam',\n'Emma',\n'Sophia',\n'Ava',\n'Isabella',\n'Mia',\n'Charlotte',\n'Emily',\n'Harper',\n'Abigail',\n'Madison',\n'Avery',\n'Ella',\n'Madison',\n'Lily',\n'Chloe',\n'Sofia',\n'Evelyn',\n'Hannah',\n'Addison',\n'Grace',\n'Zoey',\n'Aubrey',\n'Aria',\n'Zoe',\n'Ellie',\n'Audrey',\n'Natalie',\n'Elizabeth',\n'Scarlett',\n]\ndomains = ['@gmail.com', '@mail.ru','@I.ua','@yahoo.com','@meta.ua', '@icloud.com', '@ukr.net','@yandex.ru']\ndef e_mail():\n first_email_part = (''.join(choice(ascii_letters) for i in range(4)))\n second_email_part = random.choice(mail_name)\n final_part = random.choice(domains)\n result = str(first_email_part) + str(second_email_part)+ str(final_part)\n return result\n#_______________________EMAIL FUNCTION______________________________________\n\n\n\nname_list = ['Иван', 'Гена', 'Кирилл', 'Валентина', 'Дима', 'Ашот', 'Андрей',\n'Павел',\n'Паисий',\n'Пантелеймон',\n'Парфений',\n'Пафнутий',\n'Пахомий',\n'Пётр',\n'Платон',\n'Порфирий',\n'Потап',\n'Пров',\n'Прокопий',\n'Протасий',\n'Прохор',\n\n'Вазген', 'Эдурд', 'Виталик', 'Марина', 'Элона', 'Илья', 'Володя', 'Артем', 'Василий', 'Гриша',\n'Леонид', 'Назар', 'Юрка', 'Алёна', 'Алина', 'Димас', 'Максим' ]\ndef char_name():\n name = random.choice(name_list)\n return name\n\n\n\n\n\n\n\ndef phone():\n var_code = [96, 50, 97, 98, 73, 99]\n code = random.choice(var_code)\n num = (random.randrange(9000000))\n result = str(code) + str(num)\n return result\n#_________________Phone_function_________________\n\n\n\n\n# print(char_name())\n# print(str(phone()))\n#______________________________\n\nsite= 'xxx'\naccount = '/html/body/div[1]/div[2]/nonutch/div/div[2]/div[2]/div/div[2]/div/a[1]'\n\nclass some_site(unittest.TestCase):\n def setUp(self):\n self.driver = webdriver.Chrome()\n\n def test_TT_signUP(self):\n self.driver.get(site)\n self.driver.maximize_window()\n sleep(2)\n self.driver.find_element_by_xpath('//*[@id=\"mdl-subcribe-uk\"]/button').click()\n\n\n self.driver.find_element_by_xpath(account).click()\n name=self.driver.find_element_by_id('render_form_name')\n name.send_keys(char_name())\n sleep(3)\n\n email = self.driver.find_element_by_id('render_form_email')\n email.send_keys(e_mail())\n sleep(5)\n\n fone = self.driver.find_element_by_id('render_form_phone')\n fone.send_keys(phone())\n\n sleep(7)\n #\n # self.driver.find_element_by_class_name('select2-selection__rendered').click() #//*[@id=\"select2-render_form_office_id-container\"]\n # sleep(2)\n # office = self.driver.find_element_by_class_name('select2-selection__rendered')\n # office.send_keys(Keys.DOWN)\n # sleep(3)\n # office.send_keys(Keys.ENTER)\n # sleep(2)\n self.driver.find_element_by_id('render_form_submit').click()\n sleep(50)\n#\n # def tearDown(self):\n # self.driver.quit()\n\nif __name__ == '__main__':\n unittest.main()\n\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n#\n", "import random\nimport unittest\nfrom selenium import webdriver\nfrom selenium.webdriver.common.keys import Keys\nfrom webdriver_manager.chrome import ChromeDriverManager\nfrom time import sleep\nfrom random import choice\nfrom string import ascii_letters\nmail_name = ['Olivia', 'Noah', 'Ethan', 'Mason', 'Logan', 'Lucas', 'Jacob',\n 'Jackson', 'Aiden', 'Jack', 'Luke', 'Elijah', 'Benjamin', 'James',\n 'William', 'Michael', 'Alexander', 'Oliver', 'Daniel', 'Henry', 'Owen',\n 'Gabriel', 'Matthew', 'Carter', 'Ryan', 'Wyatt', 'Andrew', 'Caleb',\n 'Jayden', 'Connor', 'Liam', 'Emma', 'Sophia', 'Ava', 'Isabella', 'Mia',\n 'Charlotte', 'Emily', 'Harper', 'Abigail', 'Madison', 'Avery', 'Ella',\n 'Madison', 'Lily', 'Chloe', 'Sofia', 'Evelyn', 'Hannah', 'Addison',\n 'Grace', 'Zoey', 'Aubrey', 'Aria', 'Zoe', 'Ellie', 'Audrey', 'Natalie',\n 'Elizabeth', 'Scarlett']\ndomains = ['@gmail.com', '@mail.ru', '@I.ua', '@yahoo.com', '@meta.ua',\n '@icloud.com', '@ukr.net', '@yandex.ru']\n\n\ndef e_mail():\n first_email_part = ''.join(choice(ascii_letters) for i in range(4))\n second_email_part = random.choice(mail_name)\n final_part = random.choice(domains)\n result = str(first_email_part) + str(second_email_part) + str(final_part)\n return result\n\n\nname_list = ['Иван', 'Гена', 'Кирилл', 'Валентина', 'Дима', 'Ашот',\n 'Андрей', 'Павел', 'Паисий', 'Пантелеймон', 'Парфений', 'Пафнутий',\n 'Пахомий', 'Пётр', 'Платон', 'Порфирий', 'Потап', 'Пров', 'Прокопий',\n 'Протасий', 'Прохор', 'Вазген', 'Эдурд', 'Виталик', 'Марина', 'Элона',\n 'Илья', 'Володя', 'Артем', 'Василий', 'Гриша', 'Леонид', 'Назар',\n 'Юрка', 'Алёна', 'Алина', 'Димас', 'Максим']\n\n\ndef char_name():\n name = random.choice(name_list)\n return name\n\n\ndef phone():\n var_code = [96, 50, 97, 98, 73, 99]\n code = random.choice(var_code)\n num = random.randrange(9000000)\n result = str(code) + str(num)\n return result\n\n\nsite = 'xxx'\naccount = (\n '/html/body/div[1]/div[2]/nonutch/div/div[2]/div[2]/div/div[2]/div/a[1]')\n\n\nclass some_site(unittest.TestCase):\n\n def setUp(self):\n self.driver = webdriver.Chrome()\n\n def test_TT_signUP(self):\n self.driver.get(site)\n self.driver.maximize_window()\n sleep(2)\n self.driver.find_element_by_xpath('//*[@id=\"mdl-subcribe-uk\"]/button'\n ).click()\n self.driver.find_element_by_xpath(account).click()\n name = self.driver.find_element_by_id('render_form_name')\n name.send_keys(char_name())\n sleep(3)\n email = self.driver.find_element_by_id('render_form_email')\n email.send_keys(e_mail())\n sleep(5)\n fone = self.driver.find_element_by_id('render_form_phone')\n fone.send_keys(phone())\n sleep(7)\n self.driver.find_element_by_id('render_form_submit').click()\n sleep(50)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\nmail_name = ['Olivia', 'Noah', 'Ethan', 'Mason', 'Logan', 'Lucas', 'Jacob',\n 'Jackson', 'Aiden', 'Jack', 'Luke', 'Elijah', 'Benjamin', 'James',\n 'William', 'Michael', 'Alexander', 'Oliver', 'Daniel', 'Henry', 'Owen',\n 'Gabriel', 'Matthew', 'Carter', 'Ryan', 'Wyatt', 'Andrew', 'Caleb',\n 'Jayden', 'Connor', 'Liam', 'Emma', 'Sophia', 'Ava', 'Isabella', 'Mia',\n 'Charlotte', 'Emily', 'Harper', 'Abigail', 'Madison', 'Avery', 'Ella',\n 'Madison', 'Lily', 'Chloe', 'Sofia', 'Evelyn', 'Hannah', 'Addison',\n 'Grace', 'Zoey', 'Aubrey', 'Aria', 'Zoe', 'Ellie', 'Audrey', 'Natalie',\n 'Elizabeth', 'Scarlett']\ndomains = ['@gmail.com', '@mail.ru', '@I.ua', '@yahoo.com', '@meta.ua',\n '@icloud.com', '@ukr.net', '@yandex.ru']\n\n\ndef e_mail():\n first_email_part = ''.join(choice(ascii_letters) for i in range(4))\n second_email_part = random.choice(mail_name)\n final_part = random.choice(domains)\n result = str(first_email_part) + str(second_email_part) + str(final_part)\n return result\n\n\nname_list = ['Иван', 'Гена', 'Кирилл', 'Валентина', 'Дима', 'Ашот',\n 'Андрей', 'Павел', 'Паисий', 'Пантелеймон', 'Парфений', 'Пафнутий',\n 'Пахомий', 'Пётр', 'Платон', 'Порфирий', 'Потап', 'Пров', 'Прокопий',\n 'Протасий', 'Прохор', 'Вазген', 'Эдурд', 'Виталик', 'Марина', 'Элона',\n 'Илья', 'Володя', 'Артем', 'Василий', 'Гриша', 'Леонид', 'Назар',\n 'Юрка', 'Алёна', 'Алина', 'Димас', 'Максим']\n\n\ndef char_name():\n name = random.choice(name_list)\n return name\n\n\ndef phone():\n var_code = [96, 50, 97, 98, 73, 99]\n code = random.choice(var_code)\n num = random.randrange(9000000)\n result = str(code) + str(num)\n return result\n\n\nsite = 'xxx'\naccount = (\n '/html/body/div[1]/div[2]/nonutch/div/div[2]/div[2]/div/div[2]/div/a[1]')\n\n\nclass some_site(unittest.TestCase):\n\n def setUp(self):\n self.driver = webdriver.Chrome()\n\n def test_TT_signUP(self):\n self.driver.get(site)\n self.driver.maximize_window()\n sleep(2)\n self.driver.find_element_by_xpath('//*[@id=\"mdl-subcribe-uk\"]/button'\n ).click()\n self.driver.find_element_by_xpath(account).click()\n name = self.driver.find_element_by_id('render_form_name')\n name.send_keys(char_name())\n sleep(3)\n email = self.driver.find_element_by_id('render_form_email')\n email.send_keys(e_mail())\n sleep(5)\n fone = self.driver.find_element_by_id('render_form_phone')\n fone.send_keys(phone())\n sleep(7)\n self.driver.find_element_by_id('render_form_submit').click()\n sleep(50)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\n<assignment token>\n\n\ndef e_mail():\n first_email_part = ''.join(choice(ascii_letters) for i in range(4))\n second_email_part = random.choice(mail_name)\n final_part = random.choice(domains)\n result = str(first_email_part) + str(second_email_part) + str(final_part)\n return result\n\n\n<assignment token>\n\n\ndef char_name():\n name = random.choice(name_list)\n return name\n\n\ndef phone():\n var_code = [96, 50, 97, 98, 73, 99]\n code = random.choice(var_code)\n num = random.randrange(9000000)\n result = str(code) + str(num)\n return result\n\n\n<assignment token>\n\n\nclass some_site(unittest.TestCase):\n\n def setUp(self):\n self.driver = webdriver.Chrome()\n\n def test_TT_signUP(self):\n self.driver.get(site)\n self.driver.maximize_window()\n sleep(2)\n self.driver.find_element_by_xpath('//*[@id=\"mdl-subcribe-uk\"]/button'\n ).click()\n self.driver.find_element_by_xpath(account).click()\n name = self.driver.find_element_by_id('render_form_name')\n name.send_keys(char_name())\n sleep(3)\n email = self.driver.find_element_by_id('render_form_email')\n email.send_keys(e_mail())\n sleep(5)\n fone = self.driver.find_element_by_id('render_form_phone')\n fone.send_keys(phone())\n sleep(7)\n self.driver.find_element_by_id('render_form_submit').click()\n sleep(50)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\n<assignment token>\n\n\ndef e_mail():\n first_email_part = ''.join(choice(ascii_letters) for i in range(4))\n second_email_part = random.choice(mail_name)\n final_part = random.choice(domains)\n result = str(first_email_part) + str(second_email_part) + str(final_part)\n return result\n\n\n<assignment token>\n\n\ndef char_name():\n name = random.choice(name_list)\n return name\n\n\ndef phone():\n var_code = [96, 50, 97, 98, 73, 99]\n code = random.choice(var_code)\n num = random.randrange(9000000)\n result = str(code) + str(num)\n return result\n\n\n<assignment token>\n\n\nclass some_site(unittest.TestCase):\n\n def setUp(self):\n self.driver = webdriver.Chrome()\n\n def test_TT_signUP(self):\n self.driver.get(site)\n self.driver.maximize_window()\n sleep(2)\n self.driver.find_element_by_xpath('//*[@id=\"mdl-subcribe-uk\"]/button'\n ).click()\n self.driver.find_element_by_xpath(account).click()\n name = self.driver.find_element_by_id('render_form_name')\n name.send_keys(char_name())\n sleep(3)\n email = self.driver.find_element_by_id('render_form_email')\n email.send_keys(e_mail())\n sleep(5)\n fone = self.driver.find_element_by_id('render_form_phone')\n fone.send_keys(phone())\n sleep(7)\n self.driver.find_element_by_id('render_form_submit').click()\n sleep(50)\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef e_mail():\n first_email_part = ''.join(choice(ascii_letters) for i in range(4))\n second_email_part = random.choice(mail_name)\n final_part = random.choice(domains)\n result = str(first_email_part) + str(second_email_part) + str(final_part)\n return result\n\n\n<assignment token>\n\n\ndef char_name():\n name = random.choice(name_list)\n return name\n\n\n<function token>\n<assignment token>\n\n\nclass some_site(unittest.TestCase):\n\n def setUp(self):\n self.driver = webdriver.Chrome()\n\n def test_TT_signUP(self):\n self.driver.get(site)\n self.driver.maximize_window()\n sleep(2)\n self.driver.find_element_by_xpath('//*[@id=\"mdl-subcribe-uk\"]/button'\n ).click()\n self.driver.find_element_by_xpath(account).click()\n name = self.driver.find_element_by_id('render_form_name')\n name.send_keys(char_name())\n sleep(3)\n email = self.driver.find_element_by_id('render_form_email')\n email.send_keys(e_mail())\n sleep(5)\n fone = self.driver.find_element_by_id('render_form_phone')\n fone.send_keys(phone())\n sleep(7)\n self.driver.find_element_by_id('render_form_submit').click()\n sleep(50)\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef e_mail():\n first_email_part = ''.join(choice(ascii_letters) for i in range(4))\n second_email_part = random.choice(mail_name)\n final_part = random.choice(domains)\n result = str(first_email_part) + str(second_email_part) + str(final_part)\n return result\n\n\n<assignment token>\n<function token>\n<function token>\n<assignment token>\n\n\nclass some_site(unittest.TestCase):\n\n def setUp(self):\n self.driver = webdriver.Chrome()\n\n def test_TT_signUP(self):\n self.driver.get(site)\n self.driver.maximize_window()\n sleep(2)\n self.driver.find_element_by_xpath('//*[@id=\"mdl-subcribe-uk\"]/button'\n ).click()\n self.driver.find_element_by_xpath(account).click()\n name = self.driver.find_element_by_id('render_form_name')\n name.send_keys(char_name())\n sleep(3)\n email = self.driver.find_element_by_id('render_form_email')\n email.send_keys(e_mail())\n sleep(5)\n fone = self.driver.find_element_by_id('render_form_phone')\n fone.send_keys(phone())\n sleep(7)\n self.driver.find_element_by_id('render_form_submit').click()\n sleep(50)\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n<assignment token>\n\n\nclass some_site(unittest.TestCase):\n\n def setUp(self):\n self.driver = webdriver.Chrome()\n\n def test_TT_signUP(self):\n self.driver.get(site)\n self.driver.maximize_window()\n sleep(2)\n self.driver.find_element_by_xpath('//*[@id=\"mdl-subcribe-uk\"]/button'\n ).click()\n self.driver.find_element_by_xpath(account).click()\n name = self.driver.find_element_by_id('render_form_name')\n name.send_keys(char_name())\n sleep(3)\n email = self.driver.find_element_by_id('render_form_email')\n email.send_keys(e_mail())\n sleep(5)\n fone = self.driver.find_element_by_id('render_form_phone')\n fone.send_keys(phone())\n sleep(7)\n self.driver.find_element_by_id('render_form_submit').click()\n sleep(50)\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n<assignment token>\n\n\nclass some_site(unittest.TestCase):\n <function token>\n\n def test_TT_signUP(self):\n self.driver.get(site)\n self.driver.maximize_window()\n sleep(2)\n self.driver.find_element_by_xpath('//*[@id=\"mdl-subcribe-uk\"]/button'\n ).click()\n self.driver.find_element_by_xpath(account).click()\n name = self.driver.find_element_by_id('render_form_name')\n name.send_keys(char_name())\n sleep(3)\n email = self.driver.find_element_by_id('render_form_email')\n email.send_keys(e_mail())\n sleep(5)\n fone = self.driver.find_element_by_id('render_form_phone')\n fone.send_keys(phone())\n sleep(7)\n self.driver.find_element_by_id('render_form_submit').click()\n sleep(50)\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n<assignment token>\n\n\nclass some_site(unittest.TestCase):\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n<assignment token>\n<class token>\n<code token>\n" ]
false
98,335
9b48631714f71592e5582792c24028bc28bf557f
from django.urls import path from django.views.decorators.cache import never_cache from django.conf.urls.static import static, serve from django.urls import reverse_lazy from django.contrib.auth.views import PasswordResetConfirmView from bboard import settings from .views import detail, detail1, profile_bb_detail from .views import index, other_page, BBLoginView, profile, BBLogoutView, ChangeUserInfoView, BBPasswordChangeView, RegisterUserView, RegisterDoneView, by_rubric from .views import user_activate, DeleteUserView, BBPasswordResetView, BBPasswordResetDoneView, BBPasswordResetCompleteView, profile_bb_add, profile_bb_change, profile_bb_delete app_name = 'main' urlpatterns = [ path('detail/<int:pk>/', detail1, name='detail1'), path('<int:rubric_pk>/<int:pk>/', detail, name='detail'), path('<int:pk>/', by_rubric, name='by_rubric'), path('<str:page>/', other_page, name='other'), path('', index, name='index'), path('accounts/login/', BBLoginView.as_view(), name='login'), path('accounts/logout/', BBLogoutView.as_view(), name='logout'), path('accounts/profile/change/<int:pk>', profile_bb_change, name='profile_bb_change'), path('accounts/profile/delete/<int:pk>', profile_bb_delete, name='profile_bb_delete'), path('accounts/profile/add', profile_bb_add, name='profile_bb_add'), path('accounts/profile/<int:pk>', profile_bb_detail, name='profile_bb_detail'), path('accounts/profile/', profile, name='profile'), path('accounts/profile/change/', ChangeUserInfoView.as_view(), name='profile_change'), path('accounts/profile/delete/', DeleteUserView.as_view(), name='profile_delete'), path('accounts/password/change', BBPasswordChangeView.as_view(), name='password_change'), path('accounts/register/done', RegisterDoneView.as_view(), name='register_done'), path('accounts/register/', RegisterUserView.as_view(), name='register'), path('accounts/register/activate/<str:sign>/', user_activate, name='register_activate'), path('accounts/password_reset/', BBPasswordResetView.as_view(), name='password_reset'), path('accounts/password/reset/<uidb64>/<token>/', PasswordResetConfirmView.as_view(template_name = 'main/password_reset_confirm.html', post_reset_login = False, success_url = reverse_lazy('main:password_reset_complete')), name='password_reset_confirm'), path('accounts/password_reset/done', BBPasswordResetDoneView.as_view(), name='password_reset_done'), path('accounts/password/reset/done/', BBPasswordResetCompleteView.as_view(), name='password_reset_complete'), ] if settings.DEBUG: urlpatterns.append(path('static/<path:path>', never_cache(serve))) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "from django.urls import path\n\nfrom django.views.decorators.cache import never_cache\nfrom django.conf.urls.static import static, serve\nfrom django.urls import reverse_lazy\nfrom django.contrib.auth.views import PasswordResetConfirmView\nfrom bboard import settings\n\nfrom .views import detail, detail1, profile_bb_detail\nfrom .views import index, other_page, BBLoginView, profile, BBLogoutView, ChangeUserInfoView, BBPasswordChangeView, RegisterUserView, RegisterDoneView, by_rubric\nfrom .views import user_activate, DeleteUserView, BBPasswordResetView, BBPasswordResetDoneView, BBPasswordResetCompleteView, profile_bb_add, profile_bb_change, profile_bb_delete\n\n\napp_name = 'main'\nurlpatterns = [\n\n path('detail/<int:pk>/', detail1, name='detail1'),\n path('<int:rubric_pk>/<int:pk>/', detail, name='detail'),\n path('<int:pk>/', by_rubric, name='by_rubric'),\n path('<str:page>/', other_page, name='other'),\n\n path('', index, name='index'),\n\n path('accounts/login/', BBLoginView.as_view(), name='login'),\n\n path('accounts/logout/', BBLogoutView.as_view(), name='logout'),\n\n path('accounts/profile/change/<int:pk>', profile_bb_change, name='profile_bb_change'),\n path('accounts/profile/delete/<int:pk>', profile_bb_delete, name='profile_bb_delete'),\n path('accounts/profile/add', profile_bb_add, name='profile_bb_add'),\n path('accounts/profile/<int:pk>', profile_bb_detail, name='profile_bb_detail'),\n path('accounts/profile/', profile, name='profile'),\n path('accounts/profile/change/', ChangeUserInfoView.as_view(), name='profile_change'),\n path('accounts/profile/delete/', DeleteUserView.as_view(), name='profile_delete'),\n\n path('accounts/password/change', BBPasswordChangeView.as_view(), name='password_change'),\n\n path('accounts/register/done', RegisterDoneView.as_view(), name='register_done'),\n path('accounts/register/', RegisterUserView.as_view(), name='register'),\n path('accounts/register/activate/<str:sign>/', user_activate, name='register_activate'),\n\n\n path('accounts/password_reset/', BBPasswordResetView.as_view(), name='password_reset'),\n path('accounts/password/reset/<uidb64>/<token>/', PasswordResetConfirmView.as_view(template_name = 'main/password_reset_confirm.html', post_reset_login = False,\n success_url = reverse_lazy('main:password_reset_complete')),\n name='password_reset_confirm'),\n path('accounts/password_reset/done', BBPasswordResetDoneView.as_view(), name='password_reset_done'),\n path('accounts/password/reset/done/', BBPasswordResetCompleteView.as_view(), name='password_reset_complete'),\n\n\n\n\n]\n\nif settings.DEBUG:\n urlpatterns.append(path('static/<path:path>', never_cache(serve)))\n urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)", "from django.urls import path\nfrom django.views.decorators.cache import never_cache\nfrom django.conf.urls.static import static, serve\nfrom django.urls import reverse_lazy\nfrom django.contrib.auth.views import PasswordResetConfirmView\nfrom bboard import settings\nfrom .views import detail, detail1, profile_bb_detail\nfrom .views import index, other_page, BBLoginView, profile, BBLogoutView, ChangeUserInfoView, BBPasswordChangeView, RegisterUserView, RegisterDoneView, by_rubric\nfrom .views import user_activate, DeleteUserView, BBPasswordResetView, BBPasswordResetDoneView, BBPasswordResetCompleteView, profile_bb_add, profile_bb_change, profile_bb_delete\napp_name = 'main'\nurlpatterns = [path('detail/<int:pk>/', detail1, name='detail1'), path(\n '<int:rubric_pk>/<int:pk>/', detail, name='detail'), path('<int:pk>/',\n by_rubric, name='by_rubric'), path('<str:page>/', other_page, name=\n 'other'), path('', index, name='index'), path('accounts/login/',\n BBLoginView.as_view(), name='login'), path('accounts/logout/',\n BBLogoutView.as_view(), name='logout'), path(\n 'accounts/profile/change/<int:pk>', profile_bb_change, name=\n 'profile_bb_change'), path('accounts/profile/delete/<int:pk>',\n profile_bb_delete, name='profile_bb_delete'), path(\n 'accounts/profile/add', profile_bb_add, name='profile_bb_add'), path(\n 'accounts/profile/<int:pk>', profile_bb_detail, name=\n 'profile_bb_detail'), path('accounts/profile/', profile, name='profile'\n ), path('accounts/profile/change/', ChangeUserInfoView.as_view(), name=\n 'profile_change'), path('accounts/profile/delete/', DeleteUserView.\n as_view(), name='profile_delete'), path('accounts/password/change',\n BBPasswordChangeView.as_view(), name='password_change'), path(\n 'accounts/register/done', RegisterDoneView.as_view(), name=\n 'register_done'), path('accounts/register/', RegisterUserView.as_view(),\n name='register'), path('accounts/register/activate/<str:sign>/',\n user_activate, name='register_activate'), path(\n 'accounts/password_reset/', BBPasswordResetView.as_view(), name=\n 'password_reset'), path('accounts/password/reset/<uidb64>/<token>/',\n PasswordResetConfirmView.as_view(template_name=\n 'main/password_reset_confirm.html', post_reset_login=False, success_url\n =reverse_lazy('main:password_reset_complete')), name=\n 'password_reset_confirm'), path('accounts/password_reset/done',\n BBPasswordResetDoneView.as_view(), name='password_reset_done'), path(\n 'accounts/password/reset/done/', BBPasswordResetCompleteView.as_view(),\n name='password_reset_complete')]\nif settings.DEBUG:\n urlpatterns.append(path('static/<path:path>', never_cache(serve)))\n urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT\n )\n", "<import token>\napp_name = 'main'\nurlpatterns = [path('detail/<int:pk>/', detail1, name='detail1'), path(\n '<int:rubric_pk>/<int:pk>/', detail, name='detail'), path('<int:pk>/',\n by_rubric, name='by_rubric'), path('<str:page>/', other_page, name=\n 'other'), path('', index, name='index'), path('accounts/login/',\n BBLoginView.as_view(), name='login'), path('accounts/logout/',\n BBLogoutView.as_view(), name='logout'), path(\n 'accounts/profile/change/<int:pk>', profile_bb_change, name=\n 'profile_bb_change'), path('accounts/profile/delete/<int:pk>',\n profile_bb_delete, name='profile_bb_delete'), path(\n 'accounts/profile/add', profile_bb_add, name='profile_bb_add'), path(\n 'accounts/profile/<int:pk>', profile_bb_detail, name=\n 'profile_bb_detail'), path('accounts/profile/', profile, name='profile'\n ), path('accounts/profile/change/', ChangeUserInfoView.as_view(), name=\n 'profile_change'), path('accounts/profile/delete/', DeleteUserView.\n as_view(), name='profile_delete'), path('accounts/password/change',\n BBPasswordChangeView.as_view(), name='password_change'), path(\n 'accounts/register/done', RegisterDoneView.as_view(), name=\n 'register_done'), path('accounts/register/', RegisterUserView.as_view(),\n name='register'), path('accounts/register/activate/<str:sign>/',\n user_activate, name='register_activate'), path(\n 'accounts/password_reset/', BBPasswordResetView.as_view(), name=\n 'password_reset'), path('accounts/password/reset/<uidb64>/<token>/',\n PasswordResetConfirmView.as_view(template_name=\n 'main/password_reset_confirm.html', post_reset_login=False, success_url\n =reverse_lazy('main:password_reset_complete')), name=\n 'password_reset_confirm'), path('accounts/password_reset/done',\n BBPasswordResetDoneView.as_view(), name='password_reset_done'), path(\n 'accounts/password/reset/done/', BBPasswordResetCompleteView.as_view(),\n name='password_reset_complete')]\nif settings.DEBUG:\n urlpatterns.append(path('static/<path:path>', never_cache(serve)))\n urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT\n )\n", "<import token>\n<assignment token>\nif settings.DEBUG:\n urlpatterns.append(path('static/<path:path>', never_cache(serve)))\n urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT\n )\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
98,336
4b59012e05d2f8264a8668f204f0cee1f4534254
__author__ = 'djvdorp' from collections import OrderedDict from progressbar import * import shapefile import pyproj import csv import logging import pandas HECTOPUNTEN_OUTPUT_FIELDS = ['HECTOMTRNG', 'AFSTAND', 'WVK_ID', 'WVK_BEGDAT'] WEGVAKKEN_OUTPUT_FIELDS = ['WVK_ID', 'WVK_BEGDAT', 'JTE_ID_BEG', 'JTE_ID_END', 'WEGBEHSRT', 'WEGNUMMER', 'WEGDEELLTR', 'HECTO_LTTR', 'BAANSUBSRT', 'RPE_CODE', 'ADMRICHTNG', 'RIJRICHTNG', 'STT_NAAM', 'WPSNAAMNEN', 'GME_ID', 'GME_NAAM', 'HNRSTRLNKS', 'HNRSTRRHTS', 'E_HNR_LNKS', 'E_HNR_RHTS', 'L_HNR_LNKS', 'L_HNR_RHTS', 'BEGAFSTAND', 'ENDAFSTAND', 'BEGINKM', 'EINDKM', 'POS_TV_WOL'] MERGED_OUTPUT_FIELDS = ['ID', 'WEGNUMMER', 'HECTOMTRNG', 'LONGITUDE', 'LATITUDE', 'STT_NAAM', 'GME_NAAM', 'WEGBEHSRT', 'RPE_CODE', 'POS_TV_WOL', 'WEGDEELLTR', 'HECTO_LTTR', 'BAANSUBSRT'] MERGED_RENAME_FIELDS_MAPPING = {'ID': 'HP_ID', 'WEGNUMMER': 'WEGNR','HECTOMTRNG': 'HECTONR'} logging.basicConfig(level=logging.INFO) widgets = ['Processing: ', Percentage(), ' ', Bar(marker=RotatingMarker()), ' ', ETA()] def shp_transform_to_different_projection(input_path, input_fields, src_projection, dest_projection, output_filename): logging.info("START processing shapefile '{}' to '{}'".format(input_path, output_filename)) csv_file = open(output_filename, 'wb') writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_NONNUMERIC) r = shapefile.Reader(input_path) input_shapes = r.shapeRecords() nr_of_shapes_in_file = len(input_shapes) logging.info("{} shapes in file '{}' will be transformed".format(nr_of_shapes_in_file, input_path)) field_names = [str(i[0]) for i in r.fields] field_names.remove('DeletionFlag') # of moet dit zijn: del field_names[0] logging.info("fieldNames in shapefile: {}".format(field_names)) input_projection = pyproj.Proj(src_projection) output_projection = pyproj.Proj(dest_projection) # 3 = shapefile.POLYLINE = wegvakken # 8 = shapefile.MULTIPOINT = hectopunten logging.info("shapeType read: {}".format(r.shapeType)) counter = 0 pbar = ProgressBar(widgets=widgets, maxval=nr_of_shapes_in_file).start() for input_shape in input_shapes: nr_of_points_in_shape = len(input_shape.shape.points) result_entry = OrderedDict() for input_field in input_fields: key = (field_names.index(input_field)) input_record = input_shape.record input_entry = input_record[key] # Lists (voor datum) platslaan tot een string if isinstance(input_entry, list): input_entry = int_array_to_string(input_entry) # HECTOMTRNG in Hectopunten.shp moet gedeeld worden door 10 if input_field == 'HECTOMTRNG': input_entry = (input_record[key] / 10.) result_entry[input_field] = input_entry if nr_of_points_in_shape == 1: input_x = input_shape.shape.points[0][0] input_y = input_shape.shape.points[0][1] # Convert input_x, input_y from Rijksdriehoekstelsel_New to WGS84 x, y = pyproj.transform(input_projection, output_projection, input_x, input_y) logging.debug(field_names) logging.debug([str(i) for i in input_record]) logging.debug('Rijksdriehoekstelsel_New ({:-f}, {:-f}) becomes WGS84 ({:-f}, {:-f})'.format(input_x, input_y, x, y)) result_entry['LONGITUDE'] = x result_entry['LATITUDE'] = y else: logging.debug("number of points for this shape was >1, it was: {}".format(nr_of_points_in_shape)) headers = result_entry.keys() if counter == 0: writer.writerow(headers) line = [] for field in headers: line.append(result_entry[field]) writer.writerow(line) counter += 1 pbar.update(counter) csv_file.close() pbar.finish() logging.info("FINISHED processing - saved file '{}'".format(output_filename)) def int_array_to_string(input_array): return "-".join(str(i) for i in input_array) def merge_shapefile_csvs(input_hectopunten, input_wegvakken, merge_on_field, fields_to_keep, fields_rename_mapping, output_filename): logging.info("START merging csv files '{}' and '{}' to file '{}'".format(input_hectopunten, input_wegvakken, output_filename)) hectopunten_df = pandas.read_csv(input_hectopunten) wegvakken_df = pandas.read_csv(input_wegvakken) # Join de 2 input files samen, left=hectopunten en right=wegvakken merged_df = pandas.merge(hectopunten_df, wegvakken_df, on=merge_on_field) # Voeg een ID field toe per regel merged_df['ID'] = merged_df.index # Bewaar alleen de meegegeven velden om te bewaren result_df = merged_df[fields_to_keep] # Hernoem columns zodat deze af kunnen wijken van de input columns result_df = result_df.rename(columns=fields_rename_mapping) # Exporteer dit naar een merged csv result_df.to_csv(output_filename, mode='wb', index=False, header=True, delimiter=',', quotechar='"', quoting=csv.QUOTE_NONNUMERIC) logging.info("FINISHED merging csv files - saved file '{}'".format(output_filename)) # Real action here input_projection_string = "+init=EPSG:28992" # Dit is Rijksdriehoekstelsel_New vanuit de .prj files, officieel EPSG:28992 Amersfoort / RD New output_projection_string = "+init=EPSG:4326" # LatLon with WGS84 datum used by GPS units and Google Earth, officieel EPSG:4326 # Bestanden kunnen worden gevonden op: http://www.jigsaw.nl/nwb/downloads/NWB_01-07-2014.zip shp_hectopunten = "input/Hectopunten/Hectopunten" shp_wegvakken = "input/Wegvakken/Wegvakken" # CSV files van de SHP files csv_hectopunten = "output/Hectopunten.csv" csv_wegvakken = "output/Wegvakken.csv" # CSV output na mergen csv_merged = "output/merged.csv" shp_transform_to_different_projection(shp_hectopunten, HECTOPUNTEN_OUTPUT_FIELDS, input_projection_string, output_projection_string, csv_hectopunten) shp_transform_to_different_projection(shp_wegvakken, WEGVAKKEN_OUTPUT_FIELDS, input_projection_string, output_projection_string, csv_wegvakken) merge_shapefile_csvs(csv_hectopunten, csv_wegvakken, 'WVK_ID', MERGED_OUTPUT_FIELDS, MERGED_RENAME_FIELDS_MAPPING, csv_merged)
[ "__author__ = 'djvdorp'\nfrom collections import OrderedDict\nfrom progressbar import *\n\nimport shapefile\nimport pyproj\nimport csv\nimport logging\nimport pandas\n\nHECTOPUNTEN_OUTPUT_FIELDS = ['HECTOMTRNG', 'AFSTAND', 'WVK_ID', 'WVK_BEGDAT']\nWEGVAKKEN_OUTPUT_FIELDS = ['WVK_ID', 'WVK_BEGDAT', 'JTE_ID_BEG', 'JTE_ID_END', 'WEGBEHSRT', 'WEGNUMMER', 'WEGDEELLTR', 'HECTO_LTTR', 'BAANSUBSRT', 'RPE_CODE', 'ADMRICHTNG', 'RIJRICHTNG', 'STT_NAAM', 'WPSNAAMNEN', 'GME_ID', 'GME_NAAM', 'HNRSTRLNKS', 'HNRSTRRHTS', 'E_HNR_LNKS', 'E_HNR_RHTS', 'L_HNR_LNKS', 'L_HNR_RHTS', 'BEGAFSTAND', 'ENDAFSTAND', 'BEGINKM', 'EINDKM', 'POS_TV_WOL']\n\nMERGED_OUTPUT_FIELDS = ['ID', 'WEGNUMMER', 'HECTOMTRNG', 'LONGITUDE', 'LATITUDE', 'STT_NAAM', 'GME_NAAM', 'WEGBEHSRT', 'RPE_CODE', 'POS_TV_WOL', 'WEGDEELLTR', 'HECTO_LTTR', 'BAANSUBSRT']\nMERGED_RENAME_FIELDS_MAPPING = {'ID': 'HP_ID', 'WEGNUMMER': 'WEGNR','HECTOMTRNG': 'HECTONR'}\n\nlogging.basicConfig(level=logging.INFO)\n\nwidgets = ['Processing: ', Percentage(), ' ', Bar(marker=RotatingMarker()), ' ', ETA()]\n\ndef shp_transform_to_different_projection(input_path, input_fields, src_projection, dest_projection, output_filename):\n logging.info(\"START processing shapefile '{}' to '{}'\".format(input_path, output_filename))\n\n csv_file = open(output_filename, 'wb')\n writer = csv.writer(csv_file, delimiter=',', quotechar='\"', quoting=csv.QUOTE_NONNUMERIC)\n\n r = shapefile.Reader(input_path)\n input_shapes = r.shapeRecords()\n\n nr_of_shapes_in_file = len(input_shapes)\n logging.info(\"{} shapes in file '{}' will be transformed\".format(nr_of_shapes_in_file, input_path))\n\n field_names = [str(i[0]) for i in r.fields]\n field_names.remove('DeletionFlag') # of moet dit zijn: del field_names[0]\n logging.info(\"fieldNames in shapefile: {}\".format(field_names))\n\n input_projection = pyproj.Proj(src_projection)\n output_projection = pyproj.Proj(dest_projection)\n\n # 3 = shapefile.POLYLINE = wegvakken\n # 8 = shapefile.MULTIPOINT = hectopunten\n logging.info(\"shapeType read: {}\".format(r.shapeType))\n\n counter = 0\n pbar = ProgressBar(widgets=widgets, maxval=nr_of_shapes_in_file).start()\n\n for input_shape in input_shapes:\n nr_of_points_in_shape = len(input_shape.shape.points)\n\n result_entry = OrderedDict()\n for input_field in input_fields:\n key = (field_names.index(input_field))\n\n input_record = input_shape.record\n input_entry = input_record[key]\n\n # Lists (voor datum) platslaan tot een string\n if isinstance(input_entry, list):\n input_entry = int_array_to_string(input_entry)\n\n # HECTOMTRNG in Hectopunten.shp moet gedeeld worden door 10\n if input_field == 'HECTOMTRNG':\n input_entry = (input_record[key] / 10.)\n\n result_entry[input_field] = input_entry\n\n if nr_of_points_in_shape == 1:\n input_x = input_shape.shape.points[0][0]\n input_y = input_shape.shape.points[0][1]\n\n # Convert input_x, input_y from Rijksdriehoekstelsel_New to WGS84\n x, y = pyproj.transform(input_projection, output_projection, input_x, input_y)\n\n logging.debug(field_names)\n logging.debug([str(i) for i in input_record])\n logging.debug('Rijksdriehoekstelsel_New ({:-f}, {:-f}) becomes WGS84 ({:-f}, {:-f})'.format(input_x, input_y, x, y))\n\n result_entry['LONGITUDE'] = x\n result_entry['LATITUDE'] = y\n else:\n logging.debug(\"number of points for this shape was >1, it was: {}\".format(nr_of_points_in_shape))\n\n headers = result_entry.keys()\n if counter == 0:\n writer.writerow(headers)\n\n line = []\n for field in headers:\n line.append(result_entry[field])\n writer.writerow(line)\n\n counter += 1\n pbar.update(counter)\n\n csv_file.close()\n pbar.finish()\n logging.info(\"FINISHED processing - saved file '{}'\".format(output_filename))\n\n\ndef int_array_to_string(input_array):\n return \"-\".join(str(i) for i in input_array)\n\n\ndef merge_shapefile_csvs(input_hectopunten, input_wegvakken, merge_on_field, fields_to_keep, fields_rename_mapping, output_filename):\n logging.info(\"START merging csv files '{}' and '{}' to file '{}'\".format(input_hectopunten, input_wegvakken, output_filename))\n hectopunten_df = pandas.read_csv(input_hectopunten)\n wegvakken_df = pandas.read_csv(input_wegvakken)\n\n # Join de 2 input files samen, left=hectopunten en right=wegvakken\n merged_df = pandas.merge(hectopunten_df, wegvakken_df, on=merge_on_field)\n # Voeg een ID field toe per regel\n merged_df['ID'] = merged_df.index\n\n # Bewaar alleen de meegegeven velden om te bewaren\n result_df = merged_df[fields_to_keep]\n\n # Hernoem columns zodat deze af kunnen wijken van de input columns\n result_df = result_df.rename(columns=fields_rename_mapping)\n\n # Exporteer dit naar een merged csv\n result_df.to_csv(output_filename, mode='wb', index=False, header=True, delimiter=',', quotechar='\"', quoting=csv.QUOTE_NONNUMERIC)\n logging.info(\"FINISHED merging csv files - saved file '{}'\".format(output_filename))\n\n\n# Real action here\ninput_projection_string = \"+init=EPSG:28992\" # Dit is Rijksdriehoekstelsel_New vanuit de .prj files, officieel EPSG:28992 Amersfoort / RD New\noutput_projection_string = \"+init=EPSG:4326\" # LatLon with WGS84 datum used by GPS units and Google Earth, officieel EPSG:4326\n\n# Bestanden kunnen worden gevonden op: http://www.jigsaw.nl/nwb/downloads/NWB_01-07-2014.zip\nshp_hectopunten = \"input/Hectopunten/Hectopunten\"\nshp_wegvakken = \"input/Wegvakken/Wegvakken\"\n\n# CSV files van de SHP files\ncsv_hectopunten = \"output/Hectopunten.csv\"\ncsv_wegvakken = \"output/Wegvakken.csv\"\n\n# CSV output na mergen\ncsv_merged = \"output/merged.csv\"\n\nshp_transform_to_different_projection(shp_hectopunten, HECTOPUNTEN_OUTPUT_FIELDS, input_projection_string, output_projection_string, csv_hectopunten)\nshp_transform_to_different_projection(shp_wegvakken, WEGVAKKEN_OUTPUT_FIELDS, input_projection_string, output_projection_string, csv_wegvakken)\n\nmerge_shapefile_csvs(csv_hectopunten, csv_wegvakken, 'WVK_ID', MERGED_OUTPUT_FIELDS, MERGED_RENAME_FIELDS_MAPPING, csv_merged)", "__author__ = 'djvdorp'\nfrom collections import OrderedDict\nfrom progressbar import *\nimport shapefile\nimport pyproj\nimport csv\nimport logging\nimport pandas\nHECTOPUNTEN_OUTPUT_FIELDS = ['HECTOMTRNG', 'AFSTAND', 'WVK_ID', 'WVK_BEGDAT']\nWEGVAKKEN_OUTPUT_FIELDS = ['WVK_ID', 'WVK_BEGDAT', 'JTE_ID_BEG',\n 'JTE_ID_END', 'WEGBEHSRT', 'WEGNUMMER', 'WEGDEELLTR', 'HECTO_LTTR',\n 'BAANSUBSRT', 'RPE_CODE', 'ADMRICHTNG', 'RIJRICHTNG', 'STT_NAAM',\n 'WPSNAAMNEN', 'GME_ID', 'GME_NAAM', 'HNRSTRLNKS', 'HNRSTRRHTS',\n 'E_HNR_LNKS', 'E_HNR_RHTS', 'L_HNR_LNKS', 'L_HNR_RHTS', 'BEGAFSTAND',\n 'ENDAFSTAND', 'BEGINKM', 'EINDKM', 'POS_TV_WOL']\nMERGED_OUTPUT_FIELDS = ['ID', 'WEGNUMMER', 'HECTOMTRNG', 'LONGITUDE',\n 'LATITUDE', 'STT_NAAM', 'GME_NAAM', 'WEGBEHSRT', 'RPE_CODE',\n 'POS_TV_WOL', 'WEGDEELLTR', 'HECTO_LTTR', 'BAANSUBSRT']\nMERGED_RENAME_FIELDS_MAPPING = {'ID': 'HP_ID', 'WEGNUMMER': 'WEGNR',\n 'HECTOMTRNG': 'HECTONR'}\nlogging.basicConfig(level=logging.INFO)\nwidgets = ['Processing: ', Percentage(), ' ', Bar(marker=RotatingMarker()),\n ' ', ETA()]\n\n\ndef shp_transform_to_different_projection(input_path, input_fields,\n src_projection, dest_projection, output_filename):\n logging.info(\"START processing shapefile '{}' to '{}'\".format(\n input_path, output_filename))\n csv_file = open(output_filename, 'wb')\n writer = csv.writer(csv_file, delimiter=',', quotechar='\"', quoting=csv\n .QUOTE_NONNUMERIC)\n r = shapefile.Reader(input_path)\n input_shapes = r.shapeRecords()\n nr_of_shapes_in_file = len(input_shapes)\n logging.info(\"{} shapes in file '{}' will be transformed\".format(\n nr_of_shapes_in_file, input_path))\n field_names = [str(i[0]) for i in r.fields]\n field_names.remove('DeletionFlag')\n logging.info('fieldNames in shapefile: {}'.format(field_names))\n input_projection = pyproj.Proj(src_projection)\n output_projection = pyproj.Proj(dest_projection)\n logging.info('shapeType read: {}'.format(r.shapeType))\n counter = 0\n pbar = ProgressBar(widgets=widgets, maxval=nr_of_shapes_in_file).start()\n for input_shape in input_shapes:\n nr_of_points_in_shape = len(input_shape.shape.points)\n result_entry = OrderedDict()\n for input_field in input_fields:\n key = field_names.index(input_field)\n input_record = input_shape.record\n input_entry = input_record[key]\n if isinstance(input_entry, list):\n input_entry = int_array_to_string(input_entry)\n if input_field == 'HECTOMTRNG':\n input_entry = input_record[key] / 10.0\n result_entry[input_field] = input_entry\n if nr_of_points_in_shape == 1:\n input_x = input_shape.shape.points[0][0]\n input_y = input_shape.shape.points[0][1]\n x, y = pyproj.transform(input_projection, output_projection,\n input_x, input_y)\n logging.debug(field_names)\n logging.debug([str(i) for i in input_record])\n logging.debug(\n 'Rijksdriehoekstelsel_New ({:-f}, {:-f}) becomes WGS84 ({:-f}, {:-f})'\n .format(input_x, input_y, x, y))\n result_entry['LONGITUDE'] = x\n result_entry['LATITUDE'] = y\n else:\n logging.debug('number of points for this shape was >1, it was: {}'\n .format(nr_of_points_in_shape))\n headers = result_entry.keys()\n if counter == 0:\n writer.writerow(headers)\n line = []\n for field in headers:\n line.append(result_entry[field])\n writer.writerow(line)\n counter += 1\n pbar.update(counter)\n csv_file.close()\n pbar.finish()\n logging.info(\"FINISHED processing - saved file '{}'\".format(\n output_filename))\n\n\ndef int_array_to_string(input_array):\n return '-'.join(str(i) for i in input_array)\n\n\ndef merge_shapefile_csvs(input_hectopunten, input_wegvakken, merge_on_field,\n fields_to_keep, fields_rename_mapping, output_filename):\n logging.info(\"START merging csv files '{}' and '{}' to file '{}'\".\n format(input_hectopunten, input_wegvakken, output_filename))\n hectopunten_df = pandas.read_csv(input_hectopunten)\n wegvakken_df = pandas.read_csv(input_wegvakken)\n merged_df = pandas.merge(hectopunten_df, wegvakken_df, on=merge_on_field)\n merged_df['ID'] = merged_df.index\n result_df = merged_df[fields_to_keep]\n result_df = result_df.rename(columns=fields_rename_mapping)\n result_df.to_csv(output_filename, mode='wb', index=False, header=True,\n delimiter=',', quotechar='\"', quoting=csv.QUOTE_NONNUMERIC)\n logging.info(\"FINISHED merging csv files - saved file '{}'\".format(\n output_filename))\n\n\ninput_projection_string = '+init=EPSG:28992'\noutput_projection_string = '+init=EPSG:4326'\nshp_hectopunten = 'input/Hectopunten/Hectopunten'\nshp_wegvakken = 'input/Wegvakken/Wegvakken'\ncsv_hectopunten = 'output/Hectopunten.csv'\ncsv_wegvakken = 'output/Wegvakken.csv'\ncsv_merged = 'output/merged.csv'\nshp_transform_to_different_projection(shp_hectopunten,\n HECTOPUNTEN_OUTPUT_FIELDS, input_projection_string,\n output_projection_string, csv_hectopunten)\nshp_transform_to_different_projection(shp_wegvakken,\n WEGVAKKEN_OUTPUT_FIELDS, input_projection_string,\n output_projection_string, csv_wegvakken)\nmerge_shapefile_csvs(csv_hectopunten, csv_wegvakken, 'WVK_ID',\n MERGED_OUTPUT_FIELDS, MERGED_RENAME_FIELDS_MAPPING, csv_merged)\n", "__author__ = 'djvdorp'\n<import token>\nHECTOPUNTEN_OUTPUT_FIELDS = ['HECTOMTRNG', 'AFSTAND', 'WVK_ID', 'WVK_BEGDAT']\nWEGVAKKEN_OUTPUT_FIELDS = ['WVK_ID', 'WVK_BEGDAT', 'JTE_ID_BEG',\n 'JTE_ID_END', 'WEGBEHSRT', 'WEGNUMMER', 'WEGDEELLTR', 'HECTO_LTTR',\n 'BAANSUBSRT', 'RPE_CODE', 'ADMRICHTNG', 'RIJRICHTNG', 'STT_NAAM',\n 'WPSNAAMNEN', 'GME_ID', 'GME_NAAM', 'HNRSTRLNKS', 'HNRSTRRHTS',\n 'E_HNR_LNKS', 'E_HNR_RHTS', 'L_HNR_LNKS', 'L_HNR_RHTS', 'BEGAFSTAND',\n 'ENDAFSTAND', 'BEGINKM', 'EINDKM', 'POS_TV_WOL']\nMERGED_OUTPUT_FIELDS = ['ID', 'WEGNUMMER', 'HECTOMTRNG', 'LONGITUDE',\n 'LATITUDE', 'STT_NAAM', 'GME_NAAM', 'WEGBEHSRT', 'RPE_CODE',\n 'POS_TV_WOL', 'WEGDEELLTR', 'HECTO_LTTR', 'BAANSUBSRT']\nMERGED_RENAME_FIELDS_MAPPING = {'ID': 'HP_ID', 'WEGNUMMER': 'WEGNR',\n 'HECTOMTRNG': 'HECTONR'}\nlogging.basicConfig(level=logging.INFO)\nwidgets = ['Processing: ', Percentage(), ' ', Bar(marker=RotatingMarker()),\n ' ', ETA()]\n\n\ndef shp_transform_to_different_projection(input_path, input_fields,\n src_projection, dest_projection, output_filename):\n logging.info(\"START processing shapefile '{}' to '{}'\".format(\n input_path, output_filename))\n csv_file = open(output_filename, 'wb')\n writer = csv.writer(csv_file, delimiter=',', quotechar='\"', quoting=csv\n .QUOTE_NONNUMERIC)\n r = shapefile.Reader(input_path)\n input_shapes = r.shapeRecords()\n nr_of_shapes_in_file = len(input_shapes)\n logging.info(\"{} shapes in file '{}' will be transformed\".format(\n nr_of_shapes_in_file, input_path))\n field_names = [str(i[0]) for i in r.fields]\n field_names.remove('DeletionFlag')\n logging.info('fieldNames in shapefile: {}'.format(field_names))\n input_projection = pyproj.Proj(src_projection)\n output_projection = pyproj.Proj(dest_projection)\n logging.info('shapeType read: {}'.format(r.shapeType))\n counter = 0\n pbar = ProgressBar(widgets=widgets, maxval=nr_of_shapes_in_file).start()\n for input_shape in input_shapes:\n nr_of_points_in_shape = len(input_shape.shape.points)\n result_entry = OrderedDict()\n for input_field in input_fields:\n key = field_names.index(input_field)\n input_record = input_shape.record\n input_entry = input_record[key]\n if isinstance(input_entry, list):\n input_entry = int_array_to_string(input_entry)\n if input_field == 'HECTOMTRNG':\n input_entry = input_record[key] / 10.0\n result_entry[input_field] = input_entry\n if nr_of_points_in_shape == 1:\n input_x = input_shape.shape.points[0][0]\n input_y = input_shape.shape.points[0][1]\n x, y = pyproj.transform(input_projection, output_projection,\n input_x, input_y)\n logging.debug(field_names)\n logging.debug([str(i) for i in input_record])\n logging.debug(\n 'Rijksdriehoekstelsel_New ({:-f}, {:-f}) becomes WGS84 ({:-f}, {:-f})'\n .format(input_x, input_y, x, y))\n result_entry['LONGITUDE'] = x\n result_entry['LATITUDE'] = y\n else:\n logging.debug('number of points for this shape was >1, it was: {}'\n .format(nr_of_points_in_shape))\n headers = result_entry.keys()\n if counter == 0:\n writer.writerow(headers)\n line = []\n for field in headers:\n line.append(result_entry[field])\n writer.writerow(line)\n counter += 1\n pbar.update(counter)\n csv_file.close()\n pbar.finish()\n logging.info(\"FINISHED processing - saved file '{}'\".format(\n output_filename))\n\n\ndef int_array_to_string(input_array):\n return '-'.join(str(i) for i in input_array)\n\n\ndef merge_shapefile_csvs(input_hectopunten, input_wegvakken, merge_on_field,\n fields_to_keep, fields_rename_mapping, output_filename):\n logging.info(\"START merging csv files '{}' and '{}' to file '{}'\".\n format(input_hectopunten, input_wegvakken, output_filename))\n hectopunten_df = pandas.read_csv(input_hectopunten)\n wegvakken_df = pandas.read_csv(input_wegvakken)\n merged_df = pandas.merge(hectopunten_df, wegvakken_df, on=merge_on_field)\n merged_df['ID'] = merged_df.index\n result_df = merged_df[fields_to_keep]\n result_df = result_df.rename(columns=fields_rename_mapping)\n result_df.to_csv(output_filename, mode='wb', index=False, header=True,\n delimiter=',', quotechar='\"', quoting=csv.QUOTE_NONNUMERIC)\n logging.info(\"FINISHED merging csv files - saved file '{}'\".format(\n output_filename))\n\n\ninput_projection_string = '+init=EPSG:28992'\noutput_projection_string = '+init=EPSG:4326'\nshp_hectopunten = 'input/Hectopunten/Hectopunten'\nshp_wegvakken = 'input/Wegvakken/Wegvakken'\ncsv_hectopunten = 'output/Hectopunten.csv'\ncsv_wegvakken = 'output/Wegvakken.csv'\ncsv_merged = 'output/merged.csv'\nshp_transform_to_different_projection(shp_hectopunten,\n HECTOPUNTEN_OUTPUT_FIELDS, input_projection_string,\n output_projection_string, csv_hectopunten)\nshp_transform_to_different_projection(shp_wegvakken,\n WEGVAKKEN_OUTPUT_FIELDS, input_projection_string,\n output_projection_string, csv_wegvakken)\nmerge_shapefile_csvs(csv_hectopunten, csv_wegvakken, 'WVK_ID',\n MERGED_OUTPUT_FIELDS, MERGED_RENAME_FIELDS_MAPPING, csv_merged)\n", "<assignment token>\n<import token>\n<assignment token>\nlogging.basicConfig(level=logging.INFO)\n<assignment token>\n\n\ndef shp_transform_to_different_projection(input_path, input_fields,\n src_projection, dest_projection, output_filename):\n logging.info(\"START processing shapefile '{}' to '{}'\".format(\n input_path, output_filename))\n csv_file = open(output_filename, 'wb')\n writer = csv.writer(csv_file, delimiter=',', quotechar='\"', quoting=csv\n .QUOTE_NONNUMERIC)\n r = shapefile.Reader(input_path)\n input_shapes = r.shapeRecords()\n nr_of_shapes_in_file = len(input_shapes)\n logging.info(\"{} shapes in file '{}' will be transformed\".format(\n nr_of_shapes_in_file, input_path))\n field_names = [str(i[0]) for i in r.fields]\n field_names.remove('DeletionFlag')\n logging.info('fieldNames in shapefile: {}'.format(field_names))\n input_projection = pyproj.Proj(src_projection)\n output_projection = pyproj.Proj(dest_projection)\n logging.info('shapeType read: {}'.format(r.shapeType))\n counter = 0\n pbar = ProgressBar(widgets=widgets, maxval=nr_of_shapes_in_file).start()\n for input_shape in input_shapes:\n nr_of_points_in_shape = len(input_shape.shape.points)\n result_entry = OrderedDict()\n for input_field in input_fields:\n key = field_names.index(input_field)\n input_record = input_shape.record\n input_entry = input_record[key]\n if isinstance(input_entry, list):\n input_entry = int_array_to_string(input_entry)\n if input_field == 'HECTOMTRNG':\n input_entry = input_record[key] / 10.0\n result_entry[input_field] = input_entry\n if nr_of_points_in_shape == 1:\n input_x = input_shape.shape.points[0][0]\n input_y = input_shape.shape.points[0][1]\n x, y = pyproj.transform(input_projection, output_projection,\n input_x, input_y)\n logging.debug(field_names)\n logging.debug([str(i) for i in input_record])\n logging.debug(\n 'Rijksdriehoekstelsel_New ({:-f}, {:-f}) becomes WGS84 ({:-f}, {:-f})'\n .format(input_x, input_y, x, y))\n result_entry['LONGITUDE'] = x\n result_entry['LATITUDE'] = y\n else:\n logging.debug('number of points for this shape was >1, it was: {}'\n .format(nr_of_points_in_shape))\n headers = result_entry.keys()\n if counter == 0:\n writer.writerow(headers)\n line = []\n for field in headers:\n line.append(result_entry[field])\n writer.writerow(line)\n counter += 1\n pbar.update(counter)\n csv_file.close()\n pbar.finish()\n logging.info(\"FINISHED processing - saved file '{}'\".format(\n output_filename))\n\n\ndef int_array_to_string(input_array):\n return '-'.join(str(i) for i in input_array)\n\n\ndef merge_shapefile_csvs(input_hectopunten, input_wegvakken, merge_on_field,\n fields_to_keep, fields_rename_mapping, output_filename):\n logging.info(\"START merging csv files '{}' and '{}' to file '{}'\".\n format(input_hectopunten, input_wegvakken, output_filename))\n hectopunten_df = pandas.read_csv(input_hectopunten)\n wegvakken_df = pandas.read_csv(input_wegvakken)\n merged_df = pandas.merge(hectopunten_df, wegvakken_df, on=merge_on_field)\n merged_df['ID'] = merged_df.index\n result_df = merged_df[fields_to_keep]\n result_df = result_df.rename(columns=fields_rename_mapping)\n result_df.to_csv(output_filename, mode='wb', index=False, header=True,\n delimiter=',', quotechar='\"', quoting=csv.QUOTE_NONNUMERIC)\n logging.info(\"FINISHED merging csv files - saved file '{}'\".format(\n output_filename))\n\n\n<assignment token>\nshp_transform_to_different_projection(shp_hectopunten,\n HECTOPUNTEN_OUTPUT_FIELDS, input_projection_string,\n output_projection_string, csv_hectopunten)\nshp_transform_to_different_projection(shp_wegvakken,\n WEGVAKKEN_OUTPUT_FIELDS, input_projection_string,\n output_projection_string, csv_wegvakken)\nmerge_shapefile_csvs(csv_hectopunten, csv_wegvakken, 'WVK_ID',\n MERGED_OUTPUT_FIELDS, MERGED_RENAME_FIELDS_MAPPING, csv_merged)\n", "<assignment token>\n<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef shp_transform_to_different_projection(input_path, input_fields,\n src_projection, dest_projection, output_filename):\n logging.info(\"START processing shapefile '{}' to '{}'\".format(\n input_path, output_filename))\n csv_file = open(output_filename, 'wb')\n writer = csv.writer(csv_file, delimiter=',', quotechar='\"', quoting=csv\n .QUOTE_NONNUMERIC)\n r = shapefile.Reader(input_path)\n input_shapes = r.shapeRecords()\n nr_of_shapes_in_file = len(input_shapes)\n logging.info(\"{} shapes in file '{}' will be transformed\".format(\n nr_of_shapes_in_file, input_path))\n field_names = [str(i[0]) for i in r.fields]\n field_names.remove('DeletionFlag')\n logging.info('fieldNames in shapefile: {}'.format(field_names))\n input_projection = pyproj.Proj(src_projection)\n output_projection = pyproj.Proj(dest_projection)\n logging.info('shapeType read: {}'.format(r.shapeType))\n counter = 0\n pbar = ProgressBar(widgets=widgets, maxval=nr_of_shapes_in_file).start()\n for input_shape in input_shapes:\n nr_of_points_in_shape = len(input_shape.shape.points)\n result_entry = OrderedDict()\n for input_field in input_fields:\n key = field_names.index(input_field)\n input_record = input_shape.record\n input_entry = input_record[key]\n if isinstance(input_entry, list):\n input_entry = int_array_to_string(input_entry)\n if input_field == 'HECTOMTRNG':\n input_entry = input_record[key] / 10.0\n result_entry[input_field] = input_entry\n if nr_of_points_in_shape == 1:\n input_x = input_shape.shape.points[0][0]\n input_y = input_shape.shape.points[0][1]\n x, y = pyproj.transform(input_projection, output_projection,\n input_x, input_y)\n logging.debug(field_names)\n logging.debug([str(i) for i in input_record])\n logging.debug(\n 'Rijksdriehoekstelsel_New ({:-f}, {:-f}) becomes WGS84 ({:-f}, {:-f})'\n .format(input_x, input_y, x, y))\n result_entry['LONGITUDE'] = x\n result_entry['LATITUDE'] = y\n else:\n logging.debug('number of points for this shape was >1, it was: {}'\n .format(nr_of_points_in_shape))\n headers = result_entry.keys()\n if counter == 0:\n writer.writerow(headers)\n line = []\n for field in headers:\n line.append(result_entry[field])\n writer.writerow(line)\n counter += 1\n pbar.update(counter)\n csv_file.close()\n pbar.finish()\n logging.info(\"FINISHED processing - saved file '{}'\".format(\n output_filename))\n\n\ndef int_array_to_string(input_array):\n return '-'.join(str(i) for i in input_array)\n\n\ndef merge_shapefile_csvs(input_hectopunten, input_wegvakken, merge_on_field,\n fields_to_keep, fields_rename_mapping, output_filename):\n logging.info(\"START merging csv files '{}' and '{}' to file '{}'\".\n format(input_hectopunten, input_wegvakken, output_filename))\n hectopunten_df = pandas.read_csv(input_hectopunten)\n wegvakken_df = pandas.read_csv(input_wegvakken)\n merged_df = pandas.merge(hectopunten_df, wegvakken_df, on=merge_on_field)\n merged_df['ID'] = merged_df.index\n result_df = merged_df[fields_to_keep]\n result_df = result_df.rename(columns=fields_rename_mapping)\n result_df.to_csv(output_filename, mode='wb', index=False, header=True,\n delimiter=',', quotechar='\"', quoting=csv.QUOTE_NONNUMERIC)\n logging.info(\"FINISHED merging csv files - saved file '{}'\".format(\n output_filename))\n\n\n<assignment token>\n<code token>\n", "<assignment token>\n<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef shp_transform_to_different_projection(input_path, input_fields,\n src_projection, dest_projection, output_filename):\n logging.info(\"START processing shapefile '{}' to '{}'\".format(\n input_path, output_filename))\n csv_file = open(output_filename, 'wb')\n writer = csv.writer(csv_file, delimiter=',', quotechar='\"', quoting=csv\n .QUOTE_NONNUMERIC)\n r = shapefile.Reader(input_path)\n input_shapes = r.shapeRecords()\n nr_of_shapes_in_file = len(input_shapes)\n logging.info(\"{} shapes in file '{}' will be transformed\".format(\n nr_of_shapes_in_file, input_path))\n field_names = [str(i[0]) for i in r.fields]\n field_names.remove('DeletionFlag')\n logging.info('fieldNames in shapefile: {}'.format(field_names))\n input_projection = pyproj.Proj(src_projection)\n output_projection = pyproj.Proj(dest_projection)\n logging.info('shapeType read: {}'.format(r.shapeType))\n counter = 0\n pbar = ProgressBar(widgets=widgets, maxval=nr_of_shapes_in_file).start()\n for input_shape in input_shapes:\n nr_of_points_in_shape = len(input_shape.shape.points)\n result_entry = OrderedDict()\n for input_field in input_fields:\n key = field_names.index(input_field)\n input_record = input_shape.record\n input_entry = input_record[key]\n if isinstance(input_entry, list):\n input_entry = int_array_to_string(input_entry)\n if input_field == 'HECTOMTRNG':\n input_entry = input_record[key] / 10.0\n result_entry[input_field] = input_entry\n if nr_of_points_in_shape == 1:\n input_x = input_shape.shape.points[0][0]\n input_y = input_shape.shape.points[0][1]\n x, y = pyproj.transform(input_projection, output_projection,\n input_x, input_y)\n logging.debug(field_names)\n logging.debug([str(i) for i in input_record])\n logging.debug(\n 'Rijksdriehoekstelsel_New ({:-f}, {:-f}) becomes WGS84 ({:-f}, {:-f})'\n .format(input_x, input_y, x, y))\n result_entry['LONGITUDE'] = x\n result_entry['LATITUDE'] = y\n else:\n logging.debug('number of points for this shape was >1, it was: {}'\n .format(nr_of_points_in_shape))\n headers = result_entry.keys()\n if counter == 0:\n writer.writerow(headers)\n line = []\n for field in headers:\n line.append(result_entry[field])\n writer.writerow(line)\n counter += 1\n pbar.update(counter)\n csv_file.close()\n pbar.finish()\n logging.info(\"FINISHED processing - saved file '{}'\".format(\n output_filename))\n\n\n<function token>\n\n\ndef merge_shapefile_csvs(input_hectopunten, input_wegvakken, merge_on_field,\n fields_to_keep, fields_rename_mapping, output_filename):\n logging.info(\"START merging csv files '{}' and '{}' to file '{}'\".\n format(input_hectopunten, input_wegvakken, output_filename))\n hectopunten_df = pandas.read_csv(input_hectopunten)\n wegvakken_df = pandas.read_csv(input_wegvakken)\n merged_df = pandas.merge(hectopunten_df, wegvakken_df, on=merge_on_field)\n merged_df['ID'] = merged_df.index\n result_df = merged_df[fields_to_keep]\n result_df = result_df.rename(columns=fields_rename_mapping)\n result_df.to_csv(output_filename, mode='wb', index=False, header=True,\n delimiter=',', quotechar='\"', quoting=csv.QUOTE_NONNUMERIC)\n logging.info(\"FINISHED merging csv files - saved file '{}'\".format(\n output_filename))\n\n\n<assignment token>\n<code token>\n", "<assignment token>\n<import token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef shp_transform_to_different_projection(input_path, input_fields,\n src_projection, dest_projection, output_filename):\n logging.info(\"START processing shapefile '{}' to '{}'\".format(\n input_path, output_filename))\n csv_file = open(output_filename, 'wb')\n writer = csv.writer(csv_file, delimiter=',', quotechar='\"', quoting=csv\n .QUOTE_NONNUMERIC)\n r = shapefile.Reader(input_path)\n input_shapes = r.shapeRecords()\n nr_of_shapes_in_file = len(input_shapes)\n logging.info(\"{} shapes in file '{}' will be transformed\".format(\n nr_of_shapes_in_file, input_path))\n field_names = [str(i[0]) for i in r.fields]\n field_names.remove('DeletionFlag')\n logging.info('fieldNames in shapefile: {}'.format(field_names))\n input_projection = pyproj.Proj(src_projection)\n output_projection = pyproj.Proj(dest_projection)\n logging.info('shapeType read: {}'.format(r.shapeType))\n counter = 0\n pbar = ProgressBar(widgets=widgets, maxval=nr_of_shapes_in_file).start()\n for input_shape in input_shapes:\n nr_of_points_in_shape = len(input_shape.shape.points)\n result_entry = OrderedDict()\n for input_field in input_fields:\n key = field_names.index(input_field)\n input_record = input_shape.record\n input_entry = input_record[key]\n if isinstance(input_entry, list):\n input_entry = int_array_to_string(input_entry)\n if input_field == 'HECTOMTRNG':\n input_entry = input_record[key] / 10.0\n result_entry[input_field] = input_entry\n if nr_of_points_in_shape == 1:\n input_x = input_shape.shape.points[0][0]\n input_y = input_shape.shape.points[0][1]\n x, y = pyproj.transform(input_projection, output_projection,\n input_x, input_y)\n logging.debug(field_names)\n logging.debug([str(i) for i in input_record])\n logging.debug(\n 'Rijksdriehoekstelsel_New ({:-f}, {:-f}) becomes WGS84 ({:-f}, {:-f})'\n .format(input_x, input_y, x, y))\n result_entry['LONGITUDE'] = x\n result_entry['LATITUDE'] = y\n else:\n logging.debug('number of points for this shape was >1, it was: {}'\n .format(nr_of_points_in_shape))\n headers = result_entry.keys()\n if counter == 0:\n writer.writerow(headers)\n line = []\n for field in headers:\n line.append(result_entry[field])\n writer.writerow(line)\n counter += 1\n pbar.update(counter)\n csv_file.close()\n pbar.finish()\n logging.info(\"FINISHED processing - saved file '{}'\".format(\n output_filename))\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n", "<assignment token>\n<import token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
98,337
5efe8e3660934c32f4185028efa188830319c336
# -*- coding: utf-8 -*- """ Created on Mon May 17 11:07:45 2021 @author: legon """ import sympy print('Matrix([[a,b],[c,d]]') a = int(input('a:')) b = int(input('b:')) c = int(input('c:')) d = int(input('d:')) mod = int(input('mod:')) print() A = sympy.Matrix([[a,b],[c,d]]) A2 = A.det() # 最小正剰余 if A2 < 0: A3 = A2 + mod elif A2 < mod: A3 = mod else: A3 = A2 % mod print('A =',A) # 行列の表示 A_1 = A.inv() print('A**(-1) =',A_1) # #逆行列の表示 print() print('----------------------------------------') print('#',A3,'x ≡ 1 (mod',mod,')を解く') print('----------------------------------------') print('|A| =',A2,'≡',A3,'(mod)',mod) # print() A4 = A2 * A_1 print('A**(-1) ≡',A4,'より') print() x,y,t = sympy.gcdex(A3,mod) A5 = x * A4 a,b,c,d = A5 a %= mod b %= mod c %= mod d %= mod A6 = sympy.Matrix([[a,b],[c,d]]) print('A**(-1) ≡',x,'*',A4) print('\t≡',A5) print('\t≡',A6,'(mod',mod,')') print() E = A * A6 a,b,c,d = E a %= mod b %= mod c %= mod d %= mod E = sympy.Matrix([[a,b],[c,d]]) print('検算:',A,'*',A6,'≡',E)
[ "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon May 17 11:07:45 2021\n\n@author: legon\n\"\"\"\n\nimport sympy\n\nprint('Matrix([[a,b],[c,d]]')\n\na = int(input('a:'))\nb = int(input('b:'))\nc = int(input('c:'))\nd = int(input('d:'))\nmod = int(input('mod:'))\nprint()\n\nA = sympy.Matrix([[a,b],[c,d]])\nA2 = A.det()\n\n# 最小正剰余\nif A2 < 0:\n A3 = A2 + mod\nelif A2 < mod:\n A3 = mod\nelse:\n A3 = A2 % mod\n\nprint('A =',A) # 行列の表示\nA_1 = A.inv()\nprint('A**(-1) =',A_1) # #逆行列の表示\nprint()\n\nprint('----------------------------------------')\nprint('#',A3,'x ≡ 1 (mod',mod,')を解く')\nprint('----------------------------------------')\nprint('|A| =',A2,'≡',A3,'(mod)',mod) # \nprint()\n\nA4 = A2 * A_1\nprint('A**(-1) ≡',A4,'より')\nprint()\n\nx,y,t = sympy.gcdex(A3,mod)\nA5 = x * A4\na,b,c,d = A5\na %= mod\nb %= mod\nc %= mod\nd %= mod\nA6 = sympy.Matrix([[a,b],[c,d]])\nprint('A**(-1) ≡',x,'*',A4)\nprint('\\t≡',A5)\nprint('\\t≡',A6,'(mod',mod,')')\nprint()\n\nE = A * A6\na,b,c,d = E\na %= mod\nb %= mod\nc %= mod\nd %= mod\nE = sympy.Matrix([[a,b],[c,d]])\nprint('検算:',A,'*',A6,'≡',E)\n", "<docstring token>\nimport sympy\nprint('Matrix([[a,b],[c,d]]')\na = int(input('a:'))\nb = int(input('b:'))\nc = int(input('c:'))\nd = int(input('d:'))\nmod = int(input('mod:'))\nprint()\nA = sympy.Matrix([[a, b], [c, d]])\nA2 = A.det()\nif A2 < 0:\n A3 = A2 + mod\nelif A2 < mod:\n A3 = mod\nelse:\n A3 = A2 % mod\nprint('A =', A)\nA_1 = A.inv()\nprint('A**(-1) =', A_1)\nprint()\nprint('----------------------------------------')\nprint('#', A3, 'x ≡ 1 (mod', mod, ')を解く')\nprint('----------------------------------------')\nprint('|A| =', A2, '≡', A3, '(mod)', mod)\nprint()\nA4 = A2 * A_1\nprint('A**(-1) ≡', A4, 'より')\nprint()\nx, y, t = sympy.gcdex(A3, mod)\nA5 = x * A4\na, b, c, d = A5\na %= mod\nb %= mod\nc %= mod\nd %= mod\nA6 = sympy.Matrix([[a, b], [c, d]])\nprint('A**(-1) ≡', x, '*', A4)\nprint('\\t≡', A5)\nprint('\\t≡', A6, '(mod', mod, ')')\nprint()\nE = A * A6\na, b, c, d = E\na %= mod\nb %= mod\nc %= mod\nd %= mod\nE = sympy.Matrix([[a, b], [c, d]])\nprint('検算:', A, '*', A6, '≡', E)\n", "<docstring token>\n<import token>\nprint('Matrix([[a,b],[c,d]]')\na = int(input('a:'))\nb = int(input('b:'))\nc = int(input('c:'))\nd = int(input('d:'))\nmod = int(input('mod:'))\nprint()\nA = sympy.Matrix([[a, b], [c, d]])\nA2 = A.det()\nif A2 < 0:\n A3 = A2 + mod\nelif A2 < mod:\n A3 = mod\nelse:\n A3 = A2 % mod\nprint('A =', A)\nA_1 = A.inv()\nprint('A**(-1) =', A_1)\nprint()\nprint('----------------------------------------')\nprint('#', A3, 'x ≡ 1 (mod', mod, ')を解く')\nprint('----------------------------------------')\nprint('|A| =', A2, '≡', A3, '(mod)', mod)\nprint()\nA4 = A2 * A_1\nprint('A**(-1) ≡', A4, 'より')\nprint()\nx, y, t = sympy.gcdex(A3, mod)\nA5 = x * A4\na, b, c, d = A5\na %= mod\nb %= mod\nc %= mod\nd %= mod\nA6 = sympy.Matrix([[a, b], [c, d]])\nprint('A**(-1) ≡', x, '*', A4)\nprint('\\t≡', A5)\nprint('\\t≡', A6, '(mod', mod, ')')\nprint()\nE = A * A6\na, b, c, d = E\na %= mod\nb %= mod\nc %= mod\nd %= mod\nE = sympy.Matrix([[a, b], [c, d]])\nprint('検算:', A, '*', A6, '≡', E)\n", "<docstring token>\n<import token>\nprint('Matrix([[a,b],[c,d]]')\n<assignment token>\nprint()\n<assignment token>\nif A2 < 0:\n A3 = A2 + mod\nelif A2 < mod:\n A3 = mod\nelse:\n A3 = A2 % mod\nprint('A =', A)\n<assignment token>\nprint('A**(-1) =', A_1)\nprint()\nprint('----------------------------------------')\nprint('#', A3, 'x ≡ 1 (mod', mod, ')を解く')\nprint('----------------------------------------')\nprint('|A| =', A2, '≡', A3, '(mod)', mod)\nprint()\n<assignment token>\nprint('A**(-1) ≡', A4, 'より')\nprint()\n<assignment token>\na %= mod\nb %= mod\nc %= mod\nd %= mod\n<assignment token>\nprint('A**(-1) ≡', x, '*', A4)\nprint('\\t≡', A5)\nprint('\\t≡', A6, '(mod', mod, ')')\nprint()\n<assignment token>\na %= mod\nb %= mod\nc %= mod\nd %= mod\n<assignment token>\nprint('検算:', A, '*', A6, '≡', E)\n", "<docstring token>\n<import token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,338
169a4529a6e249cbd506be9b16395bb3f43c23bf
from reader.lector import Reader
[ "from reader.lector import Reader", "from reader.lector import Reader\n", "<import token>\n" ]
false
98,339
249fd3b9083be06b61482151f4f213c3a24bd01b
#!/usr/bin/env python """ Trivial parser to help with HL7 message debugging. """ import glob from optparse import OptionParser import sys import os.path usage = """%prog [options] segment sequence[,sequence]* file[s]ToParse This will echo to stdout all the matches found for the given parameters. Try `%prog --help` for additional information. segment restricted to segments of this type, i.e. 'MSH' or 'PV1' sequence parser splits each HL7 message on the '|' delimiter; which sequence[s] to display, multiple sequences separated by commas are supported, i.e. 6,12,44. NB, MSH counts different from all other segments, as the field separator '|' counts as sequence one. file[s]ToParse one or more files to parse for matches; glob pattern support included """ class Parser(object): def __init__(self): self.segments_of_interest = "" self.sequences = [] self.filelist = [] self.show_ADT = False self.show_file = False self.show_time = False self.show_visitID = False self.show_pc = False def processArgs(self, argv): """ Process any optional arguments and possitional parameters """ parser = OptionParser(usage=usage) parser.add_option("-a", "--show_ADT", action="store_true", dest="show_ADT", default=self.show_ADT, help="Display ADT value if set") parser.add_option("-f", "--show_file", action="store_true", dest="show_file", default=self.show_file, help="Display matching filename if set") parser.add_option("-t", "--show_time", action="store_true", dest="show_time", default=self.show_time, help="Display message time") parser.add_option("-v", "--show_visitID", action="store_true", dest="show_visitID", default=self.show_visitID, help="Display visit ID") parser.add_option("-p", "--show_pc", action="store_true", dest="show_pc", default=self.show_pc, help="Display patient class") (options, pargs) = parser.parse_args() if len(pargs) < 3: parser.error("incorrect number of arguments") self.show_ADT = parser.values.show_ADT self.show_file = parser.values.show_file self.show_time = parser.values.show_time self.show_visitID = parser.values.show_visitID self.show_pc = parser.values.show_pc self.segments_of_interest = pargs.pop(0) if len(self.segments_of_interest) != 3: parser.error("segment '%s' looks incorrect, expected something like 'PV1'" % self.segments_of_interest) try: nums = pargs.pop(0).split(",") for num in nums: if 'MSH' == self.segments_of_interest: num = int(num) - 1 self.sequences.append(int(num)) except: parser.error("sequence must be an integer, separate multiple w/ comma and no spaces") for patternOrFile in pargs: for file in glob.glob(patternOrFile): if not os.path.isfile(file): parser.error("can't open input file %s" % file) self.filelist.append(file) # Require at least one file if not len(self.filelist): parser.error("at least one input file is required") def parse(self): for filename in self.filelist: if self.show_file: print "READING FILE:",filename FILE = open(filename, "r") # by default, the files don't contain newlines. read the whole # thing in and split on \r raw = FILE.read() # occasionally we have a newline type file from a direct # SQL query or the like - convert back if raw.find('\n') > 0: raw = raw.replace('\n','\r') if raw.find('\\r') > 0: raw = raw.replace('\\r','\r') for l in raw.split('\r'): # hang onto useful message header info and purge # potentials from the previous message if 'MSH' == l[0:3]: sequences = l.split('|') TIME = sequences[6] ADT = sequences[8] PATIENTCLASS, VISITID = '', '' # hang onto visit id if requested if self.show_visitID and 'PID' == l[0:3]: sequences = l.split('|') VISITID = sequences[18] # hang onto patient_class if requested if self.show_pc and 'PV1' == l[0:3]: sequences = l.split('|') PATIENTCLASS = sequences[2].split('^')[0] # print this out if it matches if self.segments_of_interest == l[0:3]: sequences = l.split('|') out = "|".join( [sequences[e] for e in self.sequences if e < len(sequences)]) # strip newlines out = out.replace("\n","") if out: if self.show_time: out = ":".join([TIME,out]) if self.show_ADT: out = ":".join([ADT,out]) if self.show_pc: out = ":".join([PATIENTCLASS,out]) if self.show_visitID: out = ":".join([VISITID,out]) print out def main(): parser = Parser() parser.processArgs(sys.argv[1:]) parser.parse() if __name__ == '__main__': main()
[ "#!/usr/bin/env python\n\"\"\"\nTrivial parser to help with HL7 message debugging.\n\"\"\"\nimport glob\nfrom optparse import OptionParser\nimport sys\nimport os.path\n\nusage = \"\"\"%prog [options] segment sequence[,sequence]* file[s]ToParse\n\nThis will echo to stdout all the matches found for the given parameters.\nTry `%prog --help` for additional information.\n\n segment restricted to segments of this type, i.e. 'MSH' or 'PV1'\n sequence parser splits each HL7 message on the '|' delimiter;\n which sequence[s] to display, multiple sequences separated\n by commas are supported, i.e. 6,12,44. NB, MSH counts\n different from all other segments, as the field separator\n '|' counts as sequence one.\n file[s]ToParse one or more files to parse for matches; glob pattern\n support included\n\"\"\"\n\nclass Parser(object):\n \n def __init__(self):\n self.segments_of_interest = \"\"\n self.sequences = []\n self.filelist = []\n self.show_ADT = False\n self.show_file = False\n self.show_time = False\n self.show_visitID = False\n self.show_pc = False\n\n def processArgs(self, argv):\n \"\"\" Process any optional arguments and possitional parameters\n \"\"\"\n parser = OptionParser(usage=usage)\n parser.add_option(\"-a\", \"--show_ADT\", action=\"store_true\", dest=\"show_ADT\",\n default=self.show_ADT, help=\"Display ADT value if set\")\n parser.add_option(\"-f\", \"--show_file\", action=\"store_true\", dest=\"show_file\",\n default=self.show_file, help=\"Display matching filename if set\")\n parser.add_option(\"-t\", \"--show_time\", action=\"store_true\", dest=\"show_time\",\n default=self.show_time, help=\"Display message time\")\n parser.add_option(\"-v\", \"--show_visitID\", action=\"store_true\", dest=\"show_visitID\",\n default=self.show_visitID, help=\"Display visit ID\")\n parser.add_option(\"-p\", \"--show_pc\",\n action=\"store_true\",\n dest=\"show_pc\",\n default=self.show_pc,\n help=\"Display patient class\")\n\n (options, pargs) = parser.parse_args()\n if len(pargs) < 3:\n parser.error(\"incorrect number of arguments\")\n\n self.show_ADT = parser.values.show_ADT\n self.show_file = parser.values.show_file\n self.show_time = parser.values.show_time\n self.show_visitID = parser.values.show_visitID\n self.show_pc = parser.values.show_pc\n \n self.segments_of_interest = pargs.pop(0)\n if len(self.segments_of_interest) != 3:\n parser.error(\"segment '%s' looks incorrect, expected something like 'PV1'\"\n % self.segments_of_interest)\n\n try:\n nums = pargs.pop(0).split(\",\")\n for num in nums:\n if 'MSH' == self.segments_of_interest:\n num = int(num) - 1\n self.sequences.append(int(num))\n except:\n parser.error(\"sequence must be an integer, separate multiple w/ comma and no spaces\")\n\n for patternOrFile in pargs:\n for file in glob.glob(patternOrFile):\n if not os.path.isfile(file):\n parser.error(\"can't open input file %s\" % file)\n self.filelist.append(file)\n \n # Require at least one file\n if not len(self.filelist):\n parser.error(\"at least one input file is required\")\n\n def parse(self):\n for filename in self.filelist:\n if self.show_file:\n print \"READING FILE:\",filename\n\n FILE = open(filename, \"r\")\n # by default, the files don't contain newlines. read the whole\n # thing in and split on \\r\n raw = FILE.read()\n\n # occasionally we have a newline type file from a direct\n # SQL query or the like - convert back\n if raw.find('\\n') > 0:\n raw = raw.replace('\\n','\\r')\n if raw.find('\\\\r') > 0:\n raw = raw.replace('\\\\r','\\r')\n\n for l in raw.split('\\r'):\n # hang onto useful message header info and purge\n # potentials from the previous message\n if 'MSH' == l[0:3]:\n sequences = l.split('|')\n TIME = sequences[6]\n ADT = sequences[8]\n PATIENTCLASS, VISITID = '', ''\n\n # hang onto visit id if requested\n if self.show_visitID and 'PID' == l[0:3]:\n sequences = l.split('|')\n VISITID = sequences[18]\n\n # hang onto patient_class if requested\n if self.show_pc and 'PV1' == l[0:3]:\n sequences = l.split('|')\n PATIENTCLASS = sequences[2].split('^')[0]\n\n # print this out if it matches\n if self.segments_of_interest == l[0:3]:\n sequences = l.split('|')\n out = \"|\".join(\n [sequences[e] for e in self.sequences if e < len(sequences)])\n # strip newlines\n out = out.replace(\"\\n\",\"\")\n if out:\n if self.show_time:\n out = \":\".join([TIME,out])\n if self.show_ADT:\n out = \":\".join([ADT,out])\n if self.show_pc:\n out = \":\".join([PATIENTCLASS,out])\n if self.show_visitID:\n out = \":\".join([VISITID,out])\n\n print out\n\ndef main():\n parser = Parser()\n parser.processArgs(sys.argv[1:])\n parser.parse()\n\nif __name__ == '__main__':\n main()\n" ]
true
98,340
2a921deb5dc67057a26fe9a4bee45b1538544cde
t = input() a = 5*60 b = 60 c = 10 if t%10 != 0: print -1 else: a2 = t/a b2 = t%a/b c2 = t%b/c print a2,b2,c2
[ "t = input()\na = 5*60\nb = 60\nc = 10\n\nif t%10 != 0: \n print -1\nelse:\n a2 = t/a\n b2 = t%a/b\n c2 = t%b/c \n print a2,b2,c2\n \n" ]
true
98,341
69a94f2b753235455e254ce8d14149556962b6ae
from servidormodbus import ServidorMODBUS s = ServidorMODBUS('localhost',502) s.run()
[ "from servidormodbus import ServidorMODBUS\n\ns = ServidorMODBUS('localhost',502)\ns.run()", "from servidormodbus import ServidorMODBUS\ns = ServidorMODBUS('localhost', 502)\ns.run()\n", "<import token>\ns = ServidorMODBUS('localhost', 502)\ns.run()\n", "<import token>\n<assignment token>\ns.run()\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
98,342
b65721e2a28eaaf0435988c35ac945ff7c7855a0
""" This package contains the code that you should also have when you followed the Babel Tutorial (:doc:`/tutorials/babel`) """
[ "\"\"\"\nThis package contains the code that you should also have when you followed \nthe Babel Tutorial (:doc:`/tutorials/babel`)\n\"\"\"\n", "<docstring token>\n" ]
false
98,343
2e55849cbca7f3a0a90b7caa5ca7e9c1844a5bc5
from flask import Flask from src.main.service.DataAccessService import DataAccessService # The Data Transformation controller, transforms the data from various datasources into standardised JSON format class DataTransformationController: app = Flask(__name__) @app.route("/") def transform(): return DataAccessService.get_data() if __name__ == "__main__": app.run(debug=True)
[ "from flask import Flask\nfrom src.main.service.DataAccessService import DataAccessService\n# The Data Transformation controller, transforms the data from various datasources into standardised JSON format\n\n\nclass DataTransformationController:\n\n app = Flask(__name__)\n\n @app.route(\"/\")\n def transform():\n return DataAccessService.get_data()\n\n if __name__ == \"__main__\":\n app.run(debug=True)\n", "from flask import Flask\nfrom src.main.service.DataAccessService import DataAccessService\n\n\nclass DataTransformationController:\n app = Flask(__name__)\n\n @app.route('/')\n def transform():\n return DataAccessService.get_data()\n if __name__ == '__main__':\n app.run(debug=True)\n", "<import token>\n\n\nclass DataTransformationController:\n app = Flask(__name__)\n\n @app.route('/')\n def transform():\n return DataAccessService.get_data()\n if __name__ == '__main__':\n app.run(debug=True)\n", "<import token>\n\n\nclass DataTransformationController:\n <assignment token>\n\n @app.route('/')\n def transform():\n return DataAccessService.get_data()\n if __name__ == '__main__':\n app.run(debug=True)\n", "<import token>\n\n\nclass DataTransformationController:\n <assignment token>\n <function token>\n if __name__ == '__main__':\n app.run(debug=True)\n", "<import token>\n<class token>\n" ]
false
98,344
bfe446b0d244a04c9f78ecdd9c65528646b47b66
#no.1 print("hello world!")#hello worlde '''zhushi''' print"hello" print 'hello'
[ "#no.1 \nprint(\"hello world!\")#hello worlde\n'''zhushi'''\nprint\"hello\"\nprint 'hello'\n" ]
true
98,345
9eefc2856b8f4780dafb7878759d7c41c5e34d21
# -*- coding: utf-8 -*- from gluon import current from s3 import * from s3layouts import * try: from .layouts import * except ImportError: pass import s3menus as default # ============================================================================= class S3MainMenu(default.S3MainMenu): """ Custom Application Main Menu """ # ------------------------------------------------------------------------- @classmethod def menu_modules(cls): """ Custom Modules Menu """ menu= [MM("Call Logs", c="event", f="incident_report"), MM("Incidents", c="event", f="incident", m="summary"), MM("Scenarios", c="event", f="scenario"), MM("more", link=False)( MM("Documents", c="doc", f="document"), MM("Events", c="event", f="event"), MM("Staff", c="hrm", f="staff"), MM("Volunteers", c="vol", f="volunteer"), MM("Assets", c="asset", f="asset"), MM("Organizations", c="org", f="organisation"), MM("Facilities", c="org", f="facility"), #MM("Hospitals", c="med", f="hospital", m="summary"), MM("Shelters", c="cr", f="shelter"), MM("Warehouses", c="inv", f="warehouse"), MM("Item Catalog", c="supply", f="catalog_item"), ), ] return menu # ------------------------------------------------------------------------- @classmethod def menu_auth(cls, **attr): """ Auth Menu - switch Login to use OpenID Connect """ auth = current.auth logged_in = auth.is_logged_in() settings = current.deployment_settings if not logged_in: request = current.request login_next = URL(args=request.args, vars=request.vars) if request.controller == "default" and \ request.function == "user" and \ "_next" in request.get_vars: login_next = request.get_vars["_next"] self_registration = settings.get_security_registration_visible() if self_registration == "index": register = MM("Register", c="default", f="index", m="register", vars=dict(_next=login_next), check=self_registration) else: register = MM("Register", m="register", vars=dict(_next=login_next), check=self_registration) if settings.get_auth_password_changes() and \ settings.get_auth_password_retrieval(): lost_pw = MM("Lost Password", m="retrieve_password") else: lost_pw = None menu_auth = MM("Login", c="default", f="openid_connect", m="login", _id="auth_menu_login", vars=dict(_next=login_next), **attr)( MM("Login", m="login", vars=dict(_next=login_next)), register, lost_pw, ) else: # Logged-in if settings.get_auth_password_changes(): change_pw = MM("Change Password", m="change_password") else: change_pw = None menu_auth = MM(auth.user.email, c="default", f="user", translate=False, link=False, _id="auth_menu_email", **attr)( MM("Logout", m="logout", _id="auth_menu_logout"), MM("User Profile", m="profile"), MM("Personal Data", c="default", f="person", m="update"), MM("Contact Details", c="pr", f="person", args="contact", vars={"person.pe_id" : auth.user.pe_id}), #MM("Subscriptions", c="pr", f="person", # args="pe_subscription", # vars={"person.pe_id" : auth.user.pe_id}), change_pw, SEP(), MM({"name": current.T("Rapid Data Entry"), "id": "rapid_toggle", "value": current.session.s3.rapid_data_entry is True}, f="rapid"), ) return menu_auth # END =========================================================================
[ "# -*- coding: utf-8 -*-\n\nfrom gluon import current\nfrom s3 import *\nfrom s3layouts import *\ntry:\n from .layouts import *\nexcept ImportError:\n pass\nimport s3menus as default\n\n# =============================================================================\nclass S3MainMenu(default.S3MainMenu):\n \"\"\" Custom Application Main Menu \"\"\"\n\n # -------------------------------------------------------------------------\n @classmethod\n def menu_modules(cls):\n \"\"\" Custom Modules Menu \"\"\"\n\n menu= [MM(\"Call Logs\", c=\"event\", f=\"incident_report\"),\n MM(\"Incidents\", c=\"event\", f=\"incident\", m=\"summary\"),\n MM(\"Scenarios\", c=\"event\", f=\"scenario\"),\n MM(\"more\", link=False)(\n MM(\"Documents\", c=\"doc\", f=\"document\"),\n MM(\"Events\", c=\"event\", f=\"event\"),\n MM(\"Staff\", c=\"hrm\", f=\"staff\"),\n MM(\"Volunteers\", c=\"vol\", f=\"volunteer\"),\n MM(\"Assets\", c=\"asset\", f=\"asset\"),\n MM(\"Organizations\", c=\"org\", f=\"organisation\"),\n MM(\"Facilities\", c=\"org\", f=\"facility\"),\n #MM(\"Hospitals\", c=\"med\", f=\"hospital\", m=\"summary\"),\n MM(\"Shelters\", c=\"cr\", f=\"shelter\"),\n MM(\"Warehouses\", c=\"inv\", f=\"warehouse\"),\n MM(\"Item Catalog\", c=\"supply\", f=\"catalog_item\"),\n ),\n ]\n\n return menu\n\n # -------------------------------------------------------------------------\n @classmethod\n def menu_auth(cls, **attr):\n \"\"\"\n Auth Menu\n - switch Login to use OpenID Connect\n \"\"\"\n\n auth = current.auth\n logged_in = auth.is_logged_in()\n settings = current.deployment_settings\n\n if not logged_in:\n request = current.request\n login_next = URL(args=request.args, vars=request.vars)\n if request.controller == \"default\" and \\\n request.function == \"user\" and \\\n \"_next\" in request.get_vars:\n login_next = request.get_vars[\"_next\"]\n\n self_registration = settings.get_security_registration_visible()\n if self_registration == \"index\":\n register = MM(\"Register\", c=\"default\", f=\"index\", m=\"register\",\n vars=dict(_next=login_next),\n check=self_registration)\n else:\n register = MM(\"Register\", m=\"register\",\n vars=dict(_next=login_next),\n check=self_registration)\n\n if settings.get_auth_password_changes() and \\\n settings.get_auth_password_retrieval():\n lost_pw = MM(\"Lost Password\", m=\"retrieve_password\")\n else:\n lost_pw = None\n\n menu_auth = MM(\"Login\", c=\"default\", f=\"openid_connect\", m=\"login\",\n _id=\"auth_menu_login\",\n vars=dict(_next=login_next), **attr)(\n MM(\"Login\", m=\"login\",\n vars=dict(_next=login_next)),\n register,\n lost_pw,\n )\n else:\n # Logged-in\n\n if settings.get_auth_password_changes():\n change_pw = MM(\"Change Password\", m=\"change_password\")\n else:\n change_pw = None\n\n menu_auth = MM(auth.user.email, c=\"default\", f=\"user\",\n translate=False, link=False, _id=\"auth_menu_email\",\n **attr)(\n MM(\"Logout\", m=\"logout\", _id=\"auth_menu_logout\"),\n MM(\"User Profile\", m=\"profile\"),\n MM(\"Personal Data\", c=\"default\", f=\"person\", m=\"update\"),\n MM(\"Contact Details\", c=\"pr\", f=\"person\",\n args=\"contact\",\n vars={\"person.pe_id\" : auth.user.pe_id}),\n #MM(\"Subscriptions\", c=\"pr\", f=\"person\",\n # args=\"pe_subscription\",\n # vars={\"person.pe_id\" : auth.user.pe_id}),\n change_pw,\n SEP(),\n MM({\"name\": current.T(\"Rapid Data Entry\"),\n \"id\": \"rapid_toggle\",\n \"value\": current.session.s3.rapid_data_entry is True},\n f=\"rapid\"),\n )\n\n return menu_auth\n\n# END =========================================================================\n", "from gluon import current\nfrom s3 import *\nfrom s3layouts import *\ntry:\n from .layouts import *\nexcept ImportError:\n pass\nimport s3menus as default\n\n\nclass S3MainMenu(default.S3MainMenu):\n \"\"\" Custom Application Main Menu \"\"\"\n\n @classmethod\n def menu_modules(cls):\n \"\"\" Custom Modules Menu \"\"\"\n menu = [MM('Call Logs', c='event', f='incident_report'), MM(\n 'Incidents', c='event', f='incident', m='summary'), MM(\n 'Scenarios', c='event', f='scenario'), MM('more', link=False)(\n MM('Documents', c='doc', f='document'), MM('Events', c='event',\n f='event'), MM('Staff', c='hrm', f='staff'), MM('Volunteers', c\n ='vol', f='volunteer'), MM('Assets', c='asset', f='asset'), MM(\n 'Organizations', c='org', f='organisation'), MM('Facilities', c\n ='org', f='facility'), MM('Shelters', c='cr', f='shelter'), MM(\n 'Warehouses', c='inv', f='warehouse'), MM('Item Catalog', c=\n 'supply', f='catalog_item'))]\n return menu\n\n @classmethod\n def menu_auth(cls, **attr):\n \"\"\"\n Auth Menu\n - switch Login to use OpenID Connect\n \"\"\"\n auth = current.auth\n logged_in = auth.is_logged_in()\n settings = current.deployment_settings\n if not logged_in:\n request = current.request\n login_next = URL(args=request.args, vars=request.vars)\n if (request.controller == 'default' and request.function ==\n 'user' and '_next' in request.get_vars):\n login_next = request.get_vars['_next']\n self_registration = settings.get_security_registration_visible()\n if self_registration == 'index':\n register = MM('Register', c='default', f='index', m=\n 'register', vars=dict(_next=login_next), check=\n self_registration)\n else:\n register = MM('Register', m='register', vars=dict(_next=\n login_next), check=self_registration)\n if settings.get_auth_password_changes(\n ) and settings.get_auth_password_retrieval():\n lost_pw = MM('Lost Password', m='retrieve_password')\n else:\n lost_pw = None\n menu_auth = MM('Login', c='default', f='openid_connect', m=\n 'login', _id='auth_menu_login', vars=dict(_next=login_next),\n **attr)(MM('Login', m='login', vars=dict(_next=login_next)),\n register, lost_pw)\n else:\n if settings.get_auth_password_changes():\n change_pw = MM('Change Password', m='change_password')\n else:\n change_pw = None\n menu_auth = MM(auth.user.email, c='default', f='user',\n translate=False, link=False, _id='auth_menu_email', **attr)(MM\n ('Logout', m='logout', _id='auth_menu_logout'), MM(\n 'User Profile', m='profile'), MM('Personal Data', c=\n 'default', f='person', m='update'), MM('Contact Details', c\n ='pr', f='person', args='contact', vars={'person.pe_id':\n auth.user.pe_id}), change_pw, SEP(), MM({'name': current.T(\n 'Rapid Data Entry'), 'id': 'rapid_toggle', 'value': current\n .session.s3.rapid_data_entry is True}, f='rapid'))\n return menu_auth\n", "<import token>\ntry:\n from .layouts import *\nexcept ImportError:\n pass\n<import token>\n\n\nclass S3MainMenu(default.S3MainMenu):\n \"\"\" Custom Application Main Menu \"\"\"\n\n @classmethod\n def menu_modules(cls):\n \"\"\" Custom Modules Menu \"\"\"\n menu = [MM('Call Logs', c='event', f='incident_report'), MM(\n 'Incidents', c='event', f='incident', m='summary'), MM(\n 'Scenarios', c='event', f='scenario'), MM('more', link=False)(\n MM('Documents', c='doc', f='document'), MM('Events', c='event',\n f='event'), MM('Staff', c='hrm', f='staff'), MM('Volunteers', c\n ='vol', f='volunteer'), MM('Assets', c='asset', f='asset'), MM(\n 'Organizations', c='org', f='organisation'), MM('Facilities', c\n ='org', f='facility'), MM('Shelters', c='cr', f='shelter'), MM(\n 'Warehouses', c='inv', f='warehouse'), MM('Item Catalog', c=\n 'supply', f='catalog_item'))]\n return menu\n\n @classmethod\n def menu_auth(cls, **attr):\n \"\"\"\n Auth Menu\n - switch Login to use OpenID Connect\n \"\"\"\n auth = current.auth\n logged_in = auth.is_logged_in()\n settings = current.deployment_settings\n if not logged_in:\n request = current.request\n login_next = URL(args=request.args, vars=request.vars)\n if (request.controller == 'default' and request.function ==\n 'user' and '_next' in request.get_vars):\n login_next = request.get_vars['_next']\n self_registration = settings.get_security_registration_visible()\n if self_registration == 'index':\n register = MM('Register', c='default', f='index', m=\n 'register', vars=dict(_next=login_next), check=\n self_registration)\n else:\n register = MM('Register', m='register', vars=dict(_next=\n login_next), check=self_registration)\n if settings.get_auth_password_changes(\n ) and settings.get_auth_password_retrieval():\n lost_pw = MM('Lost Password', m='retrieve_password')\n else:\n lost_pw = None\n menu_auth = MM('Login', c='default', f='openid_connect', m=\n 'login', _id='auth_menu_login', vars=dict(_next=login_next),\n **attr)(MM('Login', m='login', vars=dict(_next=login_next)),\n register, lost_pw)\n else:\n if settings.get_auth_password_changes():\n change_pw = MM('Change Password', m='change_password')\n else:\n change_pw = None\n menu_auth = MM(auth.user.email, c='default', f='user',\n translate=False, link=False, _id='auth_menu_email', **attr)(MM\n ('Logout', m='logout', _id='auth_menu_logout'), MM(\n 'User Profile', m='profile'), MM('Personal Data', c=\n 'default', f='person', m='update'), MM('Contact Details', c\n ='pr', f='person', args='contact', vars={'person.pe_id':\n auth.user.pe_id}), change_pw, SEP(), MM({'name': current.T(\n 'Rapid Data Entry'), 'id': 'rapid_toggle', 'value': current\n .session.s3.rapid_data_entry is True}, f='rapid'))\n return menu_auth\n", "<import token>\n<code token>\n<import token>\n\n\nclass S3MainMenu(default.S3MainMenu):\n \"\"\" Custom Application Main Menu \"\"\"\n\n @classmethod\n def menu_modules(cls):\n \"\"\" Custom Modules Menu \"\"\"\n menu = [MM('Call Logs', c='event', f='incident_report'), MM(\n 'Incidents', c='event', f='incident', m='summary'), MM(\n 'Scenarios', c='event', f='scenario'), MM('more', link=False)(\n MM('Documents', c='doc', f='document'), MM('Events', c='event',\n f='event'), MM('Staff', c='hrm', f='staff'), MM('Volunteers', c\n ='vol', f='volunteer'), MM('Assets', c='asset', f='asset'), MM(\n 'Organizations', c='org', f='organisation'), MM('Facilities', c\n ='org', f='facility'), MM('Shelters', c='cr', f='shelter'), MM(\n 'Warehouses', c='inv', f='warehouse'), MM('Item Catalog', c=\n 'supply', f='catalog_item'))]\n return menu\n\n @classmethod\n def menu_auth(cls, **attr):\n \"\"\"\n Auth Menu\n - switch Login to use OpenID Connect\n \"\"\"\n auth = current.auth\n logged_in = auth.is_logged_in()\n settings = current.deployment_settings\n if not logged_in:\n request = current.request\n login_next = URL(args=request.args, vars=request.vars)\n if (request.controller == 'default' and request.function ==\n 'user' and '_next' in request.get_vars):\n login_next = request.get_vars['_next']\n self_registration = settings.get_security_registration_visible()\n if self_registration == 'index':\n register = MM('Register', c='default', f='index', m=\n 'register', vars=dict(_next=login_next), check=\n self_registration)\n else:\n register = MM('Register', m='register', vars=dict(_next=\n login_next), check=self_registration)\n if settings.get_auth_password_changes(\n ) and settings.get_auth_password_retrieval():\n lost_pw = MM('Lost Password', m='retrieve_password')\n else:\n lost_pw = None\n menu_auth = MM('Login', c='default', f='openid_connect', m=\n 'login', _id='auth_menu_login', vars=dict(_next=login_next),\n **attr)(MM('Login', m='login', vars=dict(_next=login_next)),\n register, lost_pw)\n else:\n if settings.get_auth_password_changes():\n change_pw = MM('Change Password', m='change_password')\n else:\n change_pw = None\n menu_auth = MM(auth.user.email, c='default', f='user',\n translate=False, link=False, _id='auth_menu_email', **attr)(MM\n ('Logout', m='logout', _id='auth_menu_logout'), MM(\n 'User Profile', m='profile'), MM('Personal Data', c=\n 'default', f='person', m='update'), MM('Contact Details', c\n ='pr', f='person', args='contact', vars={'person.pe_id':\n auth.user.pe_id}), change_pw, SEP(), MM({'name': current.T(\n 'Rapid Data Entry'), 'id': 'rapid_toggle', 'value': current\n .session.s3.rapid_data_entry is True}, f='rapid'))\n return menu_auth\n", "<import token>\n<code token>\n<import token>\n\n\nclass S3MainMenu(default.S3MainMenu):\n <docstring token>\n\n @classmethod\n def menu_modules(cls):\n \"\"\" Custom Modules Menu \"\"\"\n menu = [MM('Call Logs', c='event', f='incident_report'), MM(\n 'Incidents', c='event', f='incident', m='summary'), MM(\n 'Scenarios', c='event', f='scenario'), MM('more', link=False)(\n MM('Documents', c='doc', f='document'), MM('Events', c='event',\n f='event'), MM('Staff', c='hrm', f='staff'), MM('Volunteers', c\n ='vol', f='volunteer'), MM('Assets', c='asset', f='asset'), MM(\n 'Organizations', c='org', f='organisation'), MM('Facilities', c\n ='org', f='facility'), MM('Shelters', c='cr', f='shelter'), MM(\n 'Warehouses', c='inv', f='warehouse'), MM('Item Catalog', c=\n 'supply', f='catalog_item'))]\n return menu\n\n @classmethod\n def menu_auth(cls, **attr):\n \"\"\"\n Auth Menu\n - switch Login to use OpenID Connect\n \"\"\"\n auth = current.auth\n logged_in = auth.is_logged_in()\n settings = current.deployment_settings\n if not logged_in:\n request = current.request\n login_next = URL(args=request.args, vars=request.vars)\n if (request.controller == 'default' and request.function ==\n 'user' and '_next' in request.get_vars):\n login_next = request.get_vars['_next']\n self_registration = settings.get_security_registration_visible()\n if self_registration == 'index':\n register = MM('Register', c='default', f='index', m=\n 'register', vars=dict(_next=login_next), check=\n self_registration)\n else:\n register = MM('Register', m='register', vars=dict(_next=\n login_next), check=self_registration)\n if settings.get_auth_password_changes(\n ) and settings.get_auth_password_retrieval():\n lost_pw = MM('Lost Password', m='retrieve_password')\n else:\n lost_pw = None\n menu_auth = MM('Login', c='default', f='openid_connect', m=\n 'login', _id='auth_menu_login', vars=dict(_next=login_next),\n **attr)(MM('Login', m='login', vars=dict(_next=login_next)),\n register, lost_pw)\n else:\n if settings.get_auth_password_changes():\n change_pw = MM('Change Password', m='change_password')\n else:\n change_pw = None\n menu_auth = MM(auth.user.email, c='default', f='user',\n translate=False, link=False, _id='auth_menu_email', **attr)(MM\n ('Logout', m='logout', _id='auth_menu_logout'), MM(\n 'User Profile', m='profile'), MM('Personal Data', c=\n 'default', f='person', m='update'), MM('Contact Details', c\n ='pr', f='person', args='contact', vars={'person.pe_id':\n auth.user.pe_id}), change_pw, SEP(), MM({'name': current.T(\n 'Rapid Data Entry'), 'id': 'rapid_toggle', 'value': current\n .session.s3.rapid_data_entry is True}, f='rapid'))\n return menu_auth\n", "<import token>\n<code token>\n<import token>\n\n\nclass S3MainMenu(default.S3MainMenu):\n <docstring token>\n <function token>\n\n @classmethod\n def menu_auth(cls, **attr):\n \"\"\"\n Auth Menu\n - switch Login to use OpenID Connect\n \"\"\"\n auth = current.auth\n logged_in = auth.is_logged_in()\n settings = current.deployment_settings\n if not logged_in:\n request = current.request\n login_next = URL(args=request.args, vars=request.vars)\n if (request.controller == 'default' and request.function ==\n 'user' and '_next' in request.get_vars):\n login_next = request.get_vars['_next']\n self_registration = settings.get_security_registration_visible()\n if self_registration == 'index':\n register = MM('Register', c='default', f='index', m=\n 'register', vars=dict(_next=login_next), check=\n self_registration)\n else:\n register = MM('Register', m='register', vars=dict(_next=\n login_next), check=self_registration)\n if settings.get_auth_password_changes(\n ) and settings.get_auth_password_retrieval():\n lost_pw = MM('Lost Password', m='retrieve_password')\n else:\n lost_pw = None\n menu_auth = MM('Login', c='default', f='openid_connect', m=\n 'login', _id='auth_menu_login', vars=dict(_next=login_next),\n **attr)(MM('Login', m='login', vars=dict(_next=login_next)),\n register, lost_pw)\n else:\n if settings.get_auth_password_changes():\n change_pw = MM('Change Password', m='change_password')\n else:\n change_pw = None\n menu_auth = MM(auth.user.email, c='default', f='user',\n translate=False, link=False, _id='auth_menu_email', **attr)(MM\n ('Logout', m='logout', _id='auth_menu_logout'), MM(\n 'User Profile', m='profile'), MM('Personal Data', c=\n 'default', f='person', m='update'), MM('Contact Details', c\n ='pr', f='person', args='contact', vars={'person.pe_id':\n auth.user.pe_id}), change_pw, SEP(), MM({'name': current.T(\n 'Rapid Data Entry'), 'id': 'rapid_toggle', 'value': current\n .session.s3.rapid_data_entry is True}, f='rapid'))\n return menu_auth\n", "<import token>\n<code token>\n<import token>\n\n\nclass S3MainMenu(default.S3MainMenu):\n <docstring token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<import token>\n<class token>\n" ]
false
98,346
8ec82fc579e3fbf57f4414e7b1be715025ce4ca7
from pathlib import Path from sqlalchemy import inspect import pysodium from environs import Env def sa_to_dict(obj): """ Serialize SQLAlchemy object to dictionary. - https://stackoverflow.com/a/37350445 - https://docs.sqlalchemy.org/en/14/core/inspection.html :param obj: :return: """ return {c.key: getattr(obj, c.key) for c in inspect(obj).mapper.column_attrs} def gen_keypair(): return pysodium.crypto_box_keypair() def read_config(): here = Path(__file__).parent.parent.parent env = Env(expand_vars=True) env.read_env(here / 'etc/tunfish/config/.env', recurse=False)
[ "from pathlib import Path\n\nfrom sqlalchemy import inspect\nimport pysodium\n\nfrom environs import Env\n\n\ndef sa_to_dict(obj):\n \"\"\"\n Serialize SQLAlchemy object to dictionary.\n - https://stackoverflow.com/a/37350445\n - https://docs.sqlalchemy.org/en/14/core/inspection.html\n :param obj:\n :return:\n \"\"\"\n return {c.key: getattr(obj, c.key)\n for c in inspect(obj).mapper.column_attrs}\n\n\ndef gen_keypair():\n return pysodium.crypto_box_keypair()\n\n\ndef read_config():\n here = Path(__file__).parent.parent.parent\n\n env = Env(expand_vars=True)\n env.read_env(here / 'etc/tunfish/config/.env', recurse=False)\n", "from pathlib import Path\nfrom sqlalchemy import inspect\nimport pysodium\nfrom environs import Env\n\n\ndef sa_to_dict(obj):\n \"\"\"\n Serialize SQLAlchemy object to dictionary.\n - https://stackoverflow.com/a/37350445\n - https://docs.sqlalchemy.org/en/14/core/inspection.html\n :param obj:\n :return:\n \"\"\"\n return {c.key: getattr(obj, c.key) for c in inspect(obj).mapper.\n column_attrs}\n\n\ndef gen_keypair():\n return pysodium.crypto_box_keypair()\n\n\ndef read_config():\n here = Path(__file__).parent.parent.parent\n env = Env(expand_vars=True)\n env.read_env(here / 'etc/tunfish/config/.env', recurse=False)\n", "<import token>\n\n\ndef sa_to_dict(obj):\n \"\"\"\n Serialize SQLAlchemy object to dictionary.\n - https://stackoverflow.com/a/37350445\n - https://docs.sqlalchemy.org/en/14/core/inspection.html\n :param obj:\n :return:\n \"\"\"\n return {c.key: getattr(obj, c.key) for c in inspect(obj).mapper.\n column_attrs}\n\n\ndef gen_keypair():\n return pysodium.crypto_box_keypair()\n\n\ndef read_config():\n here = Path(__file__).parent.parent.parent\n env = Env(expand_vars=True)\n env.read_env(here / 'etc/tunfish/config/.env', recurse=False)\n", "<import token>\n\n\ndef sa_to_dict(obj):\n \"\"\"\n Serialize SQLAlchemy object to dictionary.\n - https://stackoverflow.com/a/37350445\n - https://docs.sqlalchemy.org/en/14/core/inspection.html\n :param obj:\n :return:\n \"\"\"\n return {c.key: getattr(obj, c.key) for c in inspect(obj).mapper.\n column_attrs}\n\n\n<function token>\n\n\ndef read_config():\n here = Path(__file__).parent.parent.parent\n env = Env(expand_vars=True)\n env.read_env(here / 'etc/tunfish/config/.env', recurse=False)\n", "<import token>\n<function token>\n<function token>\n\n\ndef read_config():\n here = Path(__file__).parent.parent.parent\n env = Env(expand_vars=True)\n env.read_env(here / 'etc/tunfish/config/.env', recurse=False)\n", "<import token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,347
e6003b685275ffc5fb18cd9e1640ee79b3a5d546
# -*- coding: utf-8 -*- import json import logging import requests from pygns.exceptions import GNS3GenericError, GNS3ProjectExitsError class GNS3Project: """ Create a new GNS3 Project http://api.gns3.net/en/latest/curl.html#create-project """ def __init__(self, project_name, gns3server): """ :param project_name: Project name :param gns3server: GNS3Server object """ self._project_name = project_name self._api_endpoint = gns3server.api_endpoint() self._url = '{}projects'.format(self._api_endpoint) data = {"name": project_name} self._response = requests.post(self._url, data=json.dumps(data)) status_code = self._response.status_code if status_code == 409: raise GNS3ProjectExitsError('File {}.gns3 already exists.'.format(project_name)) elif status_code == 404: raise GNS3GenericError('This Error is not expected, please contact developer') else: params = self.get_project_params() self.base_url = '{}projects/{}'.format(params['server_end_point'], params['project_id']) self.nodes_url = self.base_url + '/nodes' self.links_url = self.base_url + '/links' def __repr__(self): params = json.dumps(self.get_project_params(), indent=4, sort_keys=True) return '{}: {}'.format(self.__class__.__name__, params) def get_project_params(self): """ GNS3 Project params :return: """ r = self._response.json() params = { 'server_end_point': self._api_endpoint, 'project_id': r.get('project_id'), 'filename': r.get('filename'), 'path': r.get('path'), 'status': r.get('status'), } return params def get_all_links(self): """ List all links in the project :return: """ links_url = "{}/links".format(self._project_url) print(links_url) response = requests.get(links_url).json() return json.dumps(response, indent=4, sort_keys=True)
[ "# -*- coding: utf-8 -*-\n\nimport json\nimport logging\nimport requests\nfrom pygns.exceptions import GNS3GenericError, GNS3ProjectExitsError\n\n\nclass GNS3Project:\n \"\"\"\n Create a new GNS3 Project\n http://api.gns3.net/en/latest/curl.html#create-project\n \"\"\"\n\n def __init__(self, project_name, gns3server):\n \"\"\"\n\n :param project_name: Project name\n :param gns3server: GNS3Server object\n \"\"\"\n self._project_name = project_name\n self._api_endpoint = gns3server.api_endpoint()\n self._url = '{}projects'.format(self._api_endpoint)\n data = {\"name\": project_name}\n self._response = requests.post(self._url, data=json.dumps(data))\n status_code = self._response.status_code\n if status_code == 409:\n raise GNS3ProjectExitsError('File {}.gns3 already exists.'.format(project_name))\n elif status_code == 404:\n raise GNS3GenericError('This Error is not expected, please contact developer')\n else:\n params = self.get_project_params()\n self.base_url = '{}projects/{}'.format(params['server_end_point'], params['project_id'])\n self.nodes_url = self.base_url + '/nodes'\n self.links_url = self.base_url + '/links'\n\n def __repr__(self):\n params = json.dumps(self.get_project_params(), indent=4, sort_keys=True)\n return '{}: {}'.format(self.__class__.__name__, params)\n\n def get_project_params(self):\n \"\"\"\n GNS3 Project params\n :return: \n \"\"\"\n r = self._response.json()\n params = {\n 'server_end_point': self._api_endpoint,\n 'project_id': r.get('project_id'),\n 'filename': r.get('filename'),\n 'path': r.get('path'),\n 'status': r.get('status'),\n }\n return params\n\n def get_all_links(self):\n \"\"\"\n List all links in the project\n :return: \n \"\"\"\n links_url = \"{}/links\".format(self._project_url)\n print(links_url)\n response = requests.get(links_url).json()\n return json.dumps(response, indent=4, sort_keys=True)\n", "import json\nimport logging\nimport requests\nfrom pygns.exceptions import GNS3GenericError, GNS3ProjectExitsError\n\n\nclass GNS3Project:\n \"\"\"\n Create a new GNS3 Project\n http://api.gns3.net/en/latest/curl.html#create-project\n \"\"\"\n\n def __init__(self, project_name, gns3server):\n \"\"\"\n\n :param project_name: Project name\n :param gns3server: GNS3Server object\n \"\"\"\n self._project_name = project_name\n self._api_endpoint = gns3server.api_endpoint()\n self._url = '{}projects'.format(self._api_endpoint)\n data = {'name': project_name}\n self._response = requests.post(self._url, data=json.dumps(data))\n status_code = self._response.status_code\n if status_code == 409:\n raise GNS3ProjectExitsError('File {}.gns3 already exists.'.\n format(project_name))\n elif status_code == 404:\n raise GNS3GenericError(\n 'This Error is not expected, please contact developer')\n else:\n params = self.get_project_params()\n self.base_url = '{}projects/{}'.format(params[\n 'server_end_point'], params['project_id'])\n self.nodes_url = self.base_url + '/nodes'\n self.links_url = self.base_url + '/links'\n\n def __repr__(self):\n params = json.dumps(self.get_project_params(), indent=4, sort_keys=True\n )\n return '{}: {}'.format(self.__class__.__name__, params)\n\n def get_project_params(self):\n \"\"\"\n GNS3 Project params\n :return: \n \"\"\"\n r = self._response.json()\n params = {'server_end_point': self._api_endpoint, 'project_id': r.\n get('project_id'), 'filename': r.get('filename'), 'path': r.get\n ('path'), 'status': r.get('status')}\n return params\n\n def get_all_links(self):\n \"\"\"\n List all links in the project\n :return: \n \"\"\"\n links_url = '{}/links'.format(self._project_url)\n print(links_url)\n response = requests.get(links_url).json()\n return json.dumps(response, indent=4, sort_keys=True)\n", "<import token>\n\n\nclass GNS3Project:\n \"\"\"\n Create a new GNS3 Project\n http://api.gns3.net/en/latest/curl.html#create-project\n \"\"\"\n\n def __init__(self, project_name, gns3server):\n \"\"\"\n\n :param project_name: Project name\n :param gns3server: GNS3Server object\n \"\"\"\n self._project_name = project_name\n self._api_endpoint = gns3server.api_endpoint()\n self._url = '{}projects'.format(self._api_endpoint)\n data = {'name': project_name}\n self._response = requests.post(self._url, data=json.dumps(data))\n status_code = self._response.status_code\n if status_code == 409:\n raise GNS3ProjectExitsError('File {}.gns3 already exists.'.\n format(project_name))\n elif status_code == 404:\n raise GNS3GenericError(\n 'This Error is not expected, please contact developer')\n else:\n params = self.get_project_params()\n self.base_url = '{}projects/{}'.format(params[\n 'server_end_point'], params['project_id'])\n self.nodes_url = self.base_url + '/nodes'\n self.links_url = self.base_url + '/links'\n\n def __repr__(self):\n params = json.dumps(self.get_project_params(), indent=4, sort_keys=True\n )\n return '{}: {}'.format(self.__class__.__name__, params)\n\n def get_project_params(self):\n \"\"\"\n GNS3 Project params\n :return: \n \"\"\"\n r = self._response.json()\n params = {'server_end_point': self._api_endpoint, 'project_id': r.\n get('project_id'), 'filename': r.get('filename'), 'path': r.get\n ('path'), 'status': r.get('status')}\n return params\n\n def get_all_links(self):\n \"\"\"\n List all links in the project\n :return: \n \"\"\"\n links_url = '{}/links'.format(self._project_url)\n print(links_url)\n response = requests.get(links_url).json()\n return json.dumps(response, indent=4, sort_keys=True)\n", "<import token>\n\n\nclass GNS3Project:\n <docstring token>\n\n def __init__(self, project_name, gns3server):\n \"\"\"\n\n :param project_name: Project name\n :param gns3server: GNS3Server object\n \"\"\"\n self._project_name = project_name\n self._api_endpoint = gns3server.api_endpoint()\n self._url = '{}projects'.format(self._api_endpoint)\n data = {'name': project_name}\n self._response = requests.post(self._url, data=json.dumps(data))\n status_code = self._response.status_code\n if status_code == 409:\n raise GNS3ProjectExitsError('File {}.gns3 already exists.'.\n format(project_name))\n elif status_code == 404:\n raise GNS3GenericError(\n 'This Error is not expected, please contact developer')\n else:\n params = self.get_project_params()\n self.base_url = '{}projects/{}'.format(params[\n 'server_end_point'], params['project_id'])\n self.nodes_url = self.base_url + '/nodes'\n self.links_url = self.base_url + '/links'\n\n def __repr__(self):\n params = json.dumps(self.get_project_params(), indent=4, sort_keys=True\n )\n return '{}: {}'.format(self.__class__.__name__, params)\n\n def get_project_params(self):\n \"\"\"\n GNS3 Project params\n :return: \n \"\"\"\n r = self._response.json()\n params = {'server_end_point': self._api_endpoint, 'project_id': r.\n get('project_id'), 'filename': r.get('filename'), 'path': r.get\n ('path'), 'status': r.get('status')}\n return params\n\n def get_all_links(self):\n \"\"\"\n List all links in the project\n :return: \n \"\"\"\n links_url = '{}/links'.format(self._project_url)\n print(links_url)\n response = requests.get(links_url).json()\n return json.dumps(response, indent=4, sort_keys=True)\n", "<import token>\n\n\nclass GNS3Project:\n <docstring token>\n\n def __init__(self, project_name, gns3server):\n \"\"\"\n\n :param project_name: Project name\n :param gns3server: GNS3Server object\n \"\"\"\n self._project_name = project_name\n self._api_endpoint = gns3server.api_endpoint()\n self._url = '{}projects'.format(self._api_endpoint)\n data = {'name': project_name}\n self._response = requests.post(self._url, data=json.dumps(data))\n status_code = self._response.status_code\n if status_code == 409:\n raise GNS3ProjectExitsError('File {}.gns3 already exists.'.\n format(project_name))\n elif status_code == 404:\n raise GNS3GenericError(\n 'This Error is not expected, please contact developer')\n else:\n params = self.get_project_params()\n self.base_url = '{}projects/{}'.format(params[\n 'server_end_point'], params['project_id'])\n self.nodes_url = self.base_url + '/nodes'\n self.links_url = self.base_url + '/links'\n <function token>\n\n def get_project_params(self):\n \"\"\"\n GNS3 Project params\n :return: \n \"\"\"\n r = self._response.json()\n params = {'server_end_point': self._api_endpoint, 'project_id': r.\n get('project_id'), 'filename': r.get('filename'), 'path': r.get\n ('path'), 'status': r.get('status')}\n return params\n\n def get_all_links(self):\n \"\"\"\n List all links in the project\n :return: \n \"\"\"\n links_url = '{}/links'.format(self._project_url)\n print(links_url)\n response = requests.get(links_url).json()\n return json.dumps(response, indent=4, sort_keys=True)\n", "<import token>\n\n\nclass GNS3Project:\n <docstring token>\n\n def __init__(self, project_name, gns3server):\n \"\"\"\n\n :param project_name: Project name\n :param gns3server: GNS3Server object\n \"\"\"\n self._project_name = project_name\n self._api_endpoint = gns3server.api_endpoint()\n self._url = '{}projects'.format(self._api_endpoint)\n data = {'name': project_name}\n self._response = requests.post(self._url, data=json.dumps(data))\n status_code = self._response.status_code\n if status_code == 409:\n raise GNS3ProjectExitsError('File {}.gns3 already exists.'.\n format(project_name))\n elif status_code == 404:\n raise GNS3GenericError(\n 'This Error is not expected, please contact developer')\n else:\n params = self.get_project_params()\n self.base_url = '{}projects/{}'.format(params[\n 'server_end_point'], params['project_id'])\n self.nodes_url = self.base_url + '/nodes'\n self.links_url = self.base_url + '/links'\n <function token>\n\n def get_project_params(self):\n \"\"\"\n GNS3 Project params\n :return: \n \"\"\"\n r = self._response.json()\n params = {'server_end_point': self._api_endpoint, 'project_id': r.\n get('project_id'), 'filename': r.get('filename'), 'path': r.get\n ('path'), 'status': r.get('status')}\n return params\n <function token>\n", "<import token>\n\n\nclass GNS3Project:\n <docstring token>\n <function token>\n <function token>\n\n def get_project_params(self):\n \"\"\"\n GNS3 Project params\n :return: \n \"\"\"\n r = self._response.json()\n params = {'server_end_point': self._api_endpoint, 'project_id': r.\n get('project_id'), 'filename': r.get('filename'), 'path': r.get\n ('path'), 'status': r.get('status')}\n return params\n <function token>\n", "<import token>\n\n\nclass GNS3Project:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,348
48c12e5bdf4aa5bb744a01e7925363ef623086a2
def divisors(n): l = [] for i in range (1, n): res = divmod(n, i) if res[1] == 0: l.append(res[0]) print l if __name__ == '__main__': q = True while q == True: n1 = input('Please input positive number: ') if n1 <= 0: print 'Please put positive value' else: q = False divisors(n1)
[ "def divisors(n):\n l = []\n for i in range (1, n):\n res = divmod(n, i)\n if res[1] == 0:\n l.append(res[0])\n print l\n \n\n\n\n\nif __name__ == '__main__':\n q = True\n while q == True:\n n1 = input('Please input positive number: ')\n if n1 <= 0:\n print 'Please put positive value'\n else:\n q = False\n divisors(n1)\n \n " ]
true
98,349
d3f485adb0bed411cf150500ad6283d13a4ce7a9
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Oct 20 01:57:49 2019 @author: dee """ import quandl import pandas as pd import pyodbc import os import requests import json import numpy as np from pathlib import Path company_data_pd = pd.read_excel('company_country_list.xls') metric_table = np.loadtxt('metric_table.csv',delimiter = ',') country_metric_table = np.load('metric_countries_table.npy') def score(isin): company_idx = np.where(company_data_pd['isin'] == isin)[0] if company_idx.size == 0: return 0. ticker, name,country = company_data_pd.iloc[company_idx[0],[2,4,5]] idx = np.where(np.array(country_metric_table,dtype=object) == country)[0] if idx.size > 0: score = metric_table[idx, -1] return score else: return 0. main_score_list = [] main_score_list_names = [] pathlist = Path('Supplier_Data2').glob('**/*.npy') for path in pathlist: parent_dict = np.load(str(path), allow_pickle = True).item() if type(parent_dict) != str: print ('----',str(path).split('/')[1].split('.')[0],'----') score1 = 0. score2 = 0. for value, key in parent_dict.items(): score_val = score(value) number_children1 = len(key.values()) for value1, key1 in key.items(): score_val1 = score(value1) score1 += (score_val1*1/number_children1) number_children2 = len(key1.values()) for value2, key2 in key1.items(): score_val2 = score(value2) score2 += (score_val2*(1/number_children1)*(1/number_children2)) score_list = [score_val, score1, score2] print (score_list) print (np.sum(score_list)) main_score_list.append(np.sum(score_list)) main_score_list_names.append(str(path).split('/')[1].split('.')[0])
[ "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sun Oct 20 01:57:49 2019\n\n@author: dee\n\"\"\"\n\n\nimport quandl\nimport pandas as pd\nimport pyodbc\nimport os\nimport requests\nimport json\nimport numpy as np\nfrom pathlib import Path\n\n\ncompany_data_pd = pd.read_excel('company_country_list.xls') \n\nmetric_table = np.loadtxt('metric_table.csv',delimiter = ',')\ncountry_metric_table = np.load('metric_countries_table.npy')\ndef score(isin):\n company_idx = np.where(company_data_pd['isin'] == isin)[0]\n if company_idx.size == 0:\n return 0.\n ticker, name,country = company_data_pd.iloc[company_idx[0],[2,4,5]]\n idx = np.where(np.array(country_metric_table,dtype=object) == country)[0]\n if idx.size > 0:\n score = metric_table[idx, -1]\n return score\n else:\n return 0.\n\nmain_score_list = []\nmain_score_list_names = []\npathlist = Path('Supplier_Data2').glob('**/*.npy')\nfor path in pathlist:\n parent_dict = np.load(str(path), allow_pickle = True).item()\n if type(parent_dict) != str:\n print ('----',str(path).split('/')[1].split('.')[0],'----')\n score1 = 0.\n score2 = 0.\n for value, key in parent_dict.items():\n score_val = score(value)\n number_children1 = len(key.values())\n for value1, key1 in key.items():\n score_val1 = score(value1)\n score1 += (score_val1*1/number_children1)\n number_children2 = len(key1.values())\n for value2, key2 in key1.items():\n score_val2 = score(value2)\n score2 += (score_val2*(1/number_children1)*(1/number_children2))\n \n score_list = [score_val, score1, score2]\n print (score_list)\n print (np.sum(score_list))\n main_score_list.append(np.sum(score_list))\n main_score_list_names.append(str(path).split('/')[1].split('.')[0])\n\n\n", "<docstring token>\nimport quandl\nimport pandas as pd\nimport pyodbc\nimport os\nimport requests\nimport json\nimport numpy as np\nfrom pathlib import Path\ncompany_data_pd = pd.read_excel('company_country_list.xls')\nmetric_table = np.loadtxt('metric_table.csv', delimiter=',')\ncountry_metric_table = np.load('metric_countries_table.npy')\n\n\ndef score(isin):\n company_idx = np.where(company_data_pd['isin'] == isin)[0]\n if company_idx.size == 0:\n return 0.0\n ticker, name, country = company_data_pd.iloc[company_idx[0], [2, 4, 5]]\n idx = np.where(np.array(country_metric_table, dtype=object) == country)[0]\n if idx.size > 0:\n score = metric_table[idx, -1]\n return score\n else:\n return 0.0\n\n\nmain_score_list = []\nmain_score_list_names = []\npathlist = Path('Supplier_Data2').glob('**/*.npy')\nfor path in pathlist:\n parent_dict = np.load(str(path), allow_pickle=True).item()\n if type(parent_dict) != str:\n print('----', str(path).split('/')[1].split('.')[0], '----')\n score1 = 0.0\n score2 = 0.0\n for value, key in parent_dict.items():\n score_val = score(value)\n number_children1 = len(key.values())\n for value1, key1 in key.items():\n score_val1 = score(value1)\n score1 += score_val1 * 1 / number_children1\n number_children2 = len(key1.values())\n for value2, key2 in key1.items():\n score_val2 = score(value2)\n score2 += score_val2 * (1 / number_children1) * (1 /\n number_children2)\n score_list = [score_val, score1, score2]\n print(score_list)\n print(np.sum(score_list))\n main_score_list.append(np.sum(score_list))\n main_score_list_names.append(str(path).split('/')[1].split('.')[0])\n", "<docstring token>\n<import token>\ncompany_data_pd = pd.read_excel('company_country_list.xls')\nmetric_table = np.loadtxt('metric_table.csv', delimiter=',')\ncountry_metric_table = np.load('metric_countries_table.npy')\n\n\ndef score(isin):\n company_idx = np.where(company_data_pd['isin'] == isin)[0]\n if company_idx.size == 0:\n return 0.0\n ticker, name, country = company_data_pd.iloc[company_idx[0], [2, 4, 5]]\n idx = np.where(np.array(country_metric_table, dtype=object) == country)[0]\n if idx.size > 0:\n score = metric_table[idx, -1]\n return score\n else:\n return 0.0\n\n\nmain_score_list = []\nmain_score_list_names = []\npathlist = Path('Supplier_Data2').glob('**/*.npy')\nfor path in pathlist:\n parent_dict = np.load(str(path), allow_pickle=True).item()\n if type(parent_dict) != str:\n print('----', str(path).split('/')[1].split('.')[0], '----')\n score1 = 0.0\n score2 = 0.0\n for value, key in parent_dict.items():\n score_val = score(value)\n number_children1 = len(key.values())\n for value1, key1 in key.items():\n score_val1 = score(value1)\n score1 += score_val1 * 1 / number_children1\n number_children2 = len(key1.values())\n for value2, key2 in key1.items():\n score_val2 = score(value2)\n score2 += score_val2 * (1 / number_children1) * (1 /\n number_children2)\n score_list = [score_val, score1, score2]\n print(score_list)\n print(np.sum(score_list))\n main_score_list.append(np.sum(score_list))\n main_score_list_names.append(str(path).split('/')[1].split('.')[0])\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef score(isin):\n company_idx = np.where(company_data_pd['isin'] == isin)[0]\n if company_idx.size == 0:\n return 0.0\n ticker, name, country = company_data_pd.iloc[company_idx[0], [2, 4, 5]]\n idx = np.where(np.array(country_metric_table, dtype=object) == country)[0]\n if idx.size > 0:\n score = metric_table[idx, -1]\n return score\n else:\n return 0.0\n\n\n<assignment token>\nfor path in pathlist:\n parent_dict = np.load(str(path), allow_pickle=True).item()\n if type(parent_dict) != str:\n print('----', str(path).split('/')[1].split('.')[0], '----')\n score1 = 0.0\n score2 = 0.0\n for value, key in parent_dict.items():\n score_val = score(value)\n number_children1 = len(key.values())\n for value1, key1 in key.items():\n score_val1 = score(value1)\n score1 += score_val1 * 1 / number_children1\n number_children2 = len(key1.values())\n for value2, key2 in key1.items():\n score_val2 = score(value2)\n score2 += score_val2 * (1 / number_children1) * (1 /\n number_children2)\n score_list = [score_val, score1, score2]\n print(score_list)\n print(np.sum(score_list))\n main_score_list.append(np.sum(score_list))\n main_score_list_names.append(str(path).split('/')[1].split('.')[0])\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef score(isin):\n company_idx = np.where(company_data_pd['isin'] == isin)[0]\n if company_idx.size == 0:\n return 0.0\n ticker, name, country = company_data_pd.iloc[company_idx[0], [2, 4, 5]]\n idx = np.where(np.array(country_metric_table, dtype=object) == country)[0]\n if idx.size > 0:\n score = metric_table[idx, -1]\n return score\n else:\n return 0.0\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
98,350
1663473a1f73e7981f43e35aa288ec539c75a3cc
# main.py -- put your code here! import PS2 while True: ps=PS2.PS2KEY('X18','X19','X20','X21') a=ps.ps2_key() if(a==13): pyb.LED(1).on() elif(a==14): pyb.LED(2).on() elif(a==15): pyb.LED(3).on() elif(a==16): pyb.LED(4).on() elif(a==5): pyb.LED(1).off() elif(a==6): pyb.LED(2).off() elif(a==7): pyb.LED(3).off() elif(a==8): pyb.LED(4).off()
[ "# main.py -- put your code here!\nimport PS2\n\nwhile True:\n\tps=PS2.PS2KEY('X18','X19','X20','X21')\n\ta=ps.ps2_key()\n\tif(a==13):\n\t\tpyb.LED(1).on()\n\telif(a==14):\n\t\tpyb.LED(2).on()\n\telif(a==15):\n\t\tpyb.LED(3).on()\n\telif(a==16):\n\t\tpyb.LED(4).on()\n\telif(a==5):\n\t\tpyb.LED(1).off()\n\telif(a==6):\n\t\tpyb.LED(2).off()\n\telif(a==7):\n\t\tpyb.LED(3).off()\n\telif(a==8):\n\t\tpyb.LED(4).off()\n", "import PS2\nwhile True:\n ps = PS2.PS2KEY('X18', 'X19', 'X20', 'X21')\n a = ps.ps2_key()\n if a == 13:\n pyb.LED(1).on()\n elif a == 14:\n pyb.LED(2).on()\n elif a == 15:\n pyb.LED(3).on()\n elif a == 16:\n pyb.LED(4).on()\n elif a == 5:\n pyb.LED(1).off()\n elif a == 6:\n pyb.LED(2).off()\n elif a == 7:\n pyb.LED(3).off()\n elif a == 8:\n pyb.LED(4).off()\n", "<import token>\nwhile True:\n ps = PS2.PS2KEY('X18', 'X19', 'X20', 'X21')\n a = ps.ps2_key()\n if a == 13:\n pyb.LED(1).on()\n elif a == 14:\n pyb.LED(2).on()\n elif a == 15:\n pyb.LED(3).on()\n elif a == 16:\n pyb.LED(4).on()\n elif a == 5:\n pyb.LED(1).off()\n elif a == 6:\n pyb.LED(2).off()\n elif a == 7:\n pyb.LED(3).off()\n elif a == 8:\n pyb.LED(4).off()\n", "<import token>\n<code token>\n" ]
false
98,351
fb0e9a55771e26aeb618c0c894a3d7e4fdc681a6
# -*- coding: utf-8 -*- """ @Time : 2020/8/8 @Author : jim @File : [64]最小路径和 @Description : """ # 思路1:BFS 暴力搜索 # 思路2:DP # 状态数组:f[i][j] = min(f[i][j-1],f[i-1][j]) + g[i][j] # 状态转移方程 dp[] # 自顶向下 def minPathSum_DP1(self, grid: List[List[int]]) -> int: x = len(grid) if x == 0: return 0 else: y = len(grid[0]) DP = grid[:] for i in range(1, y): DP[0][i] = DP[0][i - 1] + DP[0][i] for j in range(1, x): DP[j][0] = DP[j - 1][0] + DP[j][0] for i in range(1, x): for j in range(1, y): DP[i][j] = min(DP[i - 1][j], DP[i][j - 1]) + DP[i][j] return DP[x - 1][y - 1] # 执行耗时: 60ms, 击败了65.16 % 的Python3用户 # 内存消耗: 14.9MB, 击败了75.39 % 的Python3用户 # 自底向上 def minPathSum_DP2(self, grid: List[List[int]]) -> int: x = len(grid) if x == 0: return 0 else: y = len(grid[0]) DP = grid[:] for i in range(y - 2, -1, -1): DP[x - 1][i] = DP[x - 1][i + 1] + DP[x - 1][i] for j in range(x - 2, -1, -1): DP[j][y - 1] = DP[j + 1][y - 1] + DP[j][y - 1] for i in range(x - 2, -1, -1): for j in range(y - 2, -1, -1): DP[i][j] = min(DP[i + 1][j], DP[i][j + 1]) + DP[i][j] return DP[0][0] # 执行耗时: 60ms, 击败了65.16 % 的Python3用户 # 内存消耗: 15MB, 击败了59.41 % 的Python3用户 # 优化存储空间,只有一维保存DP状态方程,自顶向下 def minPathSum(self, grid: List[List[int]]) -> int: x = len(grid) if x == 0: return 0 else: y = len(grid[0]) DP = grid[0][:] for j in range(1, y): DP[j] = DP[j - 1] + grid[0][j] for i in range(1, x): DP[0] = DP[0] + grid[i][0] for j in range(1, y): DP[j] = min(DP[j - 1], DP[j]) + grid[i][j] return DP[-1] # 解答成功:执行耗时: 80ms, 击败了11.22 % 的Python3用户 # 内存消耗: 13.8MB, 击败了96.71 % 的Python3用户
[ "# -*- coding: utf-8 -*-\n\n\"\"\"\n@Time : 2020/8/8\n@Author : jim\n@File : [64]最小路径和\n@Description : \n\"\"\"\n\n# 思路1:BFS 暴力搜索\n\n# 思路2:DP\n# 状态数组:f[i][j] = min(f[i][j-1],f[i-1][j]) + g[i][j]\n# 状态转移方程 dp[]\n\n# 自顶向下\ndef minPathSum_DP1(self, grid: List[List[int]]) -> int:\n x = len(grid)\n if x == 0:\n return 0\n else:\n y = len(grid[0])\n DP = grid[:]\n for i in range(1, y):\n DP[0][i] = DP[0][i - 1] + DP[0][i]\n for j in range(1, x):\n DP[j][0] = DP[j - 1][0] + DP[j][0]\n for i in range(1, x):\n for j in range(1, y):\n DP[i][j] = min(DP[i - 1][j], DP[i][j - 1]) + DP[i][j]\n\n return DP[x - 1][y - 1]\n\n\n# 执行耗时: 60ms, 击败了65.16 % 的Python3用户\n# 内存消耗: 14.9MB, 击败了75.39 % 的Python3用户\n\n# 自底向上\ndef minPathSum_DP2(self, grid: List[List[int]]) -> int:\n x = len(grid)\n if x == 0:\n return 0\n else:\n y = len(grid[0])\n DP = grid[:]\n for i in range(y - 2, -1, -1):\n DP[x - 1][i] = DP[x - 1][i + 1] + DP[x - 1][i]\n for j in range(x - 2, -1, -1):\n DP[j][y - 1] = DP[j + 1][y - 1] + DP[j][y - 1]\n for i in range(x - 2, -1, -1):\n for j in range(y - 2, -1, -1):\n DP[i][j] = min(DP[i + 1][j], DP[i][j + 1]) + DP[i][j]\n\n return DP[0][0]\n\n# 执行耗时: 60ms, 击败了65.16 % 的Python3用户\n# 内存消耗: 15MB, 击败了59.41 % 的Python3用户\n\n# 优化存储空间,只有一维保存DP状态方程,自顶向下\ndef minPathSum(self, grid: List[List[int]]) -> int:\n x = len(grid)\n if x == 0:\n return 0\n else:\n y = len(grid[0])\n DP = grid[0][:]\n for j in range(1, y):\n DP[j] = DP[j - 1] + grid[0][j]\n for i in range(1, x):\n DP[0] = DP[0] + grid[i][0]\n for j in range(1, y):\n DP[j] = min(DP[j - 1], DP[j]) + grid[i][j]\n\n return DP[-1]\n\n# 解答成功:执行耗时: 80ms, 击败了11.22 % 的Python3用户\n# 内存消耗: 13.8MB, 击败了96.71 % 的Python3用户\n", "<docstring token>\n\n\ndef minPathSum_DP1(self, grid: List[List[int]]) ->int:\n x = len(grid)\n if x == 0:\n return 0\n else:\n y = len(grid[0])\n DP = grid[:]\n for i in range(1, y):\n DP[0][i] = DP[0][i - 1] + DP[0][i]\n for j in range(1, x):\n DP[j][0] = DP[j - 1][0] + DP[j][0]\n for i in range(1, x):\n for j in range(1, y):\n DP[i][j] = min(DP[i - 1][j], DP[i][j - 1]) + DP[i][j]\n return DP[x - 1][y - 1]\n\n\ndef minPathSum_DP2(self, grid: List[List[int]]) ->int:\n x = len(grid)\n if x == 0:\n return 0\n else:\n y = len(grid[0])\n DP = grid[:]\n for i in range(y - 2, -1, -1):\n DP[x - 1][i] = DP[x - 1][i + 1] + DP[x - 1][i]\n for j in range(x - 2, -1, -1):\n DP[j][y - 1] = DP[j + 1][y - 1] + DP[j][y - 1]\n for i in range(x - 2, -1, -1):\n for j in range(y - 2, -1, -1):\n DP[i][j] = min(DP[i + 1][j], DP[i][j + 1]) + DP[i][j]\n return DP[0][0]\n\n\ndef minPathSum(self, grid: List[List[int]]) ->int:\n x = len(grid)\n if x == 0:\n return 0\n else:\n y = len(grid[0])\n DP = grid[0][:]\n for j in range(1, y):\n DP[j] = DP[j - 1] + grid[0][j]\n for i in range(1, x):\n DP[0] = DP[0] + grid[i][0]\n for j in range(1, y):\n DP[j] = min(DP[j - 1], DP[j]) + grid[i][j]\n return DP[-1]\n", "<docstring token>\n\n\ndef minPathSum_DP1(self, grid: List[List[int]]) ->int:\n x = len(grid)\n if x == 0:\n return 0\n else:\n y = len(grid[0])\n DP = grid[:]\n for i in range(1, y):\n DP[0][i] = DP[0][i - 1] + DP[0][i]\n for j in range(1, x):\n DP[j][0] = DP[j - 1][0] + DP[j][0]\n for i in range(1, x):\n for j in range(1, y):\n DP[i][j] = min(DP[i - 1][j], DP[i][j - 1]) + DP[i][j]\n return DP[x - 1][y - 1]\n\n\ndef minPathSum_DP2(self, grid: List[List[int]]) ->int:\n x = len(grid)\n if x == 0:\n return 0\n else:\n y = len(grid[0])\n DP = grid[:]\n for i in range(y - 2, -1, -1):\n DP[x - 1][i] = DP[x - 1][i + 1] + DP[x - 1][i]\n for j in range(x - 2, -1, -1):\n DP[j][y - 1] = DP[j + 1][y - 1] + DP[j][y - 1]\n for i in range(x - 2, -1, -1):\n for j in range(y - 2, -1, -1):\n DP[i][j] = min(DP[i + 1][j], DP[i][j + 1]) + DP[i][j]\n return DP[0][0]\n\n\n<function token>\n", "<docstring token>\n<function token>\n\n\ndef minPathSum_DP2(self, grid: List[List[int]]) ->int:\n x = len(grid)\n if x == 0:\n return 0\n else:\n y = len(grid[0])\n DP = grid[:]\n for i in range(y - 2, -1, -1):\n DP[x - 1][i] = DP[x - 1][i + 1] + DP[x - 1][i]\n for j in range(x - 2, -1, -1):\n DP[j][y - 1] = DP[j + 1][y - 1] + DP[j][y - 1]\n for i in range(x - 2, -1, -1):\n for j in range(y - 2, -1, -1):\n DP[i][j] = min(DP[i + 1][j], DP[i][j + 1]) + DP[i][j]\n return DP[0][0]\n\n\n<function token>\n", "<docstring token>\n<function token>\n<function token>\n<function token>\n" ]
false
98,352
da4b92350af5d6d8d8864aa36475269889487096
# Let's take this program and make it into a command line app. # Let's also allow the user to declare their own files for: # - User Dataset # - Whitelisted values # - Blacklisted values import json import re import datetime class DataAudit(): def open_dataset(dataset_path, dataset_create_bit=0): dataset_load_flag = "r" if dataset_create_bit: dataset_load_flag = "r+" dataset_file = open(dataset_path, "x") emptylist = json.loads("[]") json.dump(emptylist, dataset_file) dataset_file.close() # TODO: Learn best error handling practices for opening files dataset_file = open(dataset_path, dataset_load_flag) # TODO: Handle errors on JSON load return json.load(dataset_file), dataset_file def close_dataset(dataset_file_object, data=None): json.dump(dataset_file_object, data) dataset_file_object.close() def open_list(list_path): list_file = open(list_path) list_set = json.load(list_file) list_name = list(list_set.keys())[0] list_object = list_set[list_name] return list_object, list_file def close_list(list_file_object): list_file_object.close() # In the following functions, n is the JSON entry in an array of entries. # The field parameter is the name of a field in that entry. def empty_check(n, field): if not n[field]: return False return True # TODO: Consider allowing direct comparisons as well as substring checks def blacklist_check(n, field, blacklist): if n[field]: for i in blacklist: if i == n[field]: return False return True def whitelist_check(n, field, whitelist): if not n[field]: return False if n[field] in whitelist: return True return False def minimum_length_check(n, field, min): if n[field]: if min <= len(n[field]): return True return False def maximum_length_check(n, field, max): if n[field]: if len(n[field]) <= max: return True return False def type_check(n, field, typename): if not n[field]: return False # This does work even if the given typename is invalid. Ugly. valid_types = {'alnum': n[field].isalnum, 'digit': n[field].isdigit, 'alpha': n[field].isalpha} if typename not in valid_types.keys(): raise Exception(f"The {typename} type is not supported.") if not valid_types[typename](): return False return True def regex_check(n, field, reg): if not n[field]: return False pattern = re.compile(reg) if pattern.fullmatch(n[field]): return True return False # Timestamps must be in UTC without millisecond precision def precedence_check(n, bef_field, aft_field): if not n[bef_field]: return False, "Before field is null." if not n[aft_field]: return False, "After field is null." try: before = datetime.datetime.strptime( str(n[bef_field]), "%Y-%m-%dT%H:%M:%SZ") except: return False, f"Invalid {bef_field}." try: after = datetime.datetime.strptime( str(n[aft_field]), "%Y-%m-%dT%H:%M:%SZ") except: return False, f"Invalid {aft_field}." if before < after: return True, f"{bef_field} is before {aft_field}" return False, f"{bef_field} is not before {aft_field}." def uniqueness_check(n, field, dataset): fields = [i[field] for i in dataset] if fields.count(n[field]) > 1: return False return True
[ "# Let's take this program and make it into a command line app.\n# Let's also allow the user to declare their own files for:\n# - User Dataset\n# - Whitelisted values\n# - Blacklisted values\n\nimport json\nimport re\nimport datetime\n\n\nclass DataAudit():\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = \"r\"\n if dataset_create_bit:\n dataset_load_flag = \"r+\"\n dataset_file = open(dataset_path, \"x\")\n emptylist = json.loads(\"[]\")\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n # TODO: Learn best error handling practices for opening files\n dataset_file = open(dataset_path, dataset_load_flag)\n # TODO: Handle errors on JSON load\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n\n def open_list(list_path):\n list_file = open(list_path)\n list_set = json.load(list_file)\n list_name = list(list_set.keys())[0]\n list_object = list_set[list_name]\n return list_object, list_file\n\n def close_list(list_file_object):\n list_file_object.close()\n\n\n # In the following functions, n is the JSON entry in an array of entries.\n # The field parameter is the name of a field in that entry.\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n\n # TODO: Consider allowing direct comparisons as well as substring checks\n\n def blacklist_check(n, field, blacklist):\n if n[field]:\n for i in blacklist:\n if i == n[field]:\n return False\n return True\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n\n def minimum_length_check(n, field, min):\n if n[field]:\n if min <= len(n[field]):\n return True\n return False\n\n def maximum_length_check(n, field, max):\n if n[field]:\n if len(n[field]) <= max:\n return True\n return False\n\n def type_check(n, field, typename):\n if not n[field]:\n return False\n # This does work even if the given typename is invalid. Ugly.\n valid_types = {'alnum': n[field].isalnum, 'digit': n[field].isdigit,\n 'alpha': n[field].isalpha}\n if typename not in valid_types.keys():\n raise Exception(f\"The {typename} type is not supported.\")\n if not valid_types[typename]():\n return False\n return True\n\n def regex_check(n, field, reg):\n if not n[field]:\n return False\n pattern = re.compile(reg)\n if pattern.fullmatch(n[field]):\n return True\n return False\n\n # Timestamps must be in UTC without millisecond precision\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, \"Before field is null.\"\n if not n[aft_field]:\n return False, \"After field is null.\"\n try:\n before = datetime.datetime.strptime(\n str(n[bef_field]), \"%Y-%m-%dT%H:%M:%SZ\")\n except:\n return False, f\"Invalid {bef_field}.\"\n try:\n after = datetime.datetime.strptime(\n str(n[aft_field]), \"%Y-%m-%dT%H:%M:%SZ\")\n except:\n return False, f\"Invalid {aft_field}.\"\n if before < after:\n return True, f\"{bef_field} is before {aft_field}\"\n return False, f\"{bef_field} is not before {aft_field}.\"\n\n def uniqueness_check(n, field, dataset):\n fields = [i[field] for i in dataset]\n if fields.count(n[field]) > 1:\n return False\n return True\n", "import json\nimport re\nimport datetime\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n\n def open_list(list_path):\n list_file = open(list_path)\n list_set = json.load(list_file)\n list_name = list(list_set.keys())[0]\n list_object = list_set[list_name]\n return list_object, list_file\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n\n def blacklist_check(n, field, blacklist):\n if n[field]:\n for i in blacklist:\n if i == n[field]:\n return False\n return True\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n\n def minimum_length_check(n, field, min):\n if n[field]:\n if min <= len(n[field]):\n return True\n return False\n\n def maximum_length_check(n, field, max):\n if n[field]:\n if len(n[field]) <= max:\n return True\n return False\n\n def type_check(n, field, typename):\n if not n[field]:\n return False\n valid_types = {'alnum': n[field].isalnum, 'digit': n[field].isdigit,\n 'alpha': n[field].isalpha}\n if typename not in valid_types.keys():\n raise Exception(f'The {typename} type is not supported.')\n if not valid_types[typename]():\n return False\n return True\n\n def regex_check(n, field, reg):\n if not n[field]:\n return False\n pattern = re.compile(reg)\n if pattern.fullmatch(n[field]):\n return True\n return False\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n\n def uniqueness_check(n, field, dataset):\n fields = [i[field] for i in dataset]\n if fields.count(n[field]) > 1:\n return False\n return True\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n\n def open_list(list_path):\n list_file = open(list_path)\n list_set = json.load(list_file)\n list_name = list(list_set.keys())[0]\n list_object = list_set[list_name]\n return list_object, list_file\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n\n def blacklist_check(n, field, blacklist):\n if n[field]:\n for i in blacklist:\n if i == n[field]:\n return False\n return True\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n\n def minimum_length_check(n, field, min):\n if n[field]:\n if min <= len(n[field]):\n return True\n return False\n\n def maximum_length_check(n, field, max):\n if n[field]:\n if len(n[field]) <= max:\n return True\n return False\n\n def type_check(n, field, typename):\n if not n[field]:\n return False\n valid_types = {'alnum': n[field].isalnum, 'digit': n[field].isdigit,\n 'alpha': n[field].isalpha}\n if typename not in valid_types.keys():\n raise Exception(f'The {typename} type is not supported.')\n if not valid_types[typename]():\n return False\n return True\n\n def regex_check(n, field, reg):\n if not n[field]:\n return False\n pattern = re.compile(reg)\n if pattern.fullmatch(n[field]):\n return True\n return False\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n\n def uniqueness_check(n, field, dataset):\n fields = [i[field] for i in dataset]\n if fields.count(n[field]) > 1:\n return False\n return True\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n\n def open_list(list_path):\n list_file = open(list_path)\n list_set = json.load(list_file)\n list_name = list(list_set.keys())[0]\n list_object = list_set[list_name]\n return list_object, list_file\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n\n def minimum_length_check(n, field, min):\n if n[field]:\n if min <= len(n[field]):\n return True\n return False\n\n def maximum_length_check(n, field, max):\n if n[field]:\n if len(n[field]) <= max:\n return True\n return False\n\n def type_check(n, field, typename):\n if not n[field]:\n return False\n valid_types = {'alnum': n[field].isalnum, 'digit': n[field].isdigit,\n 'alpha': n[field].isalpha}\n if typename not in valid_types.keys():\n raise Exception(f'The {typename} type is not supported.')\n if not valid_types[typename]():\n return False\n return True\n\n def regex_check(n, field, reg):\n if not n[field]:\n return False\n pattern = re.compile(reg)\n if pattern.fullmatch(n[field]):\n return True\n return False\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n\n def uniqueness_check(n, field, dataset):\n fields = [i[field] for i in dataset]\n if fields.count(n[field]) > 1:\n return False\n return True\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n\n def open_list(list_path):\n list_file = open(list_path)\n list_set = json.load(list_file)\n list_name = list(list_set.keys())[0]\n list_object = list_set[list_name]\n return list_object, list_file\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n\n def minimum_length_check(n, field, min):\n if n[field]:\n if min <= len(n[field]):\n return True\n return False\n\n def maximum_length_check(n, field, max):\n if n[field]:\n if len(n[field]) <= max:\n return True\n return False\n\n def type_check(n, field, typename):\n if not n[field]:\n return False\n valid_types = {'alnum': n[field].isalnum, 'digit': n[field].isdigit,\n 'alpha': n[field].isalpha}\n if typename not in valid_types.keys():\n raise Exception(f'The {typename} type is not supported.')\n if not valid_types[typename]():\n return False\n return True\n\n def regex_check(n, field, reg):\n if not n[field]:\n return False\n pattern = re.compile(reg)\n if pattern.fullmatch(n[field]):\n return True\n return False\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n\n def open_list(list_path):\n list_file = open(list_path)\n list_set = json.load(list_file)\n list_name = list(list_set.keys())[0]\n list_object = list_set[list_name]\n return list_object, list_file\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n <function token>\n\n def maximum_length_check(n, field, max):\n if n[field]:\n if len(n[field]) <= max:\n return True\n return False\n\n def type_check(n, field, typename):\n if not n[field]:\n return False\n valid_types = {'alnum': n[field].isalnum, 'digit': n[field].isdigit,\n 'alpha': n[field].isalpha}\n if typename not in valid_types.keys():\n raise Exception(f'The {typename} type is not supported.')\n if not valid_types[typename]():\n return False\n return True\n\n def regex_check(n, field, reg):\n if not n[field]:\n return False\n pattern = re.compile(reg)\n if pattern.fullmatch(n[field]):\n return True\n return False\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n\n def open_list(list_path):\n list_file = open(list_path)\n list_set = json.load(list_file)\n list_name = list(list_set.keys())[0]\n list_object = list_set[list_name]\n return list_object, list_file\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n <function token>\n\n def maximum_length_check(n, field, max):\n if n[field]:\n if len(n[field]) <= max:\n return True\n return False\n <function token>\n\n def regex_check(n, field, reg):\n if not n[field]:\n return False\n pattern = re.compile(reg)\n if pattern.fullmatch(n[field]):\n return True\n return False\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n\n def open_list(list_path):\n list_file = open(list_path)\n list_set = json.load(list_file)\n list_name = list(list_set.keys())[0]\n list_object = list_set[list_name]\n return list_object, list_file\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n <function token>\n <function token>\n <function token>\n\n def regex_check(n, field, reg):\n if not n[field]:\n return False\n pattern = re.compile(reg)\n if pattern.fullmatch(n[field]):\n return True\n return False\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n\n def open_list(list_path):\n list_file = open(list_path)\n list_set = json.load(list_file)\n list_name = list(list_set.keys())[0]\n list_object = list_set[list_name]\n return list_object, list_file\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n <function token>\n <function token>\n <function token>\n <function token>\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n\n def close_dataset(dataset_file_object, data=None):\n json.dump(dataset_file_object, data)\n dataset_file_object.close()\n <function token>\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n <function token>\n <function token>\n <function token>\n <function token>\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n <function token>\n <function token>\n\n def close_list(list_file_object):\n list_file_object.close()\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n <function token>\n <function token>\n <function token>\n <function token>\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n <function token>\n <function token>\n <function token>\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n <function token>\n <function token>\n <function token>\n <function token>\n\n def precedence_check(n, bef_field, aft_field):\n if not n[bef_field]:\n return False, 'Before field is null.'\n if not n[aft_field]:\n return False, 'After field is null.'\n try:\n before = datetime.datetime.strptime(str(n[bef_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {bef_field}.'\n try:\n after = datetime.datetime.strptime(str(n[aft_field]),\n '%Y-%m-%dT%H:%M:%SZ')\n except:\n return False, f'Invalid {aft_field}.'\n if before < after:\n return True, f'{bef_field} is before {aft_field}'\n return False, f'{bef_field} is not before {aft_field}.'\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n <function token>\n <function token>\n <function token>\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n\n def whitelist_check(n, field, whitelist):\n if not n[field]:\n return False\n if n[field] in whitelist:\n return True\n return False\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n\n def open_dataset(dataset_path, dataset_create_bit=0):\n dataset_load_flag = 'r'\n if dataset_create_bit:\n dataset_load_flag = 'r+'\n dataset_file = open(dataset_path, 'x')\n emptylist = json.loads('[]')\n json.dump(emptylist, dataset_file)\n dataset_file.close()\n dataset_file = open(dataset_path, dataset_load_flag)\n return json.load(dataset_file), dataset_file\n <function token>\n <function token>\n <function token>\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n <function token>\n <function token>\n <function token>\n <function token>\n\n def empty_check(n, field):\n if not n[field]:\n return False\n return True\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass DataAudit:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,353
e7ab39a430c8e64a272f62bea6c7d867e415cde5
import pygame import random pygame.mixer.init() pygame.mixer.music.load('Chubs.mp3') pygame.mixer.music.play() pygame.init() # Colors brown = (153 ,76 ,0) white = (255, 255, 255) red = (255, 0, 0) black = (0, 0, 0) dblue=(0,102,102) grey =(128,128,128) orange=(255,128,0) venom=(0,153,76) # Creating window screen_width = 600 screen_height = 500 gameWindow = pygame.display.set_mode((screen_width, screen_height)) bgimg = pygame.image.load("snake1.jpg") bgimg = pygame.transform.scale(bgimg, (screen_width, screen_height)).convert_alpha() bgimg1 = pygame.image.load("gover.jpg") bgimg1 = pygame.transform.scale(bgimg1, (screen_width, screen_height)).convert_alpha() bgimg2 = pygame.image.load("ground2.jpg") bgimg2 = pygame.transform.scale(bgimg2, (screen_width, screen_height)).convert_alpha() # Game Title pygame.display.set_caption("Snakes Game") pygame.display.update() clock = pygame.time.Clock() font = pygame.font.SysFont(None,30 ) def text_screen(text, color, x, y): screen_text = font.render(text, True, color) gameWindow.blit(screen_text, [x,y]) def plot_snake(gameWindow, color, snk_list, snake_size): for x,y in snk_list: pygame.draw.rect(gameWindow, color, [x, y, snake_size, snake_size]) def welcome(): exit_game = False while not exit_game: gameWindow.fill((233,210,229)) gameWindow.blit(bgimg, (0, 0)) text_screen("*****Welcome to Snakes World*****", white, 135, 250) text_screen("------------Press Space Bar To Play-------------", red, 100, 450) for event in pygame.event.get(): if event.type == pygame.QUIT: exit_game = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: gameloop() pygame.display.update() clock.tick(30) # Game Loop def gameloop(): # Game specific variables exit_game = False game_over = False snake_x = 45 snake_y = 55 velocity_x = 0 velocity_y = 0 snk_list = [] snk_length = 1 with open("hiscore.txt", "r") as f: hiscore = f.read() food_x = random.randint(10, screen_width/2) food_y = random.randint(10, screen_height/2) score = 0 init_velocity = 5 snake_size = 20 fps = 20 while not exit_game: if game_over: with open("hiscore.txt", "w") as f: f.write(str(hiscore)) gameWindow.fill(white) gameWindow.blit(bgimg1, (0, 0)) text_screen("Game Over! Press Enter To Continue",dblue , 110, 450) for event in pygame.event.get(): if event.type == pygame.QUIT: exit_game = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_RETURN: pygame.mixer.music.load('Chubs.mp3') pygame.mixer.music.play() gameloop() else: for event in pygame.event.get(): if event.type == pygame.QUIT: exit_game = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_RIGHT: velocity_x = init_velocity velocity_y = 0 if event.key == pygame.K_LEFT: velocity_x = - init_velocity velocity_y = 0 if event.key == pygame.K_UP: velocity_y = - init_velocity velocity_x = 0 if event.key == pygame.K_DOWN: velocity_y = init_velocity velocity_x = 0 snake_x = snake_x + velocity_x snake_y = snake_y + velocity_y if abs(snake_x - food_x)<9 and abs(snake_y - food_y)<9: score +=10 food_x = random.randint(10, screen_width/2) food_y = random.randint(10, screen_height/2) snk_length +=5 if score>int(hiscore): hiscore = score gameWindow.fill(brown) gameWindow.blit(bgimg2, (0, 0)) text_screen("Score: " + str(score) + " High score: "+str(hiscore), white,20, 20) pygame.draw.rect(gameWindow, orange, [food_x, food_y,snake_size/1.4,snake_size/1.4]) head = [] head.append(snake_x) head.append(snake_y) snk_list.append(head) if len(snk_list)>snk_length: del snk_list[0] if head in snk_list[:-1]: game_over = True pygame.mixer.music.load('govver.mp3') pygame.mixer.music.play() if snake_x<0 or snake_x>screen_width or snake_y<0 or snake_y>screen_height: game_over = True pygame.mixer.music.load('govver.mp3') pygame.mixer.music.play() plot_snake(gameWindow, black, snk_list, snake_size) pygame.display.update() clock.tick(fps) pygame.quit() quit() welcome()
[ "\r\n\r\nimport pygame\r\nimport random\r\n\r\npygame.mixer.init()\r\npygame.mixer.music.load('Chubs.mp3')\r\npygame.mixer.music.play()\r\npygame.init()\r\n\r\n\r\n# Colors\r\nbrown = (153 ,76 ,0)\r\nwhite = (255, 255, 255)\r\nred = (255, 0, 0)\r\nblack = (0, 0, 0)\r\ndblue=(0,102,102)\r\ngrey =(128,128,128)\r\norange=(255,128,0)\r\nvenom=(0,153,76)\r\n# Creating window\r\nscreen_width = 600\r\nscreen_height = 500\r\ngameWindow = pygame.display.set_mode((screen_width, screen_height))\r\n\r\n\r\nbgimg = pygame.image.load(\"snake1.jpg\")\r\nbgimg = pygame.transform.scale(bgimg, (screen_width, screen_height)).convert_alpha() \r\n\r\nbgimg1 = pygame.image.load(\"gover.jpg\")\r\nbgimg1 = pygame.transform.scale(bgimg1, (screen_width, screen_height)).convert_alpha()\r\n\r\nbgimg2 = pygame.image.load(\"ground2.jpg\")\r\nbgimg2 = pygame.transform.scale(bgimg2, (screen_width, screen_height)).convert_alpha()\r\n\r\n# Game Title\r\npygame.display.set_caption(\"Snakes Game\")\r\npygame.display.update()\r\nclock = pygame.time.Clock()\r\nfont = pygame.font.SysFont(None,30 )\r\n\r\n\r\ndef text_screen(text, color, x, y):\r\n screen_text = font.render(text, True, color)\r\n gameWindow.blit(screen_text, [x,y])\r\n\r\n\r\ndef plot_snake(gameWindow, color, snk_list, snake_size):\r\n for x,y in snk_list:\r\n pygame.draw.rect(gameWindow, color, [x, y, snake_size, snake_size])\r\n\r\ndef welcome():\r\n exit_game = False\r\n while not exit_game:\r\n gameWindow.fill((233,210,229))\r\n gameWindow.blit(bgimg, (0, 0))\r\n text_screen(\"*****Welcome to Snakes World*****\", white, 135, 250)\r\n text_screen(\"------------Press Space Bar To Play-------------\", red, 100, 450)\r\n for event in pygame.event.get():\r\n \r\n if event.type == pygame.QUIT:\r\n exit_game = True\r\n if event.type == pygame.KEYDOWN:\r\n \r\n\r\n if event.key == pygame.K_SPACE:\r\n \r\n gameloop()\r\n pygame.display.update()\r\n clock.tick(30) \r\n\r\n# Game Loop\r\ndef gameloop():\r\n # Game specific variables\r\n exit_game = False\r\n game_over = False\r\n snake_x = 45\r\n snake_y = 55\r\n velocity_x = 0\r\n velocity_y = 0\r\n snk_list = []\r\n snk_length = 1\r\n with open(\"hiscore.txt\", \"r\") as f:\r\n hiscore = f.read()\r\n\r\n food_x = random.randint(10, screen_width/2)\r\n food_y = random.randint(10, screen_height/2)\r\n score = 0\r\n init_velocity = 5\r\n snake_size = 20\r\n fps = 20\r\n while not exit_game:\r\n if game_over:\r\n with open(\"hiscore.txt\", \"w\") as f:\r\n f.write(str(hiscore))\r\n gameWindow.fill(white)\r\n gameWindow.blit(bgimg1, (0, 0))\r\n \r\n text_screen(\"Game Over! Press Enter To Continue\",dblue , 110, 450)\r\n\r\n for event in pygame.event.get():\r\n if event.type == pygame.QUIT:\r\n exit_game = True\r\n\r\n if event.type == pygame.KEYDOWN:\r\n if event.key == pygame.K_RETURN:\r\n pygame.mixer.music.load('Chubs.mp3')\r\n pygame.mixer.music.play()\r\n gameloop()\r\n\r\n else:\r\n\r\n for event in pygame.event.get():\r\n if event.type == pygame.QUIT:\r\n exit_game = True\r\n\r\n if event.type == pygame.KEYDOWN:\r\n if event.key == pygame.K_RIGHT:\r\n velocity_x = init_velocity\r\n velocity_y = 0\r\n\r\n if event.key == pygame.K_LEFT:\r\n velocity_x = - init_velocity\r\n velocity_y = 0\r\n\r\n if event.key == pygame.K_UP:\r\n velocity_y = - init_velocity\r\n velocity_x = 0\r\n\r\n if event.key == pygame.K_DOWN:\r\n velocity_y = init_velocity\r\n velocity_x = 0\r\n\r\n snake_x = snake_x + velocity_x\r\n snake_y = snake_y + velocity_y\r\n\r\n if abs(snake_x - food_x)<9 and abs(snake_y - food_y)<9:\r\n \r\n score +=10\r\n food_x = random.randint(10, screen_width/2)\r\n food_y = random.randint(10, screen_height/2)\r\n snk_length +=5\r\n if score>int(hiscore):\r\n hiscore = score\r\n\r\n gameWindow.fill(brown)\r\n gameWindow.blit(bgimg2, (0, 0))\r\n \r\n text_screen(\"Score: \" + str(score) + \" High score: \"+str(hiscore), white,20, 20)\r\n pygame.draw.rect(gameWindow, orange, [food_x, food_y,snake_size/1.4,snake_size/1.4])\r\n\r\n\r\n head = []\r\n head.append(snake_x)\r\n head.append(snake_y)\r\n snk_list.append(head)\r\n\r\n if len(snk_list)>snk_length:\r\n del snk_list[0]\r\n\r\n if head in snk_list[:-1]:\r\n game_over = True\r\n pygame.mixer.music.load('govver.mp3')\r\n pygame.mixer.music.play()\r\n\r\n if snake_x<0 or snake_x>screen_width or snake_y<0 or snake_y>screen_height:\r\n game_over = True\r\n pygame.mixer.music.load('govver.mp3')\r\n pygame.mixer.music.play()\r\n plot_snake(gameWindow, black, snk_list, snake_size)\r\n pygame.display.update()\r\n clock.tick(fps)\r\n\r\n pygame.quit()\r\n quit()\r\n\r\n\r\nwelcome()", "import pygame\nimport random\npygame.mixer.init()\npygame.mixer.music.load('Chubs.mp3')\npygame.mixer.music.play()\npygame.init()\nbrown = 153, 76, 0\nwhite = 255, 255, 255\nred = 255, 0, 0\nblack = 0, 0, 0\ndblue = 0, 102, 102\ngrey = 128, 128, 128\norange = 255, 128, 0\nvenom = 0, 153, 76\nscreen_width = 600\nscreen_height = 500\ngameWindow = pygame.display.set_mode((screen_width, screen_height))\nbgimg = pygame.image.load('snake1.jpg')\nbgimg = pygame.transform.scale(bgimg, (screen_width, screen_height)\n ).convert_alpha()\nbgimg1 = pygame.image.load('gover.jpg')\nbgimg1 = pygame.transform.scale(bgimg1, (screen_width, screen_height)\n ).convert_alpha()\nbgimg2 = pygame.image.load('ground2.jpg')\nbgimg2 = pygame.transform.scale(bgimg2, (screen_width, screen_height)\n ).convert_alpha()\npygame.display.set_caption('Snakes Game')\npygame.display.update()\nclock = pygame.time.Clock()\nfont = pygame.font.SysFont(None, 30)\n\n\ndef text_screen(text, color, x, y):\n screen_text = font.render(text, True, color)\n gameWindow.blit(screen_text, [x, y])\n\n\ndef plot_snake(gameWindow, color, snk_list, snake_size):\n for x, y in snk_list:\n pygame.draw.rect(gameWindow, color, [x, y, snake_size, snake_size])\n\n\ndef welcome():\n exit_game = False\n while not exit_game:\n gameWindow.fill((233, 210, 229))\n gameWindow.blit(bgimg, (0, 0))\n text_screen('*****Welcome to Snakes World*****', white, 135, 250)\n text_screen('------------Press Space Bar To Play-------------', red,\n 100, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_SPACE:\n gameloop()\n pygame.display.update()\n clock.tick(30)\n\n\ndef gameloop():\n exit_game = False\n game_over = False\n snake_x = 45\n snake_y = 55\n velocity_x = 0\n velocity_y = 0\n snk_list = []\n snk_length = 1\n with open('hiscore.txt', 'r') as f:\n hiscore = f.read()\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n score = 0\n init_velocity = 5\n snake_size = 20\n fps = 20\n while not exit_game:\n if game_over:\n with open('hiscore.txt', 'w') as f:\n f.write(str(hiscore))\n gameWindow.fill(white)\n gameWindow.blit(bgimg1, (0, 0))\n text_screen('Game Over! Press Enter To Continue', dblue, 110, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RETURN:\n pygame.mixer.music.load('Chubs.mp3')\n pygame.mixer.music.play()\n gameloop()\n else:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RIGHT:\n velocity_x = init_velocity\n velocity_y = 0\n if event.key == pygame.K_LEFT:\n velocity_x = -init_velocity\n velocity_y = 0\n if event.key == pygame.K_UP:\n velocity_y = -init_velocity\n velocity_x = 0\n if event.key == pygame.K_DOWN:\n velocity_y = init_velocity\n velocity_x = 0\n snake_x = snake_x + velocity_x\n snake_y = snake_y + velocity_y\n if abs(snake_x - food_x) < 9 and abs(snake_y - food_y) < 9:\n score += 10\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n snk_length += 5\n if score > int(hiscore):\n hiscore = score\n gameWindow.fill(brown)\n gameWindow.blit(bgimg2, (0, 0))\n text_screen('Score: ' + str(score) +\n ' High score: '\n + str(hiscore), white, 20, 20)\n pygame.draw.rect(gameWindow, orange, [food_x, food_y, \n snake_size / 1.4, snake_size / 1.4])\n head = []\n head.append(snake_x)\n head.append(snake_y)\n snk_list.append(head)\n if len(snk_list) > snk_length:\n del snk_list[0]\n if head in snk_list[:-1]:\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n if (snake_x < 0 or snake_x > screen_width or snake_y < 0 or \n snake_y > screen_height):\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n plot_snake(gameWindow, black, snk_list, snake_size)\n pygame.display.update()\n clock.tick(fps)\n pygame.quit()\n quit()\n\n\nwelcome()\n", "<import token>\npygame.mixer.init()\npygame.mixer.music.load('Chubs.mp3')\npygame.mixer.music.play()\npygame.init()\nbrown = 153, 76, 0\nwhite = 255, 255, 255\nred = 255, 0, 0\nblack = 0, 0, 0\ndblue = 0, 102, 102\ngrey = 128, 128, 128\norange = 255, 128, 0\nvenom = 0, 153, 76\nscreen_width = 600\nscreen_height = 500\ngameWindow = pygame.display.set_mode((screen_width, screen_height))\nbgimg = pygame.image.load('snake1.jpg')\nbgimg = pygame.transform.scale(bgimg, (screen_width, screen_height)\n ).convert_alpha()\nbgimg1 = pygame.image.load('gover.jpg')\nbgimg1 = pygame.transform.scale(bgimg1, (screen_width, screen_height)\n ).convert_alpha()\nbgimg2 = pygame.image.load('ground2.jpg')\nbgimg2 = pygame.transform.scale(bgimg2, (screen_width, screen_height)\n ).convert_alpha()\npygame.display.set_caption('Snakes Game')\npygame.display.update()\nclock = pygame.time.Clock()\nfont = pygame.font.SysFont(None, 30)\n\n\ndef text_screen(text, color, x, y):\n screen_text = font.render(text, True, color)\n gameWindow.blit(screen_text, [x, y])\n\n\ndef plot_snake(gameWindow, color, snk_list, snake_size):\n for x, y in snk_list:\n pygame.draw.rect(gameWindow, color, [x, y, snake_size, snake_size])\n\n\ndef welcome():\n exit_game = False\n while not exit_game:\n gameWindow.fill((233, 210, 229))\n gameWindow.blit(bgimg, (0, 0))\n text_screen('*****Welcome to Snakes World*****', white, 135, 250)\n text_screen('------------Press Space Bar To Play-------------', red,\n 100, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_SPACE:\n gameloop()\n pygame.display.update()\n clock.tick(30)\n\n\ndef gameloop():\n exit_game = False\n game_over = False\n snake_x = 45\n snake_y = 55\n velocity_x = 0\n velocity_y = 0\n snk_list = []\n snk_length = 1\n with open('hiscore.txt', 'r') as f:\n hiscore = f.read()\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n score = 0\n init_velocity = 5\n snake_size = 20\n fps = 20\n while not exit_game:\n if game_over:\n with open('hiscore.txt', 'w') as f:\n f.write(str(hiscore))\n gameWindow.fill(white)\n gameWindow.blit(bgimg1, (0, 0))\n text_screen('Game Over! Press Enter To Continue', dblue, 110, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RETURN:\n pygame.mixer.music.load('Chubs.mp3')\n pygame.mixer.music.play()\n gameloop()\n else:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RIGHT:\n velocity_x = init_velocity\n velocity_y = 0\n if event.key == pygame.K_LEFT:\n velocity_x = -init_velocity\n velocity_y = 0\n if event.key == pygame.K_UP:\n velocity_y = -init_velocity\n velocity_x = 0\n if event.key == pygame.K_DOWN:\n velocity_y = init_velocity\n velocity_x = 0\n snake_x = snake_x + velocity_x\n snake_y = snake_y + velocity_y\n if abs(snake_x - food_x) < 9 and abs(snake_y - food_y) < 9:\n score += 10\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n snk_length += 5\n if score > int(hiscore):\n hiscore = score\n gameWindow.fill(brown)\n gameWindow.blit(bgimg2, (0, 0))\n text_screen('Score: ' + str(score) +\n ' High score: '\n + str(hiscore), white, 20, 20)\n pygame.draw.rect(gameWindow, orange, [food_x, food_y, \n snake_size / 1.4, snake_size / 1.4])\n head = []\n head.append(snake_x)\n head.append(snake_y)\n snk_list.append(head)\n if len(snk_list) > snk_length:\n del snk_list[0]\n if head in snk_list[:-1]:\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n if (snake_x < 0 or snake_x > screen_width or snake_y < 0 or \n snake_y > screen_height):\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n plot_snake(gameWindow, black, snk_list, snake_size)\n pygame.display.update()\n clock.tick(fps)\n pygame.quit()\n quit()\n\n\nwelcome()\n", "<import token>\npygame.mixer.init()\npygame.mixer.music.load('Chubs.mp3')\npygame.mixer.music.play()\npygame.init()\n<assignment token>\npygame.display.set_caption('Snakes Game')\npygame.display.update()\n<assignment token>\n\n\ndef text_screen(text, color, x, y):\n screen_text = font.render(text, True, color)\n gameWindow.blit(screen_text, [x, y])\n\n\ndef plot_snake(gameWindow, color, snk_list, snake_size):\n for x, y in snk_list:\n pygame.draw.rect(gameWindow, color, [x, y, snake_size, snake_size])\n\n\ndef welcome():\n exit_game = False\n while not exit_game:\n gameWindow.fill((233, 210, 229))\n gameWindow.blit(bgimg, (0, 0))\n text_screen('*****Welcome to Snakes World*****', white, 135, 250)\n text_screen('------------Press Space Bar To Play-------------', red,\n 100, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_SPACE:\n gameloop()\n pygame.display.update()\n clock.tick(30)\n\n\ndef gameloop():\n exit_game = False\n game_over = False\n snake_x = 45\n snake_y = 55\n velocity_x = 0\n velocity_y = 0\n snk_list = []\n snk_length = 1\n with open('hiscore.txt', 'r') as f:\n hiscore = f.read()\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n score = 0\n init_velocity = 5\n snake_size = 20\n fps = 20\n while not exit_game:\n if game_over:\n with open('hiscore.txt', 'w') as f:\n f.write(str(hiscore))\n gameWindow.fill(white)\n gameWindow.blit(bgimg1, (0, 0))\n text_screen('Game Over! Press Enter To Continue', dblue, 110, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RETURN:\n pygame.mixer.music.load('Chubs.mp3')\n pygame.mixer.music.play()\n gameloop()\n else:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RIGHT:\n velocity_x = init_velocity\n velocity_y = 0\n if event.key == pygame.K_LEFT:\n velocity_x = -init_velocity\n velocity_y = 0\n if event.key == pygame.K_UP:\n velocity_y = -init_velocity\n velocity_x = 0\n if event.key == pygame.K_DOWN:\n velocity_y = init_velocity\n velocity_x = 0\n snake_x = snake_x + velocity_x\n snake_y = snake_y + velocity_y\n if abs(snake_x - food_x) < 9 and abs(snake_y - food_y) < 9:\n score += 10\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n snk_length += 5\n if score > int(hiscore):\n hiscore = score\n gameWindow.fill(brown)\n gameWindow.blit(bgimg2, (0, 0))\n text_screen('Score: ' + str(score) +\n ' High score: '\n + str(hiscore), white, 20, 20)\n pygame.draw.rect(gameWindow, orange, [food_x, food_y, \n snake_size / 1.4, snake_size / 1.4])\n head = []\n head.append(snake_x)\n head.append(snake_y)\n snk_list.append(head)\n if len(snk_list) > snk_length:\n del snk_list[0]\n if head in snk_list[:-1]:\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n if (snake_x < 0 or snake_x > screen_width or snake_y < 0 or \n snake_y > screen_height):\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n plot_snake(gameWindow, black, snk_list, snake_size)\n pygame.display.update()\n clock.tick(fps)\n pygame.quit()\n quit()\n\n\nwelcome()\n", "<import token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef text_screen(text, color, x, y):\n screen_text = font.render(text, True, color)\n gameWindow.blit(screen_text, [x, y])\n\n\ndef plot_snake(gameWindow, color, snk_list, snake_size):\n for x, y in snk_list:\n pygame.draw.rect(gameWindow, color, [x, y, snake_size, snake_size])\n\n\ndef welcome():\n exit_game = False\n while not exit_game:\n gameWindow.fill((233, 210, 229))\n gameWindow.blit(bgimg, (0, 0))\n text_screen('*****Welcome to Snakes World*****', white, 135, 250)\n text_screen('------------Press Space Bar To Play-------------', red,\n 100, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_SPACE:\n gameloop()\n pygame.display.update()\n clock.tick(30)\n\n\ndef gameloop():\n exit_game = False\n game_over = False\n snake_x = 45\n snake_y = 55\n velocity_x = 0\n velocity_y = 0\n snk_list = []\n snk_length = 1\n with open('hiscore.txt', 'r') as f:\n hiscore = f.read()\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n score = 0\n init_velocity = 5\n snake_size = 20\n fps = 20\n while not exit_game:\n if game_over:\n with open('hiscore.txt', 'w') as f:\n f.write(str(hiscore))\n gameWindow.fill(white)\n gameWindow.blit(bgimg1, (0, 0))\n text_screen('Game Over! Press Enter To Continue', dblue, 110, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RETURN:\n pygame.mixer.music.load('Chubs.mp3')\n pygame.mixer.music.play()\n gameloop()\n else:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RIGHT:\n velocity_x = init_velocity\n velocity_y = 0\n if event.key == pygame.K_LEFT:\n velocity_x = -init_velocity\n velocity_y = 0\n if event.key == pygame.K_UP:\n velocity_y = -init_velocity\n velocity_x = 0\n if event.key == pygame.K_DOWN:\n velocity_y = init_velocity\n velocity_x = 0\n snake_x = snake_x + velocity_x\n snake_y = snake_y + velocity_y\n if abs(snake_x - food_x) < 9 and abs(snake_y - food_y) < 9:\n score += 10\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n snk_length += 5\n if score > int(hiscore):\n hiscore = score\n gameWindow.fill(brown)\n gameWindow.blit(bgimg2, (0, 0))\n text_screen('Score: ' + str(score) +\n ' High score: '\n + str(hiscore), white, 20, 20)\n pygame.draw.rect(gameWindow, orange, [food_x, food_y, \n snake_size / 1.4, snake_size / 1.4])\n head = []\n head.append(snake_x)\n head.append(snake_y)\n snk_list.append(head)\n if len(snk_list) > snk_length:\n del snk_list[0]\n if head in snk_list[:-1]:\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n if (snake_x < 0 or snake_x > screen_width or snake_y < 0 or \n snake_y > screen_height):\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n plot_snake(gameWindow, black, snk_list, snake_size)\n pygame.display.update()\n clock.tick(fps)\n pygame.quit()\n quit()\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\ndef plot_snake(gameWindow, color, snk_list, snake_size):\n for x, y in snk_list:\n pygame.draw.rect(gameWindow, color, [x, y, snake_size, snake_size])\n\n\ndef welcome():\n exit_game = False\n while not exit_game:\n gameWindow.fill((233, 210, 229))\n gameWindow.blit(bgimg, (0, 0))\n text_screen('*****Welcome to Snakes World*****', white, 135, 250)\n text_screen('------------Press Space Bar To Play-------------', red,\n 100, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_SPACE:\n gameloop()\n pygame.display.update()\n clock.tick(30)\n\n\ndef gameloop():\n exit_game = False\n game_over = False\n snake_x = 45\n snake_y = 55\n velocity_x = 0\n velocity_y = 0\n snk_list = []\n snk_length = 1\n with open('hiscore.txt', 'r') as f:\n hiscore = f.read()\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n score = 0\n init_velocity = 5\n snake_size = 20\n fps = 20\n while not exit_game:\n if game_over:\n with open('hiscore.txt', 'w') as f:\n f.write(str(hiscore))\n gameWindow.fill(white)\n gameWindow.blit(bgimg1, (0, 0))\n text_screen('Game Over! Press Enter To Continue', dblue, 110, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RETURN:\n pygame.mixer.music.load('Chubs.mp3')\n pygame.mixer.music.play()\n gameloop()\n else:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RIGHT:\n velocity_x = init_velocity\n velocity_y = 0\n if event.key == pygame.K_LEFT:\n velocity_x = -init_velocity\n velocity_y = 0\n if event.key == pygame.K_UP:\n velocity_y = -init_velocity\n velocity_x = 0\n if event.key == pygame.K_DOWN:\n velocity_y = init_velocity\n velocity_x = 0\n snake_x = snake_x + velocity_x\n snake_y = snake_y + velocity_y\n if abs(snake_x - food_x) < 9 and abs(snake_y - food_y) < 9:\n score += 10\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n snk_length += 5\n if score > int(hiscore):\n hiscore = score\n gameWindow.fill(brown)\n gameWindow.blit(bgimg2, (0, 0))\n text_screen('Score: ' + str(score) +\n ' High score: '\n + str(hiscore), white, 20, 20)\n pygame.draw.rect(gameWindow, orange, [food_x, food_y, \n snake_size / 1.4, snake_size / 1.4])\n head = []\n head.append(snake_x)\n head.append(snake_y)\n snk_list.append(head)\n if len(snk_list) > snk_length:\n del snk_list[0]\n if head in snk_list[:-1]:\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n if (snake_x < 0 or snake_x > screen_width or snake_y < 0 or \n snake_y > screen_height):\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n plot_snake(gameWindow, black, snk_list, snake_size)\n pygame.display.update()\n clock.tick(fps)\n pygame.quit()\n quit()\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n\n\ndef plot_snake(gameWindow, color, snk_list, snake_size):\n for x, y in snk_list:\n pygame.draw.rect(gameWindow, color, [x, y, snake_size, snake_size])\n\n\n<function token>\n\n\ndef gameloop():\n exit_game = False\n game_over = False\n snake_x = 45\n snake_y = 55\n velocity_x = 0\n velocity_y = 0\n snk_list = []\n snk_length = 1\n with open('hiscore.txt', 'r') as f:\n hiscore = f.read()\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n score = 0\n init_velocity = 5\n snake_size = 20\n fps = 20\n while not exit_game:\n if game_over:\n with open('hiscore.txt', 'w') as f:\n f.write(str(hiscore))\n gameWindow.fill(white)\n gameWindow.blit(bgimg1, (0, 0))\n text_screen('Game Over! Press Enter To Continue', dblue, 110, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RETURN:\n pygame.mixer.music.load('Chubs.mp3')\n pygame.mixer.music.play()\n gameloop()\n else:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RIGHT:\n velocity_x = init_velocity\n velocity_y = 0\n if event.key == pygame.K_LEFT:\n velocity_x = -init_velocity\n velocity_y = 0\n if event.key == pygame.K_UP:\n velocity_y = -init_velocity\n velocity_x = 0\n if event.key == pygame.K_DOWN:\n velocity_y = init_velocity\n velocity_x = 0\n snake_x = snake_x + velocity_x\n snake_y = snake_y + velocity_y\n if abs(snake_x - food_x) < 9 and abs(snake_y - food_y) < 9:\n score += 10\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n snk_length += 5\n if score > int(hiscore):\n hiscore = score\n gameWindow.fill(brown)\n gameWindow.blit(bgimg2, (0, 0))\n text_screen('Score: ' + str(score) +\n ' High score: '\n + str(hiscore), white, 20, 20)\n pygame.draw.rect(gameWindow, orange, [food_x, food_y, \n snake_size / 1.4, snake_size / 1.4])\n head = []\n head.append(snake_x)\n head.append(snake_y)\n snk_list.append(head)\n if len(snk_list) > snk_length:\n del snk_list[0]\n if head in snk_list[:-1]:\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n if (snake_x < 0 or snake_x > screen_width or snake_y < 0 or \n snake_y > screen_height):\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n plot_snake(gameWindow, black, snk_list, snake_size)\n pygame.display.update()\n clock.tick(fps)\n pygame.quit()\n quit()\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\ndef gameloop():\n exit_game = False\n game_over = False\n snake_x = 45\n snake_y = 55\n velocity_x = 0\n velocity_y = 0\n snk_list = []\n snk_length = 1\n with open('hiscore.txt', 'r') as f:\n hiscore = f.read()\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n score = 0\n init_velocity = 5\n snake_size = 20\n fps = 20\n while not exit_game:\n if game_over:\n with open('hiscore.txt', 'w') as f:\n f.write(str(hiscore))\n gameWindow.fill(white)\n gameWindow.blit(bgimg1, (0, 0))\n text_screen('Game Over! Press Enter To Continue', dblue, 110, 450)\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RETURN:\n pygame.mixer.music.load('Chubs.mp3')\n pygame.mixer.music.play()\n gameloop()\n else:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n exit_game = True\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_RIGHT:\n velocity_x = init_velocity\n velocity_y = 0\n if event.key == pygame.K_LEFT:\n velocity_x = -init_velocity\n velocity_y = 0\n if event.key == pygame.K_UP:\n velocity_y = -init_velocity\n velocity_x = 0\n if event.key == pygame.K_DOWN:\n velocity_y = init_velocity\n velocity_x = 0\n snake_x = snake_x + velocity_x\n snake_y = snake_y + velocity_y\n if abs(snake_x - food_x) < 9 and abs(snake_y - food_y) < 9:\n score += 10\n food_x = random.randint(10, screen_width / 2)\n food_y = random.randint(10, screen_height / 2)\n snk_length += 5\n if score > int(hiscore):\n hiscore = score\n gameWindow.fill(brown)\n gameWindow.blit(bgimg2, (0, 0))\n text_screen('Score: ' + str(score) +\n ' High score: '\n + str(hiscore), white, 20, 20)\n pygame.draw.rect(gameWindow, orange, [food_x, food_y, \n snake_size / 1.4, snake_size / 1.4])\n head = []\n head.append(snake_x)\n head.append(snake_y)\n snk_list.append(head)\n if len(snk_list) > snk_length:\n del snk_list[0]\n if head in snk_list[:-1]:\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n if (snake_x < 0 or snake_x > screen_width or snake_y < 0 or \n snake_y > screen_height):\n game_over = True\n pygame.mixer.music.load('govver.mp3')\n pygame.mixer.music.play()\n plot_snake(gameWindow, black, snk_list, snake_size)\n pygame.display.update()\n clock.tick(fps)\n pygame.quit()\n quit()\n\n\n<code token>\n", "<import token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,354
9e0c214672feb29f09957acd5cbfd1ae3866cf1a
import FWCore.ParameterSet.Config as cms siStripDetVOffPrinter = cms.EDAnalyzer('SiStripDetVOffPrinter', conditionDatabase = cms.string('frontier://FrontierProd/CMS_CONDITIONS'), tagName = cms.string('SiStripDetVOff_1hourDelay_v1_Validation'), startTime = cms.string('2002-01-20 23:59:59.000'), endTime = cms.string('2002-01-20 23:59:59.000'), output = cms.string('PerModuleSummary.txt'), connect = cms.string(''), DBParameters = cms.PSet( authenticationPath = cms.untracked.string(''), authenticationSystem = cms.untracked.int32(0), security = cms.untracked.string(''), messageLevel = cms.untracked.int32(0) ), mightGet = cms.optional.untracked.vstring )
[ "import FWCore.ParameterSet.Config as cms\n\nsiStripDetVOffPrinter = cms.EDAnalyzer('SiStripDetVOffPrinter',\n conditionDatabase = cms.string('frontier://FrontierProd/CMS_CONDITIONS'),\n tagName = cms.string('SiStripDetVOff_1hourDelay_v1_Validation'),\n startTime = cms.string('2002-01-20 23:59:59.000'),\n endTime = cms.string('2002-01-20 23:59:59.000'),\n output = cms.string('PerModuleSummary.txt'),\n connect = cms.string(''),\n DBParameters = cms.PSet(\n authenticationPath = cms.untracked.string(''),\n authenticationSystem = cms.untracked.int32(0),\n security = cms.untracked.string(''),\n messageLevel = cms.untracked.int32(0)\n ),\n mightGet = cms.optional.untracked.vstring\n)\n", "import FWCore.ParameterSet.Config as cms\nsiStripDetVOffPrinter = cms.EDAnalyzer('SiStripDetVOffPrinter',\n conditionDatabase=cms.string('frontier://FrontierProd/CMS_CONDITIONS'),\n tagName=cms.string('SiStripDetVOff_1hourDelay_v1_Validation'),\n startTime=cms.string('2002-01-20 23:59:59.000'), endTime=cms.string(\n '2002-01-20 23:59:59.000'), output=cms.string('PerModuleSummary.txt'),\n connect=cms.string(''), DBParameters=cms.PSet(authenticationPath=cms.\n untracked.string(''), authenticationSystem=cms.untracked.int32(0),\n security=cms.untracked.string(''), messageLevel=cms.untracked.int32(0)),\n mightGet=cms.optional.untracked.vstring)\n", "<import token>\nsiStripDetVOffPrinter = cms.EDAnalyzer('SiStripDetVOffPrinter',\n conditionDatabase=cms.string('frontier://FrontierProd/CMS_CONDITIONS'),\n tagName=cms.string('SiStripDetVOff_1hourDelay_v1_Validation'),\n startTime=cms.string('2002-01-20 23:59:59.000'), endTime=cms.string(\n '2002-01-20 23:59:59.000'), output=cms.string('PerModuleSummary.txt'),\n connect=cms.string(''), DBParameters=cms.PSet(authenticationPath=cms.\n untracked.string(''), authenticationSystem=cms.untracked.int32(0),\n security=cms.untracked.string(''), messageLevel=cms.untracked.int32(0)),\n mightGet=cms.optional.untracked.vstring)\n", "<import token>\n<assignment token>\n" ]
false
98,355
86f5251f9aa7da9f79348a3e78e9f85e1d8bbae5
from urllib import request, error, parse from http import cookiejar # 指定存储cookie的文件 filename = 'cookies.txt' # 实例化MozillaCookieJar my_cookie = cookiejar.MozillaCookieJar(filename) # 创建cookie管理器 my_cookie_handler = request.HTTPCookieProcessor(my_cookie) # 创建http请求管理器 http_handler = request.HTTPHandler() # 创建https请求管理器 https_handler = request.HTTPSHandler() # 创建请求管理器 opener = request.build_opener(http_handler, https_handler, my_cookie_handler) def login(url): data = { 'name': 'zgc', 'pwd': '123456' } try: data = parse.urlencode(data).encode() req = request.Request(url, data=data) rsp = opener.open(req) # 将cookie保存到文件中 # ignore_discard 表示即使cookie将要丢弃,也要保存 # ignore_expires 表示即使cookie已经过期,也要保存 my_cookie.save(ignore_discard=True, ignore_expires=True) cnt = rsp.read() print(cnt.decode()) except error.URLError as e: print('登录失败', e) def get_home(url): rsp = opener.open(url) cnt = rsp.read() print(cnt.decode()) if __name__ == '__main__': url = 'http://wx.ngrok.znbest.com/test.php' url2 = 'http://wx.ngrok.znbest.com/mine.php' get_home(url2) login(url) get_home(url2) print('*'*50) print(my_cookie) for item in my_cookie: print(item)
[ "from urllib import request, error, parse\nfrom http import cookiejar\n\n# 指定存储cookie的文件\nfilename = 'cookies.txt'\n# 实例化MozillaCookieJar\nmy_cookie = cookiejar.MozillaCookieJar(filename)\n# 创建cookie管理器\nmy_cookie_handler = request.HTTPCookieProcessor(my_cookie)\n# 创建http请求管理器\nhttp_handler = request.HTTPHandler()\n# 创建https请求管理器\nhttps_handler = request.HTTPSHandler()\n# 创建请求管理器\nopener = request.build_opener(http_handler, https_handler, my_cookie_handler)\n\n\ndef login(url):\n\n data = {\n 'name': 'zgc',\n 'pwd': '123456'\n }\n try:\n data = parse.urlencode(data).encode()\n\n req = request.Request(url, data=data)\n\n rsp = opener.open(req)\n # 将cookie保存到文件中\n # ignore_discard 表示即使cookie将要丢弃,也要保存\n # ignore_expires 表示即使cookie已经过期,也要保存\n my_cookie.save(ignore_discard=True, ignore_expires=True)\n cnt = rsp.read()\n print(cnt.decode())\n except error.URLError as e:\n print('登录失败', e)\n\n\ndef get_home(url):\n rsp = opener.open(url)\n cnt = rsp.read()\n print(cnt.decode())\n\n\nif __name__ == '__main__':\n url = 'http://wx.ngrok.znbest.com/test.php'\n url2 = 'http://wx.ngrok.znbest.com/mine.php'\n get_home(url2)\n login(url)\n get_home(url2)\n print('*'*50)\n print(my_cookie)\n for item in my_cookie:\n print(item)\n", "from urllib import request, error, parse\nfrom http import cookiejar\nfilename = 'cookies.txt'\nmy_cookie = cookiejar.MozillaCookieJar(filename)\nmy_cookie_handler = request.HTTPCookieProcessor(my_cookie)\nhttp_handler = request.HTTPHandler()\nhttps_handler = request.HTTPSHandler()\nopener = request.build_opener(http_handler, https_handler, my_cookie_handler)\n\n\ndef login(url):\n data = {'name': 'zgc', 'pwd': '123456'}\n try:\n data = parse.urlencode(data).encode()\n req = request.Request(url, data=data)\n rsp = opener.open(req)\n my_cookie.save(ignore_discard=True, ignore_expires=True)\n cnt = rsp.read()\n print(cnt.decode())\n except error.URLError as e:\n print('登录失败', e)\n\n\ndef get_home(url):\n rsp = opener.open(url)\n cnt = rsp.read()\n print(cnt.decode())\n\n\nif __name__ == '__main__':\n url = 'http://wx.ngrok.znbest.com/test.php'\n url2 = 'http://wx.ngrok.znbest.com/mine.php'\n get_home(url2)\n login(url)\n get_home(url2)\n print('*' * 50)\n print(my_cookie)\n for item in my_cookie:\n print(item)\n", "<import token>\nfilename = 'cookies.txt'\nmy_cookie = cookiejar.MozillaCookieJar(filename)\nmy_cookie_handler = request.HTTPCookieProcessor(my_cookie)\nhttp_handler = request.HTTPHandler()\nhttps_handler = request.HTTPSHandler()\nopener = request.build_opener(http_handler, https_handler, my_cookie_handler)\n\n\ndef login(url):\n data = {'name': 'zgc', 'pwd': '123456'}\n try:\n data = parse.urlencode(data).encode()\n req = request.Request(url, data=data)\n rsp = opener.open(req)\n my_cookie.save(ignore_discard=True, ignore_expires=True)\n cnt = rsp.read()\n print(cnt.decode())\n except error.URLError as e:\n print('登录失败', e)\n\n\ndef get_home(url):\n rsp = opener.open(url)\n cnt = rsp.read()\n print(cnt.decode())\n\n\nif __name__ == '__main__':\n url = 'http://wx.ngrok.znbest.com/test.php'\n url2 = 'http://wx.ngrok.znbest.com/mine.php'\n get_home(url2)\n login(url)\n get_home(url2)\n print('*' * 50)\n print(my_cookie)\n for item in my_cookie:\n print(item)\n", "<import token>\n<assignment token>\n\n\ndef login(url):\n data = {'name': 'zgc', 'pwd': '123456'}\n try:\n data = parse.urlencode(data).encode()\n req = request.Request(url, data=data)\n rsp = opener.open(req)\n my_cookie.save(ignore_discard=True, ignore_expires=True)\n cnt = rsp.read()\n print(cnt.decode())\n except error.URLError as e:\n print('登录失败', e)\n\n\ndef get_home(url):\n rsp = opener.open(url)\n cnt = rsp.read()\n print(cnt.decode())\n\n\nif __name__ == '__main__':\n url = 'http://wx.ngrok.znbest.com/test.php'\n url2 = 'http://wx.ngrok.znbest.com/mine.php'\n get_home(url2)\n login(url)\n get_home(url2)\n print('*' * 50)\n print(my_cookie)\n for item in my_cookie:\n print(item)\n", "<import token>\n<assignment token>\n\n\ndef login(url):\n data = {'name': 'zgc', 'pwd': '123456'}\n try:\n data = parse.urlencode(data).encode()\n req = request.Request(url, data=data)\n rsp = opener.open(req)\n my_cookie.save(ignore_discard=True, ignore_expires=True)\n cnt = rsp.read()\n print(cnt.decode())\n except error.URLError as e:\n print('登录失败', e)\n\n\ndef get_home(url):\n rsp = opener.open(url)\n cnt = rsp.read()\n print(cnt.decode())\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef login(url):\n data = {'name': 'zgc', 'pwd': '123456'}\n try:\n data = parse.urlencode(data).encode()\n req = request.Request(url, data=data)\n rsp = opener.open(req)\n my_cookie.save(ignore_discard=True, ignore_expires=True)\n cnt = rsp.read()\n print(cnt.decode())\n except error.URLError as e:\n print('登录失败', e)\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,356
68ccb73b3d44b6bbde73609c8379a2d16b685397
def pick(): l = db.Collector(of_class='Level').get_first().unwrap() t = db.Collector( \ of_category='Structural Framing', is_type=True, \ where=lambda x: x.name=="P2-C20024").get_first().unwrap() __window__.Hide() picked_face = uidoc.Selection.PickObject(ObjectType.Face) picked_lines = uidoc.Selection.PickObjects(ObjectType.Element) face = doc.GetElement(picked_face). \ GetGeometryObjectFromReference(picked_face) lines = [] for el in picked_lines: lines.append(doc.GetElement(el).GeometryCurve) for el in lines: p = Line.CreateBound( face.Project(el.GetEndPoint(0)).XYZPoint, \ face.Project(el.GetEndPoint(1)).XYZPoint) with db.Transaction('Create beam on Face'): doc.Create.NewFamilyInstance(p, t, l, StructuralType.Beam) pick()
[ "def pick():\r\n l = db.Collector(of_class='Level').get_first().unwrap()\r\n t = db.Collector( \\\r\n of_category='Structural Framing', is_type=True, \\\r\n where=lambda x: x.name==\"P2-C20024\").get_first().unwrap()\r\n\r\n __window__.Hide()\r\n picked_face = uidoc.Selection.PickObject(ObjectType.Face)\r\n picked_lines = uidoc.Selection.PickObjects(ObjectType.Element)\r\n face = doc.GetElement(picked_face). \\\r\n GetGeometryObjectFromReference(picked_face)\r\n lines = []\r\n for el in picked_lines:\r\n lines.append(doc.GetElement(el).GeometryCurve)\r\n\r\n for el in lines:\r\n p = Line.CreateBound(\r\n face.Project(el.GetEndPoint(0)).XYZPoint, \\\r\n face.Project(el.GetEndPoint(1)).XYZPoint)\r\n with db.Transaction('Create beam on Face'):\r\n doc.Create.NewFamilyInstance(p, t, l, StructuralType.Beam)\r\n\r\npick()", "def pick():\n l = db.Collector(of_class='Level').get_first().unwrap()\n t = db.Collector(of_category='Structural Framing', is_type=True, where=\n lambda x: x.name == 'P2-C20024').get_first().unwrap()\n __window__.Hide()\n picked_face = uidoc.Selection.PickObject(ObjectType.Face)\n picked_lines = uidoc.Selection.PickObjects(ObjectType.Element)\n face = doc.GetElement(picked_face).GetGeometryObjectFromReference(\n picked_face)\n lines = []\n for el in picked_lines:\n lines.append(doc.GetElement(el).GeometryCurve)\n for el in lines:\n p = Line.CreateBound(face.Project(el.GetEndPoint(0)).XYZPoint, face\n .Project(el.GetEndPoint(1)).XYZPoint)\n with db.Transaction('Create beam on Face'):\n doc.Create.NewFamilyInstance(p, t, l, StructuralType.Beam)\n\n\npick()\n", "def pick():\n l = db.Collector(of_class='Level').get_first().unwrap()\n t = db.Collector(of_category='Structural Framing', is_type=True, where=\n lambda x: x.name == 'P2-C20024').get_first().unwrap()\n __window__.Hide()\n picked_face = uidoc.Selection.PickObject(ObjectType.Face)\n picked_lines = uidoc.Selection.PickObjects(ObjectType.Element)\n face = doc.GetElement(picked_face).GetGeometryObjectFromReference(\n picked_face)\n lines = []\n for el in picked_lines:\n lines.append(doc.GetElement(el).GeometryCurve)\n for el in lines:\n p = Line.CreateBound(face.Project(el.GetEndPoint(0)).XYZPoint, face\n .Project(el.GetEndPoint(1)).XYZPoint)\n with db.Transaction('Create beam on Face'):\n doc.Create.NewFamilyInstance(p, t, l, StructuralType.Beam)\n\n\n<code token>\n", "<function token>\n<code token>\n" ]
false
98,357
885fcd46295272d344faa43904c410f606a6a468
# -*- coding: utf-8 -*- from odoo import api, fields, models, _ import odoo import logging from odoo.exceptions import UserError from odoo.tools import DEFAULT_SERVER_DATETIME_FORMAT import json import io import os import timeit try: to_unicode = unicode except NameError: to_unicode = str _logger = logging.getLogger(__name__) class pos_config_image(models.Model): _name = "pos.config.image" _description = "Image show to customer screen" name = fields.Char('Title', required=1) image = fields.Binary('Image', required=1) config_id = fields.Many2one('pos.config', 'POS config', required=1) description = fields.Text('Description') class pos_config(models.Model): _inherit = "pos.config" user_id = fields.Many2one('res.users', 'Assigned to') config_access_right = fields.Boolean('Config access right', default=1) allow_discount = fields.Boolean('Change discount', default=1) allow_qty = fields.Boolean('Change quantity', default=1) allow_price = fields.Boolean('Change price', default=1) allow_remove_line = fields.Boolean('Remove line', default=1) allow_numpad = fields.Boolean('Display numpad', default=1) allow_payment = fields.Boolean('Display payment', default=1) allow_customer = fields.Boolean('Choice customer', default=1) allow_add_order = fields.Boolean('New order', default=1) allow_remove_order = fields.Boolean('Remove order', default=1) allow_add_product = fields.Boolean('Add line', default=1) allow_lock_screen = fields.Boolean('Lock screen', default=0, help='When pos sessions start, cashiers required open POS viva pos pass pin (Setting/Users)') display_point_receipt = fields.Boolean('Display point / receipt') loyalty_id = fields.Many2one('pos.loyalty', 'Loyalty', domain=[('state', '=', 'running')]) promotion_ids = fields.Many2many('pos.promotion', 'pos_config_promotion_rel', 'config_id', 'promotion_id', string='Promotion programs') promotion_manual_select = fields.Boolean('Promotion manual choice', default=0) create_purchase_order = fields.Boolean('Create PO', default=0) create_purchase_order_required_signature = fields.Boolean('Required signature', default=0) purchase_order_state = fields.Selection([ ('confirm_order', 'Auto confirm'), ('confirm_picking', 'Auto delivery'), ('confirm_invoice', 'Auto invoice'), ], 'PO state', help='This is state of purchase order will process to', default='confirm_invoice') sync_sale_order = fields.Boolean('Sync sale orders', default=0) sale_order = fields.Boolean('Create Sale order', default=0) sale_order_auto_confirm = fields.Boolean('Auto confirm', default=0) sale_order_auto_invoice = fields.Boolean('Auto paid', default=0) sale_order_auto_delivery = fields.Boolean('Auto delivery', default=0) pos_orders_management = fields.Boolean('POS order management', default=0) pos_order_period_return_days = fields.Float('Return period days', help='this is period time for customer can return order', default=30) display_return_days_receipt = fields.Boolean('Display return days receipt', default=0) sync_pricelist = fields.Boolean('Sync prices list', default=0) display_onhand = fields.Boolean('Show qty available product', default=1, help='Display quantity on hand all products on pos screen') large_stocks = fields.Boolean('Large stock', help='If count products bigger than 100,000 rows, please check it') allow_order_out_of_stock = fields.Boolean('Allow out-of-stock', default=1, help='If checked, allow cashier can add product have out of stock') allow_of_stock_approve_by_admin = fields.Boolean('Approve allow of stock', help='Allow manager approve allow of stock') print_voucher = fields.Boolean('Print vouchers', help='Reprint last vouchers', default=1) scan_voucher = fields.Boolean('Scan voucher', default=0) expired_days_voucher = fields.Integer('Expired days of voucher', default=30, help='Total days keep voucher can use, if out of period days from create date, voucher will expired') sync_multi_session = fields.Boolean('Sync multi session', default=0) bus_id = fields.Many2one('pos.bus', string='Branch/store') display_person_add_line = fields.Boolean('Display information line', default=0, help="When you checked, on pos order lines screen, will display information person created order (lines) Eg: create date, updated date ..") quickly_payment = fields.Boolean('Quickly payment', default=0) internal_transfer = fields.Boolean('Internal transfer', default=0, help='Go Inventory and active multi warehouse and location') internal_transfer_auto_validate = fields.Boolean('Internal transfer auto validate', default=0) discount = fields.Boolean('Global discount', default=0) discount_ids = fields.Many2many('pos.global.discount', 'pos_config_pos_global_discount_rel', 'config_id', 'discount_id', 'Global discounts') is_customer_screen = fields.Boolean('Is customer screen') delay = fields.Integer('Delay time', default=3000) slogan = fields.Char('Slogan', help='This is message will display on screen of customer') image_ids = fields.One2many('pos.config.image', 'config_id', 'Images') tooltip = fields.Boolean('Show information of product', default=0) tooltip_show_last_price = fields.Boolean('Show last price of product', help='Show last price of items of customer have bought before', default=0) tooltip_show_minimum_sale_price = fields.Boolean('Show min of product sale price', help='Show minimum sale price of product', default=0) discount_limit = fields.Boolean('Discount limit', default=0) discount_limit_amount = fields.Float('Discount limit amount', default=10) discount_each_line = fields.Boolean('Discount each line') discount_unlock_limit = fields.Boolean('Manager can unlock limit') discount_unlock_limit_user_id = fields.Many2one('res.users', 'User unlock limit amount') multi_currency = fields.Boolean('Multi currency', default=0) multi_currency_update_rate = fields.Boolean('Update rate', default=0) notify_alert = fields.Boolean('Notify alert', help='Turn on/off notification alert on POS sessions.', default=0) return_products = fields.Boolean('Return orders', help='Allow cashier return orders, return products', default=0) receipt_without_payment_template = fields.Selection([ ('none', 'None'), ('display_price', 'Display price'), ('not_display_price', 'Not display price') ], default='not_display_price', string='Receipt without payment template') lock_order_printed_receipt = fields.Boolean('Lock order printed receipt', default=0) staff_level = fields.Selection([ ('manual', 'Manual config'), ('marketing', 'Marketing'), ('waiter', 'Waiter'), ('cashier', 'Cashier'), ('manager', 'Manager') ], string='Staff level', default='manual') validate_payment = fields.Boolean('Validate payment') validate_remove_order = fields.Boolean('Validate remove order') validate_change_minus = fields.Boolean('Validate pressed +/-') validate_quantity_change = fields.Boolean('Validate quantity change') validate_price_change = fields.Boolean('Validate price change') validate_discount_change = fields.Boolean('Validate discount change') validate_close_session = fields.Boolean('Validate close session') validate_by_user_id = fields.Many2one('res.users', 'Validate by admin') apply_validate_return_mode = fields.Boolean('Validate return mode', help='If checked, only applied validate when return order', default=1) print_user_card = fields.Boolean('Print user card') product_operation = fields.Boolean('Product Operation', default=0, help='Allow cashiers add pos categories and products on pos screen') quickly_payment_full = fields.Boolean('Quickly payment full') quickly_payment_full_journal_id = fields.Many2one('account.journal', 'Payment mode', domain=[('journal_user', '=', True)]) daily_report = fields.Boolean('Daily report', default=0) note_order = fields.Boolean('Note order', default=0) note_orderline = fields.Boolean('Note order line', default=0) signature_order = fields.Boolean('Signature order', default=0) quickly_buttons = fields.Boolean('Quickly Actions', default=0) display_amount_discount = fields.Boolean('Display amount discount', default=0) booking_orders = fields.Boolean('Booking orders', default=0) booking_orders_required_cashier_signature = fields.Boolean('Book order required sessions signature', help='Checked if need required pos seller signature', default=0) booking_orders_alert = fields.Boolean('Alert when new order coming', default=0) delivery_orders = fields.Boolean('Delivery orders', help='Pos clients can get booking orders and delivery orders', default=0) booking_orders_display_shipping_receipt = fields.Boolean('Display shipping on receipt', default=0) display_tax_orderline = fields.Boolean('Display tax orderline', default=0) display_tax_receipt = fields.Boolean('Display tax receipt', default=0) display_fiscal_position_receipt = fields.Boolean('Display fiscal position on receipt', default=0) display_image_orderline = fields.Boolean('Display image order line', default=0) display_image_receipt = fields.Boolean('Display image receipt', default=0) duplicate_receipt = fields.Boolean('Duplicate Receipt') print_number = fields.Integer('Print number', help='How many number receipt need to print at printer ?', default=0) lock_session = fields.Boolean('Lock session', default=0) category_wise_receipt = fields.Boolean('Category wise receipt', default=0) management_invoice = fields.Boolean('Management Invoice', default=0) invoice_journal_ids = fields.Many2many( 'account.journal', 'pos_config_invoice_journal_rel', 'config_id', 'journal_id', 'Accounting Invoice Journal', domain=[('type', '=', 'sale')], help="Accounting journal use for create invoices.") send_invoice_email = fields.Boolean('Send email invoice', help='Help cashier send invoice to email of customer', default=0) lock_print_invoice_on_pos = fields.Boolean('Lock print invoice', help='Lock print pdf invoice when clicked button invoice', default=0) pos_auto_invoice = fields.Boolean('Auto create invoice', help='Automatic create invoice if order have client', default=0) receipt_invoice_number = fields.Boolean('Add invoice on receipt', help='Show invoice number on receipt header', default=0) receipt_customer_vat = fields.Boolean('Add vat customer on receipt', help='Show customer VAT(TIN) on receipt header', default=0) auto_register_payment = fields.Boolean('Auto invocie register payment', default=0) fiscal_position_auto_detect = fields.Boolean('Fiscal position auto detect', default=0) display_sale_price_within_tax = fields.Boolean('Display sale price within tax', default=0) display_cost_price = fields.Boolean('Display product cost price', default=0) display_product_ref = fields.Boolean('Display product ref', default=0) multi_location = fields.Boolean('Multi location', default=0) product_view = fields.Selection([ ('box', 'Box view'), ('list', 'List view'), ], default='box', string='View of products screen', required=1) ticket_font_size = fields.Integer('Ticket font size', default=12) customer_default_id = fields.Many2one('res.partner', 'Customer default') medical_insurance = fields.Boolean('Medical insurance', default=0) set_guest = fields.Boolean('Set guest', default=0) reset_sequence = fields.Boolean('Reset sequence order', default=0) update_tax = fields.Boolean('Modify tax', default=0, help='Cashier can change tax of order line') subtotal_tax_included = fields.Boolean('Show Tax-Included Prices', help='When checked, subtotal of line will display amount have tax-included') cash_out = fields.Boolean('Take money out', default=0, help='Allow cashiers take money out') cash_in = fields.Boolean('Push money in', default=0, help='Allow cashiers input money in') min_length_search = fields.Integer('Min character length search', default=3, help='Allow auto suggestion items when cashiers input on search box') review_receipt_before_paid = fields.Boolean('Review receipt before paid', help='Show receipt before paid order', default=1) keyboard_event = fields.Boolean('Keyboard event', default=0, help='Allow cashiers use shortcut keyboard') multi_variant = fields.Boolean('Multi variant', default=0, help='Allow cashiers change variant of order lines on pos screen') switch_user = fields.Boolean('Switch user', default=0, help='Allow cashiers switch to another cashier') change_unit_of_measure = fields.Boolean('Change unit of measure', default=0, help='Allow cashiers change unit of measure of order lines') print_last_order = fields.Boolean('Print last receipt', default=0, help='Allow cashiers print last receipt') close_session = fields.Boolean('Close session', help='When cashiers click close pos, auto log out of system', default=0) display_image_product = fields.Boolean('Display image product', default=1, help='Allow hide/display product images on pos screen') printer_on_off = fields.Boolean('On/Off printer', help='Help cashier turn on/off printer viva posbox', default=0) check_duplicate_email = fields.Boolean('Check duplicate email', default=0) check_duplicate_phone = fields.Boolean('Check duplicate phone', default=0) hide_country = fields.Boolean('Hide country', default=0) hide_barcode = fields.Boolean('Hide barcode', default=0) hide_tax = fields.Boolean('Hide tax', default=0) hide_pricelist = fields.Boolean('Hide pricelists', default=0) hide_supplier = fields.Boolean('Hide suppiers', default=1) auto_remove_line = fields.Boolean('Auto remove line', default=1, help='When cashier set quantity of line to 0, line auto remove not keep line with qty is 0') chat = fields.Boolean('Chat message', default=0, help='Allow chat, discuss between pos sessions') add_tags = fields.Boolean('Add tags line', default=0, help='Allow cashiers add tags to order lines') add_notes = fields.Boolean('Add notes line', default=0, help='Allow cashiers add notes to order lines') add_sale_person = fields.Boolean('Add sale person', default=0) logo = fields.Binary('Logo of store') paid_full = fields.Boolean('Allow paid full', default=0, help='Allow cashiers click one button, do payment full order') paid_partial = fields.Boolean('Allow partial payment', default=0, help='Allow cashiers do partial payment') backup = fields.Boolean('Backup/Restore orders', default=0, help='Allow cashiers backup and restore orders on pos screen') backup_orders = fields.Text('Backup orders') change_logo = fields.Boolean('Change logo', default=1, help='Allow cashiers change logo of shop on pos screen') management_session = fields.Boolean('Management session', default=0) barcode_receipt = fields.Boolean('Barcode receipt', default=0) hide_mobile = fields.Boolean('Hide mobile', default=1) hide_phone = fields.Boolean('Hide phone', default=1) hide_email = fields.Boolean('Hide email', default=1) update_client = fields.Boolean('Update client', help='Uncheck if you dont want cashier change customer information on pos') add_client = fields.Boolean('Add client', help='Uncheck if you dont want cashier add new customers on pos') remove_client = fields.Boolean('Remove client', help='Uncheck if you dont want cashier remove customers on pos') mobile_responsive = fields.Boolean('Mobile responsive', default=0) hide_amount_total = fields.Boolean('Hide amount total', default=1) hide_amount_taxes = fields.Boolean('Hide amount taxes', default=1) report_no_of_report = fields.Integer(string="No.of Copy Receipt", default=1) report_signature = fields.Boolean(string="Report Signature", default=1) report_product_summary = fields.Boolean(string="Report Product Summary", default=1) report_product_current_month_date = fields.Boolean(string="Report This Month", default=1) report_order_summary = fields.Boolean(string='Report Order Summary', default=1) report_order_current_month_date = fields.Boolean(string="Report Current Month", default=1) report_payment_summary = fields.Boolean(string="Report Payment Summary", default=1) report_payment_current_month_date = fields.Boolean(string="Payment Current Month", default=1) active_product_sort_by = fields.Boolean('Active product sort by', default=1) default_product_sort_by = fields.Selection([ ('a_z', 'Sort from A to Z'), ('z_a', 'Sort from Z to A'), ('low_price', 'Sort from low to high price'), ('high_price', 'Sort from high to low price'), ('pos_sequence', 'Product pos sequence') ], string='Default sort by', default='a_z') sale_extra = fields.Boolean('Sale extra', default=1) required_add_customer_before_put_product_to_cart = fields.Boolean('Required add customer first', help='If you checked on this checkbox, in POS always required cashier add customer the first') only_one_time_add_customer = fields.Boolean('Only one time add customer', help='Each orders, only one time add customer') use_parameters = fields.Boolean('Use parameters', help='POS need only one time save parameter datas use on POS, and next times no need call backend', default=1) time_refresh_parameter = fields.Integer('Time refresh datas (seconds)', help='Time for refresh parameters data', default=30) @api.model def switch_mobile_mode(self, config_id, vals): if vals.get('mobile_responsive') == True: vals['product_view'] = 'box' return self.browse(config_id).sudo().write(vals) @api.multi def remove_database(self): for config in self: sessions = self.env['pos.session'].search([('config_id', '=', config.id)]) for session in sessions: self.env['bus.bus'].sendmany( [[(self.env.cr.dbname, 'pos.indexed_db', session.user_id.id), json.dumps({ 'db': self.env.cr.dbname })]]) self.env['pos.cache.database'].search([]).unlink() self.env['pos.call.log'].search([]).unlink() return { 'type': 'ir.actions.act_url', 'url': '/pos/web/', 'target': 'self', } @api.multi def remove_caches(self): for config in self: sessions = self.env['pos.session'].search([('config_id', '=', config.id)]) for session in sessions: self.env['bus.bus'].sendmany( [[(self.env.cr.dbname, 'pos.indexed_db', session.user_id.id), json.dumps({ 'db': self.env.cr.dbname })]]) if session.state != 'closed': session.action_pos_session_closing_control() return { 'type': 'ir.actions.act_url', 'url': '/pos/web/', 'target': 'self', } @api.model def store_cached_file(self, datas): start = timeit.default_timer() _logger.info('==> begin cached_file') os.chdir(os.path.dirname(__file__)) path = os.getcwd() file_name = path + '/pos.json' if os.path.exists(file_name): os.remove(file_name) with io.open(file_name, 'w', encoding='utf8') as outfile: str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False) outfile.write(to_unicode(str_)) stop = timeit.default_timer() _logger.info(stop - start) return True @api.model def get_cached_file(self): start = timeit.default_timer() _logger.info('==> begin get_cached_file') os.chdir(os.path.dirname(__file__)) path = os.getcwd() file_name = path + '/pos.json' if not os.path.exists(file_name): return False else: with open(file_name) as f: datas = json.load(f) stop = timeit.default_timer() _logger.info(stop - start) return datas def get_fields_by_model(self, model): all_fields = self.env[model].fields_get() fields_list = [] for field, value in all_fields.items(): if field == 'model' or all_fields[field]['type'] in ['one2many', 'binary']: continue else: fields_list.append(field) return fields_list @api.model def install_data(self, model_name=None, min_id=0, max_id=1999): cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields=False) log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False) domain = [('id', '>=', min_id), ('id', '<=', max_id)] if model_name == 'product.product': domain.append(('available_in_pos', '=', True)) field_list = cache_obj.get_fields_by_model(model_name) self.env.cr.execute("select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'" % ( min_id, max_id, model_name)) old_logs = self.env.cr.fetchall() datas = None if len(old_logs) == 0: _logger.info('installing %s from %s to %s' % (model_name, min_id, max_id)) datas = self.env[model_name].with_context(prefetch_fields=False).search_read(domain, field_list) version_info = odoo.release.version_info[0] if version_info == 12: all_fields = self.env[model_name].fields_get() for data in datas: for field, value in data.items(): if field == 'model': continue if all_fields[field] and all_fields[field]['type'] in ['date', 'datetime'] and value: data[field] = value.strftime(DEFAULT_SERVER_DATETIME_FORMAT) vals = { 'active': True, 'min_id': min_id, 'max_id': max_id, 'call_fields': json.dumps(field_list), 'call_results': json.dumps(datas), 'call_model': model_name, 'call_domain': json.dumps(domain), } log_obj.create(vals) else: old_log_id = old_logs[0][0] old_log = log_obj.browse(old_log_id) datas = old_log.call_results self.env.cr.commit() return datas @api.onchange('lock_print_invoice_on_pos') def _onchange_lock_print_invoice_on_pos(self): if self.lock_print_invoice_on_pos == True: self.receipt_invoice_number = False self.send_invoice_email = True else: self.receipt_invoice_number = True self.send_invoice_email = False @api.onchange('receipt_invoice_number') def _onchange_receipt_invoice_number(self): if self.receipt_invoice_number == True: self.lock_print_invoice_on_pos = False else: self.lock_print_invoice_on_pos = True @api.onchange('pos_auto_invoice') def _onchange_pos_auto_invoice(self): if self.pos_auto_invoice == True: self.iface_invoicing = True else: self.iface_invoicing = False @api.onchange('staff_level') def on_change_staff_level(self): if self.staff_level and self.staff_level == 'manager': self.lock_order_printed_receipt = False @api.multi def write(self, vals): if vals.get('allow_discount', False) or vals.get('allow_qty', False) or vals.get('allow_price', False): vals['allow_numpad'] = True if vals.get('expired_days_voucher', None) and vals.get('expired_days_voucher') < 0: raise UserError('Expired days of voucher could not smaller than 0') for config in self: if vals.get('management_session', False) and not vals.get('default_cashbox_lines_ids'): if not config.default_cashbox_lines_ids and not config.cash_control: raise UserError('Please go to Cash control and add Default Opening') res = super(pos_config, self).write(vals) for config in self: if config.validate_by_user_id and not config.validate_by_user_id.pos_security_pin: raise UserError( 'Validate user %s have not set pos security pin, please go to Users menu and input security password' % ( config.validate_by_user_id.name)) if config.discount_unlock_limit_user_id and not config.discount_unlock_limit_user_id.pos_security_pin: raise UserError( 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password' % ( config.discount_unlock_limit_user_id.name)) return res @api.model def create(self, vals): if vals.get('allow_discount', False) or vals.get('allow_qty', False) or vals.get('allow_price', False): vals['allow_numpad'] = True if vals.get('expired_days_voucher', 0) < 0: raise UserError('Expired days of voucher could not smaller than 0') config = super(pos_config, self).create(vals) if config.management_session and not config.default_cashbox_lines_ids and not config.cash_control: raise UserError('Please go to Cash control and add Default Opening') if config.validate_by_user_id and not config.validate_by_user_id.pos_security_pin: raise UserError( 'Validate user %s have not set pos security pin, please go to Users menu and input security password' % ( config.validate_by_user_id.name)) if config.discount_unlock_limit_user_id and not config.discount_unlock_limit_user_id.pos_security_pin: raise UserError( 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password' % ( config.discount_unlock_limit_user_id.name)) return config def init_wallet_journal(self): Journal = self.env['account.journal'] user = self.env.user wallet_journal = Journal.sudo().search([ ('code', '=', 'UWJ'), ('company_id', '=', user.company_id.id), ]) if wallet_journal: return wallet_journal.sudo().write({ 'pos_method_type': 'wallet' }) Account = self.env['account.account'] wallet_account_old_version = Account.sudo().search([ ('code', '=', 'AUW'), ('company_id', '=', user.company_id.id)]) if wallet_account_old_version: wallet_account = wallet_account_old_version[0] else: wallet_account = Account.sudo().create({ 'name': 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.ref('account.data_account_type_current_assets').id, 'company_id': user.company_id.id, 'note': 'code "AUW" auto give wallet amount of customers', }) self.env['ir.model.data'].sudo().create({ 'name': 'account_use_wallet' + str(user.company_id.id), 'model': 'account.account', 'module': 'pos_retail', 'res_id': wallet_account.id, 'noupdate': True, # If it's False, target record (res_id) will be removed while module update }) wallet_journal_inactive = Journal.sudo().search([ ('code', '=', 'UWJ'), ('company_id', '=', user.company_id.id), ('pos_method_type', '=', 'wallet') ]) if wallet_journal_inactive: wallet_journal_inactive.sudo().write({ 'default_debit_account_id': wallet_account.id, 'default_credit_account_id': wallet_account.id, 'pos_method_type': 'wallet', 'sequence': 100, }) wallet_journal = wallet_journal_inactive else: new_sequence = self.env['ir.sequence'].sudo().create({ 'name': 'Account Default Wallet Journal ' + str(user.company_id.id), 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id), }) self.env['ir.model.data'].sudo().create({ 'name': 'journal_sequence' + str(new_sequence.id), 'model': 'ir.sequence', 'module': 'pos_retail', 'res_id': new_sequence.id, 'noupdate': True, }) wallet_journal = Journal.sudo().create({ 'name': 'Wallet', 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet', 'journal_user': True, 'sequence_id': new_sequence.id, 'company_id': user.company_id.id, 'default_debit_account_id': wallet_account.id, 'default_credit_account_id': wallet_account.id, 'sequence': 100, }) self.env['ir.model.data'].sudo().create({ 'name': 'use_wallet_journal_' + str(wallet_journal.id), 'model': 'account.journal', 'module': 'pos_retail', 'res_id': int(wallet_journal.id), 'noupdate': True, }) config = self config.sudo().write({ 'journal_ids': [(4, wallet_journal.id)], }) statement = [(0, 0, { 'journal_id': wallet_journal.id, 'user_id': user.id, 'company_id': user.company_id.id })] current_session = config.current_session_id current_session.sudo().write({ 'statement_ids': statement, }) return def init_voucher_journal(self): Journal = self.env['account.journal'] user = self.env.user voucher_journal = Journal.sudo().search([ ('code', '=', 'VCJ'), ('company_id', '=', user.company_id.id), ]) if voucher_journal: return voucher_journal.sudo().write({ 'pos_method_type': 'voucher' }) Account = self.env['account.account'] voucher_account_old_version = Account.sudo().search([ ('code', '=', 'AVC'), ('company_id', '=', user.company_id.id)]) if voucher_account_old_version: voucher_account = voucher_account_old_version[0] else: voucher_account = Account.sudo().create({ 'name': 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.ref('account.data_account_type_current_assets').id, 'company_id': user.company_id.id, 'note': 'code "AVC" auto give voucher histories of customers', }) self.env['ir.model.data'].sudo().create({ 'name': 'account_voucher' + str(user.company_id.id), 'model': 'account.account', 'module': 'pos_retail', 'res_id': voucher_account.id, 'noupdate': True, # If it's False, target record (res_id) will be removed while module update }) voucher_journal = Journal.sudo().search([ ('code', '=', 'VCJ'), ('company_id', '=', user.company_id.id), ('pos_method_type', '=', 'voucher') ]) if voucher_journal: voucher_journal[0].sudo().write({ 'voucher': True, 'default_debit_account_id': voucher_account.id, 'default_credit_account_id': voucher_account.id, 'pos_method_type': 'voucher', 'sequence': 101, }) voucher_journal = voucher_journal[0] else: new_sequence = self.env['ir.sequence'].sudo().create({ 'name': 'Account Voucher ' + str(user.company_id.id), 'padding': 3, 'prefix': 'AVC ' + str(user.company_id.id), }) self.env['ir.model.data'].sudo().create({ 'name': 'journal_sequence' + str(new_sequence.id), 'model': 'ir.sequence', 'module': 'pos_retail', 'res_id': new_sequence.id, 'noupdate': True, }) voucher_journal = Journal.sudo().create({ 'name': 'Voucher', 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher', 'journal_user': True, 'sequence_id': new_sequence.id, 'company_id': user.company_id.id, 'default_debit_account_id': voucher_account.id, 'default_credit_account_id': voucher_account.id, 'sequence': 101, }) self.env['ir.model.data'].sudo().create({ 'name': 'journal_voucher_' + str(voucher_journal.id), 'model': 'account.journal', 'module': 'pos_retail', 'res_id': int(voucher_journal.id), 'noupdate': True, }) config = self config.sudo().write({ 'journal_ids': [(4, voucher_journal.id)], }) statement = [(0, 0, { 'journal_id': voucher_journal.id, 'user_id': user.id, 'company_id': user.company_id.id })] current_session = config.current_session_id current_session.sudo().write({ 'statement_ids': statement, }) return def init_credit_journal(self): Journal = self.env['account.journal'] user = self.env.user voucher_journal = Journal.sudo().search([ ('code', '=', 'CJ'), ('company_id', '=', user.company_id.id), ]) if voucher_journal: return voucher_journal.sudo().write({ 'pos_method_type': 'credit' }) Account = self.env['account.account'] credit_account_old_version = Account.sudo().search([ ('code', '=', 'ACJ'), ('company_id', '=', user.company_id.id)]) if credit_account_old_version: credit_account = credit_account_old_version[0] else: credit_account = Account.sudo().create({ 'name': 'Credit Account', 'code': 'CA', 'user_type_id': self.env.ref('account.data_account_type_current_assets').id, 'company_id': user.company_id.id, 'note': 'code "CA" give credit payment customer', }) self.env['ir.model.data'].sudo().create({ 'name': 'account_credit' + str(user.company_id.id), 'model': 'account.account', 'module': 'pos_retail', 'res_id': credit_account.id, 'noupdate': True, # If it's False, target record (res_id) will be removed while module update }) credit_journal = Journal.sudo().search([ ('code', '=', 'CJ'), ('company_id', '=', user.company_id.id), ('pos_method_type', '=', 'credit') ]) if credit_journal: credit_journal[0].sudo().write({ 'credit': True, 'default_debit_account_id': credit_account.id, 'default_credit_account_id': credit_account.id, 'pos_method_type': 'credit', 'sequence': 102, }) credit_journal = credit_journal[0] else: new_sequence = self.env['ir.sequence'].sudo().create({ 'name': 'Credit account ' + str(user.company_id.id), 'padding': 3, 'prefix': 'CA ' + str(user.company_id.id), }) self.env['ir.model.data'].sudo().create({ 'name': 'journal_sequence' + str(new_sequence.id), 'model': 'ir.sequence', 'module': 'pos_retail', 'res_id': new_sequence.id, 'noupdate': True, }) credit_journal = Journal.sudo().create({ 'name': 'Customer Credit', 'code': 'CJ', 'type': 'cash', 'pos_method_type': 'credit', 'journal_user': True, 'sequence_id': new_sequence.id, 'company_id': user.company_id.id, 'default_debit_account_id': credit_account.id, 'default_credit_account_id': credit_account.id, 'sequence': 102, }) self.env['ir.model.data'].sudo().create({ 'name': 'credit_journal_' + str(credit_journal.id), 'model': 'account.journal', 'module': 'pos_retail', 'res_id': int(credit_journal.id), 'noupdate': True, }) config = self config.sudo().write({ 'journal_ids': [(4, credit_journal.id)], }) statement = [(0, 0, { 'journal_id': credit_journal.id, 'user_id': user.id, 'company_id': user.company_id.id })] current_session = config.current_session_id current_session.sudo().write({ 'statement_ids': statement, }) return True def init_return_order_journal(self): Journal = self.env['account.journal'] user = self.env.user return_journal = Journal.sudo().search([ ('code', '=', 'ROJ'), ('company_id', '=', user.company_id.id), ]) if return_journal: return return_journal.sudo().write({ 'pos_method_type': 'return' }) Account = self.env['account.account'] return_account_old_version = Account.sudo().search([ ('code', '=', 'ARO'), ('company_id', '=', user.company_id.id)]) if return_account_old_version: return_account = return_account_old_version[0] else: return_account = Account.sudo().create({ 'name': 'Return Order Account', 'code': 'ARO', 'user_type_id': self.env.ref('account.data_account_type_current_assets').id, 'company_id': user.company_id.id, 'note': 'code "ARO" give return order from customer', }) self.env['ir.model.data'].sudo().create({ 'name': 'return_account' + str(user.company_id.id), 'model': 'account.account', 'module': 'pos_retail', 'res_id': return_account.id, 'noupdate': True, # If it's False, target record (res_id) will be removed while module update }) return_journal = Journal.sudo().search([ ('code', '=', 'ROJ'), ('company_id', '=', user.company_id.id), ]) if return_journal: return_journal[0].sudo().write({ 'default_debit_account_id': return_account.id, 'default_credit_account_id': return_account.id, 'pos_method_type': 'return' }) return_journal = return_journal[0] else: new_sequence = self.env['ir.sequence'].sudo().create({ 'name': 'Return account ' + str(user.company_id.id), 'padding': 3, 'prefix': 'RA ' + str(user.company_id.id), }) self.env['ir.model.data'].sudo().create({ 'name': 'journal_sequence' + str(new_sequence.id), 'model': 'ir.sequence', 'module': 'pos_retail', 'res_id': new_sequence.id, 'noupdate': True, }) return_journal = Journal.sudo().create({ 'name': 'Return Order Customer', 'code': 'ROJ', 'type': 'cash', 'pos_method_type': 'return', 'journal_user': True, 'sequence_id': new_sequence.id, 'company_id': user.company_id.id, 'default_debit_account_id': return_account.id, 'default_credit_account_id': return_account.id, 'sequence': 103, }) self.env['ir.model.data'].sudo().create({ 'name': 'return_journal_' + str(return_journal.id), 'model': 'account.journal', 'module': 'pos_retail', 'res_id': int(return_journal.id), 'noupdate': True, }) config = self config.sudo().write({ 'journal_ids': [(4, return_journal.id)], }) statement = [(0, 0, { 'journal_id': return_journal.id, 'user_id': user.id, 'company_id': user.company_id.id })] current_session = config.current_session_id current_session.sudo().write({ 'statement_ids': statement, }) return True def init_rounding_journal(self): Journal = self.env['account.journal'] Account = self.env['account.account'] user = self.env.user rounding_journal = Journal.sudo().search([ ('code', '=', 'RDJ'), ('company_id', '=', user.company_id.id), ]) if rounding_journal: return rounding_journal.sudo().write({ 'pos_method_type': 'rounding' }) rounding_account_old_version = Account.sudo().search([ ('code', '=', 'AAR'), ('company_id', '=', user.company_id.id)]) if rounding_account_old_version: rounding_account = rounding_account_old_version[0] else: _logger.info('rounding_account have not') rounding_account = Account.sudo().create({ 'name': 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env.ref('account.data_account_type_current_assets').id, 'company_id': user.company_id.id, 'note': 'code "AAR" give rounding pos order', }) self.env['ir.model.data'].sudo().create({ 'name': 'rounding_account' + str(user.company_id.id), 'model': 'account.account', 'module': 'pos_retail', 'res_id': rounding_account.id, 'noupdate': True, }) rounding_journal = Journal.sudo().search([ ('pos_method_type', '=', 'rounding'), ('company_id', '=', user.company_id.id), ]) if rounding_journal: rounding_journal[0].sudo().write({ 'name': 'Rounding', 'default_debit_account_id': rounding_account.id, 'default_credit_account_id': rounding_account.id, 'pos_method_type': 'rounding', 'code': 'RDJ' }) rounding_journal = rounding_journal[0] else: new_sequence = self.env['ir.sequence'].sudo().create({ 'name': 'rounding account ' + str(user.company_id.id), 'padding': 3, 'prefix': 'RA ' + str(user.company_id.id), }) self.env['ir.model.data'].sudo().create({ 'name': 'journal_sequence' + str(new_sequence.id), 'model': 'ir.sequence', 'module': 'pos_retail', 'res_id': new_sequence.id, 'noupdate': True, }) rounding_journal = Journal.sudo().create({ 'name': 'Rounding', 'code': 'RDJ', 'type': 'cash', 'pos_method_type': 'rounding', 'journal_user': True, 'sequence_id': new_sequence.id, 'company_id': user.company_id.id, 'default_debit_account_id': rounding_account.id, 'default_credit_account_id': rounding_account.id, 'sequence': 103, }) self.env['ir.model.data'].sudo().create({ 'name': 'rounding_journal_' + str(rounding_journal.id), 'model': 'account.journal', 'module': 'pos_retail', 'res_id': int(rounding_journal.id), 'noupdate': True, }) config = self config.sudo().write({ 'journal_ids': [(4, rounding_journal.id)], }) statement = [(0, 0, { 'journal_id': rounding_journal.id, 'user_id': user.id, 'company_id': user.company_id.id })] current_session = config.current_session_id current_session.sudo().write({ 'statement_ids': statement, }) return True @api.multi def open_ui(self): res = super(pos_config, self).open_ui() self.init_voucher_journal() self.init_wallet_journal() self.init_credit_journal() self.init_return_order_journal() self.init_rounding_journal() return res @api.multi def open_session_cb(self): res = super(pos_config, self).open_session_cb() self.init_voucher_journal() self.init_wallet_journal() self.init_credit_journal() self.init_return_order_journal() self.init_rounding_journal() return res
[ "# -*- coding: utf-8 -*-\nfrom odoo import api, fields, models, _\nimport odoo\nimport logging\nfrom odoo.exceptions import UserError\nfrom odoo.tools import DEFAULT_SERVER_DATETIME_FORMAT\nimport json\n\nimport io\nimport os\nimport timeit\n\ntry:\n to_unicode = unicode\nexcept NameError:\n to_unicode = str\n\n_logger = logging.getLogger(__name__)\n\n\nclass pos_config_image(models.Model):\n _name = \"pos.config.image\"\n _description = \"Image show to customer screen\"\n\n name = fields.Char('Title', required=1)\n image = fields.Binary('Image', required=1)\n config_id = fields.Many2one('pos.config', 'POS config', required=1)\n description = fields.Text('Description')\n\n\nclass pos_config(models.Model):\n _inherit = \"pos.config\"\n\n user_id = fields.Many2one('res.users', 'Assigned to')\n config_access_right = fields.Boolean('Config access right', default=1)\n allow_discount = fields.Boolean('Change discount', default=1)\n allow_qty = fields.Boolean('Change quantity', default=1)\n allow_price = fields.Boolean('Change price', default=1)\n allow_remove_line = fields.Boolean('Remove line', default=1)\n allow_numpad = fields.Boolean('Display numpad', default=1)\n allow_payment = fields.Boolean('Display payment', default=1)\n allow_customer = fields.Boolean('Choice customer', default=1)\n allow_add_order = fields.Boolean('New order', default=1)\n allow_remove_order = fields.Boolean('Remove order', default=1)\n allow_add_product = fields.Boolean('Add line', default=1)\n\n allow_lock_screen = fields.Boolean('Lock screen',\n default=0,\n help='When pos sessions start, cashiers required open POS viva pos pass pin (Setting/Users)')\n\n display_point_receipt = fields.Boolean('Display point / receipt')\n loyalty_id = fields.Many2one('pos.loyalty', 'Loyalty',\n domain=[('state', '=', 'running')])\n\n promotion_ids = fields.Many2many('pos.promotion',\n 'pos_config_promotion_rel',\n 'config_id',\n 'promotion_id',\n string='Promotion programs')\n promotion_manual_select = fields.Boolean('Promotion manual choice', default=0)\n\n create_purchase_order = fields.Boolean('Create PO', default=0)\n create_purchase_order_required_signature = fields.Boolean('Required signature', default=0)\n purchase_order_state = fields.Selection([\n ('confirm_order', 'Auto confirm'),\n ('confirm_picking', 'Auto delivery'),\n ('confirm_invoice', 'Auto invoice'),\n ], 'PO state',\n help='This is state of purchase order will process to',\n default='confirm_invoice')\n\n sync_sale_order = fields.Boolean('Sync sale orders', default=0)\n sale_order = fields.Boolean('Create Sale order', default=0)\n sale_order_auto_confirm = fields.Boolean('Auto confirm', default=0)\n sale_order_auto_invoice = fields.Boolean('Auto paid', default=0)\n sale_order_auto_delivery = fields.Boolean('Auto delivery', default=0)\n\n pos_orders_management = fields.Boolean('POS order management', default=0)\n pos_order_period_return_days = fields.Float('Return period days',\n help='this is period time for customer can return order',\n default=30)\n display_return_days_receipt = fields.Boolean('Display return days receipt', default=0)\n\n sync_pricelist = fields.Boolean('Sync prices list', default=0)\n\n display_onhand = fields.Boolean('Show qty available product', default=1,\n help='Display quantity on hand all products on pos screen')\n large_stocks = fields.Boolean('Large stock', help='If count products bigger than 100,000 rows, please check it')\n allow_order_out_of_stock = fields.Boolean('Allow out-of-stock', default=1,\n help='If checked, allow cashier can add product have out of stock')\n allow_of_stock_approve_by_admin = fields.Boolean('Approve allow of stock',\n help='Allow manager approve allow of stock')\n\n print_voucher = fields.Boolean('Print vouchers', help='Reprint last vouchers', default=1)\n scan_voucher = fields.Boolean('Scan voucher', default=0)\n expired_days_voucher = fields.Integer('Expired days of voucher', default=30,\n help='Total days keep voucher can use, if out of period days from create date, voucher will expired')\n sync_multi_session = fields.Boolean('Sync multi session', default=0)\n bus_id = fields.Many2one('pos.bus', string='Branch/store')\n display_person_add_line = fields.Boolean('Display information line', default=0,\n help=\"When you checked, on pos order lines screen, will display information person created order (lines) Eg: create date, updated date ..\")\n quickly_payment = fields.Boolean('Quickly payment', default=0)\n internal_transfer = fields.Boolean('Internal transfer', default=0,\n help='Go Inventory and active multi warehouse and location')\n internal_transfer_auto_validate = fields.Boolean('Internal transfer auto validate', default=0)\n\n discount = fields.Boolean('Global discount', default=0)\n discount_ids = fields.Many2many('pos.global.discount',\n 'pos_config_pos_global_discount_rel',\n 'config_id',\n 'discount_id',\n 'Global discounts')\n is_customer_screen = fields.Boolean('Is customer screen')\n delay = fields.Integer('Delay time', default=3000)\n slogan = fields.Char('Slogan', help='This is message will display on screen of customer')\n image_ids = fields.One2many('pos.config.image', 'config_id', 'Images')\n\n tooltip = fields.Boolean('Show information of product', default=0)\n tooltip_show_last_price = fields.Boolean('Show last price of product',\n help='Show last price of items of customer have bought before',\n default=0)\n tooltip_show_minimum_sale_price = fields.Boolean('Show min of product sale price',\n help='Show minimum sale price of product',\n default=0)\n discount_limit = fields.Boolean('Discount limit', default=0)\n discount_limit_amount = fields.Float('Discount limit amount', default=10)\n discount_each_line = fields.Boolean('Discount each line')\n discount_unlock_limit = fields.Boolean('Manager can unlock limit')\n discount_unlock_limit_user_id = fields.Many2one('res.users', 'User unlock limit amount')\n\n multi_currency = fields.Boolean('Multi currency', default=0)\n multi_currency_update_rate = fields.Boolean('Update rate', default=0)\n\n notify_alert = fields.Boolean('Notify alert',\n help='Turn on/off notification alert on POS sessions.',\n default=0)\n return_products = fields.Boolean('Return orders',\n help='Allow cashier return orders, return products',\n default=0)\n receipt_without_payment_template = fields.Selection([\n ('none', 'None'),\n ('display_price', 'Display price'),\n ('not_display_price', 'Not display price')\n ], default='not_display_price', string='Receipt without payment template')\n lock_order_printed_receipt = fields.Boolean('Lock order printed receipt', default=0)\n staff_level = fields.Selection([\n ('manual', 'Manual config'),\n ('marketing', 'Marketing'),\n ('waiter', 'Waiter'),\n ('cashier', 'Cashier'),\n ('manager', 'Manager')\n ], string='Staff level', default='manual')\n\n validate_payment = fields.Boolean('Validate payment')\n validate_remove_order = fields.Boolean('Validate remove order')\n validate_change_minus = fields.Boolean('Validate pressed +/-')\n validate_quantity_change = fields.Boolean('Validate quantity change')\n validate_price_change = fields.Boolean('Validate price change')\n validate_discount_change = fields.Boolean('Validate discount change')\n validate_close_session = fields.Boolean('Validate close session')\n validate_by_user_id = fields.Many2one('res.users', 'Validate by admin')\n apply_validate_return_mode = fields.Boolean('Validate return mode',\n help='If checked, only applied validate when return order', default=1)\n\n print_user_card = fields.Boolean('Print user card')\n\n product_operation = fields.Boolean('Product Operation', default=0,\n help='Allow cashiers add pos categories and products on pos screen')\n quickly_payment_full = fields.Boolean('Quickly payment full')\n quickly_payment_full_journal_id = fields.Many2one('account.journal', 'Payment mode',\n domain=[('journal_user', '=', True)])\n daily_report = fields.Boolean('Daily report', default=0)\n note_order = fields.Boolean('Note order', default=0)\n note_orderline = fields.Boolean('Note order line', default=0)\n signature_order = fields.Boolean('Signature order', default=0)\n quickly_buttons = fields.Boolean('Quickly Actions', default=0)\n display_amount_discount = fields.Boolean('Display amount discount', default=0)\n\n booking_orders = fields.Boolean('Booking orders', default=0)\n booking_orders_required_cashier_signature = fields.Boolean('Book order required sessions signature',\n help='Checked if need required pos seller signature',\n default=0)\n booking_orders_alert = fields.Boolean('Alert when new order coming', default=0)\n delivery_orders = fields.Boolean('Delivery orders',\n help='Pos clients can get booking orders and delivery orders',\n default=0)\n booking_orders_display_shipping_receipt = fields.Boolean('Display shipping on receipt', default=0)\n\n display_tax_orderline = fields.Boolean('Display tax orderline', default=0)\n display_tax_receipt = fields.Boolean('Display tax receipt', default=0)\n display_fiscal_position_receipt = fields.Boolean('Display fiscal position on receipt', default=0)\n\n display_image_orderline = fields.Boolean('Display image order line', default=0)\n display_image_receipt = fields.Boolean('Display image receipt', default=0)\n duplicate_receipt = fields.Boolean('Duplicate Receipt')\n print_number = fields.Integer('Print number', help='How many number receipt need to print at printer ?', default=0)\n\n lock_session = fields.Boolean('Lock session', default=0)\n category_wise_receipt = fields.Boolean('Category wise receipt', default=0)\n\n management_invoice = fields.Boolean('Management Invoice', default=0)\n invoice_journal_ids = fields.Many2many(\n 'account.journal',\n 'pos_config_invoice_journal_rel',\n 'config_id',\n 'journal_id',\n 'Accounting Invoice Journal',\n domain=[('type', '=', 'sale')],\n help=\"Accounting journal use for create invoices.\")\n send_invoice_email = fields.Boolean('Send email invoice', help='Help cashier send invoice to email of customer',\n default=0)\n lock_print_invoice_on_pos = fields.Boolean('Lock print invoice',\n help='Lock print pdf invoice when clicked button invoice', default=0)\n pos_auto_invoice = fields.Boolean('Auto create invoice',\n help='Automatic create invoice if order have client',\n default=0)\n receipt_invoice_number = fields.Boolean('Add invoice on receipt', help='Show invoice number on receipt header',\n default=0)\n receipt_customer_vat = fields.Boolean('Add vat customer on receipt',\n help='Show customer VAT(TIN) on receipt header', default=0)\n auto_register_payment = fields.Boolean('Auto invocie register payment', default=0)\n\n fiscal_position_auto_detect = fields.Boolean('Fiscal position auto detect', default=0)\n\n display_sale_price_within_tax = fields.Boolean('Display sale price within tax', default=0)\n display_cost_price = fields.Boolean('Display product cost price', default=0)\n display_product_ref = fields.Boolean('Display product ref', default=0)\n multi_location = fields.Boolean('Multi location', default=0)\n product_view = fields.Selection([\n ('box', 'Box view'),\n ('list', 'List view'),\n ], default='box', string='View of products screen', required=1)\n\n ticket_font_size = fields.Integer('Ticket font size', default=12)\n customer_default_id = fields.Many2one('res.partner', 'Customer default')\n medical_insurance = fields.Boolean('Medical insurance', default=0)\n set_guest = fields.Boolean('Set guest', default=0)\n reset_sequence = fields.Boolean('Reset sequence order', default=0)\n update_tax = fields.Boolean('Modify tax', default=0, help='Cashier can change tax of order line')\n subtotal_tax_included = fields.Boolean('Show Tax-Included Prices',\n help='When checked, subtotal of line will display amount have tax-included')\n cash_out = fields.Boolean('Take money out', default=0, help='Allow cashiers take money out')\n cash_in = fields.Boolean('Push money in', default=0, help='Allow cashiers input money in')\n min_length_search = fields.Integer('Min character length search', default=3,\n help='Allow auto suggestion items when cashiers input on search box')\n review_receipt_before_paid = fields.Boolean('Review receipt before paid', help='Show receipt before paid order',\n default=1)\n keyboard_event = fields.Boolean('Keyboard event', default=0, help='Allow cashiers use shortcut keyboard')\n multi_variant = fields.Boolean('Multi variant', default=0,\n help='Allow cashiers change variant of order lines on pos screen')\n switch_user = fields.Boolean('Switch user', default=0, help='Allow cashiers switch to another cashier')\n change_unit_of_measure = fields.Boolean('Change unit of measure', default=0,\n help='Allow cashiers change unit of measure of order lines')\n print_last_order = fields.Boolean('Print last receipt', default=0, help='Allow cashiers print last receipt')\n close_session = fields.Boolean('Close session', help='When cashiers click close pos, auto log out of system',\n default=0)\n display_image_product = fields.Boolean('Display image product', default=1,\n help='Allow hide/display product images on pos screen')\n printer_on_off = fields.Boolean('On/Off printer', help='Help cashier turn on/off printer viva posbox', default=0)\n check_duplicate_email = fields.Boolean('Check duplicate email', default=0)\n check_duplicate_phone = fields.Boolean('Check duplicate phone', default=0)\n hide_country = fields.Boolean('Hide country', default=0)\n hide_barcode = fields.Boolean('Hide barcode', default=0)\n hide_tax = fields.Boolean('Hide tax', default=0)\n hide_pricelist = fields.Boolean('Hide pricelists', default=0)\n hide_supplier = fields.Boolean('Hide suppiers', default=1)\n auto_remove_line = fields.Boolean('Auto remove line',\n default=1,\n help='When cashier set quantity of line to 0, line auto remove not keep line with qty is 0')\n chat = fields.Boolean('Chat message', default=0, help='Allow chat, discuss between pos sessions')\n add_tags = fields.Boolean('Add tags line', default=0, help='Allow cashiers add tags to order lines')\n add_notes = fields.Boolean('Add notes line', default=0, help='Allow cashiers add notes to order lines')\n add_sale_person = fields.Boolean('Add sale person', default=0)\n logo = fields.Binary('Logo of store')\n paid_full = fields.Boolean('Allow paid full', default=0,\n help='Allow cashiers click one button, do payment full order')\n paid_partial = fields.Boolean('Allow partial payment', default=0, help='Allow cashiers do partial payment')\n backup = fields.Boolean('Backup/Restore orders', default=0,\n help='Allow cashiers backup and restore orders on pos screen')\n backup_orders = fields.Text('Backup orders')\n change_logo = fields.Boolean('Change logo', default=1, help='Allow cashiers change logo of shop on pos screen')\n management_session = fields.Boolean('Management session', default=0)\n barcode_receipt = fields.Boolean('Barcode receipt', default=0)\n\n hide_mobile = fields.Boolean('Hide mobile', default=1)\n hide_phone = fields.Boolean('Hide phone', default=1)\n hide_email = fields.Boolean('Hide email', default=1)\n update_client = fields.Boolean('Update client',\n help='Uncheck if you dont want cashier change customer information on pos')\n add_client = fields.Boolean('Add client', help='Uncheck if you dont want cashier add new customers on pos')\n remove_client = fields.Boolean('Remove client', help='Uncheck if you dont want cashier remove customers on pos')\n mobile_responsive = fields.Boolean('Mobile responsive', default=0)\n\n hide_amount_total = fields.Boolean('Hide amount total', default=1)\n hide_amount_taxes = fields.Boolean('Hide amount taxes', default=1)\n\n report_no_of_report = fields.Integer(string=\"No.of Copy Receipt\", default=1)\n report_signature = fields.Boolean(string=\"Report Signature\", default=1)\n\n report_product_summary = fields.Boolean(string=\"Report Product Summary\", default=1)\n report_product_current_month_date = fields.Boolean(string=\"Report This Month\", default=1)\n\n report_order_summary = fields.Boolean(string='Report Order Summary', default=1)\n report_order_current_month_date = fields.Boolean(string=\"Report Current Month\", default=1)\n\n report_payment_summary = fields.Boolean(string=\"Report Payment Summary\", default=1)\n report_payment_current_month_date = fields.Boolean(string=\"Payment Current Month\", default=1)\n\n active_product_sort_by = fields.Boolean('Active product sort by', default=1)\n default_product_sort_by = fields.Selection([\n ('a_z', 'Sort from A to Z'),\n ('z_a', 'Sort from Z to A'),\n ('low_price', 'Sort from low to high price'),\n ('high_price', 'Sort from high to low price'),\n ('pos_sequence', 'Product pos sequence')\n ], string='Default sort by', default='a_z')\n sale_extra = fields.Boolean('Sale extra', default=1)\n required_add_customer_before_put_product_to_cart = fields.Boolean('Required add customer first',\n help='If you checked on this checkbox, in POS always required cashier add customer the first')\n only_one_time_add_customer = fields.Boolean('Only one time add customer',\n help='Each orders, only one time add customer')\n use_parameters = fields.Boolean('Use parameters', help='POS need only one time save parameter datas use on POS, and next times no need call backend', default=1)\n time_refresh_parameter = fields.Integer('Time refresh datas (seconds)', help='Time for refresh parameters data', default=30)\n\n @api.model\n def switch_mobile_mode(self, config_id, vals):\n if vals.get('mobile_responsive') == True:\n vals['product_view'] = 'box'\n return self.browse(config_id).sudo().write(vals)\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=', config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany(\n [[(self.env.cr.dbname, 'pos.indexed_db', session.user_id.id), json.dumps({\n 'db': self.env.cr.dbname\n })]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {\n 'type': 'ir.actions.act_url',\n 'url': '/pos/web/',\n 'target': 'self',\n }\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=', config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany(\n [[(self.env.cr.dbname, 'pos.indexed_db', session.user_id.id), json.dumps({\n 'db': self.env.cr.dbname\n })]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {\n 'type': 'ir.actions.act_url',\n 'url': '/pos/web/',\n 'target': 'self',\n }\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many', 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields=False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\" % (\n min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name, min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in ['date',\n 'datetime'] and value:\n data[field] = value.strftime(DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {\n 'active': True,\n 'min_id': min_id,\n 'max_id': max_id,\n 'call_fields': json.dumps(field_list),\n 'call_results': json.dumps(datas),\n 'call_model': model_name,\n 'call_domain': json.dumps(domain),\n }\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n\n @api.onchange('receipt_invoice_number')\n def _onchange_receipt_invoice_number(self):\n if self.receipt_invoice_number == True:\n self.lock_print_invoice_on_pos = False\n else:\n self.lock_print_invoice_on_pos = True\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get('expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get('default_cashbox_lines_ids'):\n if not config.default_cashbox_lines_ids and not config.cash_control:\n raise UserError('Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if config.validate_by_user_id and not config.validate_by_user_id.pos_security_pin:\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password' % (\n config.validate_by_user_id.name))\n if config.discount_unlock_limit_user_id and not config.discount_unlock_limit_user_id.pos_security_pin:\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password' % (\n config.discount_unlock_limit_user_id.name))\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if config.management_session and not config.default_cashbox_lines_ids and not config.cash_control:\n raise UserError('Please go to Cash control and add Default Opening')\n if config.validate_by_user_id and not config.validate_by_user_id.pos_security_pin:\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password' % (\n config.validate_by_user_id.name))\n if config.discount_unlock_limit_user_id and not config.discount_unlock_limit_user_id.pos_security_pin:\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password' % (\n config.discount_unlock_limit_user_id.name))\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([\n ('code', '=', 'UWJ'),\n ('company_id', '=', user.company_id.id),\n ])\n if wallet_journal:\n return wallet_journal.sudo().write({\n 'pos_method_type': 'wallet'\n })\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([\n ('code', '=', 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({\n 'name': 'Account wallet',\n 'code': 'AUW',\n 'user_type_id': self.env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id,\n 'note': 'code \"AUW\" auto give wallet amount of customers',\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'account_use_wallet' + str(user.company_id.id),\n 'model': 'account.account',\n 'module': 'pos_retail',\n 'res_id': wallet_account.id,\n 'noupdate': True, # If it's False, target record (res_id) will be removed while module update\n })\n\n wallet_journal_inactive = Journal.sudo().search([\n ('code', '=', 'UWJ'),\n ('company_id', '=', user.company_id.id),\n ('pos_method_type', '=', 'wallet')\n ])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet',\n 'sequence': 100,\n })\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({\n 'name': 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3,\n 'prefix': 'UW ' + str(user.company_id.id),\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'journal_sequence' + str(new_sequence.id),\n 'model': 'ir.sequence',\n 'module': 'pos_retail',\n 'res_id': new_sequence.id,\n 'noupdate': True,\n })\n wallet_journal = Journal.sudo().create({\n 'name': 'Wallet',\n 'code': 'UWJ',\n 'type': 'cash',\n 'pos_method_type': 'wallet',\n 'journal_user': True,\n 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'sequence': 100,\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'use_wallet_journal_' + str(wallet_journal.id),\n 'model': 'account.journal',\n 'module': 'pos_retail',\n 'res_id': int(wallet_journal.id),\n 'noupdate': True,\n })\n\n config = self\n config.sudo().write({\n 'journal_ids': [(4, wallet_journal.id)],\n })\n\n statement = [(0, 0, {\n 'journal_id': wallet_journal.id,\n 'user_id': user.id,\n 'company_id': user.company_id.id\n })]\n current_session = config.current_session_id\n current_session.sudo().write({\n 'statement_ids': statement,\n })\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([\n ('code', '=', 'VCJ'),\n ('company_id', '=', user.company_id.id),\n ])\n if voucher_journal:\n return voucher_journal.sudo().write({\n 'pos_method_type': 'voucher'\n })\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([\n ('code', '=', 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({\n 'name': 'Account voucher',\n 'code': 'AVC',\n 'user_type_id': self.env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id,\n 'note': 'code \"AVC\" auto give voucher histories of customers',\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'account_voucher' + str(user.company_id.id),\n 'model': 'account.account',\n 'module': 'pos_retail',\n 'res_id': voucher_account.id,\n 'noupdate': True, # If it's False, target record (res_id) will be removed while module update\n })\n\n voucher_journal = Journal.sudo().search([\n ('code', '=', 'VCJ'),\n ('company_id', '=', user.company_id.id),\n ('pos_method_type', '=', 'voucher')\n ])\n if voucher_journal:\n voucher_journal[0].sudo().write({\n 'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher',\n 'sequence': 101,\n })\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({\n 'name': 'Account Voucher ' + str(user.company_id.id),\n 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id),\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'journal_sequence' + str(new_sequence.id),\n 'model': 'ir.sequence',\n 'module': 'pos_retail',\n 'res_id': new_sequence.id,\n 'noupdate': True,\n })\n voucher_journal = Journal.sudo().create({\n 'name': 'Voucher',\n 'code': 'VCJ',\n 'type': 'cash',\n 'pos_method_type': 'voucher',\n 'journal_user': True,\n 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'sequence': 101,\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'journal_voucher_' + str(voucher_journal.id),\n 'model': 'account.journal',\n 'module': 'pos_retail',\n 'res_id': int(voucher_journal.id),\n 'noupdate': True,\n })\n\n config = self\n config.sudo().write({\n 'journal_ids': [(4, voucher_journal.id)],\n })\n\n statement = [(0, 0, {\n 'journal_id': voucher_journal.id,\n 'user_id': user.id,\n 'company_id': user.company_id.id\n })]\n current_session = config.current_session_id\n current_session.sudo().write({\n 'statement_ids': statement,\n })\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([\n ('code', '=', 'CJ'),\n ('company_id', '=', user.company_id.id),\n ])\n if voucher_journal:\n return voucher_journal.sudo().write({\n 'pos_method_type': 'credit'\n })\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([\n ('code', '=', 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({\n 'name': 'Credit Account',\n 'code': 'CA',\n 'user_type_id': self.env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id,\n 'note': 'code \"CA\" give credit payment customer',\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'account_credit' + str(user.company_id.id),\n 'model': 'account.account',\n 'module': 'pos_retail',\n 'res_id': credit_account.id,\n 'noupdate': True, # If it's False, target record (res_id) will be removed while module update\n })\n\n credit_journal = Journal.sudo().search([\n ('code', '=', 'CJ'),\n ('company_id', '=', user.company_id.id),\n ('pos_method_type', '=', 'credit')\n ])\n if credit_journal:\n credit_journal[0].sudo().write({\n 'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit',\n 'sequence': 102,\n })\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({\n 'name': 'Credit account ' + str(user.company_id.id),\n 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id),\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'journal_sequence' + str(new_sequence.id),\n 'model': 'ir.sequence',\n 'module': 'pos_retail',\n 'res_id': new_sequence.id,\n 'noupdate': True,\n })\n credit_journal = Journal.sudo().create({\n 'name': 'Customer Credit',\n 'code': 'CJ',\n 'type': 'cash',\n 'pos_method_type': 'credit',\n 'journal_user': True,\n 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'sequence': 102,\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'credit_journal_' + str(credit_journal.id),\n 'model': 'account.journal',\n 'module': 'pos_retail',\n 'res_id': int(credit_journal.id),\n 'noupdate': True,\n })\n\n config = self\n config.sudo().write({\n 'journal_ids': [(4, credit_journal.id)],\n })\n\n statement = [(0, 0, {\n 'journal_id': credit_journal.id,\n 'user_id': user.id,\n 'company_id': user.company_id.id\n })]\n current_session = config.current_session_id\n current_session.sudo().write({\n 'statement_ids': statement,\n })\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([\n ('code', '=', 'ROJ'),\n ('company_id', '=', user.company_id.id),\n ])\n if return_journal:\n return return_journal.sudo().write({\n 'pos_method_type': 'return'\n })\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([\n ('code', '=', 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({\n 'name': 'Return Order Account',\n 'code': 'ARO',\n 'user_type_id': self.env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id,\n 'note': 'code \"ARO\" give return order from customer',\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'return_account' + str(user.company_id.id),\n 'model': 'account.account',\n 'module': 'pos_retail',\n 'res_id': return_account.id,\n 'noupdate': True, # If it's False, target record (res_id) will be removed while module update\n })\n\n return_journal = Journal.sudo().search([\n ('code', '=', 'ROJ'),\n ('company_id', '=', user.company_id.id),\n ])\n if return_journal:\n return_journal[0].sudo().write({\n 'default_debit_account_id': return_account.id,\n 'default_credit_account_id': return_account.id,\n 'pos_method_type': 'return'\n })\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({\n 'name': 'Return account ' + str(user.company_id.id),\n 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id),\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'journal_sequence' + str(new_sequence.id),\n 'model': 'ir.sequence',\n 'module': 'pos_retail',\n 'res_id': new_sequence.id,\n 'noupdate': True,\n })\n return_journal = Journal.sudo().create({\n 'name': 'Return Order Customer',\n 'code': 'ROJ',\n 'type': 'cash',\n 'pos_method_type': 'return',\n 'journal_user': True,\n 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': return_account.id,\n 'default_credit_account_id': return_account.id,\n 'sequence': 103,\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'return_journal_' + str(return_journal.id),\n 'model': 'account.journal',\n 'module': 'pos_retail',\n 'res_id': int(return_journal.id),\n 'noupdate': True,\n })\n\n config = self\n config.sudo().write({\n 'journal_ids': [(4, return_journal.id)],\n })\n\n statement = [(0, 0, {\n 'journal_id': return_journal.id,\n 'user_id': user.id,\n 'company_id': user.company_id.id\n })]\n current_session = config.current_session_id\n current_session.sudo().write({\n 'statement_ids': statement,\n })\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([\n ('code', '=', 'RDJ'),\n ('company_id', '=', user.company_id.id),\n ])\n if rounding_journal:\n return rounding_journal.sudo().write({\n 'pos_method_type': 'rounding'\n })\n rounding_account_old_version = Account.sudo().search([\n ('code', '=', 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({\n 'name': 'Rounding Account',\n 'code': 'AAR',\n 'user_type_id': self.env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id,\n 'note': 'code \"AAR\" give rounding pos order',\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'rounding_account' + str(user.company_id.id),\n 'model': 'account.account',\n 'module': 'pos_retail',\n 'res_id': rounding_account.id,\n 'noupdate': True,\n })\n rounding_journal = Journal.sudo().search([\n ('pos_method_type', '=', 'rounding'),\n ('company_id', '=', user.company_id.id),\n ])\n if rounding_journal:\n rounding_journal[0].sudo().write({\n 'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding',\n 'code': 'RDJ'\n })\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({\n 'name': 'rounding account ' + str(user.company_id.id),\n 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id),\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'journal_sequence' + str(new_sequence.id),\n 'model': 'ir.sequence',\n 'module': 'pos_retail',\n 'res_id': new_sequence.id,\n 'noupdate': True,\n })\n rounding_journal = Journal.sudo().create({\n 'name': 'Rounding',\n 'code': 'RDJ',\n 'type': 'cash',\n 'pos_method_type': 'rounding',\n 'journal_user': True,\n 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103,\n })\n self.env['ir.model.data'].sudo().create({\n 'name': 'rounding_journal_' + str(rounding_journal.id),\n 'model': 'account.journal',\n 'module': 'pos_retail',\n 'res_id': int(rounding_journal.id),\n 'noupdate': True,\n })\n\n config = self\n config.sudo().write({\n 'journal_ids': [(4, rounding_journal.id)],\n })\n\n statement = [(0, 0, {\n 'journal_id': rounding_journal.id,\n 'user_id': user.id,\n 'company_id': user.company_id.id\n })]\n current_session = config.current_session_id\n current_session.sudo().write({\n 'statement_ids': statement,\n })\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "from odoo import api, fields, models, _\nimport odoo\nimport logging\nfrom odoo.exceptions import UserError\nfrom odoo.tools import DEFAULT_SERVER_DATETIME_FORMAT\nimport json\nimport io\nimport os\nimport timeit\ntry:\n to_unicode = unicode\nexcept NameError:\n to_unicode = str\n_logger = logging.getLogger(__name__)\n\n\nclass pos_config_image(models.Model):\n _name = 'pos.config.image'\n _description = 'Image show to customer screen'\n name = fields.Char('Title', required=1)\n image = fields.Binary('Image', required=1)\n config_id = fields.Many2one('pos.config', 'POS config', required=1)\n description = fields.Text('Description')\n\n\nclass pos_config(models.Model):\n _inherit = 'pos.config'\n user_id = fields.Many2one('res.users', 'Assigned to')\n config_access_right = fields.Boolean('Config access right', default=1)\n allow_discount = fields.Boolean('Change discount', default=1)\n allow_qty = fields.Boolean('Change quantity', default=1)\n allow_price = fields.Boolean('Change price', default=1)\n allow_remove_line = fields.Boolean('Remove line', default=1)\n allow_numpad = fields.Boolean('Display numpad', default=1)\n allow_payment = fields.Boolean('Display payment', default=1)\n allow_customer = fields.Boolean('Choice customer', default=1)\n allow_add_order = fields.Boolean('New order', default=1)\n allow_remove_order = fields.Boolean('Remove order', default=1)\n allow_add_product = fields.Boolean('Add line', default=1)\n allow_lock_screen = fields.Boolean('Lock screen', default=0, help=\n 'When pos sessions start, cashiers required open POS viva pos pass pin (Setting/Users)'\n )\n display_point_receipt = fields.Boolean('Display point / receipt')\n loyalty_id = fields.Many2one('pos.loyalty', 'Loyalty', domain=[('state',\n '=', 'running')])\n promotion_ids = fields.Many2many('pos.promotion',\n 'pos_config_promotion_rel', 'config_id', 'promotion_id', string=\n 'Promotion programs')\n promotion_manual_select = fields.Boolean('Promotion manual choice',\n default=0)\n create_purchase_order = fields.Boolean('Create PO', default=0)\n create_purchase_order_required_signature = fields.Boolean(\n 'Required signature', default=0)\n purchase_order_state = fields.Selection([('confirm_order',\n 'Auto confirm'), ('confirm_picking', 'Auto delivery'), (\n 'confirm_invoice', 'Auto invoice')], 'PO state', help=\n 'This is state of purchase order will process to', default=\n 'confirm_invoice')\n sync_sale_order = fields.Boolean('Sync sale orders', default=0)\n sale_order = fields.Boolean('Create Sale order', default=0)\n sale_order_auto_confirm = fields.Boolean('Auto confirm', default=0)\n sale_order_auto_invoice = fields.Boolean('Auto paid', default=0)\n sale_order_auto_delivery = fields.Boolean('Auto delivery', default=0)\n pos_orders_management = fields.Boolean('POS order management', default=0)\n pos_order_period_return_days = fields.Float('Return period days', help=\n 'this is period time for customer can return order', default=30)\n display_return_days_receipt = fields.Boolean('Display return days receipt',\n default=0)\n sync_pricelist = fields.Boolean('Sync prices list', default=0)\n display_onhand = fields.Boolean('Show qty available product', default=1,\n help='Display quantity on hand all products on pos screen')\n large_stocks = fields.Boolean('Large stock', help=\n 'If count products bigger than 100,000 rows, please check it')\n allow_order_out_of_stock = fields.Boolean('Allow out-of-stock', default\n =1, help='If checked, allow cashier can add product have out of stock')\n allow_of_stock_approve_by_admin = fields.Boolean('Approve allow of stock',\n help='Allow manager approve allow of stock')\n print_voucher = fields.Boolean('Print vouchers', help=\n 'Reprint last vouchers', default=1)\n scan_voucher = fields.Boolean('Scan voucher', default=0)\n expired_days_voucher = fields.Integer('Expired days of voucher',\n default=30, help=\n 'Total days keep voucher can use, if out of period days from create date, voucher will expired'\n )\n sync_multi_session = fields.Boolean('Sync multi session', default=0)\n bus_id = fields.Many2one('pos.bus', string='Branch/store')\n display_person_add_line = fields.Boolean('Display information line',\n default=0, help=\n 'When you checked, on pos order lines screen, will display information person created order (lines) Eg: create date, updated date ..'\n )\n quickly_payment = fields.Boolean('Quickly payment', default=0)\n internal_transfer = fields.Boolean('Internal transfer', default=0, help\n ='Go Inventory and active multi warehouse and location')\n internal_transfer_auto_validate = fields.Boolean(\n 'Internal transfer auto validate', default=0)\n discount = fields.Boolean('Global discount', default=0)\n discount_ids = fields.Many2many('pos.global.discount',\n 'pos_config_pos_global_discount_rel', 'config_id', 'discount_id',\n 'Global discounts')\n is_customer_screen = fields.Boolean('Is customer screen')\n delay = fields.Integer('Delay time', default=3000)\n slogan = fields.Char('Slogan', help=\n 'This is message will display on screen of customer')\n image_ids = fields.One2many('pos.config.image', 'config_id', 'Images')\n tooltip = fields.Boolean('Show information of product', default=0)\n tooltip_show_last_price = fields.Boolean('Show last price of product',\n help='Show last price of items of customer have bought before',\n default=0)\n tooltip_show_minimum_sale_price = fields.Boolean(\n 'Show min of product sale price', help=\n 'Show minimum sale price of product', default=0)\n discount_limit = fields.Boolean('Discount limit', default=0)\n discount_limit_amount = fields.Float('Discount limit amount', default=10)\n discount_each_line = fields.Boolean('Discount each line')\n discount_unlock_limit = fields.Boolean('Manager can unlock limit')\n discount_unlock_limit_user_id = fields.Many2one('res.users',\n 'User unlock limit amount')\n multi_currency = fields.Boolean('Multi currency', default=0)\n multi_currency_update_rate = fields.Boolean('Update rate', default=0)\n notify_alert = fields.Boolean('Notify alert', help=\n 'Turn on/off notification alert on POS sessions.', default=0)\n return_products = fields.Boolean('Return orders', help=\n 'Allow cashier return orders, return products', default=0)\n receipt_without_payment_template = fields.Selection([('none', 'None'),\n ('display_price', 'Display price'), ('not_display_price',\n 'Not display price')], default='not_display_price', string=\n 'Receipt without payment template')\n lock_order_printed_receipt = fields.Boolean('Lock order printed receipt',\n default=0)\n staff_level = fields.Selection([('manual', 'Manual config'), (\n 'marketing', 'Marketing'), ('waiter', 'Waiter'), ('cashier',\n 'Cashier'), ('manager', 'Manager')], string='Staff level', default=\n 'manual')\n validate_payment = fields.Boolean('Validate payment')\n validate_remove_order = fields.Boolean('Validate remove order')\n validate_change_minus = fields.Boolean('Validate pressed +/-')\n validate_quantity_change = fields.Boolean('Validate quantity change')\n validate_price_change = fields.Boolean('Validate price change')\n validate_discount_change = fields.Boolean('Validate discount change')\n validate_close_session = fields.Boolean('Validate close session')\n validate_by_user_id = fields.Many2one('res.users', 'Validate by admin')\n apply_validate_return_mode = fields.Boolean('Validate return mode',\n help='If checked, only applied validate when return order', default=1)\n print_user_card = fields.Boolean('Print user card')\n product_operation = fields.Boolean('Product Operation', default=0, help\n ='Allow cashiers add pos categories and products on pos screen')\n quickly_payment_full = fields.Boolean('Quickly payment full')\n quickly_payment_full_journal_id = fields.Many2one('account.journal',\n 'Payment mode', domain=[('journal_user', '=', True)])\n daily_report = fields.Boolean('Daily report', default=0)\n note_order = fields.Boolean('Note order', default=0)\n note_orderline = fields.Boolean('Note order line', default=0)\n signature_order = fields.Boolean('Signature order', default=0)\n quickly_buttons = fields.Boolean('Quickly Actions', default=0)\n display_amount_discount = fields.Boolean('Display amount discount',\n default=0)\n booking_orders = fields.Boolean('Booking orders', default=0)\n booking_orders_required_cashier_signature = fields.Boolean(\n 'Book order required sessions signature', help=\n 'Checked if need required pos seller signature', default=0)\n booking_orders_alert = fields.Boolean('Alert when new order coming',\n default=0)\n delivery_orders = fields.Boolean('Delivery orders', help=\n 'Pos clients can get booking orders and delivery orders', default=0)\n booking_orders_display_shipping_receipt = fields.Boolean(\n 'Display shipping on receipt', default=0)\n display_tax_orderline = fields.Boolean('Display tax orderline', default=0)\n display_tax_receipt = fields.Boolean('Display tax receipt', default=0)\n display_fiscal_position_receipt = fields.Boolean(\n 'Display fiscal position on receipt', default=0)\n display_image_orderline = fields.Boolean('Display image order line',\n default=0)\n display_image_receipt = fields.Boolean('Display image receipt', default=0)\n duplicate_receipt = fields.Boolean('Duplicate Receipt')\n print_number = fields.Integer('Print number', help=\n 'How many number receipt need to print at printer ?', default=0)\n lock_session = fields.Boolean('Lock session', default=0)\n category_wise_receipt = fields.Boolean('Category wise receipt', default=0)\n management_invoice = fields.Boolean('Management Invoice', default=0)\n invoice_journal_ids = fields.Many2many('account.journal',\n 'pos_config_invoice_journal_rel', 'config_id', 'journal_id',\n 'Accounting Invoice Journal', domain=[('type', '=', 'sale')], help=\n 'Accounting journal use for create invoices.')\n send_invoice_email = fields.Boolean('Send email invoice', help=\n 'Help cashier send invoice to email of customer', default=0)\n lock_print_invoice_on_pos = fields.Boolean('Lock print invoice', help=\n 'Lock print pdf invoice when clicked button invoice', default=0)\n pos_auto_invoice = fields.Boolean('Auto create invoice', help=\n 'Automatic create invoice if order have client', default=0)\n receipt_invoice_number = fields.Boolean('Add invoice on receipt', help=\n 'Show invoice number on receipt header', default=0)\n receipt_customer_vat = fields.Boolean('Add vat customer on receipt',\n help='Show customer VAT(TIN) on receipt header', default=0)\n auto_register_payment = fields.Boolean('Auto invocie register payment',\n default=0)\n fiscal_position_auto_detect = fields.Boolean('Fiscal position auto detect',\n default=0)\n display_sale_price_within_tax = fields.Boolean(\n 'Display sale price within tax', default=0)\n display_cost_price = fields.Boolean('Display product cost price', default=0\n )\n display_product_ref = fields.Boolean('Display product ref', default=0)\n multi_location = fields.Boolean('Multi location', default=0)\n product_view = fields.Selection([('box', 'Box view'), ('list',\n 'List view')], default='box', string='View of products screen',\n required=1)\n ticket_font_size = fields.Integer('Ticket font size', default=12)\n customer_default_id = fields.Many2one('res.partner', 'Customer default')\n medical_insurance = fields.Boolean('Medical insurance', default=0)\n set_guest = fields.Boolean('Set guest', default=0)\n reset_sequence = fields.Boolean('Reset sequence order', default=0)\n update_tax = fields.Boolean('Modify tax', default=0, help=\n 'Cashier can change tax of order line')\n subtotal_tax_included = fields.Boolean('Show Tax-Included Prices', help\n ='When checked, subtotal of line will display amount have tax-included'\n )\n cash_out = fields.Boolean('Take money out', default=0, help=\n 'Allow cashiers take money out')\n cash_in = fields.Boolean('Push money in', default=0, help=\n 'Allow cashiers input money in')\n min_length_search = fields.Integer('Min character length search',\n default=3, help=\n 'Allow auto suggestion items when cashiers input on search box')\n review_receipt_before_paid = fields.Boolean('Review receipt before paid',\n help='Show receipt before paid order', default=1)\n keyboard_event = fields.Boolean('Keyboard event', default=0, help=\n 'Allow cashiers use shortcut keyboard')\n multi_variant = fields.Boolean('Multi variant', default=0, help=\n 'Allow cashiers change variant of order lines on pos screen')\n switch_user = fields.Boolean('Switch user', default=0, help=\n 'Allow cashiers switch to another cashier')\n change_unit_of_measure = fields.Boolean('Change unit of measure',\n default=0, help='Allow cashiers change unit of measure of order lines')\n print_last_order = fields.Boolean('Print last receipt', default=0, help\n ='Allow cashiers print last receipt')\n close_session = fields.Boolean('Close session', help=\n 'When cashiers click close pos, auto log out of system', default=0)\n display_image_product = fields.Boolean('Display image product', default\n =1, help='Allow hide/display product images on pos screen')\n printer_on_off = fields.Boolean('On/Off printer', help=\n 'Help cashier turn on/off printer viva posbox', default=0)\n check_duplicate_email = fields.Boolean('Check duplicate email', default=0)\n check_duplicate_phone = fields.Boolean('Check duplicate phone', default=0)\n hide_country = fields.Boolean('Hide country', default=0)\n hide_barcode = fields.Boolean('Hide barcode', default=0)\n hide_tax = fields.Boolean('Hide tax', default=0)\n hide_pricelist = fields.Boolean('Hide pricelists', default=0)\n hide_supplier = fields.Boolean('Hide suppiers', default=1)\n auto_remove_line = fields.Boolean('Auto remove line', default=1, help=\n 'When cashier set quantity of line to 0, line auto remove not keep line with qty is 0'\n )\n chat = fields.Boolean('Chat message', default=0, help=\n 'Allow chat, discuss between pos sessions')\n add_tags = fields.Boolean('Add tags line', default=0, help=\n 'Allow cashiers add tags to order lines')\n add_notes = fields.Boolean('Add notes line', default=0, help=\n 'Allow cashiers add notes to order lines')\n add_sale_person = fields.Boolean('Add sale person', default=0)\n logo = fields.Binary('Logo of store')\n paid_full = fields.Boolean('Allow paid full', default=0, help=\n 'Allow cashiers click one button, do payment full order')\n paid_partial = fields.Boolean('Allow partial payment', default=0, help=\n 'Allow cashiers do partial payment')\n backup = fields.Boolean('Backup/Restore orders', default=0, help=\n 'Allow cashiers backup and restore orders on pos screen')\n backup_orders = fields.Text('Backup orders')\n change_logo = fields.Boolean('Change logo', default=1, help=\n 'Allow cashiers change logo of shop on pos screen')\n management_session = fields.Boolean('Management session', default=0)\n barcode_receipt = fields.Boolean('Barcode receipt', default=0)\n hide_mobile = fields.Boolean('Hide mobile', default=1)\n hide_phone = fields.Boolean('Hide phone', default=1)\n hide_email = fields.Boolean('Hide email', default=1)\n update_client = fields.Boolean('Update client', help=\n 'Uncheck if you dont want cashier change customer information on pos')\n add_client = fields.Boolean('Add client', help=\n 'Uncheck if you dont want cashier add new customers on pos')\n remove_client = fields.Boolean('Remove client', help=\n 'Uncheck if you dont want cashier remove customers on pos')\n mobile_responsive = fields.Boolean('Mobile responsive', default=0)\n hide_amount_total = fields.Boolean('Hide amount total', default=1)\n hide_amount_taxes = fields.Boolean('Hide amount taxes', default=1)\n report_no_of_report = fields.Integer(string='No.of Copy Receipt', default=1\n )\n report_signature = fields.Boolean(string='Report Signature', default=1)\n report_product_summary = fields.Boolean(string='Report Product Summary',\n default=1)\n report_product_current_month_date = fields.Boolean(string=\n 'Report This Month', default=1)\n report_order_summary = fields.Boolean(string='Report Order Summary',\n default=1)\n report_order_current_month_date = fields.Boolean(string=\n 'Report Current Month', default=1)\n report_payment_summary = fields.Boolean(string='Report Payment Summary',\n default=1)\n report_payment_current_month_date = fields.Boolean(string=\n 'Payment Current Month', default=1)\n active_product_sort_by = fields.Boolean('Active product sort by', default=1\n )\n default_product_sort_by = fields.Selection([('a_z', 'Sort from A to Z'),\n ('z_a', 'Sort from Z to A'), ('low_price',\n 'Sort from low to high price'), ('high_price',\n 'Sort from high to low price'), ('pos_sequence',\n 'Product pos sequence')], string='Default sort by', default='a_z')\n sale_extra = fields.Boolean('Sale extra', default=1)\n required_add_customer_before_put_product_to_cart = fields.Boolean(\n 'Required add customer first', help=\n 'If you checked on this checkbox, in POS always required cashier add customer the first'\n )\n only_one_time_add_customer = fields.Boolean('Only one time add customer',\n help='Each orders, only one time add customer')\n use_parameters = fields.Boolean('Use parameters', help=\n 'POS need only one time save parameter datas use on POS, and next times no need call backend'\n , default=1)\n time_refresh_parameter = fields.Integer('Time refresh datas (seconds)',\n help='Time for refresh parameters data', default=30)\n\n @api.model\n def switch_mobile_mode(self, config_id, vals):\n if vals.get('mobile_responsive') == True:\n vals['product_view'] = 'box'\n return self.browse(config_id).sudo().write(vals)\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n\n @api.onchange('receipt_invoice_number')\n def _onchange_receipt_invoice_number(self):\n if self.receipt_invoice_number == True:\n self.lock_print_invoice_on_pos = False\n else:\n self.lock_print_invoice_on_pos = True\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'voucher'})\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([('code', '=',\n 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({'name':\n 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AVC\" auto give voucher histories of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_voucher' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n voucher_account.id, 'noupdate': True})\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'voucher')])\n if voucher_journal:\n voucher_journal[0].sudo().write({'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher', 'sequence': 101})\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Voucher ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n voucher_journal = Journal.sudo().create({'name': 'Voucher',\n 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id, 'sequence':\n 101})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_voucher_' + str(voucher_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n voucher_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, voucher_journal.id)]})\n statement = [(0, 0, {'journal_id': voucher_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\ntry:\n to_unicode = unicode\nexcept NameError:\n to_unicode = str\n_logger = logging.getLogger(__name__)\n\n\nclass pos_config_image(models.Model):\n _name = 'pos.config.image'\n _description = 'Image show to customer screen'\n name = fields.Char('Title', required=1)\n image = fields.Binary('Image', required=1)\n config_id = fields.Many2one('pos.config', 'POS config', required=1)\n description = fields.Text('Description')\n\n\nclass pos_config(models.Model):\n _inherit = 'pos.config'\n user_id = fields.Many2one('res.users', 'Assigned to')\n config_access_right = fields.Boolean('Config access right', default=1)\n allow_discount = fields.Boolean('Change discount', default=1)\n allow_qty = fields.Boolean('Change quantity', default=1)\n allow_price = fields.Boolean('Change price', default=1)\n allow_remove_line = fields.Boolean('Remove line', default=1)\n allow_numpad = fields.Boolean('Display numpad', default=1)\n allow_payment = fields.Boolean('Display payment', default=1)\n allow_customer = fields.Boolean('Choice customer', default=1)\n allow_add_order = fields.Boolean('New order', default=1)\n allow_remove_order = fields.Boolean('Remove order', default=1)\n allow_add_product = fields.Boolean('Add line', default=1)\n allow_lock_screen = fields.Boolean('Lock screen', default=0, help=\n 'When pos sessions start, cashiers required open POS viva pos pass pin (Setting/Users)'\n )\n display_point_receipt = fields.Boolean('Display point / receipt')\n loyalty_id = fields.Many2one('pos.loyalty', 'Loyalty', domain=[('state',\n '=', 'running')])\n promotion_ids = fields.Many2many('pos.promotion',\n 'pos_config_promotion_rel', 'config_id', 'promotion_id', string=\n 'Promotion programs')\n promotion_manual_select = fields.Boolean('Promotion manual choice',\n default=0)\n create_purchase_order = fields.Boolean('Create PO', default=0)\n create_purchase_order_required_signature = fields.Boolean(\n 'Required signature', default=0)\n purchase_order_state = fields.Selection([('confirm_order',\n 'Auto confirm'), ('confirm_picking', 'Auto delivery'), (\n 'confirm_invoice', 'Auto invoice')], 'PO state', help=\n 'This is state of purchase order will process to', default=\n 'confirm_invoice')\n sync_sale_order = fields.Boolean('Sync sale orders', default=0)\n sale_order = fields.Boolean('Create Sale order', default=0)\n sale_order_auto_confirm = fields.Boolean('Auto confirm', default=0)\n sale_order_auto_invoice = fields.Boolean('Auto paid', default=0)\n sale_order_auto_delivery = fields.Boolean('Auto delivery', default=0)\n pos_orders_management = fields.Boolean('POS order management', default=0)\n pos_order_period_return_days = fields.Float('Return period days', help=\n 'this is period time for customer can return order', default=30)\n display_return_days_receipt = fields.Boolean('Display return days receipt',\n default=0)\n sync_pricelist = fields.Boolean('Sync prices list', default=0)\n display_onhand = fields.Boolean('Show qty available product', default=1,\n help='Display quantity on hand all products on pos screen')\n large_stocks = fields.Boolean('Large stock', help=\n 'If count products bigger than 100,000 rows, please check it')\n allow_order_out_of_stock = fields.Boolean('Allow out-of-stock', default\n =1, help='If checked, allow cashier can add product have out of stock')\n allow_of_stock_approve_by_admin = fields.Boolean('Approve allow of stock',\n help='Allow manager approve allow of stock')\n print_voucher = fields.Boolean('Print vouchers', help=\n 'Reprint last vouchers', default=1)\n scan_voucher = fields.Boolean('Scan voucher', default=0)\n expired_days_voucher = fields.Integer('Expired days of voucher',\n default=30, help=\n 'Total days keep voucher can use, if out of period days from create date, voucher will expired'\n )\n sync_multi_session = fields.Boolean('Sync multi session', default=0)\n bus_id = fields.Many2one('pos.bus', string='Branch/store')\n display_person_add_line = fields.Boolean('Display information line',\n default=0, help=\n 'When you checked, on pos order lines screen, will display information person created order (lines) Eg: create date, updated date ..'\n )\n quickly_payment = fields.Boolean('Quickly payment', default=0)\n internal_transfer = fields.Boolean('Internal transfer', default=0, help\n ='Go Inventory and active multi warehouse and location')\n internal_transfer_auto_validate = fields.Boolean(\n 'Internal transfer auto validate', default=0)\n discount = fields.Boolean('Global discount', default=0)\n discount_ids = fields.Many2many('pos.global.discount',\n 'pos_config_pos_global_discount_rel', 'config_id', 'discount_id',\n 'Global discounts')\n is_customer_screen = fields.Boolean('Is customer screen')\n delay = fields.Integer('Delay time', default=3000)\n slogan = fields.Char('Slogan', help=\n 'This is message will display on screen of customer')\n image_ids = fields.One2many('pos.config.image', 'config_id', 'Images')\n tooltip = fields.Boolean('Show information of product', default=0)\n tooltip_show_last_price = fields.Boolean('Show last price of product',\n help='Show last price of items of customer have bought before',\n default=0)\n tooltip_show_minimum_sale_price = fields.Boolean(\n 'Show min of product sale price', help=\n 'Show minimum sale price of product', default=0)\n discount_limit = fields.Boolean('Discount limit', default=0)\n discount_limit_amount = fields.Float('Discount limit amount', default=10)\n discount_each_line = fields.Boolean('Discount each line')\n discount_unlock_limit = fields.Boolean('Manager can unlock limit')\n discount_unlock_limit_user_id = fields.Many2one('res.users',\n 'User unlock limit amount')\n multi_currency = fields.Boolean('Multi currency', default=0)\n multi_currency_update_rate = fields.Boolean('Update rate', default=0)\n notify_alert = fields.Boolean('Notify alert', help=\n 'Turn on/off notification alert on POS sessions.', default=0)\n return_products = fields.Boolean('Return orders', help=\n 'Allow cashier return orders, return products', default=0)\n receipt_without_payment_template = fields.Selection([('none', 'None'),\n ('display_price', 'Display price'), ('not_display_price',\n 'Not display price')], default='not_display_price', string=\n 'Receipt without payment template')\n lock_order_printed_receipt = fields.Boolean('Lock order printed receipt',\n default=0)\n staff_level = fields.Selection([('manual', 'Manual config'), (\n 'marketing', 'Marketing'), ('waiter', 'Waiter'), ('cashier',\n 'Cashier'), ('manager', 'Manager')], string='Staff level', default=\n 'manual')\n validate_payment = fields.Boolean('Validate payment')\n validate_remove_order = fields.Boolean('Validate remove order')\n validate_change_minus = fields.Boolean('Validate pressed +/-')\n validate_quantity_change = fields.Boolean('Validate quantity change')\n validate_price_change = fields.Boolean('Validate price change')\n validate_discount_change = fields.Boolean('Validate discount change')\n validate_close_session = fields.Boolean('Validate close session')\n validate_by_user_id = fields.Many2one('res.users', 'Validate by admin')\n apply_validate_return_mode = fields.Boolean('Validate return mode',\n help='If checked, only applied validate when return order', default=1)\n print_user_card = fields.Boolean('Print user card')\n product_operation = fields.Boolean('Product Operation', default=0, help\n ='Allow cashiers add pos categories and products on pos screen')\n quickly_payment_full = fields.Boolean('Quickly payment full')\n quickly_payment_full_journal_id = fields.Many2one('account.journal',\n 'Payment mode', domain=[('journal_user', '=', True)])\n daily_report = fields.Boolean('Daily report', default=0)\n note_order = fields.Boolean('Note order', default=0)\n note_orderline = fields.Boolean('Note order line', default=0)\n signature_order = fields.Boolean('Signature order', default=0)\n quickly_buttons = fields.Boolean('Quickly Actions', default=0)\n display_amount_discount = fields.Boolean('Display amount discount',\n default=0)\n booking_orders = fields.Boolean('Booking orders', default=0)\n booking_orders_required_cashier_signature = fields.Boolean(\n 'Book order required sessions signature', help=\n 'Checked if need required pos seller signature', default=0)\n booking_orders_alert = fields.Boolean('Alert when new order coming',\n default=0)\n delivery_orders = fields.Boolean('Delivery orders', help=\n 'Pos clients can get booking orders and delivery orders', default=0)\n booking_orders_display_shipping_receipt = fields.Boolean(\n 'Display shipping on receipt', default=0)\n display_tax_orderline = fields.Boolean('Display tax orderline', default=0)\n display_tax_receipt = fields.Boolean('Display tax receipt', default=0)\n display_fiscal_position_receipt = fields.Boolean(\n 'Display fiscal position on receipt', default=0)\n display_image_orderline = fields.Boolean('Display image order line',\n default=0)\n display_image_receipt = fields.Boolean('Display image receipt', default=0)\n duplicate_receipt = fields.Boolean('Duplicate Receipt')\n print_number = fields.Integer('Print number', help=\n 'How many number receipt need to print at printer ?', default=0)\n lock_session = fields.Boolean('Lock session', default=0)\n category_wise_receipt = fields.Boolean('Category wise receipt', default=0)\n management_invoice = fields.Boolean('Management Invoice', default=0)\n invoice_journal_ids = fields.Many2many('account.journal',\n 'pos_config_invoice_journal_rel', 'config_id', 'journal_id',\n 'Accounting Invoice Journal', domain=[('type', '=', 'sale')], help=\n 'Accounting journal use for create invoices.')\n send_invoice_email = fields.Boolean('Send email invoice', help=\n 'Help cashier send invoice to email of customer', default=0)\n lock_print_invoice_on_pos = fields.Boolean('Lock print invoice', help=\n 'Lock print pdf invoice when clicked button invoice', default=0)\n pos_auto_invoice = fields.Boolean('Auto create invoice', help=\n 'Automatic create invoice if order have client', default=0)\n receipt_invoice_number = fields.Boolean('Add invoice on receipt', help=\n 'Show invoice number on receipt header', default=0)\n receipt_customer_vat = fields.Boolean('Add vat customer on receipt',\n help='Show customer VAT(TIN) on receipt header', default=0)\n auto_register_payment = fields.Boolean('Auto invocie register payment',\n default=0)\n fiscal_position_auto_detect = fields.Boolean('Fiscal position auto detect',\n default=0)\n display_sale_price_within_tax = fields.Boolean(\n 'Display sale price within tax', default=0)\n display_cost_price = fields.Boolean('Display product cost price', default=0\n )\n display_product_ref = fields.Boolean('Display product ref', default=0)\n multi_location = fields.Boolean('Multi location', default=0)\n product_view = fields.Selection([('box', 'Box view'), ('list',\n 'List view')], default='box', string='View of products screen',\n required=1)\n ticket_font_size = fields.Integer('Ticket font size', default=12)\n customer_default_id = fields.Many2one('res.partner', 'Customer default')\n medical_insurance = fields.Boolean('Medical insurance', default=0)\n set_guest = fields.Boolean('Set guest', default=0)\n reset_sequence = fields.Boolean('Reset sequence order', default=0)\n update_tax = fields.Boolean('Modify tax', default=0, help=\n 'Cashier can change tax of order line')\n subtotal_tax_included = fields.Boolean('Show Tax-Included Prices', help\n ='When checked, subtotal of line will display amount have tax-included'\n )\n cash_out = fields.Boolean('Take money out', default=0, help=\n 'Allow cashiers take money out')\n cash_in = fields.Boolean('Push money in', default=0, help=\n 'Allow cashiers input money in')\n min_length_search = fields.Integer('Min character length search',\n default=3, help=\n 'Allow auto suggestion items when cashiers input on search box')\n review_receipt_before_paid = fields.Boolean('Review receipt before paid',\n help='Show receipt before paid order', default=1)\n keyboard_event = fields.Boolean('Keyboard event', default=0, help=\n 'Allow cashiers use shortcut keyboard')\n multi_variant = fields.Boolean('Multi variant', default=0, help=\n 'Allow cashiers change variant of order lines on pos screen')\n switch_user = fields.Boolean('Switch user', default=0, help=\n 'Allow cashiers switch to another cashier')\n change_unit_of_measure = fields.Boolean('Change unit of measure',\n default=0, help='Allow cashiers change unit of measure of order lines')\n print_last_order = fields.Boolean('Print last receipt', default=0, help\n ='Allow cashiers print last receipt')\n close_session = fields.Boolean('Close session', help=\n 'When cashiers click close pos, auto log out of system', default=0)\n display_image_product = fields.Boolean('Display image product', default\n =1, help='Allow hide/display product images on pos screen')\n printer_on_off = fields.Boolean('On/Off printer', help=\n 'Help cashier turn on/off printer viva posbox', default=0)\n check_duplicate_email = fields.Boolean('Check duplicate email', default=0)\n check_duplicate_phone = fields.Boolean('Check duplicate phone', default=0)\n hide_country = fields.Boolean('Hide country', default=0)\n hide_barcode = fields.Boolean('Hide barcode', default=0)\n hide_tax = fields.Boolean('Hide tax', default=0)\n hide_pricelist = fields.Boolean('Hide pricelists', default=0)\n hide_supplier = fields.Boolean('Hide suppiers', default=1)\n auto_remove_line = fields.Boolean('Auto remove line', default=1, help=\n 'When cashier set quantity of line to 0, line auto remove not keep line with qty is 0'\n )\n chat = fields.Boolean('Chat message', default=0, help=\n 'Allow chat, discuss between pos sessions')\n add_tags = fields.Boolean('Add tags line', default=0, help=\n 'Allow cashiers add tags to order lines')\n add_notes = fields.Boolean('Add notes line', default=0, help=\n 'Allow cashiers add notes to order lines')\n add_sale_person = fields.Boolean('Add sale person', default=0)\n logo = fields.Binary('Logo of store')\n paid_full = fields.Boolean('Allow paid full', default=0, help=\n 'Allow cashiers click one button, do payment full order')\n paid_partial = fields.Boolean('Allow partial payment', default=0, help=\n 'Allow cashiers do partial payment')\n backup = fields.Boolean('Backup/Restore orders', default=0, help=\n 'Allow cashiers backup and restore orders on pos screen')\n backup_orders = fields.Text('Backup orders')\n change_logo = fields.Boolean('Change logo', default=1, help=\n 'Allow cashiers change logo of shop on pos screen')\n management_session = fields.Boolean('Management session', default=0)\n barcode_receipt = fields.Boolean('Barcode receipt', default=0)\n hide_mobile = fields.Boolean('Hide mobile', default=1)\n hide_phone = fields.Boolean('Hide phone', default=1)\n hide_email = fields.Boolean('Hide email', default=1)\n update_client = fields.Boolean('Update client', help=\n 'Uncheck if you dont want cashier change customer information on pos')\n add_client = fields.Boolean('Add client', help=\n 'Uncheck if you dont want cashier add new customers on pos')\n remove_client = fields.Boolean('Remove client', help=\n 'Uncheck if you dont want cashier remove customers on pos')\n mobile_responsive = fields.Boolean('Mobile responsive', default=0)\n hide_amount_total = fields.Boolean('Hide amount total', default=1)\n hide_amount_taxes = fields.Boolean('Hide amount taxes', default=1)\n report_no_of_report = fields.Integer(string='No.of Copy Receipt', default=1\n )\n report_signature = fields.Boolean(string='Report Signature', default=1)\n report_product_summary = fields.Boolean(string='Report Product Summary',\n default=1)\n report_product_current_month_date = fields.Boolean(string=\n 'Report This Month', default=1)\n report_order_summary = fields.Boolean(string='Report Order Summary',\n default=1)\n report_order_current_month_date = fields.Boolean(string=\n 'Report Current Month', default=1)\n report_payment_summary = fields.Boolean(string='Report Payment Summary',\n default=1)\n report_payment_current_month_date = fields.Boolean(string=\n 'Payment Current Month', default=1)\n active_product_sort_by = fields.Boolean('Active product sort by', default=1\n )\n default_product_sort_by = fields.Selection([('a_z', 'Sort from A to Z'),\n ('z_a', 'Sort from Z to A'), ('low_price',\n 'Sort from low to high price'), ('high_price',\n 'Sort from high to low price'), ('pos_sequence',\n 'Product pos sequence')], string='Default sort by', default='a_z')\n sale_extra = fields.Boolean('Sale extra', default=1)\n required_add_customer_before_put_product_to_cart = fields.Boolean(\n 'Required add customer first', help=\n 'If you checked on this checkbox, in POS always required cashier add customer the first'\n )\n only_one_time_add_customer = fields.Boolean('Only one time add customer',\n help='Each orders, only one time add customer')\n use_parameters = fields.Boolean('Use parameters', help=\n 'POS need only one time save parameter datas use on POS, and next times no need call backend'\n , default=1)\n time_refresh_parameter = fields.Integer('Time refresh datas (seconds)',\n help='Time for refresh parameters data', default=30)\n\n @api.model\n def switch_mobile_mode(self, config_id, vals):\n if vals.get('mobile_responsive') == True:\n vals['product_view'] = 'box'\n return self.browse(config_id).sudo().write(vals)\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n\n @api.onchange('receipt_invoice_number')\n def _onchange_receipt_invoice_number(self):\n if self.receipt_invoice_number == True:\n self.lock_print_invoice_on_pos = False\n else:\n self.lock_print_invoice_on_pos = True\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'voucher'})\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([('code', '=',\n 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({'name':\n 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AVC\" auto give voucher histories of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_voucher' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n voucher_account.id, 'noupdate': True})\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'voucher')])\n if voucher_journal:\n voucher_journal[0].sudo().write({'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher', 'sequence': 101})\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Voucher ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n voucher_journal = Journal.sudo().create({'name': 'Voucher',\n 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id, 'sequence':\n 101})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_voucher_' + str(voucher_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n voucher_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, voucher_journal.id)]})\n statement = [(0, 0, {'journal_id': voucher_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\ntry:\n to_unicode = unicode\nexcept NameError:\n to_unicode = str\n<assignment token>\n\n\nclass pos_config_image(models.Model):\n _name = 'pos.config.image'\n _description = 'Image show to customer screen'\n name = fields.Char('Title', required=1)\n image = fields.Binary('Image', required=1)\n config_id = fields.Many2one('pos.config', 'POS config', required=1)\n description = fields.Text('Description')\n\n\nclass pos_config(models.Model):\n _inherit = 'pos.config'\n user_id = fields.Many2one('res.users', 'Assigned to')\n config_access_right = fields.Boolean('Config access right', default=1)\n allow_discount = fields.Boolean('Change discount', default=1)\n allow_qty = fields.Boolean('Change quantity', default=1)\n allow_price = fields.Boolean('Change price', default=1)\n allow_remove_line = fields.Boolean('Remove line', default=1)\n allow_numpad = fields.Boolean('Display numpad', default=1)\n allow_payment = fields.Boolean('Display payment', default=1)\n allow_customer = fields.Boolean('Choice customer', default=1)\n allow_add_order = fields.Boolean('New order', default=1)\n allow_remove_order = fields.Boolean('Remove order', default=1)\n allow_add_product = fields.Boolean('Add line', default=1)\n allow_lock_screen = fields.Boolean('Lock screen', default=0, help=\n 'When pos sessions start, cashiers required open POS viva pos pass pin (Setting/Users)'\n )\n display_point_receipt = fields.Boolean('Display point / receipt')\n loyalty_id = fields.Many2one('pos.loyalty', 'Loyalty', domain=[('state',\n '=', 'running')])\n promotion_ids = fields.Many2many('pos.promotion',\n 'pos_config_promotion_rel', 'config_id', 'promotion_id', string=\n 'Promotion programs')\n promotion_manual_select = fields.Boolean('Promotion manual choice',\n default=0)\n create_purchase_order = fields.Boolean('Create PO', default=0)\n create_purchase_order_required_signature = fields.Boolean(\n 'Required signature', default=0)\n purchase_order_state = fields.Selection([('confirm_order',\n 'Auto confirm'), ('confirm_picking', 'Auto delivery'), (\n 'confirm_invoice', 'Auto invoice')], 'PO state', help=\n 'This is state of purchase order will process to', default=\n 'confirm_invoice')\n sync_sale_order = fields.Boolean('Sync sale orders', default=0)\n sale_order = fields.Boolean('Create Sale order', default=0)\n sale_order_auto_confirm = fields.Boolean('Auto confirm', default=0)\n sale_order_auto_invoice = fields.Boolean('Auto paid', default=0)\n sale_order_auto_delivery = fields.Boolean('Auto delivery', default=0)\n pos_orders_management = fields.Boolean('POS order management', default=0)\n pos_order_period_return_days = fields.Float('Return period days', help=\n 'this is period time for customer can return order', default=30)\n display_return_days_receipt = fields.Boolean('Display return days receipt',\n default=0)\n sync_pricelist = fields.Boolean('Sync prices list', default=0)\n display_onhand = fields.Boolean('Show qty available product', default=1,\n help='Display quantity on hand all products on pos screen')\n large_stocks = fields.Boolean('Large stock', help=\n 'If count products bigger than 100,000 rows, please check it')\n allow_order_out_of_stock = fields.Boolean('Allow out-of-stock', default\n =1, help='If checked, allow cashier can add product have out of stock')\n allow_of_stock_approve_by_admin = fields.Boolean('Approve allow of stock',\n help='Allow manager approve allow of stock')\n print_voucher = fields.Boolean('Print vouchers', help=\n 'Reprint last vouchers', default=1)\n scan_voucher = fields.Boolean('Scan voucher', default=0)\n expired_days_voucher = fields.Integer('Expired days of voucher',\n default=30, help=\n 'Total days keep voucher can use, if out of period days from create date, voucher will expired'\n )\n sync_multi_session = fields.Boolean('Sync multi session', default=0)\n bus_id = fields.Many2one('pos.bus', string='Branch/store')\n display_person_add_line = fields.Boolean('Display information line',\n default=0, help=\n 'When you checked, on pos order lines screen, will display information person created order (lines) Eg: create date, updated date ..'\n )\n quickly_payment = fields.Boolean('Quickly payment', default=0)\n internal_transfer = fields.Boolean('Internal transfer', default=0, help\n ='Go Inventory and active multi warehouse and location')\n internal_transfer_auto_validate = fields.Boolean(\n 'Internal transfer auto validate', default=0)\n discount = fields.Boolean('Global discount', default=0)\n discount_ids = fields.Many2many('pos.global.discount',\n 'pos_config_pos_global_discount_rel', 'config_id', 'discount_id',\n 'Global discounts')\n is_customer_screen = fields.Boolean('Is customer screen')\n delay = fields.Integer('Delay time', default=3000)\n slogan = fields.Char('Slogan', help=\n 'This is message will display on screen of customer')\n image_ids = fields.One2many('pos.config.image', 'config_id', 'Images')\n tooltip = fields.Boolean('Show information of product', default=0)\n tooltip_show_last_price = fields.Boolean('Show last price of product',\n help='Show last price of items of customer have bought before',\n default=0)\n tooltip_show_minimum_sale_price = fields.Boolean(\n 'Show min of product sale price', help=\n 'Show minimum sale price of product', default=0)\n discount_limit = fields.Boolean('Discount limit', default=0)\n discount_limit_amount = fields.Float('Discount limit amount', default=10)\n discount_each_line = fields.Boolean('Discount each line')\n discount_unlock_limit = fields.Boolean('Manager can unlock limit')\n discount_unlock_limit_user_id = fields.Many2one('res.users',\n 'User unlock limit amount')\n multi_currency = fields.Boolean('Multi currency', default=0)\n multi_currency_update_rate = fields.Boolean('Update rate', default=0)\n notify_alert = fields.Boolean('Notify alert', help=\n 'Turn on/off notification alert on POS sessions.', default=0)\n return_products = fields.Boolean('Return orders', help=\n 'Allow cashier return orders, return products', default=0)\n receipt_without_payment_template = fields.Selection([('none', 'None'),\n ('display_price', 'Display price'), ('not_display_price',\n 'Not display price')], default='not_display_price', string=\n 'Receipt without payment template')\n lock_order_printed_receipt = fields.Boolean('Lock order printed receipt',\n default=0)\n staff_level = fields.Selection([('manual', 'Manual config'), (\n 'marketing', 'Marketing'), ('waiter', 'Waiter'), ('cashier',\n 'Cashier'), ('manager', 'Manager')], string='Staff level', default=\n 'manual')\n validate_payment = fields.Boolean('Validate payment')\n validate_remove_order = fields.Boolean('Validate remove order')\n validate_change_minus = fields.Boolean('Validate pressed +/-')\n validate_quantity_change = fields.Boolean('Validate quantity change')\n validate_price_change = fields.Boolean('Validate price change')\n validate_discount_change = fields.Boolean('Validate discount change')\n validate_close_session = fields.Boolean('Validate close session')\n validate_by_user_id = fields.Many2one('res.users', 'Validate by admin')\n apply_validate_return_mode = fields.Boolean('Validate return mode',\n help='If checked, only applied validate when return order', default=1)\n print_user_card = fields.Boolean('Print user card')\n product_operation = fields.Boolean('Product Operation', default=0, help\n ='Allow cashiers add pos categories and products on pos screen')\n quickly_payment_full = fields.Boolean('Quickly payment full')\n quickly_payment_full_journal_id = fields.Many2one('account.journal',\n 'Payment mode', domain=[('journal_user', '=', True)])\n daily_report = fields.Boolean('Daily report', default=0)\n note_order = fields.Boolean('Note order', default=0)\n note_orderline = fields.Boolean('Note order line', default=0)\n signature_order = fields.Boolean('Signature order', default=0)\n quickly_buttons = fields.Boolean('Quickly Actions', default=0)\n display_amount_discount = fields.Boolean('Display amount discount',\n default=0)\n booking_orders = fields.Boolean('Booking orders', default=0)\n booking_orders_required_cashier_signature = fields.Boolean(\n 'Book order required sessions signature', help=\n 'Checked if need required pos seller signature', default=0)\n booking_orders_alert = fields.Boolean('Alert when new order coming',\n default=0)\n delivery_orders = fields.Boolean('Delivery orders', help=\n 'Pos clients can get booking orders and delivery orders', default=0)\n booking_orders_display_shipping_receipt = fields.Boolean(\n 'Display shipping on receipt', default=0)\n display_tax_orderline = fields.Boolean('Display tax orderline', default=0)\n display_tax_receipt = fields.Boolean('Display tax receipt', default=0)\n display_fiscal_position_receipt = fields.Boolean(\n 'Display fiscal position on receipt', default=0)\n display_image_orderline = fields.Boolean('Display image order line',\n default=0)\n display_image_receipt = fields.Boolean('Display image receipt', default=0)\n duplicate_receipt = fields.Boolean('Duplicate Receipt')\n print_number = fields.Integer('Print number', help=\n 'How many number receipt need to print at printer ?', default=0)\n lock_session = fields.Boolean('Lock session', default=0)\n category_wise_receipt = fields.Boolean('Category wise receipt', default=0)\n management_invoice = fields.Boolean('Management Invoice', default=0)\n invoice_journal_ids = fields.Many2many('account.journal',\n 'pos_config_invoice_journal_rel', 'config_id', 'journal_id',\n 'Accounting Invoice Journal', domain=[('type', '=', 'sale')], help=\n 'Accounting journal use for create invoices.')\n send_invoice_email = fields.Boolean('Send email invoice', help=\n 'Help cashier send invoice to email of customer', default=0)\n lock_print_invoice_on_pos = fields.Boolean('Lock print invoice', help=\n 'Lock print pdf invoice when clicked button invoice', default=0)\n pos_auto_invoice = fields.Boolean('Auto create invoice', help=\n 'Automatic create invoice if order have client', default=0)\n receipt_invoice_number = fields.Boolean('Add invoice on receipt', help=\n 'Show invoice number on receipt header', default=0)\n receipt_customer_vat = fields.Boolean('Add vat customer on receipt',\n help='Show customer VAT(TIN) on receipt header', default=0)\n auto_register_payment = fields.Boolean('Auto invocie register payment',\n default=0)\n fiscal_position_auto_detect = fields.Boolean('Fiscal position auto detect',\n default=0)\n display_sale_price_within_tax = fields.Boolean(\n 'Display sale price within tax', default=0)\n display_cost_price = fields.Boolean('Display product cost price', default=0\n )\n display_product_ref = fields.Boolean('Display product ref', default=0)\n multi_location = fields.Boolean('Multi location', default=0)\n product_view = fields.Selection([('box', 'Box view'), ('list',\n 'List view')], default='box', string='View of products screen',\n required=1)\n ticket_font_size = fields.Integer('Ticket font size', default=12)\n customer_default_id = fields.Many2one('res.partner', 'Customer default')\n medical_insurance = fields.Boolean('Medical insurance', default=0)\n set_guest = fields.Boolean('Set guest', default=0)\n reset_sequence = fields.Boolean('Reset sequence order', default=0)\n update_tax = fields.Boolean('Modify tax', default=0, help=\n 'Cashier can change tax of order line')\n subtotal_tax_included = fields.Boolean('Show Tax-Included Prices', help\n ='When checked, subtotal of line will display amount have tax-included'\n )\n cash_out = fields.Boolean('Take money out', default=0, help=\n 'Allow cashiers take money out')\n cash_in = fields.Boolean('Push money in', default=0, help=\n 'Allow cashiers input money in')\n min_length_search = fields.Integer('Min character length search',\n default=3, help=\n 'Allow auto suggestion items when cashiers input on search box')\n review_receipt_before_paid = fields.Boolean('Review receipt before paid',\n help='Show receipt before paid order', default=1)\n keyboard_event = fields.Boolean('Keyboard event', default=0, help=\n 'Allow cashiers use shortcut keyboard')\n multi_variant = fields.Boolean('Multi variant', default=0, help=\n 'Allow cashiers change variant of order lines on pos screen')\n switch_user = fields.Boolean('Switch user', default=0, help=\n 'Allow cashiers switch to another cashier')\n change_unit_of_measure = fields.Boolean('Change unit of measure',\n default=0, help='Allow cashiers change unit of measure of order lines')\n print_last_order = fields.Boolean('Print last receipt', default=0, help\n ='Allow cashiers print last receipt')\n close_session = fields.Boolean('Close session', help=\n 'When cashiers click close pos, auto log out of system', default=0)\n display_image_product = fields.Boolean('Display image product', default\n =1, help='Allow hide/display product images on pos screen')\n printer_on_off = fields.Boolean('On/Off printer', help=\n 'Help cashier turn on/off printer viva posbox', default=0)\n check_duplicate_email = fields.Boolean('Check duplicate email', default=0)\n check_duplicate_phone = fields.Boolean('Check duplicate phone', default=0)\n hide_country = fields.Boolean('Hide country', default=0)\n hide_barcode = fields.Boolean('Hide barcode', default=0)\n hide_tax = fields.Boolean('Hide tax', default=0)\n hide_pricelist = fields.Boolean('Hide pricelists', default=0)\n hide_supplier = fields.Boolean('Hide suppiers', default=1)\n auto_remove_line = fields.Boolean('Auto remove line', default=1, help=\n 'When cashier set quantity of line to 0, line auto remove not keep line with qty is 0'\n )\n chat = fields.Boolean('Chat message', default=0, help=\n 'Allow chat, discuss between pos sessions')\n add_tags = fields.Boolean('Add tags line', default=0, help=\n 'Allow cashiers add tags to order lines')\n add_notes = fields.Boolean('Add notes line', default=0, help=\n 'Allow cashiers add notes to order lines')\n add_sale_person = fields.Boolean('Add sale person', default=0)\n logo = fields.Binary('Logo of store')\n paid_full = fields.Boolean('Allow paid full', default=0, help=\n 'Allow cashiers click one button, do payment full order')\n paid_partial = fields.Boolean('Allow partial payment', default=0, help=\n 'Allow cashiers do partial payment')\n backup = fields.Boolean('Backup/Restore orders', default=0, help=\n 'Allow cashiers backup and restore orders on pos screen')\n backup_orders = fields.Text('Backup orders')\n change_logo = fields.Boolean('Change logo', default=1, help=\n 'Allow cashiers change logo of shop on pos screen')\n management_session = fields.Boolean('Management session', default=0)\n barcode_receipt = fields.Boolean('Barcode receipt', default=0)\n hide_mobile = fields.Boolean('Hide mobile', default=1)\n hide_phone = fields.Boolean('Hide phone', default=1)\n hide_email = fields.Boolean('Hide email', default=1)\n update_client = fields.Boolean('Update client', help=\n 'Uncheck if you dont want cashier change customer information on pos')\n add_client = fields.Boolean('Add client', help=\n 'Uncheck if you dont want cashier add new customers on pos')\n remove_client = fields.Boolean('Remove client', help=\n 'Uncheck if you dont want cashier remove customers on pos')\n mobile_responsive = fields.Boolean('Mobile responsive', default=0)\n hide_amount_total = fields.Boolean('Hide amount total', default=1)\n hide_amount_taxes = fields.Boolean('Hide amount taxes', default=1)\n report_no_of_report = fields.Integer(string='No.of Copy Receipt', default=1\n )\n report_signature = fields.Boolean(string='Report Signature', default=1)\n report_product_summary = fields.Boolean(string='Report Product Summary',\n default=1)\n report_product_current_month_date = fields.Boolean(string=\n 'Report This Month', default=1)\n report_order_summary = fields.Boolean(string='Report Order Summary',\n default=1)\n report_order_current_month_date = fields.Boolean(string=\n 'Report Current Month', default=1)\n report_payment_summary = fields.Boolean(string='Report Payment Summary',\n default=1)\n report_payment_current_month_date = fields.Boolean(string=\n 'Payment Current Month', default=1)\n active_product_sort_by = fields.Boolean('Active product sort by', default=1\n )\n default_product_sort_by = fields.Selection([('a_z', 'Sort from A to Z'),\n ('z_a', 'Sort from Z to A'), ('low_price',\n 'Sort from low to high price'), ('high_price',\n 'Sort from high to low price'), ('pos_sequence',\n 'Product pos sequence')], string='Default sort by', default='a_z')\n sale_extra = fields.Boolean('Sale extra', default=1)\n required_add_customer_before_put_product_to_cart = fields.Boolean(\n 'Required add customer first', help=\n 'If you checked on this checkbox, in POS always required cashier add customer the first'\n )\n only_one_time_add_customer = fields.Boolean('Only one time add customer',\n help='Each orders, only one time add customer')\n use_parameters = fields.Boolean('Use parameters', help=\n 'POS need only one time save parameter datas use on POS, and next times no need call backend'\n , default=1)\n time_refresh_parameter = fields.Integer('Time refresh datas (seconds)',\n help='Time for refresh parameters data', default=30)\n\n @api.model\n def switch_mobile_mode(self, config_id, vals):\n if vals.get('mobile_responsive') == True:\n vals['product_view'] = 'box'\n return self.browse(config_id).sudo().write(vals)\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n\n @api.onchange('receipt_invoice_number')\n def _onchange_receipt_invoice_number(self):\n if self.receipt_invoice_number == True:\n self.lock_print_invoice_on_pos = False\n else:\n self.lock_print_invoice_on_pos = True\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'voucher'})\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([('code', '=',\n 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({'name':\n 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AVC\" auto give voucher histories of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_voucher' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n voucher_account.id, 'noupdate': True})\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'voucher')])\n if voucher_journal:\n voucher_journal[0].sudo().write({'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher', 'sequence': 101})\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Voucher ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n voucher_journal = Journal.sudo().create({'name': 'Voucher',\n 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id, 'sequence':\n 101})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_voucher_' + str(voucher_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n voucher_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, voucher_journal.id)]})\n statement = [(0, 0, {'journal_id': voucher_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n\n\nclass pos_config_image(models.Model):\n _name = 'pos.config.image'\n _description = 'Image show to customer screen'\n name = fields.Char('Title', required=1)\n image = fields.Binary('Image', required=1)\n config_id = fields.Many2one('pos.config', 'POS config', required=1)\n description = fields.Text('Description')\n\n\nclass pos_config(models.Model):\n _inherit = 'pos.config'\n user_id = fields.Many2one('res.users', 'Assigned to')\n config_access_right = fields.Boolean('Config access right', default=1)\n allow_discount = fields.Boolean('Change discount', default=1)\n allow_qty = fields.Boolean('Change quantity', default=1)\n allow_price = fields.Boolean('Change price', default=1)\n allow_remove_line = fields.Boolean('Remove line', default=1)\n allow_numpad = fields.Boolean('Display numpad', default=1)\n allow_payment = fields.Boolean('Display payment', default=1)\n allow_customer = fields.Boolean('Choice customer', default=1)\n allow_add_order = fields.Boolean('New order', default=1)\n allow_remove_order = fields.Boolean('Remove order', default=1)\n allow_add_product = fields.Boolean('Add line', default=1)\n allow_lock_screen = fields.Boolean('Lock screen', default=0, help=\n 'When pos sessions start, cashiers required open POS viva pos pass pin (Setting/Users)'\n )\n display_point_receipt = fields.Boolean('Display point / receipt')\n loyalty_id = fields.Many2one('pos.loyalty', 'Loyalty', domain=[('state',\n '=', 'running')])\n promotion_ids = fields.Many2many('pos.promotion',\n 'pos_config_promotion_rel', 'config_id', 'promotion_id', string=\n 'Promotion programs')\n promotion_manual_select = fields.Boolean('Promotion manual choice',\n default=0)\n create_purchase_order = fields.Boolean('Create PO', default=0)\n create_purchase_order_required_signature = fields.Boolean(\n 'Required signature', default=0)\n purchase_order_state = fields.Selection([('confirm_order',\n 'Auto confirm'), ('confirm_picking', 'Auto delivery'), (\n 'confirm_invoice', 'Auto invoice')], 'PO state', help=\n 'This is state of purchase order will process to', default=\n 'confirm_invoice')\n sync_sale_order = fields.Boolean('Sync sale orders', default=0)\n sale_order = fields.Boolean('Create Sale order', default=0)\n sale_order_auto_confirm = fields.Boolean('Auto confirm', default=0)\n sale_order_auto_invoice = fields.Boolean('Auto paid', default=0)\n sale_order_auto_delivery = fields.Boolean('Auto delivery', default=0)\n pos_orders_management = fields.Boolean('POS order management', default=0)\n pos_order_period_return_days = fields.Float('Return period days', help=\n 'this is period time for customer can return order', default=30)\n display_return_days_receipt = fields.Boolean('Display return days receipt',\n default=0)\n sync_pricelist = fields.Boolean('Sync prices list', default=0)\n display_onhand = fields.Boolean('Show qty available product', default=1,\n help='Display quantity on hand all products on pos screen')\n large_stocks = fields.Boolean('Large stock', help=\n 'If count products bigger than 100,000 rows, please check it')\n allow_order_out_of_stock = fields.Boolean('Allow out-of-stock', default\n =1, help='If checked, allow cashier can add product have out of stock')\n allow_of_stock_approve_by_admin = fields.Boolean('Approve allow of stock',\n help='Allow manager approve allow of stock')\n print_voucher = fields.Boolean('Print vouchers', help=\n 'Reprint last vouchers', default=1)\n scan_voucher = fields.Boolean('Scan voucher', default=0)\n expired_days_voucher = fields.Integer('Expired days of voucher',\n default=30, help=\n 'Total days keep voucher can use, if out of period days from create date, voucher will expired'\n )\n sync_multi_session = fields.Boolean('Sync multi session', default=0)\n bus_id = fields.Many2one('pos.bus', string='Branch/store')\n display_person_add_line = fields.Boolean('Display information line',\n default=0, help=\n 'When you checked, on pos order lines screen, will display information person created order (lines) Eg: create date, updated date ..'\n )\n quickly_payment = fields.Boolean('Quickly payment', default=0)\n internal_transfer = fields.Boolean('Internal transfer', default=0, help\n ='Go Inventory and active multi warehouse and location')\n internal_transfer_auto_validate = fields.Boolean(\n 'Internal transfer auto validate', default=0)\n discount = fields.Boolean('Global discount', default=0)\n discount_ids = fields.Many2many('pos.global.discount',\n 'pos_config_pos_global_discount_rel', 'config_id', 'discount_id',\n 'Global discounts')\n is_customer_screen = fields.Boolean('Is customer screen')\n delay = fields.Integer('Delay time', default=3000)\n slogan = fields.Char('Slogan', help=\n 'This is message will display on screen of customer')\n image_ids = fields.One2many('pos.config.image', 'config_id', 'Images')\n tooltip = fields.Boolean('Show information of product', default=0)\n tooltip_show_last_price = fields.Boolean('Show last price of product',\n help='Show last price of items of customer have bought before',\n default=0)\n tooltip_show_minimum_sale_price = fields.Boolean(\n 'Show min of product sale price', help=\n 'Show minimum sale price of product', default=0)\n discount_limit = fields.Boolean('Discount limit', default=0)\n discount_limit_amount = fields.Float('Discount limit amount', default=10)\n discount_each_line = fields.Boolean('Discount each line')\n discount_unlock_limit = fields.Boolean('Manager can unlock limit')\n discount_unlock_limit_user_id = fields.Many2one('res.users',\n 'User unlock limit amount')\n multi_currency = fields.Boolean('Multi currency', default=0)\n multi_currency_update_rate = fields.Boolean('Update rate', default=0)\n notify_alert = fields.Boolean('Notify alert', help=\n 'Turn on/off notification alert on POS sessions.', default=0)\n return_products = fields.Boolean('Return orders', help=\n 'Allow cashier return orders, return products', default=0)\n receipt_without_payment_template = fields.Selection([('none', 'None'),\n ('display_price', 'Display price'), ('not_display_price',\n 'Not display price')], default='not_display_price', string=\n 'Receipt without payment template')\n lock_order_printed_receipt = fields.Boolean('Lock order printed receipt',\n default=0)\n staff_level = fields.Selection([('manual', 'Manual config'), (\n 'marketing', 'Marketing'), ('waiter', 'Waiter'), ('cashier',\n 'Cashier'), ('manager', 'Manager')], string='Staff level', default=\n 'manual')\n validate_payment = fields.Boolean('Validate payment')\n validate_remove_order = fields.Boolean('Validate remove order')\n validate_change_minus = fields.Boolean('Validate pressed +/-')\n validate_quantity_change = fields.Boolean('Validate quantity change')\n validate_price_change = fields.Boolean('Validate price change')\n validate_discount_change = fields.Boolean('Validate discount change')\n validate_close_session = fields.Boolean('Validate close session')\n validate_by_user_id = fields.Many2one('res.users', 'Validate by admin')\n apply_validate_return_mode = fields.Boolean('Validate return mode',\n help='If checked, only applied validate when return order', default=1)\n print_user_card = fields.Boolean('Print user card')\n product_operation = fields.Boolean('Product Operation', default=0, help\n ='Allow cashiers add pos categories and products on pos screen')\n quickly_payment_full = fields.Boolean('Quickly payment full')\n quickly_payment_full_journal_id = fields.Many2one('account.journal',\n 'Payment mode', domain=[('journal_user', '=', True)])\n daily_report = fields.Boolean('Daily report', default=0)\n note_order = fields.Boolean('Note order', default=0)\n note_orderline = fields.Boolean('Note order line', default=0)\n signature_order = fields.Boolean('Signature order', default=0)\n quickly_buttons = fields.Boolean('Quickly Actions', default=0)\n display_amount_discount = fields.Boolean('Display amount discount',\n default=0)\n booking_orders = fields.Boolean('Booking orders', default=0)\n booking_orders_required_cashier_signature = fields.Boolean(\n 'Book order required sessions signature', help=\n 'Checked if need required pos seller signature', default=0)\n booking_orders_alert = fields.Boolean('Alert when new order coming',\n default=0)\n delivery_orders = fields.Boolean('Delivery orders', help=\n 'Pos clients can get booking orders and delivery orders', default=0)\n booking_orders_display_shipping_receipt = fields.Boolean(\n 'Display shipping on receipt', default=0)\n display_tax_orderline = fields.Boolean('Display tax orderline', default=0)\n display_tax_receipt = fields.Boolean('Display tax receipt', default=0)\n display_fiscal_position_receipt = fields.Boolean(\n 'Display fiscal position on receipt', default=0)\n display_image_orderline = fields.Boolean('Display image order line',\n default=0)\n display_image_receipt = fields.Boolean('Display image receipt', default=0)\n duplicate_receipt = fields.Boolean('Duplicate Receipt')\n print_number = fields.Integer('Print number', help=\n 'How many number receipt need to print at printer ?', default=0)\n lock_session = fields.Boolean('Lock session', default=0)\n category_wise_receipt = fields.Boolean('Category wise receipt', default=0)\n management_invoice = fields.Boolean('Management Invoice', default=0)\n invoice_journal_ids = fields.Many2many('account.journal',\n 'pos_config_invoice_journal_rel', 'config_id', 'journal_id',\n 'Accounting Invoice Journal', domain=[('type', '=', 'sale')], help=\n 'Accounting journal use for create invoices.')\n send_invoice_email = fields.Boolean('Send email invoice', help=\n 'Help cashier send invoice to email of customer', default=0)\n lock_print_invoice_on_pos = fields.Boolean('Lock print invoice', help=\n 'Lock print pdf invoice when clicked button invoice', default=0)\n pos_auto_invoice = fields.Boolean('Auto create invoice', help=\n 'Automatic create invoice if order have client', default=0)\n receipt_invoice_number = fields.Boolean('Add invoice on receipt', help=\n 'Show invoice number on receipt header', default=0)\n receipt_customer_vat = fields.Boolean('Add vat customer on receipt',\n help='Show customer VAT(TIN) on receipt header', default=0)\n auto_register_payment = fields.Boolean('Auto invocie register payment',\n default=0)\n fiscal_position_auto_detect = fields.Boolean('Fiscal position auto detect',\n default=0)\n display_sale_price_within_tax = fields.Boolean(\n 'Display sale price within tax', default=0)\n display_cost_price = fields.Boolean('Display product cost price', default=0\n )\n display_product_ref = fields.Boolean('Display product ref', default=0)\n multi_location = fields.Boolean('Multi location', default=0)\n product_view = fields.Selection([('box', 'Box view'), ('list',\n 'List view')], default='box', string='View of products screen',\n required=1)\n ticket_font_size = fields.Integer('Ticket font size', default=12)\n customer_default_id = fields.Many2one('res.partner', 'Customer default')\n medical_insurance = fields.Boolean('Medical insurance', default=0)\n set_guest = fields.Boolean('Set guest', default=0)\n reset_sequence = fields.Boolean('Reset sequence order', default=0)\n update_tax = fields.Boolean('Modify tax', default=0, help=\n 'Cashier can change tax of order line')\n subtotal_tax_included = fields.Boolean('Show Tax-Included Prices', help\n ='When checked, subtotal of line will display amount have tax-included'\n )\n cash_out = fields.Boolean('Take money out', default=0, help=\n 'Allow cashiers take money out')\n cash_in = fields.Boolean('Push money in', default=0, help=\n 'Allow cashiers input money in')\n min_length_search = fields.Integer('Min character length search',\n default=3, help=\n 'Allow auto suggestion items when cashiers input on search box')\n review_receipt_before_paid = fields.Boolean('Review receipt before paid',\n help='Show receipt before paid order', default=1)\n keyboard_event = fields.Boolean('Keyboard event', default=0, help=\n 'Allow cashiers use shortcut keyboard')\n multi_variant = fields.Boolean('Multi variant', default=0, help=\n 'Allow cashiers change variant of order lines on pos screen')\n switch_user = fields.Boolean('Switch user', default=0, help=\n 'Allow cashiers switch to another cashier')\n change_unit_of_measure = fields.Boolean('Change unit of measure',\n default=0, help='Allow cashiers change unit of measure of order lines')\n print_last_order = fields.Boolean('Print last receipt', default=0, help\n ='Allow cashiers print last receipt')\n close_session = fields.Boolean('Close session', help=\n 'When cashiers click close pos, auto log out of system', default=0)\n display_image_product = fields.Boolean('Display image product', default\n =1, help='Allow hide/display product images on pos screen')\n printer_on_off = fields.Boolean('On/Off printer', help=\n 'Help cashier turn on/off printer viva posbox', default=0)\n check_duplicate_email = fields.Boolean('Check duplicate email', default=0)\n check_duplicate_phone = fields.Boolean('Check duplicate phone', default=0)\n hide_country = fields.Boolean('Hide country', default=0)\n hide_barcode = fields.Boolean('Hide barcode', default=0)\n hide_tax = fields.Boolean('Hide tax', default=0)\n hide_pricelist = fields.Boolean('Hide pricelists', default=0)\n hide_supplier = fields.Boolean('Hide suppiers', default=1)\n auto_remove_line = fields.Boolean('Auto remove line', default=1, help=\n 'When cashier set quantity of line to 0, line auto remove not keep line with qty is 0'\n )\n chat = fields.Boolean('Chat message', default=0, help=\n 'Allow chat, discuss between pos sessions')\n add_tags = fields.Boolean('Add tags line', default=0, help=\n 'Allow cashiers add tags to order lines')\n add_notes = fields.Boolean('Add notes line', default=0, help=\n 'Allow cashiers add notes to order lines')\n add_sale_person = fields.Boolean('Add sale person', default=0)\n logo = fields.Binary('Logo of store')\n paid_full = fields.Boolean('Allow paid full', default=0, help=\n 'Allow cashiers click one button, do payment full order')\n paid_partial = fields.Boolean('Allow partial payment', default=0, help=\n 'Allow cashiers do partial payment')\n backup = fields.Boolean('Backup/Restore orders', default=0, help=\n 'Allow cashiers backup and restore orders on pos screen')\n backup_orders = fields.Text('Backup orders')\n change_logo = fields.Boolean('Change logo', default=1, help=\n 'Allow cashiers change logo of shop on pos screen')\n management_session = fields.Boolean('Management session', default=0)\n barcode_receipt = fields.Boolean('Barcode receipt', default=0)\n hide_mobile = fields.Boolean('Hide mobile', default=1)\n hide_phone = fields.Boolean('Hide phone', default=1)\n hide_email = fields.Boolean('Hide email', default=1)\n update_client = fields.Boolean('Update client', help=\n 'Uncheck if you dont want cashier change customer information on pos')\n add_client = fields.Boolean('Add client', help=\n 'Uncheck if you dont want cashier add new customers on pos')\n remove_client = fields.Boolean('Remove client', help=\n 'Uncheck if you dont want cashier remove customers on pos')\n mobile_responsive = fields.Boolean('Mobile responsive', default=0)\n hide_amount_total = fields.Boolean('Hide amount total', default=1)\n hide_amount_taxes = fields.Boolean('Hide amount taxes', default=1)\n report_no_of_report = fields.Integer(string='No.of Copy Receipt', default=1\n )\n report_signature = fields.Boolean(string='Report Signature', default=1)\n report_product_summary = fields.Boolean(string='Report Product Summary',\n default=1)\n report_product_current_month_date = fields.Boolean(string=\n 'Report This Month', default=1)\n report_order_summary = fields.Boolean(string='Report Order Summary',\n default=1)\n report_order_current_month_date = fields.Boolean(string=\n 'Report Current Month', default=1)\n report_payment_summary = fields.Boolean(string='Report Payment Summary',\n default=1)\n report_payment_current_month_date = fields.Boolean(string=\n 'Payment Current Month', default=1)\n active_product_sort_by = fields.Boolean('Active product sort by', default=1\n )\n default_product_sort_by = fields.Selection([('a_z', 'Sort from A to Z'),\n ('z_a', 'Sort from Z to A'), ('low_price',\n 'Sort from low to high price'), ('high_price',\n 'Sort from high to low price'), ('pos_sequence',\n 'Product pos sequence')], string='Default sort by', default='a_z')\n sale_extra = fields.Boolean('Sale extra', default=1)\n required_add_customer_before_put_product_to_cart = fields.Boolean(\n 'Required add customer first', help=\n 'If you checked on this checkbox, in POS always required cashier add customer the first'\n )\n only_one_time_add_customer = fields.Boolean('Only one time add customer',\n help='Each orders, only one time add customer')\n use_parameters = fields.Boolean('Use parameters', help=\n 'POS need only one time save parameter datas use on POS, and next times no need call backend'\n , default=1)\n time_refresh_parameter = fields.Integer('Time refresh datas (seconds)',\n help='Time for refresh parameters data', default=30)\n\n @api.model\n def switch_mobile_mode(self, config_id, vals):\n if vals.get('mobile_responsive') == True:\n vals['product_view'] = 'box'\n return self.browse(config_id).sudo().write(vals)\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n\n @api.onchange('receipt_invoice_number')\n def _onchange_receipt_invoice_number(self):\n if self.receipt_invoice_number == True:\n self.lock_print_invoice_on_pos = False\n else:\n self.lock_print_invoice_on_pos = True\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'voucher'})\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([('code', '=',\n 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({'name':\n 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AVC\" auto give voucher histories of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_voucher' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n voucher_account.id, 'noupdate': True})\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'voucher')])\n if voucher_journal:\n voucher_journal[0].sudo().write({'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher', 'sequence': 101})\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Voucher ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n voucher_journal = Journal.sudo().create({'name': 'Voucher',\n 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id, 'sequence':\n 101})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_voucher_' + str(voucher_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n voucher_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, voucher_journal.id)]})\n statement = [(0, 0, {'journal_id': voucher_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n\n\nclass pos_config_image(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n\nclass pos_config(models.Model):\n _inherit = 'pos.config'\n user_id = fields.Many2one('res.users', 'Assigned to')\n config_access_right = fields.Boolean('Config access right', default=1)\n allow_discount = fields.Boolean('Change discount', default=1)\n allow_qty = fields.Boolean('Change quantity', default=1)\n allow_price = fields.Boolean('Change price', default=1)\n allow_remove_line = fields.Boolean('Remove line', default=1)\n allow_numpad = fields.Boolean('Display numpad', default=1)\n allow_payment = fields.Boolean('Display payment', default=1)\n allow_customer = fields.Boolean('Choice customer', default=1)\n allow_add_order = fields.Boolean('New order', default=1)\n allow_remove_order = fields.Boolean('Remove order', default=1)\n allow_add_product = fields.Boolean('Add line', default=1)\n allow_lock_screen = fields.Boolean('Lock screen', default=0, help=\n 'When pos sessions start, cashiers required open POS viva pos pass pin (Setting/Users)'\n )\n display_point_receipt = fields.Boolean('Display point / receipt')\n loyalty_id = fields.Many2one('pos.loyalty', 'Loyalty', domain=[('state',\n '=', 'running')])\n promotion_ids = fields.Many2many('pos.promotion',\n 'pos_config_promotion_rel', 'config_id', 'promotion_id', string=\n 'Promotion programs')\n promotion_manual_select = fields.Boolean('Promotion manual choice',\n default=0)\n create_purchase_order = fields.Boolean('Create PO', default=0)\n create_purchase_order_required_signature = fields.Boolean(\n 'Required signature', default=0)\n purchase_order_state = fields.Selection([('confirm_order',\n 'Auto confirm'), ('confirm_picking', 'Auto delivery'), (\n 'confirm_invoice', 'Auto invoice')], 'PO state', help=\n 'This is state of purchase order will process to', default=\n 'confirm_invoice')\n sync_sale_order = fields.Boolean('Sync sale orders', default=0)\n sale_order = fields.Boolean('Create Sale order', default=0)\n sale_order_auto_confirm = fields.Boolean('Auto confirm', default=0)\n sale_order_auto_invoice = fields.Boolean('Auto paid', default=0)\n sale_order_auto_delivery = fields.Boolean('Auto delivery', default=0)\n pos_orders_management = fields.Boolean('POS order management', default=0)\n pos_order_period_return_days = fields.Float('Return period days', help=\n 'this is period time for customer can return order', default=30)\n display_return_days_receipt = fields.Boolean('Display return days receipt',\n default=0)\n sync_pricelist = fields.Boolean('Sync prices list', default=0)\n display_onhand = fields.Boolean('Show qty available product', default=1,\n help='Display quantity on hand all products on pos screen')\n large_stocks = fields.Boolean('Large stock', help=\n 'If count products bigger than 100,000 rows, please check it')\n allow_order_out_of_stock = fields.Boolean('Allow out-of-stock', default\n =1, help='If checked, allow cashier can add product have out of stock')\n allow_of_stock_approve_by_admin = fields.Boolean('Approve allow of stock',\n help='Allow manager approve allow of stock')\n print_voucher = fields.Boolean('Print vouchers', help=\n 'Reprint last vouchers', default=1)\n scan_voucher = fields.Boolean('Scan voucher', default=0)\n expired_days_voucher = fields.Integer('Expired days of voucher',\n default=30, help=\n 'Total days keep voucher can use, if out of period days from create date, voucher will expired'\n )\n sync_multi_session = fields.Boolean('Sync multi session', default=0)\n bus_id = fields.Many2one('pos.bus', string='Branch/store')\n display_person_add_line = fields.Boolean('Display information line',\n default=0, help=\n 'When you checked, on pos order lines screen, will display information person created order (lines) Eg: create date, updated date ..'\n )\n quickly_payment = fields.Boolean('Quickly payment', default=0)\n internal_transfer = fields.Boolean('Internal transfer', default=0, help\n ='Go Inventory and active multi warehouse and location')\n internal_transfer_auto_validate = fields.Boolean(\n 'Internal transfer auto validate', default=0)\n discount = fields.Boolean('Global discount', default=0)\n discount_ids = fields.Many2many('pos.global.discount',\n 'pos_config_pos_global_discount_rel', 'config_id', 'discount_id',\n 'Global discounts')\n is_customer_screen = fields.Boolean('Is customer screen')\n delay = fields.Integer('Delay time', default=3000)\n slogan = fields.Char('Slogan', help=\n 'This is message will display on screen of customer')\n image_ids = fields.One2many('pos.config.image', 'config_id', 'Images')\n tooltip = fields.Boolean('Show information of product', default=0)\n tooltip_show_last_price = fields.Boolean('Show last price of product',\n help='Show last price of items of customer have bought before',\n default=0)\n tooltip_show_minimum_sale_price = fields.Boolean(\n 'Show min of product sale price', help=\n 'Show minimum sale price of product', default=0)\n discount_limit = fields.Boolean('Discount limit', default=0)\n discount_limit_amount = fields.Float('Discount limit amount', default=10)\n discount_each_line = fields.Boolean('Discount each line')\n discount_unlock_limit = fields.Boolean('Manager can unlock limit')\n discount_unlock_limit_user_id = fields.Many2one('res.users',\n 'User unlock limit amount')\n multi_currency = fields.Boolean('Multi currency', default=0)\n multi_currency_update_rate = fields.Boolean('Update rate', default=0)\n notify_alert = fields.Boolean('Notify alert', help=\n 'Turn on/off notification alert on POS sessions.', default=0)\n return_products = fields.Boolean('Return orders', help=\n 'Allow cashier return orders, return products', default=0)\n receipt_without_payment_template = fields.Selection([('none', 'None'),\n ('display_price', 'Display price'), ('not_display_price',\n 'Not display price')], default='not_display_price', string=\n 'Receipt without payment template')\n lock_order_printed_receipt = fields.Boolean('Lock order printed receipt',\n default=0)\n staff_level = fields.Selection([('manual', 'Manual config'), (\n 'marketing', 'Marketing'), ('waiter', 'Waiter'), ('cashier',\n 'Cashier'), ('manager', 'Manager')], string='Staff level', default=\n 'manual')\n validate_payment = fields.Boolean('Validate payment')\n validate_remove_order = fields.Boolean('Validate remove order')\n validate_change_minus = fields.Boolean('Validate pressed +/-')\n validate_quantity_change = fields.Boolean('Validate quantity change')\n validate_price_change = fields.Boolean('Validate price change')\n validate_discount_change = fields.Boolean('Validate discount change')\n validate_close_session = fields.Boolean('Validate close session')\n validate_by_user_id = fields.Many2one('res.users', 'Validate by admin')\n apply_validate_return_mode = fields.Boolean('Validate return mode',\n help='If checked, only applied validate when return order', default=1)\n print_user_card = fields.Boolean('Print user card')\n product_operation = fields.Boolean('Product Operation', default=0, help\n ='Allow cashiers add pos categories and products on pos screen')\n quickly_payment_full = fields.Boolean('Quickly payment full')\n quickly_payment_full_journal_id = fields.Many2one('account.journal',\n 'Payment mode', domain=[('journal_user', '=', True)])\n daily_report = fields.Boolean('Daily report', default=0)\n note_order = fields.Boolean('Note order', default=0)\n note_orderline = fields.Boolean('Note order line', default=0)\n signature_order = fields.Boolean('Signature order', default=0)\n quickly_buttons = fields.Boolean('Quickly Actions', default=0)\n display_amount_discount = fields.Boolean('Display amount discount',\n default=0)\n booking_orders = fields.Boolean('Booking orders', default=0)\n booking_orders_required_cashier_signature = fields.Boolean(\n 'Book order required sessions signature', help=\n 'Checked if need required pos seller signature', default=0)\n booking_orders_alert = fields.Boolean('Alert when new order coming',\n default=0)\n delivery_orders = fields.Boolean('Delivery orders', help=\n 'Pos clients can get booking orders and delivery orders', default=0)\n booking_orders_display_shipping_receipt = fields.Boolean(\n 'Display shipping on receipt', default=0)\n display_tax_orderline = fields.Boolean('Display tax orderline', default=0)\n display_tax_receipt = fields.Boolean('Display tax receipt', default=0)\n display_fiscal_position_receipt = fields.Boolean(\n 'Display fiscal position on receipt', default=0)\n display_image_orderline = fields.Boolean('Display image order line',\n default=0)\n display_image_receipt = fields.Boolean('Display image receipt', default=0)\n duplicate_receipt = fields.Boolean('Duplicate Receipt')\n print_number = fields.Integer('Print number', help=\n 'How many number receipt need to print at printer ?', default=0)\n lock_session = fields.Boolean('Lock session', default=0)\n category_wise_receipt = fields.Boolean('Category wise receipt', default=0)\n management_invoice = fields.Boolean('Management Invoice', default=0)\n invoice_journal_ids = fields.Many2many('account.journal',\n 'pos_config_invoice_journal_rel', 'config_id', 'journal_id',\n 'Accounting Invoice Journal', domain=[('type', '=', 'sale')], help=\n 'Accounting journal use for create invoices.')\n send_invoice_email = fields.Boolean('Send email invoice', help=\n 'Help cashier send invoice to email of customer', default=0)\n lock_print_invoice_on_pos = fields.Boolean('Lock print invoice', help=\n 'Lock print pdf invoice when clicked button invoice', default=0)\n pos_auto_invoice = fields.Boolean('Auto create invoice', help=\n 'Automatic create invoice if order have client', default=0)\n receipt_invoice_number = fields.Boolean('Add invoice on receipt', help=\n 'Show invoice number on receipt header', default=0)\n receipt_customer_vat = fields.Boolean('Add vat customer on receipt',\n help='Show customer VAT(TIN) on receipt header', default=0)\n auto_register_payment = fields.Boolean('Auto invocie register payment',\n default=0)\n fiscal_position_auto_detect = fields.Boolean('Fiscal position auto detect',\n default=0)\n display_sale_price_within_tax = fields.Boolean(\n 'Display sale price within tax', default=0)\n display_cost_price = fields.Boolean('Display product cost price', default=0\n )\n display_product_ref = fields.Boolean('Display product ref', default=0)\n multi_location = fields.Boolean('Multi location', default=0)\n product_view = fields.Selection([('box', 'Box view'), ('list',\n 'List view')], default='box', string='View of products screen',\n required=1)\n ticket_font_size = fields.Integer('Ticket font size', default=12)\n customer_default_id = fields.Many2one('res.partner', 'Customer default')\n medical_insurance = fields.Boolean('Medical insurance', default=0)\n set_guest = fields.Boolean('Set guest', default=0)\n reset_sequence = fields.Boolean('Reset sequence order', default=0)\n update_tax = fields.Boolean('Modify tax', default=0, help=\n 'Cashier can change tax of order line')\n subtotal_tax_included = fields.Boolean('Show Tax-Included Prices', help\n ='When checked, subtotal of line will display amount have tax-included'\n )\n cash_out = fields.Boolean('Take money out', default=0, help=\n 'Allow cashiers take money out')\n cash_in = fields.Boolean('Push money in', default=0, help=\n 'Allow cashiers input money in')\n min_length_search = fields.Integer('Min character length search',\n default=3, help=\n 'Allow auto suggestion items when cashiers input on search box')\n review_receipt_before_paid = fields.Boolean('Review receipt before paid',\n help='Show receipt before paid order', default=1)\n keyboard_event = fields.Boolean('Keyboard event', default=0, help=\n 'Allow cashiers use shortcut keyboard')\n multi_variant = fields.Boolean('Multi variant', default=0, help=\n 'Allow cashiers change variant of order lines on pos screen')\n switch_user = fields.Boolean('Switch user', default=0, help=\n 'Allow cashiers switch to another cashier')\n change_unit_of_measure = fields.Boolean('Change unit of measure',\n default=0, help='Allow cashiers change unit of measure of order lines')\n print_last_order = fields.Boolean('Print last receipt', default=0, help\n ='Allow cashiers print last receipt')\n close_session = fields.Boolean('Close session', help=\n 'When cashiers click close pos, auto log out of system', default=0)\n display_image_product = fields.Boolean('Display image product', default\n =1, help='Allow hide/display product images on pos screen')\n printer_on_off = fields.Boolean('On/Off printer', help=\n 'Help cashier turn on/off printer viva posbox', default=0)\n check_duplicate_email = fields.Boolean('Check duplicate email', default=0)\n check_duplicate_phone = fields.Boolean('Check duplicate phone', default=0)\n hide_country = fields.Boolean('Hide country', default=0)\n hide_barcode = fields.Boolean('Hide barcode', default=0)\n hide_tax = fields.Boolean('Hide tax', default=0)\n hide_pricelist = fields.Boolean('Hide pricelists', default=0)\n hide_supplier = fields.Boolean('Hide suppiers', default=1)\n auto_remove_line = fields.Boolean('Auto remove line', default=1, help=\n 'When cashier set quantity of line to 0, line auto remove not keep line with qty is 0'\n )\n chat = fields.Boolean('Chat message', default=0, help=\n 'Allow chat, discuss between pos sessions')\n add_tags = fields.Boolean('Add tags line', default=0, help=\n 'Allow cashiers add tags to order lines')\n add_notes = fields.Boolean('Add notes line', default=0, help=\n 'Allow cashiers add notes to order lines')\n add_sale_person = fields.Boolean('Add sale person', default=0)\n logo = fields.Binary('Logo of store')\n paid_full = fields.Boolean('Allow paid full', default=0, help=\n 'Allow cashiers click one button, do payment full order')\n paid_partial = fields.Boolean('Allow partial payment', default=0, help=\n 'Allow cashiers do partial payment')\n backup = fields.Boolean('Backup/Restore orders', default=0, help=\n 'Allow cashiers backup and restore orders on pos screen')\n backup_orders = fields.Text('Backup orders')\n change_logo = fields.Boolean('Change logo', default=1, help=\n 'Allow cashiers change logo of shop on pos screen')\n management_session = fields.Boolean('Management session', default=0)\n barcode_receipt = fields.Boolean('Barcode receipt', default=0)\n hide_mobile = fields.Boolean('Hide mobile', default=1)\n hide_phone = fields.Boolean('Hide phone', default=1)\n hide_email = fields.Boolean('Hide email', default=1)\n update_client = fields.Boolean('Update client', help=\n 'Uncheck if you dont want cashier change customer information on pos')\n add_client = fields.Boolean('Add client', help=\n 'Uncheck if you dont want cashier add new customers on pos')\n remove_client = fields.Boolean('Remove client', help=\n 'Uncheck if you dont want cashier remove customers on pos')\n mobile_responsive = fields.Boolean('Mobile responsive', default=0)\n hide_amount_total = fields.Boolean('Hide amount total', default=1)\n hide_amount_taxes = fields.Boolean('Hide amount taxes', default=1)\n report_no_of_report = fields.Integer(string='No.of Copy Receipt', default=1\n )\n report_signature = fields.Boolean(string='Report Signature', default=1)\n report_product_summary = fields.Boolean(string='Report Product Summary',\n default=1)\n report_product_current_month_date = fields.Boolean(string=\n 'Report This Month', default=1)\n report_order_summary = fields.Boolean(string='Report Order Summary',\n default=1)\n report_order_current_month_date = fields.Boolean(string=\n 'Report Current Month', default=1)\n report_payment_summary = fields.Boolean(string='Report Payment Summary',\n default=1)\n report_payment_current_month_date = fields.Boolean(string=\n 'Payment Current Month', default=1)\n active_product_sort_by = fields.Boolean('Active product sort by', default=1\n )\n default_product_sort_by = fields.Selection([('a_z', 'Sort from A to Z'),\n ('z_a', 'Sort from Z to A'), ('low_price',\n 'Sort from low to high price'), ('high_price',\n 'Sort from high to low price'), ('pos_sequence',\n 'Product pos sequence')], string='Default sort by', default='a_z')\n sale_extra = fields.Boolean('Sale extra', default=1)\n required_add_customer_before_put_product_to_cart = fields.Boolean(\n 'Required add customer first', help=\n 'If you checked on this checkbox, in POS always required cashier add customer the first'\n )\n only_one_time_add_customer = fields.Boolean('Only one time add customer',\n help='Each orders, only one time add customer')\n use_parameters = fields.Boolean('Use parameters', help=\n 'POS need only one time save parameter datas use on POS, and next times no need call backend'\n , default=1)\n time_refresh_parameter = fields.Integer('Time refresh datas (seconds)',\n help='Time for refresh parameters data', default=30)\n\n @api.model\n def switch_mobile_mode(self, config_id, vals):\n if vals.get('mobile_responsive') == True:\n vals['product_view'] = 'box'\n return self.browse(config_id).sudo().write(vals)\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n\n @api.onchange('receipt_invoice_number')\n def _onchange_receipt_invoice_number(self):\n if self.receipt_invoice_number == True:\n self.lock_print_invoice_on_pos = False\n else:\n self.lock_print_invoice_on_pos = True\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'voucher'})\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([('code', '=',\n 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({'name':\n 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AVC\" auto give voucher histories of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_voucher' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n voucher_account.id, 'noupdate': True})\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'voucher')])\n if voucher_journal:\n voucher_journal[0].sudo().write({'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher', 'sequence': 101})\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Voucher ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n voucher_journal = Journal.sudo().create({'name': 'Voucher',\n 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id, 'sequence':\n 101})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_voucher_' + str(voucher_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n voucher_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, voucher_journal.id)]})\n statement = [(0, 0, {'journal_id': voucher_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n _inherit = 'pos.config'\n user_id = fields.Many2one('res.users', 'Assigned to')\n config_access_right = fields.Boolean('Config access right', default=1)\n allow_discount = fields.Boolean('Change discount', default=1)\n allow_qty = fields.Boolean('Change quantity', default=1)\n allow_price = fields.Boolean('Change price', default=1)\n allow_remove_line = fields.Boolean('Remove line', default=1)\n allow_numpad = fields.Boolean('Display numpad', default=1)\n allow_payment = fields.Boolean('Display payment', default=1)\n allow_customer = fields.Boolean('Choice customer', default=1)\n allow_add_order = fields.Boolean('New order', default=1)\n allow_remove_order = fields.Boolean('Remove order', default=1)\n allow_add_product = fields.Boolean('Add line', default=1)\n allow_lock_screen = fields.Boolean('Lock screen', default=0, help=\n 'When pos sessions start, cashiers required open POS viva pos pass pin (Setting/Users)'\n )\n display_point_receipt = fields.Boolean('Display point / receipt')\n loyalty_id = fields.Many2one('pos.loyalty', 'Loyalty', domain=[('state',\n '=', 'running')])\n promotion_ids = fields.Many2many('pos.promotion',\n 'pos_config_promotion_rel', 'config_id', 'promotion_id', string=\n 'Promotion programs')\n promotion_manual_select = fields.Boolean('Promotion manual choice',\n default=0)\n create_purchase_order = fields.Boolean('Create PO', default=0)\n create_purchase_order_required_signature = fields.Boolean(\n 'Required signature', default=0)\n purchase_order_state = fields.Selection([('confirm_order',\n 'Auto confirm'), ('confirm_picking', 'Auto delivery'), (\n 'confirm_invoice', 'Auto invoice')], 'PO state', help=\n 'This is state of purchase order will process to', default=\n 'confirm_invoice')\n sync_sale_order = fields.Boolean('Sync sale orders', default=0)\n sale_order = fields.Boolean('Create Sale order', default=0)\n sale_order_auto_confirm = fields.Boolean('Auto confirm', default=0)\n sale_order_auto_invoice = fields.Boolean('Auto paid', default=0)\n sale_order_auto_delivery = fields.Boolean('Auto delivery', default=0)\n pos_orders_management = fields.Boolean('POS order management', default=0)\n pos_order_period_return_days = fields.Float('Return period days', help=\n 'this is period time for customer can return order', default=30)\n display_return_days_receipt = fields.Boolean('Display return days receipt',\n default=0)\n sync_pricelist = fields.Boolean('Sync prices list', default=0)\n display_onhand = fields.Boolean('Show qty available product', default=1,\n help='Display quantity on hand all products on pos screen')\n large_stocks = fields.Boolean('Large stock', help=\n 'If count products bigger than 100,000 rows, please check it')\n allow_order_out_of_stock = fields.Boolean('Allow out-of-stock', default\n =1, help='If checked, allow cashier can add product have out of stock')\n allow_of_stock_approve_by_admin = fields.Boolean('Approve allow of stock',\n help='Allow manager approve allow of stock')\n print_voucher = fields.Boolean('Print vouchers', help=\n 'Reprint last vouchers', default=1)\n scan_voucher = fields.Boolean('Scan voucher', default=0)\n expired_days_voucher = fields.Integer('Expired days of voucher',\n default=30, help=\n 'Total days keep voucher can use, if out of period days from create date, voucher will expired'\n )\n sync_multi_session = fields.Boolean('Sync multi session', default=0)\n bus_id = fields.Many2one('pos.bus', string='Branch/store')\n display_person_add_line = fields.Boolean('Display information line',\n default=0, help=\n 'When you checked, on pos order lines screen, will display information person created order (lines) Eg: create date, updated date ..'\n )\n quickly_payment = fields.Boolean('Quickly payment', default=0)\n internal_transfer = fields.Boolean('Internal transfer', default=0, help\n ='Go Inventory and active multi warehouse and location')\n internal_transfer_auto_validate = fields.Boolean(\n 'Internal transfer auto validate', default=0)\n discount = fields.Boolean('Global discount', default=0)\n discount_ids = fields.Many2many('pos.global.discount',\n 'pos_config_pos_global_discount_rel', 'config_id', 'discount_id',\n 'Global discounts')\n is_customer_screen = fields.Boolean('Is customer screen')\n delay = fields.Integer('Delay time', default=3000)\n slogan = fields.Char('Slogan', help=\n 'This is message will display on screen of customer')\n image_ids = fields.One2many('pos.config.image', 'config_id', 'Images')\n tooltip = fields.Boolean('Show information of product', default=0)\n tooltip_show_last_price = fields.Boolean('Show last price of product',\n help='Show last price of items of customer have bought before',\n default=0)\n tooltip_show_minimum_sale_price = fields.Boolean(\n 'Show min of product sale price', help=\n 'Show minimum sale price of product', default=0)\n discount_limit = fields.Boolean('Discount limit', default=0)\n discount_limit_amount = fields.Float('Discount limit amount', default=10)\n discount_each_line = fields.Boolean('Discount each line')\n discount_unlock_limit = fields.Boolean('Manager can unlock limit')\n discount_unlock_limit_user_id = fields.Many2one('res.users',\n 'User unlock limit amount')\n multi_currency = fields.Boolean('Multi currency', default=0)\n multi_currency_update_rate = fields.Boolean('Update rate', default=0)\n notify_alert = fields.Boolean('Notify alert', help=\n 'Turn on/off notification alert on POS sessions.', default=0)\n return_products = fields.Boolean('Return orders', help=\n 'Allow cashier return orders, return products', default=0)\n receipt_without_payment_template = fields.Selection([('none', 'None'),\n ('display_price', 'Display price'), ('not_display_price',\n 'Not display price')], default='not_display_price', string=\n 'Receipt without payment template')\n lock_order_printed_receipt = fields.Boolean('Lock order printed receipt',\n default=0)\n staff_level = fields.Selection([('manual', 'Manual config'), (\n 'marketing', 'Marketing'), ('waiter', 'Waiter'), ('cashier',\n 'Cashier'), ('manager', 'Manager')], string='Staff level', default=\n 'manual')\n validate_payment = fields.Boolean('Validate payment')\n validate_remove_order = fields.Boolean('Validate remove order')\n validate_change_minus = fields.Boolean('Validate pressed +/-')\n validate_quantity_change = fields.Boolean('Validate quantity change')\n validate_price_change = fields.Boolean('Validate price change')\n validate_discount_change = fields.Boolean('Validate discount change')\n validate_close_session = fields.Boolean('Validate close session')\n validate_by_user_id = fields.Many2one('res.users', 'Validate by admin')\n apply_validate_return_mode = fields.Boolean('Validate return mode',\n help='If checked, only applied validate when return order', default=1)\n print_user_card = fields.Boolean('Print user card')\n product_operation = fields.Boolean('Product Operation', default=0, help\n ='Allow cashiers add pos categories and products on pos screen')\n quickly_payment_full = fields.Boolean('Quickly payment full')\n quickly_payment_full_journal_id = fields.Many2one('account.journal',\n 'Payment mode', domain=[('journal_user', '=', True)])\n daily_report = fields.Boolean('Daily report', default=0)\n note_order = fields.Boolean('Note order', default=0)\n note_orderline = fields.Boolean('Note order line', default=0)\n signature_order = fields.Boolean('Signature order', default=0)\n quickly_buttons = fields.Boolean('Quickly Actions', default=0)\n display_amount_discount = fields.Boolean('Display amount discount',\n default=0)\n booking_orders = fields.Boolean('Booking orders', default=0)\n booking_orders_required_cashier_signature = fields.Boolean(\n 'Book order required sessions signature', help=\n 'Checked if need required pos seller signature', default=0)\n booking_orders_alert = fields.Boolean('Alert when new order coming',\n default=0)\n delivery_orders = fields.Boolean('Delivery orders', help=\n 'Pos clients can get booking orders and delivery orders', default=0)\n booking_orders_display_shipping_receipt = fields.Boolean(\n 'Display shipping on receipt', default=0)\n display_tax_orderline = fields.Boolean('Display tax orderline', default=0)\n display_tax_receipt = fields.Boolean('Display tax receipt', default=0)\n display_fiscal_position_receipt = fields.Boolean(\n 'Display fiscal position on receipt', default=0)\n display_image_orderline = fields.Boolean('Display image order line',\n default=0)\n display_image_receipt = fields.Boolean('Display image receipt', default=0)\n duplicate_receipt = fields.Boolean('Duplicate Receipt')\n print_number = fields.Integer('Print number', help=\n 'How many number receipt need to print at printer ?', default=0)\n lock_session = fields.Boolean('Lock session', default=0)\n category_wise_receipt = fields.Boolean('Category wise receipt', default=0)\n management_invoice = fields.Boolean('Management Invoice', default=0)\n invoice_journal_ids = fields.Many2many('account.journal',\n 'pos_config_invoice_journal_rel', 'config_id', 'journal_id',\n 'Accounting Invoice Journal', domain=[('type', '=', 'sale')], help=\n 'Accounting journal use for create invoices.')\n send_invoice_email = fields.Boolean('Send email invoice', help=\n 'Help cashier send invoice to email of customer', default=0)\n lock_print_invoice_on_pos = fields.Boolean('Lock print invoice', help=\n 'Lock print pdf invoice when clicked button invoice', default=0)\n pos_auto_invoice = fields.Boolean('Auto create invoice', help=\n 'Automatic create invoice if order have client', default=0)\n receipt_invoice_number = fields.Boolean('Add invoice on receipt', help=\n 'Show invoice number on receipt header', default=0)\n receipt_customer_vat = fields.Boolean('Add vat customer on receipt',\n help='Show customer VAT(TIN) on receipt header', default=0)\n auto_register_payment = fields.Boolean('Auto invocie register payment',\n default=0)\n fiscal_position_auto_detect = fields.Boolean('Fiscal position auto detect',\n default=0)\n display_sale_price_within_tax = fields.Boolean(\n 'Display sale price within tax', default=0)\n display_cost_price = fields.Boolean('Display product cost price', default=0\n )\n display_product_ref = fields.Boolean('Display product ref', default=0)\n multi_location = fields.Boolean('Multi location', default=0)\n product_view = fields.Selection([('box', 'Box view'), ('list',\n 'List view')], default='box', string='View of products screen',\n required=1)\n ticket_font_size = fields.Integer('Ticket font size', default=12)\n customer_default_id = fields.Many2one('res.partner', 'Customer default')\n medical_insurance = fields.Boolean('Medical insurance', default=0)\n set_guest = fields.Boolean('Set guest', default=0)\n reset_sequence = fields.Boolean('Reset sequence order', default=0)\n update_tax = fields.Boolean('Modify tax', default=0, help=\n 'Cashier can change tax of order line')\n subtotal_tax_included = fields.Boolean('Show Tax-Included Prices', help\n ='When checked, subtotal of line will display amount have tax-included'\n )\n cash_out = fields.Boolean('Take money out', default=0, help=\n 'Allow cashiers take money out')\n cash_in = fields.Boolean('Push money in', default=0, help=\n 'Allow cashiers input money in')\n min_length_search = fields.Integer('Min character length search',\n default=3, help=\n 'Allow auto suggestion items when cashiers input on search box')\n review_receipt_before_paid = fields.Boolean('Review receipt before paid',\n help='Show receipt before paid order', default=1)\n keyboard_event = fields.Boolean('Keyboard event', default=0, help=\n 'Allow cashiers use shortcut keyboard')\n multi_variant = fields.Boolean('Multi variant', default=0, help=\n 'Allow cashiers change variant of order lines on pos screen')\n switch_user = fields.Boolean('Switch user', default=0, help=\n 'Allow cashiers switch to another cashier')\n change_unit_of_measure = fields.Boolean('Change unit of measure',\n default=0, help='Allow cashiers change unit of measure of order lines')\n print_last_order = fields.Boolean('Print last receipt', default=0, help\n ='Allow cashiers print last receipt')\n close_session = fields.Boolean('Close session', help=\n 'When cashiers click close pos, auto log out of system', default=0)\n display_image_product = fields.Boolean('Display image product', default\n =1, help='Allow hide/display product images on pos screen')\n printer_on_off = fields.Boolean('On/Off printer', help=\n 'Help cashier turn on/off printer viva posbox', default=0)\n check_duplicate_email = fields.Boolean('Check duplicate email', default=0)\n check_duplicate_phone = fields.Boolean('Check duplicate phone', default=0)\n hide_country = fields.Boolean('Hide country', default=0)\n hide_barcode = fields.Boolean('Hide barcode', default=0)\n hide_tax = fields.Boolean('Hide tax', default=0)\n hide_pricelist = fields.Boolean('Hide pricelists', default=0)\n hide_supplier = fields.Boolean('Hide suppiers', default=1)\n auto_remove_line = fields.Boolean('Auto remove line', default=1, help=\n 'When cashier set quantity of line to 0, line auto remove not keep line with qty is 0'\n )\n chat = fields.Boolean('Chat message', default=0, help=\n 'Allow chat, discuss between pos sessions')\n add_tags = fields.Boolean('Add tags line', default=0, help=\n 'Allow cashiers add tags to order lines')\n add_notes = fields.Boolean('Add notes line', default=0, help=\n 'Allow cashiers add notes to order lines')\n add_sale_person = fields.Boolean('Add sale person', default=0)\n logo = fields.Binary('Logo of store')\n paid_full = fields.Boolean('Allow paid full', default=0, help=\n 'Allow cashiers click one button, do payment full order')\n paid_partial = fields.Boolean('Allow partial payment', default=0, help=\n 'Allow cashiers do partial payment')\n backup = fields.Boolean('Backup/Restore orders', default=0, help=\n 'Allow cashiers backup and restore orders on pos screen')\n backup_orders = fields.Text('Backup orders')\n change_logo = fields.Boolean('Change logo', default=1, help=\n 'Allow cashiers change logo of shop on pos screen')\n management_session = fields.Boolean('Management session', default=0)\n barcode_receipt = fields.Boolean('Barcode receipt', default=0)\n hide_mobile = fields.Boolean('Hide mobile', default=1)\n hide_phone = fields.Boolean('Hide phone', default=1)\n hide_email = fields.Boolean('Hide email', default=1)\n update_client = fields.Boolean('Update client', help=\n 'Uncheck if you dont want cashier change customer information on pos')\n add_client = fields.Boolean('Add client', help=\n 'Uncheck if you dont want cashier add new customers on pos')\n remove_client = fields.Boolean('Remove client', help=\n 'Uncheck if you dont want cashier remove customers on pos')\n mobile_responsive = fields.Boolean('Mobile responsive', default=0)\n hide_amount_total = fields.Boolean('Hide amount total', default=1)\n hide_amount_taxes = fields.Boolean('Hide amount taxes', default=1)\n report_no_of_report = fields.Integer(string='No.of Copy Receipt', default=1\n )\n report_signature = fields.Boolean(string='Report Signature', default=1)\n report_product_summary = fields.Boolean(string='Report Product Summary',\n default=1)\n report_product_current_month_date = fields.Boolean(string=\n 'Report This Month', default=1)\n report_order_summary = fields.Boolean(string='Report Order Summary',\n default=1)\n report_order_current_month_date = fields.Boolean(string=\n 'Report Current Month', default=1)\n report_payment_summary = fields.Boolean(string='Report Payment Summary',\n default=1)\n report_payment_current_month_date = fields.Boolean(string=\n 'Payment Current Month', default=1)\n active_product_sort_by = fields.Boolean('Active product sort by', default=1\n )\n default_product_sort_by = fields.Selection([('a_z', 'Sort from A to Z'),\n ('z_a', 'Sort from Z to A'), ('low_price',\n 'Sort from low to high price'), ('high_price',\n 'Sort from high to low price'), ('pos_sequence',\n 'Product pos sequence')], string='Default sort by', default='a_z')\n sale_extra = fields.Boolean('Sale extra', default=1)\n required_add_customer_before_put_product_to_cart = fields.Boolean(\n 'Required add customer first', help=\n 'If you checked on this checkbox, in POS always required cashier add customer the first'\n )\n only_one_time_add_customer = fields.Boolean('Only one time add customer',\n help='Each orders, only one time add customer')\n use_parameters = fields.Boolean('Use parameters', help=\n 'POS need only one time save parameter datas use on POS, and next times no need call backend'\n , default=1)\n time_refresh_parameter = fields.Integer('Time refresh datas (seconds)',\n help='Time for refresh parameters data', default=30)\n\n @api.model\n def switch_mobile_mode(self, config_id, vals):\n if vals.get('mobile_responsive') == True:\n vals['product_view'] = 'box'\n return self.browse(config_id).sudo().write(vals)\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n\n @api.onchange('receipt_invoice_number')\n def _onchange_receipt_invoice_number(self):\n if self.receipt_invoice_number == True:\n self.lock_print_invoice_on_pos = False\n else:\n self.lock_print_invoice_on_pos = True\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'voucher'})\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([('code', '=',\n 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({'name':\n 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AVC\" auto give voucher histories of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_voucher' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n voucher_account.id, 'noupdate': True})\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'voucher')])\n if voucher_journal:\n voucher_journal[0].sudo().write({'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher', 'sequence': 101})\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Voucher ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n voucher_journal = Journal.sudo().create({'name': 'Voucher',\n 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id, 'sequence':\n 101})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_voucher_' + str(voucher_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n voucher_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, voucher_journal.id)]})\n statement = [(0, 0, {'journal_id': voucher_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n @api.model\n def switch_mobile_mode(self, config_id, vals):\n if vals.get('mobile_responsive') == True:\n vals['product_view'] = 'box'\n return self.browse(config_id).sudo().write(vals)\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n\n @api.onchange('receipt_invoice_number')\n def _onchange_receipt_invoice_number(self):\n if self.receipt_invoice_number == True:\n self.lock_print_invoice_on_pos = False\n else:\n self.lock_print_invoice_on_pos = True\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'voucher'})\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([('code', '=',\n 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({'name':\n 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AVC\" auto give voucher histories of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_voucher' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n voucher_account.id, 'noupdate': True})\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'voucher')])\n if voucher_journal:\n voucher_journal[0].sudo().write({'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher', 'sequence': 101})\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Voucher ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n voucher_journal = Journal.sudo().create({'name': 'Voucher',\n 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id, 'sequence':\n 101})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_voucher_' + str(voucher_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n voucher_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, voucher_journal.id)]})\n statement = [(0, 0, {'journal_id': voucher_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n\n @api.onchange('receipt_invoice_number')\n def _onchange_receipt_invoice_number(self):\n if self.receipt_invoice_number == True:\n self.lock_print_invoice_on_pos = False\n else:\n self.lock_print_invoice_on_pos = True\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'voucher'})\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([('code', '=',\n 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({'name':\n 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AVC\" auto give voucher histories of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_voucher' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n voucher_account.id, 'noupdate': True})\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'voucher')])\n if voucher_journal:\n voucher_journal[0].sudo().write({'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher', 'sequence': 101})\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Voucher ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n voucher_journal = Journal.sudo().create({'name': 'Voucher',\n 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id, 'sequence':\n 101})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_voucher_' + str(voucher_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n voucher_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, voucher_journal.id)]})\n statement = [(0, 0, {'journal_id': voucher_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_voucher_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'voucher'})\n Account = self.env['account.account']\n voucher_account_old_version = Account.sudo().search([('code', '=',\n 'AVC'), ('company_id', '=', user.company_id.id)])\n if voucher_account_old_version:\n voucher_account = voucher_account_old_version[0]\n else:\n voucher_account = Account.sudo().create({'name':\n 'Account voucher', 'code': 'AVC', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AVC\" auto give voucher histories of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_voucher' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n voucher_account.id, 'noupdate': True})\n voucher_journal = Journal.sudo().search([('code', '=', 'VCJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'voucher')])\n if voucher_journal:\n voucher_journal[0].sudo().write({'voucher': True,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id,\n 'pos_method_type': 'voucher', 'sequence': 101})\n voucher_journal = voucher_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Voucher ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'AVC ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n voucher_journal = Journal.sudo().create({'name': 'Voucher',\n 'code': 'VCJ', 'type': 'cash', 'pos_method_type': 'voucher',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': voucher_account.id,\n 'default_credit_account_id': voucher_account.id, 'sequence':\n 101})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_voucher_' + str(voucher_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n voucher_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, voucher_journal.id)]})\n statement = [(0, 0, {'journal_id': voucher_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_rounding_journal(self):\n Journal = self.env['account.journal']\n Account = self.env['account.account']\n user = self.env.user\n rounding_journal = Journal.sudo().search([('code', '=', 'RDJ'), (\n 'company_id', '=', user.company_id.id)])\n if rounding_journal:\n return rounding_journal.sudo().write({'pos_method_type':\n 'rounding'})\n rounding_account_old_version = Account.sudo().search([('code', '=',\n 'AAR'), ('company_id', '=', user.company_id.id)])\n if rounding_account_old_version:\n rounding_account = rounding_account_old_version[0]\n else:\n _logger.info('rounding_account have not')\n rounding_account = Account.sudo().create({'name':\n 'Rounding Account', 'code': 'AAR', 'user_type_id': self.env\n .ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AAR\" give rounding pos order'})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n rounding_account.id, 'noupdate': True})\n rounding_journal = Journal.sudo().search([('pos_method_type', '=',\n 'rounding'), ('company_id', '=', user.company_id.id)])\n if rounding_journal:\n rounding_journal[0].sudo().write({'name': 'Rounding',\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'pos_method_type': 'rounding', 'code': 'RDJ'})\n rounding_journal = rounding_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'rounding account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n rounding_journal = Journal.sudo().create({'name': 'Rounding',\n 'code': 'RDJ', 'type': 'cash', 'pos_method_type':\n 'rounding', 'journal_user': True, 'sequence_id':\n new_sequence.id, 'company_id': user.company_id.id,\n 'default_debit_account_id': rounding_account.id,\n 'default_credit_account_id': rounding_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'rounding_journal_' + str(rounding_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n rounding_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, rounding_journal.id)]})\n statement = [(0, 0, {'journal_id': rounding_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n\n def init_credit_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n voucher_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id)])\n if voucher_journal:\n return voucher_journal.sudo().write({'pos_method_type': 'credit'})\n Account = self.env['account.account']\n credit_account_old_version = Account.sudo().search([('code', '=',\n 'ACJ'), ('company_id', '=', user.company_id.id)])\n if credit_account_old_version:\n credit_account = credit_account_old_version[0]\n else:\n credit_account = Account.sudo().create({'name':\n 'Credit Account', 'code': 'CA', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"CA\" give credit payment customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_credit' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n credit_account.id, 'noupdate': True})\n credit_journal = Journal.sudo().search([('code', '=', 'CJ'), (\n 'company_id', '=', user.company_id.id), ('pos_method_type', '=',\n 'credit')])\n if credit_journal:\n credit_journal[0].sudo().write({'credit': True,\n 'default_debit_account_id': credit_account.id,\n 'default_credit_account_id': credit_account.id,\n 'pos_method_type': 'credit', 'sequence': 102})\n credit_journal = credit_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Credit account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'CA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n credit_journal = Journal.sudo().create({'name':\n 'Customer Credit', 'code': 'CJ', 'type': 'cash',\n 'pos_method_type': 'credit', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': credit_account.\n id, 'default_credit_account_id': credit_account.id,\n 'sequence': 102})\n self.env['ir.model.data'].sudo().create({'name': \n 'credit_journal_' + str(credit_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n credit_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, credit_journal.id)]})\n statement = [(0, 0, {'journal_id': credit_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n\n @api.model\n def create(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', 0) < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n config = super(pos_config, self).create(vals)\n if (config.management_session and not config.\n default_cashbox_lines_ids and not config.cash_control):\n raise UserError('Please go to Cash control and add Default Opening'\n )\n if (config.validate_by_user_id and not config.validate_by_user_id.\n pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return config\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n @api.multi\n def remove_database(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n self.env['pos.cache.database'].search([]).unlink()\n self.env['pos.call.log'].search([]).unlink()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n\n @api.multi\n def open_ui(self):\n res = super(pos_config, self).open_ui()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n\n @api.onchange('staff_level')\n def on_change_staff_level(self):\n if self.staff_level and self.staff_level == 'manager':\n self.lock_order_printed_receipt = False\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n <function token>\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n @api.multi\n def remove_caches(self):\n for config in self:\n sessions = self.env['pos.session'].search([('config_id', '=',\n config.id)])\n for session in sessions:\n self.env['bus.bus'].sendmany([[(self.env.cr.dbname,\n 'pos.indexed_db', session.user_id.id), json.dumps({'db':\n self.env.cr.dbname})]])\n if session.state != 'closed':\n session.action_pos_session_closing_control()\n return {'type': 'ir.actions.act_url', 'url': '/pos/web/',\n 'target': 'self'}\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n <function token>\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n <function token>\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n <function token>\n\n @api.multi\n def write(self, vals):\n if vals.get('allow_discount', False) or vals.get('allow_qty', False\n ) or vals.get('allow_price', False):\n vals['allow_numpad'] = True\n if vals.get('expired_days_voucher', None) and vals.get(\n 'expired_days_voucher') < 0:\n raise UserError('Expired days of voucher could not smaller than 0')\n for config in self:\n if vals.get('management_session', False) and not vals.get(\n 'default_cashbox_lines_ids'):\n if (not config.default_cashbox_lines_ids and not config.\n cash_control):\n raise UserError(\n 'Please go to Cash control and add Default Opening')\n res = super(pos_config, self).write(vals)\n for config in self:\n if (config.validate_by_user_id and not config.\n validate_by_user_id.pos_security_pin):\n raise UserError(\n 'Validate user %s have not set pos security pin, please go to Users menu and input security password'\n % config.validate_by_user_id.name)\n if (config.discount_unlock_limit_user_id and not config.\n discount_unlock_limit_user_id.pos_security_pin):\n raise UserError(\n 'User Unlock limit discount: %s ,have not set pos security pin, please go to Users menu and input security password'\n % config.discount_unlock_limit_user_id.name)\n return res\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n <function token>\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n\n @api.onchange('lock_print_invoice_on_pos')\n def _onchange_lock_print_invoice_on_pos(self):\n if self.lock_print_invoice_on_pos == True:\n self.receipt_invoice_number = False\n self.send_invoice_email = True\n else:\n self.receipt_invoice_number = True\n self.send_invoice_email = False\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n <function token>\n <function token>\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n <function token>\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n <function token>\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n <function token>\n <function token>\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n <function token>\n\n @api.multi\n def open_session_cb(self):\n res = super(pos_config, self).open_session_cb()\n self.init_voucher_journal()\n self.init_wallet_journal()\n self.init_credit_journal()\n self.init_return_order_journal()\n self.init_rounding_journal()\n return res\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n\n @api.model\n def install_data(self, model_name=None, min_id=0, max_id=1999):\n cache_obj = self.env['pos.cache.database'].with_context(prefetch_fields\n =False)\n log_obj = self.env['pos.call.log'].with_context(prefetch_fields=False)\n domain = [('id', '>=', min_id), ('id', '<=', max_id)]\n if model_name == 'product.product':\n domain.append(('available_in_pos', '=', True))\n field_list = cache_obj.get_fields_by_model(model_name)\n self.env.cr.execute(\n \"select id from pos_call_log where min_id=%s and max_id=%s and call_model='%s'\"\n % (min_id, max_id, model_name))\n old_logs = self.env.cr.fetchall()\n datas = None\n if len(old_logs) == 0:\n _logger.info('installing %s from %s to %s' % (model_name,\n min_id, max_id))\n datas = self.env[model_name].with_context(prefetch_fields=False\n ).search_read(domain, field_list)\n version_info = odoo.release.version_info[0]\n if version_info == 12:\n all_fields = self.env[model_name].fields_get()\n for data in datas:\n for field, value in data.items():\n if field == 'model':\n continue\n if all_fields[field] and all_fields[field]['type'] in [\n 'date', 'datetime'] and value:\n data[field] = value.strftime(\n DEFAULT_SERVER_DATETIME_FORMAT)\n vals = {'active': True, 'min_id': min_id, 'max_id': max_id,\n 'call_fields': json.dumps(field_list), 'call_results': json\n .dumps(datas), 'call_model': model_name, 'call_domain':\n json.dumps(domain)}\n log_obj.create(vals)\n else:\n old_log_id = old_logs[0][0]\n old_log = log_obj.browse(old_log_id)\n datas = old_log.call_results\n self.env.cr.commit()\n return datas\n <function token>\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n <function token>\n <function token>\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n <function token>\n <function token>\n <function token>\n\n @api.onchange('pos_auto_invoice')\n def _onchange_pos_auto_invoice(self):\n if self.pos_auto_invoice == True:\n self.iface_invoicing = True\n else:\n self.iface_invoicing = False\n <function token>\n <function token>\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n\n def init_return_order_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return return_journal.sudo().write({'pos_method_type': 'return'})\n Account = self.env['account.account']\n return_account_old_version = Account.sudo().search([('code', '=',\n 'ARO'), ('company_id', '=', user.company_id.id)])\n if return_account_old_version:\n return_account = return_account_old_version[0]\n else:\n return_account = Account.sudo().create({'name':\n 'Return Order Account', 'code': 'ARO', 'user_type_id': self\n .env.ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"ARO\" give return order from customer'})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_account' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n return_account.id, 'noupdate': True})\n return_journal = Journal.sudo().search([('code', '=', 'ROJ'), (\n 'company_id', '=', user.company_id.id)])\n if return_journal:\n return_journal[0].sudo().write({'default_debit_account_id':\n return_account.id, 'default_credit_account_id':\n return_account.id, 'pos_method_type': 'return'})\n return_journal = return_journal[0]\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Return account ' + str(user.company_id.id), 'padding': 3,\n 'prefix': 'RA ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n return_journal = Journal.sudo().create({'name':\n 'Return Order Customer', 'code': 'ROJ', 'type': 'cash',\n 'pos_method_type': 'return', 'journal_user': True,\n 'sequence_id': new_sequence.id, 'company_id': user.\n company_id.id, 'default_debit_account_id': return_account.\n id, 'default_credit_account_id': return_account.id,\n 'sequence': 103})\n self.env['ir.model.data'].sudo().create({'name': \n 'return_journal_' + str(return_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n return_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, return_journal.id)]})\n statement = [(0, 0, {'journal_id': return_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return True\n <function token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n\n @api.model\n def get_cached_file(self):\n start = timeit.default_timer()\n _logger.info('==> begin get_cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if not os.path.exists(file_name):\n return False\n else:\n with open(file_name) as f:\n datas = json.load(f)\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return datas\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n <function token>\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_wallet_journal(self):\n Journal = self.env['account.journal']\n user = self.env.user\n wallet_journal = Journal.sudo().search([('code', '=', 'UWJ'), (\n 'company_id', '=', user.company_id.id)])\n if wallet_journal:\n return wallet_journal.sudo().write({'pos_method_type': 'wallet'})\n Account = self.env['account.account']\n wallet_account_old_version = Account.sudo().search([('code', '=',\n 'AUW'), ('company_id', '=', user.company_id.id)])\n if wallet_account_old_version:\n wallet_account = wallet_account_old_version[0]\n else:\n wallet_account = Account.sudo().create({'name':\n 'Account wallet', 'code': 'AUW', 'user_type_id': self.env.\n ref('account.data_account_type_current_assets').id,\n 'company_id': user.company_id.id, 'note':\n 'code \"AUW\" auto give wallet amount of customers'})\n self.env['ir.model.data'].sudo().create({'name': \n 'account_use_wallet' + str(user.company_id.id), 'model':\n 'account.account', 'module': 'pos_retail', 'res_id':\n wallet_account.id, 'noupdate': True})\n wallet_journal_inactive = Journal.sudo().search([('code', '=',\n 'UWJ'), ('company_id', '=', user.company_id.id), (\n 'pos_method_type', '=', 'wallet')])\n if wallet_journal_inactive:\n wallet_journal_inactive.sudo().write({\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id,\n 'pos_method_type': 'wallet', 'sequence': 100})\n wallet_journal = wallet_journal_inactive\n else:\n new_sequence = self.env['ir.sequence'].sudo().create({'name': \n 'Account Default Wallet Journal ' + str(user.company_id.id),\n 'padding': 3, 'prefix': 'UW ' + str(user.company_id.id)})\n self.env['ir.model.data'].sudo().create({'name': \n 'journal_sequence' + str(new_sequence.id), 'model':\n 'ir.sequence', 'module': 'pos_retail', 'res_id':\n new_sequence.id, 'noupdate': True})\n wallet_journal = Journal.sudo().create({'name': 'Wallet',\n 'code': 'UWJ', 'type': 'cash', 'pos_method_type': 'wallet',\n 'journal_user': True, 'sequence_id': new_sequence.id,\n 'company_id': user.company_id.id,\n 'default_debit_account_id': wallet_account.id,\n 'default_credit_account_id': wallet_account.id, 'sequence':\n 100})\n self.env['ir.model.data'].sudo().create({'name': \n 'use_wallet_journal_' + str(wallet_journal.id), 'model':\n 'account.journal', 'module': 'pos_retail', 'res_id': int(\n wallet_journal.id), 'noupdate': True})\n config = self\n config.sudo().write({'journal_ids': [(4, wallet_journal.id)]})\n statement = [(0, 0, {'journal_id': wallet_journal.id, 'user_id':\n user.id, 'company_id': user.company_id.id})]\n current_session = config.current_session_id\n current_session.sudo().write({'statement_ids': statement})\n return\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n <function token>\n\n def get_fields_by_model(self, model):\n all_fields = self.env[model].fields_get()\n fields_list = []\n for field, value in all_fields.items():\n if field == 'model' or all_fields[field]['type'] in ['one2many',\n 'binary']:\n continue\n else:\n fields_list.append(field)\n return fields_list\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @api.model\n def store_cached_file(self, datas):\n start = timeit.default_timer()\n _logger.info('==> begin cached_file')\n os.chdir(os.path.dirname(__file__))\n path = os.getcwd()\n file_name = path + '/pos.json'\n if os.path.exists(file_name):\n os.remove(file_name)\n with io.open(file_name, 'w', encoding='utf8') as outfile:\n str_ = json.dumps(datas, indent=4, sort_keys=True, separators=(\n ',', ': '), ensure_ascii=False)\n outfile.write(to_unicode(str_))\n stop = timeit.default_timer()\n _logger.info(stop - start)\n return True\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n\n\nclass pos_config(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<code token>\n<assignment token>\n<class token>\n<class token>\n" ]
false
98,358
06a26ffbad2fb15f6f73c00ff2e69027c4267d10
# -*- coding: utf-8 -*- "Representation of the reference value of a function." # Copyright (C) 2008-2016 Martin Sandve Alnæs # # This file is part of UFL. # # UFL is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # UFL is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with UFL. If not, see <http://www.gnu.org/licenses/>. from ufl.core.ufl_type import ufl_type from ufl.core.operator import Operator from ufl.core.terminal import FormArgument from ufl.log import error @ufl_type(num_ops=1, is_index_free=True, is_terminal_modifier=True, is_in_reference_frame=True) class ReferenceValue(Operator): "Representation of the reference cell value of a form argument." __slots__ = () def __init__(self, f): if not isinstance(f, FormArgument): error("Can only take reference value of form arguments.") Operator.__init__(self, (f,)) @property def ufl_shape(self): return self.ufl_operands[0].ufl_element().reference_value_shape() def evaluate(self, x, mapping, component, index_values, derivatives=()): "Get child from mapping and return the component asked for." error("Evaluate not implemented.") def __str__(self): return "reference_value(%s)" % self.ufl_operands[0]
[ "# -*- coding: utf-8 -*-\n\"Representation of the reference value of a function.\"\n\n# Copyright (C) 2008-2016 Martin Sandve Alnæs\n#\n# This file is part of UFL.\n#\n# UFL is free software: you can redistribute it and/or modify\n# it under the terms of the GNU Lesser General Public License as published by\n# the Free Software Foundation, either version 3 of the License, or\n# (at your option) any later version.\n#\n# UFL is distributed in the hope that it will be useful,\n# but WITHOUT ANY WARRANTY; without even the implied warranty of\n# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n# GNU Lesser General Public License for more details.\n#\n# You should have received a copy of the GNU Lesser General Public License\n# along with UFL. If not, see <http://www.gnu.org/licenses/>.\n\nfrom ufl.core.ufl_type import ufl_type\nfrom ufl.core.operator import Operator\nfrom ufl.core.terminal import FormArgument\nfrom ufl.log import error\n\n\n@ufl_type(num_ops=1,\n is_index_free=True,\n is_terminal_modifier=True,\n is_in_reference_frame=True)\nclass ReferenceValue(Operator):\n \"Representation of the reference cell value of a form argument.\"\n __slots__ = ()\n\n def __init__(self, f):\n if not isinstance(f, FormArgument):\n error(\"Can only take reference value of form arguments.\")\n Operator.__init__(self, (f,))\n\n @property\n def ufl_shape(self):\n return self.ufl_operands[0].ufl_element().reference_value_shape()\n\n def evaluate(self, x, mapping, component, index_values, derivatives=()):\n \"Get child from mapping and return the component asked for.\"\n error(\"Evaluate not implemented.\")\n\n def __str__(self):\n return \"reference_value(%s)\" % self.ufl_operands[0]\n", "<docstring token>\nfrom ufl.core.ufl_type import ufl_type\nfrom ufl.core.operator import Operator\nfrom ufl.core.terminal import FormArgument\nfrom ufl.log import error\n\n\n@ufl_type(num_ops=1, is_index_free=True, is_terminal_modifier=True,\n is_in_reference_frame=True)\nclass ReferenceValue(Operator):\n \"\"\"Representation of the reference cell value of a form argument.\"\"\"\n __slots__ = ()\n\n def __init__(self, f):\n if not isinstance(f, FormArgument):\n error('Can only take reference value of form arguments.')\n Operator.__init__(self, (f,))\n\n @property\n def ufl_shape(self):\n return self.ufl_operands[0].ufl_element().reference_value_shape()\n\n def evaluate(self, x, mapping, component, index_values, derivatives=()):\n \"\"\"Get child from mapping and return the component asked for.\"\"\"\n error('Evaluate not implemented.')\n\n def __str__(self):\n return 'reference_value(%s)' % self.ufl_operands[0]\n", "<docstring token>\n<import token>\n\n\n@ufl_type(num_ops=1, is_index_free=True, is_terminal_modifier=True,\n is_in_reference_frame=True)\nclass ReferenceValue(Operator):\n \"\"\"Representation of the reference cell value of a form argument.\"\"\"\n __slots__ = ()\n\n def __init__(self, f):\n if not isinstance(f, FormArgument):\n error('Can only take reference value of form arguments.')\n Operator.__init__(self, (f,))\n\n @property\n def ufl_shape(self):\n return self.ufl_operands[0].ufl_element().reference_value_shape()\n\n def evaluate(self, x, mapping, component, index_values, derivatives=()):\n \"\"\"Get child from mapping and return the component asked for.\"\"\"\n error('Evaluate not implemented.')\n\n def __str__(self):\n return 'reference_value(%s)' % self.ufl_operands[0]\n", "<docstring token>\n<import token>\n\n\n@ufl_type(num_ops=1, is_index_free=True, is_terminal_modifier=True,\n is_in_reference_frame=True)\nclass ReferenceValue(Operator):\n <docstring token>\n __slots__ = ()\n\n def __init__(self, f):\n if not isinstance(f, FormArgument):\n error('Can only take reference value of form arguments.')\n Operator.__init__(self, (f,))\n\n @property\n def ufl_shape(self):\n return self.ufl_operands[0].ufl_element().reference_value_shape()\n\n def evaluate(self, x, mapping, component, index_values, derivatives=()):\n \"\"\"Get child from mapping and return the component asked for.\"\"\"\n error('Evaluate not implemented.')\n\n def __str__(self):\n return 'reference_value(%s)' % self.ufl_operands[0]\n", "<docstring token>\n<import token>\n\n\n@ufl_type(num_ops=1, is_index_free=True, is_terminal_modifier=True,\n is_in_reference_frame=True)\nclass ReferenceValue(Operator):\n <docstring token>\n <assignment token>\n\n def __init__(self, f):\n if not isinstance(f, FormArgument):\n error('Can only take reference value of form arguments.')\n Operator.__init__(self, (f,))\n\n @property\n def ufl_shape(self):\n return self.ufl_operands[0].ufl_element().reference_value_shape()\n\n def evaluate(self, x, mapping, component, index_values, derivatives=()):\n \"\"\"Get child from mapping and return the component asked for.\"\"\"\n error('Evaluate not implemented.')\n\n def __str__(self):\n return 'reference_value(%s)' % self.ufl_operands[0]\n", "<docstring token>\n<import token>\n\n\n@ufl_type(num_ops=1, is_index_free=True, is_terminal_modifier=True,\n is_in_reference_frame=True)\nclass ReferenceValue(Operator):\n <docstring token>\n <assignment token>\n <function token>\n\n @property\n def ufl_shape(self):\n return self.ufl_operands[0].ufl_element().reference_value_shape()\n\n def evaluate(self, x, mapping, component, index_values, derivatives=()):\n \"\"\"Get child from mapping and return the component asked for.\"\"\"\n error('Evaluate not implemented.')\n\n def __str__(self):\n return 'reference_value(%s)' % self.ufl_operands[0]\n", "<docstring token>\n<import token>\n\n\n@ufl_type(num_ops=1, is_index_free=True, is_terminal_modifier=True,\n is_in_reference_frame=True)\nclass ReferenceValue(Operator):\n <docstring token>\n <assignment token>\n <function token>\n\n @property\n def ufl_shape(self):\n return self.ufl_operands[0].ufl_element().reference_value_shape()\n <function token>\n\n def __str__(self):\n return 'reference_value(%s)' % self.ufl_operands[0]\n", "<docstring token>\n<import token>\n\n\n@ufl_type(num_ops=1, is_index_free=True, is_terminal_modifier=True,\n is_in_reference_frame=True)\nclass ReferenceValue(Operator):\n <docstring token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n def __str__(self):\n return 'reference_value(%s)' % self.ufl_operands[0]\n", "<docstring token>\n<import token>\n\n\n@ufl_type(num_ops=1, is_index_free=True, is_terminal_modifier=True,\n is_in_reference_frame=True)\nclass ReferenceValue(Operator):\n <docstring token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<class token>\n" ]
false
98,359
46deb53260477c4eddae31f1eac5f41842238ed1
import csv import datetime name = input('What country are you interested in (e.g. USA)? ') year_list = [] count_list = [] YEAR_INDEX = 0 COUNTRY_INDEX = 5 MF_INDEX = 6 CATEGORY_INDEX = 2 EVENT_INDEX = 3 years = {} with open('summer.csv', 'r', encoding="utf-8") as csvfile: reader = csv.reader(csvfile) next(reader, None) for row in reader: mf = row[MF_INDEX] event = row[EVENT_INDEX] country = row[COUNTRY_INDEX] if country == name and event == 'Swimming': dt = int(row[YEAR_INDEX]) full_date = datetime.date(dt, 1, 1) if not years.get(full_date): years[full_date] = 0 years[full_date] += 1 year_list = sorted(years) count_list = [] for y in year_list: count_list.append(years[y]) print(str(y) + ": " + str(years[y]))
[ "import csv\nimport datetime\n\n\nname = input('What country are you interested in (e.g. USA)? ')\nyear_list = []\ncount_list = []\n\nYEAR_INDEX = 0\nCOUNTRY_INDEX = 5\nMF_INDEX = 6\nCATEGORY_INDEX = 2\nEVENT_INDEX = 3\nyears = {}\nwith open('summer.csv', 'r', encoding=\"utf-8\") as csvfile:\n reader = csv.reader(csvfile)\n next(reader, None)\n for row in reader:\n mf = row[MF_INDEX]\n event = row[EVENT_INDEX]\n country = row[COUNTRY_INDEX]\n if country == name and event == 'Swimming':\n dt = int(row[YEAR_INDEX])\n full_date = datetime.date(dt, 1, 1)\n if not years.get(full_date):\n years[full_date] = 0\n years[full_date] += 1\n\nyear_list = sorted(years)\ncount_list = []\nfor y in year_list:\n count_list.append(years[y])\n print(str(y) + \": \" + str(years[y]))\n", "import csv\nimport datetime\nname = input('What country are you interested in (e.g. USA)? ')\nyear_list = []\ncount_list = []\nYEAR_INDEX = 0\nCOUNTRY_INDEX = 5\nMF_INDEX = 6\nCATEGORY_INDEX = 2\nEVENT_INDEX = 3\nyears = {}\nwith open('summer.csv', 'r', encoding='utf-8') as csvfile:\n reader = csv.reader(csvfile)\n next(reader, None)\n for row in reader:\n mf = row[MF_INDEX]\n event = row[EVENT_INDEX]\n country = row[COUNTRY_INDEX]\n if country == name and event == 'Swimming':\n dt = int(row[YEAR_INDEX])\n full_date = datetime.date(dt, 1, 1)\n if not years.get(full_date):\n years[full_date] = 0\n years[full_date] += 1\nyear_list = sorted(years)\ncount_list = []\nfor y in year_list:\n count_list.append(years[y])\n print(str(y) + ': ' + str(years[y]))\n", "<import token>\nname = input('What country are you interested in (e.g. USA)? ')\nyear_list = []\ncount_list = []\nYEAR_INDEX = 0\nCOUNTRY_INDEX = 5\nMF_INDEX = 6\nCATEGORY_INDEX = 2\nEVENT_INDEX = 3\nyears = {}\nwith open('summer.csv', 'r', encoding='utf-8') as csvfile:\n reader = csv.reader(csvfile)\n next(reader, None)\n for row in reader:\n mf = row[MF_INDEX]\n event = row[EVENT_INDEX]\n country = row[COUNTRY_INDEX]\n if country == name and event == 'Swimming':\n dt = int(row[YEAR_INDEX])\n full_date = datetime.date(dt, 1, 1)\n if not years.get(full_date):\n years[full_date] = 0\n years[full_date] += 1\nyear_list = sorted(years)\ncount_list = []\nfor y in year_list:\n count_list.append(years[y])\n print(str(y) + ': ' + str(years[y]))\n", "<import token>\n<assignment token>\nwith open('summer.csv', 'r', encoding='utf-8') as csvfile:\n reader = csv.reader(csvfile)\n next(reader, None)\n for row in reader:\n mf = row[MF_INDEX]\n event = row[EVENT_INDEX]\n country = row[COUNTRY_INDEX]\n if country == name and event == 'Swimming':\n dt = int(row[YEAR_INDEX])\n full_date = datetime.date(dt, 1, 1)\n if not years.get(full_date):\n years[full_date] = 0\n years[full_date] += 1\n<assignment token>\nfor y in year_list:\n count_list.append(years[y])\n print(str(y) + ': ' + str(years[y]))\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,360
ac9e3ab1f3be57baaa36175adfb5ca4a29d79e91
""" This module provides a minimal type system, and ways to promote types, as well as ways to convert to an LLVM type system. A set of predefined types are defined. Types may be sliced to turn them into array types, in the same way as the memoryview syntax. >>> char char >>> int8[:, :, :] int8[:, :, :] >>> int8.signed True >>> uint8 uint8 >>> uint8.signed False >>> char.pointer() char * >>> int_[:, ::1] int[:, ::1] >>> int_[::1, :] int[::1, :] >>> double[:, ::1, :] Traceback (most recent call last): ... InvalidTypeSpecification: Step may only be provided once, and only in the first or last dimension. """ __all__ = ['Py_ssize_t', 'void', 'char', 'uchar', 'int_', 'long_', 'bool_', 'object_', 'float_', 'double', 'longdouble', 'float32', 'float64', 'float128', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'complex64', 'complex128', 'complex256', 'npy_intp'] import sys import math import ctypes try: import llvm.core from llvm import core as lc except ImportError: llvm = None import miniutils import minierror # Check below taken from Numba if sys.maxint > 2**33: _plat_bits = 64 else: _plat_bits = 32 class TypeMapper(object): """ >>> import miniast >>> context = miniast.Context() >>> miniast.typemapper = TypeMapper(context) >>> tm = context.typemapper >>> tm.promote_types(int8, double) double >>> tm.promote_types(int8, uint8) uint8 >>> tm.promote_types(int8, complex128) complex128 >>> tm.promote_types(int8, object_) PyObject * >>> tm.promote_types(int64, float32) float >>> tm.promote_types(int64, complex64) complex64 >>> tm.promote_types(float32, float64) double >>> tm.promote_types(float32, complex64) complex64 >>> tm.promote_types(complex64, complex128) complex128 >>> tm.promote_types(complex256, object_) PyObject * >>> tm.promote_types(float32.pointer(), Py_ssize_t) float * >>> tm.promote_types(float32.pointer(), Py_ssize_t) float * >>> tm.promote_types(float32.pointer(), uint8) float * >>> tm.promote_types(float32.pointer(), float64.pointer()) Traceback (most recent call last): ... UnpromotableTypeError: (float *, double *) >>> tm.promote_types(float32[:, ::1], float32[:, ::1]) float[:, ::1] >>> tm.promote_types(float32[:, ::1], float64[:, ::1]) double[:, ::1] >>> tm.promote_types(float32[:, ::1], float64[::1, :]) double[:, :] >>> tm.promote_types(float32[:, :], complex128[:, :]) complex128[:, :] >>> tm.promote_types(int_[:, :], object_[:, ::1]) PyObject *[:, :] """ def __init__(self, context): self.context = context def map_type(self, opaque_type): if opaque_type.is_int: return int_ elif opaque_type.is_float: return float_ elif opaque_type.is_double: return double elif opaque_type.is_pointer: return PointerType(self.map_type(opaque_type.base_type)) elif opaque_type.is_py_ssize_t: return Py_ssize_t elif opaque_type.is_char: return char else: raise minierror.UnmappableTypeError(opaque_type) def to_llvm(self, type): "Return an LLVM type for the given type." raise NotImplementedError def from_python(self, value): "Get a type from a python value" np = sys.modules.get('numpy', None) if isinstance(value, float): return double elif isinstance(value, (int, long)): return int_ elif isinstance(value, complex): return complex128 elif np and isinstance(value, np.ndarray): dtype = map_dtype(value.dtype) return ArrayType(dtype, value.ndim, is_c_contig=value.flags['C_CONTIGUOUS'], is_f_contig=value.flags['F_CONTIGUOUS']) else: return object_ # raise minierror.UnmappableTypeError(type(value)) def promote_numeric(self, type1, type2): "Promote two numeric types" return max([type1, type2], key=lambda type: type.rank) def promote_arrays(self, type1, type2): "Promote two array types in an expression to a new array type" equal_ndim = type1.ndim == type2.ndim return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim=max(type1.ndim, type2.ndim), is_c_contig=(equal_ndim and type1.is_c_contig and type2.is_c_contig), is_f_contig=(equal_ndim and type1.is_f_contig and type2.is_f_contig)) def promote_types(self, type1, type2): "Promote two arbitrary types" if type1.is_pointer and type2.is_int_like: return type1 elif type2.is_pointer and type2.is_int_like: return type2 elif type1.is_object or type2.is_object: return object_ elif type1.is_numeric and type2.is_numeric: return self.promote_numeric(type1, type2) elif type1.is_array and type2: return self.promote_arrays(type1, type2) else: raise minierror.UnpromotableTypeError((type1, type2)) def map_dtype(dtype): """ >>> _map_dtype(np.dtype(np.int32)) int32 >>> _map_dtype(np.dtype(np.int64)) int64 >>> _map_dtype(np.dtype(np.object)) PyObject * >>> _map_dtype(np.dtype(np.float64)) double >>> _map_dtype(np.dtype(np.complex128)) complex128 """ item_idx = int(math.log(dtype.itemsize, 2)) if dtype.kind == 'i': return [int8, int16, int32, int64][item_idx] elif dtype.kind == 'u': return [uint8, uint16, uint32, uint64][item_idx] elif dtype.kind == 'f': if dtype.itemsize == 2: pass # half floats not supported yet elif dtype.itemsize == 4: return float32 elif dtype.itemsize == 8: return float64 elif dtype.itemsize == 16: return float128 elif dtype.kind == 'b': return int8 elif dtype.kind == 'c': if dtype.itemsize == 8: return complex64 elif dtype.itemsize == 16: return complex128 elif dtype.itemsize == 32: return complex256 elif dtype.kind == 'O': return object_ NONE_KIND = 0 INT_KIND = 1 FLOAT_KIND = 2 COMPLEX_KIND = 3 class Type(miniutils.ComparableObjectMixin): """ Base class for all types. .. attribute:: subtypes The list of subtypes to allow comparing and hashing them recursively """ is_array = False is_pointer = False is_typewrapper = False is_bool = False is_numeric = False is_py_ssize_t = False is_char = False is_int = False is_float = False is_c_string = False is_object = False is_function = False is_int_like = False is_complex = False is_void = False kind = NONE_KIND subtypes = [] def __init__(self, **kwds): vars(self).update(kwds) self.qualifiers = kwds.get('qualifiers', frozenset()) def qualify(self, *qualifiers): "Qualify this type with a qualifier such as ``const`` or ``restrict``" qualifiers = list(qualifiers) qualifiers.extend(self.qualifiers) attribs = dict(vars(self), qualifiers=qualifiers) return type(self)(**attribs) def unqualify(self, *unqualifiers): "Remove the given qualifiers from the type" unqualifiers = set(unqualifiers) qualifiers = [q for q in self.qualifiers if q not in unqualifiers] attribs = dict(vars(self), qualifiers=qualifiers) return type(self)(**attribs) def pointer(self): "Get a pointer to this type" return PointerType(self) @property def subtype_list(self): return [getattr(self, subtype) for subtype in self.subtypes] @property def comparison_type_list(self): return self.subtype_list def __eq__(self, other): # Don't use isinstance here, compare on exact type to be consistent # with __hash__. Override where sensible return (type(self) is type(other) and self.comparison_type_list == other.comparison_type_list) def __ne__(self, other): return not self == other def __hash__(self): h = hash(type(self)) for subtype in self.comparison_type_list: h = h ^ hash(subtype) return h def __getitem__(self, item): assert isinstance(item, (tuple, slice)) def verify_slice(s): if s.start or s.stop or s.step not in (None, 1): raise minierror.InvalidTypeSpecification( "Only a step of 1 may be provided to indicate C or " "Fortran contiguity") if isinstance(item, tuple): step_idx = None for idx, s in enumerate(item): verify_slice(s) if s.step and (step_idx or idx not in (0, len(item) - 1)): raise minierror.InvalidTypeSpecification( "Step may only be provided once, and only in the " "first or last dimension.") if s.step == 1: step_idx = idx return ArrayType(self, len(item), is_c_contig=step_idx == len(item) - 1, is_f_contig=step_idx == 0) else: verify_slice(item) return ArrayType(self, 1, is_c_contig=bool(item.step)) def to_llvm(self, context): "Get a corresponding llvm type from this type" return context.to_llvm(self) def __getattr__(self, attr): if attr.startswith('is_'): return False return getattr(type(self), attr) class ArrayType(Type): is_array = True subtypes = ['dtype'] def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False, inner_contig=False, broadcasting=None): super(ArrayType, self).__init__() self.dtype = dtype self.ndim = ndim self.is_c_contig = is_c_contig self.is_f_contig = is_f_contig self.inner_contig = inner_contig or is_c_contig or is_f_contig self.broadcasting = broadcasting or (True,) * ndim @property def comparison_type_list(self): return [self.dtype, self.is_c_contig, self.is_f_contig, self.inner_contig] def pointer(self): raise Exception("You probably want a pointer type to the dtype") def to_llvm(self, context): # raise Exception("Obtain a pointer to the dtype and convert that " # "to an LLVM type") return context.to_llvm(self) def __repr__(self): axes = [":"] * self.ndim if self.is_c_contig: axes[-1] = "::1" elif self.is_f_contig: axes[0] = "::1" return "%s[%s]" % (self.dtype, ", ".join(axes)) class PointerType(Type): is_pointer = True subtypes = ['base_type'] def __init__(self, base_type, **kwds): super(PointerType, self).__init__(**kwds) self.base_type = base_type def __repr__(self): return "%s *%s" % (self.base_type, " ".join(self.qualifiers)) def to_llvm(self, context): return llvm.core.Type.pointer(self.base_type.to_llvm(context)) class CArrayType(Type): is_carray = True subtypes = ['base_type'] def __init__(self, base_type, size, **kwds): super(CArrayType, self).__init__(**kwds) self.base_type = base_type self.size = size def __repr__(self): return "%s[%d]" % (self.base_type, self.length) def to_llvm(self, context): return llvm.core.Type.array(self.base_type.to_llvm(context), self.size) class TypeWrapper(Type): is_typewrapper = True subtypes = ['opaque_type'] def __init__(self, opaque_type, context, **kwds): super(TypeWrapper, self).__init__(**kwds) self.opaque_type = opaque_type self.context = context def __repr__(self): return self.context.declare_type(self) def __deepcopy__(self, memo): return self class NamedType(Type): name = None def __eq__(self, other): return isinstance(other, NamedType) and self.name == other.name def __repr__(self): if self.qualifiers: return "%s %s" % (self.name, " ".join(self.qualifiers)) return self.name class BoolType(NamedType): is_bool = True name = "bool" def __repr__(self): return "int %s" % " ".join(self.qualifiers) def to_llvm(self, context): return int8.to_llvm(context) class NumericType(NamedType): """ Base class for numeric types. .. attribute:: name name of the type .. attribute:: itemsize sizeof(type) .. attribute:: rank ordering of numeric types """ is_numeric = True class IntType(NumericType): is_int = True is_int_like = True name = "int" signed = True rank = 4 itemsize = 4 kind = INT_KIND def to_llvm(self, context): if self.itemsize == 1: return lc.Type.int(8) elif self.itemsize == 2: return lc.Type.int(16) elif self.itemsize == 4: return lc.Type.int(32) else: assert self.itemsize == 8, self return lc.Type.int(64) class FloatType(NumericType): is_float = True kind = FLOAT_KIND @property def comparison_type_list(self): return self.subtype_list + [self.itemsize] def to_llvm(self, context): if self.itemsize == 4: return lc.Type.float() elif self.itemsize == 8: return lc.Type.double() else: # Note: what about fp80/fp96? assert self.itemsize == 16 return lc.Type.fp128() class ComplexType(NumericType): is_complex = True subtypes = ['base_type'] kind = COMPLEX_KIND class Py_ssize_t_Type(IntType): is_py_ssize_t = True name = "Py_ssize_t" rank = 9 signed = True def __init__(self, **kwds): super(Py_ssize_t_Type, self).__init__(**kwds) self.itemsize = _plat_bits / 8 class NPyIntp(IntType): is_numpy_intp = True name = "npy_intp" def __init__(self, **kwds): super(NPyIntp, self).__init__(**kwds) import numpy as np ctypes_array = np.empty(0).ctypes.strides self.itemsize = ctypes.sizeof(ctypes_array._type_) class CharType(IntType): is_char = True name = "char" rank = 1 signed = True def to_llvm(self, context): return lc.Type.int(8) class CStringType(Type): is_c_string = True def __repr__(self): return "const char *" def to_llvm(self, context): return char.pointer().to_llvm(context) class VoidType(NamedType): is_void = True name = "void" def to_llvm(self, context): return lc.Type.void() class ObjectType(Type): is_object = True def __repr__(self): return "PyObject *" class FunctionType(Type): subtypes = ['return_type', 'args'] is_function = True is_vararg = False def to_llvm(self, context): return lc.Type.function(self.return_type.to_llvm(context), [arg_type.to_llvm(context) for arg_type in self.args], self.is_vararg) def __str__(self): args = map(str, self.args) if self.is_vararg: args.append("...") return "%s (*)(%s)" % (self.return_type, ", ".join(args)) class VectorType(Type): subtypes = ['element_type'] is_vector = True vector_size = None def __init__(self, element_type, vector_size, **kwds): super(VectorType, self).__init__(**kwds) assert ((element_type.is_int or element_type.is_float) and element_type.itemsize in (4, 8)), element_type self.element_type = element_type self.vector_size = vector_size def to_llvm(self, context): return lc.Type.vector(self.element_type.to_llvm(context), self.vector_size) @property def comparison_type_list(self): return self.subtype_list + [self.vector_size] def __str__(self): itemsize = self.element_type.itemsize if self.element_type.is_float: if itemsize == 4: return '__m128' else: return '__m128d' else: if itemsize == 4: return '__m128i' else: raise NotImplementedError # ### Internal types # c_string_type = CStringType() void = VoidType() # ### Public types # Py_ssize_t = Py_ssize_t_Type() npy_intp = NPyIntp() size_t = IntType(name="size_t", rank=8.5, itemsize=8, signed=False) char = CharType(name="char") short = IntType(name="short", rank=2, itemsize=2) int_ = IntType(name="int", rank=4, itemsize=4) long_ = IntType(name="long", rank=5, itemsize=4) longlong = IntType(name="PY_LONG_LONG", rank=8, itemsize=8) uchar = CharType(name="unsigned char", signed=False) ushort = IntType(name="unsigned short", rank=2.5, itemsize=2, signed=False) uint = IntType(name="unsigned int", rank=4.5, itemsize=4, signed=False) ulong = IntType(name="unsigned long", rank=5.5, itemsize=4, signed=False) ulonglong = IntType(name="unsigned PY_LONG_LONG", rank=8.5, itemsize=8, signed=False) bool_ = BoolType() object_ = ObjectType() int8 = IntType(name="int8", rank=1, itemsize=1) int16 = IntType(name="int16", rank=2, itemsize=2) int32 = IntType(name="int32", rank=4, itemsize=4) int64 = IntType(name="int64", rank=8, itemsize=8) uint8 = IntType(name="uint8", rank=1.5, signed=False, itemsize=1) uint16 = IntType(name="uint16", rank=2.5, signed=False, itemsize=2) uint32 = IntType(name="uint32", rank=4.5, signed=False, itemsize=4) uint64 = IntType(name="uint64", rank=8.5, signed=False, itemsize=8) float32 = float_ = FloatType(name="float", rank=10, itemsize=4) float64 = double = FloatType(name="double", rank=12, itemsize=8) float128 = longdouble = FloatType(name="long double", rank=14, itemsize=16) complex64 = ComplexType(name="complex64", base_type=float32, rank=16, itemsize=8) complex128 = ComplexType(name="complex128", base_type=float64, rank=18, itemsize=16) complex256 = ComplexType(name="complex256", base_type=float128, rank=20, itemsize=32) if __name__ == '__main__': import doctest doctest.testmod()
[ "\"\"\"\nThis module provides a minimal type system, and ways to promote types, as\nwell as ways to convert to an LLVM type system. A set of predefined types are\ndefined. Types may be sliced to turn them into array types, in the same way\nas the memoryview syntax.\n\n>>> char\nchar\n>>> int8[:, :, :]\nint8[:, :, :]\n>>> int8.signed\nTrue\n>>> uint8\nuint8\n>>> uint8.signed\nFalse\n\n>>> char.pointer()\nchar *\n>>> int_[:, ::1]\nint[:, ::1]\n>>> int_[::1, :]\nint[::1, :]\n>>> double[:, ::1, :]\nTraceback (most recent call last):\n ...\nInvalidTypeSpecification: Step may only be provided once, and only in the first or last dimension.\n\"\"\"\n\n__all__ = ['Py_ssize_t', 'void', 'char', 'uchar', 'int_', 'long_', 'bool_', 'object_',\n 'float_', 'double', 'longdouble', 'float32', 'float64', 'float128',\n 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64',\n 'complex64', 'complex128', 'complex256', 'npy_intp']\n\nimport sys\nimport math\nimport ctypes\n\ntry:\n import llvm.core\n from llvm import core as lc\nexcept ImportError:\n llvm = None\n\nimport miniutils\nimport minierror\n\n# Check below taken from Numba\nif sys.maxint > 2**33:\n _plat_bits = 64\nelse:\n _plat_bits = 32\n\n\nclass TypeMapper(object):\n \"\"\"\n >>> import miniast\n >>> context = miniast.Context()\n >>> miniast.typemapper = TypeMapper(context)\n >>> tm = context.typemapper\n\n >>> tm.promote_types(int8, double)\n double\n >>> tm.promote_types(int8, uint8)\n uint8\n >>> tm.promote_types(int8, complex128)\n complex128\n >>> tm.promote_types(int8, object_)\n PyObject *\n\n >>> tm.promote_types(int64, float32)\n float\n >>> tm.promote_types(int64, complex64)\n complex64\n >>> tm.promote_types(float32, float64)\n double\n >>> tm.promote_types(float32, complex64)\n complex64\n >>> tm.promote_types(complex64, complex128)\n complex128\n >>> tm.promote_types(complex256, object_)\n PyObject *\n\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), uint8)\n float *\n\n >>> tm.promote_types(float32.pointer(), float64.pointer())\n Traceback (most recent call last):\n ...\n UnpromotableTypeError: (float *, double *)\n\n >>> tm.promote_types(float32[:, ::1], float32[:, ::1])\n float[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[:, ::1])\n double[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[::1, :])\n double[:, :]\n >>> tm.promote_types(float32[:, :], complex128[:, :])\n complex128[:, :]\n >>> tm.promote_types(int_[:, :], object_[:, ::1])\n PyObject *[:, :]\n \"\"\"\n\n def __init__(self, context):\n self.context = context\n\n def map_type(self, opaque_type):\n if opaque_type.is_int:\n return int_\n elif opaque_type.is_float:\n return float_\n elif opaque_type.is_double:\n return double\n elif opaque_type.is_pointer:\n return PointerType(self.map_type(opaque_type.base_type))\n elif opaque_type.is_py_ssize_t:\n return Py_ssize_t\n elif opaque_type.is_char:\n return char\n else:\n raise minierror.UnmappableTypeError(opaque_type)\n\n def to_llvm(self, type):\n \"Return an LLVM type for the given type.\"\n raise NotImplementedError\n\n def from_python(self, value):\n \"Get a type from a python value\"\n np = sys.modules.get('numpy', None)\n\n if isinstance(value, float):\n return double\n elif isinstance(value, (int, long)):\n return int_\n elif isinstance(value, complex):\n return complex128\n elif np and isinstance(value, np.ndarray):\n dtype = map_dtype(value.dtype)\n return ArrayType(dtype, value.ndim,\n is_c_contig=value.flags['C_CONTIGUOUS'],\n is_f_contig=value.flags['F_CONTIGUOUS'])\n else:\n return object_\n # raise minierror.UnmappableTypeError(type(value))\n\n def promote_numeric(self, type1, type2):\n \"Promote two numeric types\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"Promote two array types in an expression to a new array type\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype),\n ndim=max(type1.ndim, type2.ndim),\n is_c_contig=(equal_ndim and type1.is_c_contig and\n type2.is_c_contig),\n is_f_contig=(equal_ndim and type1.is_f_contig and\n type2.is_f_contig))\n\n def promote_types(self, type1, type2):\n \"Promote two arbitrary types\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\ndef map_dtype(dtype):\n \"\"\"\n >>> _map_dtype(np.dtype(np.int32))\n int32\n >>> _map_dtype(np.dtype(np.int64))\n int64\n >>> _map_dtype(np.dtype(np.object))\n PyObject *\n >>> _map_dtype(np.dtype(np.float64))\n double\n >>> _map_dtype(np.dtype(np.complex128))\n complex128\n \"\"\"\n item_idx = int(math.log(dtype.itemsize, 2))\n if dtype.kind == 'i':\n return [int8, int16, int32, int64][item_idx]\n elif dtype.kind == 'u':\n return [uint8, uint16, uint32, uint64][item_idx]\n elif dtype.kind == 'f':\n if dtype.itemsize == 2:\n pass # half floats not supported yet\n elif dtype.itemsize == 4:\n return float32\n elif dtype.itemsize == 8:\n return float64\n elif dtype.itemsize == 16:\n return float128\n elif dtype.kind == 'b':\n return int8\n elif dtype.kind == 'c':\n if dtype.itemsize == 8:\n return complex64\n elif dtype.itemsize == 16:\n return complex128\n elif dtype.itemsize == 32:\n return complex256\n elif dtype.kind == 'O':\n return object_\n\nNONE_KIND = 0\nINT_KIND = 1\nFLOAT_KIND = 2\nCOMPLEX_KIND = 3\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n\n is_array = False\n is_pointer = False\n is_typewrapper = False\n\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n\n kind = NONE_KIND\n\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"Remove the given qualifiers from the type\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"Get a pointer to this type\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n # Don't use isinstance here, compare on exact type to be consistent\n # with __hash__. Override where sensible\n return (type(self) is type(other) and\n self.comparison_type_list == other.comparison_type_list)\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n \"Only a step of 1 may be provided to indicate C or \"\n \"Fortran contiguity\")\n\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n \"Step may only be provided once, and only in the \"\n \"first or last dimension.\")\n\n if s.step == 1:\n step_idx = idx\n\n return ArrayType(self, len(item),\n is_c_contig=step_idx == len(item) - 1,\n is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"Get a corresponding llvm type from this type\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\nclass ArrayType(Type):\n\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.inner_contig]\n\n def pointer(self):\n raise Exception(\"You probably want a pointer type to the dtype\")\n\n def to_llvm(self, context):\n # raise Exception(\"Obtain a pointer to the dtype and convert that \"\n # \"to an LLVM type\")\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [\":\"] * self.ndim\n if self.is_c_contig:\n axes[-1] = \"::1\"\n elif self.is_f_contig:\n axes[0] = \"::1\"\n\n return \"%s[%s]\" % (self.dtype, \", \".join(axes))\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return \"%s *%s\" % (self.base_type, \" \".join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return \"%s[%d]\" % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return \"%s %s\" % (self.name, \" \".join(self.qualifiers))\n return self.name\n\nclass BoolType(NamedType):\n is_bool = True\n name = \"bool\"\n\n def __repr__(self):\n return \"int %s\" % \" \".join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = \"int\"\n signed = True\n rank = 4\n itemsize = 4\n\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\nclass FloatType(NumericType):\n is_float = True\n\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n # Note: what about fp80/fp96?\n assert self.itemsize == 16\n return lc.Type.fp128()\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n\n kind = COMPLEX_KIND\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = \"Py_ssize_t\"\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = \"npy_intp\"\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\nclass CharType(IntType):\n is_char = True\n name = \"char\"\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return \"const char *\"\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\nclass VoidType(NamedType):\n is_void = True\n name = \"void\"\n\n def to_llvm(self, context):\n return lc.Type.void()\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return \"PyObject *\"\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context),\n [arg_type.to_llvm(context)\n for arg_type in self.args],\n self.is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append(\"...\")\n\n return \"%s (*)(%s)\" % (self.return_type, \", \".join(args))\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert ((element_type.is_int or element_type.is_float) and\n element_type.itemsize in (4, 8)), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context),\n self.vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n else:\n if itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n#\n### Internal types\n#\nc_string_type = CStringType()\nvoid = VoidType()\n\n#\n### Public types\n#\nPy_ssize_t = Py_ssize_t_Type()\nnpy_intp = NPyIntp()\nsize_t = IntType(name=\"size_t\", rank=8.5, itemsize=8, signed=False)\nchar = CharType(name=\"char\")\nshort = IntType(name=\"short\", rank=2, itemsize=2)\nint_ = IntType(name=\"int\", rank=4, itemsize=4)\nlong_ = IntType(name=\"long\", rank=5, itemsize=4)\nlonglong = IntType(name=\"PY_LONG_LONG\", rank=8, itemsize=8)\n\nuchar = CharType(name=\"unsigned char\", signed=False)\nushort = IntType(name=\"unsigned short\", rank=2.5, itemsize=2, signed=False)\nuint = IntType(name=\"unsigned int\", rank=4.5, itemsize=4, signed=False)\nulong = IntType(name=\"unsigned long\", rank=5.5, itemsize=4, signed=False)\nulonglong = IntType(name=\"unsigned PY_LONG_LONG\", rank=8.5, itemsize=8,\n signed=False)\n\nbool_ = BoolType()\nobject_ = ObjectType()\n\nint8 = IntType(name=\"int8\", rank=1, itemsize=1)\nint16 = IntType(name=\"int16\", rank=2, itemsize=2)\nint32 = IntType(name=\"int32\", rank=4, itemsize=4)\nint64 = IntType(name=\"int64\", rank=8, itemsize=8)\n\nuint8 = IntType(name=\"uint8\", rank=1.5, signed=False, itemsize=1)\nuint16 = IntType(name=\"uint16\", rank=2.5, signed=False, itemsize=2)\nuint32 = IntType(name=\"uint32\", rank=4.5, signed=False, itemsize=4)\nuint64 = IntType(name=\"uint64\", rank=8.5, signed=False, itemsize=8)\n\nfloat32 = float_ = FloatType(name=\"float\", rank=10, itemsize=4)\nfloat64 = double = FloatType(name=\"double\", rank=12, itemsize=8)\nfloat128 = longdouble = FloatType(name=\"long double\", rank=14, itemsize=16)\n\ncomplex64 = ComplexType(name=\"complex64\", base_type=float32,\n rank=16, itemsize=8)\ncomplex128 = ComplexType(name=\"complex128\", base_type=float64,\n rank=18, itemsize=16)\ncomplex256 = ComplexType(name=\"complex256\", base_type=float128,\n rank=20, itemsize=32)\n\nif __name__ == '__main__':\n import doctest\n doctest.testmod()\n", "<docstring token>\n__all__ = ['Py_ssize_t', 'void', 'char', 'uchar', 'int_', 'long_', 'bool_',\n 'object_', 'float_', 'double', 'longdouble', 'float32', 'float64',\n 'float128', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16',\n 'uint32', 'uint64', 'complex64', 'complex128', 'complex256', 'npy_intp']\nimport sys\nimport math\nimport ctypes\ntry:\n import llvm.core\n from llvm import core as lc\nexcept ImportError:\n llvm = None\nimport miniutils\nimport minierror\nif sys.maxint > 2 ** 33:\n _plat_bits = 64\nelse:\n _plat_bits = 32\n\n\nclass TypeMapper(object):\n \"\"\"\n >>> import miniast\n >>> context = miniast.Context()\n >>> miniast.typemapper = TypeMapper(context)\n >>> tm = context.typemapper\n\n >>> tm.promote_types(int8, double)\n double\n >>> tm.promote_types(int8, uint8)\n uint8\n >>> tm.promote_types(int8, complex128)\n complex128\n >>> tm.promote_types(int8, object_)\n PyObject *\n\n >>> tm.promote_types(int64, float32)\n float\n >>> tm.promote_types(int64, complex64)\n complex64\n >>> tm.promote_types(float32, float64)\n double\n >>> tm.promote_types(float32, complex64)\n complex64\n >>> tm.promote_types(complex64, complex128)\n complex128\n >>> tm.promote_types(complex256, object_)\n PyObject *\n\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), uint8)\n float *\n\n >>> tm.promote_types(float32.pointer(), float64.pointer())\n Traceback (most recent call last):\n ...\n UnpromotableTypeError: (float *, double *)\n\n >>> tm.promote_types(float32[:, ::1], float32[:, ::1])\n float[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[:, ::1])\n double[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[::1, :])\n double[:, :]\n >>> tm.promote_types(float32[:, :], complex128[:, :])\n complex128[:, :]\n >>> tm.promote_types(int_[:, :], object_[:, ::1])\n PyObject *[:, :]\n \"\"\"\n\n def __init__(self, context):\n self.context = context\n\n def map_type(self, opaque_type):\n if opaque_type.is_int:\n return int_\n elif opaque_type.is_float:\n return float_\n elif opaque_type.is_double:\n return double\n elif opaque_type.is_pointer:\n return PointerType(self.map_type(opaque_type.base_type))\n elif opaque_type.is_py_ssize_t:\n return Py_ssize_t\n elif opaque_type.is_char:\n return char\n else:\n raise minierror.UnmappableTypeError(opaque_type)\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n\n def from_python(self, value):\n \"\"\"Get a type from a python value\"\"\"\n np = sys.modules.get('numpy', None)\n if isinstance(value, float):\n return double\n elif isinstance(value, (int, long)):\n return int_\n elif isinstance(value, complex):\n return complex128\n elif np and isinstance(value, np.ndarray):\n dtype = map_dtype(value.dtype)\n return ArrayType(dtype, value.ndim, is_c_contig=value.flags[\n 'C_CONTIGUOUS'], is_f_contig=value.flags['F_CONTIGUOUS'])\n else:\n return object_\n\n def promote_numeric(self, type1, type2):\n \"\"\"Promote two numeric types\"\"\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\ndef map_dtype(dtype):\n \"\"\"\n >>> _map_dtype(np.dtype(np.int32))\n int32\n >>> _map_dtype(np.dtype(np.int64))\n int64\n >>> _map_dtype(np.dtype(np.object))\n PyObject *\n >>> _map_dtype(np.dtype(np.float64))\n double\n >>> _map_dtype(np.dtype(np.complex128))\n complex128\n \"\"\"\n item_idx = int(math.log(dtype.itemsize, 2))\n if dtype.kind == 'i':\n return [int8, int16, int32, int64][item_idx]\n elif dtype.kind == 'u':\n return [uint8, uint16, uint32, uint64][item_idx]\n elif dtype.kind == 'f':\n if dtype.itemsize == 2:\n pass\n elif dtype.itemsize == 4:\n return float32\n elif dtype.itemsize == 8:\n return float64\n elif dtype.itemsize == 16:\n return float128\n elif dtype.kind == 'b':\n return int8\n elif dtype.kind == 'c':\n if dtype.itemsize == 8:\n return complex64\n elif dtype.itemsize == 16:\n return complex128\n elif dtype.itemsize == 32:\n return complex256\n elif dtype.kind == 'O':\n return object_\n\n\nNONE_KIND = 0\nINT_KIND = 1\nFLOAT_KIND = 2\nCOMPLEX_KIND = 3\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\nc_string_type = CStringType()\nvoid = VoidType()\nPy_ssize_t = Py_ssize_t_Type()\nnpy_intp = NPyIntp()\nsize_t = IntType(name='size_t', rank=8.5, itemsize=8, signed=False)\nchar = CharType(name='char')\nshort = IntType(name='short', rank=2, itemsize=2)\nint_ = IntType(name='int', rank=4, itemsize=4)\nlong_ = IntType(name='long', rank=5, itemsize=4)\nlonglong = IntType(name='PY_LONG_LONG', rank=8, itemsize=8)\nuchar = CharType(name='unsigned char', signed=False)\nushort = IntType(name='unsigned short', rank=2.5, itemsize=2, signed=False)\nuint = IntType(name='unsigned int', rank=4.5, itemsize=4, signed=False)\nulong = IntType(name='unsigned long', rank=5.5, itemsize=4, signed=False)\nulonglong = IntType(name='unsigned PY_LONG_LONG', rank=8.5, itemsize=8,\n signed=False)\nbool_ = BoolType()\nobject_ = ObjectType()\nint8 = IntType(name='int8', rank=1, itemsize=1)\nint16 = IntType(name='int16', rank=2, itemsize=2)\nint32 = IntType(name='int32', rank=4, itemsize=4)\nint64 = IntType(name='int64', rank=8, itemsize=8)\nuint8 = IntType(name='uint8', rank=1.5, signed=False, itemsize=1)\nuint16 = IntType(name='uint16', rank=2.5, signed=False, itemsize=2)\nuint32 = IntType(name='uint32', rank=4.5, signed=False, itemsize=4)\nuint64 = IntType(name='uint64', rank=8.5, signed=False, itemsize=8)\nfloat32 = float_ = FloatType(name='float', rank=10, itemsize=4)\nfloat64 = double = FloatType(name='double', rank=12, itemsize=8)\nfloat128 = longdouble = FloatType(name='long double', rank=14, itemsize=16)\ncomplex64 = ComplexType(name='complex64', base_type=float32, rank=16,\n itemsize=8)\ncomplex128 = ComplexType(name='complex128', base_type=float64, rank=18,\n itemsize=16)\ncomplex256 = ComplexType(name='complex256', base_type=float128, rank=20,\n itemsize=32)\nif __name__ == '__main__':\n import doctest\n doctest.testmod()\n", "<docstring token>\n__all__ = ['Py_ssize_t', 'void', 'char', 'uchar', 'int_', 'long_', 'bool_',\n 'object_', 'float_', 'double', 'longdouble', 'float32', 'float64',\n 'float128', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16',\n 'uint32', 'uint64', 'complex64', 'complex128', 'complex256', 'npy_intp']\n<import token>\ntry:\n import llvm.core\n from llvm import core as lc\nexcept ImportError:\n llvm = None\n<import token>\nif sys.maxint > 2 ** 33:\n _plat_bits = 64\nelse:\n _plat_bits = 32\n\n\nclass TypeMapper(object):\n \"\"\"\n >>> import miniast\n >>> context = miniast.Context()\n >>> miniast.typemapper = TypeMapper(context)\n >>> tm = context.typemapper\n\n >>> tm.promote_types(int8, double)\n double\n >>> tm.promote_types(int8, uint8)\n uint8\n >>> tm.promote_types(int8, complex128)\n complex128\n >>> tm.promote_types(int8, object_)\n PyObject *\n\n >>> tm.promote_types(int64, float32)\n float\n >>> tm.promote_types(int64, complex64)\n complex64\n >>> tm.promote_types(float32, float64)\n double\n >>> tm.promote_types(float32, complex64)\n complex64\n >>> tm.promote_types(complex64, complex128)\n complex128\n >>> tm.promote_types(complex256, object_)\n PyObject *\n\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), uint8)\n float *\n\n >>> tm.promote_types(float32.pointer(), float64.pointer())\n Traceback (most recent call last):\n ...\n UnpromotableTypeError: (float *, double *)\n\n >>> tm.promote_types(float32[:, ::1], float32[:, ::1])\n float[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[:, ::1])\n double[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[::1, :])\n double[:, :]\n >>> tm.promote_types(float32[:, :], complex128[:, :])\n complex128[:, :]\n >>> tm.promote_types(int_[:, :], object_[:, ::1])\n PyObject *[:, :]\n \"\"\"\n\n def __init__(self, context):\n self.context = context\n\n def map_type(self, opaque_type):\n if opaque_type.is_int:\n return int_\n elif opaque_type.is_float:\n return float_\n elif opaque_type.is_double:\n return double\n elif opaque_type.is_pointer:\n return PointerType(self.map_type(opaque_type.base_type))\n elif opaque_type.is_py_ssize_t:\n return Py_ssize_t\n elif opaque_type.is_char:\n return char\n else:\n raise minierror.UnmappableTypeError(opaque_type)\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n\n def from_python(self, value):\n \"\"\"Get a type from a python value\"\"\"\n np = sys.modules.get('numpy', None)\n if isinstance(value, float):\n return double\n elif isinstance(value, (int, long)):\n return int_\n elif isinstance(value, complex):\n return complex128\n elif np and isinstance(value, np.ndarray):\n dtype = map_dtype(value.dtype)\n return ArrayType(dtype, value.ndim, is_c_contig=value.flags[\n 'C_CONTIGUOUS'], is_f_contig=value.flags['F_CONTIGUOUS'])\n else:\n return object_\n\n def promote_numeric(self, type1, type2):\n \"\"\"Promote two numeric types\"\"\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\ndef map_dtype(dtype):\n \"\"\"\n >>> _map_dtype(np.dtype(np.int32))\n int32\n >>> _map_dtype(np.dtype(np.int64))\n int64\n >>> _map_dtype(np.dtype(np.object))\n PyObject *\n >>> _map_dtype(np.dtype(np.float64))\n double\n >>> _map_dtype(np.dtype(np.complex128))\n complex128\n \"\"\"\n item_idx = int(math.log(dtype.itemsize, 2))\n if dtype.kind == 'i':\n return [int8, int16, int32, int64][item_idx]\n elif dtype.kind == 'u':\n return [uint8, uint16, uint32, uint64][item_idx]\n elif dtype.kind == 'f':\n if dtype.itemsize == 2:\n pass\n elif dtype.itemsize == 4:\n return float32\n elif dtype.itemsize == 8:\n return float64\n elif dtype.itemsize == 16:\n return float128\n elif dtype.kind == 'b':\n return int8\n elif dtype.kind == 'c':\n if dtype.itemsize == 8:\n return complex64\n elif dtype.itemsize == 16:\n return complex128\n elif dtype.itemsize == 32:\n return complex256\n elif dtype.kind == 'O':\n return object_\n\n\nNONE_KIND = 0\nINT_KIND = 1\nFLOAT_KIND = 2\nCOMPLEX_KIND = 3\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\nc_string_type = CStringType()\nvoid = VoidType()\nPy_ssize_t = Py_ssize_t_Type()\nnpy_intp = NPyIntp()\nsize_t = IntType(name='size_t', rank=8.5, itemsize=8, signed=False)\nchar = CharType(name='char')\nshort = IntType(name='short', rank=2, itemsize=2)\nint_ = IntType(name='int', rank=4, itemsize=4)\nlong_ = IntType(name='long', rank=5, itemsize=4)\nlonglong = IntType(name='PY_LONG_LONG', rank=8, itemsize=8)\nuchar = CharType(name='unsigned char', signed=False)\nushort = IntType(name='unsigned short', rank=2.5, itemsize=2, signed=False)\nuint = IntType(name='unsigned int', rank=4.5, itemsize=4, signed=False)\nulong = IntType(name='unsigned long', rank=5.5, itemsize=4, signed=False)\nulonglong = IntType(name='unsigned PY_LONG_LONG', rank=8.5, itemsize=8,\n signed=False)\nbool_ = BoolType()\nobject_ = ObjectType()\nint8 = IntType(name='int8', rank=1, itemsize=1)\nint16 = IntType(name='int16', rank=2, itemsize=2)\nint32 = IntType(name='int32', rank=4, itemsize=4)\nint64 = IntType(name='int64', rank=8, itemsize=8)\nuint8 = IntType(name='uint8', rank=1.5, signed=False, itemsize=1)\nuint16 = IntType(name='uint16', rank=2.5, signed=False, itemsize=2)\nuint32 = IntType(name='uint32', rank=4.5, signed=False, itemsize=4)\nuint64 = IntType(name='uint64', rank=8.5, signed=False, itemsize=8)\nfloat32 = float_ = FloatType(name='float', rank=10, itemsize=4)\nfloat64 = double = FloatType(name='double', rank=12, itemsize=8)\nfloat128 = longdouble = FloatType(name='long double', rank=14, itemsize=16)\ncomplex64 = ComplexType(name='complex64', base_type=float32, rank=16,\n itemsize=8)\ncomplex128 = ComplexType(name='complex128', base_type=float64, rank=18,\n itemsize=16)\ncomplex256 = ComplexType(name='complex256', base_type=float128, rank=20,\n itemsize=32)\nif __name__ == '__main__':\n import doctest\n doctest.testmod()\n", "<docstring token>\n<assignment token>\n<import token>\ntry:\n import llvm.core\n from llvm import core as lc\nexcept ImportError:\n llvm = None\n<import token>\nif sys.maxint > 2 ** 33:\n _plat_bits = 64\nelse:\n _plat_bits = 32\n\n\nclass TypeMapper(object):\n \"\"\"\n >>> import miniast\n >>> context = miniast.Context()\n >>> miniast.typemapper = TypeMapper(context)\n >>> tm = context.typemapper\n\n >>> tm.promote_types(int8, double)\n double\n >>> tm.promote_types(int8, uint8)\n uint8\n >>> tm.promote_types(int8, complex128)\n complex128\n >>> tm.promote_types(int8, object_)\n PyObject *\n\n >>> tm.promote_types(int64, float32)\n float\n >>> tm.promote_types(int64, complex64)\n complex64\n >>> tm.promote_types(float32, float64)\n double\n >>> tm.promote_types(float32, complex64)\n complex64\n >>> tm.promote_types(complex64, complex128)\n complex128\n >>> tm.promote_types(complex256, object_)\n PyObject *\n\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), uint8)\n float *\n\n >>> tm.promote_types(float32.pointer(), float64.pointer())\n Traceback (most recent call last):\n ...\n UnpromotableTypeError: (float *, double *)\n\n >>> tm.promote_types(float32[:, ::1], float32[:, ::1])\n float[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[:, ::1])\n double[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[::1, :])\n double[:, :]\n >>> tm.promote_types(float32[:, :], complex128[:, :])\n complex128[:, :]\n >>> tm.promote_types(int_[:, :], object_[:, ::1])\n PyObject *[:, :]\n \"\"\"\n\n def __init__(self, context):\n self.context = context\n\n def map_type(self, opaque_type):\n if opaque_type.is_int:\n return int_\n elif opaque_type.is_float:\n return float_\n elif opaque_type.is_double:\n return double\n elif opaque_type.is_pointer:\n return PointerType(self.map_type(opaque_type.base_type))\n elif opaque_type.is_py_ssize_t:\n return Py_ssize_t\n elif opaque_type.is_char:\n return char\n else:\n raise minierror.UnmappableTypeError(opaque_type)\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n\n def from_python(self, value):\n \"\"\"Get a type from a python value\"\"\"\n np = sys.modules.get('numpy', None)\n if isinstance(value, float):\n return double\n elif isinstance(value, (int, long)):\n return int_\n elif isinstance(value, complex):\n return complex128\n elif np and isinstance(value, np.ndarray):\n dtype = map_dtype(value.dtype)\n return ArrayType(dtype, value.ndim, is_c_contig=value.flags[\n 'C_CONTIGUOUS'], is_f_contig=value.flags['F_CONTIGUOUS'])\n else:\n return object_\n\n def promote_numeric(self, type1, type2):\n \"\"\"Promote two numeric types\"\"\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\ndef map_dtype(dtype):\n \"\"\"\n >>> _map_dtype(np.dtype(np.int32))\n int32\n >>> _map_dtype(np.dtype(np.int64))\n int64\n >>> _map_dtype(np.dtype(np.object))\n PyObject *\n >>> _map_dtype(np.dtype(np.float64))\n double\n >>> _map_dtype(np.dtype(np.complex128))\n complex128\n \"\"\"\n item_idx = int(math.log(dtype.itemsize, 2))\n if dtype.kind == 'i':\n return [int8, int16, int32, int64][item_idx]\n elif dtype.kind == 'u':\n return [uint8, uint16, uint32, uint64][item_idx]\n elif dtype.kind == 'f':\n if dtype.itemsize == 2:\n pass\n elif dtype.itemsize == 4:\n return float32\n elif dtype.itemsize == 8:\n return float64\n elif dtype.itemsize == 16:\n return float128\n elif dtype.kind == 'b':\n return int8\n elif dtype.kind == 'c':\n if dtype.itemsize == 8:\n return complex64\n elif dtype.itemsize == 16:\n return complex128\n elif dtype.itemsize == 32:\n return complex256\n elif dtype.kind == 'O':\n return object_\n\n\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\nif __name__ == '__main__':\n import doctest\n doctest.testmod()\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n \"\"\"\n >>> import miniast\n >>> context = miniast.Context()\n >>> miniast.typemapper = TypeMapper(context)\n >>> tm = context.typemapper\n\n >>> tm.promote_types(int8, double)\n double\n >>> tm.promote_types(int8, uint8)\n uint8\n >>> tm.promote_types(int8, complex128)\n complex128\n >>> tm.promote_types(int8, object_)\n PyObject *\n\n >>> tm.promote_types(int64, float32)\n float\n >>> tm.promote_types(int64, complex64)\n complex64\n >>> tm.promote_types(float32, float64)\n double\n >>> tm.promote_types(float32, complex64)\n complex64\n >>> tm.promote_types(complex64, complex128)\n complex128\n >>> tm.promote_types(complex256, object_)\n PyObject *\n\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), uint8)\n float *\n\n >>> tm.promote_types(float32.pointer(), float64.pointer())\n Traceback (most recent call last):\n ...\n UnpromotableTypeError: (float *, double *)\n\n >>> tm.promote_types(float32[:, ::1], float32[:, ::1])\n float[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[:, ::1])\n double[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[::1, :])\n double[:, :]\n >>> tm.promote_types(float32[:, :], complex128[:, :])\n complex128[:, :]\n >>> tm.promote_types(int_[:, :], object_[:, ::1])\n PyObject *[:, :]\n \"\"\"\n\n def __init__(self, context):\n self.context = context\n\n def map_type(self, opaque_type):\n if opaque_type.is_int:\n return int_\n elif opaque_type.is_float:\n return float_\n elif opaque_type.is_double:\n return double\n elif opaque_type.is_pointer:\n return PointerType(self.map_type(opaque_type.base_type))\n elif opaque_type.is_py_ssize_t:\n return Py_ssize_t\n elif opaque_type.is_char:\n return char\n else:\n raise minierror.UnmappableTypeError(opaque_type)\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n\n def from_python(self, value):\n \"\"\"Get a type from a python value\"\"\"\n np = sys.modules.get('numpy', None)\n if isinstance(value, float):\n return double\n elif isinstance(value, (int, long)):\n return int_\n elif isinstance(value, complex):\n return complex128\n elif np and isinstance(value, np.ndarray):\n dtype = map_dtype(value.dtype)\n return ArrayType(dtype, value.ndim, is_c_contig=value.flags[\n 'C_CONTIGUOUS'], is_f_contig=value.flags['F_CONTIGUOUS'])\n else:\n return object_\n\n def promote_numeric(self, type1, type2):\n \"\"\"Promote two numeric types\"\"\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\ndef map_dtype(dtype):\n \"\"\"\n >>> _map_dtype(np.dtype(np.int32))\n int32\n >>> _map_dtype(np.dtype(np.int64))\n int64\n >>> _map_dtype(np.dtype(np.object))\n PyObject *\n >>> _map_dtype(np.dtype(np.float64))\n double\n >>> _map_dtype(np.dtype(np.complex128))\n complex128\n \"\"\"\n item_idx = int(math.log(dtype.itemsize, 2))\n if dtype.kind == 'i':\n return [int8, int16, int32, int64][item_idx]\n elif dtype.kind == 'u':\n return [uint8, uint16, uint32, uint64][item_idx]\n elif dtype.kind == 'f':\n if dtype.itemsize == 2:\n pass\n elif dtype.itemsize == 4:\n return float32\n elif dtype.itemsize == 8:\n return float64\n elif dtype.itemsize == 16:\n return float128\n elif dtype.kind == 'b':\n return int8\n elif dtype.kind == 'c':\n if dtype.itemsize == 8:\n return complex64\n elif dtype.itemsize == 16:\n return complex128\n elif dtype.itemsize == 32:\n return complex256\n elif dtype.kind == 'O':\n return object_\n\n\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n \"\"\"\n >>> import miniast\n >>> context = miniast.Context()\n >>> miniast.typemapper = TypeMapper(context)\n >>> tm = context.typemapper\n\n >>> tm.promote_types(int8, double)\n double\n >>> tm.promote_types(int8, uint8)\n uint8\n >>> tm.promote_types(int8, complex128)\n complex128\n >>> tm.promote_types(int8, object_)\n PyObject *\n\n >>> tm.promote_types(int64, float32)\n float\n >>> tm.promote_types(int64, complex64)\n complex64\n >>> tm.promote_types(float32, float64)\n double\n >>> tm.promote_types(float32, complex64)\n complex64\n >>> tm.promote_types(complex64, complex128)\n complex128\n >>> tm.promote_types(complex256, object_)\n PyObject *\n\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), Py_ssize_t)\n float *\n >>> tm.promote_types(float32.pointer(), uint8)\n float *\n\n >>> tm.promote_types(float32.pointer(), float64.pointer())\n Traceback (most recent call last):\n ...\n UnpromotableTypeError: (float *, double *)\n\n >>> tm.promote_types(float32[:, ::1], float32[:, ::1])\n float[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[:, ::1])\n double[:, ::1]\n >>> tm.promote_types(float32[:, ::1], float64[::1, :])\n double[:, :]\n >>> tm.promote_types(float32[:, :], complex128[:, :])\n complex128[:, :]\n >>> tm.promote_types(int_[:, :], object_[:, ::1])\n PyObject *[:, :]\n \"\"\"\n\n def __init__(self, context):\n self.context = context\n\n def map_type(self, opaque_type):\n if opaque_type.is_int:\n return int_\n elif opaque_type.is_float:\n return float_\n elif opaque_type.is_double:\n return double\n elif opaque_type.is_pointer:\n return PointerType(self.map_type(opaque_type.base_type))\n elif opaque_type.is_py_ssize_t:\n return Py_ssize_t\n elif opaque_type.is_char:\n return char\n else:\n raise minierror.UnmappableTypeError(opaque_type)\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n\n def from_python(self, value):\n \"\"\"Get a type from a python value\"\"\"\n np = sys.modules.get('numpy', None)\n if isinstance(value, float):\n return double\n elif isinstance(value, (int, long)):\n return int_\n elif isinstance(value, complex):\n return complex128\n elif np and isinstance(value, np.ndarray):\n dtype = map_dtype(value.dtype)\n return ArrayType(dtype, value.ndim, is_c_contig=value.flags[\n 'C_CONTIGUOUS'], is_f_contig=value.flags['F_CONTIGUOUS'])\n else:\n return object_\n\n def promote_numeric(self, type1, type2):\n \"\"\"Promote two numeric types\"\"\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n <docstring token>\n\n def __init__(self, context):\n self.context = context\n\n def map_type(self, opaque_type):\n if opaque_type.is_int:\n return int_\n elif opaque_type.is_float:\n return float_\n elif opaque_type.is_double:\n return double\n elif opaque_type.is_pointer:\n return PointerType(self.map_type(opaque_type.base_type))\n elif opaque_type.is_py_ssize_t:\n return Py_ssize_t\n elif opaque_type.is_char:\n return char\n else:\n raise minierror.UnmappableTypeError(opaque_type)\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n\n def from_python(self, value):\n \"\"\"Get a type from a python value\"\"\"\n np = sys.modules.get('numpy', None)\n if isinstance(value, float):\n return double\n elif isinstance(value, (int, long)):\n return int_\n elif isinstance(value, complex):\n return complex128\n elif np and isinstance(value, np.ndarray):\n dtype = map_dtype(value.dtype)\n return ArrayType(dtype, value.ndim, is_c_contig=value.flags[\n 'C_CONTIGUOUS'], is_f_contig=value.flags['F_CONTIGUOUS'])\n else:\n return object_\n\n def promote_numeric(self, type1, type2):\n \"\"\"Promote two numeric types\"\"\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n <docstring token>\n <function token>\n\n def map_type(self, opaque_type):\n if opaque_type.is_int:\n return int_\n elif opaque_type.is_float:\n return float_\n elif opaque_type.is_double:\n return double\n elif opaque_type.is_pointer:\n return PointerType(self.map_type(opaque_type.base_type))\n elif opaque_type.is_py_ssize_t:\n return Py_ssize_t\n elif opaque_type.is_char:\n return char\n else:\n raise minierror.UnmappableTypeError(opaque_type)\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n\n def from_python(self, value):\n \"\"\"Get a type from a python value\"\"\"\n np = sys.modules.get('numpy', None)\n if isinstance(value, float):\n return double\n elif isinstance(value, (int, long)):\n return int_\n elif isinstance(value, complex):\n return complex128\n elif np and isinstance(value, np.ndarray):\n dtype = map_dtype(value.dtype)\n return ArrayType(dtype, value.ndim, is_c_contig=value.flags[\n 'C_CONTIGUOUS'], is_f_contig=value.flags['F_CONTIGUOUS'])\n else:\n return object_\n\n def promote_numeric(self, type1, type2):\n \"\"\"Promote two numeric types\"\"\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n <docstring token>\n <function token>\n\n def map_type(self, opaque_type):\n if opaque_type.is_int:\n return int_\n elif opaque_type.is_float:\n return float_\n elif opaque_type.is_double:\n return double\n elif opaque_type.is_pointer:\n return PointerType(self.map_type(opaque_type.base_type))\n elif opaque_type.is_py_ssize_t:\n return Py_ssize_t\n elif opaque_type.is_char:\n return char\n else:\n raise minierror.UnmappableTypeError(opaque_type)\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n <function token>\n\n def promote_numeric(self, type1, type2):\n \"\"\"Promote two numeric types\"\"\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n <docstring token>\n <function token>\n <function token>\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n <function token>\n\n def promote_numeric(self, type1, type2):\n \"\"\"Promote two numeric types\"\"\"\n return max([type1, type2], key=lambda type: type.rank)\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n <docstring token>\n <function token>\n <function token>\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n <function token>\n <function token>\n\n def promote_arrays(self, type1, type2):\n \"\"\"Promote two array types in an expression to a new array type\"\"\"\n equal_ndim = type1.ndim == type2.ndim\n return ArrayType(self.promote_types(type1.dtype, type2.dtype), ndim\n =max(type1.ndim, type2.ndim), is_c_contig=equal_ndim and type1.\n is_c_contig and type2.is_c_contig, is_f_contig=equal_ndim and\n type1.is_f_contig and type2.is_f_contig)\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n <docstring token>\n <function token>\n <function token>\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n <function token>\n <function token>\n <function token>\n\n def promote_types(self, type1, type2):\n \"\"\"Promote two arbitrary types\"\"\"\n if type1.is_pointer and type2.is_int_like:\n return type1\n elif type2.is_pointer and type2.is_int_like:\n return type2\n elif type1.is_object or type2.is_object:\n return object_\n elif type1.is_numeric and type2.is_numeric:\n return self.promote_numeric(type1, type2)\n elif type1.is_array and type2:\n return self.promote_arrays(type1, type2)\n else:\n raise minierror.UnpromotableTypeError((type1, type2))\n\n\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n <docstring token>\n <function token>\n <function token>\n\n def to_llvm(self, type):\n \"\"\"Return an LLVM type for the given type.\"\"\"\n raise NotImplementedError\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n\n\nclass TypeMapper(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n \"\"\"\n Base class for all types.\n\n .. attribute:: subtypes\n\n The list of subtypes to allow comparing and hashing them recursively\n \"\"\"\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n is_array = False\n is_pointer = False\n is_typewrapper = False\n is_bool = False\n is_numeric = False\n is_py_ssize_t = False\n is_char = False\n is_int = False\n is_float = False\n is_c_string = False\n is_object = False\n is_function = False\n is_int_like = False\n is_complex = False\n is_void = False\n kind = NONE_KIND\n subtypes = []\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def unqualify(self, *unqualifiers):\n \"\"\"Remove the given qualifiers from the type\"\"\"\n unqualifiers = set(unqualifiers)\n qualifiers = [q for q in self.qualifiers if q not in unqualifiers]\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n <function token>\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n\n def __eq__(self, other):\n return type(self) is type(other\n ) and self.comparison_type_list == other.comparison_type_list\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n <function token>\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n\n @property\n def subtype_list(self):\n return [getattr(self, subtype) for subtype in self.subtypes]\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n <function token>\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n <function token>\n\n def pointer(self):\n \"\"\"Get a pointer to this type\"\"\"\n return PointerType(self)\n <function token>\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n <function token>\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n <function token>\n <function token>\n <function token>\n\n @property\n def comparison_type_list(self):\n return self.subtype_list\n <function token>\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n\n def __getitem__(self, item):\n assert isinstance(item, (tuple, slice))\n\n def verify_slice(s):\n if s.start or s.stop or s.step not in (None, 1):\n raise minierror.InvalidTypeSpecification(\n 'Only a step of 1 may be provided to indicate C or Fortran contiguity'\n )\n if isinstance(item, tuple):\n step_idx = None\n for idx, s in enumerate(item):\n verify_slice(s)\n if s.step and (step_idx or idx not in (0, len(item) - 1)):\n raise minierror.InvalidTypeSpecification(\n 'Step may only be provided once, and only in the first or last dimension.'\n )\n if s.step == 1:\n step_idx = idx\n return ArrayType(self, len(item), is_c_contig=step_idx == len(\n item) - 1, is_f_contig=step_idx == 0)\n else:\n verify_slice(item)\n return ArrayType(self, 1, is_c_contig=bool(item.step))\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n\n def qualify(self, *qualifiers):\n \"\"\"Qualify this type with a qualifier such as ``const`` or ``restrict``\"\"\"\n qualifiers = list(qualifiers)\n qualifiers.extend(self.qualifiers)\n attribs = dict(vars(self), qualifiers=qualifiers)\n return type(self)(**attribs)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n <function token>\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def __ne__(self, other):\n return not self == other\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n <function token>\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def __hash__(self):\n h = hash(type(self))\n for subtype in self.comparison_type_list:\n h = h ^ hash(subtype)\n return h\n <function token>\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n\n def __getattr__(self, attr):\n if attr.startswith('is_'):\n return False\n return getattr(type(self), attr)\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def to_llvm(self, context):\n \"\"\"Get a corresponding llvm type from this type\"\"\"\n return context.to_llvm(self)\n <function token>\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n vars(self).update(kwds)\n self.qualifiers = kwds.get('qualifiers', frozenset())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n\n\nclass Type(miniutils.ComparableObjectMixin):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n\n\nclass ArrayType(Type):\n is_array = True\n subtypes = ['dtype']\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n\n\nclass ArrayType(Type):\n <assignment token>\n <assignment token>\n\n def __init__(self, dtype, ndim, is_c_contig=False, is_f_contig=False,\n inner_contig=False, broadcasting=None):\n super(ArrayType, self).__init__()\n self.dtype = dtype\n self.ndim = ndim\n self.is_c_contig = is_c_contig\n self.is_f_contig = is_f_contig\n self.inner_contig = inner_contig or is_c_contig or is_f_contig\n self.broadcasting = broadcasting or (True,) * ndim\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n\n\nclass ArrayType(Type):\n <assignment token>\n <assignment token>\n <function token>\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n\n def __repr__(self):\n axes = [':'] * self.ndim\n if self.is_c_contig:\n axes[-1] = '::1'\n elif self.is_f_contig:\n axes[0] = '::1'\n return '%s[%s]' % (self.dtype, ', '.join(axes))\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n\n\nclass ArrayType(Type):\n <assignment token>\n <assignment token>\n <function token>\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n\n def pointer(self):\n raise Exception('You probably want a pointer type to the dtype')\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n <function token>\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n\n\nclass ArrayType(Type):\n <assignment token>\n <assignment token>\n <function token>\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n <function token>\n\n def to_llvm(self, context):\n return context.to_llvm(self)\n <function token>\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n\n\nclass ArrayType(Type):\n <assignment token>\n <assignment token>\n <function token>\n\n @property\n def comparison_type_list(self):\n return [self.dtype, self.is_c_contig, self.is_f_contig, self.\n inner_contig]\n <function token>\n <function token>\n <function token>\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n\n\nclass ArrayType(Type):\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass PointerType(Type):\n is_pointer = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass PointerType(Type):\n <assignment token>\n <assignment token>\n\n def __init__(self, base_type, **kwds):\n super(PointerType, self).__init__(**kwds)\n self.base_type = base_type\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass PointerType(Type):\n <assignment token>\n <assignment token>\n <function token>\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n\n def to_llvm(self, context):\n return llvm.core.Type.pointer(self.base_type.to_llvm(context))\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass PointerType(Type):\n <assignment token>\n <assignment token>\n <function token>\n\n def __repr__(self):\n return '%s *%s' % (self.base_type, ' '.join(self.qualifiers))\n <function token>\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass PointerType(Type):\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass CArrayType(Type):\n is_carray = True\n subtypes = ['base_type']\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass CArrayType(Type):\n <assignment token>\n <assignment token>\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n\n def to_llvm(self, context):\n return llvm.core.Type.array(self.base_type.to_llvm(context), self.size)\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass CArrayType(Type):\n <assignment token>\n <assignment token>\n\n def __init__(self, base_type, size, **kwds):\n super(CArrayType, self).__init__(**kwds)\n self.base_type = base_type\n self.size = size\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n <function token>\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass CArrayType(Type):\n <assignment token>\n <assignment token>\n <function token>\n\n def __repr__(self):\n return '%s[%d]' % (self.base_type, self.length)\n <function token>\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n\n\nclass CArrayType(Type):\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass TypeWrapper(Type):\n is_typewrapper = True\n subtypes = ['opaque_type']\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass TypeWrapper(Type):\n <assignment token>\n <assignment token>\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n\n def __repr__(self):\n return self.context.declare_type(self)\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass TypeWrapper(Type):\n <assignment token>\n <assignment token>\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n <function token>\n\n def __deepcopy__(self, memo):\n return self\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass TypeWrapper(Type):\n <assignment token>\n <assignment token>\n\n def __init__(self, opaque_type, context, **kwds):\n super(TypeWrapper, self).__init__(**kwds)\n self.opaque_type = opaque_type\n self.context = context\n <function token>\n <function token>\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass TypeWrapper(Type):\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NamedType(Type):\n name = None\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NamedType(Type):\n <assignment token>\n\n def __eq__(self, other):\n return isinstance(other, NamedType) and self.name == other.name\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NamedType(Type):\n <assignment token>\n <function token>\n\n def __repr__(self):\n if self.qualifiers:\n return '%s %s' % (self.name, ' '.join(self.qualifiers))\n return self.name\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NamedType(Type):\n <assignment token>\n <function token>\n <function token>\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass BoolType(NamedType):\n is_bool = True\n name = 'bool'\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass BoolType(NamedType):\n <assignment token>\n <assignment token>\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n\n def to_llvm(self, context):\n return int8.to_llvm(context)\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass BoolType(NamedType):\n <assignment token>\n <assignment token>\n\n def __repr__(self):\n return 'int %s' % ' '.join(self.qualifiers)\n <function token>\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass BoolType(NamedType):\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NumericType(NamedType):\n \"\"\"\n Base class for numeric types.\n\n .. attribute:: name\n\n name of the type\n\n .. attribute:: itemsize\n\n sizeof(type)\n\n .. attribute:: rank\n\n ordering of numeric types\n \"\"\"\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NumericType(NamedType):\n <docstring token>\n is_numeric = True\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NumericType(NamedType):\n <docstring token>\n <assignment token>\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass IntType(NumericType):\n is_int = True\n is_int_like = True\n name = 'int'\n signed = True\n rank = 4\n itemsize = 4\n kind = INT_KIND\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass IntType(NumericType):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def to_llvm(self, context):\n if self.itemsize == 1:\n return lc.Type.int(8)\n elif self.itemsize == 2:\n return lc.Type.int(16)\n elif self.itemsize == 4:\n return lc.Type.int(32)\n else:\n assert self.itemsize == 8, self\n return lc.Type.int(64)\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass IntType(NumericType):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FloatType(NumericType):\n is_float = True\n kind = FLOAT_KIND\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FloatType(NumericType):\n <assignment token>\n <assignment token>\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.itemsize]\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FloatType(NumericType):\n <assignment token>\n <assignment token>\n <function token>\n\n def to_llvm(self, context):\n if self.itemsize == 4:\n return lc.Type.float()\n elif self.itemsize == 8:\n return lc.Type.double()\n else:\n assert self.itemsize == 16\n return lc.Type.fp128()\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FloatType(NumericType):\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ComplexType(NumericType):\n is_complex = True\n subtypes = ['base_type']\n kind = COMPLEX_KIND\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ComplexType(NumericType):\n <assignment token>\n <assignment token>\n <assignment token>\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Py_ssize_t_Type(IntType):\n is_py_ssize_t = True\n name = 'Py_ssize_t'\n rank = 9\n signed = True\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Py_ssize_t_Type(IntType):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n super(Py_ssize_t_Type, self).__init__(**kwds)\n self.itemsize = _plat_bits / 8\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Py_ssize_t_Type(IntType):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NPyIntp(IntType):\n is_numpy_intp = True\n name = 'npy_intp'\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NPyIntp(IntType):\n <assignment token>\n <assignment token>\n\n def __init__(self, **kwds):\n super(NPyIntp, self).__init__(**kwds)\n import numpy as np\n ctypes_array = np.empty(0).ctypes.strides\n self.itemsize = ctypes.sizeof(ctypes_array._type_)\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass NPyIntp(IntType):\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass CharType(IntType):\n is_char = True\n name = 'char'\n rank = 1\n signed = True\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass CharType(IntType):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def to_llvm(self, context):\n return lc.Type.int(8)\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass CharType(IntType):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass CStringType(Type):\n is_c_string = True\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass CStringType(Type):\n <assignment token>\n\n def __repr__(self):\n return 'const char *'\n\n def to_llvm(self, context):\n return char.pointer().to_llvm(context)\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass CStringType(Type):\n <assignment token>\n\n def __repr__(self):\n return 'const char *'\n <function token>\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass CStringType(Type):\n <assignment token>\n <function token>\n <function token>\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass VoidType(NamedType):\n is_void = True\n name = 'void'\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass VoidType(NamedType):\n <assignment token>\n <assignment token>\n\n def to_llvm(self, context):\n return lc.Type.void()\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass VoidType(NamedType):\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ObjectType(Type):\n is_object = True\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ObjectType(Type):\n <assignment token>\n\n def __repr__(self):\n return 'PyObject *'\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ObjectType(Type):\n <assignment token>\n <function token>\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FunctionType(Type):\n subtypes = ['return_type', 'args']\n is_function = True\n is_vararg = False\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FunctionType(Type):\n <assignment token>\n <assignment token>\n <assignment token>\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n\n def __str__(self):\n args = map(str, self.args)\n if self.is_vararg:\n args.append('...')\n return '%s (*)(%s)' % (self.return_type, ', '.join(args))\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FunctionType(Type):\n <assignment token>\n <assignment token>\n <assignment token>\n\n def to_llvm(self, context):\n return lc.Type.function(self.return_type.to_llvm(context), [\n arg_type.to_llvm(context) for arg_type in self.args], self.\n is_vararg)\n <function token>\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass FunctionType(Type):\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass VectorType(Type):\n subtypes = ['element_type']\n is_vector = True\n vector_size = None\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass VectorType(Type):\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n\n def __str__(self):\n itemsize = self.element_type.itemsize\n if self.element_type.is_float:\n if itemsize == 4:\n return '__m128'\n else:\n return '__m128d'\n elif itemsize == 4:\n return '__m128i'\n else:\n raise NotImplementedError\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass VectorType(Type):\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, element_type, vector_size, **kwds):\n super(VectorType, self).__init__(**kwds)\n assert (element_type.is_int or element_type.is_float\n ) and element_type.itemsize in (4, 8), element_type\n self.element_type = element_type\n self.vector_size = vector_size\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n <function token>\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass VectorType(Type):\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n\n @property\n def comparison_type_list(self):\n return self.subtype_list + [self.vector_size]\n <function token>\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass VectorType(Type):\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def to_llvm(self, context):\n return lc.Type.vector(self.element_type.to_llvm(context), self.\n vector_size)\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass VectorType(Type):\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<docstring token>\n<assignment token>\n<import token>\n<code token>\n<import token>\n<code token>\n<class token>\n<function token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<assignment token>\n<code token>\n" ]
false
98,361
f477aeba54b2b66a40967b347de05ac961b00298
import keras from perturbation import * from sklearn.metrics import accuracy_score model = keras.models.load_model('nn_model/std_model.dat') model.load_weights('nn_model/std_model_weights.dat') pertMan = get_pertubated_test_data() pertMan.show_content() for i in range(pertMan.get_num_groups()): pred_Y = np.argmax(model.predict(pertMan.data[i]), axis=1) Y = np.argmax(pertMan.Y, axis=1) print('acc: {}'.format(accuracy_score(Y, pred_Y)))
[ "import keras\nfrom perturbation import *\nfrom sklearn.metrics import accuracy_score\n\nmodel = keras.models.load_model('nn_model/std_model.dat')\nmodel.load_weights('nn_model/std_model_weights.dat')\n\npertMan = get_pertubated_test_data()\npertMan.show_content()\n\nfor i in range(pertMan.get_num_groups()):\n pred_Y = np.argmax(model.predict(pertMan.data[i]), axis=1)\n Y = np.argmax(pertMan.Y, axis=1)\n print('acc: {}'.format(accuracy_score(Y, pred_Y)))\n", "import keras\nfrom perturbation import *\nfrom sklearn.metrics import accuracy_score\nmodel = keras.models.load_model('nn_model/std_model.dat')\nmodel.load_weights('nn_model/std_model_weights.dat')\npertMan = get_pertubated_test_data()\npertMan.show_content()\nfor i in range(pertMan.get_num_groups()):\n pred_Y = np.argmax(model.predict(pertMan.data[i]), axis=1)\n Y = np.argmax(pertMan.Y, axis=1)\n print('acc: {}'.format(accuracy_score(Y, pred_Y)))\n", "<import token>\nmodel = keras.models.load_model('nn_model/std_model.dat')\nmodel.load_weights('nn_model/std_model_weights.dat')\npertMan = get_pertubated_test_data()\npertMan.show_content()\nfor i in range(pertMan.get_num_groups()):\n pred_Y = np.argmax(model.predict(pertMan.data[i]), axis=1)\n Y = np.argmax(pertMan.Y, axis=1)\n print('acc: {}'.format(accuracy_score(Y, pred_Y)))\n", "<import token>\n<assignment token>\nmodel.load_weights('nn_model/std_model_weights.dat')\n<assignment token>\npertMan.show_content()\nfor i in range(pertMan.get_num_groups()):\n pred_Y = np.argmax(model.predict(pertMan.data[i]), axis=1)\n Y = np.argmax(pertMan.Y, axis=1)\n print('acc: {}'.format(accuracy_score(Y, pred_Y)))\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,362
cb713f5ed627abfd8d2ef153c3a2adc1d2db7045
from easel import * from browser import * def discardCanvases(): for cs in document.getElementsByTagName("canvas"): cs.parentNode.removeChild(cs) discardCanvases() canvas = document.createElement("canvas") canvas.width = 960 canvas.height = 400 container = document.getElementById("canvas-container") container.appendChild(canvas) stage = Stage(canvas) Ticker.addEventListener("tick", stage) movieClip = MovieClip(None, 0, True, {"start": 0, "middle": 40}) stage.addChild(movieClip) child1 = Shape(Graphics().beginFill("#999999").drawCircle(100, 100, 100)) child2 = Shape(Graphics().beginFill("#5a9cfb").drawCircle(100, 100, 100)) timeline = movieClip.timeline timeline.addTween(Tween.get(child1).to({"x": 0}).to({"x":760}, 40).to({"x": 0}, 40)) timeline.addTween(Tween.get(child2).to({"x": 760}).to({"x":0}, 40).to({"x": 760}, 40)) movieClip.gotoAndPlay("middle")
[ "from easel import *\nfrom browser import *\n\ndef discardCanvases():\n for cs in document.getElementsByTagName(\"canvas\"):\n cs.parentNode.removeChild(cs)\n \ndiscardCanvases()\ncanvas = document.createElement(\"canvas\")\ncanvas.width = 960\ncanvas.height = 400\ncontainer = document.getElementById(\"canvas-container\")\ncontainer.appendChild(canvas)\n\nstage = Stage(canvas)\n\nTicker.addEventListener(\"tick\", stage)\n\nmovieClip = MovieClip(None, 0, True, {\"start\": 0, \"middle\": 40})\nstage.addChild(movieClip)\n\nchild1 = Shape(Graphics().beginFill(\"#999999\").drawCircle(100, 100, 100))\nchild2 = Shape(Graphics().beginFill(\"#5a9cfb\").drawCircle(100, 100, 100))\n\ntimeline = movieClip.timeline\n\ntimeline.addTween(Tween.get(child1).to({\"x\": 0}).to({\"x\":760}, 40).to({\"x\": 0}, 40))\ntimeline.addTween(Tween.get(child2).to({\"x\": 760}).to({\"x\":0}, 40).to({\"x\": 760}, 40))\n\nmovieClip.gotoAndPlay(\"middle\")", "from easel import *\nfrom browser import *\n\n\ndef discardCanvases():\n for cs in document.getElementsByTagName('canvas'):\n cs.parentNode.removeChild(cs)\n\n\ndiscardCanvases()\ncanvas = document.createElement('canvas')\ncanvas.width = 960\ncanvas.height = 400\ncontainer = document.getElementById('canvas-container')\ncontainer.appendChild(canvas)\nstage = Stage(canvas)\nTicker.addEventListener('tick', stage)\nmovieClip = MovieClip(None, 0, True, {'start': 0, 'middle': 40})\nstage.addChild(movieClip)\nchild1 = Shape(Graphics().beginFill('#999999').drawCircle(100, 100, 100))\nchild2 = Shape(Graphics().beginFill('#5a9cfb').drawCircle(100, 100, 100))\ntimeline = movieClip.timeline\ntimeline.addTween(Tween.get(child1).to({'x': 0}).to({'x': 760}, 40).to({'x':\n 0}, 40))\ntimeline.addTween(Tween.get(child2).to({'x': 760}).to({'x': 0}, 40).to({'x':\n 760}, 40))\nmovieClip.gotoAndPlay('middle')\n", "<import token>\n\n\ndef discardCanvases():\n for cs in document.getElementsByTagName('canvas'):\n cs.parentNode.removeChild(cs)\n\n\ndiscardCanvases()\ncanvas = document.createElement('canvas')\ncanvas.width = 960\ncanvas.height = 400\ncontainer = document.getElementById('canvas-container')\ncontainer.appendChild(canvas)\nstage = Stage(canvas)\nTicker.addEventListener('tick', stage)\nmovieClip = MovieClip(None, 0, True, {'start': 0, 'middle': 40})\nstage.addChild(movieClip)\nchild1 = Shape(Graphics().beginFill('#999999').drawCircle(100, 100, 100))\nchild2 = Shape(Graphics().beginFill('#5a9cfb').drawCircle(100, 100, 100))\ntimeline = movieClip.timeline\ntimeline.addTween(Tween.get(child1).to({'x': 0}).to({'x': 760}, 40).to({'x':\n 0}, 40))\ntimeline.addTween(Tween.get(child2).to({'x': 760}).to({'x': 0}, 40).to({'x':\n 760}, 40))\nmovieClip.gotoAndPlay('middle')\n", "<import token>\n\n\ndef discardCanvases():\n for cs in document.getElementsByTagName('canvas'):\n cs.parentNode.removeChild(cs)\n\n\ndiscardCanvases()\n<assignment token>\ncontainer.appendChild(canvas)\n<assignment token>\nTicker.addEventListener('tick', stage)\n<assignment token>\nstage.addChild(movieClip)\n<assignment token>\ntimeline.addTween(Tween.get(child1).to({'x': 0}).to({'x': 760}, 40).to({'x':\n 0}, 40))\ntimeline.addTween(Tween.get(child2).to({'x': 760}).to({'x': 0}, 40).to({'x':\n 760}, 40))\nmovieClip.gotoAndPlay('middle')\n", "<import token>\n\n\ndef discardCanvases():\n for cs in document.getElementsByTagName('canvas'):\n cs.parentNode.removeChild(cs)\n\n\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,363
0da0ab41e0369b4719f9df20290641f26acdd1a7
import os import json import datetime BASE_PATH = '/Users/maxfowler/Desktop/pw-posts' POSTS_PATH = os.path.join(BASE_PATH, '2017-posts') def load_posts(): f_names = os.listdir(POSTS_PATH) all_posts = [] for f_name in f_names: f_path = os.path.join(POSTS_PATH, f_name) posts = json.loads(open(f_path, 'r').read()) all_posts += posts return all_posts def exp1(): MONTHS_PATH = os.path.join(BASE_PATH, 'posts-by-month') if not os.path.exists(MONTHS_PATH): os.makedirs(MONTHS_PATH) posts = load_posts() posts_by_month = {} for post in posts: dt = datetime.datetime.fromtimestamp(post['date']) month_posts = posts_by_month.setdefault(dt.strftime('%B'), []) month_posts.append(post) for month, month_posts in posts_by_month.items(): month_path = os.path.join(MONTHS_PATH, '{}.json').format(month) print '++ writing to {}'.format(month_path) with open(month_path, 'w') as f: f.write(json.dumps(month_posts)) def by_day(): DAYS_PATH = os.path.join(BASE_PATH, 'posts-by-day') if not os.path.exists(DAYS_PATH): os.makedirs(DAYS_PATH) posts = load_posts() posts_by_day = {} for post in posts: dt = datetime.datetime.fromtimestamp(post['date']) day_posts = posts_by_day.setdefault(dt.strftime('%B-%d'), []) day_posts.append(post) for day, day_posts in posts_by_day.items(): day_path = os.path.join(DAYS_PATH, '{}.json').format(day) print '++ writing to {}'.format(day_path) with open(day_path, 'w') as f: f.write(json.dumps(day_posts)) def by_week(): DAYS_PATH = os.path.join(BASE_PATH, 'posts-by-day') if not os.path.exists(DAYS_PATH): os.makedirs(DAYS_PATH) posts = load_posts() posts_by_day = {} for post in posts: dt = datetime.datetime.fromtimestamp(post['date']) day_posts = posts_by_day.setdefault(dt.strftime('%B-%d'), []) day_posts.append(post) for day, day_posts in posts_by_day.items(): day_path = os.path.join(DAYS_PATH, '{}.json').format(day) print '++ writing to {}'.format(day_path) with open(day_path, 'w') as f: f.write(json.dumps(day_posts)) if __name__ == '__main__': by_day()
[ "import os\nimport json\nimport datetime\n\nBASE_PATH = '/Users/maxfowler/Desktop/pw-posts'\nPOSTS_PATH = os.path.join(BASE_PATH, '2017-posts')\n\n\ndef load_posts():\n f_names = os.listdir(POSTS_PATH)\n all_posts = []\n for f_name in f_names:\n f_path = os.path.join(POSTS_PATH, f_name)\n posts = json.loads(open(f_path, 'r').read())\n all_posts += posts\n return all_posts\n\n\ndef exp1():\n MONTHS_PATH = os.path.join(BASE_PATH, 'posts-by-month')\n if not os.path.exists(MONTHS_PATH):\n os.makedirs(MONTHS_PATH)\n posts = load_posts()\n posts_by_month = {}\n for post in posts:\n dt = datetime.datetime.fromtimestamp(post['date'])\n month_posts = posts_by_month.setdefault(dt.strftime('%B'), [])\n month_posts.append(post)\n for month, month_posts in posts_by_month.items():\n month_path = os.path.join(MONTHS_PATH, '{}.json').format(month)\n print '++ writing to {}'.format(month_path)\n with open(month_path, 'w') as f:\n f.write(json.dumps(month_posts))\n\n\ndef by_day():\n DAYS_PATH = os.path.join(BASE_PATH, 'posts-by-day')\n if not os.path.exists(DAYS_PATH):\n os.makedirs(DAYS_PATH)\n posts = load_posts()\n posts_by_day = {}\n for post in posts:\n dt = datetime.datetime.fromtimestamp(post['date'])\n day_posts = posts_by_day.setdefault(dt.strftime('%B-%d'), [])\n day_posts.append(post)\n for day, day_posts in posts_by_day.items():\n day_path = os.path.join(DAYS_PATH, '{}.json').format(day)\n print '++ writing to {}'.format(day_path)\n with open(day_path, 'w') as f:\n f.write(json.dumps(day_posts))\n\ndef by_week():\n DAYS_PATH = os.path.join(BASE_PATH, 'posts-by-day')\n if not os.path.exists(DAYS_PATH):\n os.makedirs(DAYS_PATH)\n posts = load_posts()\n posts_by_day = {}\n for post in posts:\n dt = datetime.datetime.fromtimestamp(post['date'])\n day_posts = posts_by_day.setdefault(dt.strftime('%B-%d'), [])\n day_posts.append(post)\n for day, day_posts in posts_by_day.items():\n day_path = os.path.join(DAYS_PATH, '{}.json').format(day)\n print '++ writing to {}'.format(day_path)\n with open(day_path, 'w') as f:\n f.write(json.dumps(day_posts))\n\n\nif __name__ == '__main__':\n by_day()\n" ]
true
98,364
6742539490ff8d5314dfacf524e03dd3abcf67d5
# -*- coding: utf-8 -*- from eorsky import pspec_funcs, comoving_voxel_volume, comoving_radial_length, comoving_transverse_length from astropy.cosmology import WMAP9 import nose.tools as nt import numpy as np import pylab as pl import matplotlib.colors from matplotlib.ticker import FormatStrFormatter import matplotlib.gridspec as gridspec import matplotlib.colors as mcolors import matplotlib.cm as cm def compare_averages_shell_pspec_dft(): """ Take a gaussian shell and confirm its power spectrum using shell_project_pspec. """ select_radius = 5. #degrees Nside=256 Npix = 12 * Nside**2 Omega = 4*np.pi/float(Npix) Nfreq = 100 freqs = np.linspace(167.0, 177.0, Nfreq) dnu = np.diff(freqs)[0] Z = 1420/freqs - 1. sig = 2.0 mu = 0.0 shell = np.random.normal(mu, sig, (Npix, Nfreq)) dV = comoving_voxel_volume(Z[Nfreq/2], dnu, Omega) variances = [] means = [] pks = [] gs = gridspec.GridSpec(2, 3) fig = pl.figure() ax0 = pl.subplot(gs[0, 0:2]) ax1 = pl.subplot(gs[1, 0]) ax3 = pl.subplot(gs[1, 1]) ax2 = pl.subplot(gs[:, 2]) steps = range(10,110,10) vmin,vmax = min(steps),max(steps) normalize = mcolors.Normalize(vmin=vmin, vmax=vmax) colormap = cm.viridis for n in steps: Nkbins = 100 kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, select_radius, freqs=freqs, Nkbins=Nkbins, N_sections=n, cosmo=True, method='dft', error=False) variances.append(np.var(pk[0:Nkbins-5])) means.append(np.mean(pk[0:Nkbins-5])) pks.append(pk) ax0.plot(kbins, pk, label=str(n), color=colormap(normalize(n))) ax0.axhline(y=dV*sig**2, color='k', lw=2.0) # ax0.legend() scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap) scalarmappable.set_array(steps) fig.colorbar(scalarmappable,label=r'Number of snapshots', ax=ax0) ax0.set_ylabel(r"P(k) [mK$^2$ Mpc$^{3}]$") ax0.set_xlabel(r"k [Mpc$^{-1}]$") ax1.plot(steps, np.array(variances), label="Variance") ax1.set_ylabel(r"Variance(P(k)) [mK$^4$ Mpc$^{6}]$") ax1.set_xlabel(u"Number of 5° snapshots") ax3.plot(steps, means, label="Mean") ax3.set_ylabel(r"Mean(P(k)) [mK$^2$ Mpc$^{3}]$") ax3.set_xlabel(u"Number of 5° snapshots") ax1.legend() ax3.legend() im = ax2.imshow(np.array(pks)[:,0:Nkbins-5], aspect='auto')#, norm=mcolors.LogNorm()) fig.colorbar(im, ax=ax2) print('Fractional deviation: ', np.mean(np.abs(pk - dV*sig**2))) pl.show() def compare_selection_radii_shell_pspec_dft(): N_sections=10 Nside=256 Npix = 12 * Nside**2 Omega = 4*np.pi/float(Npix) Nfreq = 100 freqs = np.linspace(167.0, 177.0, Nfreq) dnu = np.diff(freqs)[0] Z = 1420/freqs - 1. sig = 2.0 mu = 0.0 shell = np.random.normal(mu, sig, (Npix, Nfreq)) dV = comoving_voxel_volume(Z[Nfreq/2], dnu, Omega) variances = [] pks = [] means = [] gs = gridspec.GridSpec(2, 3) fig = pl.figure() ax0 = pl.subplot(gs[0, 0:2]) ax1 = pl.subplot(gs[1, 0]) ax3 = pl.subplot(gs[1, 1]) ax2 = pl.subplot(gs[:, 2]) steps = np.linspace(2,20,20) vmin,vmax = min(steps),max(steps) normalize = mcolors.Normalize(vmin=vmin, vmax=vmax) colormap = cm.viridis for s in steps: Nkbins = 100 kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, s, freqs=freqs, Nkbins=Nkbins, N_sections=N_sections, cosmo=True, method='dft', error=False) variances.append(np.var(pk[0:Nkbins-5])) pks.append(pk) means.append(np.mean(pk[0:Nkbins-5])) ax0.plot(kbins, pk, label=u'{:0.2f}°'.format(s), color=colormap(normalize(s))) ax0.axhline(y=dV*sig**2) # ax0.legend(ncol=2,loc=3) scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap) scalarmappable.set_array(steps) fig.colorbar(scalarmappable,label=r'Selection radius', ax=ax0) ax0.set_ylabel(r"P(k) [mK$^2$ Mpc$^{3}]$") ax0.set_xlabel(r"k [Mpc$^{-1}]$") ax1.plot(steps, np.array(variances), label="Variance") ax1.set_ylabel(r"Variance(P(k)) [mK$^4$ Mpc$^{6}]$") ax1.set_xlabel(u"Selection radius (degrees)") ax3.plot(steps, means, label="Mean") ax3.set_ylabel(r"Mean(P(k)) [mK$^2$ Mpc$^{3}]$") ax3.set_xlabel(u"Selection radius (degrees)") ax1.legend() ax3.legend() ax1.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°')) ax3.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°')) im = ax2.imshow(np.array(pks)[:,0:Nkbins-5], aspect='auto', norm=mcolors.LogNorm()) fig.colorbar(im, ax=ax2) pl.show() if __name__ == '__main__': #compare_averages_shell_pspec_dft() compare_selection_radii_shell_pspec_dft()
[ "# -*- coding: utf-8 -*-\nfrom eorsky import pspec_funcs, comoving_voxel_volume, comoving_radial_length, comoving_transverse_length\nfrom astropy.cosmology import WMAP9\nimport nose.tools as nt\nimport numpy as np\nimport pylab as pl\nimport matplotlib.colors\nfrom matplotlib.ticker import FormatStrFormatter\nimport matplotlib.gridspec as gridspec\nimport matplotlib.colors as mcolors\nimport matplotlib.cm as cm\n\n\ndef compare_averages_shell_pspec_dft():\n \"\"\"\n Take a gaussian shell and confirm its power spectrum using shell_project_pspec.\n \"\"\"\n\n select_radius = 5. #degrees\n\n Nside=256\n Npix = 12 * Nside**2\n Omega = 4*np.pi/float(Npix)\n\n Nfreq = 100\n freqs = np.linspace(167.0, 177.0, Nfreq)\n dnu = np.diff(freqs)[0]\n Z = 1420/freqs - 1.\n\n sig = 2.0\n mu = 0.0\n shell = np.random.normal(mu, sig, (Npix, Nfreq))\n\n dV = comoving_voxel_volume(Z[Nfreq/2], dnu, Omega)\n variances = []\n means = []\n pks = []\n\n gs = gridspec.GridSpec(2, 3)\n fig = pl.figure()\n\n ax0 = pl.subplot(gs[0, 0:2])\n ax1 = pl.subplot(gs[1, 0])\n ax3 = pl.subplot(gs[1, 1])\n ax2 = pl.subplot(gs[:, 2])\n\n steps = range(10,110,10)\n vmin,vmax = min(steps),max(steps)\n normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)\n colormap = cm.viridis\n\n for n in steps:\n Nkbins = 100\n kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, select_radius, freqs=freqs, Nkbins=Nkbins, N_sections=n, cosmo=True, method='dft', error=False)\n variances.append(np.var(pk[0:Nkbins-5]))\n means.append(np.mean(pk[0:Nkbins-5]))\n pks.append(pk)\n ax0.plot(kbins, pk, label=str(n), color=colormap(normalize(n)))\n\n ax0.axhline(y=dV*sig**2, color='k', lw=2.0)\n# ax0.legend()\n scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)\n scalarmappable.set_array(steps)\n fig.colorbar(scalarmappable,label=r'Number of snapshots', ax=ax0)\n ax0.set_ylabel(r\"P(k) [mK$^2$ Mpc$^{3}]$\")\n ax0.set_xlabel(r\"k [Mpc$^{-1}]$\")\n ax1.plot(steps, np.array(variances), label=\"Variance\")\n ax1.set_ylabel(r\"Variance(P(k)) [mK$^4$ Mpc$^{6}]$\")\n ax1.set_xlabel(u\"Number of 5° snapshots\")\n ax3.plot(steps, means, label=\"Mean\")\n ax3.set_ylabel(r\"Mean(P(k)) [mK$^2$ Mpc$^{3}]$\")\n ax3.set_xlabel(u\"Number of 5° snapshots\")\n ax1.legend()\n ax3.legend()\n im = ax2.imshow(np.array(pks)[:,0:Nkbins-5], aspect='auto')#, norm=mcolors.LogNorm())\n fig.colorbar(im, ax=ax2)\n print('Fractional deviation: ', np.mean(np.abs(pk - dV*sig**2)))\n pl.show()\n\ndef compare_selection_radii_shell_pspec_dft():\n N_sections=10\n\n Nside=256\n Npix = 12 * Nside**2\n Omega = 4*np.pi/float(Npix)\n\n Nfreq = 100\n freqs = np.linspace(167.0, 177.0, Nfreq)\n dnu = np.diff(freqs)[0]\n Z = 1420/freqs - 1.\n\n sig = 2.0\n mu = 0.0\n shell = np.random.normal(mu, sig, (Npix, Nfreq))\n\n dV = comoving_voxel_volume(Z[Nfreq/2], dnu, Omega)\n variances = []\n pks = []\n means = []\n\n gs = gridspec.GridSpec(2, 3)\n fig = pl.figure()\n\n ax0 = pl.subplot(gs[0, 0:2])\n ax1 = pl.subplot(gs[1, 0])\n ax3 = pl.subplot(gs[1, 1])\n ax2 = pl.subplot(gs[:, 2])\n\n steps = np.linspace(2,20,20)\n vmin,vmax = min(steps),max(steps)\n normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)\n colormap = cm.viridis\n\n for s in steps:\n Nkbins = 100\n kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, s, freqs=freqs, Nkbins=Nkbins, N_sections=N_sections, cosmo=True, method='dft', error=False)\n variances.append(np.var(pk[0:Nkbins-5]))\n pks.append(pk)\n means.append(np.mean(pk[0:Nkbins-5]))\n ax0.plot(kbins, pk, label=u'{:0.2f}°'.format(s), color=colormap(normalize(s)))\n\n ax0.axhline(y=dV*sig**2)\n# ax0.legend(ncol=2,loc=3)\n scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)\n scalarmappable.set_array(steps)\n fig.colorbar(scalarmappable,label=r'Selection radius', ax=ax0)\n ax0.set_ylabel(r\"P(k) [mK$^2$ Mpc$^{3}]$\")\n ax0.set_xlabel(r\"k [Mpc$^{-1}]$\")\n ax1.plot(steps, np.array(variances), label=\"Variance\")\n ax1.set_ylabel(r\"Variance(P(k)) [mK$^4$ Mpc$^{6}]$\")\n ax1.set_xlabel(u\"Selection radius (degrees)\")\n ax3.plot(steps, means, label=\"Mean\")\n ax3.set_ylabel(r\"Mean(P(k)) [mK$^2$ Mpc$^{3}]$\")\n ax3.set_xlabel(u\"Selection radius (degrees)\")\n ax1.legend()\n ax3.legend()\n ax1.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n ax3.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n im = ax2.imshow(np.array(pks)[:,0:Nkbins-5], aspect='auto', norm=mcolors.LogNorm())\n fig.colorbar(im, ax=ax2)\n pl.show()\n\n\n\nif __name__ == '__main__':\n #compare_averages_shell_pspec_dft()\n compare_selection_radii_shell_pspec_dft()\n", "from eorsky import pspec_funcs, comoving_voxel_volume, comoving_radial_length, comoving_transverse_length\nfrom astropy.cosmology import WMAP9\nimport nose.tools as nt\nimport numpy as np\nimport pylab as pl\nimport matplotlib.colors\nfrom matplotlib.ticker import FormatStrFormatter\nimport matplotlib.gridspec as gridspec\nimport matplotlib.colors as mcolors\nimport matplotlib.cm as cm\n\n\ndef compare_averages_shell_pspec_dft():\n \"\"\"\n Take a gaussian shell and confirm its power spectrum using shell_project_pspec.\n \"\"\"\n select_radius = 5.0\n Nside = 256\n Npix = 12 * Nside ** 2\n Omega = 4 * np.pi / float(Npix)\n Nfreq = 100\n freqs = np.linspace(167.0, 177.0, Nfreq)\n dnu = np.diff(freqs)[0]\n Z = 1420 / freqs - 1.0\n sig = 2.0\n mu = 0.0\n shell = np.random.normal(mu, sig, (Npix, Nfreq))\n dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)\n variances = []\n means = []\n pks = []\n gs = gridspec.GridSpec(2, 3)\n fig = pl.figure()\n ax0 = pl.subplot(gs[0, 0:2])\n ax1 = pl.subplot(gs[1, 0])\n ax3 = pl.subplot(gs[1, 1])\n ax2 = pl.subplot(gs[:, 2])\n steps = range(10, 110, 10)\n vmin, vmax = min(steps), max(steps)\n normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)\n colormap = cm.viridis\n for n in steps:\n Nkbins = 100\n kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside,\n select_radius, freqs=freqs, Nkbins=Nkbins, N_sections=n, cosmo=\n True, method='dft', error=False)\n variances.append(np.var(pk[0:Nkbins - 5]))\n means.append(np.mean(pk[0:Nkbins - 5]))\n pks.append(pk)\n ax0.plot(kbins, pk, label=str(n), color=colormap(normalize(n)))\n ax0.axhline(y=dV * sig ** 2, color='k', lw=2.0)\n scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)\n scalarmappable.set_array(steps)\n fig.colorbar(scalarmappable, label='Number of snapshots', ax=ax0)\n ax0.set_ylabel('P(k) [mK$^2$ Mpc$^{3}]$')\n ax0.set_xlabel('k [Mpc$^{-1}]$')\n ax1.plot(steps, np.array(variances), label='Variance')\n ax1.set_ylabel('Variance(P(k)) [mK$^4$ Mpc$^{6}]$')\n ax1.set_xlabel(u'Number of 5° snapshots')\n ax3.plot(steps, means, label='Mean')\n ax3.set_ylabel('Mean(P(k)) [mK$^2$ Mpc$^{3}]$')\n ax3.set_xlabel(u'Number of 5° snapshots')\n ax1.legend()\n ax3.legend()\n im = ax2.imshow(np.array(pks)[:, 0:Nkbins - 5], aspect='auto')\n fig.colorbar(im, ax=ax2)\n print('Fractional deviation: ', np.mean(np.abs(pk - dV * sig ** 2)))\n pl.show()\n\n\ndef compare_selection_radii_shell_pspec_dft():\n N_sections = 10\n Nside = 256\n Npix = 12 * Nside ** 2\n Omega = 4 * np.pi / float(Npix)\n Nfreq = 100\n freqs = np.linspace(167.0, 177.0, Nfreq)\n dnu = np.diff(freqs)[0]\n Z = 1420 / freqs - 1.0\n sig = 2.0\n mu = 0.0\n shell = np.random.normal(mu, sig, (Npix, Nfreq))\n dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)\n variances = []\n pks = []\n means = []\n gs = gridspec.GridSpec(2, 3)\n fig = pl.figure()\n ax0 = pl.subplot(gs[0, 0:2])\n ax1 = pl.subplot(gs[1, 0])\n ax3 = pl.subplot(gs[1, 1])\n ax2 = pl.subplot(gs[:, 2])\n steps = np.linspace(2, 20, 20)\n vmin, vmax = min(steps), max(steps)\n normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)\n colormap = cm.viridis\n for s in steps:\n Nkbins = 100\n kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, s, freqs=\n freqs, Nkbins=Nkbins, N_sections=N_sections, cosmo=True, method\n ='dft', error=False)\n variances.append(np.var(pk[0:Nkbins - 5]))\n pks.append(pk)\n means.append(np.mean(pk[0:Nkbins - 5]))\n ax0.plot(kbins, pk, label=u'{:0.2f}°'.format(s), color=colormap(\n normalize(s)))\n ax0.axhline(y=dV * sig ** 2)\n scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)\n scalarmappable.set_array(steps)\n fig.colorbar(scalarmappable, label='Selection radius', ax=ax0)\n ax0.set_ylabel('P(k) [mK$^2$ Mpc$^{3}]$')\n ax0.set_xlabel('k [Mpc$^{-1}]$')\n ax1.plot(steps, np.array(variances), label='Variance')\n ax1.set_ylabel('Variance(P(k)) [mK$^4$ Mpc$^{6}]$')\n ax1.set_xlabel(u'Selection radius (degrees)')\n ax3.plot(steps, means, label='Mean')\n ax3.set_ylabel('Mean(P(k)) [mK$^2$ Mpc$^{3}]$')\n ax3.set_xlabel(u'Selection radius (degrees)')\n ax1.legend()\n ax3.legend()\n ax1.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n ax3.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n im = ax2.imshow(np.array(pks)[:, 0:Nkbins - 5], aspect='auto', norm=\n mcolors.LogNorm())\n fig.colorbar(im, ax=ax2)\n pl.show()\n\n\nif __name__ == '__main__':\n compare_selection_radii_shell_pspec_dft()\n", "<import token>\n\n\ndef compare_averages_shell_pspec_dft():\n \"\"\"\n Take a gaussian shell and confirm its power spectrum using shell_project_pspec.\n \"\"\"\n select_radius = 5.0\n Nside = 256\n Npix = 12 * Nside ** 2\n Omega = 4 * np.pi / float(Npix)\n Nfreq = 100\n freqs = np.linspace(167.0, 177.0, Nfreq)\n dnu = np.diff(freqs)[0]\n Z = 1420 / freqs - 1.0\n sig = 2.0\n mu = 0.0\n shell = np.random.normal(mu, sig, (Npix, Nfreq))\n dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)\n variances = []\n means = []\n pks = []\n gs = gridspec.GridSpec(2, 3)\n fig = pl.figure()\n ax0 = pl.subplot(gs[0, 0:2])\n ax1 = pl.subplot(gs[1, 0])\n ax3 = pl.subplot(gs[1, 1])\n ax2 = pl.subplot(gs[:, 2])\n steps = range(10, 110, 10)\n vmin, vmax = min(steps), max(steps)\n normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)\n colormap = cm.viridis\n for n in steps:\n Nkbins = 100\n kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside,\n select_radius, freqs=freqs, Nkbins=Nkbins, N_sections=n, cosmo=\n True, method='dft', error=False)\n variances.append(np.var(pk[0:Nkbins - 5]))\n means.append(np.mean(pk[0:Nkbins - 5]))\n pks.append(pk)\n ax0.plot(kbins, pk, label=str(n), color=colormap(normalize(n)))\n ax0.axhline(y=dV * sig ** 2, color='k', lw=2.0)\n scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)\n scalarmappable.set_array(steps)\n fig.colorbar(scalarmappable, label='Number of snapshots', ax=ax0)\n ax0.set_ylabel('P(k) [mK$^2$ Mpc$^{3}]$')\n ax0.set_xlabel('k [Mpc$^{-1}]$')\n ax1.plot(steps, np.array(variances), label='Variance')\n ax1.set_ylabel('Variance(P(k)) [mK$^4$ Mpc$^{6}]$')\n ax1.set_xlabel(u'Number of 5° snapshots')\n ax3.plot(steps, means, label='Mean')\n ax3.set_ylabel('Mean(P(k)) [mK$^2$ Mpc$^{3}]$')\n ax3.set_xlabel(u'Number of 5° snapshots')\n ax1.legend()\n ax3.legend()\n im = ax2.imshow(np.array(pks)[:, 0:Nkbins - 5], aspect='auto')\n fig.colorbar(im, ax=ax2)\n print('Fractional deviation: ', np.mean(np.abs(pk - dV * sig ** 2)))\n pl.show()\n\n\ndef compare_selection_radii_shell_pspec_dft():\n N_sections = 10\n Nside = 256\n Npix = 12 * Nside ** 2\n Omega = 4 * np.pi / float(Npix)\n Nfreq = 100\n freqs = np.linspace(167.0, 177.0, Nfreq)\n dnu = np.diff(freqs)[0]\n Z = 1420 / freqs - 1.0\n sig = 2.0\n mu = 0.0\n shell = np.random.normal(mu, sig, (Npix, Nfreq))\n dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)\n variances = []\n pks = []\n means = []\n gs = gridspec.GridSpec(2, 3)\n fig = pl.figure()\n ax0 = pl.subplot(gs[0, 0:2])\n ax1 = pl.subplot(gs[1, 0])\n ax3 = pl.subplot(gs[1, 1])\n ax2 = pl.subplot(gs[:, 2])\n steps = np.linspace(2, 20, 20)\n vmin, vmax = min(steps), max(steps)\n normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)\n colormap = cm.viridis\n for s in steps:\n Nkbins = 100\n kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, s, freqs=\n freqs, Nkbins=Nkbins, N_sections=N_sections, cosmo=True, method\n ='dft', error=False)\n variances.append(np.var(pk[0:Nkbins - 5]))\n pks.append(pk)\n means.append(np.mean(pk[0:Nkbins - 5]))\n ax0.plot(kbins, pk, label=u'{:0.2f}°'.format(s), color=colormap(\n normalize(s)))\n ax0.axhline(y=dV * sig ** 2)\n scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)\n scalarmappable.set_array(steps)\n fig.colorbar(scalarmappable, label='Selection radius', ax=ax0)\n ax0.set_ylabel('P(k) [mK$^2$ Mpc$^{3}]$')\n ax0.set_xlabel('k [Mpc$^{-1}]$')\n ax1.plot(steps, np.array(variances), label='Variance')\n ax1.set_ylabel('Variance(P(k)) [mK$^4$ Mpc$^{6}]$')\n ax1.set_xlabel(u'Selection radius (degrees)')\n ax3.plot(steps, means, label='Mean')\n ax3.set_ylabel('Mean(P(k)) [mK$^2$ Mpc$^{3}]$')\n ax3.set_xlabel(u'Selection radius (degrees)')\n ax1.legend()\n ax3.legend()\n ax1.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n ax3.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n im = ax2.imshow(np.array(pks)[:, 0:Nkbins - 5], aspect='auto', norm=\n mcolors.LogNorm())\n fig.colorbar(im, ax=ax2)\n pl.show()\n\n\nif __name__ == '__main__':\n compare_selection_radii_shell_pspec_dft()\n", "<import token>\n\n\ndef compare_averages_shell_pspec_dft():\n \"\"\"\n Take a gaussian shell and confirm its power spectrum using shell_project_pspec.\n \"\"\"\n select_radius = 5.0\n Nside = 256\n Npix = 12 * Nside ** 2\n Omega = 4 * np.pi / float(Npix)\n Nfreq = 100\n freqs = np.linspace(167.0, 177.0, Nfreq)\n dnu = np.diff(freqs)[0]\n Z = 1420 / freqs - 1.0\n sig = 2.0\n mu = 0.0\n shell = np.random.normal(mu, sig, (Npix, Nfreq))\n dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)\n variances = []\n means = []\n pks = []\n gs = gridspec.GridSpec(2, 3)\n fig = pl.figure()\n ax0 = pl.subplot(gs[0, 0:2])\n ax1 = pl.subplot(gs[1, 0])\n ax3 = pl.subplot(gs[1, 1])\n ax2 = pl.subplot(gs[:, 2])\n steps = range(10, 110, 10)\n vmin, vmax = min(steps), max(steps)\n normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)\n colormap = cm.viridis\n for n in steps:\n Nkbins = 100\n kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside,\n select_radius, freqs=freqs, Nkbins=Nkbins, N_sections=n, cosmo=\n True, method='dft', error=False)\n variances.append(np.var(pk[0:Nkbins - 5]))\n means.append(np.mean(pk[0:Nkbins - 5]))\n pks.append(pk)\n ax0.plot(kbins, pk, label=str(n), color=colormap(normalize(n)))\n ax0.axhline(y=dV * sig ** 2, color='k', lw=2.0)\n scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)\n scalarmappable.set_array(steps)\n fig.colorbar(scalarmappable, label='Number of snapshots', ax=ax0)\n ax0.set_ylabel('P(k) [mK$^2$ Mpc$^{3}]$')\n ax0.set_xlabel('k [Mpc$^{-1}]$')\n ax1.plot(steps, np.array(variances), label='Variance')\n ax1.set_ylabel('Variance(P(k)) [mK$^4$ Mpc$^{6}]$')\n ax1.set_xlabel(u'Number of 5° snapshots')\n ax3.plot(steps, means, label='Mean')\n ax3.set_ylabel('Mean(P(k)) [mK$^2$ Mpc$^{3}]$')\n ax3.set_xlabel(u'Number of 5° snapshots')\n ax1.legend()\n ax3.legend()\n im = ax2.imshow(np.array(pks)[:, 0:Nkbins - 5], aspect='auto')\n fig.colorbar(im, ax=ax2)\n print('Fractional deviation: ', np.mean(np.abs(pk - dV * sig ** 2)))\n pl.show()\n\n\ndef compare_selection_radii_shell_pspec_dft():\n N_sections = 10\n Nside = 256\n Npix = 12 * Nside ** 2\n Omega = 4 * np.pi / float(Npix)\n Nfreq = 100\n freqs = np.linspace(167.0, 177.0, Nfreq)\n dnu = np.diff(freqs)[0]\n Z = 1420 / freqs - 1.0\n sig = 2.0\n mu = 0.0\n shell = np.random.normal(mu, sig, (Npix, Nfreq))\n dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)\n variances = []\n pks = []\n means = []\n gs = gridspec.GridSpec(2, 3)\n fig = pl.figure()\n ax0 = pl.subplot(gs[0, 0:2])\n ax1 = pl.subplot(gs[1, 0])\n ax3 = pl.subplot(gs[1, 1])\n ax2 = pl.subplot(gs[:, 2])\n steps = np.linspace(2, 20, 20)\n vmin, vmax = min(steps), max(steps)\n normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)\n colormap = cm.viridis\n for s in steps:\n Nkbins = 100\n kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, s, freqs=\n freqs, Nkbins=Nkbins, N_sections=N_sections, cosmo=True, method\n ='dft', error=False)\n variances.append(np.var(pk[0:Nkbins - 5]))\n pks.append(pk)\n means.append(np.mean(pk[0:Nkbins - 5]))\n ax0.plot(kbins, pk, label=u'{:0.2f}°'.format(s), color=colormap(\n normalize(s)))\n ax0.axhline(y=dV * sig ** 2)\n scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)\n scalarmappable.set_array(steps)\n fig.colorbar(scalarmappable, label='Selection radius', ax=ax0)\n ax0.set_ylabel('P(k) [mK$^2$ Mpc$^{3}]$')\n ax0.set_xlabel('k [Mpc$^{-1}]$')\n ax1.plot(steps, np.array(variances), label='Variance')\n ax1.set_ylabel('Variance(P(k)) [mK$^4$ Mpc$^{6}]$')\n ax1.set_xlabel(u'Selection radius (degrees)')\n ax3.plot(steps, means, label='Mean')\n ax3.set_ylabel('Mean(P(k)) [mK$^2$ Mpc$^{3}]$')\n ax3.set_xlabel(u'Selection radius (degrees)')\n ax1.legend()\n ax3.legend()\n ax1.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n ax3.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n im = ax2.imshow(np.array(pks)[:, 0:Nkbins - 5], aspect='auto', norm=\n mcolors.LogNorm())\n fig.colorbar(im, ax=ax2)\n pl.show()\n\n\n<code token>\n", "<import token>\n<function token>\n\n\ndef compare_selection_radii_shell_pspec_dft():\n N_sections = 10\n Nside = 256\n Npix = 12 * Nside ** 2\n Omega = 4 * np.pi / float(Npix)\n Nfreq = 100\n freqs = np.linspace(167.0, 177.0, Nfreq)\n dnu = np.diff(freqs)[0]\n Z = 1420 / freqs - 1.0\n sig = 2.0\n mu = 0.0\n shell = np.random.normal(mu, sig, (Npix, Nfreq))\n dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)\n variances = []\n pks = []\n means = []\n gs = gridspec.GridSpec(2, 3)\n fig = pl.figure()\n ax0 = pl.subplot(gs[0, 0:2])\n ax1 = pl.subplot(gs[1, 0])\n ax3 = pl.subplot(gs[1, 1])\n ax2 = pl.subplot(gs[:, 2])\n steps = np.linspace(2, 20, 20)\n vmin, vmax = min(steps), max(steps)\n normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)\n colormap = cm.viridis\n for s in steps:\n Nkbins = 100\n kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, s, freqs=\n freqs, Nkbins=Nkbins, N_sections=N_sections, cosmo=True, method\n ='dft', error=False)\n variances.append(np.var(pk[0:Nkbins - 5]))\n pks.append(pk)\n means.append(np.mean(pk[0:Nkbins - 5]))\n ax0.plot(kbins, pk, label=u'{:0.2f}°'.format(s), color=colormap(\n normalize(s)))\n ax0.axhline(y=dV * sig ** 2)\n scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)\n scalarmappable.set_array(steps)\n fig.colorbar(scalarmappable, label='Selection radius', ax=ax0)\n ax0.set_ylabel('P(k) [mK$^2$ Mpc$^{3}]$')\n ax0.set_xlabel('k [Mpc$^{-1}]$')\n ax1.plot(steps, np.array(variances), label='Variance')\n ax1.set_ylabel('Variance(P(k)) [mK$^4$ Mpc$^{6}]$')\n ax1.set_xlabel(u'Selection radius (degrees)')\n ax3.plot(steps, means, label='Mean')\n ax3.set_ylabel('Mean(P(k)) [mK$^2$ Mpc$^{3}]$')\n ax3.set_xlabel(u'Selection radius (degrees)')\n ax1.legend()\n ax3.legend()\n ax1.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n ax3.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))\n im = ax2.imshow(np.array(pks)[:, 0:Nkbins - 5], aspect='auto', norm=\n mcolors.LogNorm())\n fig.colorbar(im, ax=ax2)\n pl.show()\n\n\n<code token>\n", "<import token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,365
846a2bab34898acc0fa5d51bdc4231b554eba675
''' Created on Oct 9, 2018 @author: tongq ''' class Solution(object): def new21Game(self, N, K, W): """ :type N: int :type K: int :type W: int :rtype: float """ n, k, w = N, K, W if k == 0 or n >= k+w: return 1 dp = [1.0]+[0.0]*n wSum = 1.0 for i in range(1, n+1): dp[i] = wSum/w if i < k: wSum += dp[i] if i - w >= 0: wSum -= dp[i-w] return sum(dp[k:]) def test(self): testCases = [ [10, 1, 10], [6, 1, 10], [21, 17, 10], ] for n, k, w in testCases: result = self.new21Game(n, k, w) print('result: %s' % result) print('-='*30+'-') if __name__ == '__main__': Solution().test()
[ "'''\nCreated on Oct 9, 2018\n\n@author: tongq\n'''\nclass Solution(object):\n def new21Game(self, N, K, W):\n \"\"\"\n :type N: int\n :type K: int\n :type W: int\n :rtype: float\n \"\"\"\n n, k, w = N, K, W\n if k == 0 or n >= k+w: return 1\n dp = [1.0]+[0.0]*n\n wSum = 1.0\n for i in range(1, n+1):\n dp[i] = wSum/w\n if i < k: wSum += dp[i]\n if i - w >= 0: wSum -= dp[i-w]\n return sum(dp[k:])\n \n def test(self):\n testCases = [\n [10, 1, 10],\n [6, 1, 10],\n [21, 17, 10],\n ]\n for n, k, w in testCases:\n result = self.new21Game(n, k, w)\n print('result: %s' % result)\n print('-='*30+'-')\n\nif __name__ == '__main__':\n Solution().test()\n", "<docstring token>\n\n\nclass Solution(object):\n\n def new21Game(self, N, K, W):\n \"\"\"\n :type N: int\n :type K: int\n :type W: int\n :rtype: float\n \"\"\"\n n, k, w = N, K, W\n if k == 0 or n >= k + w:\n return 1\n dp = [1.0] + [0.0] * n\n wSum = 1.0\n for i in range(1, n + 1):\n dp[i] = wSum / w\n if i < k:\n wSum += dp[i]\n if i - w >= 0:\n wSum -= dp[i - w]\n return sum(dp[k:])\n\n def test(self):\n testCases = [[10, 1, 10], [6, 1, 10], [21, 17, 10]]\n for n, k, w in testCases:\n result = self.new21Game(n, k, w)\n print('result: %s' % result)\n print('-=' * 30 + '-')\n\n\nif __name__ == '__main__':\n Solution().test()\n", "<docstring token>\n\n\nclass Solution(object):\n\n def new21Game(self, N, K, W):\n \"\"\"\n :type N: int\n :type K: int\n :type W: int\n :rtype: float\n \"\"\"\n n, k, w = N, K, W\n if k == 0 or n >= k + w:\n return 1\n dp = [1.0] + [0.0] * n\n wSum = 1.0\n for i in range(1, n + 1):\n dp[i] = wSum / w\n if i < k:\n wSum += dp[i]\n if i - w >= 0:\n wSum -= dp[i - w]\n return sum(dp[k:])\n\n def test(self):\n testCases = [[10, 1, 10], [6, 1, 10], [21, 17, 10]]\n for n, k, w in testCases:\n result = self.new21Game(n, k, w)\n print('result: %s' % result)\n print('-=' * 30 + '-')\n\n\n<code token>\n", "<docstring token>\n\n\nclass Solution(object):\n\n def new21Game(self, N, K, W):\n \"\"\"\n :type N: int\n :type K: int\n :type W: int\n :rtype: float\n \"\"\"\n n, k, w = N, K, W\n if k == 0 or n >= k + w:\n return 1\n dp = [1.0] + [0.0] * n\n wSum = 1.0\n for i in range(1, n + 1):\n dp[i] = wSum / w\n if i < k:\n wSum += dp[i]\n if i - w >= 0:\n wSum -= dp[i - w]\n return sum(dp[k:])\n <function token>\n\n\n<code token>\n", "<docstring token>\n\n\nclass Solution(object):\n <function token>\n <function token>\n\n\n<code token>\n", "<docstring token>\n<class token>\n<code token>\n" ]
false
98,366
fff4209166c7e27c6e4118afa2282919fd3eeb38
#!/usr/bin/env python # -*- coding: utf-8 -*- # Original source: github.com/okfn/bibserver # Authors: # markmacgillivray # Etienne Posthumus (epoz) # Francois Boulogne <fboulogne at april dot org> import sys import logging import io import re from bibtexparser.bibdatabase import BibDatabase logger = logging.getLogger(__name__) __all__ = ['BibTexParser'] if sys.version_info >= (3, 0): from io import StringIO ustr = str else: from StringIO import StringIO ustr = unicode class BibTexParser(object): """ A parser for reading BibTeX bibliographic data files. Example:: from bibtexparser.bparser import BibTexParser bibtex_str = ... parser = BibTexParser() parser.ignore_nonstandard_types = False parser.homogenise_fields = False bib_database = bibtexparser.loads(bibtex_str, parser) """ def __new__(cls, data=None, customization=None, ignore_nonstandard_types=True, homogenise_fields=True): """ To catch the old API structure in which creating the parser would immediately parse and return data. """ if data is None: return super(BibTexParser, cls).__new__(cls) else: # For backwards compatibility: if data is given, parse and return the `BibDatabase` object instead of the # parser. parser = BibTexParser() parser.customization = customization parser.ignore_nonstandard_types = ignore_nonstandard_types parser.homogenise_fields = homogenise_fields return parser.parse(data) def __init__(self): """ Creates a parser for rading BibTeX files :return: parser :rtype: `BibTexParser` """ self.bib_database = BibDatabase() #: Callback function to process BibTeX entries after parsing, for example to create a list from a string with #: multiple values. By default all BibTeX values are treated as simple strings. Default: `None`. self.customization = None #: Ignore non-standard BibTeX types (`book`, `article`, etc). Default: `True`. self.ignore_nonstandard_types = True #: Sanitise BibTeX field names, for example change `url` to `link` etc. Field names are always converted to #: lowercase names. Default: `True`. self.homogenise_fields = True # On some sample data files, the character encoding detection simply # hangs We are going to default to utf8, and mandate it. self.encoding = 'utf8' # pre-defined set of key changes self.alt_dict = { 'keyw': 'keyword', 'keywords': 'keyword', 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls': 'link', 'links': 'link', 'subjects': 'subject' } self.replace_all_re = re.compile(r'((?P<pre>"?)\s*(#|^)\s*(?P<id>[^\d\W]\w*)\s*(#|$)\s*(?P<post>"?))', re.UNICODE) def _bibtex_file_obj(self, bibtex_str): # Some files have Byte-order marks inserted at the start byte = '\xef\xbb\xbf' if not isinstance(byte, ustr): byte = ustr('\xef\xbb\xbf', self.encoding, 'ignore') if bibtex_str[:3] == byte: bibtex_str = bibtex_str[3:] return StringIO(bibtex_str) def parse(self, bibtex_str): """Parse a BibTeX string into an object :param bibtex_str: BibTeX string :type: str or unicode :return: bibliographic database :rtype: BibDatabase """ self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str) self._parse_records(customization=self.customization) return self.bib_database def parse_file(self, file): """Parse a BibTeX file into an object :param file: BibTeX file or file-like object :type: file :return: bibliographic database :rtype: BibDatabase """ return self.parse(file.read()) def _parse_records(self, customization=None): """Parse the bibtex into a list of records. :param customization: a function """ def _add_parsed_record(record, records): """ Atomic function to parse a record and append the result in records """ if record != "": logger.debug('The record is not empty. Let\'s parse it.') parsed = self._parse_record(record, customization=customization) if parsed: logger.debug('Store the result of the parsed record') records.append(parsed) else: logger.debug('Nothing returned from the parsed record!') else: logger.debug('The record is empty') records = [] record = "" # read each line, bundle them up until they form an object, then send for parsing for linenumber, line in enumerate(self.bibtex_file_obj): logger.debug('Inspect line %s', linenumber) if line.strip().startswith('@'): # Remove leading whitespaces line = line.lstrip() logger.debug('Line starts with @') # Parse previous record _add_parsed_record(record, records) # Start new record logger.debug('The record is set to empty') record = "" # Keep adding lines to the record record += line # catch any remaining record and send it for parsing _add_parsed_record(record, records) logger.debug('Set the list of entries') self.bib_database.entries = records def _parse_record(self, record, customization=None): """Parse a record. * tidy whitespace and other rubbish * parse out the bibtype and citekey * find all the key-value pairs it contains :param record: a record :param customization: a function :returns: dict -- """ d = {} if not record.startswith('@'): logger.debug('The record does not start with @. Return empty dict.') return {} # if a comment record, add to bib_database.comments if record.lower().startswith('@comment'): logger.debug('The record startswith @comment') logger.debug('Store comment in list of comments') self.bib_database.comments.append(re.search('\{(.*)\}', record, re.DOTALL).group(1)) logger.debug('Return an empty dict') return {} # if a preamble record, add to bib_database.preambles if record.lower().startswith('@preamble'): logger.debug('The record startswith @preamble') logger.debug('Store preamble in list of preambles') self.bib_database.preambles.append(re.search('\{(.*)\}', record, re.DOTALL).group(1)) logger.debug('Return an empty dict') return {} # prepare record record = '\n'.join([i.strip() for i in record.split('\n')]) if '}\n' in record: logger.debug('}\\n detected in the record. Clean up.') record = record.replace('\r\n', '\n').replace('\r', '\n').rstrip('\n') # treat the case for which the last line of the record # does not have a coma if record.endswith('}\n}') or record.endswith('}}'): logger.debug('Missing coma in the last line of the record. Fix it.') record = re.sub('}(\n|)}$', '},\n}', record) # if a string record, put it in the replace_dict if record.lower().startswith('@string'): logger.debug('The record startswith @string') key, val = [i.strip().strip('{').strip('}').replace('\n', ' ') for i in record.split('{', 1)[1].strip('\n').strip(',').strip('}').split('=')] key = key.lower() # key is case insensitive val = self._string_subst_partial(val) if val.startswith('"') or val.lower() not in self.bib_database.strings: self.bib_database.strings[key] = val.strip('"') else: self.bib_database.strings[key] = self.bib_database.strings[val.lower()] logger.debug('Return a dict') return d # for each line in record logger.debug('Split the record of its lines and treat them') kvs = [i.strip() for i in record.split(',\n')] inkey = "" inval = "" for kv in kvs: logger.debug('Inspect: %s', kv) # TODO: We may check that the keyword belongs to a known type if kv.startswith('@') and not inkey: # it is the start of the record - set the bibtype and citekey (id) logger.debug('Line starts with @ and the key is not stored yet.') bibtype, id = kv.split('{', 1) bibtype = self._add_key(bibtype) id = id.strip('}').strip(',') logger.debug('bibtype = %s', bibtype) logger.debug('id = %s', id) if self.ignore_nonstandard_types and bibtype not in ('article', 'book', 'booklet', 'conference', 'inbook', 'incollection', 'inproceedings', 'manual', 'mastersthesis', 'misc', 'phdthesis', 'proceedings', 'techreport', 'unpublished'): logger.warning('Entry type %s not standard. Not considered.', bibtype) break elif '=' in kv and not inkey: # it is a line with a key value pair on it logger.debug('Line contains a key-pair value and the key is not stored yet.') key, val = [i.strip() for i in kv.split('=', 1)] key = self._add_key(key) val = self._string_subst_partial(val) # if it looks like the value spans lines, store details for next loop if (val.count('{') != val.count('}')) or (val.startswith('"') and not val.replace('}', '').endswith('"')): logger.debug('The line is not ending the record.') inkey = key inval = val else: logger.debug('The line is the end of the record.') d[key] = self._add_val(val) elif inkey: logger.debug('Continues the previous line to complete the key pair value...') # if this line continues the value from a previous line, append inval += ', ' + kv # if it looks like this line finishes the value, store it and clear for next loop if (inval.startswith('{') and inval.endswith('}')) or (inval.startswith('"') and inval.endswith('"')): logger.debug('This line represents the end of the current key-pair value') d[inkey] = self._add_val(inval) inkey = "" inval = "" else: logger.debug('This line does NOT represent the end of the current key-pair value') logger.debug('All lines have been treated') if not d: logger.debug('The dict is empty, return it.') return d d['ENTRYTYPE'] = bibtype d['ID'] = id if customization is None: logger.debug('No customization to apply, return dict') return d else: # apply any customizations to the record object then return it logger.debug('Apply customizations and return dict') return customization(d) def _strip_quotes(self, val): """Strip double quotes enclosing string :param val: a value :type val: string :returns: string -- value """ logger.debug('Strip quotes') val = val.strip() if val.startswith('"') and val.endswith('"'): return val[1:-1] return val def _strip_braces(self, val): """Strip braces enclosing string :param val: a value :type val: string :returns: string -- value """ logger.debug('Strip braces') val = val.strip() if val.startswith('{') and val.endswith('}') and self._full_span(val): return val[1:-1] return val def _full_span(self, val): cnt = 0 for i in range(0, len(val)): if val[i] == '{': cnt += 1 elif val[i] == '}': cnt -= 1 if cnt == 0: break if i == len(val) - 1: return True else: return False def _string_subst(self, val): """ Substitute string definitions :param val: a value :type val: string :returns: string -- value """ logger.debug('Substitute string definitions') if not val: return '' for k in list(self.bib_database.strings.keys()): if val.lower() == k: val = self.bib_database.strings[k] if not isinstance(val, ustr): val = ustr(val, self.encoding, 'ignore') return val def _string_subst_partial(self, val): """ Substitute string definitions inside larger expressions :param val: a value :type val: string :returns: string -- value """ def repl(m): k = m.group('id') replacement = self.bib_database.strings[k.lower()] if k.lower() in self.bib_database.strings else k pre = '"' if m.group('pre') != '"' else '' post = '"' if m.group('post') != '"' else '' return pre + replacement + post logger.debug('Substitute string definitions inside larger expressions') if '#' not in val: return val # TODO?: Does not match two subsequent variables or strings, such as "start" # foo # bar # "end" or "start" # "end". # TODO: Does not support braces instead of quotes, e.g.: {start} # foo # {bar} # TODO: Does not support strings like: "te#s#t" return self.replace_all_re.sub(repl, val) def _add_val(self, val): """ Clean instring before adding to dictionary :param val: a value :type val: string :returns: string -- value """ if not val or val == "{}": return '' val = self._strip_braces(val) val = self._strip_quotes(val) val = self._strip_braces(val) val = self._string_subst(val) return val def _add_key(self, key): """ Add a key and homogeneize alternative forms. :param key: a key :type key: string :returns: string -- value """ key = key.strip().strip('@').lower() if self.homogenise_fields: if key in list(self.alt_dict.keys()): key = self.alt_dict[key] if not isinstance(key, ustr): return ustr(key, 'utf-8') else: return key
[ "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\n# Original source: github.com/okfn/bibserver\n# Authors:\n# markmacgillivray\n# Etienne Posthumus (epoz)\n# Francois Boulogne <fboulogne at april dot org>\n\nimport sys\nimport logging\nimport io\nimport re\nfrom bibtexparser.bibdatabase import BibDatabase\n\nlogger = logging.getLogger(__name__)\n\n__all__ = ['BibTexParser']\n\n\nif sys.version_info >= (3, 0):\n from io import StringIO\n ustr = str\nelse:\n from StringIO import StringIO\n ustr = unicode\n\n\nclass BibTexParser(object):\n \"\"\"\n A parser for reading BibTeX bibliographic data files.\n\n Example::\n\n from bibtexparser.bparser import BibTexParser\n\n bibtex_str = ...\n\n parser = BibTexParser()\n parser.ignore_nonstandard_types = False\n parser.homogenise_fields = False\n bib_database = bibtexparser.loads(bibtex_str, parser)\n \"\"\"\n\n def __new__(cls, data=None,\n customization=None,\n ignore_nonstandard_types=True,\n homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n # For backwards compatibility: if data is given, parse and return the `BibDatabase` object instead of the\n # parser.\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n #: Callback function to process BibTeX entries after parsing, for example to create a list from a string with\n #: multiple values. By default all BibTeX values are treated as simple strings. Default: `None`.\n self.customization = None\n\n #: Ignore non-standard BibTeX types (`book`, `article`, etc). Default: `True`.\n self.ignore_nonstandard_types = True\n\n #: Sanitise BibTeX field names, for example change `url` to `link` etc. Field names are always converted to\n #: lowercase names. Default: `True`.\n self.homogenise_fields = True\n\n # On some sample data files, the character encoding detection simply\n # hangs We are going to default to utf8, and mandate it.\n self.encoding = 'utf8'\n\n # pre-defined set of key changes\n self.alt_dict = {\n 'keyw': 'keyword',\n 'keywords': 'keyword',\n 'authors': 'author',\n 'editors': 'editor',\n 'url': 'link',\n 'urls': 'link',\n 'links': 'link',\n 'subjects': 'subject'\n }\n\n self.replace_all_re = re.compile(r'((?P<pre>\"?)\\s*(#|^)\\s*(?P<id>[^\\d\\W]\\w*)\\s*(#|$)\\s*(?P<post>\"?))', re.UNICODE)\n\n def _bibtex_file_obj(self, bibtex_str):\n # Some files have Byte-order marks inserted at the start\n byte = '\\xef\\xbb\\xbf'\n if not isinstance(byte, ustr):\n byte = ustr('\\xef\\xbb\\xbf', self.encoding, 'ignore')\n if bibtex_str[:3] == byte:\n bibtex_str = bibtex_str[3:]\n return StringIO(bibtex_str)\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != \"\":\n logger.debug('The record is not empty. Let\\'s parse it.')\n parsed = self._parse_record(record, customization=customization)\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n\n records = []\n record = \"\"\n # read each line, bundle them up until they form an object, then send for parsing\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n # Remove leading whitespaces\n line = line.lstrip()\n logger.debug('Line starts with @')\n # Parse previous record\n _add_parsed_record(record, records)\n # Start new record\n logger.debug('The record is set to empty')\n record = \"\"\n # Keep adding lines to the record\n record += line\n\n # catch any remaining record and send it for parsing\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n\n def _parse_record(self, record, customization=None):\n \"\"\"Parse a record.\n\n * tidy whitespace and other rubbish\n * parse out the bibtype and citekey\n * find all the key-value pairs it contains\n\n :param record: a record\n :param customization: a function\n\n :returns: dict --\n \"\"\"\n d = {}\n\n if not record.startswith('@'):\n logger.debug('The record does not start with @. Return empty dict.')\n return {}\n\n # if a comment record, add to bib_database.comments\n if record.lower().startswith('@comment'):\n logger.debug('The record startswith @comment')\n logger.debug('Store comment in list of comments')\n\n self.bib_database.comments.append(re.search('\\{(.*)\\}', record, re.DOTALL).group(1))\n\n logger.debug('Return an empty dict')\n return {}\n\n # if a preamble record, add to bib_database.preambles\n if record.lower().startswith('@preamble'):\n logger.debug('The record startswith @preamble')\n logger.debug('Store preamble in list of preambles')\n\n self.bib_database.preambles.append(re.search('\\{(.*)\\}', record, re.DOTALL).group(1))\n\n logger.debug('Return an empty dict')\n return {}\n\n # prepare record\n record = '\\n'.join([i.strip() for i in record.split('\\n')])\n if '}\\n' in record:\n logger.debug('}\\\\n detected in the record. Clean up.')\n record = record.replace('\\r\\n', '\\n').replace('\\r', '\\n').rstrip('\\n')\n # treat the case for which the last line of the record\n # does not have a coma\n if record.endswith('}\\n}') or record.endswith('}}'):\n logger.debug('Missing coma in the last line of the record. Fix it.')\n record = re.sub('}(\\n|)}$', '},\\n}', record)\n\n # if a string record, put it in the replace_dict\n if record.lower().startswith('@string'):\n logger.debug('The record startswith @string')\n key, val = [i.strip().strip('{').strip('}').replace('\\n', ' ') for i in record.split('{', 1)[1].strip('\\n').strip(',').strip('}').split('=')]\n key = key.lower() # key is case insensitive\n val = self._string_subst_partial(val)\n if val.startswith('\"') or val.lower() not in self.bib_database.strings:\n self.bib_database.strings[key] = val.strip('\"')\n else:\n self.bib_database.strings[key] = self.bib_database.strings[val.lower()]\n logger.debug('Return a dict')\n return d\n\n # for each line in record\n logger.debug('Split the record of its lines and treat them')\n kvs = [i.strip() for i in record.split(',\\n')]\n inkey = \"\"\n inval = \"\"\n for kv in kvs:\n logger.debug('Inspect: %s', kv)\n # TODO: We may check that the keyword belongs to a known type\n if kv.startswith('@') and not inkey:\n # it is the start of the record - set the bibtype and citekey (id)\n logger.debug('Line starts with @ and the key is not stored yet.')\n bibtype, id = kv.split('{', 1)\n bibtype = self._add_key(bibtype)\n id = id.strip('}').strip(',')\n logger.debug('bibtype = %s', bibtype)\n logger.debug('id = %s', id)\n if self.ignore_nonstandard_types and bibtype not in ('article',\n 'book',\n 'booklet',\n 'conference',\n 'inbook',\n 'incollection',\n 'inproceedings',\n 'manual',\n 'mastersthesis',\n 'misc',\n 'phdthesis',\n 'proceedings',\n 'techreport',\n 'unpublished'):\n logger.warning('Entry type %s not standard. Not considered.', bibtype)\n break\n elif '=' in kv and not inkey:\n # it is a line with a key value pair on it\n logger.debug('Line contains a key-pair value and the key is not stored yet.')\n key, val = [i.strip() for i in kv.split('=', 1)]\n key = self._add_key(key)\n val = self._string_subst_partial(val)\n # if it looks like the value spans lines, store details for next loop\n if (val.count('{') != val.count('}')) or (val.startswith('\"') and not val.replace('}', '').endswith('\"')):\n logger.debug('The line is not ending the record.')\n inkey = key\n inval = val\n else:\n logger.debug('The line is the end of the record.')\n d[key] = self._add_val(val)\n elif inkey:\n logger.debug('Continues the previous line to complete the key pair value...')\n # if this line continues the value from a previous line, append\n inval += ', ' + kv\n # if it looks like this line finishes the value, store it and clear for next loop\n if (inval.startswith('{') and inval.endswith('}')) or (inval.startswith('\"') and inval.endswith('\"')):\n logger.debug('This line represents the end of the current key-pair value')\n d[inkey] = self._add_val(inval)\n inkey = \"\"\n inval = \"\"\n else:\n logger.debug('This line does NOT represent the end of the current key-pair value')\n\n logger.debug('All lines have been treated')\n if not d:\n logger.debug('The dict is empty, return it.')\n return d\n\n d['ENTRYTYPE'] = bibtype\n d['ID'] = id\n\n if customization is None:\n logger.debug('No customization to apply, return dict')\n return d\n else:\n # apply any customizations to the record object then return it\n logger.debug('Apply customizations and return dict')\n return customization(d)\n\n def _strip_quotes(self, val):\n \"\"\"Strip double quotes enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip quotes')\n val = val.strip()\n if val.startswith('\"') and val.endswith('\"'):\n return val[1:-1]\n return val\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n\n def _full_span(self, val):\n cnt = 0\n for i in range(0, len(val)):\n if val[i] == '{':\n cnt += 1\n elif val[i] == '}':\n cnt -= 1\n if cnt == 0:\n break\n if i == len(val) - 1:\n return True\n else:\n return False\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower() in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n\n # TODO?: Does not match two subsequent variables or strings, such as \"start\" # foo # bar # \"end\" or \"start\" # \"end\".\n # TODO: Does not support braces instead of quotes, e.g.: {start} # foo # {bar}\n # TODO: Does not support strings like: \"te#s#t\"\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == \"{}\":\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "import sys\nimport logging\nimport io\nimport re\nfrom bibtexparser.bibdatabase import BibDatabase\nlogger = logging.getLogger(__name__)\n__all__ = ['BibTexParser']\nif sys.version_info >= (3, 0):\n from io import StringIO\n ustr = str\nelse:\n from StringIO import StringIO\n ustr = unicode\n\n\nclass BibTexParser(object):\n \"\"\"\n A parser for reading BibTeX bibliographic data files.\n\n Example::\n\n from bibtexparser.bparser import BibTexParser\n\n bibtex_str = ...\n\n parser = BibTexParser()\n parser.ignore_nonstandard_types = False\n parser.homogenise_fields = False\n bib_database = bibtexparser.loads(bibtex_str, parser)\n \"\"\"\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n\n def _bibtex_file_obj(self, bibtex_str):\n byte = ''\n if not isinstance(byte, ustr):\n byte = ustr('', self.encoding, 'ignore')\n if bibtex_str[:3] == byte:\n bibtex_str = bibtex_str[3:]\n return StringIO(bibtex_str)\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n\n def _parse_record(self, record, customization=None):\n \"\"\"Parse a record.\n\n * tidy whitespace and other rubbish\n * parse out the bibtype and citekey\n * find all the key-value pairs it contains\n\n :param record: a record\n :param customization: a function\n\n :returns: dict --\n \"\"\"\n d = {}\n if not record.startswith('@'):\n logger.debug('The record does not start with @. Return empty dict.'\n )\n return {}\n if record.lower().startswith('@comment'):\n logger.debug('The record startswith @comment')\n logger.debug('Store comment in list of comments')\n self.bib_database.comments.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n if record.lower().startswith('@preamble'):\n logger.debug('The record startswith @preamble')\n logger.debug('Store preamble in list of preambles')\n self.bib_database.preambles.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n record = '\\n'.join([i.strip() for i in record.split('\\n')])\n if '}\\n' in record:\n logger.debug('}\\\\n detected in the record. Clean up.')\n record = record.replace('\\r\\n', '\\n').replace('\\r', '\\n').rstrip(\n '\\n')\n if record.endswith('}\\n}') or record.endswith('}}'):\n logger.debug(\n 'Missing coma in the last line of the record. Fix it.')\n record = re.sub('}(\\n|)}$', '},\\n}', record)\n if record.lower().startswith('@string'):\n logger.debug('The record startswith @string')\n key, val = [i.strip().strip('{').strip('}').replace('\\n', ' ') for\n i in record.split('{', 1)[1].strip('\\n').strip(',').strip(\n '}').split('=')]\n key = key.lower()\n val = self._string_subst_partial(val)\n if val.startswith('\"') or val.lower(\n ) not in self.bib_database.strings:\n self.bib_database.strings[key] = val.strip('\"')\n else:\n self.bib_database.strings[key] = self.bib_database.strings[val\n .lower()]\n logger.debug('Return a dict')\n return d\n logger.debug('Split the record of its lines and treat them')\n kvs = [i.strip() for i in record.split(',\\n')]\n inkey = ''\n inval = ''\n for kv in kvs:\n logger.debug('Inspect: %s', kv)\n if kv.startswith('@') and not inkey:\n logger.debug(\n 'Line starts with @ and the key is not stored yet.')\n bibtype, id = kv.split('{', 1)\n bibtype = self._add_key(bibtype)\n id = id.strip('}').strip(',')\n logger.debug('bibtype = %s', bibtype)\n logger.debug('id = %s', id)\n if self.ignore_nonstandard_types and bibtype not in ('article',\n 'book', 'booklet', 'conference', 'inbook',\n 'incollection', 'inproceedings', 'manual',\n 'mastersthesis', 'misc', 'phdthesis', 'proceedings',\n 'techreport', 'unpublished'):\n logger.warning(\n 'Entry type %s not standard. Not considered.', bibtype)\n break\n elif '=' in kv and not inkey:\n logger.debug(\n 'Line contains a key-pair value and the key is not stored yet.'\n )\n key, val = [i.strip() for i in kv.split('=', 1)]\n key = self._add_key(key)\n val = self._string_subst_partial(val)\n if val.count('{') != val.count('}') or val.startswith('\"'\n ) and not val.replace('}', '').endswith('\"'):\n logger.debug('The line is not ending the record.')\n inkey = key\n inval = val\n else:\n logger.debug('The line is the end of the record.')\n d[key] = self._add_val(val)\n elif inkey:\n logger.debug(\n 'Continues the previous line to complete the key pair value...'\n )\n inval += ', ' + kv\n if inval.startswith('{') and inval.endswith('}'\n ) or inval.startswith('\"') and inval.endswith('\"'):\n logger.debug(\n 'This line represents the end of the current key-pair value'\n )\n d[inkey] = self._add_val(inval)\n inkey = ''\n inval = ''\n else:\n logger.debug(\n 'This line does NOT represent the end of the current key-pair value'\n )\n logger.debug('All lines have been treated')\n if not d:\n logger.debug('The dict is empty, return it.')\n return d\n d['ENTRYTYPE'] = bibtype\n d['ID'] = id\n if customization is None:\n logger.debug('No customization to apply, return dict')\n return d\n else:\n logger.debug('Apply customizations and return dict')\n return customization(d)\n\n def _strip_quotes(self, val):\n \"\"\"Strip double quotes enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip quotes')\n val = val.strip()\n if val.startswith('\"') and val.endswith('\"'):\n return val[1:-1]\n return val\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n\n def _full_span(self, val):\n cnt = 0\n for i in range(0, len(val)):\n if val[i] == '{':\n cnt += 1\n elif val[i] == '}':\n cnt -= 1\n if cnt == 0:\n break\n if i == len(val) - 1:\n return True\n else:\n return False\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\nlogger = logging.getLogger(__name__)\n__all__ = ['BibTexParser']\nif sys.version_info >= (3, 0):\n from io import StringIO\n ustr = str\nelse:\n from StringIO import StringIO\n ustr = unicode\n\n\nclass BibTexParser(object):\n \"\"\"\n A parser for reading BibTeX bibliographic data files.\n\n Example::\n\n from bibtexparser.bparser import BibTexParser\n\n bibtex_str = ...\n\n parser = BibTexParser()\n parser.ignore_nonstandard_types = False\n parser.homogenise_fields = False\n bib_database = bibtexparser.loads(bibtex_str, parser)\n \"\"\"\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n\n def _bibtex_file_obj(self, bibtex_str):\n byte = ''\n if not isinstance(byte, ustr):\n byte = ustr('', self.encoding, 'ignore')\n if bibtex_str[:3] == byte:\n bibtex_str = bibtex_str[3:]\n return StringIO(bibtex_str)\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n\n def _parse_record(self, record, customization=None):\n \"\"\"Parse a record.\n\n * tidy whitespace and other rubbish\n * parse out the bibtype and citekey\n * find all the key-value pairs it contains\n\n :param record: a record\n :param customization: a function\n\n :returns: dict --\n \"\"\"\n d = {}\n if not record.startswith('@'):\n logger.debug('The record does not start with @. Return empty dict.'\n )\n return {}\n if record.lower().startswith('@comment'):\n logger.debug('The record startswith @comment')\n logger.debug('Store comment in list of comments')\n self.bib_database.comments.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n if record.lower().startswith('@preamble'):\n logger.debug('The record startswith @preamble')\n logger.debug('Store preamble in list of preambles')\n self.bib_database.preambles.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n record = '\\n'.join([i.strip() for i in record.split('\\n')])\n if '}\\n' in record:\n logger.debug('}\\\\n detected in the record. Clean up.')\n record = record.replace('\\r\\n', '\\n').replace('\\r', '\\n').rstrip(\n '\\n')\n if record.endswith('}\\n}') or record.endswith('}}'):\n logger.debug(\n 'Missing coma in the last line of the record. Fix it.')\n record = re.sub('}(\\n|)}$', '},\\n}', record)\n if record.lower().startswith('@string'):\n logger.debug('The record startswith @string')\n key, val = [i.strip().strip('{').strip('}').replace('\\n', ' ') for\n i in record.split('{', 1)[1].strip('\\n').strip(',').strip(\n '}').split('=')]\n key = key.lower()\n val = self._string_subst_partial(val)\n if val.startswith('\"') or val.lower(\n ) not in self.bib_database.strings:\n self.bib_database.strings[key] = val.strip('\"')\n else:\n self.bib_database.strings[key] = self.bib_database.strings[val\n .lower()]\n logger.debug('Return a dict')\n return d\n logger.debug('Split the record of its lines and treat them')\n kvs = [i.strip() for i in record.split(',\\n')]\n inkey = ''\n inval = ''\n for kv in kvs:\n logger.debug('Inspect: %s', kv)\n if kv.startswith('@') and not inkey:\n logger.debug(\n 'Line starts with @ and the key is not stored yet.')\n bibtype, id = kv.split('{', 1)\n bibtype = self._add_key(bibtype)\n id = id.strip('}').strip(',')\n logger.debug('bibtype = %s', bibtype)\n logger.debug('id = %s', id)\n if self.ignore_nonstandard_types and bibtype not in ('article',\n 'book', 'booklet', 'conference', 'inbook',\n 'incollection', 'inproceedings', 'manual',\n 'mastersthesis', 'misc', 'phdthesis', 'proceedings',\n 'techreport', 'unpublished'):\n logger.warning(\n 'Entry type %s not standard. Not considered.', bibtype)\n break\n elif '=' in kv and not inkey:\n logger.debug(\n 'Line contains a key-pair value and the key is not stored yet.'\n )\n key, val = [i.strip() for i in kv.split('=', 1)]\n key = self._add_key(key)\n val = self._string_subst_partial(val)\n if val.count('{') != val.count('}') or val.startswith('\"'\n ) and not val.replace('}', '').endswith('\"'):\n logger.debug('The line is not ending the record.')\n inkey = key\n inval = val\n else:\n logger.debug('The line is the end of the record.')\n d[key] = self._add_val(val)\n elif inkey:\n logger.debug(\n 'Continues the previous line to complete the key pair value...'\n )\n inval += ', ' + kv\n if inval.startswith('{') and inval.endswith('}'\n ) or inval.startswith('\"') and inval.endswith('\"'):\n logger.debug(\n 'This line represents the end of the current key-pair value'\n )\n d[inkey] = self._add_val(inval)\n inkey = ''\n inval = ''\n else:\n logger.debug(\n 'This line does NOT represent the end of the current key-pair value'\n )\n logger.debug('All lines have been treated')\n if not d:\n logger.debug('The dict is empty, return it.')\n return d\n d['ENTRYTYPE'] = bibtype\n d['ID'] = id\n if customization is None:\n logger.debug('No customization to apply, return dict')\n return d\n else:\n logger.debug('Apply customizations and return dict')\n return customization(d)\n\n def _strip_quotes(self, val):\n \"\"\"Strip double quotes enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip quotes')\n val = val.strip()\n if val.startswith('\"') and val.endswith('\"'):\n return val[1:-1]\n return val\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n\n def _full_span(self, val):\n cnt = 0\n for i in range(0, len(val)):\n if val[i] == '{':\n cnt += 1\n elif val[i] == '}':\n cnt -= 1\n if cnt == 0:\n break\n if i == len(val) - 1:\n return True\n else:\n return False\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\nif sys.version_info >= (3, 0):\n from io import StringIO\n ustr = str\nelse:\n from StringIO import StringIO\n ustr = unicode\n\n\nclass BibTexParser(object):\n \"\"\"\n A parser for reading BibTeX bibliographic data files.\n\n Example::\n\n from bibtexparser.bparser import BibTexParser\n\n bibtex_str = ...\n\n parser = BibTexParser()\n parser.ignore_nonstandard_types = False\n parser.homogenise_fields = False\n bib_database = bibtexparser.loads(bibtex_str, parser)\n \"\"\"\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n\n def _bibtex_file_obj(self, bibtex_str):\n byte = ''\n if not isinstance(byte, ustr):\n byte = ustr('', self.encoding, 'ignore')\n if bibtex_str[:3] == byte:\n bibtex_str = bibtex_str[3:]\n return StringIO(bibtex_str)\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n\n def _parse_record(self, record, customization=None):\n \"\"\"Parse a record.\n\n * tidy whitespace and other rubbish\n * parse out the bibtype and citekey\n * find all the key-value pairs it contains\n\n :param record: a record\n :param customization: a function\n\n :returns: dict --\n \"\"\"\n d = {}\n if not record.startswith('@'):\n logger.debug('The record does not start with @. Return empty dict.'\n )\n return {}\n if record.lower().startswith('@comment'):\n logger.debug('The record startswith @comment')\n logger.debug('Store comment in list of comments')\n self.bib_database.comments.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n if record.lower().startswith('@preamble'):\n logger.debug('The record startswith @preamble')\n logger.debug('Store preamble in list of preambles')\n self.bib_database.preambles.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n record = '\\n'.join([i.strip() for i in record.split('\\n')])\n if '}\\n' in record:\n logger.debug('}\\\\n detected in the record. Clean up.')\n record = record.replace('\\r\\n', '\\n').replace('\\r', '\\n').rstrip(\n '\\n')\n if record.endswith('}\\n}') or record.endswith('}}'):\n logger.debug(\n 'Missing coma in the last line of the record. Fix it.')\n record = re.sub('}(\\n|)}$', '},\\n}', record)\n if record.lower().startswith('@string'):\n logger.debug('The record startswith @string')\n key, val = [i.strip().strip('{').strip('}').replace('\\n', ' ') for\n i in record.split('{', 1)[1].strip('\\n').strip(',').strip(\n '}').split('=')]\n key = key.lower()\n val = self._string_subst_partial(val)\n if val.startswith('\"') or val.lower(\n ) not in self.bib_database.strings:\n self.bib_database.strings[key] = val.strip('\"')\n else:\n self.bib_database.strings[key] = self.bib_database.strings[val\n .lower()]\n logger.debug('Return a dict')\n return d\n logger.debug('Split the record of its lines and treat them')\n kvs = [i.strip() for i in record.split(',\\n')]\n inkey = ''\n inval = ''\n for kv in kvs:\n logger.debug('Inspect: %s', kv)\n if kv.startswith('@') and not inkey:\n logger.debug(\n 'Line starts with @ and the key is not stored yet.')\n bibtype, id = kv.split('{', 1)\n bibtype = self._add_key(bibtype)\n id = id.strip('}').strip(',')\n logger.debug('bibtype = %s', bibtype)\n logger.debug('id = %s', id)\n if self.ignore_nonstandard_types and bibtype not in ('article',\n 'book', 'booklet', 'conference', 'inbook',\n 'incollection', 'inproceedings', 'manual',\n 'mastersthesis', 'misc', 'phdthesis', 'proceedings',\n 'techreport', 'unpublished'):\n logger.warning(\n 'Entry type %s not standard. Not considered.', bibtype)\n break\n elif '=' in kv and not inkey:\n logger.debug(\n 'Line contains a key-pair value and the key is not stored yet.'\n )\n key, val = [i.strip() for i in kv.split('=', 1)]\n key = self._add_key(key)\n val = self._string_subst_partial(val)\n if val.count('{') != val.count('}') or val.startswith('\"'\n ) and not val.replace('}', '').endswith('\"'):\n logger.debug('The line is not ending the record.')\n inkey = key\n inval = val\n else:\n logger.debug('The line is the end of the record.')\n d[key] = self._add_val(val)\n elif inkey:\n logger.debug(\n 'Continues the previous line to complete the key pair value...'\n )\n inval += ', ' + kv\n if inval.startswith('{') and inval.endswith('}'\n ) or inval.startswith('\"') and inval.endswith('\"'):\n logger.debug(\n 'This line represents the end of the current key-pair value'\n )\n d[inkey] = self._add_val(inval)\n inkey = ''\n inval = ''\n else:\n logger.debug(\n 'This line does NOT represent the end of the current key-pair value'\n )\n logger.debug('All lines have been treated')\n if not d:\n logger.debug('The dict is empty, return it.')\n return d\n d['ENTRYTYPE'] = bibtype\n d['ID'] = id\n if customization is None:\n logger.debug('No customization to apply, return dict')\n return d\n else:\n logger.debug('Apply customizations and return dict')\n return customization(d)\n\n def _strip_quotes(self, val):\n \"\"\"Strip double quotes enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip quotes')\n val = val.strip()\n if val.startswith('\"') and val.endswith('\"'):\n return val[1:-1]\n return val\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n\n def _full_span(self, val):\n cnt = 0\n for i in range(0, len(val)):\n if val[i] == '{':\n cnt += 1\n elif val[i] == '}':\n cnt -= 1\n if cnt == 0:\n break\n if i == len(val) - 1:\n return True\n else:\n return False\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n \"\"\"\n A parser for reading BibTeX bibliographic data files.\n\n Example::\n\n from bibtexparser.bparser import BibTexParser\n\n bibtex_str = ...\n\n parser = BibTexParser()\n parser.ignore_nonstandard_types = False\n parser.homogenise_fields = False\n bib_database = bibtexparser.loads(bibtex_str, parser)\n \"\"\"\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n\n def _bibtex_file_obj(self, bibtex_str):\n byte = ''\n if not isinstance(byte, ustr):\n byte = ustr('', self.encoding, 'ignore')\n if bibtex_str[:3] == byte:\n bibtex_str = bibtex_str[3:]\n return StringIO(bibtex_str)\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n\n def _parse_record(self, record, customization=None):\n \"\"\"Parse a record.\n\n * tidy whitespace and other rubbish\n * parse out the bibtype and citekey\n * find all the key-value pairs it contains\n\n :param record: a record\n :param customization: a function\n\n :returns: dict --\n \"\"\"\n d = {}\n if not record.startswith('@'):\n logger.debug('The record does not start with @. Return empty dict.'\n )\n return {}\n if record.lower().startswith('@comment'):\n logger.debug('The record startswith @comment')\n logger.debug('Store comment in list of comments')\n self.bib_database.comments.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n if record.lower().startswith('@preamble'):\n logger.debug('The record startswith @preamble')\n logger.debug('Store preamble in list of preambles')\n self.bib_database.preambles.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n record = '\\n'.join([i.strip() for i in record.split('\\n')])\n if '}\\n' in record:\n logger.debug('}\\\\n detected in the record. Clean up.')\n record = record.replace('\\r\\n', '\\n').replace('\\r', '\\n').rstrip(\n '\\n')\n if record.endswith('}\\n}') or record.endswith('}}'):\n logger.debug(\n 'Missing coma in the last line of the record. Fix it.')\n record = re.sub('}(\\n|)}$', '},\\n}', record)\n if record.lower().startswith('@string'):\n logger.debug('The record startswith @string')\n key, val = [i.strip().strip('{').strip('}').replace('\\n', ' ') for\n i in record.split('{', 1)[1].strip('\\n').strip(',').strip(\n '}').split('=')]\n key = key.lower()\n val = self._string_subst_partial(val)\n if val.startswith('\"') or val.lower(\n ) not in self.bib_database.strings:\n self.bib_database.strings[key] = val.strip('\"')\n else:\n self.bib_database.strings[key] = self.bib_database.strings[val\n .lower()]\n logger.debug('Return a dict')\n return d\n logger.debug('Split the record of its lines and treat them')\n kvs = [i.strip() for i in record.split(',\\n')]\n inkey = ''\n inval = ''\n for kv in kvs:\n logger.debug('Inspect: %s', kv)\n if kv.startswith('@') and not inkey:\n logger.debug(\n 'Line starts with @ and the key is not stored yet.')\n bibtype, id = kv.split('{', 1)\n bibtype = self._add_key(bibtype)\n id = id.strip('}').strip(',')\n logger.debug('bibtype = %s', bibtype)\n logger.debug('id = %s', id)\n if self.ignore_nonstandard_types and bibtype not in ('article',\n 'book', 'booklet', 'conference', 'inbook',\n 'incollection', 'inproceedings', 'manual',\n 'mastersthesis', 'misc', 'phdthesis', 'proceedings',\n 'techreport', 'unpublished'):\n logger.warning(\n 'Entry type %s not standard. Not considered.', bibtype)\n break\n elif '=' in kv and not inkey:\n logger.debug(\n 'Line contains a key-pair value and the key is not stored yet.'\n )\n key, val = [i.strip() for i in kv.split('=', 1)]\n key = self._add_key(key)\n val = self._string_subst_partial(val)\n if val.count('{') != val.count('}') or val.startswith('\"'\n ) and not val.replace('}', '').endswith('\"'):\n logger.debug('The line is not ending the record.')\n inkey = key\n inval = val\n else:\n logger.debug('The line is the end of the record.')\n d[key] = self._add_val(val)\n elif inkey:\n logger.debug(\n 'Continues the previous line to complete the key pair value...'\n )\n inval += ', ' + kv\n if inval.startswith('{') and inval.endswith('}'\n ) or inval.startswith('\"') and inval.endswith('\"'):\n logger.debug(\n 'This line represents the end of the current key-pair value'\n )\n d[inkey] = self._add_val(inval)\n inkey = ''\n inval = ''\n else:\n logger.debug(\n 'This line does NOT represent the end of the current key-pair value'\n )\n logger.debug('All lines have been treated')\n if not d:\n logger.debug('The dict is empty, return it.')\n return d\n d['ENTRYTYPE'] = bibtype\n d['ID'] = id\n if customization is None:\n logger.debug('No customization to apply, return dict')\n return d\n else:\n logger.debug('Apply customizations and return dict')\n return customization(d)\n\n def _strip_quotes(self, val):\n \"\"\"Strip double quotes enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip quotes')\n val = val.strip()\n if val.startswith('\"') and val.endswith('\"'):\n return val[1:-1]\n return val\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n\n def _full_span(self, val):\n cnt = 0\n for i in range(0, len(val)):\n if val[i] == '{':\n cnt += 1\n elif val[i] == '}':\n cnt -= 1\n if cnt == 0:\n break\n if i == len(val) - 1:\n return True\n else:\n return False\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n\n def _bibtex_file_obj(self, bibtex_str):\n byte = ''\n if not isinstance(byte, ustr):\n byte = ustr('', self.encoding, 'ignore')\n if bibtex_str[:3] == byte:\n bibtex_str = bibtex_str[3:]\n return StringIO(bibtex_str)\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n\n def _parse_record(self, record, customization=None):\n \"\"\"Parse a record.\n\n * tidy whitespace and other rubbish\n * parse out the bibtype and citekey\n * find all the key-value pairs it contains\n\n :param record: a record\n :param customization: a function\n\n :returns: dict --\n \"\"\"\n d = {}\n if not record.startswith('@'):\n logger.debug('The record does not start with @. Return empty dict.'\n )\n return {}\n if record.lower().startswith('@comment'):\n logger.debug('The record startswith @comment')\n logger.debug('Store comment in list of comments')\n self.bib_database.comments.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n if record.lower().startswith('@preamble'):\n logger.debug('The record startswith @preamble')\n logger.debug('Store preamble in list of preambles')\n self.bib_database.preambles.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n record = '\\n'.join([i.strip() for i in record.split('\\n')])\n if '}\\n' in record:\n logger.debug('}\\\\n detected in the record. Clean up.')\n record = record.replace('\\r\\n', '\\n').replace('\\r', '\\n').rstrip(\n '\\n')\n if record.endswith('}\\n}') or record.endswith('}}'):\n logger.debug(\n 'Missing coma in the last line of the record. Fix it.')\n record = re.sub('}(\\n|)}$', '},\\n}', record)\n if record.lower().startswith('@string'):\n logger.debug('The record startswith @string')\n key, val = [i.strip().strip('{').strip('}').replace('\\n', ' ') for\n i in record.split('{', 1)[1].strip('\\n').strip(',').strip(\n '}').split('=')]\n key = key.lower()\n val = self._string_subst_partial(val)\n if val.startswith('\"') or val.lower(\n ) not in self.bib_database.strings:\n self.bib_database.strings[key] = val.strip('\"')\n else:\n self.bib_database.strings[key] = self.bib_database.strings[val\n .lower()]\n logger.debug('Return a dict')\n return d\n logger.debug('Split the record of its lines and treat them')\n kvs = [i.strip() for i in record.split(',\\n')]\n inkey = ''\n inval = ''\n for kv in kvs:\n logger.debug('Inspect: %s', kv)\n if kv.startswith('@') and not inkey:\n logger.debug(\n 'Line starts with @ and the key is not stored yet.')\n bibtype, id = kv.split('{', 1)\n bibtype = self._add_key(bibtype)\n id = id.strip('}').strip(',')\n logger.debug('bibtype = %s', bibtype)\n logger.debug('id = %s', id)\n if self.ignore_nonstandard_types and bibtype not in ('article',\n 'book', 'booklet', 'conference', 'inbook',\n 'incollection', 'inproceedings', 'manual',\n 'mastersthesis', 'misc', 'phdthesis', 'proceedings',\n 'techreport', 'unpublished'):\n logger.warning(\n 'Entry type %s not standard. Not considered.', bibtype)\n break\n elif '=' in kv and not inkey:\n logger.debug(\n 'Line contains a key-pair value and the key is not stored yet.'\n )\n key, val = [i.strip() for i in kv.split('=', 1)]\n key = self._add_key(key)\n val = self._string_subst_partial(val)\n if val.count('{') != val.count('}') or val.startswith('\"'\n ) and not val.replace('}', '').endswith('\"'):\n logger.debug('The line is not ending the record.')\n inkey = key\n inval = val\n else:\n logger.debug('The line is the end of the record.')\n d[key] = self._add_val(val)\n elif inkey:\n logger.debug(\n 'Continues the previous line to complete the key pair value...'\n )\n inval += ', ' + kv\n if inval.startswith('{') and inval.endswith('}'\n ) or inval.startswith('\"') and inval.endswith('\"'):\n logger.debug(\n 'This line represents the end of the current key-pair value'\n )\n d[inkey] = self._add_val(inval)\n inkey = ''\n inval = ''\n else:\n logger.debug(\n 'This line does NOT represent the end of the current key-pair value'\n )\n logger.debug('All lines have been treated')\n if not d:\n logger.debug('The dict is empty, return it.')\n return d\n d['ENTRYTYPE'] = bibtype\n d['ID'] = id\n if customization is None:\n logger.debug('No customization to apply, return dict')\n return d\n else:\n logger.debug('Apply customizations and return dict')\n return customization(d)\n\n def _strip_quotes(self, val):\n \"\"\"Strip double quotes enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip quotes')\n val = val.strip()\n if val.startswith('\"') and val.endswith('\"'):\n return val[1:-1]\n return val\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n\n def _full_span(self, val):\n cnt = 0\n for i in range(0, len(val)):\n if val[i] == '{':\n cnt += 1\n elif val[i] == '}':\n cnt -= 1\n if cnt == 0:\n break\n if i == len(val) - 1:\n return True\n else:\n return False\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n\n def _bibtex_file_obj(self, bibtex_str):\n byte = ''\n if not isinstance(byte, ustr):\n byte = ustr('', self.encoding, 'ignore')\n if bibtex_str[:3] == byte:\n bibtex_str = bibtex_str[3:]\n return StringIO(bibtex_str)\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n\n def _parse_record(self, record, customization=None):\n \"\"\"Parse a record.\n\n * tidy whitespace and other rubbish\n * parse out the bibtype and citekey\n * find all the key-value pairs it contains\n\n :param record: a record\n :param customization: a function\n\n :returns: dict --\n \"\"\"\n d = {}\n if not record.startswith('@'):\n logger.debug('The record does not start with @. Return empty dict.'\n )\n return {}\n if record.lower().startswith('@comment'):\n logger.debug('The record startswith @comment')\n logger.debug('Store comment in list of comments')\n self.bib_database.comments.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n if record.lower().startswith('@preamble'):\n logger.debug('The record startswith @preamble')\n logger.debug('Store preamble in list of preambles')\n self.bib_database.preambles.append(re.search('\\\\{(.*)\\\\}',\n record, re.DOTALL).group(1))\n logger.debug('Return an empty dict')\n return {}\n record = '\\n'.join([i.strip() for i in record.split('\\n')])\n if '}\\n' in record:\n logger.debug('}\\\\n detected in the record. Clean up.')\n record = record.replace('\\r\\n', '\\n').replace('\\r', '\\n').rstrip(\n '\\n')\n if record.endswith('}\\n}') or record.endswith('}}'):\n logger.debug(\n 'Missing coma in the last line of the record. Fix it.')\n record = re.sub('}(\\n|)}$', '},\\n}', record)\n if record.lower().startswith('@string'):\n logger.debug('The record startswith @string')\n key, val = [i.strip().strip('{').strip('}').replace('\\n', ' ') for\n i in record.split('{', 1)[1].strip('\\n').strip(',').strip(\n '}').split('=')]\n key = key.lower()\n val = self._string_subst_partial(val)\n if val.startswith('\"') or val.lower(\n ) not in self.bib_database.strings:\n self.bib_database.strings[key] = val.strip('\"')\n else:\n self.bib_database.strings[key] = self.bib_database.strings[val\n .lower()]\n logger.debug('Return a dict')\n return d\n logger.debug('Split the record of its lines and treat them')\n kvs = [i.strip() for i in record.split(',\\n')]\n inkey = ''\n inval = ''\n for kv in kvs:\n logger.debug('Inspect: %s', kv)\n if kv.startswith('@') and not inkey:\n logger.debug(\n 'Line starts with @ and the key is not stored yet.')\n bibtype, id = kv.split('{', 1)\n bibtype = self._add_key(bibtype)\n id = id.strip('}').strip(',')\n logger.debug('bibtype = %s', bibtype)\n logger.debug('id = %s', id)\n if self.ignore_nonstandard_types and bibtype not in ('article',\n 'book', 'booklet', 'conference', 'inbook',\n 'incollection', 'inproceedings', 'manual',\n 'mastersthesis', 'misc', 'phdthesis', 'proceedings',\n 'techreport', 'unpublished'):\n logger.warning(\n 'Entry type %s not standard. Not considered.', bibtype)\n break\n elif '=' in kv and not inkey:\n logger.debug(\n 'Line contains a key-pair value and the key is not stored yet.'\n )\n key, val = [i.strip() for i in kv.split('=', 1)]\n key = self._add_key(key)\n val = self._string_subst_partial(val)\n if val.count('{') != val.count('}') or val.startswith('\"'\n ) and not val.replace('}', '').endswith('\"'):\n logger.debug('The line is not ending the record.')\n inkey = key\n inval = val\n else:\n logger.debug('The line is the end of the record.')\n d[key] = self._add_val(val)\n elif inkey:\n logger.debug(\n 'Continues the previous line to complete the key pair value...'\n )\n inval += ', ' + kv\n if inval.startswith('{') and inval.endswith('}'\n ) or inval.startswith('\"') and inval.endswith('\"'):\n logger.debug(\n 'This line represents the end of the current key-pair value'\n )\n d[inkey] = self._add_val(inval)\n inkey = ''\n inval = ''\n else:\n logger.debug(\n 'This line does NOT represent the end of the current key-pair value'\n )\n logger.debug('All lines have been treated')\n if not d:\n logger.debug('The dict is empty, return it.')\n return d\n d['ENTRYTYPE'] = bibtype\n d['ID'] = id\n if customization is None:\n logger.debug('No customization to apply, return dict')\n return d\n else:\n logger.debug('Apply customizations and return dict')\n return customization(d)\n\n def _strip_quotes(self, val):\n \"\"\"Strip double quotes enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip quotes')\n val = val.strip()\n if val.startswith('\"') and val.endswith('\"'):\n return val[1:-1]\n return val\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n\n def _bibtex_file_obj(self, bibtex_str):\n byte = ''\n if not isinstance(byte, ustr):\n byte = ustr('', self.encoding, 'ignore')\n if bibtex_str[:3] == byte:\n bibtex_str = bibtex_str[3:]\n return StringIO(bibtex_str)\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n <function token>\n\n def _strip_quotes(self, val):\n \"\"\"Strip double quotes enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip quotes')\n val = val.strip()\n if val.startswith('\"') and val.endswith('\"'):\n return val[1:-1]\n return val\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n <function token>\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n <function token>\n\n def _strip_quotes(self, val):\n \"\"\"Strip double quotes enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip quotes')\n val = val.strip()\n if val.startswith('\"') and val.endswith('\"'):\n return val[1:-1]\n return val\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n <function token>\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n <function token>\n <function token>\n\n def _strip_braces(self, val):\n \"\"\"Strip braces enclosing string\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Strip braces')\n val = val.strip()\n if val.startswith('{') and val.endswith('}') and self._full_span(val):\n return val[1:-1]\n return val\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n <function token>\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n\n def _parse_records(self, customization=None):\n \"\"\"Parse the bibtex into a list of records.\n\n :param customization: a function\n \"\"\"\n\n def _add_parsed_record(record, records):\n \"\"\"\n Atomic function to parse a record\n and append the result in records\n \"\"\"\n if record != '':\n logger.debug(\"The record is not empty. Let's parse it.\")\n parsed = self._parse_record(record, customization=customization\n )\n if parsed:\n logger.debug('Store the result of the parsed record')\n records.append(parsed)\n else:\n logger.debug('Nothing returned from the parsed record!')\n else:\n logger.debug('The record is empty')\n records = []\n record = ''\n for linenumber, line in enumerate(self.bibtex_file_obj):\n logger.debug('Inspect line %s', linenumber)\n if line.strip().startswith('@'):\n line = line.lstrip()\n logger.debug('Line starts with @')\n _add_parsed_record(record, records)\n logger.debug('The record is set to empty')\n record = ''\n record += line\n _add_parsed_record(record, records)\n logger.debug('Set the list of entries')\n self.bib_database.entries = records\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n\n def __init__(self):\n \"\"\"\n Creates a parser for rading BibTeX files\n\n :return: parser\n :rtype: `BibTexParser`\n \"\"\"\n self.bib_database = BibDatabase()\n self.customization = None\n self.ignore_nonstandard_types = True\n self.homogenise_fields = True\n self.encoding = 'utf8'\n self.alt_dict = {'keyw': 'keyword', 'keywords': 'keyword',\n 'authors': 'author', 'editors': 'editor', 'url': 'link', 'urls':\n 'link', 'links': 'link', 'subjects': 'subject'}\n self.replace_all_re = re.compile(\n '((?P<pre>\"?)\\\\s*(#|^)\\\\s*(?P<id>[^\\\\d\\\\W]\\\\w*)\\\\s*(#|$)\\\\s*(?P<post>\"?))'\n , re.UNICODE)\n <function token>\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n <function token>\n <function token>\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n\n def _string_subst_partial(self, val):\n \"\"\" Substitute string definitions inside larger expressions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n\n def repl(m):\n k = m.group('id')\n replacement = self.bib_database.strings[k.lower()] if k.lower(\n ) in self.bib_database.strings else k\n pre = '\"' if m.group('pre') != '\"' else ''\n post = '\"' if m.group('post') != '\"' else ''\n return pre + replacement + post\n logger.debug('Substitute string definitions inside larger expressions')\n if '#' not in val:\n return val\n return self.replace_all_re.sub(repl, val)\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n <function token>\n <function token>\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n\n def parse_file(self, file):\n \"\"\"Parse a BibTeX file into an object\n\n :param file: BibTeX file or file-like object\n :type: file\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n return self.parse(file.read())\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n <function token>\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n\n def __new__(cls, data=None, customization=None,\n ignore_nonstandard_types=True, homogenise_fields=True):\n \"\"\"\n To catch the old API structure in which creating the parser would immediately parse and return data.\n \"\"\"\n if data is None:\n return super(BibTexParser, cls).__new__(cls)\n else:\n parser = BibTexParser()\n parser.customization = customization\n parser.ignore_nonstandard_types = ignore_nonstandard_types\n parser.homogenise_fields = homogenise_fields\n return parser.parse(data)\n <function token>\n <function token>\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n <function token>\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def parse(self, bibtex_str):\n \"\"\"Parse a BibTeX string into an object\n\n :param bibtex_str: BibTeX string\n :type: str or unicode\n :return: bibliographic database\n :rtype: BibDatabase\n \"\"\"\n self.bibtex_file_obj = self._bibtex_file_obj(bibtex_str)\n self._parse_records(customization=self.customization)\n return self.bib_database\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n <function token>\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n <function token>\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n\n def _add_key(self, key):\n \"\"\" Add a key and homogeneize alternative forms.\n\n :param key: a key\n :type key: string\n :returns: string -- value\n \"\"\"\n key = key.strip().strip('@').lower()\n if self.homogenise_fields:\n if key in list(self.alt_dict.keys()):\n key = self.alt_dict[key]\n if not isinstance(key, ustr):\n return ustr(key, 'utf-8')\n else:\n return key\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n <function token>\n\n def _add_val(self, val):\n \"\"\" Clean instring before adding to dictionary\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n if not val or val == '{}':\n return ''\n val = self._strip_braces(val)\n val = self._strip_quotes(val)\n val = self._strip_braces(val)\n val = self._string_subst(val)\n return val\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _string_subst(self, val):\n \"\"\" Substitute string definitions\n\n :param val: a value\n :type val: string\n :returns: string -- value\n \"\"\"\n logger.debug('Substitute string definitions')\n if not val:\n return ''\n for k in list(self.bib_database.strings.keys()):\n if val.lower() == k:\n val = self.bib_database.strings[k]\n if not isinstance(val, ustr):\n val = ustr(val, self.encoding, 'ignore')\n return val\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n\n\nclass BibTexParser(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<code token>\n<class token>\n" ]
false
98,367
f11e7a7fce37d5ecc0b031084277a3e7f406b743
# Copyright 2014 - Dark Secret Software Inc. # All Rights Reserved. def get_event(): return {"event_type": "compute.instance.exists", '_context_request_id': "req-1234", '_context_project_id': "tenant-1", "timestamp": "2013-06-20 17:31:57.939614", "publisher_id": "compute.global.preprod-ord.ohthree.com", "payload": { 'instance_id': "ins-4567", "status": "saving", "container_format": "ovf", "properties": { "image_type": "snapshot", }, "options": [ "one", "two", {"server": "bart", "region": "springfield"}, "three" ], "tenant": "5877054", "old_state": 'old_state', "old_task_state": 'old_task', "image_meta": { "org.openstack__1__architecture": 'os_arch', "org.openstack__1__os_distro": 'os_distro', "org.openstack__1__os_version": 'os_version', "com.rackspace__1__options": 'rax_opt', }, "state": 'state', "new_task_state": 'task', "bandwidth": { "private": {"bw_in": 0, "bw_out": 264902}, "public": {"bw_in": 0, "bw_out": 1697240969} } } }
[ "# Copyright 2014 - Dark Secret Software Inc.\n# All Rights Reserved.\n\n\ndef get_event():\n return {\"event_type\": \"compute.instance.exists\",\n '_context_request_id': \"req-1234\",\n '_context_project_id': \"tenant-1\",\n \"timestamp\": \"2013-06-20 17:31:57.939614\",\n \"publisher_id\": \"compute.global.preprod-ord.ohthree.com\",\n \"payload\": {\n 'instance_id': \"ins-4567\",\n \"status\": \"saving\",\n \"container_format\": \"ovf\",\n \"properties\": {\n \"image_type\": \"snapshot\",\n },\n \"options\": [\n \"one\",\n \"two\",\n {\"server\": \"bart\",\n \"region\": \"springfield\"},\n \"three\"\n ],\n \"tenant\": \"5877054\",\n \"old_state\": 'old_state',\n \"old_task_state\": 'old_task',\n \"image_meta\": {\n \"org.openstack__1__architecture\": 'os_arch',\n \"org.openstack__1__os_distro\": 'os_distro',\n \"org.openstack__1__os_version\": 'os_version',\n \"com.rackspace__1__options\": 'rax_opt',\n },\n \"state\": 'state',\n \"new_task_state\": 'task',\n \"bandwidth\": {\n \"private\": {\"bw_in\": 0, \"bw_out\": 264902},\n \"public\": {\"bw_in\": 0, \"bw_out\": 1697240969}\n }\n }\n }\n", "def get_event():\n return {'event_type': 'compute.instance.exists', '_context_request_id':\n 'req-1234', '_context_project_id': 'tenant-1', 'timestamp':\n '2013-06-20 17:31:57.939614', 'publisher_id':\n 'compute.global.preprod-ord.ohthree.com', 'payload': {'instance_id':\n 'ins-4567', 'status': 'saving', 'container_format': 'ovf',\n 'properties': {'image_type': 'snapshot'}, 'options': ['one', 'two',\n {'server': 'bart', 'region': 'springfield'}, 'three'], 'tenant':\n '5877054', 'old_state': 'old_state', 'old_task_state': 'old_task',\n 'image_meta': {'org.openstack__1__architecture': 'os_arch',\n 'org.openstack__1__os_distro': 'os_distro',\n 'org.openstack__1__os_version': 'os_version',\n 'com.rackspace__1__options': 'rax_opt'}, 'state': 'state',\n 'new_task_state': 'task', 'bandwidth': {'private': {'bw_in': 0,\n 'bw_out': 264902}, 'public': {'bw_in': 0, 'bw_out': 1697240969}}}}\n", "<function token>\n" ]
false
98,368
1d3ea427cc52f8bd6be63deb43a4e34f723f68c4
import BaseClasses as bc class RNN(bc.GraphStructure): rnn_cell_from_tensorflow = ['GRUCell', 'LSTMCell'] custom_rnn_cell = ['GRUPartialCell'] def __init__(self, dtype): super(RNN, self).__init__(dtype) pass
[ "import BaseClasses as bc\n\n\nclass RNN(bc.GraphStructure):\n\n rnn_cell_from_tensorflow = ['GRUCell', 'LSTMCell']\n custom_rnn_cell = ['GRUPartialCell']\n\n def __init__(self, dtype):\n super(RNN, self).__init__(dtype)\n pass\n\n\n", "import BaseClasses as bc\n\n\nclass RNN(bc.GraphStructure):\n rnn_cell_from_tensorflow = ['GRUCell', 'LSTMCell']\n custom_rnn_cell = ['GRUPartialCell']\n\n def __init__(self, dtype):\n super(RNN, self).__init__(dtype)\n pass\n", "<import token>\n\n\nclass RNN(bc.GraphStructure):\n rnn_cell_from_tensorflow = ['GRUCell', 'LSTMCell']\n custom_rnn_cell = ['GRUPartialCell']\n\n def __init__(self, dtype):\n super(RNN, self).__init__(dtype)\n pass\n", "<import token>\n\n\nclass RNN(bc.GraphStructure):\n <assignment token>\n <assignment token>\n\n def __init__(self, dtype):\n super(RNN, self).__init__(dtype)\n pass\n", "<import token>\n\n\nclass RNN(bc.GraphStructure):\n <assignment token>\n <assignment token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,369
3d565d3316c05bdb5c37f45ea2b362bf7ee3b7c1
with open("in.txt","r") as f: lines = f.readlines() l1 = lines[0].strip() l2 = lines[1].strip() ct = 0 for i in range(0,len(l1)): if l1[i] != l2[i]: ct += 1 print ct
[ "with open(\"in.txt\",\"r\") as f:\n\tlines = f.readlines()\n\tl1 = lines[0].strip()\n\tl2 = lines[1].strip()\n\tct = 0\n\tfor i in range(0,len(l1)):\n\t\tif l1[i] != l2[i]:\n\t\t\tct += 1\n\tprint ct\t\n" ]
true
98,370
df6b3b2f64ebf5662c1703e51bf262f39a1a7ead
import pygame class Settings(object): def __init__(self): self.image = pygame.image.load("images/map.jpg") self.map_size = 3 self.block_space = 5 self.block_width = (self.image.get_rect().width - (self.map_size - 1) * self.block_space) // self.map_size self.block_height = (self.image.get_rect().height - (self.map_size - 1) * self.block_space) // self.map_size self.screen_size = ((self.block_width + self.block_space) * self.map_size + self.block_space, (self.block_height + self.block_space) * self.map_size + self.block_space) self.background = (0, 0, 0) self.font_color = (255, 255, 255) self.font = pygame.font.SysFont(None, 48) self.button_color = (0, 255, 0)
[ "import pygame\n\n\nclass Settings(object):\n def __init__(self):\n self.image = pygame.image.load(\"images/map.jpg\")\n\n self.map_size = 3\n\n self.block_space = 5\n self.block_width = (self.image.get_rect().width - (self.map_size - 1) * self.block_space) // self.map_size\n self.block_height = (self.image.get_rect().height - (self.map_size - 1) * self.block_space) // self.map_size\n\n self.screen_size = ((self.block_width + self.block_space) * self.map_size + self.block_space,\n (self.block_height + self.block_space) * self.map_size + self.block_space)\n self.background = (0, 0, 0)\n\n self.font_color = (255, 255, 255)\n self.font = pygame.font.SysFont(None, 48)\n\n self.button_color = (0, 255, 0)\n", "import pygame\n\n\nclass Settings(object):\n\n def __init__(self):\n self.image = pygame.image.load('images/map.jpg')\n self.map_size = 3\n self.block_space = 5\n self.block_width = (self.image.get_rect().width - (self.map_size - \n 1) * self.block_space) // self.map_size\n self.block_height = (self.image.get_rect().height - (self.map_size -\n 1) * self.block_space) // self.map_size\n self.screen_size = (self.block_width + self.block_space\n ) * self.map_size + self.block_space, (self.block_height + self\n .block_space) * self.map_size + self.block_space\n self.background = 0, 0, 0\n self.font_color = 255, 255, 255\n self.font = pygame.font.SysFont(None, 48)\n self.button_color = 0, 255, 0\n", "<import token>\n\n\nclass Settings(object):\n\n def __init__(self):\n self.image = pygame.image.load('images/map.jpg')\n self.map_size = 3\n self.block_space = 5\n self.block_width = (self.image.get_rect().width - (self.map_size - \n 1) * self.block_space) // self.map_size\n self.block_height = (self.image.get_rect().height - (self.map_size -\n 1) * self.block_space) // self.map_size\n self.screen_size = (self.block_width + self.block_space\n ) * self.map_size + self.block_space, (self.block_height + self\n .block_space) * self.map_size + self.block_space\n self.background = 0, 0, 0\n self.font_color = 255, 255, 255\n self.font = pygame.font.SysFont(None, 48)\n self.button_color = 0, 255, 0\n", "<import token>\n\n\nclass Settings(object):\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,371
108149b71c98ba58395adfef347a77f5b922abc4
#cultivandostrings.py x = int(input()) while x != 0: x = int(input())
[ "#cultivandostrings.py\r\n\r\nx = int(input())\r\n\r\nwhile x != 0:\r\n\tx = int(input())", "x = int(input())\nwhile x != 0:\n x = int(input())\n", "<assignment token>\nwhile x != 0:\n x = int(input())\n", "<assignment token>\n<code token>\n" ]
false
98,372
a4d0675e0c8309e1902054f41f2d04fadacf5224
# AlCaReco for track based alignment using min. bias events import FWCore.ParameterSet.Config as cms import HLTrigger.HLTfilters.hltHighLevel_cfi ALCARECOTkAlBeamHaloHLT = HLTrigger.HLTfilters.hltHighLevel_cfi.hltHighLevel.clone( andOr = True, ## choose logical OR between Triggerbits eventSetupPathsKey = 'TkAlBeamHalo', throw = False # tolerate triggers not available ) # DCS partitions # "EBp","EBm","EEp","EEm","HBHEa","HBHEb","HBHEc","HF","HO","RPC" # "DT0","DTp","DTm","CSCp","CSCm","CASTOR","TIBTID","TOB","TECp","TECm" # "BPIX","FPIX","ESp","ESm" import DPGAnalysis.Skims.skim_detstatus_cfi ALCARECOTkAlBeamHaloDCSFilter = DPGAnalysis.Skims.skim_detstatus_cfi.dcsstatus.clone( DetectorType = cms.vstring('TIBTID','TOB','TECp','TECm','BPIX','FPIX'), ApplyFilter = cms.bool(True), AndOr = cms.bool(True), DebugOn = cms.untracked.bool(False) ) import Alignment.CommonAlignmentProducer.AlignmentTrackSelector_cfi ALCARECOTkAlBeamHalo = Alignment.CommonAlignmentProducer.AlignmentTrackSelector_cfi.AlignmentTrackSelector.clone() ALCARECOTkAlBeamHalo.src = 'beamhaloTracks' ALCARECOTkAlBeamHalo.filter = True ##do not store empty events ALCARECOTkAlBeamHalo.applyBasicCuts = True ALCARECOTkAlBeamHalo.ptMin = 0.0 ##GeV ALCARECOTkAlBeamHalo.etaMin = -9999 ALCARECOTkAlBeamHalo.etaMax = 9999 ALCARECOTkAlBeamHalo.nHitMin = 3 ALCARECOTkAlBeamHalo.GlobalSelector.applyIsolationtest = False ALCARECOTkAlBeamHalo.GlobalSelector.applyGlobalMuonFilter = False ALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyMassrangeFilter = False ALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyChargeFilter = False ALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyAcoplanarityFilter = False seqALCARECOTkAlBeamHalo = cms.Sequence(ALCARECOTkAlBeamHaloDCSFilter+ALCARECOTkAlBeamHalo)
[ "# AlCaReco for track based alignment using min. bias events\nimport FWCore.ParameterSet.Config as cms\n\nimport HLTrigger.HLTfilters.hltHighLevel_cfi\nALCARECOTkAlBeamHaloHLT = HLTrigger.HLTfilters.hltHighLevel_cfi.hltHighLevel.clone(\n andOr = True, ## choose logical OR between Triggerbits\n eventSetupPathsKey = 'TkAlBeamHalo',\n throw = False # tolerate triggers not available\n )\n\n# DCS partitions\n# \"EBp\",\"EBm\",\"EEp\",\"EEm\",\"HBHEa\",\"HBHEb\",\"HBHEc\",\"HF\",\"HO\",\"RPC\"\n# \"DT0\",\"DTp\",\"DTm\",\"CSCp\",\"CSCm\",\"CASTOR\",\"TIBTID\",\"TOB\",\"TECp\",\"TECm\"\n# \"BPIX\",\"FPIX\",\"ESp\",\"ESm\"\nimport DPGAnalysis.Skims.skim_detstatus_cfi\nALCARECOTkAlBeamHaloDCSFilter = DPGAnalysis.Skims.skim_detstatus_cfi.dcsstatus.clone(\n DetectorType = cms.vstring('TIBTID','TOB','TECp','TECm','BPIX','FPIX'),\n ApplyFilter = cms.bool(True),\n AndOr = cms.bool(True),\n DebugOn = cms.untracked.bool(False)\n)\n\nimport Alignment.CommonAlignmentProducer.AlignmentTrackSelector_cfi\nALCARECOTkAlBeamHalo = Alignment.CommonAlignmentProducer.AlignmentTrackSelector_cfi.AlignmentTrackSelector.clone()\n\nALCARECOTkAlBeamHalo.src = 'beamhaloTracks'\nALCARECOTkAlBeamHalo.filter = True ##do not store empty events\n\nALCARECOTkAlBeamHalo.applyBasicCuts = True\nALCARECOTkAlBeamHalo.ptMin = 0.0 ##GeV\n\nALCARECOTkAlBeamHalo.etaMin = -9999\nALCARECOTkAlBeamHalo.etaMax = 9999\nALCARECOTkAlBeamHalo.nHitMin = 3\nALCARECOTkAlBeamHalo.GlobalSelector.applyIsolationtest = False\nALCARECOTkAlBeamHalo.GlobalSelector.applyGlobalMuonFilter = False\nALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyMassrangeFilter = False\nALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyChargeFilter = False\nALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyAcoplanarityFilter = False\n\nseqALCARECOTkAlBeamHalo = cms.Sequence(ALCARECOTkAlBeamHaloDCSFilter+ALCARECOTkAlBeamHalo)\n", "import FWCore.ParameterSet.Config as cms\nimport HLTrigger.HLTfilters.hltHighLevel_cfi\nALCARECOTkAlBeamHaloHLT = (HLTrigger.HLTfilters.hltHighLevel_cfi.\n hltHighLevel.clone(andOr=True, eventSetupPathsKey='TkAlBeamHalo', throw\n =False))\nimport DPGAnalysis.Skims.skim_detstatus_cfi\nALCARECOTkAlBeamHaloDCSFilter = (DPGAnalysis.Skims.skim_detstatus_cfi.\n dcsstatus.clone(DetectorType=cms.vstring('TIBTID', 'TOB', 'TECp',\n 'TECm', 'BPIX', 'FPIX'), ApplyFilter=cms.bool(True), AndOr=cms.bool(\n True), DebugOn=cms.untracked.bool(False)))\nimport Alignment.CommonAlignmentProducer.AlignmentTrackSelector_cfi\nALCARECOTkAlBeamHalo = (Alignment.CommonAlignmentProducer.\n AlignmentTrackSelector_cfi.AlignmentTrackSelector.clone())\nALCARECOTkAlBeamHalo.src = 'beamhaloTracks'\nALCARECOTkAlBeamHalo.filter = True\nALCARECOTkAlBeamHalo.applyBasicCuts = True\nALCARECOTkAlBeamHalo.ptMin = 0.0\nALCARECOTkAlBeamHalo.etaMin = -9999\nALCARECOTkAlBeamHalo.etaMax = 9999\nALCARECOTkAlBeamHalo.nHitMin = 3\nALCARECOTkAlBeamHalo.GlobalSelector.applyIsolationtest = False\nALCARECOTkAlBeamHalo.GlobalSelector.applyGlobalMuonFilter = False\nALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyMassrangeFilter = False\nALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyChargeFilter = False\nALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyAcoplanarityFilter = False\nseqALCARECOTkAlBeamHalo = cms.Sequence(ALCARECOTkAlBeamHaloDCSFilter +\n ALCARECOTkAlBeamHalo)\n", "<import token>\nALCARECOTkAlBeamHaloHLT = (HLTrigger.HLTfilters.hltHighLevel_cfi.\n hltHighLevel.clone(andOr=True, eventSetupPathsKey='TkAlBeamHalo', throw\n =False))\n<import token>\nALCARECOTkAlBeamHaloDCSFilter = (DPGAnalysis.Skims.skim_detstatus_cfi.\n dcsstatus.clone(DetectorType=cms.vstring('TIBTID', 'TOB', 'TECp',\n 'TECm', 'BPIX', 'FPIX'), ApplyFilter=cms.bool(True), AndOr=cms.bool(\n True), DebugOn=cms.untracked.bool(False)))\n<import token>\nALCARECOTkAlBeamHalo = (Alignment.CommonAlignmentProducer.\n AlignmentTrackSelector_cfi.AlignmentTrackSelector.clone())\nALCARECOTkAlBeamHalo.src = 'beamhaloTracks'\nALCARECOTkAlBeamHalo.filter = True\nALCARECOTkAlBeamHalo.applyBasicCuts = True\nALCARECOTkAlBeamHalo.ptMin = 0.0\nALCARECOTkAlBeamHalo.etaMin = -9999\nALCARECOTkAlBeamHalo.etaMax = 9999\nALCARECOTkAlBeamHalo.nHitMin = 3\nALCARECOTkAlBeamHalo.GlobalSelector.applyIsolationtest = False\nALCARECOTkAlBeamHalo.GlobalSelector.applyGlobalMuonFilter = False\nALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyMassrangeFilter = False\nALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyChargeFilter = False\nALCARECOTkAlBeamHalo.TwoBodyDecaySelector.applyAcoplanarityFilter = False\nseqALCARECOTkAlBeamHalo = cms.Sequence(ALCARECOTkAlBeamHaloDCSFilter +\n ALCARECOTkAlBeamHalo)\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n<import token>\n<assignment token>\n" ]
false
98,373
710deae8ea3a1c4a76d1ad9c08ada4f188979df8
from django.shortcuts import render_to_response from django.http import HttpResponse from django.http import HttpResponseRedirect from suggestion.models import Filetype, Tool, StandaloneTool, ErgatisTool, GalaxyTool, ToolFiletype from forms import UserQueryForm, FiletypeForm, ToolForm, ToolFiletypeForm from django.core.context_processors import csrf # Create your views here. def biotools(request): #diplays tools loaded into the database return render_to_response('biotools.html', {'tools': Tool.objects.order_by('name')}) def biotool(request, tool_id=1): #displays the attributes of the selected tool toolfiletype = ToolFiletype.objects.filter(tool_id__in=tool_id) return render_to_response('biotool.html', {'tool': Tool.objects.get(id=tool_id), 'toolfileype': toolfiletype}) def add_biotool(request): if request.POST: form = ToolForm(request.POST, request.FILES) if form.is_valid(): form.save() return HttpResponseRedirect('/biotools/all') else: form = ToolForm() args = {} args.update(csrf(request)) args['form'] = form return render_to_response('add_biotool.html', args) def user_query(request): #collects the user's query and stores it for use in 'suggestion' view if request.POST: form = UserQueryForm(request.POST) if form.is_valid(): u_formatname = request.POST.getlist('user_formatname') request.session['u_formatname'] = u_formatname return HttpResponseRedirect('/biotools/suggestion', u_formatname) else: form = UserQueryForm() args = {} args.update(csrf(request)) args['form'] = form return render_to_response('user_query.html', args) def suggestion(request, init_input=(), tools=()): #passes the user's initial file selection from user_query view into this view init_input = request.session['u_formatname'] user_input = Filetype.objects.filter(id__in=init_input).values_list('name', flat=True) #Gathers the tool id's that are entered as 'input' and ONLY take the selected filetype as input toolfiletype_inputs_list = ToolFiletype.objects.filter(io_type = "i", required=False).filter(filetype_id__in = init_input).values_list('tool_id') #Returns the name(s) of the tool(s) that only need selected filetype to run tools = Tool.objects.filter(id__in=toolfiletype_inputs_list).values_list('name', flat=True).order_by('name') #Find additional possible filetypes could added to suggestion add_tools = ToolFiletype.objects.filter(io_type="i", required=True).filter(filetype_id__in = init_input).values_list('tool_id') add_tool_names = Tool.objects.filter(id__in=add_tools).values_list('name', flat=True) #Gathers entries that require filetypes in addition to the selected filetype toolfiletype_entries = ToolFiletype.objects.filter(io_type="i", required=True).exclude(filetype_id__in= init_input) return render_to_response('suggestion.html', {'user_input': user_input, 'tools': tools, 'add_tool_names': add_tool_names, 'toolfiletype_entries': toolfiletype_entries})
[ "from django.shortcuts import render_to_response\nfrom django.http import HttpResponse\nfrom django.http import HttpResponseRedirect\nfrom suggestion.models import Filetype, Tool, StandaloneTool, ErgatisTool, GalaxyTool, ToolFiletype\nfrom forms import UserQueryForm, FiletypeForm, ToolForm, ToolFiletypeForm\nfrom django.core.context_processors import csrf\n\n\n# Create your views here.\n\ndef biotools(request):\n\t#diplays tools loaded into the database\n\treturn render_to_response('biotools.html', {'tools': Tool.objects.order_by('name')})\n\n\ndef biotool(request, tool_id=1):\n\t#displays the attributes of the selected tool\n\ttoolfiletype = ToolFiletype.objects.filter(tool_id__in=tool_id)\n\treturn render_to_response('biotool.html', {'tool': Tool.objects.get(id=tool_id), 'toolfileype': toolfiletype})\n\n\ndef add_biotool(request):\n\tif request.POST:\n\t form = ToolForm(request.POST, request.FILES)\n\t if form.is_valid():\n\t\tform.save()\n\n\t\treturn HttpResponseRedirect('/biotools/all')\n\telse:\n\t form = ToolForm()\n\n\targs = {}\n\targs.update(csrf(request))\n\t\n\targs['form'] = form\n\n\treturn render_to_response('add_biotool.html', args)\n\n\ndef user_query(request):\n\t#collects the user's query and stores it for use in 'suggestion' view\n\tif request.POST:\n\t\tform = UserQueryForm(request.POST)\n\t\tif form.is_valid():\n\t\t\tu_formatname = request.POST.getlist('user_formatname')\t\t\t\n\t\t\trequest.session['u_formatname'] = u_formatname\n\t\t\t\n\t\t\treturn HttpResponseRedirect('/biotools/suggestion', u_formatname)\n\telse:\n\t\tform = UserQueryForm()\n\n\targs = {}\n\targs.update(csrf(request))\n\t\t\n\targs['form'] = form\n\n\treturn render_to_response('user_query.html', args)\n\n\ndef suggestion(request, init_input=(), tools=()):\n\t#passes the user's initial file selection from user_query view into this view\n\tinit_input = request.session['u_formatname']\n\tuser_input = Filetype.objects.filter(id__in=init_input).values_list('name', flat=True)\n\t\n\t#Gathers the tool id's that are entered as 'input' and ONLY take the selected filetype as input\n\ttoolfiletype_inputs_list = ToolFiletype.objects.filter(io_type = \"i\", required=False).filter(filetype_id__in = init_input).values_list('tool_id')\n\n\t#Returns the name(s) of the tool(s) that only need selected filetype to run\n\ttools = Tool.objects.filter(id__in=toolfiletype_inputs_list).values_list('name', flat=True).order_by('name')\n\n\t#Find additional possible filetypes could added to suggestion \n\tadd_tools = ToolFiletype.objects.filter(io_type=\"i\", required=True).filter(filetype_id__in = init_input).values_list('tool_id')\n\tadd_tool_names = Tool.objects.filter(id__in=add_tools).values_list('name', flat=True)\n\n\t#Gathers entries that require filetypes in addition to the selected filetype \n\ttoolfiletype_entries = ToolFiletype.objects.filter(io_type=\"i\", required=True).exclude(filetype_id__in= init_input)\n\n\treturn render_to_response('suggestion.html', {'user_input': user_input, 'tools': tools, 'add_tool_names': add_tool_names, 'toolfiletype_entries': toolfiletype_entries})\n\n\n\n\n\n\n" ]
true
98,374
2f397ac6518b2e3a7282e1472bb053e0eebd3eba
class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: # 核心思想: # 类似加法的原理, 我们从低位(链条第一位)开始,同位相加,满10高位+1 # 当两个链表和进位都为0时,则退出 # 设置头节点 ans = ListNode(0) # 设置一个中间变量tmp,tmp = ans # tmp和ans此时同时指向 ListNode(0),共用一片内存空间 # 在计算一位加法完成后,得出值为x,则tmp = ans = ListNode(x) # 设置tmp的下一个节点tmp.next,并令其值为ListNode(0) ,即ListNode(x).next= ListNode(0) # 即tmp.next = ListNode(0) ,tmp和ans共有一片内存空间,则ans.next=ListNode(0) # tmp向后移动,令 tmp = tmp.next,此时ans和tmp不相等了,ans.next = tmp # 再进行依次加法运算,得出值为x1,则tmp = ListNode(x1) # 设置tmp的下一个节点tmp.next,并令其值为ListNode(0) # 即tmp.next = ListNode(0),即ListNode(x1).next= ListNode(0) # 再使tmp向后移动,令 tmp = tmp.next, # 此时构建出链表:ListNode(x)-->ListNode(x1)-->ListNode(0) # 先设置tep的下一个节点的值,再令tmp = tmp.next,tmp向后移动 # 以此类推构建出一条列表 ans = ListNode(0) # 头结点,无存储,指向链表第一个结点 tmp = ans # 初始化链表结点 tmpsum = 0 # 初始化 进一 的数 while True: # 依次遍历l1 l2,对应位相加 if l1 != None: tmpsum += l1.val l1 = l1.next if l2 != None: tmpsum += l2.val l2 = l2.next tmp.val = tmpsum % 10 # 除10取余作为当前位的值 tmpsum //= 10 #除10取整,即高位,作为指针的下个结点 进行加法运算 if l1 == None and l2 == None and tmpsum == 0: break tmp.next = ListNode(0) # 指向链表的下一位,这个值随意,在tmp.val = tmpsum % 10会改变这个值 tmp = tmp.next # 更新指针,往后移动 return ans var1 = ListNode(2) var2 = ListNode(4) var3 = ListNode(3) var1.next = var2 var2.next = var3 # var3.next = None var4 = ListNode(5) var5 = ListNode(6) var6 = ListNode(4) var4.next = var5 var5.next = var6 # var6.next = None result = Solution().addTwoNumbers(var1, var4) print(result.val) print(result.next.val) print(result.next.val) while result: if result is not None: print(result.val) result = result.next
[ "class ListNode:\r\n def __init__(self, x):\r\n self.val = x\r\n self.next = None\r\n\r\n\r\nclass Solution:\r\n def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode:\r\n \r\n # 核心思想:\r\n # 类似加法的原理, 我们从低位(链条第一位)开始,同位相加,满10高位+1\r\n # 当两个链表和进位都为0时,则退出\r\n\r\n # 设置头节点 ans = ListNode(0)\r\n # 设置一个中间变量tmp,tmp = ans\r\n # tmp和ans此时同时指向 ListNode(0),共用一片内存空间\r\n # 在计算一位加法完成后,得出值为x,则tmp = ans = ListNode(x)\r\n # 设置tmp的下一个节点tmp.next,并令其值为ListNode(0) ,即ListNode(x).next= ListNode(0)\r\n # 即tmp.next = ListNode(0) ,tmp和ans共有一片内存空间,则ans.next=ListNode(0) \r\n # tmp向后移动,令 tmp = tmp.next,此时ans和tmp不相等了,ans.next = tmp\r\n \r\n # 再进行依次加法运算,得出值为x1,则tmp = ListNode(x1)\r\n # 设置tmp的下一个节点tmp.next,并令其值为ListNode(0) \r\n # 即tmp.next = ListNode(0),即ListNode(x1).next= ListNode(0)\r\n # 再使tmp向后移动,令 tmp = tmp.next,\r\n\r\n # 此时构建出链表:ListNode(x)-->ListNode(x1)-->ListNode(0) \r\n \r\n # 先设置tep的下一个节点的值,再令tmp = tmp.next,tmp向后移动\r\n # 以此类推构建出一条列表\r\n\r\n\r\n ans = ListNode(0) # 头结点,无存储,指向链表第一个结点\r\n tmp = ans # 初始化链表结点\r\n tmpsum = 0 # 初始化 进一 的数\r\n\r\n while True:\r\n # 依次遍历l1 l2,对应位相加\r\n if l1 != None:\r\n tmpsum += l1.val\r\n l1 = l1.next\r\n if l2 != None:\r\n tmpsum += l2.val\r\n l2 = l2.next\r\n tmp.val = tmpsum % 10 # 除10取余作为当前位的值\r\n tmpsum //= 10 #除10取整,即高位,作为指针的下个结点 进行加法运算\r\n if l1 == None and l2 == None and tmpsum == 0:\r\n break\r\n tmp.next = ListNode(0) \r\n # 指向链表的下一位,这个值随意,在tmp.val = tmpsum % 10会改变这个值\r\n tmp = tmp.next # 更新指针,往后移动\r\n return ans\r\n\r\n\r\n\r\nvar1 = ListNode(2)\r\nvar2 = ListNode(4)\r\nvar3 = ListNode(3)\r\n\r\nvar1.next = var2\r\nvar2.next = var3\r\n# var3.next = None\r\n\r\n\r\nvar4 = ListNode(5)\r\nvar5 = ListNode(6)\r\nvar6 = ListNode(4)\r\n\r\nvar4.next = var5\r\nvar5.next = var6\r\n# var6.next = None\r\n\r\nresult = Solution().addTwoNumbers(var1, var4)\r\n\r\nprint(result.val)\r\nprint(result.next.val)\r\nprint(result.next.val)\r\n\r\nwhile result:\r\n if result is not None:\r\n print(result.val)\r\n result = result.next", "class ListNode:\n\n def __init__(self, x):\n self.val = x\n self.next = None\n\n\nclass Solution:\n\n def addTwoNumbers(self, l1: ListNode, l2: ListNode) ->ListNode:\n ans = ListNode(0)\n tmp = ans\n tmpsum = 0\n while True:\n if l1 != None:\n tmpsum += l1.val\n l1 = l1.next\n if l2 != None:\n tmpsum += l2.val\n l2 = l2.next\n tmp.val = tmpsum % 10\n tmpsum //= 10\n if l1 == None and l2 == None and tmpsum == 0:\n break\n tmp.next = ListNode(0)\n tmp = tmp.next\n return ans\n\n\nvar1 = ListNode(2)\nvar2 = ListNode(4)\nvar3 = ListNode(3)\nvar1.next = var2\nvar2.next = var3\nvar4 = ListNode(5)\nvar5 = ListNode(6)\nvar6 = ListNode(4)\nvar4.next = var5\nvar5.next = var6\nresult = Solution().addTwoNumbers(var1, var4)\nprint(result.val)\nprint(result.next.val)\nprint(result.next.val)\nwhile result:\n if result is not None:\n print(result.val)\n result = result.next\n", "class ListNode:\n\n def __init__(self, x):\n self.val = x\n self.next = None\n\n\nclass Solution:\n\n def addTwoNumbers(self, l1: ListNode, l2: ListNode) ->ListNode:\n ans = ListNode(0)\n tmp = ans\n tmpsum = 0\n while True:\n if l1 != None:\n tmpsum += l1.val\n l1 = l1.next\n if l2 != None:\n tmpsum += l2.val\n l2 = l2.next\n tmp.val = tmpsum % 10\n tmpsum //= 10\n if l1 == None and l2 == None and tmpsum == 0:\n break\n tmp.next = ListNode(0)\n tmp = tmp.next\n return ans\n\n\n<assignment token>\nprint(result.val)\nprint(result.next.val)\nprint(result.next.val)\nwhile result:\n if result is not None:\n print(result.val)\n result = result.next\n", "class ListNode:\n\n def __init__(self, x):\n self.val = x\n self.next = None\n\n\nclass Solution:\n\n def addTwoNumbers(self, l1: ListNode, l2: ListNode) ->ListNode:\n ans = ListNode(0)\n tmp = ans\n tmpsum = 0\n while True:\n if l1 != None:\n tmpsum += l1.val\n l1 = l1.next\n if l2 != None:\n tmpsum += l2.val\n l2 = l2.next\n tmp.val = tmpsum % 10\n tmpsum //= 10\n if l1 == None and l2 == None and tmpsum == 0:\n break\n tmp.next = ListNode(0)\n tmp = tmp.next\n return ans\n\n\n<assignment token>\n<code token>\n", "class ListNode:\n <function token>\n\n\nclass Solution:\n\n def addTwoNumbers(self, l1: ListNode, l2: ListNode) ->ListNode:\n ans = ListNode(0)\n tmp = ans\n tmpsum = 0\n while True:\n if l1 != None:\n tmpsum += l1.val\n l1 = l1.next\n if l2 != None:\n tmpsum += l2.val\n l2 = l2.next\n tmp.val = tmpsum % 10\n tmpsum //= 10\n if l1 == None and l2 == None and tmpsum == 0:\n break\n tmp.next = ListNode(0)\n tmp = tmp.next\n return ans\n\n\n<assignment token>\n<code token>\n", "<class token>\n\n\nclass Solution:\n\n def addTwoNumbers(self, l1: ListNode, l2: ListNode) ->ListNode:\n ans = ListNode(0)\n tmp = ans\n tmpsum = 0\n while True:\n if l1 != None:\n tmpsum += l1.val\n l1 = l1.next\n if l2 != None:\n tmpsum += l2.val\n l2 = l2.next\n tmp.val = tmpsum % 10\n tmpsum //= 10\n if l1 == None and l2 == None and tmpsum == 0:\n break\n tmp.next = ListNode(0)\n tmp = tmp.next\n return ans\n\n\n<assignment token>\n<code token>\n", "<class token>\n\n\nclass Solution:\n <function token>\n\n\n<assignment token>\n<code token>\n", "<class token>\n<class token>\n<assignment token>\n<code token>\n" ]
false
98,375
0771e64ce4ee1cfdbecd17146f6a5a2a00bf1959
suma = 0 for x in range(50): if x%2==1: suma = suma + x print ("La suma de los 50 numeros impares: " + str(suma))
[ "\r\nsuma = 0\r\n\r\nfor x in range(50):\r\n if x%2==1:\r\n suma = suma + x\r\nprint (\"La suma de los 50 numeros impares: \" + str(suma))", "suma = 0\nfor x in range(50):\n if x % 2 == 1:\n suma = suma + x\nprint('La suma de los 50 numeros impares: ' + str(suma))\n", "<assignment token>\nfor x in range(50):\n if x % 2 == 1:\n suma = suma + x\nprint('La suma de los 50 numeros impares: ' + str(suma))\n", "<assignment token>\n<code token>\n" ]
false
98,376
3bb2a4d20fbc197362e6dd360a193e400d8cf937
from node import * import maze as mz import score import student import numpy as np import pandas import time import sys import os def main(): maze = mz.Maze("maze_2.csv") now_nd = maze.getStartPoint() car_dir = Direction.SOUTH point = score.Scoreboard("UID_score_maze2.csv") interface = student.interface() #the part of calling student.py was commented out. if(sys.argv[1] == '0'): while (1): #TODO: Impliment your algorithm here and return the UID for evaluation function ndList = maze.strategy(now_nd,1,1,0.8) #the whole list of nodes should go get_UID=interface.wait_for_node() while get_UID == '0': get_UID=interface.wait_for_node() print(type(get_UID)) print('UID: ',get_UID) #UID from BT point.add_UID(get_UID) print('1 motion done') for next_nd in ndList: #nd: the node should go to // type : node act=int(maze.getAction(car_dir,now_nd,next_nd)) print('action: ',act) interface.send_action(act) #send action car_dir=now_nd.getDirection(next_nd) now_nd=next_nd get_UID=interface.wait_for_node() while get_UID == '0': get_UID=interface.wait_for_node() print(type(get_UID)) print('UID: ',get_UID) #UID from BT point.add_UID(get_UID) print('1 motion done') break # ================================================ # Basically, you will get a list of nodes and corresponding UID strings after the end of algorithm. # The function add_UID() would convert the UID string score and add it to the total score. # In the sample code, we call this function after getting the returned list. # You may place it to other places, just make sure that all the UID strings you get would be converted. # ================================================ elif(sys.argv[1] == '1'): while (1): #TODO: Implement your algorithm here and return the UID for evaluation function input_nd = int(input("destination: ")) if(input_nd == 0): print("end process") print('') break end_nd=maze.nd_dict[input_nd] ndList = maze.stategy_2(now_nd,end_nd) for next_nd in ndList: #nd: the node should go to // type : node interface.send_action(maze.getAction(car_dir,now_nd,next_nd))#send action car_dir=now_nd.getDirection(next_nd) now_nd=next_nd get_UID=interface.wait_for_node() while get_UID == '0': get_UID=interface.wait_for_node() print(type(get_UID)) print('UID: ',get_UID) #UID from BT point.add_UID(get_UID) print('1 motion done') """ node = 0 while(not node): node = interface.wait_for_node() interface.end_process() """ print("complete") print("") a = point.getCurrentScore() print("The total score: ", a) if __name__=='__main__': main()
[ "from node import *\nimport maze as mz\nimport score\nimport student\n\nimport numpy as np\nimport pandas\nimport time\nimport sys\nimport os\n\ndef main():\n maze = mz.Maze(\"maze_2.csv\")\n now_nd = maze.getStartPoint()\n car_dir = Direction.SOUTH\n point = score.Scoreboard(\"UID_score_maze2.csv\")\n interface = student.interface() #the part of calling student.py was commented out.\n\n if(sys.argv[1] == '0'):\n\n while (1):\n\n #TODO: Impliment your algorithm here and return the UID for evaluation function\n ndList = maze.strategy(now_nd,1,1,0.8) #the whole list of nodes should go\n get_UID=interface.wait_for_node()\n while get_UID == '0':\n get_UID=interface.wait_for_node()\n print(type(get_UID))\n print('UID: ',get_UID) #UID from BT\n point.add_UID(get_UID)\n print('1 motion done')\n\n for next_nd in ndList: #nd: the node should go to // type : node\n act=int(maze.getAction(car_dir,now_nd,next_nd))\n print('action: ',act)\n interface.send_action(act) #send action\n car_dir=now_nd.getDirection(next_nd)\n now_nd=next_nd\n get_UID=interface.wait_for_node()\n while get_UID == '0':\n get_UID=interface.wait_for_node()\n print(type(get_UID))\n print('UID: ',get_UID) #UID from BT\n point.add_UID(get_UID)\n print('1 motion done')\n break\n\n # ================================================\n # Basically, you will get a list of nodes and corresponding UID strings after the end of algorithm.\n\t\t\t# The function add_UID() would convert the UID string score and add it to the total score.\n\t\t\t# In the sample code, we call this function after getting the returned list. \n # You may place it to other places, just make sure that all the UID strings you get would be converted.\n # ================================================\n \n\n elif(sys.argv[1] == '1'):\n\n while (1):\n\n #TODO: Implement your algorithm here and return the UID for evaluation function\n input_nd = int(input(\"destination: \"))\n \n if(input_nd == 0):\n \tprint(\"end process\")\n \tprint('')\n \tbreak\n end_nd=maze.nd_dict[input_nd]\n ndList = maze.stategy_2(now_nd,end_nd)\n\n for next_nd in ndList: #nd: the node should go to // type : node\n interface.send_action(maze.getAction(car_dir,now_nd,next_nd))#send action\n car_dir=now_nd.getDirection(next_nd)\n now_nd=next_nd\n get_UID=interface.wait_for_node()\n while get_UID == '0':\n get_UID=interface.wait_for_node()\n print(type(get_UID))\n print('UID: ',get_UID) #UID from BT\n point.add_UID(get_UID)\n print('1 motion done')\n\n \"\"\"\n node = 0\n while(not node):\n node = interface.wait_for_node()\n\n interface.end_process()\n \"\"\"\n print(\"complete\")\n print(\"\")\n a = point.getCurrentScore()\n print(\"The total score: \", a)\n\nif __name__=='__main__':\n main()\n", "from node import *\nimport maze as mz\nimport score\nimport student\nimport numpy as np\nimport pandas\nimport time\nimport sys\nimport os\n\n\ndef main():\n maze = mz.Maze('maze_2.csv')\n now_nd = maze.getStartPoint()\n car_dir = Direction.SOUTH\n point = score.Scoreboard('UID_score_maze2.csv')\n interface = student.interface()\n if sys.argv[1] == '0':\n while 1:\n ndList = maze.strategy(now_nd, 1, 1, 0.8)\n get_UID = interface.wait_for_node()\n while get_UID == '0':\n get_UID = interface.wait_for_node()\n print(type(get_UID))\n print('UID: ', get_UID)\n point.add_UID(get_UID)\n print('1 motion done')\n for next_nd in ndList:\n act = int(maze.getAction(car_dir, now_nd, next_nd))\n print('action: ', act)\n interface.send_action(act)\n car_dir = now_nd.getDirection(next_nd)\n now_nd = next_nd\n get_UID = interface.wait_for_node()\n while get_UID == '0':\n get_UID = interface.wait_for_node()\n print(type(get_UID))\n print('UID: ', get_UID)\n point.add_UID(get_UID)\n print('1 motion done')\n break\n elif sys.argv[1] == '1':\n while 1:\n input_nd = int(input('destination: '))\n if input_nd == 0:\n print('end process')\n print('')\n break\n end_nd = maze.nd_dict[input_nd]\n ndList = maze.stategy_2(now_nd, end_nd)\n for next_nd in ndList:\n interface.send_action(maze.getAction(car_dir, now_nd, next_nd))\n car_dir = now_nd.getDirection(next_nd)\n now_nd = next_nd\n get_UID = interface.wait_for_node()\n while get_UID == '0':\n get_UID = interface.wait_for_node()\n print(type(get_UID))\n print('UID: ', get_UID)\n point.add_UID(get_UID)\n print('1 motion done')\n \"\"\"\n node = 0\n while(not node):\n node = interface.wait_for_node()\n\n interface.end_process()\n \"\"\"\n print('complete')\n print('')\n a = point.getCurrentScore()\n print('The total score: ', a)\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\ndef main():\n maze = mz.Maze('maze_2.csv')\n now_nd = maze.getStartPoint()\n car_dir = Direction.SOUTH\n point = score.Scoreboard('UID_score_maze2.csv')\n interface = student.interface()\n if sys.argv[1] == '0':\n while 1:\n ndList = maze.strategy(now_nd, 1, 1, 0.8)\n get_UID = interface.wait_for_node()\n while get_UID == '0':\n get_UID = interface.wait_for_node()\n print(type(get_UID))\n print('UID: ', get_UID)\n point.add_UID(get_UID)\n print('1 motion done')\n for next_nd in ndList:\n act = int(maze.getAction(car_dir, now_nd, next_nd))\n print('action: ', act)\n interface.send_action(act)\n car_dir = now_nd.getDirection(next_nd)\n now_nd = next_nd\n get_UID = interface.wait_for_node()\n while get_UID == '0':\n get_UID = interface.wait_for_node()\n print(type(get_UID))\n print('UID: ', get_UID)\n point.add_UID(get_UID)\n print('1 motion done')\n break\n elif sys.argv[1] == '1':\n while 1:\n input_nd = int(input('destination: '))\n if input_nd == 0:\n print('end process')\n print('')\n break\n end_nd = maze.nd_dict[input_nd]\n ndList = maze.stategy_2(now_nd, end_nd)\n for next_nd in ndList:\n interface.send_action(maze.getAction(car_dir, now_nd, next_nd))\n car_dir = now_nd.getDirection(next_nd)\n now_nd = next_nd\n get_UID = interface.wait_for_node()\n while get_UID == '0':\n get_UID = interface.wait_for_node()\n print(type(get_UID))\n print('UID: ', get_UID)\n point.add_UID(get_UID)\n print('1 motion done')\n \"\"\"\n node = 0\n while(not node):\n node = interface.wait_for_node()\n\n interface.end_process()\n \"\"\"\n print('complete')\n print('')\n a = point.getCurrentScore()\n print('The total score: ', a)\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\ndef main():\n maze = mz.Maze('maze_2.csv')\n now_nd = maze.getStartPoint()\n car_dir = Direction.SOUTH\n point = score.Scoreboard('UID_score_maze2.csv')\n interface = student.interface()\n if sys.argv[1] == '0':\n while 1:\n ndList = maze.strategy(now_nd, 1, 1, 0.8)\n get_UID = interface.wait_for_node()\n while get_UID == '0':\n get_UID = interface.wait_for_node()\n print(type(get_UID))\n print('UID: ', get_UID)\n point.add_UID(get_UID)\n print('1 motion done')\n for next_nd in ndList:\n act = int(maze.getAction(car_dir, now_nd, next_nd))\n print('action: ', act)\n interface.send_action(act)\n car_dir = now_nd.getDirection(next_nd)\n now_nd = next_nd\n get_UID = interface.wait_for_node()\n while get_UID == '0':\n get_UID = interface.wait_for_node()\n print(type(get_UID))\n print('UID: ', get_UID)\n point.add_UID(get_UID)\n print('1 motion done')\n break\n elif sys.argv[1] == '1':\n while 1:\n input_nd = int(input('destination: '))\n if input_nd == 0:\n print('end process')\n print('')\n break\n end_nd = maze.nd_dict[input_nd]\n ndList = maze.stategy_2(now_nd, end_nd)\n for next_nd in ndList:\n interface.send_action(maze.getAction(car_dir, now_nd, next_nd))\n car_dir = now_nd.getDirection(next_nd)\n now_nd = next_nd\n get_UID = interface.wait_for_node()\n while get_UID == '0':\n get_UID = interface.wait_for_node()\n print(type(get_UID))\n print('UID: ', get_UID)\n point.add_UID(get_UID)\n print('1 motion done')\n \"\"\"\n node = 0\n while(not node):\n node = interface.wait_for_node()\n\n interface.end_process()\n \"\"\"\n print('complete')\n print('')\n a = point.getCurrentScore()\n print('The total score: ', a)\n\n\n<code token>\n", "<import token>\n<function token>\n<code token>\n" ]
false
98,377
e84caf514c5d5802f5cee9d28882eebcbd47e6ca
#Design an algorithm that finds the maximum positive integer input by a user. #The user repeatedly inputs numbers until a negative value is entered num_int = int(input("Input a number: ")) # Do not change this line # Fill in the missing code # viljum geyma stærsta gildið og prenta það út í lokin þegar notandinn setur inn neikvæða tölu max_int = 0 while num_int > 0: if num_int > max_int: max_int = num_int num_int = int(input("Input a number: ")) print("The maximum is", max_int) # Do not change this line
[ "#Design an algorithm that finds the maximum positive integer input by a user. \n#The user repeatedly inputs numbers until a negative value is entered\n\n\nnum_int = int(input(\"Input a number: \")) # Do not change this line\n# Fill in the missing code\n\n# viljum geyma stærsta gildið og prenta það út í lokin þegar notandinn setur inn neikvæða tölu\nmax_int = 0\n\nwhile num_int > 0:\n if num_int > max_int:\n max_int = num_int\n num_int = int(input(\"Input a number: \")) \n \n\nprint(\"The maximum is\", max_int) # Do not change this line\n", "num_int = int(input('Input a number: '))\nmax_int = 0\nwhile num_int > 0:\n if num_int > max_int:\n max_int = num_int\n num_int = int(input('Input a number: '))\nprint('The maximum is', max_int)\n", "<assignment token>\nwhile num_int > 0:\n if num_int > max_int:\n max_int = num_int\n num_int = int(input('Input a number: '))\nprint('The maximum is', max_int)\n", "<assignment token>\n<code token>\n" ]
false
98,378
c244a5934c8cbe55b85b8e8e9c8de19b0ae00a7f
/Users/allo0o2a/anaconda/lib/python3.6/shutil.py
[ "/Users/allo0o2a/anaconda/lib/python3.6/shutil.py" ]
true
98,379
c5db8be1de3aa04c7514e64792672217cd00f507
#!/usr/bin/env python3 import sys import numpy as np import struct filename = sys.argv[1] with open(filename, 'rb') as f: ndim, cell_size, ivar_min, ivar_max = struct.unpack('4i', f.read(16)) cells = np.fromfile(f, dtype=np.float64) cells_shape = [cell_size, cell_size, cell_size, ivar_max-ivar_min+1] if (ndim==1): cells_shape[0] = 1 cells_shape[1] = 1 if (ndim==2): cells_shape[0] = 1 cells = cells.reshape(cells_shape, order='F') if filename.endswith('.dat'): filename = filename[:-4] filename = filename + '.npy' np.save(filename, cells)
[ "#!/usr/bin/env python3\n\nimport sys\nimport numpy as np\nimport struct\n\nfilename = sys.argv[1]\n\nwith open(filename, 'rb') as f:\n ndim, cell_size, ivar_min, ivar_max = struct.unpack('4i', f.read(16))\n \n cells = np.fromfile(f, dtype=np.float64)\n \ncells_shape = [cell_size, cell_size, cell_size, ivar_max-ivar_min+1]\nif (ndim==1):\n cells_shape[0] = 1\n cells_shape[1] = 1\nif (ndim==2):\n cells_shape[0] = 1\ncells = cells.reshape(cells_shape, order='F')\n\nif filename.endswith('.dat'):\n filename = filename[:-4]\n\nfilename = filename + '.npy'\n\nnp.save(filename, cells)\n", "import sys\nimport numpy as np\nimport struct\nfilename = sys.argv[1]\nwith open(filename, 'rb') as f:\n ndim, cell_size, ivar_min, ivar_max = struct.unpack('4i', f.read(16))\n cells = np.fromfile(f, dtype=np.float64)\ncells_shape = [cell_size, cell_size, cell_size, ivar_max - ivar_min + 1]\nif ndim == 1:\n cells_shape[0] = 1\n cells_shape[1] = 1\nif ndim == 2:\n cells_shape[0] = 1\ncells = cells.reshape(cells_shape, order='F')\nif filename.endswith('.dat'):\n filename = filename[:-4]\nfilename = filename + '.npy'\nnp.save(filename, cells)\n", "<import token>\nfilename = sys.argv[1]\nwith open(filename, 'rb') as f:\n ndim, cell_size, ivar_min, ivar_max = struct.unpack('4i', f.read(16))\n cells = np.fromfile(f, dtype=np.float64)\ncells_shape = [cell_size, cell_size, cell_size, ivar_max - ivar_min + 1]\nif ndim == 1:\n cells_shape[0] = 1\n cells_shape[1] = 1\nif ndim == 2:\n cells_shape[0] = 1\ncells = cells.reshape(cells_shape, order='F')\nif filename.endswith('.dat'):\n filename = filename[:-4]\nfilename = filename + '.npy'\nnp.save(filename, cells)\n", "<import token>\n<assignment token>\nwith open(filename, 'rb') as f:\n ndim, cell_size, ivar_min, ivar_max = struct.unpack('4i', f.read(16))\n cells = np.fromfile(f, dtype=np.float64)\n<assignment token>\nif ndim == 1:\n cells_shape[0] = 1\n cells_shape[1] = 1\nif ndim == 2:\n cells_shape[0] = 1\n<assignment token>\nif filename.endswith('.dat'):\n filename = filename[:-4]\n<assignment token>\nnp.save(filename, cells)\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
98,380
9db2c581e38b53653672eb8773b0c3b46ba07d22
from rest_framework import serializers from .models import support_team, configure_item, application class STSerializer(serializers.ModelSerializer): class Meta: model = support_team fields = '__all__' class CISerializer(serializers.ModelSerializer): class Meta: model = configure_item fields = '__all__' class APPSerializer(serializers.ModelSerializer): class Meta: model = application fields = '__all__'
[ "from rest_framework import serializers\r\nfrom .models import support_team, configure_item, application\r\n\r\n\r\nclass STSerializer(serializers.ModelSerializer):\r\n\r\n class Meta:\r\n model = support_team\r\n fields = '__all__'\r\n\r\n\r\nclass CISerializer(serializers.ModelSerializer):\r\n\r\n class Meta:\r\n model = configure_item\r\n fields = '__all__'\r\n\r\n\r\nclass APPSerializer(serializers.ModelSerializer):\r\n class Meta:\r\n model = application\r\n fields = '__all__'", "from rest_framework import serializers\nfrom .models import support_team, configure_item, application\n\n\nclass STSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = support_team\n fields = '__all__'\n\n\nclass CISerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = configure_item\n fields = '__all__'\n\n\nclass APPSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = application\n fields = '__all__'\n", "<import token>\n\n\nclass STSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = support_team\n fields = '__all__'\n\n\nclass CISerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = configure_item\n fields = '__all__'\n\n\nclass APPSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = application\n fields = '__all__'\n", "<import token>\n<class token>\n\n\nclass CISerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = configure_item\n fields = '__all__'\n\n\nclass APPSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = application\n fields = '__all__'\n", "<import token>\n<class token>\n<class token>\n\n\nclass APPSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = application\n fields = '__all__'\n", "<import token>\n<class token>\n<class token>\n<class token>\n" ]
false
98,381
4ed8aa2be5d78b8c11269cceac4062fc85e79369
#!/usr/bin/python # -*- coding: utf-8 -*- # Hive Netius System # Copyright (c) 2008-2020 Hive Solutions Lda. # # This file is part of Hive Netius System. # # Hive Netius System is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by the Apache # Foundation, either version 2.0 of the License, or (at your option) any # later version. # # Hive Netius System is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License along with # Hive Netius System. If not, see <http://www.apache.org/licenses/>. __author__ = "João Magalhães <[email protected]>" """ The author(s) of the module """ __version__ = "1.0.0" """ The version of the module """ __revision__ = "$LastChangedRevision$" """ The revision number of the module """ __date__ = "$LastChangedDate$" """ The last change date of the module """ __copyright__ = "Copyright (c) 2008-2020 Hive Solutions Lda." """ The copyright for the module """ __license__ = "Apache License, Version 2.0" """ The license for the module """ import netius from . import common FILE_WORK = 20 ERROR_ACTION = -1 OPEN_ACTION = 1 CLOSE_ACTION = 2 READ_ACTION = 3 WRITE_ACTION = 4 class FileThread(common.Thread): def execute(self, work): type = work[0] if not type == FILE_WORK: netius.NotImplemented( "Cannot execute type '%d'" % type ) try: self._execute(work) except BaseException as exception: self.owner.push_event((ERROR_ACTION, exception, work[-1])) def open(self, path, mode, data): file = open(path) self.owner.push_event((OPEN_ACTION, file, data)) def close(self, file, data): file.close() self.owner.push_event((CLOSE_ACTION, file, data)) def read(self, file, count, data): result = file.read(count) self.owner.push_event((READ_ACTION, result, data)) def write(self, file, buffer, data): file.write(buffer) self.owner.push_event((WRITE_ACTION, len(buffer), data)) def _execute(self, work): action = work[1] if action == OPEN_ACTION: self.open(*work[2:]) elif action == CLOSE_ACTION: self.close(*work[2:]) elif action == READ_ACTION: self.read(*work[2:]) elif action == WRITE_ACTION: self.read(*work[2:]) else: netius.NotImplemented("Undefined file action '%d'" % action) class FilePool(common.EventPool): def __init__(self, base = FileThread, count = 10): common.EventPool.__init__(self, base = base, count = count) def open(self, path, mode = "r", data = None): work = (FILE_WORK, OPEN_ACTION, path, mode, data) self.push(work) def close(self, file, data = None): work = (FILE_WORK, CLOSE_ACTION, file, data) self.push(work) def read(self, file, count = -1, data = None): work = (FILE_WORK, READ_ACTION, file, count, data) self.push(work) def write(self, file, buffer, data = None): work = (FILE_WORK, WRITE_ACTION, file, buffer, data) self.push(work)
[ "#!/usr/bin/python\r\n# -*- coding: utf-8 -*-\r\n\r\n# Hive Netius System\r\n# Copyright (c) 2008-2020 Hive Solutions Lda.\r\n#\r\n# This file is part of Hive Netius System.\r\n#\r\n# Hive Netius System is free software: you can redistribute it and/or modify\r\n# it under the terms of the Apache License as published by the Apache\r\n# Foundation, either version 2.0 of the License, or (at your option) any\r\n# later version.\r\n#\r\n# Hive Netius System is distributed in the hope that it will be useful,\r\n# but WITHOUT ANY WARRANTY; without even the implied warranty of\r\n# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r\n# Apache License for more details.\r\n#\r\n# You should have received a copy of the Apache License along with\r\n# Hive Netius System. If not, see <http://www.apache.org/licenses/>.\r\n\r\n__author__ = \"João Magalhães <[email protected]>\"\r\n\"\"\" The author(s) of the module \"\"\"\r\n\r\n__version__ = \"1.0.0\"\r\n\"\"\" The version of the module \"\"\"\r\n\r\n__revision__ = \"$LastChangedRevision$\"\r\n\"\"\" The revision number of the module \"\"\"\r\n\r\n__date__ = \"$LastChangedDate$\"\r\n\"\"\" The last change date of the module \"\"\"\r\n\r\n__copyright__ = \"Copyright (c) 2008-2020 Hive Solutions Lda.\"\r\n\"\"\" The copyright for the module \"\"\"\r\n\r\n__license__ = \"Apache License, Version 2.0\"\r\n\"\"\" The license for the module \"\"\"\r\n\r\nimport netius\r\n\r\nfrom . import common\r\n\r\nFILE_WORK = 20\r\n\r\nERROR_ACTION = -1\r\nOPEN_ACTION = 1\r\nCLOSE_ACTION = 2\r\nREAD_ACTION = 3\r\nWRITE_ACTION = 4\r\n\r\nclass FileThread(common.Thread):\r\n\r\n def execute(self, work):\r\n type = work[0]\r\n if not type == FILE_WORK: netius.NotImplemented(\r\n \"Cannot execute type '%d'\" % type\r\n )\r\n\r\n try:\r\n self._execute(work)\r\n except BaseException as exception:\r\n self.owner.push_event((ERROR_ACTION, exception, work[-1]))\r\n\r\n def open(self, path, mode, data):\r\n file = open(path)\r\n self.owner.push_event((OPEN_ACTION, file, data))\r\n\r\n def close(self, file, data):\r\n file.close()\r\n self.owner.push_event((CLOSE_ACTION, file, data))\r\n\r\n def read(self, file, count, data):\r\n result = file.read(count)\r\n self.owner.push_event((READ_ACTION, result, data))\r\n\r\n def write(self, file, buffer, data):\r\n file.write(buffer)\r\n self.owner.push_event((WRITE_ACTION, len(buffer), data))\r\n\r\n def _execute(self, work):\r\n action = work[1]\r\n if action == OPEN_ACTION: self.open(*work[2:])\r\n elif action == CLOSE_ACTION: self.close(*work[2:])\r\n elif action == READ_ACTION: self.read(*work[2:])\r\n elif action == WRITE_ACTION: self.read(*work[2:])\r\n else: netius.NotImplemented(\"Undefined file action '%d'\" % action)\r\n\r\nclass FilePool(common.EventPool):\r\n\r\n def __init__(self, base = FileThread, count = 10):\r\n common.EventPool.__init__(self, base = base, count = count)\r\n\r\n def open(self, path, mode = \"r\", data = None):\r\n work = (FILE_WORK, OPEN_ACTION, path, mode, data)\r\n self.push(work)\r\n\r\n def close(self, file, data = None):\r\n work = (FILE_WORK, CLOSE_ACTION, file, data)\r\n self.push(work)\r\n\r\n def read(self, file, count = -1, data = None):\r\n work = (FILE_WORK, READ_ACTION, file, count, data)\r\n self.push(work)\r\n\r\n def write(self, file, buffer, data = None):\r\n work = (FILE_WORK, WRITE_ACTION, file, buffer, data)\r\n self.push(work)\r\n", "__author__ = 'João Magalhães <[email protected]>'\n<docstring token>\n__version__ = '1.0.0'\n<docstring token>\n__revision__ = '$LastChangedRevision$'\n<docstring token>\n__date__ = '$LastChangedDate$'\n<docstring token>\n__copyright__ = 'Copyright (c) 2008-2020 Hive Solutions Lda.'\n<docstring token>\n__license__ = 'Apache License, Version 2.0'\n<docstring token>\nimport netius\nfrom . import common\nFILE_WORK = 20\nERROR_ACTION = -1\nOPEN_ACTION = 1\nCLOSE_ACTION = 2\nREAD_ACTION = 3\nWRITE_ACTION = 4\n\n\nclass FileThread(common.Thread):\n\n def execute(self, work):\n type = work[0]\n if not type == FILE_WORK:\n netius.NotImplemented(\"Cannot execute type '%d'\" % type)\n try:\n self._execute(work)\n except BaseException as exception:\n self.owner.push_event((ERROR_ACTION, exception, work[-1]))\n\n def open(self, path, mode, data):\n file = open(path)\n self.owner.push_event((OPEN_ACTION, file, data))\n\n def close(self, file, data):\n file.close()\n self.owner.push_event((CLOSE_ACTION, file, data))\n\n def read(self, file, count, data):\n result = file.read(count)\n self.owner.push_event((READ_ACTION, result, data))\n\n def write(self, file, buffer, data):\n file.write(buffer)\n self.owner.push_event((WRITE_ACTION, len(buffer), data))\n\n def _execute(self, work):\n action = work[1]\n if action == OPEN_ACTION:\n self.open(*work[2:])\n elif action == CLOSE_ACTION:\n self.close(*work[2:])\n elif action == READ_ACTION:\n self.read(*work[2:])\n elif action == WRITE_ACTION:\n self.read(*work[2:])\n else:\n netius.NotImplemented(\"Undefined file action '%d'\" % action)\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "__author__ = 'João Magalhães <[email protected]>'\n<docstring token>\n__version__ = '1.0.0'\n<docstring token>\n__revision__ = '$LastChangedRevision$'\n<docstring token>\n__date__ = '$LastChangedDate$'\n<docstring token>\n__copyright__ = 'Copyright (c) 2008-2020 Hive Solutions Lda.'\n<docstring token>\n__license__ = 'Apache License, Version 2.0'\n<docstring token>\n<import token>\nFILE_WORK = 20\nERROR_ACTION = -1\nOPEN_ACTION = 1\nCLOSE_ACTION = 2\nREAD_ACTION = 3\nWRITE_ACTION = 4\n\n\nclass FileThread(common.Thread):\n\n def execute(self, work):\n type = work[0]\n if not type == FILE_WORK:\n netius.NotImplemented(\"Cannot execute type '%d'\" % type)\n try:\n self._execute(work)\n except BaseException as exception:\n self.owner.push_event((ERROR_ACTION, exception, work[-1]))\n\n def open(self, path, mode, data):\n file = open(path)\n self.owner.push_event((OPEN_ACTION, file, data))\n\n def close(self, file, data):\n file.close()\n self.owner.push_event((CLOSE_ACTION, file, data))\n\n def read(self, file, count, data):\n result = file.read(count)\n self.owner.push_event((READ_ACTION, result, data))\n\n def write(self, file, buffer, data):\n file.write(buffer)\n self.owner.push_event((WRITE_ACTION, len(buffer), data))\n\n def _execute(self, work):\n action = work[1]\n if action == OPEN_ACTION:\n self.open(*work[2:])\n elif action == CLOSE_ACTION:\n self.close(*work[2:])\n elif action == READ_ACTION:\n self.read(*work[2:])\n elif action == WRITE_ACTION:\n self.read(*work[2:])\n else:\n netius.NotImplemented(\"Undefined file action '%d'\" % action)\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass FileThread(common.Thread):\n\n def execute(self, work):\n type = work[0]\n if not type == FILE_WORK:\n netius.NotImplemented(\"Cannot execute type '%d'\" % type)\n try:\n self._execute(work)\n except BaseException as exception:\n self.owner.push_event((ERROR_ACTION, exception, work[-1]))\n\n def open(self, path, mode, data):\n file = open(path)\n self.owner.push_event((OPEN_ACTION, file, data))\n\n def close(self, file, data):\n file.close()\n self.owner.push_event((CLOSE_ACTION, file, data))\n\n def read(self, file, count, data):\n result = file.read(count)\n self.owner.push_event((READ_ACTION, result, data))\n\n def write(self, file, buffer, data):\n file.write(buffer)\n self.owner.push_event((WRITE_ACTION, len(buffer), data))\n\n def _execute(self, work):\n action = work[1]\n if action == OPEN_ACTION:\n self.open(*work[2:])\n elif action == CLOSE_ACTION:\n self.close(*work[2:])\n elif action == READ_ACTION:\n self.read(*work[2:])\n elif action == WRITE_ACTION:\n self.read(*work[2:])\n else:\n netius.NotImplemented(\"Undefined file action '%d'\" % action)\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass FileThread(common.Thread):\n\n def execute(self, work):\n type = work[0]\n if not type == FILE_WORK:\n netius.NotImplemented(\"Cannot execute type '%d'\" % type)\n try:\n self._execute(work)\n except BaseException as exception:\n self.owner.push_event((ERROR_ACTION, exception, work[-1]))\n <function token>\n\n def close(self, file, data):\n file.close()\n self.owner.push_event((CLOSE_ACTION, file, data))\n\n def read(self, file, count, data):\n result = file.read(count)\n self.owner.push_event((READ_ACTION, result, data))\n\n def write(self, file, buffer, data):\n file.write(buffer)\n self.owner.push_event((WRITE_ACTION, len(buffer), data))\n\n def _execute(self, work):\n action = work[1]\n if action == OPEN_ACTION:\n self.open(*work[2:])\n elif action == CLOSE_ACTION:\n self.close(*work[2:])\n elif action == READ_ACTION:\n self.read(*work[2:])\n elif action == WRITE_ACTION:\n self.read(*work[2:])\n else:\n netius.NotImplemented(\"Undefined file action '%d'\" % action)\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass FileThread(common.Thread):\n\n def execute(self, work):\n type = work[0]\n if not type == FILE_WORK:\n netius.NotImplemented(\"Cannot execute type '%d'\" % type)\n try:\n self._execute(work)\n except BaseException as exception:\n self.owner.push_event((ERROR_ACTION, exception, work[-1]))\n <function token>\n <function token>\n\n def read(self, file, count, data):\n result = file.read(count)\n self.owner.push_event((READ_ACTION, result, data))\n\n def write(self, file, buffer, data):\n file.write(buffer)\n self.owner.push_event((WRITE_ACTION, len(buffer), data))\n\n def _execute(self, work):\n action = work[1]\n if action == OPEN_ACTION:\n self.open(*work[2:])\n elif action == CLOSE_ACTION:\n self.close(*work[2:])\n elif action == READ_ACTION:\n self.read(*work[2:])\n elif action == WRITE_ACTION:\n self.read(*work[2:])\n else:\n netius.NotImplemented(\"Undefined file action '%d'\" % action)\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass FileThread(common.Thread):\n\n def execute(self, work):\n type = work[0]\n if not type == FILE_WORK:\n netius.NotImplemented(\"Cannot execute type '%d'\" % type)\n try:\n self._execute(work)\n except BaseException as exception:\n self.owner.push_event((ERROR_ACTION, exception, work[-1]))\n <function token>\n <function token>\n\n def read(self, file, count, data):\n result = file.read(count)\n self.owner.push_event((READ_ACTION, result, data))\n <function token>\n\n def _execute(self, work):\n action = work[1]\n if action == OPEN_ACTION:\n self.open(*work[2:])\n elif action == CLOSE_ACTION:\n self.close(*work[2:])\n elif action == READ_ACTION:\n self.read(*work[2:])\n elif action == WRITE_ACTION:\n self.read(*work[2:])\n else:\n netius.NotImplemented(\"Undefined file action '%d'\" % action)\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass FileThread(common.Thread):\n\n def execute(self, work):\n type = work[0]\n if not type == FILE_WORK:\n netius.NotImplemented(\"Cannot execute type '%d'\" % type)\n try:\n self._execute(work)\n except BaseException as exception:\n self.owner.push_event((ERROR_ACTION, exception, work[-1]))\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _execute(self, work):\n action = work[1]\n if action == OPEN_ACTION:\n self.open(*work[2:])\n elif action == CLOSE_ACTION:\n self.close(*work[2:])\n elif action == READ_ACTION:\n self.read(*work[2:])\n elif action == WRITE_ACTION:\n self.read(*work[2:])\n else:\n netius.NotImplemented(\"Undefined file action '%d'\" % action)\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass FileThread(common.Thread):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def _execute(self, work):\n action = work[1]\n if action == OPEN_ACTION:\n self.open(*work[2:])\n elif action == CLOSE_ACTION:\n self.close(*work[2:])\n elif action == READ_ACTION:\n self.read(*work[2:])\n elif action == WRITE_ACTION:\n self.read(*work[2:])\n else:\n netius.NotImplemented(\"Undefined file action '%d'\" % action)\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n\n\nclass FileThread(common.Thread):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n\n def read(self, file, count=-1, data=None):\n work = FILE_WORK, READ_ACTION, file, count, data\n self.push(work)\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n\n def close(self, file, data=None):\n work = FILE_WORK, CLOSE_ACTION, file, data\n self.push(work)\n <function token>\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass FilePool(common.EventPool):\n\n def __init__(self, base=FileThread, count=10):\n common.EventPool.__init__(self, base=base, count=count)\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n <function token>\n <function token>\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass FilePool(common.EventPool):\n <function token>\n\n def open(self, path, mode='r', data=None):\n work = FILE_WORK, OPEN_ACTION, path, mode, data\n self.push(work)\n <function token>\n <function token>\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass FilePool(common.EventPool):\n <function token>\n <function token>\n <function token>\n <function token>\n\n def write(self, file, buffer, data=None):\n work = FILE_WORK, WRITE_ACTION, file, buffer, data\n self.push(work)\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n\n\nclass FilePool(common.EventPool):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<assignment token>\n<docstring token>\n<import token>\n<assignment token>\n<class token>\n<class token>\n" ]
false
98,382
fd37252896904bd7cc9895af3cfb6868c22cf2a3
import numpy import os import librosa if __name__ == '__main__': features = 'features3D' loadpath = 'D:/PythonProjects_Data/AVEC2017/' savepath = 'D:/PythonProjects_Data/AVEC2017-OtherFeatures/Step1_%s/' % features for foldname in os.listdir(loadpath): if foldname.find('_P') == -1: continue if os.path.exists(os.path.join(savepath, foldname)): continue os.makedirs(os.path.join(savepath, foldname)) print('Treating', foldname) transcriptData = numpy.genfromtxt( fname=os.path.join(loadpath, foldname, '%s_TRANSCRIPT.csv' % foldname[0:foldname.find('_')]), dtype=str, delimiter='\t') originData = numpy.genfromtxt( fname=os.path.join(loadpath, foldname, '%s_CLNF_%s.txt' % (foldname[0:foldname.find('_')], features)), dtype=str, delimiter=',') position = 1 for index in range(1, numpy.shape(transcriptData)[0]): startPosition, endPosition = float(transcriptData[index][0]), float(transcriptData[index][1]) with open(os.path.join(savepath, foldname, '%s_%04d.csv' % (transcriptData[index][2], index)), 'w') as file: if position >= numpy.shape(originData)[0]: break while startPosition > float(originData[position][1]): position += 1 if position >= numpy.shape(originData)[0]: break if position >= numpy.shape(originData)[0]: break while float(originData[position][1]) <= endPosition: if originData[position][3] == 0: continue for writeIndex in range(4, len(originData[position])): if writeIndex != 4: file.write(',') file.write(originData[position][writeIndex]) position += 1 file.write('\n') if position >= numpy.shape(originData)[0]: break if position >= numpy.shape(originData)[0]: break # exit()
[ "import numpy\nimport os\nimport librosa\n\nif __name__ == '__main__':\n features = 'features3D'\n loadpath = 'D:/PythonProjects_Data/AVEC2017/'\n savepath = 'D:/PythonProjects_Data/AVEC2017-OtherFeatures/Step1_%s/' % features\n for foldname in os.listdir(loadpath):\n if foldname.find('_P') == -1: continue\n if os.path.exists(os.path.join(savepath, foldname)): continue\n os.makedirs(os.path.join(savepath, foldname))\n print('Treating', foldname)\n\n transcriptData = numpy.genfromtxt(\n fname=os.path.join(loadpath, foldname, '%s_TRANSCRIPT.csv' % foldname[0:foldname.find('_')]), dtype=str,\n delimiter='\\t')\n\n originData = numpy.genfromtxt(\n fname=os.path.join(loadpath, foldname, '%s_CLNF_%s.txt' % (foldname[0:foldname.find('_')], features)),\n dtype=str, delimiter=',')\n\n position = 1\n for index in range(1, numpy.shape(transcriptData)[0]):\n startPosition, endPosition = float(transcriptData[index][0]), float(transcriptData[index][1])\n\n with open(os.path.join(savepath, foldname, '%s_%04d.csv' % (transcriptData[index][2], index)), 'w') as file:\n if position >= numpy.shape(originData)[0]: break\n while startPosition > float(originData[position][1]):\n position += 1\n if position >= numpy.shape(originData)[0]: break\n if position >= numpy.shape(originData)[0]: break\n\n while float(originData[position][1]) <= endPosition:\n if originData[position][3] == 0: continue\n for writeIndex in range(4, len(originData[position])):\n if writeIndex != 4: file.write(',')\n file.write(originData[position][writeIndex])\n position += 1\n file.write('\\n')\n if position >= numpy.shape(originData)[0]: break\n if position >= numpy.shape(originData)[0]: break\n\n # exit()\n", "import numpy\nimport os\nimport librosa\nif __name__ == '__main__':\n features = 'features3D'\n loadpath = 'D:/PythonProjects_Data/AVEC2017/'\n savepath = ('D:/PythonProjects_Data/AVEC2017-OtherFeatures/Step1_%s/' %\n features)\n for foldname in os.listdir(loadpath):\n if foldname.find('_P') == -1:\n continue\n if os.path.exists(os.path.join(savepath, foldname)):\n continue\n os.makedirs(os.path.join(savepath, foldname))\n print('Treating', foldname)\n transcriptData = numpy.genfromtxt(fname=os.path.join(loadpath,\n foldname, '%s_TRANSCRIPT.csv' % foldname[0:foldname.find('_')]),\n dtype=str, delimiter='\\t')\n originData = numpy.genfromtxt(fname=os.path.join(loadpath, foldname,\n '%s_CLNF_%s.txt' % (foldname[0:foldname.find('_')], features)),\n dtype=str, delimiter=',')\n position = 1\n for index in range(1, numpy.shape(transcriptData)[0]):\n startPosition, endPosition = float(transcriptData[index][0]\n ), float(transcriptData[index][1])\n with open(os.path.join(savepath, foldname, '%s_%04d.csv' % (\n transcriptData[index][2], index)), 'w') as file:\n if position >= numpy.shape(originData)[0]:\n break\n while startPosition > float(originData[position][1]):\n position += 1\n if position >= numpy.shape(originData)[0]:\n break\n if position >= numpy.shape(originData)[0]:\n break\n while float(originData[position][1]) <= endPosition:\n if originData[position][3] == 0:\n continue\n for writeIndex in range(4, len(originData[position])):\n if writeIndex != 4:\n file.write(',')\n file.write(originData[position][writeIndex])\n position += 1\n file.write('\\n')\n if position >= numpy.shape(originData)[0]:\n break\n if position >= numpy.shape(originData)[0]:\n break\n", "<import token>\nif __name__ == '__main__':\n features = 'features3D'\n loadpath = 'D:/PythonProjects_Data/AVEC2017/'\n savepath = ('D:/PythonProjects_Data/AVEC2017-OtherFeatures/Step1_%s/' %\n features)\n for foldname in os.listdir(loadpath):\n if foldname.find('_P') == -1:\n continue\n if os.path.exists(os.path.join(savepath, foldname)):\n continue\n os.makedirs(os.path.join(savepath, foldname))\n print('Treating', foldname)\n transcriptData = numpy.genfromtxt(fname=os.path.join(loadpath,\n foldname, '%s_TRANSCRIPT.csv' % foldname[0:foldname.find('_')]),\n dtype=str, delimiter='\\t')\n originData = numpy.genfromtxt(fname=os.path.join(loadpath, foldname,\n '%s_CLNF_%s.txt' % (foldname[0:foldname.find('_')], features)),\n dtype=str, delimiter=',')\n position = 1\n for index in range(1, numpy.shape(transcriptData)[0]):\n startPosition, endPosition = float(transcriptData[index][0]\n ), float(transcriptData[index][1])\n with open(os.path.join(savepath, foldname, '%s_%04d.csv' % (\n transcriptData[index][2], index)), 'w') as file:\n if position >= numpy.shape(originData)[0]:\n break\n while startPosition > float(originData[position][1]):\n position += 1\n if position >= numpy.shape(originData)[0]:\n break\n if position >= numpy.shape(originData)[0]:\n break\n while float(originData[position][1]) <= endPosition:\n if originData[position][3] == 0:\n continue\n for writeIndex in range(4, len(originData[position])):\n if writeIndex != 4:\n file.write(',')\n file.write(originData[position][writeIndex])\n position += 1\n file.write('\\n')\n if position >= numpy.shape(originData)[0]:\n break\n if position >= numpy.shape(originData)[0]:\n break\n", "<import token>\n<code token>\n" ]
false
98,383
a8d784e7e5a75451a1c238ca54bf90d37f3d528c
import math import matplotlib.pyplot as plt import os import pickle import interval_arithmetic as d from pprint import pprint from sympy.parsing.sympy_parser import parse_expr import sympy as sp import os from cusp import cusp_Ball_solver, evaluation_exp import matplotlib.patches as mpatches import csv from scipy import spatial import flint as ft from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection import itertools import timeit import time def ploting_boxes(boxes,uncer_boxes, var=[0,1], B=[[-20,20],[-20,20]],x=0.1,nodes=[], cusps=[],uncer_Solutions=[],Legend=False,color="green",variabel_name="x" ): fig, ax = plt.subplots() #plt.grid(True) ax.set_xlim(B[0][0], B[0][1]) ax.set_ylim(B[1][0], B[1][1]) ax.set_xlabel(variabel_name+str(1)) ax.set_ylabel(variabel_name+str(2)) """try: ax.title(open("system.txt","r").read()) except: pass""" #textstr = open("system.txt","r").read() #props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) #ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=9, # verticalalignment='top', bbox=props) c=0 green_patch = mpatches.Patch(color=color, label='smooth part') red_patch = mpatches.Patch(color='red', label='unknown part') node_patch = mpatches.Patch(color='black', label='Certified nodes',fill=None) cusp_patch = mpatches.Patch(color='blue', label='Projection of certified solution with t=0 ',fill=None) if Legend==True: plt.legend(handles=[green_patch,red_patch,node_patch,cusp_patch]) for box in boxes: rectangle= plt.Rectangle((box[var[0]][0],box[var[1]][0]) , \ (box[var[0]][1]-box[var[0]][0]),(box[var[1]][1]-box[var[1]][0]),color=color) plt.gca().add_patch(rectangle) for box in uncer_boxes: rectangle= plt.Rectangle((box[var[0]][0],box[var[1]][0]) , \ (box[var[0]][1]-box[var[0]][0]),(box[var[1]][1]-box[var[1]][0]), fc='r') plt.gca().add_patch(rectangle) for box in nodes: rectangle= plt.Rectangle((box[0][0]-x,box[1][0]-x) ,\ 2*x+box[0][1]-box[0][0],2*x+box[1][1]-box[1][0], fc='y',fill=None) plt.gca().add_patch(rectangle) for box in cusps: rectangle= plt.Rectangle((box[0][0]-x,box[1][0]-x) ,\ 2*x+box[0][1]-box[0][0],2*x+box[1][1]-box[1][0], fc='y',color="blue",fill=None) plt.gca().add_patch(rectangle) for box in uncer_Solutions: rectangle= plt.Rectangle((box[0][0]-x,box[1][0]-x) ,\ 2*x+box[0][1]-box[0][0],2*x+box[1][1]-box[1][0], fc='y',color="red",fill=None) plt.gca().add_patch(rectangle) plt.savefig("fig.jpg",dpi=1000) plt.show() def Ball_node_gen(equations,B_Ball,X): P=open(equations,"r").readlines() P=[Pi.replace('\n','') for Pi in P] n=len(X) V=""" Variables \n """ for i in range(n): V += "x" +str(i+1) + " in " + str(B_Ball[i]) +" ; \n" for i in range(n,2*n-2): V += "r" +str(i-n+3) + " in " + str(B_Ball[i]) +" ; \n" V += "t" + " in " + str(B_Ball[2*n-2]) +" ; \n" V +="Constraints \n" for Pi in P: V += SDP_str(Pi,X)[0] V += SDP_str(Pi,X)[1] last_eq="" for i in range(3,n): last_eq += "r"+str(i)+"^2+" last_eq += "r" +str(n)+"^2 -1=0;" V += last_eq +"\n" f= open("eq.txt","w+") f.write(V) f.write("end") f.close() def Ball_solver(equations,B_Ball,X): #the width condition needs to be added Do not suse this one L=[B_Ball] certified_boxes=[] uncertified_boxes=[] n=len(X) while len(L) !=0: solvability=1 if B_Ball[2*n-2][0] <= 0 <= B_Ball[2*n-2][1] and \ d.width([ d.ftconstructor(Bi[0],Bi[1]) for Bi in L[0] ] ) <0.1 : Ball_cusp_gen(equations,B_Ball,X) elif (B_Ball[2*n-2][0] > 0 or 0 > B_Ball[2*n-2][1] ) \ and d.width([ d.ftconstructor(Bi[0],Bi[1]) for Bi in L[0] ] ) <0.1: Ball_node_gen(equations,B_Ball,X) else: children=cb.plane_subdivision(L[0]) L.remove(L[0]) L += children solvability=0 if solvability==1: ibex_output=cb.solving_with_ibex() if ibex_output[0]== "Empty": L.remove(L[0]) elif len(ibex_output[0]) !=0: certified_boxes +=cb.computing_boxes(ibex_output[0]) L.remove(L[0]) elif len(ibex_output[1])!=0: uncertified_boxes +=cb.computing_boxes(ibex_output[1]) L.remove(L[0]) else: children=cb.plane_subdivision(L[0]) L.remove(L[0]) L += children return [certified_boxes,uncertified_boxes] def SDP_str(P,X): n=len(X) P_pluse=P[:] P_minus=P[:] for i in range(2,n): P_pluse=P_pluse.replace("x"+str(i+1),"(x"+str(i+1) + "+ r"+str(i+1) +"*sqrt(t))") P_minus=P_minus.replace("x"+str(i+1),"(x"+str(i+1) + "- r"+str(i+1) +"*sqrt(t))") SP= "0.5*(" + P_pluse + "+" +P_minus+")=0; \n" DP= "0.5*(" + P_pluse + "- (" +P_minus+") )/(sqrt(t))=0; \n" return [SP,DP] def Ball_generating_system(P,B_Ball,X,eps_min=0.001): n=len(X) V=""" Variables \n """ for i in range(n): if B_Ball[i][0] != B_Ball[i][1]: V += "x" +str(i+1) + " in " + str(B_Ball[i]) +" ; \n" else: V += "x" +str(i+1) + " in " + str([B_Ball[i][0]-eps_min, B_Ball[i][1]+eps_min]) +" ; \n" for i in range(n,2*n-2): V += "r" +str(i-n+3) + " in " + str(B_Ball[i]) +" ; \n" V += "t" + " in " + str(B_Ball[2*n-2]) +" ; \n" V +="Constraints \n" for Pi in P: V += SDP_str(Pi,X)[0] V += SDP_str(Pi,X)[1] last_eq="" for i in range(3,n): last_eq += "r"+str(i)+"^2+" last_eq += "r" +str(n)+"^2 -1=0;" V += last_eq +"\n" f= open("eq.txt","w+") f.write(V) f.write("end") f.close() def intersting_boxes1(f,b): pickle_in=open(f,"rb") curve=pickle.load(pickle_in) pickle_in.close() intersting_boxes=[] uncer_boxes=[] for box in curve[0]: if b[0][0] <= box[0][0] <= box[0][1] <=b[0][1] and \ b[1][0] <= box[1][0] <= box[1][1] <=b[1][1]: intersting_boxes.append(box) for box in curve[1]: if b[0][0] <= box[0][0] <= box[0][1] <=b[0][1] and \ b[1][0] <= box[1][0] <= box[1][1] <=b[1][1]: uncer_boxes.append(box) return [intersting_boxes,uncer_boxes] def intersting_boxes(curve,b): cer_intersting_boxes=[] uncer_intersting_boxes=[] for box in curve[0]: if b[0][0] <= box[0][0] <= box[0][1] <=b[0][1] and \ b[1][0] <= box[1][0] <= box[1][1] <=b[1][1]: cer_intersting_boxes.append(box) for box in curve[1]: if b[0][0] <= box[0][0] <= box[0][1] <=b[0][1] and \ b[1][0] <= box[1][0] <= box[1][1] <=b[1][1]: uncer_intersting_boxes.append(box) return [cer_intersting_boxes,uncer_intersting_boxes] def ibex_output(P,B,X): os.system("ibexsolve --eps-max=0.1 -s eq.txt > output.txt") g=open('output.txt','r') result=g.readlines() T=computing_boxes(result) return T def estimating_t1(components,upper_bound=200000): #it works only if len(components) t1=upper_bound t2=0 for box1 in components[0]: for box2 in components[1]: a=d.distance(box1,box2).lower() b=d.distance(box1,box2).upper() if t1 > a: t1=a if t2<b: t2=b t=d.ftconstructor(t1,t2) t=0.25*d.power_interval(t,2) return [float(t.lower()),float(t.upper())] def estimating_t(components,upper_bound=19000.8): #it works only if len(components)==2 t1=upper_bound t2=0 for box1 in components[0]: for box2 in components[1]: a=d.distance(box1[2:],box2[2:]) if t1 > a[0]: t1=a[0] if t2<a[1]: t2=a[1] t=d.ftconstructor(t1,t2) t=0.25*d.power_interval(t,2) return [float(t.lower()),float(t.upper())] def boxes_compare(box1,box2): flage=0 for i in range(len(box1)-1,-1,-1): if box1[i][0] > box2[i][0]: return 1 if box1[i][0] < box2[i][0]: return -1 return 0 def boxes_sort(boxes): sorted_boxes=boxes[:] for i in range(len(boxes)-1): for j in range(i+1,len(boxes)): if boxes_compare(sorted_boxes[i],sorted_boxes[j]) ==1: sorted_boxes[i], sorted_boxes[j] =sorted_boxes[j], sorted_boxes[i] return sorted_boxes def connected_compnants(boxes): #ftboxes=[ [d.ftconstructor(boxi[0],boxi[1]) for boxi in box ] for box in boxes ] ftboxes=boxes[:] components=[[ftboxes[0]]] for i in range(1,len(ftboxes)): boxi_isused=0 for j in range(len(components)): membership=0 for k in range(len(components[j])): if d.boxes_intersection(ftboxes[i],components[j][k]) !=[] : components[j].append(ftboxes[i]) membership=1 boxi_isused=1 break if membership==1: break if boxi_isused==0: components.append([ftboxes[i]]) unused=list(range(len(components))) components1=components[:] components2=[] while len(components1) != len(components2) : for i in unused: for j in [j for j in list(range(i+1,len(components))) if j in unused ]: intersection_exists=False is_looping=True for boxi in components[i]: for boxj in components[j]: if d.boxes_intersection(boxi,boxj)!=[]: is_looping = False intersection_exists=True break if is_looping==False: break if intersection_exists== True: components[i] += components[j] unused.remove(j) components2=components1[:] components1=[components[k] for k in unused ] return components1 def planner_connected_compnants(boxes): if len(boxes)==0: return [] ftboxes=boxes[:] #ftboxes=[ [d.ftconstructor(boxi[0],boxi[1]) for boxi in box ] for box in boxes ] components=[[ftboxes[0]] ] for i in range(1,len(ftboxes)): boxi_isused=0 for j in range(len(components)): membership=0 for k in range(len(components[j])): if d.boxes_intersection(ftboxes[i][:2],components[j][k][:2]) !=[]: # and \ #d.boxes_intersection(ftboxes[i],components[j][k]) ==[]: components[j].append(ftboxes[i]) membership=1 boxi_isused=1 break if membership==1: break if boxi_isused==0: components.append([ftboxes[i]]) unused=list(range(len(components))) components1=components[:] components2=[] while len(components1) != len(components2) : for i in unused: for j in [j for j in list(range(i+1,len(components))) if j in unused ]: intersection_exists=False is_looping=True for boxi in components[i]: for boxj in components[j]: if d.boxes_intersection(boxi[:2],boxj[:2])!=[] :#and \ #d.boxes_intersection(boxi[:2],boxj[:2]) != [] : is_looping = False intersection_exists=True break if is_looping==False: break if intersection_exists== True: components[i] += components[j] unused.remove(j) components2=components1[:] components1=[components[k] for k in unused ] return components1 def estimating_yandr(components,upper_bound=100000): r_bounds=[[upper_bound,0]]*(len(components[0][0])-2) r_list=[] y_list=[] for box1 in components[0]: for box2 in components[1]: ft_box1= [d.ftconstructor(Bi[0],Bi[1]) for Bi in box1 ] ft_box2= [d.ftconstructor(Bi[0],Bi[1]) for Bi in box2 ] y_list.append([0.5*(q1+q2) for q1,q2 in zip(ft_box1[2:],ft_box2[2:])]) norm_q1q2=d.distance(box1[2:],box2[2:]) norm_q1q2=d.ftconstructor(norm_q1q2[0],norm_q1q2[1]) q1q2=[ft_box1[i]-ft_box2[i] for i in range(2,len(box1)) ] r=[ ri/norm_q1q2 for ri in q1q2 ] r_list.append(r) r=[] y=[] for i in range(len(y_list[0])): yi1=min([float(y[i].lower()) for y in y_list ]) yi2=max([float(y[i].upper()) for y in y_list ]) y.append([yi1,yi2]) for i in range(len(r_list[0])): ri1=min([float(r[i].lower()) for r in r_list ]) ri2=max([float(r[i].upper()) for r in r_list ]) r.append([ri1,ri2]) return y+r def detecting_nodes(boxes,B,f,X,eps): #boxes are list of cer and uncer curve mixes_boxes= [[1,box ] for box in boxes[0] ] +[[0,box ] for box in boxes[1]] #putting flaggs for cer and uncer boxes ftboxes=[ [box[0], [d.ftconstructor(boxi[0],boxi[1]) for boxi in box[1]] ] for box in mixes_boxes ] nodes_lifting=[] used=[] P=[ Pi.replace("\n","") for Pi in open(f,"r").readlines() ] for i in range(len(ftboxes)): for j in range(i+1,len(ftboxes)): Mariam_ft=d.boxes_intersection(ftboxes[i][1],ftboxes[j][1]) Mariam=[[float(Bi.lower()),float(Bi.upper()) ] for Bi in Mariam_ft] if (Mariam ==[] and \ d.boxes_intersection(ftboxes[i][1][:2],ftboxes[j][1][:2])) or\ (Mariam != [] and enclosing_curve(f,Mariam,X,eps_max=0.1) ==[[],[]] ): #needs to work more if i not in used: used.append(i) nodes_lifting.append(ftboxes[i]) if j not in used: used.append(j) nodes_lifting.append(ftboxes[j]) components= planner_connected_compnants(nodes_lifting) cer_components=[] uncer_components=[] component_normal=[] for component in components: boxes_component=[box[1] for box in component] component_normal =[ [[ float(Bi.lower()), float(Bi.upper()) ] for Bi in box[1] ] for box in component ] if 0 not in [ box[0] for box in component] and eval_file_gen(f,component_normal,X) =="[]\n" : cer_components.append(boxes_component) else: uncer_components.append(boxes_component) return [cer_components,uncer_components] def intersect_in_2D(class1,class2,monotonicity=1): pl_intesected_pairs=[] if monotonicity==1: for i in range(len(class1)): for j in range(len(class2)): if d.boxes_intersection(class1[i][:2],class2[j][:2]) !=[] and d.boxes_intersection(class1[i],class2[j]) ==[] : if [class2[j],class1[i]] not in pl_intesected_pairs: pl_intesected_pairs.append([class1[i],class2[j]]) elif monotonicity==0: for i in range(len(class1)): for j in range(len(class2)): if d.boxes_intersection(class1[i][:2],class2[j][:2]) !=[]: if [class2[j],class1[i]] not in pl_intesected_pairs: pl_intesected_pairs.append([class1[i],class2[j]]) elif monotonicity==2: inters_indic=[] for i in range(len(class1)): inters_indic.append([]) for j in range(len(class2)): if d.boxes_intersection(class1[i][:2],class2[j][:2]) !=[]: inters_indic[i]= inters_indic[i] +[j] for k in range(len(class1)): if len(inters_indic[k])> 3: for j in range(len(inters_indic[k])): if [class2[j],class1[k]] not in pl_intesected_pairs: pl_intesected_pairs.append([class1[k], class2[j]]) return pl_intesected_pairs def solving_fornodes(equations,boxes,B,X,eps=0.1): plane_components=detecting_nodes(boxes,B,equations,X,eps)#[0] g=open(equations,'r') P=[ Pi.replace("\n","") for Pi in g.readlines() ] Ball_solutions=[] for plane_component in plane_components: x1=float(min([ai[0].lower() for ai in plane_component])) x2=float(max([ai[0].upper() for ai in plane_component])) y1=float(min([ai[1].lower() for ai in plane_component])) y2=float(max([ai[1].upper() for ai in plane_component])) components=connected_compnants(plane_component) r=[ [float(ri[0]),float(ri[1])] for ri in estimating_r(components) ] t=estimating_t(components) t=[float(t[0]),float(t[1])] B_Ball=[[x1,x2],[y1,y2]]+r +[t] Ball_generating_system(P,B_Ball,X) solutionsi=ibex_output(P,B_Ball,X) Ball_solutions +=solutionsi return Ball_solutions def normal_subdivision(B): ft_B=d.subdivide([d.ftconstructor(Bi[0],Bi[1]) for Bi in B[:]]) return [d.ft_normal(Bi) for Bi in ft_B] def plane_subdivision(B): ft_B2=d.subdivide([d.ftconstructor(Bi[0],Bi[1]) for Bi in B[:2]]) normal_B2=[d.ft_normal(Bi) for Bi in ft_B2] return d.cartesian_product(normal_B2,[B[2:]]) def system_generator(f,B,X): g = open(f, "r") L = g.readlines() g.close() f = open("eq.txt", "w+") f.write("Variables \n") for i in range(len(X)): f.write(str(X[i]) + " in " + str(B[i]) + " ; \n") f.write("Constraints \n") for Li in L: f.write(Li.replace("\n", "") + "=0; \n") f.write("end ") f.close() return f def solving_with_ibex(eps=0.1): uncer_content=[] cer_content=[] os.system("ibexsolve --eps-max="+ str(eps) +" -s eq.txt > output.txt") g=open('output.txt','r') result=g.read() with open('output.txt') as f: if "successful" in result: cer_content = f.readlines() elif "infeasible" not in result and "done! but some boxes" in result: uncer_content = f.readlines() elif "infeasible problem" in result: uncer_content="Empty" cer_content="Empty" return [cer_content,uncer_content] def computing_boxes(): if "infeasible" in open("output.txt","r").read(): return "Empty" content=open("output.txt","r").readlines() cer=[]; uncer=[] i=0 Answer=[] for fi in content: try: a=fi.index('(') b=fi.index(')') T=(fi[a:b+1]).replace('(','[') T=(fi[a:b+1]).replace('(','[') T=T.replace(')',']') T=T.split(";") E=[] i=0 for Ti in T: Ti= Ti.replace('[',"") Ti= Ti.replace(']',"") Ti=Ti.replace('<','') Ti=Ti.replace('>','') x=Ti.index(",") a=float(Ti[:x]) b=float(Ti[x+1:]) E.append([]) E[i]=[a,b] i+=1 if "solution n" in fi or "boundary n" in fi: cer.append(E) elif "unknown n" in fi: uncer.append(E) except ValueError: pass return [cer,uncer] def enclosing_curve(system,B,X,eps_min=0.1,eps_max=0.1): L=[B] certified_boxes=[] uncertified_boxes=[] while len(L) !=0: system_generator(system,L[0],X) os.system("ibexsolve --eps-max="+ str(eps_max)+" --eps-min="+ str(eps_min) + " -s eq.txt > output.txt") content=open("output.txt","r").readlines() ibex_output=computing_boxes() #ibex_output=solving_with_ibex(eps) if ibex_output ==[[],[]] and max([Bi[1]-Bi[0] for Bi in L[0] ]) < eps_min : uncertified_boxes.append(L[0]) L.remove(L[0]); elif ibex_output ==[[],[]] : children=plane_subdivision(L[0]) L.remove(L[0]); L += children # print warning ################################################################"" elif ibex_output== "Empty": L.remove(L[0]) else: if len(ibex_output[0]) !=0: certified_boxes += ibex_output[0] if len(ibex_output[1])!=0: uncertified_boxes += ibex_output[1] L.remove(L[0]) return [certified_boxes,uncertified_boxes] def loopsfree_checker(f,certified_boxes,uncer_boxes,P): #Assumption: no cusps L=eval_file_gen(f,certified_boxes,X) while L.replace('\n',"") != "[]": L=L.replace('[','') L=L.replace(']','') L=L.replace('\n','') L=L.split(",") for i in L: children=normal_subdivision(certified_boxes[int(i)]) certified_boxes.remove(certified_boxes[int(i)]) for child in children: cer_children, uncer_children= enclosing_curve(f,child,X) certified_boxes +=cer_children uncer_boxes +=uncer_children L = eval_file_gen(f,certified_boxes,X) return L def eval_file_gen(f,boxes,X,special_function=[]): #condition: len(boxes[0]) is even functions=["sin","cos","tan","exp"]+special_function if len(boxes[0])==0: return [] n=len(boxes[0]) m=len(boxes) g=open(f,'r') P_str=g.readlines() P_str= [Pi.replace('\n','') for Pi in P_str] P_str= [Pi.replace('^','**') for Pi in P_str] P_exp= [parse_expr(Pi) for Pi in P_str] #computing jac and the minors jac=sp.Matrix(P_str).jacobian(sp.Matrix(X)) minor1=jac[:,1:].det() minor2=jac[:,[i for i in range(n) if i != 1] ].det() fil=open("evaluation_file1.py","w") fil.write("import flint as ft \n") fil.write("import sympy as sp \n") fil.write("import interval_arithmetic as d \n") fil.write("boxes="+str(boxes)+"\n") fil.write("ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \n" ) fil.write("n=len(boxes[0])\n") fil.write("m=len(boxes)\n") fil.write("m1=[]\n") fil.write("m2=[]\n") minor1_str=str(minor1) minor2_str=str(minor2) for i in range(n): minor1_str= minor1_str.replace("x"+str(i+1),"B["+str(i)+"]" ) minor2_str= minor2_str.replace("x"+str(i+1),"B["+str(i)+"]" ) for func in functions: minor1_str=minor1_str.replace(func,"ft.arb."+func) minor2_str=minor2_str.replace(func,"ft.arb."+func) fil.write("for B in ftboxes: \n") fil.write(" m1.append(ft.arb("+ minor1_str + ")) \n") fil.write(" m2.append( ft.arb("+ minor2_str + ")) \n") fil.write("innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\n") fil.write("print(innrer_loops)\n") fil.close() t=os.popen("python3 evaluation_file1.py ").read() return t def boxes_classifier(system,boxes,X,special_function=[]): if len(boxes[0])==0: return [[],[],boxes[1]] certified_boxes ,uncer_boxes =boxes L=eval_file_gen(system,certified_boxes,X) if L==[]: return [[],[],uncer_boxes] it=0 L=L.replace('[','') L=L.replace(']','') L=L.replace('\n','') L=L.split(",") if L !=[""]: L=[int(li) for li in L] return [ [certified_boxes[i] for i in range(len(certified_boxes)) if i not in L] ,\ [certified_boxes[i] for i in L ], \ uncer_boxes ] else: return [ [certified_boxes[i] for i in range(len(certified_boxes)) if i not in L] ,[], uncer_boxes ] #can be enhanced def projection_checker(solutions): if len(solutions)==0: return [[],[]] m=len(solutions[0]) n=int((m+1)/2) intersect_in2d=[[]]*len(solutions) for i in range(len(solutions)-1): for j in range(i+1,len(solutions)): if solutions[i]==solutions[j]: continue elif d.boxes_intersection(solutions[i][:2],solutions[j][:2]) !=[] and (\ (d.boxes_intersection(solutions[i][n:2*n-2],[[-Bi[1],-Bi[0]] for Bi in solutions[j][n:2*n-2]]) ==[] and \ d.boxes_intersection(solutions[i][n:2*n-2],[[Bi[0],Bi[1]] for Bi in solutions[j][n:2*n-2]]) ==[] ) \ or \ d.boxes_intersection(solutions[i][2:n]+[solutions[i][2*n-2]], solutions[j][2:n]+[solutions[j][2*n-2]]) ==[]) : intersect_in2d[i] = intersect_in2d[i]+[ j] accepted=[] acc_ind=[] unaccepted=[] unacc_ind=[] for i in range(len(solutions)): if len(intersect_in2d[i]) ==0 and i not in unacc_ind+acc_ind: accepted.append(solutions[i]) acc_ind.append(i) continue elif i not in unacc_ind+acc_ind: unaccepted.append(solutions[i]) unacc_ind.append(i) for k in intersect_in2d[i]: if k not in unacc_ind: unaccepted.append(solutions[k]) unacc_ind.append(k) #pprint(sp.Matrix(unaccepted));input() return [accepted, unaccepted] def Ball_given_2nboxes(system,X, B1,B2, monotonicity_B1=1,monotonicity_B2=1): B1_ft=[d.ftconstructor(Bi[0],Bi[1]) for Bi in B1] B2_ft=[d.ftconstructor(Bi[0],Bi[1]) for Bi in B2] P=[Pi.replace("\n","") for Pi in open(system,"r").readlines()] sol="Empty" if d.boxes_intersection(B1_ft, B2_ft) ==[] and monotonicity_B1== monotonicity_B2==1: t=estimating_t([[B1_ft], [B2_ft]]) y_and_r=estimating_yandr([[B1_ft], [B2_ft]]) intersec_B1B2_in2d=d.boxes_intersection(B1_ft[:2],B2_ft[:2]) intersec_B1B2_in2d=[ [float(Bi.lower()),float(Bi.upper())] for Bi in intersec_B1B2_in2d ] B_Ball=intersec_B1B2_in2d +y_and_r +[t] Ball_node_gen(system,B_Ball,X) os.system("ibexsolve --eps-max=0.1 -s eq.txt > output.txt") sol=computing_boxes() #if d.boxes_intersection(B1_ft, B2_ft) ==[]: # pass return sol def all_pairs_oflist(L): pairs=[] for i in range(len(L)-1): for j in range(i+1,len(L)): pairs.append([L[i],L[j]]) return pairs def checking_assumptions(curve_data): #the input of this function is the output of Ball_solver if len(curve_data[0][1]) !=0 : return 0 Ball_sols_ft=[[d.ftconstructor(Bi[0],Bi[1]) for Bi in B] for B in curve_data[1][0]]+[[d.ftconstructor(Bi[0],Bi[1]) for Bi in B] for B in curve_data[1][1]] alph3=assum_alph3_checker(Ball_sols_ft) if alph3==1 : return 1 else: return 0 def csv_saver(L,type_L="Ball"): dic=[] if type_L== "Ball" : n=int((len(L[0])+1)/2) for j in range(len(L)): dic.append({}) for i in range(n): dic[j]["x"+str(i+1)]=L[j][i] for i in range(n,2*n-2): dic[j]["r"+str(i+3-n)]=L[j][i] dic[j]["t"]= L[j][2*n-2] return dic def dict2csv(dictlist, csvfile): """ Takes a list of dictionaries as input and outputs a CSV file. """ f = open(csvfile, 'wb') fieldnames = dictlist[0].keys() csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames) csvwriter.writerow(dict((fn, fn) for fn in fieldnames)) for row in dictlist: csvwriter.writerow(row) fn.close() def assum_alph3_checker(solutions): comparing_list=[[]]*len(solutions) for i in range(len(solutions)-1): for j in range(i+1,len(solutions)): if d.boxes_intersection(solutions[i][:2],solutions[j][:2]) !=[]: comparing_list[i].append(j) comparing_list[j].append(i) matching=[len(T) for T in comparing_list] if max(matching) <=2: return 1 else: return 0 def plotting_3D(boxes,Box,var=[0,1,2]): ax = plt.figure().add_subplot(111, projection='3d') ax.set_xlim(Box[0][0], Box[0][1]) ax.set_ylim(Box[1][0], Box[1][1]) ax.set_zlim(Box[2][0], Box[2][1]) ax.set_xlabel("x"+str(var[0]+1)) ax.set_ylabel("x"+str(var[1]+1)) ax.set_zlabel("x"+str(var[2]+1)) for box in boxes : V=[[box[j][0] for j in range(3)] , [box[j][1] for j in range(3)]] #ax.scatter3D(box[0], box[1], box[2]) points =list(itertools.product(*box)) faces=[[points[0],points[2],points[6],points[4]], [points[0],points[2],points[3],points[1]], [points[0],points[1],points[5],points[4]], [points[2],points[3],points[7],points[6]], [points[1],points[3],points[7],points[5]]] ax.add_collection3d(Poly3DCollection(faces, facecolors='green', linewidths=1,edgecolors='green', alpha=.25)) plt.show() def enclosing_singularities(system,boxes,B,X,eps_max=0.1,eps_min=0.01): #there still computing Ball On the case where tow monotonic boxes intersect combin=[] ball=[] start_combin=time.time() n=len(B); P=[Pi.replace("\n","") for Pi in open(system,"r").readlines()] certified_boxes, uncertified_boxes= boxes classes= boxes_classifier(system,boxes,X,special_function=[]) cer_Solutions=[] uncer_Solutions=[] H=[] ############################################################################# #Solving Ball for B1 and B2 in R^n such that C is monotonic in B1 and B2 ####################################################################### #monotonic_pairs=intersect_in_2D(classes[0],classes[0]) #monotonic_componants=[ Bi[0] for Bi in monotonic_pairs ] +[ Bi[1] for Bi in monotonic_pairs ] #Guillaume's suggestion: mon_mid=[[0.5*(Bij[1]+Bij[0]) for Bij in Bi[:2] ] for Bi in classes[0] ] mon_rad=[ max([0.5*(Bij[1]-Bij[0]) for Bij in Bi[:2] ]) for Bi in classes[0] ] tree = spatial.KDTree(mon_mid) intersting_boxes=[tree.query_ball_point(m,r=(math.sqrt(2))*r) for m,r in zip(mon_mid,mon_rad)] #Ask Guillaume why this step is needed: """for i in range(len(ball)): for j in ball[i]: if i not in ball[j]: ball[j].append(i)""" intersting_boxes=[indi for indi in intersting_boxes if len(indi) >3 ]#and len(connected_compnants([classes[0][i] for i in indi])) >1 ] discarded_components=[] for i in range(len(intersting_boxes)-1): for_i_stop=0 boxi_set=set(intersting_boxes[i]) for j in range(i+1,len(intersting_boxes)): boxj_set=set(intersting_boxes[j]) if boxj_set.issubset(boxi_set): discarded_components.append(j) elif boxi_set < boxj_set: discarded_components.append(i) intersting_boxes=[intersting_boxes[i] for i in range(len(intersting_boxes)) \ if i not in discarded_components] interesting_boxes_flattened =[] for Box_ind in intersting_boxes : for j in Box_ind: if j not in interesting_boxes_flattened: interesting_boxes_flattened.append(j) #use a flattening function in numpy #ploting_boxes([classes[0][i] for i in interesting_boxes_flattened ],[]) plane_components= planner_connected_compnants([classes[0][i] for i in interesting_boxes_flattened ]) #pprint(plane_components[0]);input() end_combin=time.time() combin.append(end_combin-start_combin) H=[] for plane_component in plane_components: if len(plane_component)>1: start_combin=time.time() components=connected_compnants(plane_component) pairs_of_branches=all_pairs_oflist(components) end_combin=time.time() combin.append(end_combin-start_combin) for pair_branches in pairs_of_branches: start_ball=time.time() all_boxes=pair_branches[0]+pair_branches[1] uni=[] for box in all_boxes: uni = d.box_union(uni,box) t=estimating_t(pair_branches); t1 = d.ftconstructor(t[0],t[1]); t=[float(t1.lower()),float(t1.upper())]; r=[ [float(ri[0]),float(ri[1])] for ri in estimating_yandr(pair_branches)] B_Ball=uni[:2] +r +[t] cusp_Ball_solver(P,B_Ball,X) #planeappend(B_Ball) #print(B_Ball[:3]) Ball_generating_system(P,B_Ball,X,eps_min) os.system("ibexsolve --eps-max="+ str(eps_max)+" --eps-min="+ str(eps_min) + " -s eq.txt > output.txt") #input("hi") Solutions=computing_boxes() if Solutions != "Empty" and Solutions != [[],[]] : cer_Solutions += Solutions[0] uncer_Solutions += Solutions[1] if Solutions==[[],[]] : if d.width(B_Ball[:2]) > eps_min: #new_B=d.box_union(d.F_Ballminus(B_Ball),d.F_Ballplus(B_Ball)) new_B=B_Ball[:2]+B[2:n] new_boxes=enclosing_curve(system,new_B,X,eps_max=0.1*eps_max) resul=enclosing_singularities(system,new_boxes,new_B,X,eps_max=0.1*eps_max) cer_Solutions+= resul[0]+resul[1] uncer_Solutions += resul[2] boxes[1] += new_boxes[1] else: uncer_Solutions.append(B_Ball) end_ball=time.time() ball.append(end_ball-start_ball) #There still the case B1B2[0],B1B2[1] are not disjoint ######################################################################################################## #Solving Ball for potential_cusp, a box in R^n such that C is not monotonic ######################################################################################################## start_combin=time.time() checked_boxes=[] all_boxes=boxes[0]+boxes[1] checked_boxes=[] mon_mid_cusp=[[0.5*(Bij[1]+Bij[0]) for Bij in Bi[:2] ] for Bi in classes[1] ] mon_rad_cusp=[ max([0.5*(Bij[1]-Bij[0]) for Bij in Bi[:2]]) for Bi in classes[1] ] potential_cusps=[tree.query_ball_point(m,r=(math.sqrt(2)*(r+eps_max))) for m,r in zip(mon_mid_cusp,mon_rad_cusp)] end_combin=time.time() combin.append(end_combin-start_combin) for cusp_indx in range(len(classes[1])): start_combin=time.time() intersecting_boxes=[all_boxes[i] for i in potential_cusps[cusp_indx]\ if d.boxes_intersection(all_boxes[i],classes[1][cusp_indx])!=[] ] #contains all boxes that intersect the considered potential_cusp #for potential_cusp in classes[1]: ###finding cusps (or small loops) in potential_cusp#### #plane_intersecting_boxes= intersect_in_2D([potential_cusp],classes[0]+classes[1]+classes[2],monotonicity=0) #intersecting_boxes= [pair_i[1] for pair_i in plane_intersecting_boxes \ # if d.boxes_intersection(pair_i[1], potential_cusp)!=[] ] ########## H=[] uni= classes[1][cusp_indx][:] potential_cusp= classes[1][cusp_indx][:] checked_boxes.append(potential_cusp) for box in intersecting_boxes: if box in checked_boxes: continue uni = d.box_union(uni,box) checked_boxes.append(box) end_combin=time.time() combin.append(end_combin-start_combin) #max_q1q2=d.distance(uni[2:],uni[2:]) #max_q1q2=d.ftconstructor(max_q1q2[0],max_q1q2[1]) #t=d.power_interval(max_q1q2,2)/4 #t=[float(t.lower()),float(t.upper())] #if t[0]<0: # t[0]=-0.1 start_ball=time.time() t=estimating_t([[potential_cusp],[potential_cusp]]) """if t[1]-t[0] < 1e-07: t[0]=t[0]-0.5 * eps_min t[1]=t[1]+0.5 * eps_min""" B_Ball=uni +[[-1.01,1.01]]*(n-2)+[t] H.append(B_Ball) sol=cusp_Ball_solver(P,B_Ball,X) if sol != "Empty" and sol != [[],[]]: cer_Solutions += sol[0] uncer_Solutions += sol[1] if sol == [[],[]]: uncer_Solutions.append(B_Ball) end_ball=time.time() ball.append(end_ball-start_ball) ####finding nodes that have the same projection with potential_cusp start_combin=time.time() non_intersecting_boxes=[all_boxes[i] for i in potential_cusps[cusp_indx]\ if d.boxes_intersection(all_boxes[i],classes[1][cusp_indx])==[] ] #contains all boxes that don't intersect the considered potential_cusp but in 2d #non_intersecting_boxes= [pair_i[1] for pair_i in plane_intersecting_boxes \ # if d.boxes_intersection(pair_i[1], potential_cusp)==[] ] end_combin=time.time() combin.append(end_combin-start_combin) for aligned in non_intersecting_boxes: start_ball=time.time() if aligned in checked_boxes: continue boxes_intersect_aligned=[B for B in non_intersecting_boxes if d.boxes_intersection(aligned,B) != [] ] uni=aligned[:] for boxi in boxes_intersect_aligned: if boxi in checked_boxes: continue uni=d.box_union(uni,boxi) checked_boxes.append(boxi) t=estimating_t([[potential_cusp],[uni]]) """if t[1]-t[0] < 1e-07: t[0]=t[0]-0.5 * eps_min t[1]=t[1]+0.5 * eps_min""" r=[ [float(ri[0]),float(ri[1])] for ri in estimating_yandr([[potential_cusp],[uni]])] B_Ball=potential_cusp[:2]+r +[t] H.append(H) Ball_generating_system(P,B_Ball,X) os.system("ibexsolve --eps-max="+ str(eps_max)+" --eps-min="+ str(eps_min) + " -s eq.txt > output.txt") Solutions=computing_boxes() if Solutions != "Empty": cer_Solutions += Solutions[0] uncer_Solutions += Solutions[1] elif Solutions == [[],[]]: uncer_Solutions.append(B_Ball) end_ball=time.time() ball.append(end_ball-start_ball) nodes=[] cups_or_smallnodes=[] start_combin=time.time() checker=projection_checker(cer_Solutions) uncer_Solutions= uncer_Solutions +checker[1] cer_Solutions=[Bi for Bi in checker[0] if Bi[2*n-2][1] >= 0 ] for solution in cer_Solutions : if 0 >= solution[2*n-2][0] and 0 <= solution[2*n-2][1]: cups_or_smallnodes.append(solution) else: nodes.append(solution) end_combin=time.time() combin.append(end_combin-start_combin) print("KDtree ",sum(combin),"Ball ", sum(ball) ) return [nodes,cups_or_smallnodes, uncer_Solutions ] System="system12.txt" Box = [[-2, 2] , [-4, 4.5] , [-0.2, 43.9]] Box = [[-1, 4], [-1, 4],[0,25],[-4.8, -1.4]] #Box=[[0.65,0.85],[-0.3,0.1],[-0.2, 45]]#, [-4.8,-1.4]] #Box=[[-10.1,10.1],[-10.1,10.1], [0,40.1]] X=[sp.Symbol("x"+str(i)) for i in range(1,5)] start_enc=time.time() boxes =enclosing_curve(System,Box,X,eps_max=0.1,eps_min=0.0001) end_enc=time.time() print("enclosing_curve", end_enc-start_enc ) t1=time.time() nodes,cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X,eps_max=0.1, eps_min=0.0001) print(time.time()-t1) print(len(boxes[0]),len(boxes[1])) print(len(nodes),len(uncer_Solutions )) e=[] for i in range(len(nodes)-1): for j in range(i+1,len(nodes)): if d.boxes_intersection(nodes[i],nodes[j]) != []: e.append(j) print(len([nodes[i] for i in range(len(nodes)) if i not in e ])) ploting_boxes(boxes[0],boxes[1] ,B=Box[:2], nodes = nodes,x=0.007, cusps= cups_or_smallnodes,uncer_Solutions=uncer_Solutions,color="green" ,Legend=False) #plotting_3D(boxes[0],Box);input() """number_execution, total_time = timeit.Timer("boxes =enclosing_curve(System,Box,X,eps_max=0.1,eps_min=0.0000001)"\ , globals=globals()).autorange() average_time = total_time / number_execution print(average_time); boxes =enclosing_curve(System,Box,X,eps_max=0.1,eps_min=0.0000001) number_execution, total_time = timeit.Timer("nodes,cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X,eps_max=0.1, eps_min=0.00001)", globals=globals()).autorange() average_time = total_time / number_execution print(average_time); #ploting_boxes(boxes[0],boxes[1] ,B=Box[:2], nodes = nodes,x=0.008, cusps= cups_or_smallnodes,uncer_Solutions=uncer_Solutions,color="green" ,Legend=True)""" """boxes =enclosing_curve(System,Box,X,eps=0.1) number_execution, total_time = timeit.Timer("nodes, cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X, eps_min=0.000001);", globals=globals()).autorange() average_time = total_time / number_execution print(average_time); nodes, cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X, eps_min=0.000001); #nodes, cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X,eps_min=0.000001)""" #plotting the singularities #ploting_boxes(boxes[0],boxes[1] ,B=Box[:2], nodes = nodes,x=0.1, cusps= cups_or_smallnodes,uncer_Solutions=uncer_Solutions,color="green" ,Legend=True) ################################## #Declaring parameters ####### ################################## """System="system.txt" Box=[[-5,15],[-15,15],[-3.14,3.14],[-3.14,3.14]] X=[sp.Symbol("x"+str(i)) for i in range(1,5)] ################################## #Applying the function ####### ################################## boxes =enclosing_curve(System,Box,X) """
[ "\nimport math\nimport matplotlib.pyplot as plt\nimport os\nimport pickle \nimport interval_arithmetic as d\n\nfrom pprint import pprint\nfrom sympy.parsing.sympy_parser import parse_expr\nimport sympy as sp \nimport os \nfrom cusp import cusp_Ball_solver, evaluation_exp\n\nimport matplotlib.patches as mpatches\nimport csv\nfrom scipy import spatial\nimport flint as ft\nfrom mpl_toolkits.mplot3d import Axes3D\nfrom mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection\nimport itertools\nimport timeit\nimport time\n\n\n\ndef ploting_boxes(boxes,uncer_boxes, var=[0,1], B=[[-20,20],[-20,20]],x=0.1,nodes=[], cusps=[],uncer_Solutions=[],Legend=False,color=\"green\",variabel_name=\"x\" ):\n fig, ax = plt.subplots()\n #plt.grid(True)\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name+str(1))\n ax.set_ylabel(variabel_name+str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n \n #textstr = open(\"system.txt\",\"r\").read()\n #props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)\n #ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=9,\n # verticalalignment='top', bbox=props)\n c=0\n green_patch = mpatches.Patch(color=color, label='smooth part') \n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',fill=None)\n cusp_patch = mpatches.Patch(color='blue', label='Projection of certified solution with t=0 ',fill=None)\n if Legend==True:\n plt.legend(handles=[green_patch,red_patch,node_patch,cusp_patch])\n for box in boxes:\n rectangle= plt.Rectangle((box[var[0]][0],box[var[1]][0]) , \\\n (box[var[0]][1]-box[var[0]][0]),(box[var[1]][1]-box[var[1]][0]),color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle= plt.Rectangle((box[var[0]][0],box[var[1]][0]) , \\\n (box[var[0]][1]-box[var[0]][0]),(box[var[1]][1]-box[var[1]][0]), fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle= plt.Rectangle((box[0][0]-x,box[1][0]-x) ,\\\n 2*x+box[0][1]-box[0][0],2*x+box[1][1]-box[1][0], fc='y',fill=None)\n plt.gca().add_patch(rectangle) \n for box in cusps:\n rectangle= plt.Rectangle((box[0][0]-x,box[1][0]-x) ,\\\n 2*x+box[0][1]-box[0][0],2*x+box[1][1]-box[1][0], fc='y',color=\"blue\",fill=None)\n plt.gca().add_patch(rectangle) \n for box in uncer_Solutions:\n rectangle= plt.Rectangle((box[0][0]-x,box[1][0]-x) ,\\\n 2*x+box[0][1]-box[0][0],2*x+box[1][1]-box[1][0], fc='y',color=\"red\",fill=None)\n plt.gca().add_patch(rectangle) \n plt.savefig(\"fig.jpg\",dpi=1000) \n plt.show()\ndef Ball_node_gen(equations,B_Ball,X):\n P=open(equations,\"r\").readlines()\n P=[Pi.replace('\\n','') for Pi in P]\n n=len(X)\n V=\"\"\" Variables \\n \"\"\"\n for i in range(n):\n V += \"x\" +str(i+1) + \" in \" + str(B_Ball[i]) +\" ; \\n\"\n for i in range(n,2*n-2):\n V += \"r\" +str(i-n+3) + \" in \" + str(B_Ball[i]) +\" ; \\n\" \n V += \"t\" + \" in \" + str(B_Ball[2*n-2]) +\" ; \\n\" \n V +=\"Constraints \\n\" \n for Pi in P:\n V += SDP_str(Pi,X)[0]\n V += SDP_str(Pi,X)[1]\n last_eq=\"\"\n for i in range(3,n):\n last_eq += \"r\"+str(i)+\"^2+\"\n last_eq += \"r\" +str(n)+\"^2 -1=0;\" \n V += last_eq +\"\\n\"\n f= open(\"eq.txt\",\"w+\")\n f.write(V) \n f.write(\"end\")\n f.close() \ndef Ball_solver(equations,B_Ball,X): #the width condition needs to be added Do not suse this one \n\tL=[B_Ball]\n\tcertified_boxes=[]\n\tuncertified_boxes=[]\n\tn=len(X)\n\twhile len(L) !=0: \n\t\tsolvability=1\n\t\tif B_Ball[2*n-2][0] <= 0 <= B_Ball[2*n-2][1] and \\\n\t\td.width([ d.ftconstructor(Bi[0],Bi[1]) for Bi in L[0] ] ) <0.1 :\n\t\t\tBall_cusp_gen(equations,B_Ball,X)\n\t\telif (B_Ball[2*n-2][0] > 0 or 0 > B_Ball[2*n-2][1] ) \\\n\t\tand d.width([ d.ftconstructor(Bi[0],Bi[1]) for Bi in L[0] ] ) <0.1:\n\t\t\tBall_node_gen(equations,B_Ball,X)\n\t\telse:\n\t\t\tchildren=cb.plane_subdivision(L[0])\n\t\t\tL.remove(L[0])\n\t\t\tL += children\n\t\t\tsolvability=0\n\t\tif solvability==1:\n\t\t\tibex_output=cb.solving_with_ibex()\n\t\t\tif ibex_output[0]== \"Empty\":\n\t\t \n\t\t\t L.remove(L[0])\n\t\t\telif len(ibex_output[0]) !=0: \n\t\t \n\t\t\t certified_boxes +=cb.computing_boxes(ibex_output[0])\n\t\t\t L.remove(L[0])\n\t\t\telif len(ibex_output[1])!=0: \n\t\t \n\t\t\t uncertified_boxes +=cb.computing_boxes(ibex_output[1])\n\t\t\t L.remove(L[0])\n\t\t\telse: \n\t\t\t children=cb.plane_subdivision(L[0])\n\t\t\t L.remove(L[0])\n\t\t\t L += children\n\t\t\n\treturn [certified_boxes,uncertified_boxes]\t\t \ndef SDP_str(P,X):\n n=len(X)\n P_pluse=P[:]\n P_minus=P[:]\n for i in range(2,n):\n P_pluse=P_pluse.replace(\"x\"+str(i+1),\"(x\"+str(i+1) + \"+ r\"+str(i+1) +\"*sqrt(t))\")\n P_minus=P_minus.replace(\"x\"+str(i+1),\"(x\"+str(i+1) + \"- r\"+str(i+1) +\"*sqrt(t))\")\n SP= \"0.5*(\" + P_pluse + \"+\" +P_minus+\")=0; \\n\"\n DP= \"0.5*(\" + P_pluse + \"- (\" +P_minus+\") )/(sqrt(t))=0; \\n\"\n return [SP,DP]\ndef Ball_generating_system(P,B_Ball,X,eps_min=0.001):\n n=len(X)\n V=\"\"\" Variables \\n \"\"\"\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += \"x\" +str(i+1) + \" in \" + str(B_Ball[i]) +\" ; \\n\"\n else: \n V += \"x\" +str(i+1) + \" in \" + str([B_Ball[i][0]-eps_min, B_Ball[i][1]+eps_min]) +\" ; \\n\"\n for i in range(n,2*n-2):\n V += \"r\" +str(i-n+3) + \" in \" + str(B_Ball[i]) +\" ; \\n\" \n V += \"t\" + \" in \" + str(B_Ball[2*n-2]) +\" ; \\n\" \n V +=\"Constraints \\n\" \n for Pi in P:\n V += SDP_str(Pi,X)[0]\n V += SDP_str(Pi,X)[1]\n\n last_eq=\"\"\n for i in range(3,n):\n last_eq += \"r\"+str(i)+\"^2+\"\n last_eq += \"r\" +str(n)+\"^2 -1=0;\" \n\n V += last_eq +\"\\n\"\n\n f= open(\"eq.txt\",\"w+\")\n f.write(V) \n f.write(\"end\")\n f.close()\ndef intersting_boxes1(f,b):\n pickle_in=open(f,\"rb\")\n curve=pickle.load(pickle_in)\n pickle_in.close()\n intersting_boxes=[]\n uncer_boxes=[]\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <=b[0][1] and \\\n b[1][0] <= box[1][0] <= box[1][1] <=b[1][1]:\n intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <=b[0][1] and \\\n b[1][0] <= box[1][0] <= box[1][1] <=b[1][1]:\n uncer_boxes.append(box)\n return [intersting_boxes,uncer_boxes] \ndef intersting_boxes(curve,b):\n cer_intersting_boxes=[]\n uncer_intersting_boxes=[]\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <=b[0][1] and \\\n b[1][0] <= box[1][0] <= box[1][1] <=b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <=b[0][1] and \\\n b[1][0] <= box[1][0] <= box[1][1] <=b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes,uncer_intersting_boxes] \ndef ibex_output(P,B,X):\n os.system(\"ibexsolve --eps-max=0.1 -s eq.txt > output.txt\")\n g=open('output.txt','r')\n result=g.readlines()\n T=computing_boxes(result)\n\n return T \ndef estimating_t1(components,upper_bound=200000): #it works only if len(components)\n t1=upper_bound\n t2=0\n for box1 in components[0]:\n for box2 in components[1]:\n a=d.distance(box1,box2).lower()\n b=d.distance(box1,box2).upper()\n if t1 > a:\n t1=a \n if t2<b:\n t2=b \n t=d.ftconstructor(t1,t2)\n t=0.25*d.power_interval(t,2) \n\n return [float(t.lower()),float(t.upper())] \ndef estimating_t(components,upper_bound=19000.8): #it works only if len(components)==2\n t1=upper_bound\n t2=0\n for box1 in components[0]:\n for box2 in components[1]:\n a=d.distance(box1[2:],box2[2:])\n if t1 > a[0]:\n t1=a[0]\n if t2<a[1]:\n t2=a[1] \n t=d.ftconstructor(t1,t2)\n t=0.25*d.power_interval(t,2) \n return [float(t.lower()),float(t.upper())] \n\ndef boxes_compare(box1,box2):\n flage=0\n for i in range(len(box1)-1,-1,-1):\n\n if box1[i][0] > box2[i][0]: \n return 1\n if box1[i][0] < box2[i][0]: \n return -1\n return 0 \ndef boxes_sort(boxes):\n sorted_boxes=boxes[:]\n for i in range(len(boxes)-1):\n for j in range(i+1,len(boxes)):\n if boxes_compare(sorted_boxes[i],sorted_boxes[j]) ==1:\n sorted_boxes[i], sorted_boxes[j] =sorted_boxes[j], sorted_boxes[i]\n return sorted_boxes \ndef connected_compnants(boxes):\n #ftboxes=[ [d.ftconstructor(boxi[0],boxi[1]) for boxi in box ] for box in boxes ]\n ftboxes=boxes[:]\n components=[[ftboxes[0]]]\n for i in range(1,len(ftboxes)):\n boxi_isused=0\n for j in range(len(components)):\n membership=0\n for k in range(len(components[j])): \n if d.boxes_intersection(ftboxes[i],components[j][k]) !=[] :\n components[j].append(ftboxes[i])\n membership=1\n boxi_isused=1\n break\n if membership==1:\n break \n if boxi_isused==0:\n components.append([ftboxes[i]])\n unused=list(range(len(components)))\n components1=components[:]\n components2=[]\n while len(components1) != len(components2) : \n for i in unused:\n for j in [j for j in list(range(i+1,len(components))) if j in unused ]:\n intersection_exists=False\n is_looping=True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi,boxj)!=[]:\n \n is_looping = False\n intersection_exists=True\n break\n if is_looping==False:\n break\n if intersection_exists== True:\n components[i] += components[j]\n unused.remove(j)\n\n components2=components1[:]\n components1=[components[k] for k in unused ]\n \n return components1 \n\ndef planner_connected_compnants(boxes): \n if len(boxes)==0:\n return []\n ftboxes=boxes[:]\n #ftboxes=[ [d.ftconstructor(boxi[0],boxi[1]) for boxi in box ] for box in boxes ]\n components=[[ftboxes[0]] ]\n for i in range(1,len(ftboxes)):\n boxi_isused=0\n for j in range(len(components)):\n membership=0\n for k in range(len(components[j])): \n if d.boxes_intersection(ftboxes[i][:2],components[j][k][:2]) !=[]: # and \\\n #d.boxes_intersection(ftboxes[i],components[j][k]) ==[]:\n components[j].append(ftboxes[i])\n membership=1\n boxi_isused=1\n break \n if membership==1:\n break \n if boxi_isused==0:\n components.append([ftboxes[i]])\n \n unused=list(range(len(components)))\n components1=components[:]\n components2=[]\n while len(components1) != len(components2) :\n for i in unused:\n for j in [j for j in list(range(i+1,len(components))) if j in unused ]:\n intersection_exists=False\n is_looping=True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2],boxj[:2])!=[] :#and \\\n #d.boxes_intersection(boxi[:2],boxj[:2]) != [] :\n is_looping = False\n intersection_exists=True\n break\n if is_looping==False:\n break\n if intersection_exists== True:\n components[i] += components[j]\n unused.remove(j)\n components2=components1[:]\n components1=[components[k] for k in unused ] \n \n return components1 \ndef estimating_yandr(components,upper_bound=100000):\n r_bounds=[[upper_bound,0]]*(len(components[0][0])-2)\n r_list=[]\n y_list=[]\n for box1 in components[0]:\n for box2 in components[1]:\n ft_box1= [d.ftconstructor(Bi[0],Bi[1]) for Bi in box1 ]\n ft_box2= [d.ftconstructor(Bi[0],Bi[1]) for Bi in box2 ]\n \n y_list.append([0.5*(q1+q2) for q1,q2 in zip(ft_box1[2:],ft_box2[2:])])\n norm_q1q2=d.distance(box1[2:],box2[2:])\n norm_q1q2=d.ftconstructor(norm_q1q2[0],norm_q1q2[1])\n q1q2=[ft_box1[i]-ft_box2[i] for i in range(2,len(box1)) ]\n \n r=[ ri/norm_q1q2 for ri in q1q2 ]\n r_list.append(r)\n r=[]\n y=[]\n for i in range(len(y_list[0])):\n yi1=min([float(y[i].lower()) for y in y_list ])\n yi2=max([float(y[i].upper()) for y in y_list ])\n y.append([yi1,yi2])\n for i in range(len(r_list[0])):\n ri1=min([float(r[i].lower()) for r in r_list ])\n ri2=max([float(r[i].upper()) for r in r_list ])\n r.append([ri1,ri2]) \n\n return y+r \ndef detecting_nodes(boxes,B,f,X,eps): #boxes are list of cer and uncer curve\n mixes_boxes= [[1,box ] for box in boxes[0] ] +[[0,box ] for box in boxes[1]] #putting flaggs for cer and uncer boxes\n ftboxes=[ [box[0], [d.ftconstructor(boxi[0],boxi[1]) for boxi in box[1]] ] for box in mixes_boxes ] \n nodes_lifting=[]\n used=[]\n P=[ Pi.replace(\"\\n\",\"\") for Pi in open(f,\"r\").readlines() ]\n for i in range(len(ftboxes)):\n for j in range(i+1,len(ftboxes)):\n Mariam_ft=d.boxes_intersection(ftboxes[i][1],ftboxes[j][1])\n Mariam=[[float(Bi.lower()),float(Bi.upper()) ] for Bi in Mariam_ft]\n if (Mariam ==[] and \\\n d.boxes_intersection(ftboxes[i][1][:2],ftboxes[j][1][:2])) or\\\n (Mariam != [] and enclosing_curve(f,Mariam,X,eps_max=0.1) ==[[],[]] ): #needs to work more\n if i not in used:\n used.append(i)\n nodes_lifting.append(ftboxes[i])\n if j not in used:\n used.append(j)\n nodes_lifting.append(ftboxes[j])\n\n components= planner_connected_compnants(nodes_lifting)\n cer_components=[]\n uncer_components=[]\n component_normal=[]\n for component in components:\n boxes_component=[box[1] for box in component]\n component_normal =[ [[ float(Bi.lower()), float(Bi.upper()) ] for Bi in box[1] ] for box in component ]\n if 0 not in [ box[0] for box in component] and eval_file_gen(f,component_normal,X) ==\"[]\\n\" :\n cer_components.append(boxes_component)\n else: \n uncer_components.append(boxes_component)\n return [cer_components,uncer_components] \ndef intersect_in_2D(class1,class2,monotonicity=1):\n pl_intesected_pairs=[]\n if monotonicity==1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2],class2[j][:2]) !=[] and d.boxes_intersection(class1[i],class2[j]) ==[] :\n if [class2[j],class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i],class2[j]])\n elif monotonicity==0: \n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2],class2[j][:2]) !=[]:\n if [class2[j],class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i],class2[j]])\n elif monotonicity==2: \n inters_indic=[]\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2],class2[j][:2]) !=[]:\n inters_indic[i]= inters_indic[i] +[j] \n for k in range(len(class1)):\n if len(inters_indic[k])> 3:\n for j in range(len(inters_indic[k])):\n if [class2[j],class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n \n \n return pl_intesected_pairs \ndef solving_fornodes(equations,boxes,B,X,eps=0.1):\n plane_components=detecting_nodes(boxes,B,equations,X,eps)#[0]\n g=open(equations,'r')\n P=[ Pi.replace(\"\\n\",\"\") for Pi in g.readlines() ]\n Ball_solutions=[]\n for plane_component in plane_components:\n x1=float(min([ai[0].lower() for ai in plane_component]))\n x2=float(max([ai[0].upper() for ai in plane_component]))\n y1=float(min([ai[1].lower() for ai in plane_component]))\n y2=float(max([ai[1].upper() for ai in plane_component]))\n components=connected_compnants(plane_component)\n r=[ [float(ri[0]),float(ri[1])] for ri in estimating_r(components) ]\n t=estimating_t(components)\n t=[float(t[0]),float(t[1])]\n B_Ball=[[x1,x2],[y1,y2]]+r +[t]\n Ball_generating_system(P,B_Ball,X)\n solutionsi=ibex_output(P,B_Ball,X)\n Ball_solutions +=solutionsi\n return Ball_solutions\ndef normal_subdivision(B):\n\tft_B=d.subdivide([d.ftconstructor(Bi[0],Bi[1]) for Bi in B[:]])\n\treturn [d.ft_normal(Bi) for Bi in ft_B]\ndef plane_subdivision(B):\n\t\n\tft_B2=d.subdivide([d.ftconstructor(Bi[0],Bi[1]) for Bi in B[:2]])\n\tnormal_B2=[d.ft_normal(Bi) for Bi in ft_B2]\n\treturn d.cartesian_product(normal_B2,[B[2:]])\ndef system_generator(f,B,X):\n g = open(f, \"r\")\n L = g.readlines()\n g.close()\n f = open(\"eq.txt\", \"w+\")\n f.write(\"Variables \\n\")\n for i in range(len(X)):\n f.write(str(X[i]) + \" in \" + str(B[i]) + \" ; \\n\")\n f.write(\"Constraints \\n\")\n for Li in L:\n f.write(Li.replace(\"\\n\", \"\") + \"=0; \\n\")\n f.write(\"end \")\n f.close()\n\n return f\ndef solving_with_ibex(eps=0.1):\n\tuncer_content=[]\n\tcer_content=[]\n\tos.system(\"ibexsolve --eps-max=\"+ str(eps) +\" -s eq.txt > output.txt\")\n\tg=open('output.txt','r')\n\tresult=g.read()\n\twith open('output.txt') as f:\n\t\tif \"successful\" in result:\n\t\t\tcer_content = f.readlines()\n\t\telif \"infeasible\" not in result and \"done! but some boxes\" in result:\n\t\t\tuncer_content = f.readlines()\n\t\telif \"infeasible problem\" in result:\n\t\t\tuncer_content=\"Empty\"\n\t\t\tcer_content=\"Empty\"\n\treturn [cer_content,uncer_content]\t\t\t\ndef computing_boxes():\n if \"infeasible\" in open(\"output.txt\",\"r\").read():\n return \"Empty\"\n content=open(\"output.txt\",\"r\").readlines()\n cer=[]; uncer=[]\n i=0\n Answer=[]\n for fi in content:\n try:\n a=fi.index('(')\n b=fi.index(')')\n T=(fi[a:b+1]).replace('(','[')\n T=(fi[a:b+1]).replace('(','[')\n T=T.replace(')',']')\n T=T.split(\";\")\n E=[]\n i=0\n for Ti in T:\n Ti= Ti.replace('[',\"\")\n Ti= Ti.replace(']',\"\")\n Ti=Ti.replace('<','')\n Ti=Ti.replace('>','')\n x=Ti.index(\",\")\n a=float(Ti[:x])\n b=float(Ti[x+1:])\n E.append([])\n E[i]=[a,b]\n i+=1\n if \"solution n\" in fi or \"boundary n\" in fi:\n cer.append(E)\n elif \"unknown n\" in fi:\n uncer.append(E)\n except ValueError:\n pass \n return [cer,uncer] \ndef enclosing_curve(system,B,X,eps_min=0.1,eps_max=0.1): \n L=[B]\n certified_boxes=[]\n uncertified_boxes=[]\n while len(L) !=0: \n system_generator(system,L[0],X)\n os.system(\"ibexsolve --eps-max=\"+ str(eps_max)+\" --eps-min=\"+ str(eps_min) + \" -s eq.txt > output.txt\")\n content=open(\"output.txt\",\"r\").readlines()\n \n ibex_output=computing_boxes()\n #ibex_output=solving_with_ibex(eps)\n if ibex_output ==[[],[]] and max([Bi[1]-Bi[0] for Bi in L[0] ]) < eps_min : \n uncertified_boxes.append(L[0])\n L.remove(L[0]);\n\n elif ibex_output ==[[],[]] :\n children=plane_subdivision(L[0])\n L.remove(L[0]);\n L += children # print warning ################################################################\"\"\n\n elif ibex_output== \"Empty\":\n L.remove(L[0])\n\n else:\n\n if len(ibex_output[0]) !=0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1])!=0: \n uncertified_boxes += ibex_output[1]\n L.remove(L[0]) \n return [certified_boxes,uncertified_boxes] \ndef loopsfree_checker(f,certified_boxes,uncer_boxes,P): #Assumption: no cusps\n\tL=eval_file_gen(f,certified_boxes,X)\n\twhile L.replace('\\n',\"\") != \"[]\":\n\t\tL=L.replace('[','')\n\t\tL=L.replace(']','')\n\t\tL=L.replace('\\n','')\n\t\tL=L.split(\",\")\n\t\tfor i in L:\n\t\t\tchildren=normal_subdivision(certified_boxes[int(i)])\n\t\t\tcertified_boxes.remove(certified_boxes[int(i)])\n\t\t\tfor child in children:\n\t\t\t\tcer_children, uncer_children= enclosing_curve(f,child,X)\n\t\t\t\tcertified_boxes +=cer_children\n\t\t\t\tuncer_boxes +=uncer_children\n\t\tL = eval_file_gen(f,certified_boxes,X)\n\treturn L\t \ndef eval_file_gen(f,boxes,X,special_function=[]): #condition: len(boxes[0]) is even\n functions=[\"sin\",\"cos\",\"tan\",\"exp\"]+special_function\n if len(boxes[0])==0:\n return []\n n=len(boxes[0])\n m=len(boxes)\n g=open(f,'r')\n P_str=g.readlines()\n P_str= [Pi.replace('\\n','') for Pi in P_str]\n P_str= [Pi.replace('^','**') for Pi in P_str]\n P_exp= [parse_expr(Pi) for Pi in P_str]\n #computing jac and the minors\n jac=sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1=jac[:,1:].det()\n minor2=jac[:,[i for i in range(n) if i != 1] ].det()\n fil=open(\"evaluation_file1.py\",\"w\")\n fil.write(\"import flint as ft \\n\")\n fil.write(\"import sympy as sp \\n\")\n fil.write(\"import interval_arithmetic as d \\n\")\n fil.write(\"boxes=\"+str(boxes)+\"\\n\")\n fil.write(\"ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n\" )\n fil.write(\"n=len(boxes[0])\\n\")\n fil.write(\"m=len(boxes)\\n\")\n fil.write(\"m1=[]\\n\")\n fil.write(\"m2=[]\\n\")\n minor1_str=str(minor1)\n minor2_str=str(minor2)\n for i in range(n):\n minor1_str= minor1_str.replace(\"x\"+str(i+1),\"B[\"+str(i)+\"]\" )\n minor2_str= minor2_str.replace(\"x\"+str(i+1),\"B[\"+str(i)+\"]\" )\n for func in functions:\n minor1_str=minor1_str.replace(func,\"ft.arb.\"+func)\n minor2_str=minor2_str.replace(func,\"ft.arb.\"+func)\n fil.write(\"for B in ftboxes: \\n\")\n fil.write(\" m1.append(ft.arb(\"+ minor1_str + \")) \\n\")\n fil.write(\" m2.append( ft.arb(\"+ minor2_str + \")) \\n\") \n fil.write(\"innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n\")\n fil.write(\"print(innrer_loops)\\n\")\n fil.close()\n t=os.popen(\"python3 evaluation_file1.py \").read()\n return t\ndef boxes_classifier(system,boxes,X,special_function=[]):\n if len(boxes[0])==0:\n return [[],[],boxes[1]]\n certified_boxes ,uncer_boxes =boxes\n L=eval_file_gen(system,certified_boxes,X)\n if L==[]:\n return [[],[],uncer_boxes]\n it=0\n L=L.replace('[','')\n L=L.replace(']','')\n L=L.replace('\\n','')\n L=L.split(\",\")\n if L !=[\"\"]:\n L=[int(li) for li in L]\n return [ [certified_boxes[i] for i in range(len(certified_boxes)) if i not in L] ,\\\n [certified_boxes[i] for i in L ], \\\n uncer_boxes ]\n else:\n return [ [certified_boxes[i] for i in range(len(certified_boxes)) if i not in L] ,[], uncer_boxes ] #can be enhanced\ndef projection_checker(solutions):\n if len(solutions)==0:\n return [[],[]]\n m=len(solutions[0])\n n=int((m+1)/2)\n intersect_in2d=[[]]*len(solutions)\n for i in range(len(solutions)-1):\n for j in range(i+1,len(solutions)):\n if solutions[i]==solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2],solutions[j][:2]) !=[] and (\\\n (d.boxes_intersection(solutions[i][n:2*n-2],[[-Bi[1],-Bi[0]] for Bi in solutions[j][n:2*n-2]]) ==[] and \\\n d.boxes_intersection(solutions[i][n:2*n-2],[[Bi[0],Bi[1]] for Bi in solutions[j][n:2*n-2]]) ==[] ) \\\n or \\\n d.boxes_intersection(solutions[i][2:n]+[solutions[i][2*n-2]], solutions[j][2:n]+[solutions[j][2*n-2]]) ==[]) : \n intersect_in2d[i] = intersect_in2d[i]+[ j]\n\n accepted=[]\n acc_ind=[]\n unaccepted=[]\n unacc_ind=[]\n for i in range(len(solutions)):\n\n if len(intersect_in2d[i]) ==0 and i not in unacc_ind+acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind+acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind: \n unaccepted.append(solutions[k]) \n unacc_ind.append(k) \n #pprint(sp.Matrix(unaccepted));input()\n return [accepted, unaccepted] \t\t\ndef Ball_given_2nboxes(system,X, B1,B2, monotonicity_B1=1,monotonicity_B2=1):\n B1_ft=[d.ftconstructor(Bi[0],Bi[1]) for Bi in B1]\n B2_ft=[d.ftconstructor(Bi[0],Bi[1]) for Bi in B2]\n P=[Pi.replace(\"\\n\",\"\") for Pi in open(system,\"r\").readlines()]\n sol=\"Empty\"\n if d.boxes_intersection(B1_ft, B2_ft) ==[] and monotonicity_B1== monotonicity_B2==1:\n t=estimating_t([[B1_ft], [B2_ft]])\n y_and_r=estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d=d.boxes_intersection(B1_ft[:2],B2_ft[:2])\n intersec_B1B2_in2d=[ [float(Bi.lower()),float(Bi.upper())] for Bi in intersec_B1B2_in2d ]\n B_Ball=intersec_B1B2_in2d +y_and_r +[t]\n Ball_node_gen(system,B_Ball,X)\n os.system(\"ibexsolve --eps-max=0.1 -s eq.txt > output.txt\")\n sol=computing_boxes()\n #if d.boxes_intersection(B1_ft, B2_ft) ==[]:\n # pass\n return sol \ndef all_pairs_oflist(L):\n pairs=[]\n for i in range(len(L)-1):\n for j in range(i+1,len(L)):\n pairs.append([L[i],L[j]])\n return pairs \ndef checking_assumptions(curve_data): #the input of this function is the output of Ball_solver\n if len(curve_data[0][1]) !=0 :\n return 0\n Ball_sols_ft=[[d.ftconstructor(Bi[0],Bi[1]) for Bi in B] for B in curve_data[1][0]]+[[d.ftconstructor(Bi[0],Bi[1]) for Bi in B] for B in curve_data[1][1]]\n alph3=assum_alph3_checker(Ball_sols_ft)\n if alph3==1 :\n return 1\n else:\n return 0\ndef csv_saver(L,type_L=\"Ball\"):\n dic=[]\n if type_L== \"Ball\" :\n n=int((len(L[0])+1)/2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j][\"x\"+str(i+1)]=L[j][i]\n for i in range(n,2*n-2):\n dic[j][\"r\"+str(i+3-n)]=L[j][i]\n dic[j][\"t\"]= L[j][2*n-2]\n return dic \ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n\n fieldnames = dictlist[0].keys()\n\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close() \ndef assum_alph3_checker(solutions):\n comparing_list=[[]]*len(solutions)\n for i in range(len(solutions)-1):\n for j in range(i+1,len(solutions)):\n if d.boxes_intersection(solutions[i][:2],solutions[j][:2]) !=[]:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching=[len(T) for T in comparing_list]\n if max(matching) <=2:\n return 1\n else:\n return 0\n\ndef plotting_3D(boxes,Box,var=[0,1,2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel(\"x\"+str(var[0]+1))\n ax.set_ylabel(\"x\"+str(var[1]+1))\n ax.set_zlabel(\"x\"+str(var[2]+1))\n for box in boxes : \n V=[[box[j][0] for j in range(3)] , [box[j][1] for j in range(3)]]\n #ax.scatter3D(box[0], box[1], box[2])\n points =list(itertools.product(*box))\n faces=[[points[0],points[2],points[6],points[4]],\n [points[0],points[2],points[3],points[1]],\n [points[0],points[1],points[5],points[4]], \n [points[2],points[3],points[7],points[6]], \n [points[1],points[3],points[7],points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, \n facecolors='green', linewidths=1,edgecolors='green', alpha=.25))\n\n plt.show()\ndef enclosing_singularities(system,boxes,B,X,eps_max=0.1,eps_min=0.01): #there still computing Ball On the case where tow monotonic boxes intersect\n combin=[]\n ball=[]\n start_combin=time.time()\n n=len(B);\n P=[Pi.replace(\"\\n\",\"\") for Pi in open(system,\"r\").readlines()]\n certified_boxes, uncertified_boxes= boxes\n classes= boxes_classifier(system,boxes,X,special_function=[])\n cer_Solutions=[]\n uncer_Solutions=[]\n H=[]\n #############################################################################\n #Solving Ball for B1 and B2 in R^n such that C is monotonic in B1 and B2\n #######################################################################\n #monotonic_pairs=intersect_in_2D(classes[0],classes[0])\n #monotonic_componants=[ Bi[0] for Bi in monotonic_pairs ] +[ Bi[1] for Bi in monotonic_pairs ]\n #Guillaume's suggestion:\n mon_mid=[[0.5*(Bij[1]+Bij[0]) for Bij in Bi[:2] ] for Bi in classes[0] ]\n mon_rad=[ max([0.5*(Bij[1]-Bij[0]) for Bij in Bi[:2] ]) for Bi in classes[0] ]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes=[tree.query_ball_point(m,r=(math.sqrt(2))*r) for m,r in zip(mon_mid,mon_rad)] \n #Ask Guillaume why this step is needed:\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n\n intersting_boxes=[indi for indi in intersting_boxes if len(indi) >3 ]#and len(connected_compnants([classes[0][i] for i in indi])) >1 ]\n discarded_components=[]\n for i in range(len(intersting_boxes)-1):\n for_i_stop=0\n boxi_set=set(intersting_boxes[i])\n for j in range(i+1,len(intersting_boxes)):\n boxj_set=set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes=[intersting_boxes[i] for i in range(len(intersting_boxes)) \\\n if i not in discarded_components] \n\n interesting_boxes_flattened =[]\n for Box_ind in intersting_boxes :\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j) #use a flattening function in numpy \n\n #ploting_boxes([classes[0][i] for i in interesting_boxes_flattened ],[])\n \n\n plane_components= planner_connected_compnants([classes[0][i] for i in interesting_boxes_flattened ])\n #pprint(plane_components[0]);input()\n end_combin=time.time()\n combin.append(end_combin-start_combin)\n H=[]\n for plane_component in plane_components: \n if len(plane_component)>1:\n start_combin=time.time()\n components=connected_compnants(plane_component)\n pairs_of_branches=all_pairs_oflist(components)\n end_combin=time.time()\n combin.append(end_combin-start_combin)\n for pair_branches in pairs_of_branches:\n start_ball=time.time()\n all_boxes=pair_branches[0]+pair_branches[1]\n uni=[]\n for box in all_boxes:\n uni = d.box_union(uni,box)\n t=estimating_t(pair_branches); t1 = d.ftconstructor(t[0],t[1]); t=[float(t1.lower()),float(t1.upper())];\n r=[ [float(ri[0]),float(ri[1])] for ri in estimating_yandr(pair_branches)]\n B_Ball=uni[:2] +r +[t] \n cusp_Ball_solver(P,B_Ball,X)\n\n #planeappend(B_Ball) \n #print(B_Ball[:3])\n Ball_generating_system(P,B_Ball,X,eps_min)\n\n os.system(\"ibexsolve --eps-max=\"+ str(eps_max)+\" --eps-min=\"+ str(eps_min) + \" -s eq.txt > output.txt\")\n #input(\"hi\")\n Solutions=computing_boxes()\n if Solutions != \"Empty\" and Solutions != [[],[]] :\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions==[[],[]] :\n if d.width(B_Ball[:2]) > eps_min:\n #new_B=d.box_union(d.F_Ballminus(B_Ball),d.F_Ballplus(B_Ball))\n new_B=B_Ball[:2]+B[2:n]\n new_boxes=enclosing_curve(system,new_B,X,eps_max=0.1*eps_max)\n resul=enclosing_singularities(system,new_boxes,new_B,X,eps_max=0.1*eps_max)\n \n\n cer_Solutions+= resul[0]+resul[1] \n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else: \n uncer_Solutions.append(B_Ball)\n end_ball=time.time()\n ball.append(end_ball-start_ball) \n #There still the case B1B2[0],B1B2[1] are not disjoint \n ########################################################################################################\n #Solving Ball for potential_cusp, a box in R^n such that C is not monotonic \n ########################################################################################################\n start_combin=time.time()\n checked_boxes=[]\n all_boxes=boxes[0]+boxes[1]\n checked_boxes=[]\n mon_mid_cusp=[[0.5*(Bij[1]+Bij[0]) for Bij in Bi[:2] ] for Bi in classes[1] ]\n mon_rad_cusp=[ max([0.5*(Bij[1]-Bij[0]) for Bij in Bi[:2]]) for Bi in classes[1] ]\n potential_cusps=[tree.query_ball_point(m,r=(math.sqrt(2)*(r+eps_max))) for m,r in zip(mon_mid_cusp,mon_rad_cusp)]\n end_combin=time.time()\n combin.append(end_combin-start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin=time.time()\n intersecting_boxes=[all_boxes[i] for i in potential_cusps[cusp_indx]\\\n if d.boxes_intersection(all_boxes[i],classes[1][cusp_indx])!=[] ] #contains all boxes that intersect the considered potential_cusp \n \n #for potential_cusp in classes[1]:\n ###finding cusps (or small loops) in potential_cusp####\n \n #plane_intersecting_boxes= intersect_in_2D([potential_cusp],classes[0]+classes[1]+classes[2],monotonicity=0)\n #intersecting_boxes= [pair_i[1] for pair_i in plane_intersecting_boxes \\\n # if d.boxes_intersection(pair_i[1], potential_cusp)!=[] ] \n \n ##########\n \n H=[]\n uni= classes[1][cusp_indx][:]\n potential_cusp= classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni,box)\n checked_boxes.append(box)\n end_combin=time.time()\n combin.append(end_combin-start_combin) \n #max_q1q2=d.distance(uni[2:],uni[2:])\n #max_q1q2=d.ftconstructor(max_q1q2[0],max_q1q2[1])\n #t=d.power_interval(max_q1q2,2)/4\n #t=[float(t.lower()),float(t.upper())]\n #if t[0]<0:\n # t[0]=-0.1\n start_ball=time.time()\n t=estimating_t([[potential_cusp],[potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball=uni +[[-1.01,1.01]]*(n-2)+[t]\n H.append(B_Ball)\n \n sol=cusp_Ball_solver(P,B_Ball,X)\n if sol != \"Empty\" and sol != [[],[]]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[],[]]:\n uncer_Solutions.append(B_Ball) \n end_ball=time.time() \n ball.append(end_ball-start_ball) \n ####finding nodes that have the same projection with potential_cusp\n start_combin=time.time()\n non_intersecting_boxes=[all_boxes[i] for i in potential_cusps[cusp_indx]\\\n if d.boxes_intersection(all_boxes[i],classes[1][cusp_indx])==[] ] #contains all boxes that don't intersect the considered potential_cusp but in 2d\n #non_intersecting_boxes= [pair_i[1] for pair_i in plane_intersecting_boxes \\\n # if d.boxes_intersection(pair_i[1], potential_cusp)==[] ] \n end_combin=time.time()\n combin.append(end_combin-start_combin)\n for aligned in non_intersecting_boxes:\n start_ball=time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned=[B for B in non_intersecting_boxes if d.boxes_intersection(aligned,B) != [] ]\n uni=aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni=d.box_union(uni,boxi)\n checked_boxes.append(boxi)\n t=estimating_t([[potential_cusp],[uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r=[ [float(ri[0]),float(ri[1])] for ri in estimating_yandr([[potential_cusp],[uni]])]\n B_Ball=potential_cusp[:2]+r +[t] \n H.append(H) \n Ball_generating_system(P,B_Ball,X)\n os.system(\"ibexsolve --eps-max=\"+ str(eps_max)+\" --eps-min=\"+ str(eps_min) + \" -s eq.txt > output.txt\")\n Solutions=computing_boxes()\n if Solutions != \"Empty\":\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1] \n elif Solutions == [[],[]]:\n uncer_Solutions.append(B_Ball) \n end_ball=time.time()\n ball.append(end_ball-start_ball) \n nodes=[]\n cups_or_smallnodes=[]\n start_combin=time.time()\n checker=projection_checker(cer_Solutions)\n uncer_Solutions= uncer_Solutions +checker[1]\n cer_Solutions=[Bi for Bi in checker[0] if Bi[2*n-2][1] >= 0 ] \n for solution in cer_Solutions :\n if 0 >= solution[2*n-2][0] and 0 <= solution[2*n-2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution) \n end_combin=time.time()\n combin.append(end_combin-start_combin)\n print(\"KDtree \",sum(combin),\"Ball \", sum(ball) ) \n return [nodes,cups_or_smallnodes, uncer_Solutions ] \n\n\n\n\nSystem=\"system12.txt\" \nBox = [[-2, 2] , [-4, 4.5] , [-0.2, 43.9]]\nBox = [[-1, 4], [-1, 4],[0,25],[-4.8, -1.4]]\n#Box=[[0.65,0.85],[-0.3,0.1],[-0.2, 45]]#, [-4.8,-1.4]] \n#Box=[[-10.1,10.1],[-10.1,10.1], [0,40.1]] \n\nX=[sp.Symbol(\"x\"+str(i)) for i in range(1,5)]\nstart_enc=time.time()\n\nboxes =enclosing_curve(System,Box,X,eps_max=0.1,eps_min=0.0001)\nend_enc=time.time()\nprint(\"enclosing_curve\", end_enc-start_enc )\nt1=time.time()\nnodes,cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X,eps_max=0.1, eps_min=0.0001)\nprint(time.time()-t1)\nprint(len(boxes[0]),len(boxes[1]))\nprint(len(nodes),len(uncer_Solutions ))\ne=[]\nfor i in range(len(nodes)-1):\n for j in range(i+1,len(nodes)):\n if d.boxes_intersection(nodes[i],nodes[j]) != []:\n e.append(j)\nprint(len([nodes[i] for i in range(len(nodes)) if i not in e ]))\nploting_boxes(boxes[0],boxes[1] ,B=Box[:2], nodes = nodes,x=0.007, cusps= cups_or_smallnodes,uncer_Solutions=uncer_Solutions,color=\"green\" ,Legend=False)\n\n#plotting_3D(boxes[0],Box);input()\n\"\"\"number_execution, total_time = timeit.Timer(\"boxes =enclosing_curve(System,Box,X,eps_max=0.1,eps_min=0.0000001)\"\\\n , globals=globals()).autorange()\naverage_time = total_time / number_execution\nprint(average_time);\nboxes =enclosing_curve(System,Box,X,eps_max=0.1,eps_min=0.0000001)\nnumber_execution, total_time = timeit.Timer(\"nodes,cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X,eps_max=0.1, eps_min=0.00001)\", globals=globals()).autorange()\naverage_time = total_time / number_execution\nprint(average_time);\n#ploting_boxes(boxes[0],boxes[1] ,B=Box[:2], nodes = nodes,x=0.008, cusps= cups_or_smallnodes,uncer_Solutions=uncer_Solutions,color=\"green\" ,Legend=True)\"\"\"\n\"\"\"boxes =enclosing_curve(System,Box,X,eps=0.1)\nnumber_execution, total_time = timeit.Timer(\"nodes, cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X, eps_min=0.000001);\", globals=globals()).autorange()\naverage_time = total_time / number_execution\nprint(average_time);\nnodes, cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X, eps_min=0.000001);\n\n#nodes, cups_or_smallnodes,uncer_Solutions=enclosing_singularities(System,boxes,Box,X,eps_min=0.000001)\"\"\"\n\n#plotting the singularities\n#ploting_boxes(boxes[0],boxes[1] ,B=Box[:2], nodes = nodes,x=0.1, cusps= cups_or_smallnodes,uncer_Solutions=uncer_Solutions,color=\"green\" ,Legend=True)\n\n\n##################################\n#Declaring parameters #######\n##################################\n\"\"\"System=\"system.txt\" \nBox=[[-5,15],[-15,15],[-3.14,3.14],[-3.14,3.14]]\nX=[sp.Symbol(\"x\"+str(i)) for i in range(1,5)]\n##################################\n#Applying the function #######\n##################################\nboxes =enclosing_curve(System,Box,X)\n\"\"\"\n", "import math\nimport matplotlib.pyplot as plt\nimport os\nimport pickle\nimport interval_arithmetic as d\nfrom pprint import pprint\nfrom sympy.parsing.sympy_parser import parse_expr\nimport sympy as sp\nimport os\nfrom cusp import cusp_Ball_solver, evaluation_exp\nimport matplotlib.patches as mpatches\nimport csv\nfrom scipy import spatial\nimport flint as ft\nfrom mpl_toolkits.mplot3d import Axes3D\nfrom mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection\nimport itertools\nimport timeit\nimport time\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\ndef Ball_node_gen(equations, B_Ball, X):\n P = open(equations, 'r').readlines()\n P = [Pi.replace('\\n', '') for Pi in P]\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef intersting_boxes1(f, b):\n pickle_in = open(f, 'rb')\n curve = pickle.load(pickle_in)\n pickle_in.close()\n intersting_boxes = []\n uncer_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_boxes.append(box)\n return [intersting_boxes, uncer_boxes]\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef estimating_yandr(components, upper_bound=100000):\n r_bounds = [[upper_bound, 0]] * (len(components[0][0]) - 2)\n r_list = []\n y_list = []\n for box1 in components[0]:\n for box2 in components[1]:\n ft_box1 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box1]\n ft_box2 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box2]\n y_list.append([(0.5 * (q1 + q2)) for q1, q2 in zip(ft_box1[2:],\n ft_box2[2:])])\n norm_q1q2 = d.distance(box1[2:], box2[2:])\n norm_q1q2 = d.ftconstructor(norm_q1q2[0], norm_q1q2[1])\n q1q2 = [(ft_box1[i] - ft_box2[i]) for i in range(2, len(box1))]\n r = [(ri / norm_q1q2) for ri in q1q2]\n r_list.append(r)\n r = []\n y = []\n for i in range(len(y_list[0])):\n yi1 = min([float(y[i].lower()) for y in y_list])\n yi2 = max([float(y[i].upper()) for y in y_list])\n y.append([yi1, yi2])\n for i in range(len(r_list[0])):\n ri1 = min([float(r[i].lower()) for r in r_list])\n ri2 = max([float(r[i].upper()) for r in r_list])\n r.append([ri1, ri2])\n return y + r\n\n\ndef detecting_nodes(boxes, B, f, X, eps):\n mixes_boxes = [[1, box] for box in boxes[0]] + [[0, box] for box in\n boxes[1]]\n ftboxes = [[box[0], [d.ftconstructor(boxi[0], boxi[1]) for boxi in box[\n 1]]] for box in mixes_boxes]\n nodes_lifting = []\n used = []\n P = [Pi.replace('\\n', '') for Pi in open(f, 'r').readlines()]\n for i in range(len(ftboxes)):\n for j in range(i + 1, len(ftboxes)):\n Mariam_ft = d.boxes_intersection(ftboxes[i][1], ftboxes[j][1])\n Mariam = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n Mariam_ft]\n if Mariam == [] and d.boxes_intersection(ftboxes[i][1][:2],\n ftboxes[j][1][:2]) or Mariam != [] and enclosing_curve(f,\n Mariam, X, eps_max=0.1) == [[], []]:\n if i not in used:\n used.append(i)\n nodes_lifting.append(ftboxes[i])\n if j not in used:\n used.append(j)\n nodes_lifting.append(ftboxes[j])\n components = planner_connected_compnants(nodes_lifting)\n cer_components = []\n uncer_components = []\n component_normal = []\n for component in components:\n boxes_component = [box[1] for box in component]\n component_normal = [[[float(Bi.lower()), float(Bi.upper())] for Bi in\n box[1]] for box in component]\n if 0 not in [box[0] for box in component] and eval_file_gen(f,\n component_normal, X) == '[]\\n':\n cer_components.append(boxes_component)\n else:\n uncer_components.append(boxes_component)\n return [cer_components, uncer_components]\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\ndef normal_subdivision(B):\n ft_B = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:]])\n return [d.ft_normal(Bi) for Bi in ft_B]\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\ndef solving_with_ibex(eps=0.1):\n uncer_content = []\n cer_content = []\n os.system('ibexsolve --eps-max=' + str(eps) + ' -s eq.txt > output.txt'\n )\n g = open('output.txt', 'r')\n result = g.read()\n with open('output.txt') as f:\n if 'successful' in result:\n cer_content = f.readlines()\n elif 'infeasible' not in result and 'done! but some boxes' in result:\n uncer_content = f.readlines()\n elif 'infeasible problem' in result:\n uncer_content = 'Empty'\n cer_content = 'Empty'\n return [cer_content, uncer_content]\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\nSystem = 'system12.txt'\nBox = [[-2, 2], [-4, 4.5], [-0.2, 43.9]]\nBox = [[-1, 4], [-1, 4], [0, 25], [-4.8, -1.4]]\nX = [sp.Symbol('x' + str(i)) for i in range(1, 5)]\nstart_enc = time.time()\nboxes = enclosing_curve(System, Box, X, eps_max=0.1, eps_min=0.0001)\nend_enc = time.time()\nprint('enclosing_curve', end_enc - start_enc)\nt1 = time.time()\nnodes, cups_or_smallnodes, uncer_Solutions = enclosing_singularities(System,\n boxes, Box, X, eps_max=0.1, eps_min=0.0001)\nprint(time.time() - t1)\nprint(len(boxes[0]), len(boxes[1]))\nprint(len(nodes), len(uncer_Solutions))\ne = []\nfor i in range(len(nodes) - 1):\n for j in range(i + 1, len(nodes)):\n if d.boxes_intersection(nodes[i], nodes[j]) != []:\n e.append(j)\nprint(len([nodes[i] for i in range(len(nodes)) if i not in e]))\nploting_boxes(boxes[0], boxes[1], B=Box[:2], nodes=nodes, x=0.007, cusps=\n cups_or_smallnodes, uncer_Solutions=uncer_Solutions, color='green',\n Legend=False)\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\ndef Ball_node_gen(equations, B_Ball, X):\n P = open(equations, 'r').readlines()\n P = [Pi.replace('\\n', '') for Pi in P]\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef intersting_boxes1(f, b):\n pickle_in = open(f, 'rb')\n curve = pickle.load(pickle_in)\n pickle_in.close()\n intersting_boxes = []\n uncer_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_boxes.append(box)\n return [intersting_boxes, uncer_boxes]\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef estimating_yandr(components, upper_bound=100000):\n r_bounds = [[upper_bound, 0]] * (len(components[0][0]) - 2)\n r_list = []\n y_list = []\n for box1 in components[0]:\n for box2 in components[1]:\n ft_box1 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box1]\n ft_box2 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box2]\n y_list.append([(0.5 * (q1 + q2)) for q1, q2 in zip(ft_box1[2:],\n ft_box2[2:])])\n norm_q1q2 = d.distance(box1[2:], box2[2:])\n norm_q1q2 = d.ftconstructor(norm_q1q2[0], norm_q1q2[1])\n q1q2 = [(ft_box1[i] - ft_box2[i]) for i in range(2, len(box1))]\n r = [(ri / norm_q1q2) for ri in q1q2]\n r_list.append(r)\n r = []\n y = []\n for i in range(len(y_list[0])):\n yi1 = min([float(y[i].lower()) for y in y_list])\n yi2 = max([float(y[i].upper()) for y in y_list])\n y.append([yi1, yi2])\n for i in range(len(r_list[0])):\n ri1 = min([float(r[i].lower()) for r in r_list])\n ri2 = max([float(r[i].upper()) for r in r_list])\n r.append([ri1, ri2])\n return y + r\n\n\ndef detecting_nodes(boxes, B, f, X, eps):\n mixes_boxes = [[1, box] for box in boxes[0]] + [[0, box] for box in\n boxes[1]]\n ftboxes = [[box[0], [d.ftconstructor(boxi[0], boxi[1]) for boxi in box[\n 1]]] for box in mixes_boxes]\n nodes_lifting = []\n used = []\n P = [Pi.replace('\\n', '') for Pi in open(f, 'r').readlines()]\n for i in range(len(ftboxes)):\n for j in range(i + 1, len(ftboxes)):\n Mariam_ft = d.boxes_intersection(ftboxes[i][1], ftboxes[j][1])\n Mariam = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n Mariam_ft]\n if Mariam == [] and d.boxes_intersection(ftboxes[i][1][:2],\n ftboxes[j][1][:2]) or Mariam != [] and enclosing_curve(f,\n Mariam, X, eps_max=0.1) == [[], []]:\n if i not in used:\n used.append(i)\n nodes_lifting.append(ftboxes[i])\n if j not in used:\n used.append(j)\n nodes_lifting.append(ftboxes[j])\n components = planner_connected_compnants(nodes_lifting)\n cer_components = []\n uncer_components = []\n component_normal = []\n for component in components:\n boxes_component = [box[1] for box in component]\n component_normal = [[[float(Bi.lower()), float(Bi.upper())] for Bi in\n box[1]] for box in component]\n if 0 not in [box[0] for box in component] and eval_file_gen(f,\n component_normal, X) == '[]\\n':\n cer_components.append(boxes_component)\n else:\n uncer_components.append(boxes_component)\n return [cer_components, uncer_components]\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\ndef normal_subdivision(B):\n ft_B = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:]])\n return [d.ft_normal(Bi) for Bi in ft_B]\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\ndef solving_with_ibex(eps=0.1):\n uncer_content = []\n cer_content = []\n os.system('ibexsolve --eps-max=' + str(eps) + ' -s eq.txt > output.txt'\n )\n g = open('output.txt', 'r')\n result = g.read()\n with open('output.txt') as f:\n if 'successful' in result:\n cer_content = f.readlines()\n elif 'infeasible' not in result and 'done! but some boxes' in result:\n uncer_content = f.readlines()\n elif 'infeasible problem' in result:\n uncer_content = 'Empty'\n cer_content = 'Empty'\n return [cer_content, uncer_content]\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\nSystem = 'system12.txt'\nBox = [[-2, 2], [-4, 4.5], [-0.2, 43.9]]\nBox = [[-1, 4], [-1, 4], [0, 25], [-4.8, -1.4]]\nX = [sp.Symbol('x' + str(i)) for i in range(1, 5)]\nstart_enc = time.time()\nboxes = enclosing_curve(System, Box, X, eps_max=0.1, eps_min=0.0001)\nend_enc = time.time()\nprint('enclosing_curve', end_enc - start_enc)\nt1 = time.time()\nnodes, cups_or_smallnodes, uncer_Solutions = enclosing_singularities(System,\n boxes, Box, X, eps_max=0.1, eps_min=0.0001)\nprint(time.time() - t1)\nprint(len(boxes[0]), len(boxes[1]))\nprint(len(nodes), len(uncer_Solutions))\ne = []\nfor i in range(len(nodes) - 1):\n for j in range(i + 1, len(nodes)):\n if d.boxes_intersection(nodes[i], nodes[j]) != []:\n e.append(j)\nprint(len([nodes[i] for i in range(len(nodes)) if i not in e]))\nploting_boxes(boxes[0], boxes[1], B=Box[:2], nodes=nodes, x=0.007, cusps=\n cups_or_smallnodes, uncer_Solutions=uncer_Solutions, color='green',\n Legend=False)\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\ndef Ball_node_gen(equations, B_Ball, X):\n P = open(equations, 'r').readlines()\n P = [Pi.replace('\\n', '') for Pi in P]\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef intersting_boxes1(f, b):\n pickle_in = open(f, 'rb')\n curve = pickle.load(pickle_in)\n pickle_in.close()\n intersting_boxes = []\n uncer_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_boxes.append(box)\n return [intersting_boxes, uncer_boxes]\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef estimating_yandr(components, upper_bound=100000):\n r_bounds = [[upper_bound, 0]] * (len(components[0][0]) - 2)\n r_list = []\n y_list = []\n for box1 in components[0]:\n for box2 in components[1]:\n ft_box1 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box1]\n ft_box2 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box2]\n y_list.append([(0.5 * (q1 + q2)) for q1, q2 in zip(ft_box1[2:],\n ft_box2[2:])])\n norm_q1q2 = d.distance(box1[2:], box2[2:])\n norm_q1q2 = d.ftconstructor(norm_q1q2[0], norm_q1q2[1])\n q1q2 = [(ft_box1[i] - ft_box2[i]) for i in range(2, len(box1))]\n r = [(ri / norm_q1q2) for ri in q1q2]\n r_list.append(r)\n r = []\n y = []\n for i in range(len(y_list[0])):\n yi1 = min([float(y[i].lower()) for y in y_list])\n yi2 = max([float(y[i].upper()) for y in y_list])\n y.append([yi1, yi2])\n for i in range(len(r_list[0])):\n ri1 = min([float(r[i].lower()) for r in r_list])\n ri2 = max([float(r[i].upper()) for r in r_list])\n r.append([ri1, ri2])\n return y + r\n\n\ndef detecting_nodes(boxes, B, f, X, eps):\n mixes_boxes = [[1, box] for box in boxes[0]] + [[0, box] for box in\n boxes[1]]\n ftboxes = [[box[0], [d.ftconstructor(boxi[0], boxi[1]) for boxi in box[\n 1]]] for box in mixes_boxes]\n nodes_lifting = []\n used = []\n P = [Pi.replace('\\n', '') for Pi in open(f, 'r').readlines()]\n for i in range(len(ftboxes)):\n for j in range(i + 1, len(ftboxes)):\n Mariam_ft = d.boxes_intersection(ftboxes[i][1], ftboxes[j][1])\n Mariam = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n Mariam_ft]\n if Mariam == [] and d.boxes_intersection(ftboxes[i][1][:2],\n ftboxes[j][1][:2]) or Mariam != [] and enclosing_curve(f,\n Mariam, X, eps_max=0.1) == [[], []]:\n if i not in used:\n used.append(i)\n nodes_lifting.append(ftboxes[i])\n if j not in used:\n used.append(j)\n nodes_lifting.append(ftboxes[j])\n components = planner_connected_compnants(nodes_lifting)\n cer_components = []\n uncer_components = []\n component_normal = []\n for component in components:\n boxes_component = [box[1] for box in component]\n component_normal = [[[float(Bi.lower()), float(Bi.upper())] for Bi in\n box[1]] for box in component]\n if 0 not in [box[0] for box in component] and eval_file_gen(f,\n component_normal, X) == '[]\\n':\n cer_components.append(boxes_component)\n else:\n uncer_components.append(boxes_component)\n return [cer_components, uncer_components]\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\ndef normal_subdivision(B):\n ft_B = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:]])\n return [d.ft_normal(Bi) for Bi in ft_B]\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\ndef solving_with_ibex(eps=0.1):\n uncer_content = []\n cer_content = []\n os.system('ibexsolve --eps-max=' + str(eps) + ' -s eq.txt > output.txt'\n )\n g = open('output.txt', 'r')\n result = g.read()\n with open('output.txt') as f:\n if 'successful' in result:\n cer_content = f.readlines()\n elif 'infeasible' not in result and 'done! but some boxes' in result:\n uncer_content = f.readlines()\n elif 'infeasible problem' in result:\n uncer_content = 'Empty'\n cer_content = 'Empty'\n return [cer_content, uncer_content]\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\nprint('enclosing_curve', end_enc - start_enc)\n<assignment token>\nprint(time.time() - t1)\nprint(len(boxes[0]), len(boxes[1]))\nprint(len(nodes), len(uncer_Solutions))\n<assignment token>\nfor i in range(len(nodes) - 1):\n for j in range(i + 1, len(nodes)):\n if d.boxes_intersection(nodes[i], nodes[j]) != []:\n e.append(j)\nprint(len([nodes[i] for i in range(len(nodes)) if i not in e]))\nploting_boxes(boxes[0], boxes[1], B=Box[:2], nodes=nodes, x=0.007, cusps=\n cups_or_smallnodes, uncer_Solutions=uncer_Solutions, color='green',\n Legend=False)\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\ndef Ball_node_gen(equations, B_Ball, X):\n P = open(equations, 'r').readlines()\n P = [Pi.replace('\\n', '') for Pi in P]\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef intersting_boxes1(f, b):\n pickle_in = open(f, 'rb')\n curve = pickle.load(pickle_in)\n pickle_in.close()\n intersting_boxes = []\n uncer_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_boxes.append(box)\n return [intersting_boxes, uncer_boxes]\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef estimating_yandr(components, upper_bound=100000):\n r_bounds = [[upper_bound, 0]] * (len(components[0][0]) - 2)\n r_list = []\n y_list = []\n for box1 in components[0]:\n for box2 in components[1]:\n ft_box1 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box1]\n ft_box2 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box2]\n y_list.append([(0.5 * (q1 + q2)) for q1, q2 in zip(ft_box1[2:],\n ft_box2[2:])])\n norm_q1q2 = d.distance(box1[2:], box2[2:])\n norm_q1q2 = d.ftconstructor(norm_q1q2[0], norm_q1q2[1])\n q1q2 = [(ft_box1[i] - ft_box2[i]) for i in range(2, len(box1))]\n r = [(ri / norm_q1q2) for ri in q1q2]\n r_list.append(r)\n r = []\n y = []\n for i in range(len(y_list[0])):\n yi1 = min([float(y[i].lower()) for y in y_list])\n yi2 = max([float(y[i].upper()) for y in y_list])\n y.append([yi1, yi2])\n for i in range(len(r_list[0])):\n ri1 = min([float(r[i].lower()) for r in r_list])\n ri2 = max([float(r[i].upper()) for r in r_list])\n r.append([ri1, ri2])\n return y + r\n\n\ndef detecting_nodes(boxes, B, f, X, eps):\n mixes_boxes = [[1, box] for box in boxes[0]] + [[0, box] for box in\n boxes[1]]\n ftboxes = [[box[0], [d.ftconstructor(boxi[0], boxi[1]) for boxi in box[\n 1]]] for box in mixes_boxes]\n nodes_lifting = []\n used = []\n P = [Pi.replace('\\n', '') for Pi in open(f, 'r').readlines()]\n for i in range(len(ftboxes)):\n for j in range(i + 1, len(ftboxes)):\n Mariam_ft = d.boxes_intersection(ftboxes[i][1], ftboxes[j][1])\n Mariam = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n Mariam_ft]\n if Mariam == [] and d.boxes_intersection(ftboxes[i][1][:2],\n ftboxes[j][1][:2]) or Mariam != [] and enclosing_curve(f,\n Mariam, X, eps_max=0.1) == [[], []]:\n if i not in used:\n used.append(i)\n nodes_lifting.append(ftboxes[i])\n if j not in used:\n used.append(j)\n nodes_lifting.append(ftboxes[j])\n components = planner_connected_compnants(nodes_lifting)\n cer_components = []\n uncer_components = []\n component_normal = []\n for component in components:\n boxes_component = [box[1] for box in component]\n component_normal = [[[float(Bi.lower()), float(Bi.upper())] for Bi in\n box[1]] for box in component]\n if 0 not in [box[0] for box in component] and eval_file_gen(f,\n component_normal, X) == '[]\\n':\n cer_components.append(boxes_component)\n else:\n uncer_components.append(boxes_component)\n return [cer_components, uncer_components]\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\ndef normal_subdivision(B):\n ft_B = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:]])\n return [d.ft_normal(Bi) for Bi in ft_B]\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\ndef solving_with_ibex(eps=0.1):\n uncer_content = []\n cer_content = []\n os.system('ibexsolve --eps-max=' + str(eps) + ' -s eq.txt > output.txt'\n )\n g = open('output.txt', 'r')\n result = g.read()\n with open('output.txt') as f:\n if 'successful' in result:\n cer_content = f.readlines()\n elif 'infeasible' not in result and 'done! but some boxes' in result:\n uncer_content = f.readlines()\n elif 'infeasible problem' in result:\n uncer_content = 'Empty'\n cer_content = 'Empty'\n return [cer_content, uncer_content]\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\ndef Ball_node_gen(equations, B_Ball, X):\n P = open(equations, 'r').readlines()\n P = [Pi.replace('\\n', '') for Pi in P]\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef intersting_boxes1(f, b):\n pickle_in = open(f, 'rb')\n curve = pickle.load(pickle_in)\n pickle_in.close()\n intersting_boxes = []\n uncer_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_boxes.append(box)\n return [intersting_boxes, uncer_boxes]\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef estimating_yandr(components, upper_bound=100000):\n r_bounds = [[upper_bound, 0]] * (len(components[0][0]) - 2)\n r_list = []\n y_list = []\n for box1 in components[0]:\n for box2 in components[1]:\n ft_box1 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box1]\n ft_box2 = [d.ftconstructor(Bi[0], Bi[1]) for Bi in box2]\n y_list.append([(0.5 * (q1 + q2)) for q1, q2 in zip(ft_box1[2:],\n ft_box2[2:])])\n norm_q1q2 = d.distance(box1[2:], box2[2:])\n norm_q1q2 = d.ftconstructor(norm_q1q2[0], norm_q1q2[1])\n q1q2 = [(ft_box1[i] - ft_box2[i]) for i in range(2, len(box1))]\n r = [(ri / norm_q1q2) for ri in q1q2]\n r_list.append(r)\n r = []\n y = []\n for i in range(len(y_list[0])):\n yi1 = min([float(y[i].lower()) for y in y_list])\n yi2 = max([float(y[i].upper()) for y in y_list])\n y.append([yi1, yi2])\n for i in range(len(r_list[0])):\n ri1 = min([float(r[i].lower()) for r in r_list])\n ri2 = max([float(r[i].upper()) for r in r_list])\n r.append([ri1, ri2])\n return y + r\n\n\ndef detecting_nodes(boxes, B, f, X, eps):\n mixes_boxes = [[1, box] for box in boxes[0]] + [[0, box] for box in\n boxes[1]]\n ftboxes = [[box[0], [d.ftconstructor(boxi[0], boxi[1]) for boxi in box[\n 1]]] for box in mixes_boxes]\n nodes_lifting = []\n used = []\n P = [Pi.replace('\\n', '') for Pi in open(f, 'r').readlines()]\n for i in range(len(ftboxes)):\n for j in range(i + 1, len(ftboxes)):\n Mariam_ft = d.boxes_intersection(ftboxes[i][1], ftboxes[j][1])\n Mariam = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n Mariam_ft]\n if Mariam == [] and d.boxes_intersection(ftboxes[i][1][:2],\n ftboxes[j][1][:2]) or Mariam != [] and enclosing_curve(f,\n Mariam, X, eps_max=0.1) == [[], []]:\n if i not in used:\n used.append(i)\n nodes_lifting.append(ftboxes[i])\n if j not in used:\n used.append(j)\n nodes_lifting.append(ftboxes[j])\n components = planner_connected_compnants(nodes_lifting)\n cer_components = []\n uncer_components = []\n component_normal = []\n for component in components:\n boxes_component = [box[1] for box in component]\n component_normal = [[[float(Bi.lower()), float(Bi.upper())] for Bi in\n box[1]] for box in component]\n if 0 not in [box[0] for box in component] and eval_file_gen(f,\n component_normal, X) == '[]\\n':\n cer_components.append(boxes_component)\n else:\n uncer_components.append(boxes_component)\n return [cer_components, uncer_components]\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\ndef normal_subdivision(B):\n ft_B = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:]])\n return [d.ft_normal(Bi) for Bi in ft_B]\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\ndef Ball_node_gen(equations, B_Ball, X):\n P = open(equations, 'r').readlines()\n P = [Pi.replace('\\n', '') for Pi in P]\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef intersting_boxes1(f, b):\n pickle_in = open(f, 'rb')\n curve = pickle.load(pickle_in)\n pickle_in.close()\n intersting_boxes = []\n uncer_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_boxes.append(box)\n return [intersting_boxes, uncer_boxes]\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n\n\ndef detecting_nodes(boxes, B, f, X, eps):\n mixes_boxes = [[1, box] for box in boxes[0]] + [[0, box] for box in\n boxes[1]]\n ftboxes = [[box[0], [d.ftconstructor(boxi[0], boxi[1]) for boxi in box[\n 1]]] for box in mixes_boxes]\n nodes_lifting = []\n used = []\n P = [Pi.replace('\\n', '') for Pi in open(f, 'r').readlines()]\n for i in range(len(ftboxes)):\n for j in range(i + 1, len(ftboxes)):\n Mariam_ft = d.boxes_intersection(ftboxes[i][1], ftboxes[j][1])\n Mariam = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n Mariam_ft]\n if Mariam == [] and d.boxes_intersection(ftboxes[i][1][:2],\n ftboxes[j][1][:2]) or Mariam != [] and enclosing_curve(f,\n Mariam, X, eps_max=0.1) == [[], []]:\n if i not in used:\n used.append(i)\n nodes_lifting.append(ftboxes[i])\n if j not in used:\n used.append(j)\n nodes_lifting.append(ftboxes[j])\n components = planner_connected_compnants(nodes_lifting)\n cer_components = []\n uncer_components = []\n component_normal = []\n for component in components:\n boxes_component = [box[1] for box in component]\n component_normal = [[[float(Bi.lower()), float(Bi.upper())] for Bi in\n box[1]] for box in component]\n if 0 not in [box[0] for box in component] and eval_file_gen(f,\n component_normal, X) == '[]\\n':\n cer_components.append(boxes_component)\n else:\n uncer_components.append(boxes_component)\n return [cer_components, uncer_components]\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\ndef normal_subdivision(B):\n ft_B = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:]])\n return [d.ft_normal(Bi) for Bi in ft_B]\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\ndef Ball_node_gen(equations, B_Ball, X):\n P = open(equations, 'r').readlines()\n P = [Pi.replace('\\n', '') for Pi in P]\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n\n\ndef detecting_nodes(boxes, B, f, X, eps):\n mixes_boxes = [[1, box] for box in boxes[0]] + [[0, box] for box in\n boxes[1]]\n ftboxes = [[box[0], [d.ftconstructor(boxi[0], boxi[1]) for boxi in box[\n 1]]] for box in mixes_boxes]\n nodes_lifting = []\n used = []\n P = [Pi.replace('\\n', '') for Pi in open(f, 'r').readlines()]\n for i in range(len(ftboxes)):\n for j in range(i + 1, len(ftboxes)):\n Mariam_ft = d.boxes_intersection(ftboxes[i][1], ftboxes[j][1])\n Mariam = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n Mariam_ft]\n if Mariam == [] and d.boxes_intersection(ftboxes[i][1][:2],\n ftboxes[j][1][:2]) or Mariam != [] and enclosing_curve(f,\n Mariam, X, eps_max=0.1) == [[], []]:\n if i not in used:\n used.append(i)\n nodes_lifting.append(ftboxes[i])\n if j not in used:\n used.append(j)\n nodes_lifting.append(ftboxes[j])\n components = planner_connected_compnants(nodes_lifting)\n cer_components = []\n uncer_components = []\n component_normal = []\n for component in components:\n boxes_component = [box[1] for box in component]\n component_normal = [[[float(Bi.lower()), float(Bi.upper())] for Bi in\n box[1]] for box in component]\n if 0 not in [box[0] for box in component] and eval_file_gen(f,\n component_normal, X) == '[]\\n':\n cer_components.append(boxes_component)\n else:\n uncer_components.append(boxes_component)\n return [cer_components, uncer_components]\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\ndef normal_subdivision(B):\n ft_B = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:]])\n return [d.ft_normal(Bi) for Bi in ft_B]\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n\n\ndef detecting_nodes(boxes, B, f, X, eps):\n mixes_boxes = [[1, box] for box in boxes[0]] + [[0, box] for box in\n boxes[1]]\n ftboxes = [[box[0], [d.ftconstructor(boxi[0], boxi[1]) for boxi in box[\n 1]]] for box in mixes_boxes]\n nodes_lifting = []\n used = []\n P = [Pi.replace('\\n', '') for Pi in open(f, 'r').readlines()]\n for i in range(len(ftboxes)):\n for j in range(i + 1, len(ftboxes)):\n Mariam_ft = d.boxes_intersection(ftboxes[i][1], ftboxes[j][1])\n Mariam = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n Mariam_ft]\n if Mariam == [] and d.boxes_intersection(ftboxes[i][1][:2],\n ftboxes[j][1][:2]) or Mariam != [] and enclosing_curve(f,\n Mariam, X, eps_max=0.1) == [[], []]:\n if i not in used:\n used.append(i)\n nodes_lifting.append(ftboxes[i])\n if j not in used:\n used.append(j)\n nodes_lifting.append(ftboxes[j])\n components = planner_connected_compnants(nodes_lifting)\n cer_components = []\n uncer_components = []\n component_normal = []\n for component in components:\n boxes_component = [box[1] for box in component]\n component_normal = [[[float(Bi.lower()), float(Bi.upper())] for Bi in\n box[1]] for box in component]\n if 0 not in [box[0] for box in component] and eval_file_gen(f,\n component_normal, X) == '[]\\n':\n cer_components.append(boxes_component)\n else:\n uncer_components.append(boxes_component)\n return [cer_components, uncer_components]\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\ndef normal_subdivision(B):\n ft_B = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:]])\n return [d.ft_normal(Bi) for Bi in ft_B]\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\ndef normal_subdivision(B):\n ft_B = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:]])\n return [d.ft_normal(Bi) for Bi in ft_B]\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\ndef boxes_classifier(system, boxes, X, special_function=[]):\n if len(boxes[0]) == 0:\n return [[], [], boxes[1]]\n certified_boxes, uncer_boxes = boxes\n L = eval_file_gen(system, certified_boxes, X)\n if L == []:\n return [[], [], uncer_boxes]\n it = 0\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n if L != ['']:\n L = [int(li) for li in L]\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [certified_boxes[i] for i in L], uncer_boxes]\n else:\n return [[certified_boxes[i] for i in range(len(certified_boxes)) if\n i not in L], [], uncer_boxes]\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\ndef all_pairs_oflist(L):\n pairs = []\n for i in range(len(L) - 1):\n for j in range(i + 1, len(L)):\n pairs.append([L[i], L[j]])\n return pairs\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\ndef ibex_output(P, B, X):\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n g = open('output.txt', 'r')\n result = g.readlines()\n T = computing_boxes(result)\n return T\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\ndef dict2csv(dictlist, csvfile):\n \"\"\"\n Takes a list of dictionaries as input and outputs a CSV file.\n \"\"\"\n f = open(csvfile, 'wb')\n fieldnames = dictlist[0].keys()\n csvwriter = csv.DictWriter(f, delimiter=',', fieldnames=fieldnames)\n csvwriter.writerow(dict((fn, fn) for fn in fieldnames))\n for row in dictlist:\n csvwriter.writerow(row)\n fn.close()\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\ndef enclosing_singularities(system, boxes, B, X, eps_max=0.1, eps_min=0.01):\n combin = []\n ball = []\n start_combin = time.time()\n n = len(B)\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n certified_boxes, uncertified_boxes = boxes\n classes = boxes_classifier(system, boxes, X, special_function=[])\n cer_Solutions = []\n uncer_Solutions = []\n H = []\n mon_mid = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[0]]\n mon_rad = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for Bi in\n classes[0]]\n tree = spatial.KDTree(mon_mid)\n intersting_boxes = [tree.query_ball_point(m, r=math.sqrt(2) * r) for m,\n r in zip(mon_mid, mon_rad)]\n \"\"\"for i in range(len(ball)): \n for j in ball[i]:\n if i not in ball[j]:\n ball[j].append(i)\"\"\"\n intersting_boxes = [indi for indi in intersting_boxes if len(indi) > 3]\n discarded_components = []\n for i in range(len(intersting_boxes) - 1):\n for_i_stop = 0\n boxi_set = set(intersting_boxes[i])\n for j in range(i + 1, len(intersting_boxes)):\n boxj_set = set(intersting_boxes[j])\n if boxj_set.issubset(boxi_set):\n discarded_components.append(j)\n elif boxi_set < boxj_set:\n discarded_components.append(i)\n intersting_boxes = [intersting_boxes[i] for i in range(len(\n intersting_boxes)) if i not in discarded_components]\n interesting_boxes_flattened = []\n for Box_ind in intersting_boxes:\n for j in Box_ind:\n if j not in interesting_boxes_flattened:\n interesting_boxes_flattened.append(j)\n plane_components = planner_connected_compnants([classes[0][i] for i in\n interesting_boxes_flattened])\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n H = []\n for plane_component in plane_components:\n if len(plane_component) > 1:\n start_combin = time.time()\n components = connected_compnants(plane_component)\n pairs_of_branches = all_pairs_oflist(components)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for pair_branches in pairs_of_branches:\n start_ball = time.time()\n all_boxes = pair_branches[0] + pair_branches[1]\n uni = []\n for box in all_boxes:\n uni = d.box_union(uni, box)\n t = estimating_t(pair_branches)\n t1 = d.ftconstructor(t[0], t[1])\n t = [float(t1.lower()), float(t1.upper())]\n r = [[float(ri[0]), float(ri[1])] for ri in\n estimating_yandr(pair_branches)]\n B_Ball = uni[:2] + r + [t]\n cusp_Ball_solver(P, B_Ball, X)\n Ball_generating_system(P, B_Ball, X, eps_min)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt'\n )\n Solutions = computing_boxes()\n if Solutions != 'Empty' and Solutions != [[], []]:\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n if Solutions == [[], []]:\n if d.width(B_Ball[:2]) > eps_min:\n new_B = B_Ball[:2] + B[2:n]\n new_boxes = enclosing_curve(system, new_B, X,\n eps_max=0.1 * eps_max)\n resul = enclosing_singularities(system, new_boxes,\n new_B, X, eps_max=0.1 * eps_max)\n cer_Solutions += resul[0] + resul[1]\n uncer_Solutions += resul[2]\n boxes[1] += new_boxes[1]\n else:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n checked_boxes = []\n all_boxes = boxes[0] + boxes[1]\n checked_boxes = []\n mon_mid_cusp = [[(0.5 * (Bij[1] + Bij[0])) for Bij in Bi[:2]] for Bi in\n classes[1]]\n mon_rad_cusp = [max([(0.5 * (Bij[1] - Bij[0])) for Bij in Bi[:2]]) for\n Bi in classes[1]]\n potential_cusps = [tree.query_ball_point(m, r=math.sqrt(2) * (r +\n eps_max)) for m, r in zip(mon_mid_cusp, mon_rad_cusp)]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for cusp_indx in range(len(classes[1])):\n start_combin = time.time()\n intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) != []]\n H = []\n uni = classes[1][cusp_indx][:]\n potential_cusp = classes[1][cusp_indx][:]\n checked_boxes.append(potential_cusp)\n for box in intersecting_boxes:\n if box in checked_boxes:\n continue\n uni = d.box_union(uni, box)\n checked_boxes.append(box)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n start_ball = time.time()\n t = estimating_t([[potential_cusp], [potential_cusp]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n B_Ball = uni + [[-1.01, 1.01]] * (n - 2) + [t]\n H.append(B_Ball)\n sol = cusp_Ball_solver(P, B_Ball, X)\n if sol != 'Empty' and sol != [[], []]:\n cer_Solutions += sol[0]\n uncer_Solutions += sol[1]\n if sol == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n start_combin = time.time()\n non_intersecting_boxes = [all_boxes[i] for i in potential_cusps[\n cusp_indx] if d.boxes_intersection(all_boxes[i], classes[1][\n cusp_indx]) == []]\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n for aligned in non_intersecting_boxes:\n start_ball = time.time()\n if aligned in checked_boxes:\n continue\n boxes_intersect_aligned = [B for B in non_intersecting_boxes if\n d.boxes_intersection(aligned, B) != []]\n uni = aligned[:]\n for boxi in boxes_intersect_aligned:\n if boxi in checked_boxes:\n continue\n uni = d.box_union(uni, boxi)\n checked_boxes.append(boxi)\n t = estimating_t([[potential_cusp], [uni]])\n \"\"\"if t[1]-t[0] < 1e-07:\n t[0]=t[0]-0.5 * eps_min\n t[1]=t[1]+0.5 * eps_min\"\"\"\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_yandr([[\n potential_cusp], [uni]])]\n B_Ball = potential_cusp[:2] + r + [t]\n H.append(H)\n Ball_generating_system(P, B_Ball, X)\n os.system('ibexsolve --eps-max=' + str(eps_max) +\n ' --eps-min=' + str(eps_min) + ' -s eq.txt > output.txt')\n Solutions = computing_boxes()\n if Solutions != 'Empty':\n cer_Solutions += Solutions[0]\n uncer_Solutions += Solutions[1]\n elif Solutions == [[], []]:\n uncer_Solutions.append(B_Ball)\n end_ball = time.time()\n ball.append(end_ball - start_ball)\n nodes = []\n cups_or_smallnodes = []\n start_combin = time.time()\n checker = projection_checker(cer_Solutions)\n uncer_Solutions = uncer_Solutions + checker[1]\n cer_Solutions = [Bi for Bi in checker[0] if Bi[2 * n - 2][1] >= 0]\n for solution in cer_Solutions:\n if 0 >= solution[2 * n - 2][0] and 0 <= solution[2 * n - 2][1]:\n cups_or_smallnodes.append(solution)\n else:\n nodes.append(solution)\n end_combin = time.time()\n combin.append(end_combin - start_combin)\n print('KDtree ', sum(combin), 'Ball ', sum(ball))\n return [nodes, cups_or_smallnodes, uncer_Solutions]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\ndef loopsfree_checker(f, certified_boxes, uncer_boxes, P):\n L = eval_file_gen(f, certified_boxes, X)\n while L.replace('\\n', '') != '[]':\n L = L.replace('[', '')\n L = L.replace(']', '')\n L = L.replace('\\n', '')\n L = L.split(',')\n for i in L:\n children = normal_subdivision(certified_boxes[int(i)])\n certified_boxes.remove(certified_boxes[int(i)])\n for child in children:\n cer_children, uncer_children = enclosing_curve(f, child, X)\n certified_boxes += cer_children\n uncer_boxes += uncer_children\n L = eval_file_gen(f, certified_boxes, X)\n return L\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\ndef csv_saver(L, type_L='Ball'):\n dic = []\n if type_L == 'Ball':\n n = int((len(L[0]) + 1) / 2)\n for j in range(len(L)):\n dic.append({})\n for i in range(n):\n dic[j]['x' + str(i + 1)] = L[j][i]\n for i in range(n, 2 * n - 2):\n dic[j]['r' + str(i + 3 - n)] = L[j][i]\n dic[j]['t'] = L[j][2 * n - 2]\n return dic\n\n\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\ndef system_generator(f, B, X):\n g = open(f, 'r')\n L = g.readlines()\n g.close()\n f = open('eq.txt', 'w+')\n f.write('Variables \\n')\n for i in range(len(X)):\n f.write(str(X[i]) + ' in ' + str(B[i]) + ' ; \\n')\n f.write('Constraints \\n')\n for Li in L:\n f.write(Li.replace('\\n', '') + '=0; \\n')\n f.write('end ')\n f.close()\n return f\n\n\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\ndef Ball_given_2nboxes(system, X, B1, B2, monotonicity_B1=1, monotonicity_B2=1\n ):\n B1_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B1]\n B2_ft = [d.ftconstructor(Bi[0], Bi[1]) for Bi in B2]\n P = [Pi.replace('\\n', '') for Pi in open(system, 'r').readlines()]\n sol = 'Empty'\n if d.boxes_intersection(B1_ft, B2_ft) == [\n ] and monotonicity_B1 == monotonicity_B2 == 1:\n t = estimating_t([[B1_ft], [B2_ft]])\n y_and_r = estimating_yandr([[B1_ft], [B2_ft]])\n intersec_B1B2_in2d = d.boxes_intersection(B1_ft[:2], B2_ft[:2])\n intersec_B1B2_in2d = [[float(Bi.lower()), float(Bi.upper())] for Bi in\n intersec_B1B2_in2d]\n B_Ball = intersec_B1B2_in2d + y_and_r + [t]\n Ball_node_gen(system, B_Ball, X)\n os.system('ibexsolve --eps-max=0.1 -s eq.txt > output.txt')\n sol = computing_boxes()\n return sol\n\n\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef estimating_t(components, upper_bound=19000.8):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1[2:], box2[2:])\n if t1 > a[0]:\n t1 = a[0]\n if t2 < a[1]:\n t2 = a[1]\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef eval_file_gen(f, boxes, X, special_function=[]):\n functions = ['sin', 'cos', 'tan', 'exp'] + special_function\n if len(boxes[0]) == 0:\n return []\n n = len(boxes[0])\n m = len(boxes)\n g = open(f, 'r')\n P_str = g.readlines()\n P_str = [Pi.replace('\\n', '') for Pi in P_str]\n P_str = [Pi.replace('^', '**') for Pi in P_str]\n P_exp = [parse_expr(Pi) for Pi in P_str]\n jac = sp.Matrix(P_str).jacobian(sp.Matrix(X))\n minor1 = jac[:, 1:].det()\n minor2 = jac[:, [i for i in range(n) if i != 1]].det()\n fil = open('evaluation_file1.py', 'w')\n fil.write('import flint as ft \\n')\n fil.write('import sympy as sp \\n')\n fil.write('import interval_arithmetic as d \\n')\n fil.write('boxes=' + str(boxes) + '\\n')\n fil.write(\n 'ftboxes=[ [d.ftconstructor(Bi[0],Bi[1]) for Bi in B ] for B in boxes ] \\n'\n )\n fil.write('n=len(boxes[0])\\n')\n fil.write('m=len(boxes)\\n')\n fil.write('m1=[]\\n')\n fil.write('m2=[]\\n')\n minor1_str = str(minor1)\n minor2_str = str(minor2)\n for i in range(n):\n minor1_str = minor1_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n minor2_str = minor2_str.replace('x' + str(i + 1), 'B[' + str(i) + ']')\n for func in functions:\n minor1_str = minor1_str.replace(func, 'ft.arb.' + func)\n minor2_str = minor2_str.replace(func, 'ft.arb.' + func)\n fil.write('for B in ftboxes: \\n')\n fil.write(' m1.append(ft.arb(' + minor1_str + ')) \\n')\n fil.write(' m2.append( ft.arb(' + minor2_str + ')) \\n')\n fil.write(\n 'innrer_loops=[i for i in range(m) if 0 in m1[i] and 0 in m2[i] ]\\n')\n fil.write('print(innrer_loops)\\n')\n fil.close()\n t = os.popen('python3 evaluation_file1.py ').read()\n return t\n\n\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\ndef enclosing_curve(system, B, X, eps_min=0.1, eps_max=0.1):\n L = [B]\n certified_boxes = []\n uncertified_boxes = []\n while len(L) != 0:\n system_generator(system, L[0], X)\n os.system('ibexsolve --eps-max=' + str(eps_max) + ' --eps-min=' +\n str(eps_min) + ' -s eq.txt > output.txt')\n content = open('output.txt', 'r').readlines()\n ibex_output = computing_boxes()\n if ibex_output == [[], []] and max([(Bi[1] - Bi[0]) for Bi in L[0]]\n ) < eps_min:\n uncertified_boxes.append(L[0])\n L.remove(L[0])\n elif ibex_output == [[], []]:\n children = plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n elif ibex_output == 'Empty':\n L.remove(L[0])\n else:\n if len(ibex_output[0]) != 0:\n certified_boxes += ibex_output[0]\n if len(ibex_output[1]) != 0:\n uncertified_boxes += ibex_output[1]\n L.remove(L[0])\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n\n\ndef estimating_t1(components, upper_bound=200000):\n t1 = upper_bound\n t2 = 0\n for box1 in components[0]:\n for box2 in components[1]:\n a = d.distance(box1, box2).lower()\n b = d.distance(box1, box2).upper()\n if t1 > a:\n t1 = a\n if t2 < b:\n t2 = b\n t = d.ftconstructor(t1, t2)\n t = 0.25 * d.power_interval(t, 2)\n return [float(t.lower()), float(t.upper())]\n\n\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n\n\ndef ploting_boxes(boxes, uncer_boxes, var=[0, 1], B=[[-20, 20], [-20, 20]],\n x=0.1, nodes=[], cusps=[], uncer_Solutions=[], Legend=False, color=\n 'green', variabel_name='x'):\n fig, ax = plt.subplots()\n ax.set_xlim(B[0][0], B[0][1])\n ax.set_ylim(B[1][0], B[1][1])\n ax.set_xlabel(variabel_name + str(1))\n ax.set_ylabel(variabel_name + str(2))\n \"\"\"try:\n ax.title(open(\"system.txt\",\"r\").read())\n except:\n pass\"\"\"\n c = 0\n green_patch = mpatches.Patch(color=color, label='smooth part')\n red_patch = mpatches.Patch(color='red', label='unknown part')\n node_patch = mpatches.Patch(color='black', label='Certified nodes',\n fill=None)\n cusp_patch = mpatches.Patch(color='blue', label=\n 'Projection of certified solution with t=0 ', fill=None)\n if Legend == True:\n plt.legend(handles=[green_patch, red_patch, node_patch, cusp_patch])\n for box in boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0],\n color=color)\n plt.gca().add_patch(rectangle)\n for box in uncer_boxes:\n rectangle = plt.Rectangle((box[var[0]][0], box[var[1]][0]), box[var\n [0]][1] - box[var[0]][0], box[var[1]][1] - box[var[1]][0], fc='r')\n plt.gca().add_patch(rectangle)\n for box in nodes:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n fill=None)\n plt.gca().add_patch(rectangle)\n for box in cusps:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='blue', fill=None)\n plt.gca().add_patch(rectangle)\n for box in uncer_Solutions:\n rectangle = plt.Rectangle((box[0][0] - x, box[1][0] - x), 2 * x +\n box[0][1] - box[0][0], 2 * x + box[1][1] - box[1][0], fc='y',\n color='red', fill=None)\n plt.gca().add_patch(rectangle)\n plt.savefig('fig.jpg', dpi=1000)\n plt.show()\n\n\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\ndef SDP_str(P, X):\n n = len(X)\n P_pluse = P[:]\n P_minus = P[:]\n for i in range(2, n):\n P_pluse = P_pluse.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '+ r' + str(i + 1) + '*sqrt(t))')\n P_minus = P_minus.replace('x' + str(i + 1), '(x' + str(i + 1) +\n '- r' + str(i + 1) + '*sqrt(t))')\n SP = '0.5*(' + P_pluse + '+' + P_minus + ')=0; \\n'\n DP = '0.5*(' + P_pluse + '- (' + P_minus + ') )/(sqrt(t))=0; \\n'\n return [SP, DP]\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\ndef planner_connected_compnants(boxes):\n if len(boxes) == 0:\n return []\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i][:2], components[j][k][:2]\n ) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi[:2], boxj[:2]) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\ndef connected_compnants(boxes):\n ftboxes = boxes[:]\n components = [[ftboxes[0]]]\n for i in range(1, len(ftboxes)):\n boxi_isused = 0\n for j in range(len(components)):\n membership = 0\n for k in range(len(components[j])):\n if d.boxes_intersection(ftboxes[i], components[j][k]) != []:\n components[j].append(ftboxes[i])\n membership = 1\n boxi_isused = 1\n break\n if membership == 1:\n break\n if boxi_isused == 0:\n components.append([ftboxes[i]])\n unused = list(range(len(components)))\n components1 = components[:]\n components2 = []\n while len(components1) != len(components2):\n for i in unused:\n for j in [j for j in list(range(i + 1, len(components))) if j in\n unused]:\n intersection_exists = False\n is_looping = True\n for boxi in components[i]:\n for boxj in components[j]:\n if d.boxes_intersection(boxi, boxj) != []:\n is_looping = False\n intersection_exists = True\n break\n if is_looping == False:\n break\n if intersection_exists == True:\n components[i] += components[j]\n unused.remove(j)\n components2 = components1[:]\n components1 = [components[k] for k in unused]\n return components1\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n\n\ndef checking_assumptions(curve_data):\n if len(curve_data[0][1]) != 0:\n return 0\n Ball_sols_ft = [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for B in\n curve_data[1][0]] + [[d.ftconstructor(Bi[0], Bi[1]) for Bi in B] for\n B in curve_data[1][1]]\n alph3 = assum_alph3_checker(Ball_sols_ft)\n if alph3 == 1:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\ndef plotting_3D(boxes, Box, var=[0, 1, 2]):\n ax = plt.figure().add_subplot(111, projection='3d')\n ax.set_xlim(Box[0][0], Box[0][1])\n ax.set_ylim(Box[1][0], Box[1][1])\n ax.set_zlim(Box[2][0], Box[2][1])\n ax.set_xlabel('x' + str(var[0] + 1))\n ax.set_ylabel('x' + str(var[1] + 1))\n ax.set_zlabel('x' + str(var[2] + 1))\n for box in boxes:\n V = [[box[j][0] for j in range(3)], [box[j][1] for j in range(3)]]\n points = list(itertools.product(*box))\n faces = [[points[0], points[2], points[6], points[4]], [points[0],\n points[2], points[3], points[1]], [points[0], points[1], points\n [5], points[4]], [points[2], points[3], points[7], points[6]],\n [points[1], points[3], points[7], points[5]]]\n ax.add_collection3d(Poly3DCollection(faces, facecolors='green',\n linewidths=1, edgecolors='green', alpha=0.25))\n plt.show()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef intersect_in_2D(class1, class2, monotonicity=1):\n pl_intesected_pairs = []\n if monotonicity == 1:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != [\n ] and d.boxes_intersection(class1[i], class2[j]) == []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 0:\n for i in range(len(class1)):\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n if [class2[j], class1[i]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[i], class2[j]])\n elif monotonicity == 2:\n inters_indic = []\n for i in range(len(class1)):\n inters_indic.append([])\n for j in range(len(class2)):\n if d.boxes_intersection(class1[i][:2], class2[j][:2]) != []:\n inters_indic[i] = inters_indic[i] + [j]\n for k in range(len(class1)):\n if len(inters_indic[k]) > 3:\n for j in range(len(inters_indic[k])):\n if [class2[j], class1[k]] not in pl_intesected_pairs:\n pl_intesected_pairs.append([class1[k], class2[j]])\n return pl_intesected_pairs\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n\n\ndef plane_subdivision(B):\n ft_B2 = d.subdivide([d.ftconstructor(Bi[0], Bi[1]) for Bi in B[:2]])\n normal_B2 = [d.ft_normal(Bi) for Bi in ft_B2]\n return d.cartesian_product(normal_B2, [B[2:]])\n\n\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef solving_fornodes(equations, boxes, B, X, eps=0.1):\n plane_components = detecting_nodes(boxes, B, equations, X, eps)\n g = open(equations, 'r')\n P = [Pi.replace('\\n', '') for Pi in g.readlines()]\n Ball_solutions = []\n for plane_component in plane_components:\n x1 = float(min([ai[0].lower() for ai in plane_component]))\n x2 = float(max([ai[0].upper() for ai in plane_component]))\n y1 = float(min([ai[1].lower() for ai in plane_component]))\n y2 = float(max([ai[1].upper() for ai in plane_component]))\n components = connected_compnants(plane_component)\n r = [[float(ri[0]), float(ri[1])] for ri in estimating_r(components)]\n t = estimating_t(components)\n t = [float(t[0]), float(t[1])]\n B_Ball = [[x1, x2], [y1, y2]] + r + [t]\n Ball_generating_system(P, B_Ball, X)\n solutionsi = ibex_output(P, B_Ball, X)\n Ball_solutions += solutionsi\n return Ball_solutions\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\ndef boxes_sort(boxes):\n sorted_boxes = boxes[:]\n for i in range(len(boxes) - 1):\n for j in range(i + 1, len(boxes)):\n if boxes_compare(sorted_boxes[i], sorted_boxes[j]) == 1:\n sorted_boxes[i], sorted_boxes[j] = sorted_boxes[j\n ], sorted_boxes[i]\n return sorted_boxes\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef Ball_solver(equations, B_Ball, X):\n L = [B_Ball]\n certified_boxes = []\n uncertified_boxes = []\n n = len(X)\n while len(L) != 0:\n solvability = 1\n if B_Ball[2 * n - 2][0] <= 0 <= B_Ball[2 * n - 2][1] and d.width([d\n .ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]) < 0.1:\n Ball_cusp_gen(equations, B_Ball, X)\n elif (B_Ball[2 * n - 2][0] > 0 or 0 > B_Ball[2 * n - 2][1]\n ) and d.width([d.ftconstructor(Bi[0], Bi[1]) for Bi in L[0]]\n ) < 0.1:\n Ball_node_gen(equations, B_Ball, X)\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n solvability = 0\n if solvability == 1:\n ibex_output = cb.solving_with_ibex()\n if ibex_output[0] == 'Empty':\n L.remove(L[0])\n elif len(ibex_output[0]) != 0:\n certified_boxes += cb.computing_boxes(ibex_output[0])\n L.remove(L[0])\n elif len(ibex_output[1]) != 0:\n uncertified_boxes += cb.computing_boxes(ibex_output[1])\n L.remove(L[0])\n else:\n children = cb.plane_subdivision(L[0])\n L.remove(L[0])\n L += children\n return [certified_boxes, uncertified_boxes]\n\n\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef boxes_compare(box1, box2):\n flage = 0\n for i in range(len(box1) - 1, -1, -1):\n if box1[i][0] > box2[i][0]:\n return 1\n if box1[i][0] < box2[i][0]:\n return -1\n return 0\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n\n\ndef intersting_boxes(curve, b):\n cer_intersting_boxes = []\n uncer_intersting_boxes = []\n for box in curve[0]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n cer_intersting_boxes.append(box)\n for box in curve[1]:\n if b[0][0] <= box[0][0] <= box[0][1] <= b[0][1] and b[1][0] <= box[1][0\n ] <= box[1][1] <= b[1][1]:\n uncer_intersting_boxes.append(box)\n return [cer_intersting_boxes, uncer_intersting_boxes]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef computing_boxes():\n if 'infeasible' in open('output.txt', 'r').read():\n return 'Empty'\n content = open('output.txt', 'r').readlines()\n cer = []\n uncer = []\n i = 0\n Answer = []\n for fi in content:\n try:\n a = fi.index('(')\n b = fi.index(')')\n T = fi[a:b + 1].replace('(', '[')\n T = fi[a:b + 1].replace('(', '[')\n T = T.replace(')', ']')\n T = T.split(';')\n E = []\n i = 0\n for Ti in T:\n Ti = Ti.replace('[', '')\n Ti = Ti.replace(']', '')\n Ti = Ti.replace('<', '')\n Ti = Ti.replace('>', '')\n x = Ti.index(',')\n a = float(Ti[:x])\n b = float(Ti[x + 1:])\n E.append([])\n E[i] = [a, b]\n i += 1\n if 'solution n' in fi or 'boundary n' in fi:\n cer.append(E)\n elif 'unknown n' in fi:\n uncer.append(E)\n except ValueError:\n pass\n return [cer, uncer]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef assum_alph3_checker(solutions):\n comparing_list = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != []:\n comparing_list[i].append(j)\n comparing_list[j].append(i)\n matching = [len(T) for T in comparing_list]\n if max(matching) <= 2:\n return 1\n else:\n return 0\n\n\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef Ball_generating_system(P, B_Ball, X, eps_min=0.001):\n n = len(X)\n V = ' Variables \\n '\n for i in range(n):\n if B_Ball[i][0] != B_Ball[i][1]:\n V += 'x' + str(i + 1) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n else:\n V += 'x' + str(i + 1) + ' in ' + str([B_Ball[i][0] - eps_min, \n B_Ball[i][1] + eps_min]) + ' ; \\n'\n for i in range(n, 2 * n - 2):\n V += 'r' + str(i - n + 3) + ' in ' + str(B_Ball[i]) + ' ; \\n'\n V += 't' + ' in ' + str(B_Ball[2 * n - 2]) + ' ; \\n'\n V += 'Constraints \\n'\n for Pi in P:\n V += SDP_str(Pi, X)[0]\n V += SDP_str(Pi, X)[1]\n last_eq = ''\n for i in range(3, n):\n last_eq += 'r' + str(i) + '^2+'\n last_eq += 'r' + str(n) + '^2 -1=0;'\n V += last_eq + '\\n'\n f = open('eq.txt', 'w+')\n f.write(V)\n f.write('end')\n f.close()\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef projection_checker(solutions):\n if len(solutions) == 0:\n return [[], []]\n m = len(solutions[0])\n n = int((m + 1) / 2)\n intersect_in2d = [[]] * len(solutions)\n for i in range(len(solutions) - 1):\n for j in range(i + 1, len(solutions)):\n if solutions[i] == solutions[j]:\n continue\n elif d.boxes_intersection(solutions[i][:2], solutions[j][:2]) != [\n ] and (d.boxes_intersection(solutions[i][n:2 * n - 2], [[-\n Bi[1], -Bi[0]] for Bi in solutions[j][n:2 * n - 2]]) == [] and\n d.boxes_intersection(solutions[i][n:2 * n - 2], [[Bi[0], Bi\n [1]] for Bi in solutions[j][n:2 * n - 2]]) == [] or d.\n boxes_intersection(solutions[i][2:n] + [solutions[i][2 * n -\n 2]], solutions[j][2:n] + [solutions[j][2 * n - 2]]) == []):\n intersect_in2d[i] = intersect_in2d[i] + [j]\n accepted = []\n acc_ind = []\n unaccepted = []\n unacc_ind = []\n for i in range(len(solutions)):\n if len(intersect_in2d[i]) == 0 and i not in unacc_ind + acc_ind:\n accepted.append(solutions[i])\n acc_ind.append(i)\n continue\n elif i not in unacc_ind + acc_ind:\n unaccepted.append(solutions[i])\n unacc_ind.append(i)\n for k in intersect_in2d[i]:\n if k not in unacc_ind:\n unaccepted.append(solutions[k])\n unacc_ind.append(k)\n return [accepted, unaccepted]\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n" ]
false
98,384
4bf8dcc96cea641c3522ca1504713db71005a3fd
from timer import Timer from sys import argv timer = Timer() try: timer.pomodore(int(argv[1]), int(argv[2])) except: timer.timer(int(argv[1]))
[ "from timer import Timer\nfrom sys import argv\n\ntimer = Timer()\ntry:\n timer.pomodore(int(argv[1]), int(argv[2]))\nexcept: \n timer.timer(int(argv[1]))\n", "from timer import Timer\nfrom sys import argv\ntimer = Timer()\ntry:\n timer.pomodore(int(argv[1]), int(argv[2]))\nexcept:\n timer.timer(int(argv[1]))\n", "<import token>\ntimer = Timer()\ntry:\n timer.pomodore(int(argv[1]), int(argv[2]))\nexcept:\n timer.timer(int(argv[1]))\n", "<import token>\n<assignment token>\ntry:\n timer.pomodore(int(argv[1]), int(argv[2]))\nexcept:\n timer.timer(int(argv[1]))\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
98,385
579360a0fc56706ceaf3a2b0322fe136fbdbba13
#!/usr/bin/env python from Mech_arm import Mech_arm from PCA9685 import PCA9685 from time import sleep if __name__ == '__main__': pca = PCA9685() motor_set_dic = { "stage": 15, "shoulder": 14, "elbow": 13, "wrist": 12 } arm = Mech_arm(pca, motor_set_dic) for i in range(5): sleep(0.5) arm.moveMotorByDutyCycleRelative('stage', 0.5); arm.moveMotorByDutyCycleRelative('shoulder', 0.5); arm.moveMotorByDutyCycleRelative('elbow', 0.5); arm.moveMotorByDutyCycleRelative('wrist', 0.5); for i in range(5): sleep(0.5) arm.moveMotorByDutyCycleRelative('stage', -0.5); arm.moveMotorByDutyCycleRelative('shoulder', -0.5); arm.moveMotorByDutyCycleRelative('elbow', -0.5); arm.moveMotorByDutyCycleRelative('wrist', -0.5); arm.moveMotorHome()
[ "#!/usr/bin/env python\n\nfrom Mech_arm import Mech_arm\nfrom PCA9685 import PCA9685\nfrom time import sleep\n\nif __name__ == '__main__':\n pca = PCA9685()\n motor_set_dic = {\n \"stage\": 15,\n \"shoulder\": 14,\n \"elbow\": 13,\n \"wrist\": 12\n }\n arm = Mech_arm(pca, motor_set_dic)\n for i in range(5):\n sleep(0.5)\n arm.moveMotorByDutyCycleRelative('stage', 0.5);\n arm.moveMotorByDutyCycleRelative('shoulder', 0.5);\n arm.moveMotorByDutyCycleRelative('elbow', 0.5);\n arm.moveMotorByDutyCycleRelative('wrist', 0.5);\n\n for i in range(5):\n sleep(0.5)\n arm.moveMotorByDutyCycleRelative('stage', -0.5);\n arm.moveMotorByDutyCycleRelative('shoulder', -0.5);\n arm.moveMotorByDutyCycleRelative('elbow', -0.5);\n arm.moveMotorByDutyCycleRelative('wrist', -0.5);\n\n arm.moveMotorHome()\n", "from Mech_arm import Mech_arm\nfrom PCA9685 import PCA9685\nfrom time import sleep\nif __name__ == '__main__':\n pca = PCA9685()\n motor_set_dic = {'stage': 15, 'shoulder': 14, 'elbow': 13, 'wrist': 12}\n arm = Mech_arm(pca, motor_set_dic)\n for i in range(5):\n sleep(0.5)\n arm.moveMotorByDutyCycleRelative('stage', 0.5)\n arm.moveMotorByDutyCycleRelative('shoulder', 0.5)\n arm.moveMotorByDutyCycleRelative('elbow', 0.5)\n arm.moveMotorByDutyCycleRelative('wrist', 0.5)\n for i in range(5):\n sleep(0.5)\n arm.moveMotorByDutyCycleRelative('stage', -0.5)\n arm.moveMotorByDutyCycleRelative('shoulder', -0.5)\n arm.moveMotorByDutyCycleRelative('elbow', -0.5)\n arm.moveMotorByDutyCycleRelative('wrist', -0.5)\n arm.moveMotorHome()\n", "<import token>\nif __name__ == '__main__':\n pca = PCA9685()\n motor_set_dic = {'stage': 15, 'shoulder': 14, 'elbow': 13, 'wrist': 12}\n arm = Mech_arm(pca, motor_set_dic)\n for i in range(5):\n sleep(0.5)\n arm.moveMotorByDutyCycleRelative('stage', 0.5)\n arm.moveMotorByDutyCycleRelative('shoulder', 0.5)\n arm.moveMotorByDutyCycleRelative('elbow', 0.5)\n arm.moveMotorByDutyCycleRelative('wrist', 0.5)\n for i in range(5):\n sleep(0.5)\n arm.moveMotorByDutyCycleRelative('stage', -0.5)\n arm.moveMotorByDutyCycleRelative('shoulder', -0.5)\n arm.moveMotorByDutyCycleRelative('elbow', -0.5)\n arm.moveMotorByDutyCycleRelative('wrist', -0.5)\n arm.moveMotorHome()\n", "<import token>\n<code token>\n" ]
false
98,386
92ddf5ab6b6bd57c44b0e3c3ea96882e95f3d647
#----------------------------------------------------------------------------- # Title : PyRogue Cryo Amc Core #----------------------------------------------------------------------------- # File : _hmc305.py # Created : 2017-04-03 #----------------------------------------------------------------------------- # Description: # PyRogue Cryo Amc Core #----------------------------------------------------------------------------- # This file is part of the rogue software platform. It is subject to # the license terms in the LICENSE.txt file found in the top-level directory # of this distribution and at: # https://confluence.slac.stanford.edu/display/ppareg/LICENSE.html. # No part of the rogue software platform, including this file, may be # copied, modified, propagated, or distributed except according to the terms # contained in the LICENSE.txt file. #----------------------------------------------------------------------------- import pyrogue as pr class Hmc305(pr.Device): def __init__( self, name = "Hmc305", description = "Hmc305 module", **kwargs): super().__init__(name=name, description=description, **kwargs) devConfig = [ ['DC[1]', 0x1C], ['DC[2]', 0x08], ['DC[3]', 0x04], ['DC[4]', 0x00], ['UC[1]', 0x18], ['UC[2]', 0x14], ['UC[3]', 0x10], ['UC[4]', 0x0C], ] for i in range(8): self.add(pr.RemoteVariable( name = devConfig[i][0], description = 'Hmc305 Device: Note that firmware does an invert and bit order swap to make the software interface with a LSB of 0.5dB', offset = devConfig[i][1], bitSize = 5, mode = 'RW', units = '0.5dB', ))
[ "#-----------------------------------------------------------------------------\n# Title : PyRogue Cryo Amc Core\n#-----------------------------------------------------------------------------\n# File : _hmc305.py\n# Created : 2017-04-03\n#-----------------------------------------------------------------------------\n# Description:\n# PyRogue Cryo Amc Core\n#-----------------------------------------------------------------------------\n# This file is part of the rogue software platform. It is subject to\n# the license terms in the LICENSE.txt file found in the top-level directory\n# of this distribution and at:\n# https://confluence.slac.stanford.edu/display/ppareg/LICENSE.html.\n# No part of the rogue software platform, including this file, may be\n# copied, modified, propagated, or distributed except according to the terms\n# contained in the LICENSE.txt file.\n#-----------------------------------------------------------------------------\n\nimport pyrogue as pr\n\nclass Hmc305(pr.Device):\n def __init__( self,\n name = \"Hmc305\",\n description = \"Hmc305 module\",\n **kwargs):\n super().__init__(name=name, description=description, **kwargs)\n\n devConfig = [\n ['DC[1]', 0x1C],\n ['DC[2]', 0x08],\n ['DC[3]', 0x04],\n ['DC[4]', 0x00],\n ['UC[1]', 0x18],\n ['UC[2]', 0x14],\n ['UC[3]', 0x10],\n ['UC[4]', 0x0C],\n ]\n\n for i in range(8):\n self.add(pr.RemoteVariable(\n name = devConfig[i][0],\n description = 'Hmc305 Device: Note that firmware does an invert and bit order swap to make the software interface with a LSB of 0.5dB',\n offset = devConfig[i][1],\n bitSize = 5,\n mode = 'RW',\n units = '0.5dB',\n ))\n", "import pyrogue as pr\n\n\nclass Hmc305(pr.Device):\n\n def __init__(self, name='Hmc305', description='Hmc305 module', **kwargs):\n super().__init__(name=name, description=description, **kwargs)\n devConfig = [['DC[1]', 28], ['DC[2]', 8], ['DC[3]', 4], ['DC[4]', 0\n ], ['UC[1]', 24], ['UC[2]', 20], ['UC[3]', 16], ['UC[4]', 12]]\n for i in range(8):\n self.add(pr.RemoteVariable(name=devConfig[i][0], description=\n 'Hmc305 Device: Note that firmware does an invert and bit order swap to make the software interface with a LSB of 0.5dB'\n , offset=devConfig[i][1], bitSize=5, mode='RW', units='0.5dB'))\n", "<import token>\n\n\nclass Hmc305(pr.Device):\n\n def __init__(self, name='Hmc305', description='Hmc305 module', **kwargs):\n super().__init__(name=name, description=description, **kwargs)\n devConfig = [['DC[1]', 28], ['DC[2]', 8], ['DC[3]', 4], ['DC[4]', 0\n ], ['UC[1]', 24], ['UC[2]', 20], ['UC[3]', 16], ['UC[4]', 12]]\n for i in range(8):\n self.add(pr.RemoteVariable(name=devConfig[i][0], description=\n 'Hmc305 Device: Note that firmware does an invert and bit order swap to make the software interface with a LSB of 0.5dB'\n , offset=devConfig[i][1], bitSize=5, mode='RW', units='0.5dB'))\n", "<import token>\n\n\nclass Hmc305(pr.Device):\n <function token>\n", "<import token>\n<class token>\n" ]
false
98,387
f3491cbc3026443920f4a6d3a51430249e0e945f
#!/usr/bin/env python3 # Cálculo do IMC familia = [ ['Fabio', 1.82, 82], ['Juliana', 1.78,80], ['Taíssa', 1.77, 78], ['Erick', 1.20, 45], ['Gigi', 1.00, 25] ] for linha in familia: nome = linha[0] altura = linha[1] peso = linha[2] imc = round(altura / peso**2, 5) print('Nome:{}, Altura:{}, Peso:{}, IMC:{}'.format(nome, altura, peso, imc)) print() # from numpy import array # # np_fam = array(familia) # # print(np_fam)
[ "#!/usr/bin/env python3\n\n# Cálculo do IMC\n\nfamilia = [\n ['Fabio', 1.82, 82],\n ['Juliana', 1.78,80],\n ['Taíssa', 1.77, 78],\n ['Erick', 1.20, 45],\n ['Gigi', 1.00, 25]\n]\n\nfor linha in familia:\n nome = linha[0]\n altura = linha[1]\n peso = linha[2]\n imc = round(altura / peso**2, 5)\n print('Nome:{}, Altura:{}, Peso:{}, IMC:{}'.format(nome, altura, peso, imc))\n\nprint()\n\n# from numpy import array\n#\n# np_fam = array(familia)\n#\n# print(np_fam)", "familia = [['Fabio', 1.82, 82], ['Juliana', 1.78, 80], ['Taíssa', 1.77, 78],\n ['Erick', 1.2, 45], ['Gigi', 1.0, 25]]\nfor linha in familia:\n nome = linha[0]\n altura = linha[1]\n peso = linha[2]\n imc = round(altura / peso ** 2, 5)\n print('Nome:{}, Altura:{}, Peso:{}, IMC:{}'.format(nome, altura, peso, imc)\n )\nprint()\n", "<assignment token>\nfor linha in familia:\n nome = linha[0]\n altura = linha[1]\n peso = linha[2]\n imc = round(altura / peso ** 2, 5)\n print('Nome:{}, Altura:{}, Peso:{}, IMC:{}'.format(nome, altura, peso, imc)\n )\nprint()\n", "<assignment token>\n<code token>\n" ]
false
98,388
0df2106ff73adc19ee205e1e058889071ff43211
print "3.0/.11 = " print 3.0/.11
[ "print \"3.0/.11 = \"\n\nprint 3.0/.11\n\n" ]
true
98,389
0c14feb71967204cfa09d01ed5ac8e2f9ebeaeff
def insertionSort(alist): for i in range(1, len(alist)): curr_val = alist[i] j = i-1 while(j>=0 and alist[j]>curr_val): alist[j+1] = alist[j] j = j-1 alist[j+1] = curr_val a = [2, 1, 9, 78, 4] insertionSort(a) print(a)
[ "def insertionSort(alist):\r\n for i in range(1, len(alist)):\r\n curr_val = alist[i]\r\n j = i-1\r\n while(j>=0 and alist[j]>curr_val):\r\n alist[j+1] = alist[j]\r\n j = j-1\r\n alist[j+1] = curr_val\r\n\r\na = [2, 1, 9, 78, 4]\r\ninsertionSort(a)\r\nprint(a)", "def insertionSort(alist):\n for i in range(1, len(alist)):\n curr_val = alist[i]\n j = i - 1\n while j >= 0 and alist[j] > curr_val:\n alist[j + 1] = alist[j]\n j = j - 1\n alist[j + 1] = curr_val\n\n\na = [2, 1, 9, 78, 4]\ninsertionSort(a)\nprint(a)\n", "def insertionSort(alist):\n for i in range(1, len(alist)):\n curr_val = alist[i]\n j = i - 1\n while j >= 0 and alist[j] > curr_val:\n alist[j + 1] = alist[j]\n j = j - 1\n alist[j + 1] = curr_val\n\n\n<assignment token>\ninsertionSort(a)\nprint(a)\n", "def insertionSort(alist):\n for i in range(1, len(alist)):\n curr_val = alist[i]\n j = i - 1\n while j >= 0 and alist[j] > curr_val:\n alist[j + 1] = alist[j]\n j = j - 1\n alist[j + 1] = curr_val\n\n\n<assignment token>\n<code token>\n", "<function token>\n<assignment token>\n<code token>\n" ]
false
98,390
a053300548b0611e189fc33250da13a65d5f9bd7
from django.db import models from django.core.validators import MaxValueValidator, MinValueValidator class Project(models.Model): name = models.CharField(max_length = 100) def __str__(self): return self.name class Domain(models.Model): quarter = models.IntegerField(default = 1, validators=[MaxValueValidator(3), MinValueValidator(1)]) name = models.CharField(max_length = 100) department = models.CharField(max_length = 10) project = models.ForeignKey(Project, on_delete=models.CASCADE) def __str__(self): return self.name class Bug(models.Model): #below fields are the main attributes title = models.CharField(max_length = 200, blank = False) risk = models.CharField(max_length = 10) abstract = models.CharField(max_length = 300, blank = False) impact = models.CharField(max_length = 400) ease_of_exploitation = models.CharField(max_length = 10) owasp_category = models.CharField(max_length = 100) cvss = models.FloatField(blank = False) cwe = models.IntegerField(blank = False) domain = models.ForeignKey(Domain, on_delete=models.CASCADE) recommendation = models.TextField(blank = False) reference = models.TextField(blank = False) poc = models.ImageField(upload_to = 'uploads/') status = models.CharField(max_length = 10, choices = [('OPEN', 'OPEN'), ('CLOSE', 'CLOSE')], default = 'OPEN') date = models.DateField(auto_now_add = True) #below fields are the attributes required only for exporting in tracker (csv) host_ip = models.CharField(max_length = 100) port = models.CharField(max_length = 20) def __str__(self): return self.title
[ "from django.db import models\nfrom django.core.validators import MaxValueValidator, MinValueValidator\n\nclass Project(models.Model):\n name = models.CharField(max_length = 100)\n\n def __str__(self):\n return self.name\n\nclass Domain(models.Model):\n quarter = models.IntegerField(default = 1, validators=[MaxValueValidator(3), MinValueValidator(1)])\n name = models.CharField(max_length = 100)\n department = models.CharField(max_length = 10)\n project = models.ForeignKey(Project, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.name\n\nclass Bug(models.Model):\n #below fields are the main attributes\n title = models.CharField(max_length = 200, blank = False)\n risk = models.CharField(max_length = 10)\n abstract = models.CharField(max_length = 300, blank = False)\n impact = models.CharField(max_length = 400)\n ease_of_exploitation = models.CharField(max_length = 10)\n owasp_category = models.CharField(max_length = 100)\n cvss = models.FloatField(blank = False)\n cwe = models.IntegerField(blank = False)\n domain = models.ForeignKey(Domain, on_delete=models.CASCADE)\n recommendation = models.TextField(blank = False)\n reference = models.TextField(blank = False)\n poc = models.ImageField(upload_to = 'uploads/')\n status = models.CharField(max_length = 10, choices = [('OPEN', 'OPEN'), ('CLOSE', 'CLOSE')], default = 'OPEN')\n date = models.DateField(auto_now_add = True)\n\n #below fields are the attributes required only for exporting in tracker (csv)\n host_ip = models.CharField(max_length = 100)\n port = models.CharField(max_length = 20)\n\n def __str__(self):\n return self.title", "from django.db import models\nfrom django.core.validators import MaxValueValidator, MinValueValidator\n\n\nclass Project(models.Model):\n name = models.CharField(max_length=100)\n\n def __str__(self):\n return self.name\n\n\nclass Domain(models.Model):\n quarter = models.IntegerField(default=1, validators=[MaxValueValidator(\n 3), MinValueValidator(1)])\n name = models.CharField(max_length=100)\n department = models.CharField(max_length=10)\n project = models.ForeignKey(Project, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.name\n\n\nclass Bug(models.Model):\n title = models.CharField(max_length=200, blank=False)\n risk = models.CharField(max_length=10)\n abstract = models.CharField(max_length=300, blank=False)\n impact = models.CharField(max_length=400)\n ease_of_exploitation = models.CharField(max_length=10)\n owasp_category = models.CharField(max_length=100)\n cvss = models.FloatField(blank=False)\n cwe = models.IntegerField(blank=False)\n domain = models.ForeignKey(Domain, on_delete=models.CASCADE)\n recommendation = models.TextField(blank=False)\n reference = models.TextField(blank=False)\n poc = models.ImageField(upload_to='uploads/')\n status = models.CharField(max_length=10, choices=[('OPEN', 'OPEN'), (\n 'CLOSE', 'CLOSE')], default='OPEN')\n date = models.DateField(auto_now_add=True)\n host_ip = models.CharField(max_length=100)\n port = models.CharField(max_length=20)\n\n def __str__(self):\n return self.title\n", "<import token>\n\n\nclass Project(models.Model):\n name = models.CharField(max_length=100)\n\n def __str__(self):\n return self.name\n\n\nclass Domain(models.Model):\n quarter = models.IntegerField(default=1, validators=[MaxValueValidator(\n 3), MinValueValidator(1)])\n name = models.CharField(max_length=100)\n department = models.CharField(max_length=10)\n project = models.ForeignKey(Project, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.name\n\n\nclass Bug(models.Model):\n title = models.CharField(max_length=200, blank=False)\n risk = models.CharField(max_length=10)\n abstract = models.CharField(max_length=300, blank=False)\n impact = models.CharField(max_length=400)\n ease_of_exploitation = models.CharField(max_length=10)\n owasp_category = models.CharField(max_length=100)\n cvss = models.FloatField(blank=False)\n cwe = models.IntegerField(blank=False)\n domain = models.ForeignKey(Domain, on_delete=models.CASCADE)\n recommendation = models.TextField(blank=False)\n reference = models.TextField(blank=False)\n poc = models.ImageField(upload_to='uploads/')\n status = models.CharField(max_length=10, choices=[('OPEN', 'OPEN'), (\n 'CLOSE', 'CLOSE')], default='OPEN')\n date = models.DateField(auto_now_add=True)\n host_ip = models.CharField(max_length=100)\n port = models.CharField(max_length=20)\n\n def __str__(self):\n return self.title\n", "<import token>\n\n\nclass Project(models.Model):\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\nclass Domain(models.Model):\n quarter = models.IntegerField(default=1, validators=[MaxValueValidator(\n 3), MinValueValidator(1)])\n name = models.CharField(max_length=100)\n department = models.CharField(max_length=10)\n project = models.ForeignKey(Project, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.name\n\n\nclass Bug(models.Model):\n title = models.CharField(max_length=200, blank=False)\n risk = models.CharField(max_length=10)\n abstract = models.CharField(max_length=300, blank=False)\n impact = models.CharField(max_length=400)\n ease_of_exploitation = models.CharField(max_length=10)\n owasp_category = models.CharField(max_length=100)\n cvss = models.FloatField(blank=False)\n cwe = models.IntegerField(blank=False)\n domain = models.ForeignKey(Domain, on_delete=models.CASCADE)\n recommendation = models.TextField(blank=False)\n reference = models.TextField(blank=False)\n poc = models.ImageField(upload_to='uploads/')\n status = models.CharField(max_length=10, choices=[('OPEN', 'OPEN'), (\n 'CLOSE', 'CLOSE')], default='OPEN')\n date = models.DateField(auto_now_add=True)\n host_ip = models.CharField(max_length=100)\n port = models.CharField(max_length=20)\n\n def __str__(self):\n return self.title\n", "<import token>\n\n\nclass Project(models.Model):\n <assignment token>\n <function token>\n\n\nclass Domain(models.Model):\n quarter = models.IntegerField(default=1, validators=[MaxValueValidator(\n 3), MinValueValidator(1)])\n name = models.CharField(max_length=100)\n department = models.CharField(max_length=10)\n project = models.ForeignKey(Project, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.name\n\n\nclass Bug(models.Model):\n title = models.CharField(max_length=200, blank=False)\n risk = models.CharField(max_length=10)\n abstract = models.CharField(max_length=300, blank=False)\n impact = models.CharField(max_length=400)\n ease_of_exploitation = models.CharField(max_length=10)\n owasp_category = models.CharField(max_length=100)\n cvss = models.FloatField(blank=False)\n cwe = models.IntegerField(blank=False)\n domain = models.ForeignKey(Domain, on_delete=models.CASCADE)\n recommendation = models.TextField(blank=False)\n reference = models.TextField(blank=False)\n poc = models.ImageField(upload_to='uploads/')\n status = models.CharField(max_length=10, choices=[('OPEN', 'OPEN'), (\n 'CLOSE', 'CLOSE')], default='OPEN')\n date = models.DateField(auto_now_add=True)\n host_ip = models.CharField(max_length=100)\n port = models.CharField(max_length=20)\n\n def __str__(self):\n return self.title\n", "<import token>\n<class token>\n\n\nclass Domain(models.Model):\n quarter = models.IntegerField(default=1, validators=[MaxValueValidator(\n 3), MinValueValidator(1)])\n name = models.CharField(max_length=100)\n department = models.CharField(max_length=10)\n project = models.ForeignKey(Project, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.name\n\n\nclass Bug(models.Model):\n title = models.CharField(max_length=200, blank=False)\n risk = models.CharField(max_length=10)\n abstract = models.CharField(max_length=300, blank=False)\n impact = models.CharField(max_length=400)\n ease_of_exploitation = models.CharField(max_length=10)\n owasp_category = models.CharField(max_length=100)\n cvss = models.FloatField(blank=False)\n cwe = models.IntegerField(blank=False)\n domain = models.ForeignKey(Domain, on_delete=models.CASCADE)\n recommendation = models.TextField(blank=False)\n reference = models.TextField(blank=False)\n poc = models.ImageField(upload_to='uploads/')\n status = models.CharField(max_length=10, choices=[('OPEN', 'OPEN'), (\n 'CLOSE', 'CLOSE')], default='OPEN')\n date = models.DateField(auto_now_add=True)\n host_ip = models.CharField(max_length=100)\n port = models.CharField(max_length=20)\n\n def __str__(self):\n return self.title\n", "<import token>\n<class token>\n\n\nclass Domain(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.name\n\n\nclass Bug(models.Model):\n title = models.CharField(max_length=200, blank=False)\n risk = models.CharField(max_length=10)\n abstract = models.CharField(max_length=300, blank=False)\n impact = models.CharField(max_length=400)\n ease_of_exploitation = models.CharField(max_length=10)\n owasp_category = models.CharField(max_length=100)\n cvss = models.FloatField(blank=False)\n cwe = models.IntegerField(blank=False)\n domain = models.ForeignKey(Domain, on_delete=models.CASCADE)\n recommendation = models.TextField(blank=False)\n reference = models.TextField(blank=False)\n poc = models.ImageField(upload_to='uploads/')\n status = models.CharField(max_length=10, choices=[('OPEN', 'OPEN'), (\n 'CLOSE', 'CLOSE')], default='OPEN')\n date = models.DateField(auto_now_add=True)\n host_ip = models.CharField(max_length=100)\n port = models.CharField(max_length=20)\n\n def __str__(self):\n return self.title\n", "<import token>\n<class token>\n\n\nclass Domain(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n\nclass Bug(models.Model):\n title = models.CharField(max_length=200, blank=False)\n risk = models.CharField(max_length=10)\n abstract = models.CharField(max_length=300, blank=False)\n impact = models.CharField(max_length=400)\n ease_of_exploitation = models.CharField(max_length=10)\n owasp_category = models.CharField(max_length=100)\n cvss = models.FloatField(blank=False)\n cwe = models.IntegerField(blank=False)\n domain = models.ForeignKey(Domain, on_delete=models.CASCADE)\n recommendation = models.TextField(blank=False)\n reference = models.TextField(blank=False)\n poc = models.ImageField(upload_to='uploads/')\n status = models.CharField(max_length=10, choices=[('OPEN', 'OPEN'), (\n 'CLOSE', 'CLOSE')], default='OPEN')\n date = models.DateField(auto_now_add=True)\n host_ip = models.CharField(max_length=100)\n port = models.CharField(max_length=20)\n\n def __str__(self):\n return self.title\n", "<import token>\n<class token>\n<class token>\n\n\nclass Bug(models.Model):\n title = models.CharField(max_length=200, blank=False)\n risk = models.CharField(max_length=10)\n abstract = models.CharField(max_length=300, blank=False)\n impact = models.CharField(max_length=400)\n ease_of_exploitation = models.CharField(max_length=10)\n owasp_category = models.CharField(max_length=100)\n cvss = models.FloatField(blank=False)\n cwe = models.IntegerField(blank=False)\n domain = models.ForeignKey(Domain, on_delete=models.CASCADE)\n recommendation = models.TextField(blank=False)\n reference = models.TextField(blank=False)\n poc = models.ImageField(upload_to='uploads/')\n status = models.CharField(max_length=10, choices=[('OPEN', 'OPEN'), (\n 'CLOSE', 'CLOSE')], default='OPEN')\n date = models.DateField(auto_now_add=True)\n host_ip = models.CharField(max_length=100)\n port = models.CharField(max_length=20)\n\n def __str__(self):\n return self.title\n", "<import token>\n<class token>\n<class token>\n\n\nclass Bug(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.title\n", "<import token>\n<class token>\n<class token>\n\n\nclass Bug(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n<class token>\n" ]
false
98,391
2a1e99b596418c1934de7c16b5aee64b77a7dcff
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-07-05 14:54 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('photo', models.ImageField(blank=True, upload_to='%Y/%m/%d/profiles/')), ('date_of_birth', models.DateTimeField(blank=True)), ('bio', models.CharField(help_text='350 characters only. Make it short ^_^', max_length=350)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "# -*- coding: utf-8 -*-\n# Generated by Django 1.11.3 on 2017-07-05 14:54\nfrom __future__ import unicode_literals\n\nfrom django.conf import settings\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n migrations.swappable_dependency(settings.AUTH_USER_MODEL),\n ]\n\n operations = [\n migrations.CreateModel(\n name='Profile',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('photo', models.ImageField(blank=True, upload_to='%Y/%m/%d/profiles/')),\n ('date_of_birth', models.DateTimeField(blank=True)),\n ('bio', models.CharField(help_text='350 characters only. Make it short ^_^', max_length=350)),\n ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),\n ],\n ),\n ]\n", "from __future__ import unicode_literals\nfrom django.conf import settings\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)]\n operations = [migrations.CreateModel(name='Profile', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('photo', models.ImageField(blank=True,\n upload_to='%Y/%m/%d/profiles/')), ('date_of_birth', models.\n DateTimeField(blank=True)), ('bio', models.CharField(help_text=\n '350 characters only. Make it short ^_^', max_length=350)), ('user',\n models.OneToOneField(on_delete=django.db.models.deletion.CASCADE,\n to=settings.AUTH_USER_MODEL))])]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)]\n operations = [migrations.CreateModel(name='Profile', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('photo', models.ImageField(blank=True,\n upload_to='%Y/%m/%d/profiles/')), ('date_of_birth', models.\n DateTimeField(blank=True)), ('bio', models.CharField(help_text=\n '350 characters only. Make it short ^_^', max_length=350)), ('user',\n models.OneToOneField(on_delete=django.db.models.deletion.CASCADE,\n to=settings.AUTH_USER_MODEL))])]\n", "<import token>\n\n\nclass Migration(migrations.Migration):\n <assignment token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n" ]
false
98,392
ce59ded71259a36e4137e9f5c8597318eca8c7db
class Solution: def hammingDistance(self, x: int, y: int) -> int: a = '{0:032b}'.format(x) b = '{0:032b}'.format(y) count=0 i=0 while i<len(a): if a[i]!=b[i]: count+=1 i+=1 return count
[ "class Solution:\n def hammingDistance(self, x: int, y: int) -> int:\n a = '{0:032b}'.format(x)\n b = '{0:032b}'.format(y)\n count=0\n i=0\n while i<len(a):\n if a[i]!=b[i]:\n count+=1\n i+=1\n return count ", "class Solution:\n\n def hammingDistance(self, x: int, y: int) ->int:\n a = '{0:032b}'.format(x)\n b = '{0:032b}'.format(y)\n count = 0\n i = 0\n while i < len(a):\n if a[i] != b[i]:\n count += 1\n i += 1\n return count\n", "class Solution:\n <function token>\n", "<class token>\n" ]
false
98,393
1b71eac094e4bd63f754a1254f57b6ad04db935c
#!/usr/bin/env python3 import rospy from geometry_msgs.msg import Twist def main(): pub = rospy.Publisher('my_diff_drive/cmd_vel', Twist, queue_size=10) rospy.init_node('circler', anonymous=True) rate = rospy.Rate(2) # 2hz msg = Twist() msg.linear.x = 10 msg.angular.z = 0 while not rospy.is_shutdown(): msg.linear.x += .02 pub.publish(msg) rate.sleep() if __name__ == '__main__': try: main() except rospy.ROSInterruptException: pass
[ "#!/usr/bin/env python3\nimport rospy\nfrom geometry_msgs.msg import Twist\n\n\ndef main():\n pub = rospy.Publisher('my_diff_drive/cmd_vel', Twist, queue_size=10)\n rospy.init_node('circler', anonymous=True)\n\n rate = rospy.Rate(2) # 2hz\n msg = Twist()\n msg.linear.x = 10\n msg.angular.z = 0\n\n while not rospy.is_shutdown():\n msg.linear.x += .02\n pub.publish(msg)\n rate.sleep()\n\n\nif __name__ == '__main__':\n try:\n main()\n except rospy.ROSInterruptException:\n pass", "import rospy\nfrom geometry_msgs.msg import Twist\n\n\ndef main():\n pub = rospy.Publisher('my_diff_drive/cmd_vel', Twist, queue_size=10)\n rospy.init_node('circler', anonymous=True)\n rate = rospy.Rate(2)\n msg = Twist()\n msg.linear.x = 10\n msg.angular.z = 0\n while not rospy.is_shutdown():\n msg.linear.x += 0.02\n pub.publish(msg)\n rate.sleep()\n\n\nif __name__ == '__main__':\n try:\n main()\n except rospy.ROSInterruptException:\n pass\n", "<import token>\n\n\ndef main():\n pub = rospy.Publisher('my_diff_drive/cmd_vel', Twist, queue_size=10)\n rospy.init_node('circler', anonymous=True)\n rate = rospy.Rate(2)\n msg = Twist()\n msg.linear.x = 10\n msg.angular.z = 0\n while not rospy.is_shutdown():\n msg.linear.x += 0.02\n pub.publish(msg)\n rate.sleep()\n\n\nif __name__ == '__main__':\n try:\n main()\n except rospy.ROSInterruptException:\n pass\n", "<import token>\n\n\ndef main():\n pub = rospy.Publisher('my_diff_drive/cmd_vel', Twist, queue_size=10)\n rospy.init_node('circler', anonymous=True)\n rate = rospy.Rate(2)\n msg = Twist()\n msg.linear.x = 10\n msg.angular.z = 0\n while not rospy.is_shutdown():\n msg.linear.x += 0.02\n pub.publish(msg)\n rate.sleep()\n\n\n<code token>\n", "<import token>\n<function token>\n<code token>\n" ]
false
98,394
2622b1ec9d1fb5b2321d7d1c4b5a86b9551606b9
import time ############################### ### AWS FUNCTIONS ### ############################### import aws ############################### ### Publish Messages ### ############################### def publish_messages(count_of_messages_to_send): # connect to SNS sns = aws.get_sns() # set the topic to Job Request where scale-out alarm sits topic = aws.SNS_JOB_REQUESTS_TOPIC # the message doesn't matter: # job listener is not running during testing, # so message will not be picked up for processing message_data = {'job_id': 'job_for_test_msg', 'user_id': 'user_for_test_msg', 'user_name': 'john doe', 'user_email': '[email protected]', 'user_role': 'free_user', 'input_file_name': 'test.vcf', 's3_inputs_bucket': aws.S3_INPUTS_BUCKET, 's3_key_input_file': 'ramonlrodriguez/annotator_testing/test.vcf', 'submit_time': int(time.time()), 'job_status': 'TEST_JOB' } # publish the messages for message in range(count_of_messages_to_send): aws.publish_message(sns, topic, message_data) ############################### ### Send Test Messages ### ############################### messages_per_blast = 5 seconds_between_blasts = 1 print("-----------------------") print("Blasting messages until program stopped:") print("ctrl+c to stop\n") print("-----------------------") print("Messages per blast: " + str(messages_per_blast)) print("Seconds between blasts: " + str(seconds_between_blasts)) print("-----------------------\n\n") while True: print("-----------------------") print("\nBlasting messages...") publish_messages(messages_per_blast) print("\nSleeping...") time.sleep(seconds_between_blasts)
[ "import time\n\n\n###############################\n### AWS FUNCTIONS ###\n###############################\n\nimport aws\n\n###############################\n### Publish Messages ###\n###############################\n\ndef publish_messages(count_of_messages_to_send):\n # connect to SNS\n sns = aws.get_sns()\n\n # set the topic to Job Request where scale-out alarm sits\n topic = aws.SNS_JOB_REQUESTS_TOPIC\n\n # the message doesn't matter:\n # job listener is not running during testing,\n # so message will not be picked up for processing\n message_data = {'job_id': 'job_for_test_msg',\n 'user_id': 'user_for_test_msg',\n 'user_name': 'john doe',\n 'user_email': '[email protected]',\n 'user_role': 'free_user',\n 'input_file_name': 'test.vcf',\n 's3_inputs_bucket': aws.S3_INPUTS_BUCKET,\n 's3_key_input_file': 'ramonlrodriguez/annotator_testing/test.vcf',\n 'submit_time': int(time.time()),\n 'job_status': 'TEST_JOB'\n }\n\n # publish the messages\n for message in range(count_of_messages_to_send):\n aws.publish_message(sns, topic, message_data)\n\n###############################\n### Send Test Messages ###\n###############################\n\nmessages_per_blast = 5\nseconds_between_blasts = 1\n\nprint(\"-----------------------\")\nprint(\"Blasting messages until program stopped:\")\nprint(\"ctrl+c to stop\\n\")\n\nprint(\"-----------------------\")\nprint(\"Messages per blast: \" + str(messages_per_blast))\nprint(\"Seconds between blasts: \" + str(seconds_between_blasts))\nprint(\"-----------------------\\n\\n\")\n\nwhile True:\n print(\"-----------------------\")\n print(\"\\nBlasting messages...\")\n publish_messages(messages_per_blast)\n print(\"\\nSleeping...\")\n time.sleep(seconds_between_blasts)\n", "import time\nimport aws\n\n\ndef publish_messages(count_of_messages_to_send):\n sns = aws.get_sns()\n topic = aws.SNS_JOB_REQUESTS_TOPIC\n message_data = {'job_id': 'job_for_test_msg', 'user_id':\n 'user_for_test_msg', 'user_name': 'john doe', 'user_email':\n '[email protected]', 'user_role': 'free_user', 'input_file_name':\n 'test.vcf', 's3_inputs_bucket': aws.S3_INPUTS_BUCKET,\n 's3_key_input_file': 'ramonlrodriguez/annotator_testing/test.vcf',\n 'submit_time': int(time.time()), 'job_status': 'TEST_JOB'}\n for message in range(count_of_messages_to_send):\n aws.publish_message(sns, topic, message_data)\n\n\nmessages_per_blast = 5\nseconds_between_blasts = 1\nprint('-----------------------')\nprint('Blasting messages until program stopped:')\nprint('ctrl+c to stop\\n')\nprint('-----------------------')\nprint('Messages per blast: ' + str(messages_per_blast))\nprint('Seconds between blasts: ' + str(seconds_between_blasts))\nprint('-----------------------\\n\\n')\nwhile True:\n print('-----------------------')\n print('\\nBlasting messages...')\n publish_messages(messages_per_blast)\n print('\\nSleeping...')\n time.sleep(seconds_between_blasts)\n", "<import token>\n\n\ndef publish_messages(count_of_messages_to_send):\n sns = aws.get_sns()\n topic = aws.SNS_JOB_REQUESTS_TOPIC\n message_data = {'job_id': 'job_for_test_msg', 'user_id':\n 'user_for_test_msg', 'user_name': 'john doe', 'user_email':\n '[email protected]', 'user_role': 'free_user', 'input_file_name':\n 'test.vcf', 's3_inputs_bucket': aws.S3_INPUTS_BUCKET,\n 's3_key_input_file': 'ramonlrodriguez/annotator_testing/test.vcf',\n 'submit_time': int(time.time()), 'job_status': 'TEST_JOB'}\n for message in range(count_of_messages_to_send):\n aws.publish_message(sns, topic, message_data)\n\n\nmessages_per_blast = 5\nseconds_between_blasts = 1\nprint('-----------------------')\nprint('Blasting messages until program stopped:')\nprint('ctrl+c to stop\\n')\nprint('-----------------------')\nprint('Messages per blast: ' + str(messages_per_blast))\nprint('Seconds between blasts: ' + str(seconds_between_blasts))\nprint('-----------------------\\n\\n')\nwhile True:\n print('-----------------------')\n print('\\nBlasting messages...')\n publish_messages(messages_per_blast)\n print('\\nSleeping...')\n time.sleep(seconds_between_blasts)\n", "<import token>\n\n\ndef publish_messages(count_of_messages_to_send):\n sns = aws.get_sns()\n topic = aws.SNS_JOB_REQUESTS_TOPIC\n message_data = {'job_id': 'job_for_test_msg', 'user_id':\n 'user_for_test_msg', 'user_name': 'john doe', 'user_email':\n '[email protected]', 'user_role': 'free_user', 'input_file_name':\n 'test.vcf', 's3_inputs_bucket': aws.S3_INPUTS_BUCKET,\n 's3_key_input_file': 'ramonlrodriguez/annotator_testing/test.vcf',\n 'submit_time': int(time.time()), 'job_status': 'TEST_JOB'}\n for message in range(count_of_messages_to_send):\n aws.publish_message(sns, topic, message_data)\n\n\n<assignment token>\nprint('-----------------------')\nprint('Blasting messages until program stopped:')\nprint('ctrl+c to stop\\n')\nprint('-----------------------')\nprint('Messages per blast: ' + str(messages_per_blast))\nprint('Seconds between blasts: ' + str(seconds_between_blasts))\nprint('-----------------------\\n\\n')\nwhile True:\n print('-----------------------')\n print('\\nBlasting messages...')\n publish_messages(messages_per_blast)\n print('\\nSleeping...')\n time.sleep(seconds_between_blasts)\n", "<import token>\n\n\ndef publish_messages(count_of_messages_to_send):\n sns = aws.get_sns()\n topic = aws.SNS_JOB_REQUESTS_TOPIC\n message_data = {'job_id': 'job_for_test_msg', 'user_id':\n 'user_for_test_msg', 'user_name': 'john doe', 'user_email':\n '[email protected]', 'user_role': 'free_user', 'input_file_name':\n 'test.vcf', 's3_inputs_bucket': aws.S3_INPUTS_BUCKET,\n 's3_key_input_file': 'ramonlrodriguez/annotator_testing/test.vcf',\n 'submit_time': int(time.time()), 'job_status': 'TEST_JOB'}\n for message in range(count_of_messages_to_send):\n aws.publish_message(sns, topic, message_data)\n\n\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
98,395
179961efff3c229a57b9d0fdcbd9875e9ed2173f
# _*_ coding: utf-8 _*_ """ # @Time : 2020/7/24 12:55 # @Author : yls # @Version:V 0.1 # @File : e_seaborn.py # @desc : Seaborn 是一个基于 Matplotlib 的 Python 数据可视化库, # 提供绘制更加高层和优美的图形接口。详情参考: # http://seaborn.pydata.org/ # 如下,绘制模型拟合后的残差图,y 值添加一个正态分布的误差。 """ import numpy as np import seaborn as sns import matplotlib.pyplot as plt if __name__ == '__main__': """ 残差图看出,y 值误差符合均值 0、方差 0.1 的正态分布规律。 """ sns.set(style='whitegrid') rs = np.random.RandomState(1) x = rs.normal(2,0.1,50) y = 2 + 1.6*x+rs.normal(0,0.1,50) sns.residplot(x,y,lowess=True,color='orange') plt.show() pass
[ "# _*_ coding: utf-8 _*_\n\"\"\"\n# @Time : 2020/7/24 12:55\n# @Author : yls\n# @Version:V 0.1\n# @File : e_seaborn.py\n# @desc : Seaborn 是一个基于 Matplotlib 的 Python 数据可视化库,\n# 提供绘制更加高层和优美的图形接口。详情参考:\n# http://seaborn.pydata.org/\n# 如下,绘制模型拟合后的残差图,y 值添加一个正态分布的误差。\n\"\"\"\n\nimport numpy as np\nimport seaborn as sns\nimport matplotlib.pyplot as plt\n\n\nif __name__ == '__main__':\n \"\"\"\n 残差图看出,y 值误差符合均值 0、方差 0.1 的正态分布规律。\n \"\"\"\n sns.set(style='whitegrid')\n rs = np.random.RandomState(1)\n x = rs.normal(2,0.1,50)\n y = 2 + 1.6*x+rs.normal(0,0.1,50)\n sns.residplot(x,y,lowess=True,color='orange')\n plt.show()\n pass\n", "<docstring token>\nimport numpy as np\nimport seaborn as sns\nimport matplotlib.pyplot as plt\nif __name__ == '__main__':\n \"\"\"\n 残差图看出,y 值误差符合均值 0、方差 0.1 的正态分布规律。\n \"\"\"\n sns.set(style='whitegrid')\n rs = np.random.RandomState(1)\n x = rs.normal(2, 0.1, 50)\n y = 2 + 1.6 * x + rs.normal(0, 0.1, 50)\n sns.residplot(x, y, lowess=True, color='orange')\n plt.show()\n pass\n", "<docstring token>\n<import token>\nif __name__ == '__main__':\n \"\"\"\n 残差图看出,y 值误差符合均值 0、方差 0.1 的正态分布规律。\n \"\"\"\n sns.set(style='whitegrid')\n rs = np.random.RandomState(1)\n x = rs.normal(2, 0.1, 50)\n y = 2 + 1.6 * x + rs.normal(0, 0.1, 50)\n sns.residplot(x, y, lowess=True, color='orange')\n plt.show()\n pass\n", "<docstring token>\n<import token>\n<code token>\n" ]
false
98,396
0e47d3671144909d95211a3487ee00c30b3f0e9d
""" Todo Plugin Module """ import re from ashaw_notes.plugins import base_plugin class Plugin(base_plugin.Plugin): """Todo Plugin Class""" bypass_today = True regex = re.compile(r'^todo(ne\[[0-9]*\])?:') def is_plugin_note(self, note): """Verifies note relates to plugin""" return bool(self.regex.match(note)) def process_input(self, note): """Handle note input""" return note
[ "\"\"\" Todo Plugin Module\n\"\"\"\nimport re\nfrom ashaw_notes.plugins import base_plugin\n\n\nclass Plugin(base_plugin.Plugin):\n \"\"\"Todo Plugin Class\"\"\"\n bypass_today = True\n regex = re.compile(r'^todo(ne\\[[0-9]*\\])?:')\n\n def is_plugin_note(self, note):\n \"\"\"Verifies note relates to plugin\"\"\"\n return bool(self.regex.match(note))\n\n def process_input(self, note):\n \"\"\"Handle note input\"\"\"\n return note\n", "<docstring token>\nimport re\nfrom ashaw_notes.plugins import base_plugin\n\n\nclass Plugin(base_plugin.Plugin):\n \"\"\"Todo Plugin Class\"\"\"\n bypass_today = True\n regex = re.compile('^todo(ne\\\\[[0-9]*\\\\])?:')\n\n def is_plugin_note(self, note):\n \"\"\"Verifies note relates to plugin\"\"\"\n return bool(self.regex.match(note))\n\n def process_input(self, note):\n \"\"\"Handle note input\"\"\"\n return note\n", "<docstring token>\n<import token>\n\n\nclass Plugin(base_plugin.Plugin):\n \"\"\"Todo Plugin Class\"\"\"\n bypass_today = True\n regex = re.compile('^todo(ne\\\\[[0-9]*\\\\])?:')\n\n def is_plugin_note(self, note):\n \"\"\"Verifies note relates to plugin\"\"\"\n return bool(self.regex.match(note))\n\n def process_input(self, note):\n \"\"\"Handle note input\"\"\"\n return note\n", "<docstring token>\n<import token>\n\n\nclass Plugin(base_plugin.Plugin):\n <docstring token>\n bypass_today = True\n regex = re.compile('^todo(ne\\\\[[0-9]*\\\\])?:')\n\n def is_plugin_note(self, note):\n \"\"\"Verifies note relates to plugin\"\"\"\n return bool(self.regex.match(note))\n\n def process_input(self, note):\n \"\"\"Handle note input\"\"\"\n return note\n", "<docstring token>\n<import token>\n\n\nclass Plugin(base_plugin.Plugin):\n <docstring token>\n <assignment token>\n <assignment token>\n\n def is_plugin_note(self, note):\n \"\"\"Verifies note relates to plugin\"\"\"\n return bool(self.regex.match(note))\n\n def process_input(self, note):\n \"\"\"Handle note input\"\"\"\n return note\n", "<docstring token>\n<import token>\n\n\nclass Plugin(base_plugin.Plugin):\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n\n def process_input(self, note):\n \"\"\"Handle note input\"\"\"\n return note\n", "<docstring token>\n<import token>\n\n\nclass Plugin(base_plugin.Plugin):\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<class token>\n" ]
false
98,397
1bdf4552f0d02c44630c0e1b06da3128e9167174
from django.db import models from django.contrib.auth.models import User TYPE_CHOICES = (('0', 'Bug'),('1', 'Feature'),('2', 'Enhancement')) SEVERITY_CHOICES = (('0', 'Critical'),('1', 'High'), ('2', 'Medium'),('3', 'Low')) # A task class Task(models.Model): project = models.ForeignKey('project.Project') title = models.CharField(max_length=150) type = models.CharField(max_length=2, choices=TYPE_CHOICES, default='0') severity = models.CharField(max_length=2, choices=SEVERITY_CHOICES, default='2') progress = models.PositiveIntegerField(default=0) description = models.TextField() assignees = models.ManyToManyField(User, related_name='task_assignees') created_by = models.ForeignKey(User, related_name='task_created_by') created_on = models.DateTimeField(auto_now_add=True) updated_on = models.DateTimeField(auto_now=True)
[ "from django.db import models\nfrom django.contrib.auth.models import User\n\nTYPE_CHOICES = (('0', 'Bug'),('1', 'Feature'),('2', 'Enhancement'))\nSEVERITY_CHOICES = (('0', 'Critical'),('1', 'High'),\n ('2', 'Medium'),('3', 'Low'))\n\n# A task\nclass Task(models.Model):\n\tproject = models.ForeignKey('project.Project')\n\ttitle = models.CharField(max_length=150)\n\ttype = models.CharField(max_length=2, choices=TYPE_CHOICES, default='0')\n\tseverity = models.CharField(max_length=2, choices=SEVERITY_CHOICES, default='2')\n\tprogress = models.PositiveIntegerField(default=0)\n\tdescription = models.TextField()\n\tassignees = models.ManyToManyField(User, related_name='task_assignees')\n\tcreated_by = models.ForeignKey(User, related_name='task_created_by')\n\tcreated_on = models.DateTimeField(auto_now_add=True)\n\tupdated_on = models.DateTimeField(auto_now=True)\n", "from django.db import models\nfrom django.contrib.auth.models import User\nTYPE_CHOICES = ('0', 'Bug'), ('1', 'Feature'), ('2', 'Enhancement')\nSEVERITY_CHOICES = ('0', 'Critical'), ('1', 'High'), ('2', 'Medium'), ('3',\n 'Low')\n\n\nclass Task(models.Model):\n project = models.ForeignKey('project.Project')\n title = models.CharField(max_length=150)\n type = models.CharField(max_length=2, choices=TYPE_CHOICES, default='0')\n severity = models.CharField(max_length=2, choices=SEVERITY_CHOICES,\n default='2')\n progress = models.PositiveIntegerField(default=0)\n description = models.TextField()\n assignees = models.ManyToManyField(User, related_name='task_assignees')\n created_by = models.ForeignKey(User, related_name='task_created_by')\n created_on = models.DateTimeField(auto_now_add=True)\n updated_on = models.DateTimeField(auto_now=True)\n", "<import token>\nTYPE_CHOICES = ('0', 'Bug'), ('1', 'Feature'), ('2', 'Enhancement')\nSEVERITY_CHOICES = ('0', 'Critical'), ('1', 'High'), ('2', 'Medium'), ('3',\n 'Low')\n\n\nclass Task(models.Model):\n project = models.ForeignKey('project.Project')\n title = models.CharField(max_length=150)\n type = models.CharField(max_length=2, choices=TYPE_CHOICES, default='0')\n severity = models.CharField(max_length=2, choices=SEVERITY_CHOICES,\n default='2')\n progress = models.PositiveIntegerField(default=0)\n description = models.TextField()\n assignees = models.ManyToManyField(User, related_name='task_assignees')\n created_by = models.ForeignKey(User, related_name='task_created_by')\n created_on = models.DateTimeField(auto_now_add=True)\n updated_on = models.DateTimeField(auto_now=True)\n", "<import token>\n<assignment token>\n\n\nclass Task(models.Model):\n project = models.ForeignKey('project.Project')\n title = models.CharField(max_length=150)\n type = models.CharField(max_length=2, choices=TYPE_CHOICES, default='0')\n severity = models.CharField(max_length=2, choices=SEVERITY_CHOICES,\n default='2')\n progress = models.PositiveIntegerField(default=0)\n description = models.TextField()\n assignees = models.ManyToManyField(User, related_name='task_assignees')\n created_by = models.ForeignKey(User, related_name='task_created_by')\n created_on = models.DateTimeField(auto_now_add=True)\n updated_on = models.DateTimeField(auto_now=True)\n", "<import token>\n<assignment token>\n\n\nclass Task(models.Model):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n", "<import token>\n<assignment token>\n<class token>\n" ]
false
98,398
f8971c6e3499cc5d3b3b4b7fe5e7529a0d962ca3
"""Movie Ratings.""" from jinja2 import StrictUndefined from flask import Flask, render_template, redirect, request, flash, session from flask_debugtoolbar import DebugToolbarExtension from sqlalchemy import func, update from model import User, Rating, Movie, connect_to_db, db app = Flask(__name__) # Required to use Flask sessions and the debug toolbar app.secret_key = "ABC" # Normally, if you use an undefined variable in Jinja2, it fails silently. # This is horrible. Fix this so that, instead, it raises an error. app.jinja_env.undefined = StrictUndefined @app.template_filter() def datetimefilter(value, format='%b %d'): """Convert a datetime to a different format so it can be accessible in Jinja.""" return value.strftime(format) app.jinja_env.filters['datetimefilter'] = datetimefilter @app.route('/') def index(): """Homepage.""" # We want user profile link to show if user is logged in and clicks on homepage # Check if logged in and get the value or else return None # If there is a value, query to get user information so that user.user_id can be accessed in jinja # Else, pass None value through so that if statement in jinja not executed user_email = session.get("logged_in_user_email", None) if user_email is not None: user = User.query.filter(User.email == user_email).one() return render_template("homepage.html", user=user) else: return render_template("homepage.html", user=None) @app.route("/users") def user_list(): """Show list of users.""" users = User.query.all() return render_template("user_list.html", users=users) # This takes to each user's profile from user list @app.route("/users/<int:user_id>") def user_profile(user_id): """Show user information""" # Query by user id to return that record in database about user info user = User.query.filter(User.user_id == user_id).one() # import pdb; pdb.set_trace() # Query to get all movies and scores rated by this user # Needed to join Rating and Movie tables and filter by user id # Sort movie titles alphabetically user_movies = db.session.query(Rating.user_id, Rating.movie_id, Rating.score, Movie.title).join(Movie).filter(Rating.user_id == user_id).order_by(Movie.title).all() # Passed user info into jinja and called on its attributes # Passed user_movies into jinja and called on its attributes to get the info return render_template("user_profile.html", user=user, user_movies = user_movies) # # THIS WORKS, but we want to use /user/<int:user_id>, which we figured out above!! # @app.route("/user-profile") # def user_profile(): # """Show user information""" # # import pdb; pdb.set_trace() # # Get user email to query in User database and get all info about the user # email = session["logged_in_user_email"] # user = User.query.filter(User.email == email).one() # # # Test code to see attributes of user object # # user_id = user.user_id # # age = user.age # # zipcode = user.zipcode # return render_template("user_profile.html", user=user) @app.route("/signup-login", methods=["GET"]) def show_forms(): """Show signup and login forms.""" return render_template("signup_login.html") @app.route("/signup", methods=["POST"]) def signup(): """Check if user exists in database, otherwise add user to database.""" # Get values from signup form signup_email = request.form.get("signup_email") signup_password = request.form.get("signup_password") # If user exists, ask them to log in # Otherwise, add user into database and log them in, redirecting to homepage if db.session.query(User).filter(User.email == signup_email).first(): flash("You already have an account please use login!", "danger") return redirect("/signup-login") else: new_user = User(email=signup_email, password=signup_password, age=None, zipcode=None) db.session.add(new_user) db.session.commit() session["logged_in_user_email"] = signup_email session["logged_in_user"] = new_user.user_id flash("Your account has been created! You now are logged in!", "success") return redirect("/") @app.route("/login", methods=["POST"]) def login(): """Check if user's email matches password, otherwise ask user to try again.""" # Get values from login form login_email = request.form.get("login_email") login_password = request.form.get("login_password") # If user's email and password matches, log them in, redirecting them to homepage # Otherwise, ask them to log in with the correct password if db.session.query(User).filter(User.email == login_email, User.password == login_password).first(): flash("Login SUCCESS.", "success") # Query to get user's user id, in order to redirect user to their user profile user = User.query.filter(User.email == login_email).one() session["logged_in_user_email"] = login_email session["logged_in_user"] = user.user_id # Pass a variable through a string via string formatting # so we can pass user_id into the redirected route, which is a string!! return redirect("/users/%s" % user.user_id) # return redirect("/") else: flash("Incorrect password. Please try again!", "danger") return redirect("/signup-login") @app.route("/logout") def process_logout(): """Log user out.""" del session["logged_in_user_email"] del session["logged_in_user"] flash("Logged out.", "success") return redirect("/") @app.route("/movies") def movie_list(): """Show list of movies.""" # sort movie titles alphbetically movies = Movie.query.order_by(Movie.title).all() return render_template("movie_list.html", movies=movies) @app.route("/movies/<int:movie_id>", methods=['GET']) def movie_profile(movie_id): """Show movie information. If a user is logged in, let them add/edit a rating. """ if not session.get('logged_in_user_email'): flash("Please login or signup to see the movie details and rate the movie!", "danger") return redirect("/signup-login") else: # import pdb; pdb.set_trace(); # Query by movie id to return that record in database about movie info # movie = Movie.query.filter(Movie.movie_id == movie_id).one() movie = Movie.query.get(movie_id) user = User.query.filter(User.email == session.get("logged_in_user_email")).one() user_id = user.user_id if user_id: user_rating = Rating.query.filter_by(movie_id=movie_id, user_id=user_id).first() else: user_rating = None # Prediction code: only predict if the user hasn't rated it prediction = None if (not user_rating) and user_id: user = User.query.get(user_id) if user: prediction = user.predict_rating(movie) # Either use the prediction or their real rating if prediction: # User hasn't scored; use our prediction if we made one effective_rating = prediction elif user_rating: # User has already scored for real; use that effective_rating = user_rating.score else: # User hasn't scored and we couldn't get a prediction effective_rating = None # Get the wizard's rating, either by predicting or using real rating wizard = User.query.filter_by(email="[email protected]").one() wizard_rating = Rating.query.filter_by(user_id=wizard.user_id, movie_id=movie.movie_id).first() if wizard_rating is None: wizard_rating = wizard.predict_rating(movie) else: wizard_rating = wizard_rating.score if wizard_rating and effective_rating: difference = abs(wizard_rating - effective_rating) else: # We couldn't get a wizard rating, so we'll skip difference difference = None # Depending on how different we are from the Wizard, choose a message BERATEMENT_MESSAGES = [ "I suppose you don't have such bad taste after all.", "I regret every decision that I've ever made that has brought me to listen to your opinion.", "Words fail me, as your taste in movies has clearly failed you.", "That movie is great. For a clown to watch. Idiot.", "Words cannot express the awfulness of your taste." ] if difference is not None: beratement = BERATEMENT_MESSAGES[int(difference)] else: beratement = None # Tallies score of each rating (how many people rated this score per rating) # Returns list of tuples for count_score unordered_ratings = db.session.query(Rating.score, func.count(Rating.score)).filter(Rating.movie_id == movie_id).group_by(Rating.score) ordered_movies = unordered_ratings.order_by(Rating.score) count_score = ordered_movies.all() # Get average score, which returns a tuple-like object, so need to access index 0 to return the number and pass through jinja avg_rating = db.session.query(func.avg(Rating.score)).filter(Rating.movie_id == movie_id).one() # Query to get all ratings for a specific movie # Needed to join Rating and Movie tables and filter by user id # Sort movie titles alphabetically ratings = db.session.query(Rating.movie_id, Rating.score, Movie.title).join(Movie).filter(Rating.movie_id == movie_id).all() # # Pass user info into jinja and called on its attributes # # Pass count_score, avg_rating, and ratings into jinja # return render_template("movie_profile.html", movie=movie, count_score=count_score, avg_rating=avg_rating[0], ratings=ratings) return render_template( "movie_profile.html", movie=movie, user_rating=user_rating, avg_rating=avg_rating[0], count_score=count_score, prediction=prediction, ratings=ratings, beratement=beratement) @app.route("/movies/<int:movie_id>/rate-movie") def rate_movie(movie_id): """Get user rating score for movie""" user_rating = request.args.get("user_rating") # get user id from log in email address user_email = session["logged_in_user_email"] user = User.query.filter(User.email == user_email).one() user_id = user.user_id # Check if user rating exists in database # If user has rated this movie before, update value # Else, add user rating to database by movie id and user id if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, Rating.user_id == user_id).all(): # When updating a value, we need to use the key-value pair in update() db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating.user_id == user_id).update({"score": user_rating}) # db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating.user_id == user_id).update(Rating.score == user_rating) db.session.commit() flash("You have rated this movie before! It has now been updated to %s." % (user_rating), "warning") return redirect("/users/%s" % user_id) else: db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=user_rating)) db.session.commit() flash("You have rated this movie a %s." % (user_rating), "info") return redirect("/users/%s" % user_id) # Get user rating routed correctly, as this was just test code # Fix label format for movie profile page return render_template("rate_movie.html", user_rating=user_rating) if __name__ == "__main__": # We have to set debug=True here, since it has to be True at the point # that we invoke the DebugToolbarExtension app.debug = True connect_to_db(app) # Use the DebugToolbar # DebugToolbarExtension(app) app.run()
[ "\"\"\"Movie Ratings.\"\"\"\n\nfrom jinja2 import StrictUndefined\n\nfrom flask import Flask, render_template, redirect, request, flash, session\nfrom flask_debugtoolbar import DebugToolbarExtension\nfrom sqlalchemy import func, update\n\n\nfrom model import User, Rating, Movie, connect_to_db, db\n\n\napp = Flask(__name__)\n\n# Required to use Flask sessions and the debug toolbar\napp.secret_key = \"ABC\"\n\n# Normally, if you use an undefined variable in Jinja2, it fails silently.\n# This is horrible. Fix this so that, instead, it raises an error.\napp.jinja_env.undefined = StrictUndefined\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n\n return value.strftime(format)\n\napp.jinja_env.filters['datetimefilter'] = datetimefilter\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n\n # We want user profile link to show if user is logged in and clicks on homepage\n\n # Check if logged in and get the value or else return None\n # If there is a value, query to get user information so that user.user_id can be accessed in jinja\n # Else, pass None value through so that if statement in jinja not executed\n user_email = session.get(\"logged_in_user_email\", None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template(\"homepage.html\", user=user)\n\n else:\n return render_template(\"homepage.html\", user=None)\n\n\[email protected](\"/users\")\ndef user_list():\n \"\"\"Show list of users.\"\"\"\n\n users = User.query.all()\n\n return render_template(\"user_list.html\", users=users)\n\n\n# This takes to each user's profile from user list\[email protected](\"/users/<int:user_id>\")\ndef user_profile(user_id):\n \"\"\"Show user information\"\"\"\n\n # Query by user id to return that record in database about user info\n user = User.query.filter(User.user_id == user_id).one()\n\n # import pdb; pdb.set_trace()\n\n # Query to get all movies and scores rated by this user\n # Needed to join Rating and Movie tables and filter by user id\n # Sort movie titles alphabetically\n user_movies = db.session.query(Rating.user_id, \n Rating.movie_id, \n Rating.score,\n Movie.title).join(Movie).filter(Rating.user_id == user_id).order_by(Movie.title).all()\n\n # Passed user info into jinja and called on its attributes\n # Passed user_movies into jinja and called on its attributes to get the info\n return render_template(\"user_profile.html\", user=user, user_movies = user_movies)\n\n\n# # THIS WORKS, but we want to use /user/<int:user_id>, which we figured out above!!\n# @app.route(\"/user-profile\")\n# def user_profile():\n# \"\"\"Show user information\"\"\"\n\n# # import pdb; pdb.set_trace()\n\n# # Get user email to query in User database and get all info about the user\n# email = session[\"logged_in_user_email\"]\n# user = User.query.filter(User.email == email).one()\n\n# # # Test code to see attributes of user object\n# # user_id = user.user_id\n# # age = user.age\n# # zipcode = user.zipcode\n\n# return render_template(\"user_profile.html\", user=user)\n\n\[email protected](\"/signup-login\", methods=[\"GET\"])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n\n return render_template(\"signup_login.html\")\n\n\[email protected](\"/signup\", methods=[\"POST\"])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n\n # Get values from signup form\n signup_email = request.form.get(\"signup_email\")\n signup_password = request.form.get(\"signup_password\")\n\n # If user exists, ask them to log in\n # Otherwise, add user into database and log them in, redirecting to homepage\n if db.session.query(User).filter(User.email == signup_email).first():\n flash(\"You already have an account please use login!\", \"danger\")\n return redirect(\"/signup-login\")\n\n else:\n new_user = User(email=signup_email, password=signup_password, age=None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n \n session[\"logged_in_user_email\"] = signup_email\n session[\"logged_in_user\"] = new_user.user_id\n \n flash(\"Your account has been created! You now are logged in!\", \"success\")\n \n return redirect(\"/\")\n\n\[email protected](\"/login\", methods=[\"POST\"])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n \n # Get values from login form\n login_email = request.form.get(\"login_email\")\n login_password = request.form.get(\"login_password\")\n\n # If user's email and password matches, log them in, redirecting them to homepage\n # Otherwise, ask them to log in with the correct password\n if db.session.query(User).filter(User.email == login_email, \n User.password == login_password).first():\n \n flash(\"Login SUCCESS.\", \"success\") \n\n # Query to get user's user id, in order to redirect user to their user profile\n user = User.query.filter(User.email == login_email).one()\n\n session[\"logged_in_user_email\"] = login_email\n session[\"logged_in_user\"] = user.user_id\n\n # Pass a variable through a string via string formatting\n # so we can pass user_id into the redirected route, which is a string!!\n return redirect(\"/users/%s\" % user.user_id)\n # return redirect(\"/\")\n\n else:\n flash(\"Incorrect password. Please try again!\", \"danger\")\n return redirect(\"/signup-login\")\n\n\[email protected](\"/logout\")\ndef process_logout():\n \"\"\"Log user out.\"\"\"\n\n del session[\"logged_in_user_email\"]\n del session[\"logged_in_user\"]\n \n flash(\"Logged out.\", \"success\")\n \n return redirect(\"/\")\n\n\[email protected](\"/movies\")\ndef movie_list():\n \"\"\"Show list of movies.\"\"\"\n\n # sort movie titles alphbetically\n movies = Movie.query.order_by(Movie.title).all()\n\n return render_template(\"movie_list.html\", movies=movies)\n\n\[email protected](\"/movies/<int:movie_id>\", methods=['GET'])\ndef movie_profile(movie_id):\n \"\"\"Show movie information.\n\n If a user is logged in, let them add/edit a rating.\n \"\"\"\n\n if not session.get('logged_in_user_email'):\n flash(\"Please login or signup to see the movie details and rate the movie!\", \"danger\")\n return redirect(\"/signup-login\")\n\n else:\n\n # import pdb; pdb.set_trace();\n\n # Query by movie id to return that record in database about movie info\n # movie = Movie.query.filter(Movie.movie_id == movie_id).one()\n movie = Movie.query.get(movie_id)\n\n user = User.query.filter(User.email == session.get(\"logged_in_user_email\")).one()\n user_id = user.user_id\n\n if user_id:\n user_rating = Rating.query.filter_by(movie_id=movie_id, user_id=user_id).first()\n else:\n user_rating = None\n\n # Prediction code: only predict if the user hasn't rated it\n prediction = None\n\n if (not user_rating) and user_id:\n user = User.query.get(user_id)\n if user:\n prediction = user.predict_rating(movie)\n\n # Either use the prediction or their real rating\n if prediction:\n # User hasn't scored; use our prediction if we made one\n effective_rating = prediction\n\n elif user_rating:\n # User has already scored for real; use that\n effective_rating = user_rating.score\n\n else:\n # User hasn't scored and we couldn't get a prediction\n effective_rating = None\n\n # Get the wizard's rating, either by predicting or using real rating\n wizard = User.query.filter_by(email=\"[email protected]\").one()\n wizard_rating = Rating.query.filter_by(user_id=wizard.user_id, movie_id=movie.movie_id).first()\n\n if wizard_rating is None:\n wizard_rating = wizard.predict_rating(movie)\n else:\n wizard_rating = wizard_rating.score\n\n if wizard_rating and effective_rating:\n difference = abs(wizard_rating - effective_rating)\n else:\n # We couldn't get a wizard rating, so we'll skip difference\n difference = None\n\n # Depending on how different we are from the Wizard, choose a message\n BERATEMENT_MESSAGES = [\n \"I suppose you don't have such bad taste after all.\",\n \"I regret every decision that I've ever made that has brought me to listen to your opinion.\",\n \"Words fail me, as your taste in movies has clearly failed you.\",\n \"That movie is great. For a clown to watch. Idiot.\",\n \"Words cannot express the awfulness of your taste.\"\n ]\n\n if difference is not None:\n beratement = BERATEMENT_MESSAGES[int(difference)]\n else:\n beratement = None\n\n # Tallies score of each rating (how many people rated this score per rating)\n # Returns list of tuples for count_score\n unordered_ratings = db.session.query(Rating.score, func.count(Rating.score)).filter(Rating.movie_id == movie_id).group_by(Rating.score)\n ordered_movies = unordered_ratings.order_by(Rating.score)\n count_score = ordered_movies.all()\n\n # Get average score, which returns a tuple-like object, so need to access index 0 to return the number and pass through jinja\n avg_rating = db.session.query(func.avg(Rating.score)).filter(Rating.movie_id == movie_id).one()\n\n # Query to get all ratings for a specific movie\n # Needed to join Rating and Movie tables and filter by user id\n # Sort movie titles alphabetically\n ratings = db.session.query(Rating.movie_id,\n Rating.score,\n Movie.title).join(Movie).filter(Rating.movie_id == movie_id).all()\n\n # # Pass user info into jinja and called on its attributes\n # # Pass count_score, avg_rating, and ratings into jinja\n # return render_template(\"movie_profile.html\", movie=movie, count_score=count_score, avg_rating=avg_rating[0], ratings=ratings)\n\n return render_template(\n \"movie_profile.html\",\n movie=movie,\n user_rating=user_rating,\n avg_rating=avg_rating[0],\n count_score=count_score,\n prediction=prediction,\n ratings=ratings,\n beratement=beratement)\n\n\[email protected](\"/movies/<int:movie_id>/rate-movie\")\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n\n user_rating = request.args.get(\"user_rating\")\n # get user id from log in email address\n user_email = session[\"logged_in_user_email\"]\n\n user = User.query.filter(User.email == user_email).one()\n\n user_id = user.user_id\n\n # Check if user rating exists in database\n # If user has rated this movie before, update value\n # Else, add user rating to database by movie id and user id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, Rating.user_id == user_id).all():\n # When updating a value, we need to use the key-value pair in update()\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating.user_id == user_id).update({\"score\": user_rating})\n\n # db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating.user_id == user_id).update(Rating.score == user_rating)\n db.session.commit()\n\n flash(\"You have rated this movie before! It has now been updated to %s.\" % (user_rating), \"warning\")\n return redirect(\"/users/%s\" % user_id)\n\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=user_rating))\n db.session.commit()\n \n flash(\"You have rated this movie a %s.\" % (user_rating), \"info\")\n \n return redirect(\"/users/%s\" % user_id)\n\n\n # Get user rating routed correctly, as this was just test code\n # Fix label format for movie profile page\n\n return render_template(\"rate_movie.html\", user_rating=user_rating)\n\n\n\nif __name__ == \"__main__\":\n # We have to set debug=True here, since it has to be True at the point\n # that we invoke the DebugToolbarExtension\n app.debug = True\n\n connect_to_db(app)\n\n # Use the DebugToolbar\n # DebugToolbarExtension(app)\n\n app.run()\n", "<docstring token>\nfrom jinja2 import StrictUndefined\nfrom flask import Flask, render_template, redirect, request, flash, session\nfrom flask_debugtoolbar import DebugToolbarExtension\nfrom sqlalchemy import func, update\nfrom model import User, Rating, Movie, connect_to_db, db\napp = Flask(__name__)\napp.secret_key = 'ABC'\napp.jinja_env.undefined = StrictUndefined\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\napp.jinja_env.filters['datetimefilter'] = datetimefilter\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\[email protected]('/users')\ndef user_list():\n \"\"\"Show list of users.\"\"\"\n users = User.query.all()\n return render_template('user_list.html', users=users)\n\n\[email protected]('/users/<int:user_id>')\ndef user_profile(user_id):\n \"\"\"Show user information\"\"\"\n user = User.query.filter(User.user_id == user_id).one()\n user_movies = db.session.query(Rating.user_id, Rating.movie_id, Rating.\n score, Movie.title).join(Movie).filter(Rating.user_id == user_id\n ).order_by(Movie.title).all()\n return render_template('user_profile.html', user=user, user_movies=\n user_movies)\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\[email protected]('/signup', methods=['POST'])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n signup_email = request.form.get('signup_email')\n signup_password = request.form.get('signup_password')\n if db.session.query(User).filter(User.email == signup_email).first():\n flash('You already have an account please use login!', 'danger')\n return redirect('/signup-login')\n else:\n new_user = User(email=signup_email, password=signup_password, age=\n None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n session['logged_in_user_email'] = signup_email\n session['logged_in_user'] = new_user.user_id\n flash('Your account has been created! You now are logged in!',\n 'success')\n return redirect('/')\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\[email protected]('/logout')\ndef process_logout():\n \"\"\"Log user out.\"\"\"\n del session['logged_in_user_email']\n del session['logged_in_user']\n flash('Logged out.', 'success')\n return redirect('/')\n\n\[email protected]('/movies')\ndef movie_list():\n \"\"\"Show list of movies.\"\"\"\n movies = Movie.query.order_by(Movie.title).all()\n return render_template('movie_list.html', movies=movies)\n\n\[email protected]('/movies/<int:movie_id>', methods=['GET'])\ndef movie_profile(movie_id):\n \"\"\"Show movie information.\n\n If a user is logged in, let them add/edit a rating.\n \"\"\"\n if not session.get('logged_in_user_email'):\n flash(\n 'Please login or signup to see the movie details and rate the movie!'\n , 'danger')\n return redirect('/signup-login')\n else:\n movie = Movie.query.get(movie_id)\n user = User.query.filter(User.email == session.get(\n 'logged_in_user_email')).one()\n user_id = user.user_id\n if user_id:\n user_rating = Rating.query.filter_by(movie_id=movie_id, user_id\n =user_id).first()\n else:\n user_rating = None\n prediction = None\n if not user_rating and user_id:\n user = User.query.get(user_id)\n if user:\n prediction = user.predict_rating(movie)\n if prediction:\n effective_rating = prediction\n elif user_rating:\n effective_rating = user_rating.score\n else:\n effective_rating = None\n wizard = User.query.filter_by(email='[email protected]').one()\n wizard_rating = Rating.query.filter_by(user_id=wizard.user_id,\n movie_id=movie.movie_id).first()\n if wizard_rating is None:\n wizard_rating = wizard.predict_rating(movie)\n else:\n wizard_rating = wizard_rating.score\n if wizard_rating and effective_rating:\n difference = abs(wizard_rating - effective_rating)\n else:\n difference = None\n BERATEMENT_MESSAGES = [\n \"I suppose you don't have such bad taste after all.\",\n \"I regret every decision that I've ever made that has brought me to listen to your opinion.\"\n ,\n 'Words fail me, as your taste in movies has clearly failed you.',\n 'That movie is great. For a clown to watch. Idiot.',\n 'Words cannot express the awfulness of your taste.']\n if difference is not None:\n beratement = BERATEMENT_MESSAGES[int(difference)]\n else:\n beratement = None\n unordered_ratings = db.session.query(Rating.score, func.count(\n Rating.score)).filter(Rating.movie_id == movie_id).group_by(Rating\n .score)\n ordered_movies = unordered_ratings.order_by(Rating.score)\n count_score = ordered_movies.all()\n avg_rating = db.session.query(func.avg(Rating.score)).filter(Rating\n .movie_id == movie_id).one()\n ratings = db.session.query(Rating.movie_id, Rating.score, Movie.title\n ).join(Movie).filter(Rating.movie_id == movie_id).all()\n return render_template('movie_profile.html', movie=movie,\n user_rating=user_rating, avg_rating=avg_rating[0], count_score=\n count_score, prediction=prediction, ratings=ratings, beratement\n =beratement)\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\nif __name__ == '__main__':\n app.debug = True\n connect_to_db(app)\n app.run()\n", "<docstring token>\n<import token>\napp = Flask(__name__)\napp.secret_key = 'ABC'\napp.jinja_env.undefined = StrictUndefined\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\napp.jinja_env.filters['datetimefilter'] = datetimefilter\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\[email protected]('/users')\ndef user_list():\n \"\"\"Show list of users.\"\"\"\n users = User.query.all()\n return render_template('user_list.html', users=users)\n\n\[email protected]('/users/<int:user_id>')\ndef user_profile(user_id):\n \"\"\"Show user information\"\"\"\n user = User.query.filter(User.user_id == user_id).one()\n user_movies = db.session.query(Rating.user_id, Rating.movie_id, Rating.\n score, Movie.title).join(Movie).filter(Rating.user_id == user_id\n ).order_by(Movie.title).all()\n return render_template('user_profile.html', user=user, user_movies=\n user_movies)\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\[email protected]('/signup', methods=['POST'])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n signup_email = request.form.get('signup_email')\n signup_password = request.form.get('signup_password')\n if db.session.query(User).filter(User.email == signup_email).first():\n flash('You already have an account please use login!', 'danger')\n return redirect('/signup-login')\n else:\n new_user = User(email=signup_email, password=signup_password, age=\n None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n session['logged_in_user_email'] = signup_email\n session['logged_in_user'] = new_user.user_id\n flash('Your account has been created! You now are logged in!',\n 'success')\n return redirect('/')\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\[email protected]('/logout')\ndef process_logout():\n \"\"\"Log user out.\"\"\"\n del session['logged_in_user_email']\n del session['logged_in_user']\n flash('Logged out.', 'success')\n return redirect('/')\n\n\[email protected]('/movies')\ndef movie_list():\n \"\"\"Show list of movies.\"\"\"\n movies = Movie.query.order_by(Movie.title).all()\n return render_template('movie_list.html', movies=movies)\n\n\[email protected]('/movies/<int:movie_id>', methods=['GET'])\ndef movie_profile(movie_id):\n \"\"\"Show movie information.\n\n If a user is logged in, let them add/edit a rating.\n \"\"\"\n if not session.get('logged_in_user_email'):\n flash(\n 'Please login or signup to see the movie details and rate the movie!'\n , 'danger')\n return redirect('/signup-login')\n else:\n movie = Movie.query.get(movie_id)\n user = User.query.filter(User.email == session.get(\n 'logged_in_user_email')).one()\n user_id = user.user_id\n if user_id:\n user_rating = Rating.query.filter_by(movie_id=movie_id, user_id\n =user_id).first()\n else:\n user_rating = None\n prediction = None\n if not user_rating and user_id:\n user = User.query.get(user_id)\n if user:\n prediction = user.predict_rating(movie)\n if prediction:\n effective_rating = prediction\n elif user_rating:\n effective_rating = user_rating.score\n else:\n effective_rating = None\n wizard = User.query.filter_by(email='[email protected]').one()\n wizard_rating = Rating.query.filter_by(user_id=wizard.user_id,\n movie_id=movie.movie_id).first()\n if wizard_rating is None:\n wizard_rating = wizard.predict_rating(movie)\n else:\n wizard_rating = wizard_rating.score\n if wizard_rating and effective_rating:\n difference = abs(wizard_rating - effective_rating)\n else:\n difference = None\n BERATEMENT_MESSAGES = [\n \"I suppose you don't have such bad taste after all.\",\n \"I regret every decision that I've ever made that has brought me to listen to your opinion.\"\n ,\n 'Words fail me, as your taste in movies has clearly failed you.',\n 'That movie is great. For a clown to watch. Idiot.',\n 'Words cannot express the awfulness of your taste.']\n if difference is not None:\n beratement = BERATEMENT_MESSAGES[int(difference)]\n else:\n beratement = None\n unordered_ratings = db.session.query(Rating.score, func.count(\n Rating.score)).filter(Rating.movie_id == movie_id).group_by(Rating\n .score)\n ordered_movies = unordered_ratings.order_by(Rating.score)\n count_score = ordered_movies.all()\n avg_rating = db.session.query(func.avg(Rating.score)).filter(Rating\n .movie_id == movie_id).one()\n ratings = db.session.query(Rating.movie_id, Rating.score, Movie.title\n ).join(Movie).filter(Rating.movie_id == movie_id).all()\n return render_template('movie_profile.html', movie=movie,\n user_rating=user_rating, avg_rating=avg_rating[0], count_score=\n count_score, prediction=prediction, ratings=ratings, beratement\n =beratement)\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\nif __name__ == '__main__':\n app.debug = True\n connect_to_db(app)\n app.run()\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\[email protected]('/users')\ndef user_list():\n \"\"\"Show list of users.\"\"\"\n users = User.query.all()\n return render_template('user_list.html', users=users)\n\n\[email protected]('/users/<int:user_id>')\ndef user_profile(user_id):\n \"\"\"Show user information\"\"\"\n user = User.query.filter(User.user_id == user_id).one()\n user_movies = db.session.query(Rating.user_id, Rating.movie_id, Rating.\n score, Movie.title).join(Movie).filter(Rating.user_id == user_id\n ).order_by(Movie.title).all()\n return render_template('user_profile.html', user=user, user_movies=\n user_movies)\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\[email protected]('/signup', methods=['POST'])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n signup_email = request.form.get('signup_email')\n signup_password = request.form.get('signup_password')\n if db.session.query(User).filter(User.email == signup_email).first():\n flash('You already have an account please use login!', 'danger')\n return redirect('/signup-login')\n else:\n new_user = User(email=signup_email, password=signup_password, age=\n None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n session['logged_in_user_email'] = signup_email\n session['logged_in_user'] = new_user.user_id\n flash('Your account has been created! You now are logged in!',\n 'success')\n return redirect('/')\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\[email protected]('/logout')\ndef process_logout():\n \"\"\"Log user out.\"\"\"\n del session['logged_in_user_email']\n del session['logged_in_user']\n flash('Logged out.', 'success')\n return redirect('/')\n\n\[email protected]('/movies')\ndef movie_list():\n \"\"\"Show list of movies.\"\"\"\n movies = Movie.query.order_by(Movie.title).all()\n return render_template('movie_list.html', movies=movies)\n\n\[email protected]('/movies/<int:movie_id>', methods=['GET'])\ndef movie_profile(movie_id):\n \"\"\"Show movie information.\n\n If a user is logged in, let them add/edit a rating.\n \"\"\"\n if not session.get('logged_in_user_email'):\n flash(\n 'Please login or signup to see the movie details and rate the movie!'\n , 'danger')\n return redirect('/signup-login')\n else:\n movie = Movie.query.get(movie_id)\n user = User.query.filter(User.email == session.get(\n 'logged_in_user_email')).one()\n user_id = user.user_id\n if user_id:\n user_rating = Rating.query.filter_by(movie_id=movie_id, user_id\n =user_id).first()\n else:\n user_rating = None\n prediction = None\n if not user_rating and user_id:\n user = User.query.get(user_id)\n if user:\n prediction = user.predict_rating(movie)\n if prediction:\n effective_rating = prediction\n elif user_rating:\n effective_rating = user_rating.score\n else:\n effective_rating = None\n wizard = User.query.filter_by(email='[email protected]').one()\n wizard_rating = Rating.query.filter_by(user_id=wizard.user_id,\n movie_id=movie.movie_id).first()\n if wizard_rating is None:\n wizard_rating = wizard.predict_rating(movie)\n else:\n wizard_rating = wizard_rating.score\n if wizard_rating and effective_rating:\n difference = abs(wizard_rating - effective_rating)\n else:\n difference = None\n BERATEMENT_MESSAGES = [\n \"I suppose you don't have such bad taste after all.\",\n \"I regret every decision that I've ever made that has brought me to listen to your opinion.\"\n ,\n 'Words fail me, as your taste in movies has clearly failed you.',\n 'That movie is great. For a clown to watch. Idiot.',\n 'Words cannot express the awfulness of your taste.']\n if difference is not None:\n beratement = BERATEMENT_MESSAGES[int(difference)]\n else:\n beratement = None\n unordered_ratings = db.session.query(Rating.score, func.count(\n Rating.score)).filter(Rating.movie_id == movie_id).group_by(Rating\n .score)\n ordered_movies = unordered_ratings.order_by(Rating.score)\n count_score = ordered_movies.all()\n avg_rating = db.session.query(func.avg(Rating.score)).filter(Rating\n .movie_id == movie_id).one()\n ratings = db.session.query(Rating.movie_id, Rating.score, Movie.title\n ).join(Movie).filter(Rating.movie_id == movie_id).all()\n return render_template('movie_profile.html', movie=movie,\n user_rating=user_rating, avg_rating=avg_rating[0], count_score=\n count_score, prediction=prediction, ratings=ratings, beratement\n =beratement)\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\nif __name__ == '__main__':\n app.debug = True\n connect_to_db(app)\n app.run()\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\[email protected]('/users')\ndef user_list():\n \"\"\"Show list of users.\"\"\"\n users = User.query.all()\n return render_template('user_list.html', users=users)\n\n\[email protected]('/users/<int:user_id>')\ndef user_profile(user_id):\n \"\"\"Show user information\"\"\"\n user = User.query.filter(User.user_id == user_id).one()\n user_movies = db.session.query(Rating.user_id, Rating.movie_id, Rating.\n score, Movie.title).join(Movie).filter(Rating.user_id == user_id\n ).order_by(Movie.title).all()\n return render_template('user_profile.html', user=user, user_movies=\n user_movies)\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\[email protected]('/signup', methods=['POST'])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n signup_email = request.form.get('signup_email')\n signup_password = request.form.get('signup_password')\n if db.session.query(User).filter(User.email == signup_email).first():\n flash('You already have an account please use login!', 'danger')\n return redirect('/signup-login')\n else:\n new_user = User(email=signup_email, password=signup_password, age=\n None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n session['logged_in_user_email'] = signup_email\n session['logged_in_user'] = new_user.user_id\n flash('Your account has been created! You now are logged in!',\n 'success')\n return redirect('/')\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\[email protected]('/logout')\ndef process_logout():\n \"\"\"Log user out.\"\"\"\n del session['logged_in_user_email']\n del session['logged_in_user']\n flash('Logged out.', 'success')\n return redirect('/')\n\n\[email protected]('/movies')\ndef movie_list():\n \"\"\"Show list of movies.\"\"\"\n movies = Movie.query.order_by(Movie.title).all()\n return render_template('movie_list.html', movies=movies)\n\n\[email protected]('/movies/<int:movie_id>', methods=['GET'])\ndef movie_profile(movie_id):\n \"\"\"Show movie information.\n\n If a user is logged in, let them add/edit a rating.\n \"\"\"\n if not session.get('logged_in_user_email'):\n flash(\n 'Please login or signup to see the movie details and rate the movie!'\n , 'danger')\n return redirect('/signup-login')\n else:\n movie = Movie.query.get(movie_id)\n user = User.query.filter(User.email == session.get(\n 'logged_in_user_email')).one()\n user_id = user.user_id\n if user_id:\n user_rating = Rating.query.filter_by(movie_id=movie_id, user_id\n =user_id).first()\n else:\n user_rating = None\n prediction = None\n if not user_rating and user_id:\n user = User.query.get(user_id)\n if user:\n prediction = user.predict_rating(movie)\n if prediction:\n effective_rating = prediction\n elif user_rating:\n effective_rating = user_rating.score\n else:\n effective_rating = None\n wizard = User.query.filter_by(email='[email protected]').one()\n wizard_rating = Rating.query.filter_by(user_id=wizard.user_id,\n movie_id=movie.movie_id).first()\n if wizard_rating is None:\n wizard_rating = wizard.predict_rating(movie)\n else:\n wizard_rating = wizard_rating.score\n if wizard_rating and effective_rating:\n difference = abs(wizard_rating - effective_rating)\n else:\n difference = None\n BERATEMENT_MESSAGES = [\n \"I suppose you don't have such bad taste after all.\",\n \"I regret every decision that I've ever made that has brought me to listen to your opinion.\"\n ,\n 'Words fail me, as your taste in movies has clearly failed you.',\n 'That movie is great. For a clown to watch. Idiot.',\n 'Words cannot express the awfulness of your taste.']\n if difference is not None:\n beratement = BERATEMENT_MESSAGES[int(difference)]\n else:\n beratement = None\n unordered_ratings = db.session.query(Rating.score, func.count(\n Rating.score)).filter(Rating.movie_id == movie_id).group_by(Rating\n .score)\n ordered_movies = unordered_ratings.order_by(Rating.score)\n count_score = ordered_movies.all()\n avg_rating = db.session.query(func.avg(Rating.score)).filter(Rating\n .movie_id == movie_id).one()\n ratings = db.session.query(Rating.movie_id, Rating.score, Movie.title\n ).join(Movie).filter(Rating.movie_id == movie_id).all()\n return render_template('movie_profile.html', movie=movie,\n user_rating=user_rating, avg_rating=avg_rating[0], count_score=\n count_score, prediction=prediction, ratings=ratings, beratement\n =beratement)\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\[email protected]('/users')\ndef user_list():\n \"\"\"Show list of users.\"\"\"\n users = User.query.all()\n return render_template('user_list.html', users=users)\n\n\n<function token>\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\[email protected]('/signup', methods=['POST'])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n signup_email = request.form.get('signup_email')\n signup_password = request.form.get('signup_password')\n if db.session.query(User).filter(User.email == signup_email).first():\n flash('You already have an account please use login!', 'danger')\n return redirect('/signup-login')\n else:\n new_user = User(email=signup_email, password=signup_password, age=\n None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n session['logged_in_user_email'] = signup_email\n session['logged_in_user'] = new_user.user_id\n flash('Your account has been created! You now are logged in!',\n 'success')\n return redirect('/')\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\[email protected]('/logout')\ndef process_logout():\n \"\"\"Log user out.\"\"\"\n del session['logged_in_user_email']\n del session['logged_in_user']\n flash('Logged out.', 'success')\n return redirect('/')\n\n\[email protected]('/movies')\ndef movie_list():\n \"\"\"Show list of movies.\"\"\"\n movies = Movie.query.order_by(Movie.title).all()\n return render_template('movie_list.html', movies=movies)\n\n\[email protected]('/movies/<int:movie_id>', methods=['GET'])\ndef movie_profile(movie_id):\n \"\"\"Show movie information.\n\n If a user is logged in, let them add/edit a rating.\n \"\"\"\n if not session.get('logged_in_user_email'):\n flash(\n 'Please login or signup to see the movie details and rate the movie!'\n , 'danger')\n return redirect('/signup-login')\n else:\n movie = Movie.query.get(movie_id)\n user = User.query.filter(User.email == session.get(\n 'logged_in_user_email')).one()\n user_id = user.user_id\n if user_id:\n user_rating = Rating.query.filter_by(movie_id=movie_id, user_id\n =user_id).first()\n else:\n user_rating = None\n prediction = None\n if not user_rating and user_id:\n user = User.query.get(user_id)\n if user:\n prediction = user.predict_rating(movie)\n if prediction:\n effective_rating = prediction\n elif user_rating:\n effective_rating = user_rating.score\n else:\n effective_rating = None\n wizard = User.query.filter_by(email='[email protected]').one()\n wizard_rating = Rating.query.filter_by(user_id=wizard.user_id,\n movie_id=movie.movie_id).first()\n if wizard_rating is None:\n wizard_rating = wizard.predict_rating(movie)\n else:\n wizard_rating = wizard_rating.score\n if wizard_rating and effective_rating:\n difference = abs(wizard_rating - effective_rating)\n else:\n difference = None\n BERATEMENT_MESSAGES = [\n \"I suppose you don't have such bad taste after all.\",\n \"I regret every decision that I've ever made that has brought me to listen to your opinion.\"\n ,\n 'Words fail me, as your taste in movies has clearly failed you.',\n 'That movie is great. For a clown to watch. Idiot.',\n 'Words cannot express the awfulness of your taste.']\n if difference is not None:\n beratement = BERATEMENT_MESSAGES[int(difference)]\n else:\n beratement = None\n unordered_ratings = db.session.query(Rating.score, func.count(\n Rating.score)).filter(Rating.movie_id == movie_id).group_by(Rating\n .score)\n ordered_movies = unordered_ratings.order_by(Rating.score)\n count_score = ordered_movies.all()\n avg_rating = db.session.query(func.avg(Rating.score)).filter(Rating\n .movie_id == movie_id).one()\n ratings = db.session.query(Rating.movie_id, Rating.score, Movie.title\n ).join(Movie).filter(Rating.movie_id == movie_id).all()\n return render_template('movie_profile.html', movie=movie,\n user_rating=user_rating, avg_rating=avg_rating[0], count_score=\n count_score, prediction=prediction, ratings=ratings, beratement\n =beratement)\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\[email protected]('/users')\ndef user_list():\n \"\"\"Show list of users.\"\"\"\n users = User.query.all()\n return render_template('user_list.html', users=users)\n\n\n<function token>\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\[email protected]('/signup', methods=['POST'])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n signup_email = request.form.get('signup_email')\n signup_password = request.form.get('signup_password')\n if db.session.query(User).filter(User.email == signup_email).first():\n flash('You already have an account please use login!', 'danger')\n return redirect('/signup-login')\n else:\n new_user = User(email=signup_email, password=signup_password, age=\n None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n session['logged_in_user_email'] = signup_email\n session['logged_in_user'] = new_user.user_id\n flash('Your account has been created! You now are logged in!',\n 'success')\n return redirect('/')\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\[email protected]('/logout')\ndef process_logout():\n \"\"\"Log user out.\"\"\"\n del session['logged_in_user_email']\n del session['logged_in_user']\n flash('Logged out.', 'success')\n return redirect('/')\n\n\[email protected]('/movies')\ndef movie_list():\n \"\"\"Show list of movies.\"\"\"\n movies = Movie.query.order_by(Movie.title).all()\n return render_template('movie_list.html', movies=movies)\n\n\n<function token>\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\[email protected]('/users')\ndef user_list():\n \"\"\"Show list of users.\"\"\"\n users = User.query.all()\n return render_template('user_list.html', users=users)\n\n\n<function token>\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\[email protected]('/signup', methods=['POST'])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n signup_email = request.form.get('signup_email')\n signup_password = request.form.get('signup_password')\n if db.session.query(User).filter(User.email == signup_email).first():\n flash('You already have an account please use login!', 'danger')\n return redirect('/signup-login')\n else:\n new_user = User(email=signup_email, password=signup_password, age=\n None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n session['logged_in_user_email'] = signup_email\n session['logged_in_user'] = new_user.user_id\n flash('Your account has been created! You now are logged in!',\n 'success')\n return redirect('/')\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\[email protected]('/logout')\ndef process_logout():\n \"\"\"Log user out.\"\"\"\n del session['logged_in_user_email']\n del session['logged_in_user']\n flash('Logged out.', 'success')\n return redirect('/')\n\n\n<function token>\n<function token>\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\[email protected]('/users')\ndef user_list():\n \"\"\"Show list of users.\"\"\"\n users = User.query.all()\n return render_template('user_list.html', users=users)\n\n\n<function token>\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\[email protected]('/signup', methods=['POST'])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n signup_email = request.form.get('signup_email')\n signup_password = request.form.get('signup_password')\n if db.session.query(User).filter(User.email == signup_email).first():\n flash('You already have an account please use login!', 'danger')\n return redirect('/signup-login')\n else:\n new_user = User(email=signup_email, password=signup_password, age=\n None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n session['logged_in_user_email'] = signup_email\n session['logged_in_user'] = new_user.user_id\n flash('Your account has been created! You now are logged in!',\n 'success')\n return redirect('/')\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\n<function token>\n<function token>\n<function token>\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\n<function token>\n<function token>\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\[email protected]('/signup', methods=['POST'])\ndef signup():\n \"\"\"Check if user exists in database, otherwise add user to database.\"\"\"\n signup_email = request.form.get('signup_email')\n signup_password = request.form.get('signup_password')\n if db.session.query(User).filter(User.email == signup_email).first():\n flash('You already have an account please use login!', 'danger')\n return redirect('/signup-login')\n else:\n new_user = User(email=signup_email, password=signup_password, age=\n None, zipcode=None)\n db.session.add(new_user)\n db.session.commit()\n session['logged_in_user_email'] = signup_email\n session['logged_in_user'] = new_user.user_id\n flash('Your account has been created! You now are logged in!',\n 'success')\n return redirect('/')\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\n<function token>\n<function token>\n<function token>\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\n<function token>\n<function token>\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\n<function token>\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\n<function token>\n<function token>\n<function token>\n\n\[email protected]('/movies/<int:movie_id>/rate-movie')\ndef rate_movie(movie_id):\n \"\"\"Get user rating score for movie\"\"\"\n user_rating = request.args.get('user_rating')\n user_email = session['logged_in_user_email']\n user = User.query.filter(User.email == user_email).one()\n user_id = user.user_id\n if db.session.query(Rating.score).filter(Rating.movie_id == movie_id, \n Rating.user_id == user_id).all():\n db.session.query(Rating).filter(Rating.movie_id == movie_id, Rating\n .user_id == user_id).update({'score': user_rating})\n db.session.commit()\n flash(\n 'You have rated this movie before! It has now been updated to %s.'\n % user_rating, 'warning')\n return redirect('/users/%s' % user_id)\n else:\n db.session.add(Rating(movie_id=movie_id, user_id=user_id, score=\n user_rating))\n db.session.commit()\n flash('You have rated this movie a %s.' % user_rating, 'info')\n return redirect('/users/%s' % user_id)\n return render_template('rate_movie.html', user_rating=user_rating)\n\n\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n\n\[email protected]('/')\ndef index():\n \"\"\"Homepage.\"\"\"\n user_email = session.get('logged_in_user_email', None)\n if user_email is not None:\n user = User.query.filter(User.email == user_email).one()\n return render_template('homepage.html', user=user)\n else:\n return render_template('homepage.html', user=None)\n\n\n<function token>\n<function token>\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\n<function token>\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\[email protected]_filter()\ndef datetimefilter(value, format='%b %d'):\n \"\"\"Convert a datetime to a different format so it can be accessible in Jinja.\"\"\"\n return value.strftime(format)\n\n\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\n<function token>\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\[email protected]('/signup-login', methods=['GET'])\ndef show_forms():\n \"\"\"Show signup and login forms.\"\"\"\n return render_template('signup_login.html')\n\n\n<function token>\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\[email protected]('/login', methods=['POST'])\ndef login():\n \"\"\"Check if user's email matches password, otherwise ask user to try again.\"\"\"\n login_email = request.form.get('login_email')\n login_password = request.form.get('login_password')\n if db.session.query(User).filter(User.email == login_email, User.\n password == login_password).first():\n flash('Login SUCCESS.', 'success')\n user = User.query.filter(User.email == login_email).one()\n session['logged_in_user_email'] = login_email\n session['logged_in_user'] = user.user_id\n return redirect('/users/%s' % user.user_id)\n else:\n flash('Incorrect password. Please try again!', 'danger')\n return redirect('/signup-login')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
98,399
c81a9f51b59765477c4fdc2f811afef54dd61f8f
import requests from requests.compat import urljoin def api_post(base_url, api, parameters): api_endpoint = urljoin(base_url, api) headers = {'Content-Type': 'application/json', 'X-Device-Name':'Arduino Furnace Monitor'} post = requests.post(url=api_endpoint, headers=headers, json=parameters) return post base_url = 'http://192.168.0.10:8080' api = 'iot-redirect/data/add/' data = {'tag': 'AcComp001', 'value': 'On', } r = api_post(base_url, api, data) print('Status:', r.status_code) print('Reason:', r.reason) print('Response text:', r.text)
[ "import requests\nfrom requests.compat import urljoin\n\n\ndef api_post(base_url, api, parameters):\n api_endpoint = urljoin(base_url, api)\n headers = {'Content-Type': 'application/json',\n 'X-Device-Name':'Arduino Furnace Monitor'}\n post = requests.post(url=api_endpoint, headers=headers, json=parameters)\n return post\n\n\nbase_url = 'http://192.168.0.10:8080'\napi = 'iot-redirect/data/add/'\n\ndata = {'tag': 'AcComp001',\n 'value': 'On',\n }\n\nr = api_post(base_url, api, data)\nprint('Status:', r.status_code)\nprint('Reason:', r.reason)\nprint('Response text:', r.text)\n", "import requests\nfrom requests.compat import urljoin\n\n\ndef api_post(base_url, api, parameters):\n api_endpoint = urljoin(base_url, api)\n headers = {'Content-Type': 'application/json', 'X-Device-Name':\n 'Arduino Furnace Monitor'}\n post = requests.post(url=api_endpoint, headers=headers, json=parameters)\n return post\n\n\nbase_url = 'http://192.168.0.10:8080'\napi = 'iot-redirect/data/add/'\ndata = {'tag': 'AcComp001', 'value': 'On'}\nr = api_post(base_url, api, data)\nprint('Status:', r.status_code)\nprint('Reason:', r.reason)\nprint('Response text:', r.text)\n", "<import token>\n\n\ndef api_post(base_url, api, parameters):\n api_endpoint = urljoin(base_url, api)\n headers = {'Content-Type': 'application/json', 'X-Device-Name':\n 'Arduino Furnace Monitor'}\n post = requests.post(url=api_endpoint, headers=headers, json=parameters)\n return post\n\n\nbase_url = 'http://192.168.0.10:8080'\napi = 'iot-redirect/data/add/'\ndata = {'tag': 'AcComp001', 'value': 'On'}\nr = api_post(base_url, api, data)\nprint('Status:', r.status_code)\nprint('Reason:', r.reason)\nprint('Response text:', r.text)\n", "<import token>\n\n\ndef api_post(base_url, api, parameters):\n api_endpoint = urljoin(base_url, api)\n headers = {'Content-Type': 'application/json', 'X-Device-Name':\n 'Arduino Furnace Monitor'}\n post = requests.post(url=api_endpoint, headers=headers, json=parameters)\n return post\n\n\n<assignment token>\nprint('Status:', r.status_code)\nprint('Reason:', r.reason)\nprint('Response text:', r.text)\n", "<import token>\n\n\ndef api_post(base_url, api, parameters):\n api_endpoint = urljoin(base_url, api)\n headers = {'Content-Type': 'application/json', 'X-Device-Name':\n 'Arduino Furnace Monitor'}\n post = requests.post(url=api_endpoint, headers=headers, json=parameters)\n return post\n\n\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<assignment token>\n<code token>\n" ]
false