index
int64
0
10k
blob_id
stringlengths
40
40
step-1
stringlengths
0
305k
step-2
stringlengths
6
1.1M
step-3
stringlengths
15
1.23M
step-4
stringlengths
23
1.34M
step-5
stringlengths
55
1.2M
step-ids
listlengths
1
5
2,100
881d0c0808d8c0e656cdbf49450367553c100630
<mask token> def get_all_words(): words = [] with open('poem.txt') as poem: for line in poem: line = line.strip().split(' ') for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = ''.join(word_as_list) print( f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}' ) answer = input( 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ') if answer.strip().upper() == 'Q': print( """მადლობა თამაშისთვის და გახსოვდეს: 'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'""" ) break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print( f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!" ) <mask token>
<mask token> def get_all_words(): words = [] with open('poem.txt') as poem: for line in poem: line = line.strip().split(' ') for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = ''.join(word_as_list) print( f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}' ) answer = input( 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ') if answer.strip().upper() == 'Q': print( """მადლობა თამაშისთვის და გახსოვდეს: 'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'""" ) break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print( f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!" ) def main(): words_to_play = get_all_words() print( """ეკრანზე გამოისახება "ვეფხისტყაოსნიდან" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული. შენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. """ ) game(words_to_play) <mask token>
<mask token> def get_all_words(): words = [] with open('poem.txt') as poem: for line in poem: line = line.strip().split(' ') for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = ''.join(word_as_list) print( f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}' ) answer = input( 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ') if answer.strip().upper() == 'Q': print( """მადლობა თამაშისთვის და გახსოვდეს: 'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'""" ) break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print( f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!" ) def main(): words_to_play = get_all_words() print( """ეკრანზე გამოისახება "ვეფხისტყაოსნიდან" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული. შენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. """ ) game(words_to_play) if __name__ == '__main__': main()
import random def get_all_words(): words = [] with open('poem.txt') as poem: for line in poem: line = line.strip().split(' ') for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = ''.join(word_as_list) print( f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}' ) answer = input( 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ') if answer.strip().upper() == 'Q': print( """მადლობა თამაშისთვის და გახსოვდეს: 'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'""" ) break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print( f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!" ) def main(): words_to_play = get_all_words() print( """ეკრანზე გამოისახება "ვეფხისტყაოსნიდან" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული. შენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. """ ) game(words_to_play) if __name__ == '__main__': main()
# ეს არის კოდი, რომელიც ქმნის აბსურდს import random def get_all_words(): words = [] # ეს არის ლისტი ყველა ისეთი სიტყვის with open("poem.txt") as poem: # რომლის ასოების სიმრავლეც 6-ზე ნაკლებია for line in poem: # გრძელ სიტყვებთან თამაში რთული აღმოჩნდა line = line.strip().split(" ") for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: # რენდომად ავარჩიოთ სიტყვა, რომელსაც მომხმარებელი გამოიცნობს random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] # რენდომად არჩეული სიტყვა გადავაქციოთ ლისტად და ლისტში შემავალი ელემენტები რენდომად დავაგენერიროთ for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = "".join(word_as_list) print(f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}') answer = input("შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ") if answer.strip().upper() == "Q": print("მადლობა თამაშისთვის და გახსოვდეს:" "\n'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'") break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print(f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!") def main(): words_to_play = get_all_words() print('ეკრანზე გამოისახება "ვეფხისტყაოსნიდან" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული.' '\nშენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. \n') game(words_to_play) if __name__ == '__main__': main()
[ 2, 3, 4, 5, 6 ]
2,101
d24bbfc3587a2a79891a11e00ec865498c01c286
<mask token> def DSA_2048(filename, key): with open(filename, 'rb') as f: message = f.read() hash_obj = SHA256.new(message) signer = DSS.new(key, 'fips-186-3') signature = signer.sign(hash_obj) f = open('public_key.pem', 'r') hash_obj = SHA256.new(message) pub_key = DSA.import_key(f.read()) verifier = DSS.new(pub_key, 'fips-186-3') try: verifier.verify(hash_obj, signature) print('The message is authentic.') except ValueError: print('The message is not authentic.') <mask token>
<mask token> with open('small_file.txt', 'wb') as f: f.write(os.urandom(kB)) <mask token> with open('large_file.txt', 'wb') as f: f.write(os.urandom(mB)) <mask token> with open('public_key.pem', 'wb') as f: f.write(key.publickey().export_key()) f.close() <mask token> print('Key Generation Time: ', End - Begin) def DSA_2048(filename, key): with open(filename, 'rb') as f: message = f.read() hash_obj = SHA256.new(message) signer = DSS.new(key, 'fips-186-3') signature = signer.sign(hash_obj) f = open('public_key.pem', 'r') hash_obj = SHA256.new(message) pub_key = DSA.import_key(f.read()) verifier = DSS.new(pub_key, 'fips-186-3') try: verifier.verify(hash_obj, signature) print('The message is authentic.') except ValueError: print('The message is not authentic.') <mask token> DSA_2048('small_file.txt', key) <mask token> print('Time taken for DSA_2048 with 1 kb file: ', End - Begin) if End - Begin != 0: print('DSA_2048 speed for 1 kb file: ', 1024 / (End - Begin), 'bytes/sec') <mask token> DSA_2048('large_file.txt', key) <mask token> print('Time taken for DSA_2048 with 10 mb file: ', End - Begin) if End - Begin != 0: print('DSA_2048 speed for 1 kb file: ', 10485760 / (End - Begin), 'bytes/sec') exit()
<mask token> kB = 1024 with open('small_file.txt', 'wb') as f: f.write(os.urandom(kB)) mB = 10485760 with open('large_file.txt', 'wb') as f: f.write(os.urandom(mB)) Begin = time.time() key = DSA.generate(2048) with open('public_key.pem', 'wb') as f: f.write(key.publickey().export_key()) f.close() End = time.time() print('Key Generation Time: ', End - Begin) def DSA_2048(filename, key): with open(filename, 'rb') as f: message = f.read() hash_obj = SHA256.new(message) signer = DSS.new(key, 'fips-186-3') signature = signer.sign(hash_obj) f = open('public_key.pem', 'r') hash_obj = SHA256.new(message) pub_key = DSA.import_key(f.read()) verifier = DSS.new(pub_key, 'fips-186-3') try: verifier.verify(hash_obj, signature) print('The message is authentic.') except ValueError: print('The message is not authentic.') Begin = time.time() DSA_2048('small_file.txt', key) End = time.time() print('Time taken for DSA_2048 with 1 kb file: ', End - Begin) if End - Begin != 0: print('DSA_2048 speed for 1 kb file: ', 1024 / (End - Begin), 'bytes/sec') Begin = time.time() DSA_2048('large_file.txt', key) End = time.time() print('Time taken for DSA_2048 with 10 mb file: ', End - Begin) if End - Begin != 0: print('DSA_2048 speed for 1 kb file: ', 10485760 / (End - Begin), 'bytes/sec') exit()
from Crypto.PublicKey import DSA from Crypto.Signature import DSS from Crypto.Hash import SHA256 import os import time kB = 1024 with open('small_file.txt', 'wb') as f: f.write(os.urandom(kB)) mB = 10485760 with open('large_file.txt', 'wb') as f: f.write(os.urandom(mB)) Begin = time.time() key = DSA.generate(2048) with open('public_key.pem', 'wb') as f: f.write(key.publickey().export_key()) f.close() End = time.time() print('Key Generation Time: ', End - Begin) def DSA_2048(filename, key): with open(filename, 'rb') as f: message = f.read() hash_obj = SHA256.new(message) signer = DSS.new(key, 'fips-186-3') signature = signer.sign(hash_obj) f = open('public_key.pem', 'r') hash_obj = SHA256.new(message) pub_key = DSA.import_key(f.read()) verifier = DSS.new(pub_key, 'fips-186-3') try: verifier.verify(hash_obj, signature) print('The message is authentic.') except ValueError: print('The message is not authentic.') Begin = time.time() DSA_2048('small_file.txt', key) End = time.time() print('Time taken for DSA_2048 with 1 kb file: ', End - Begin) if End - Begin != 0: print('DSA_2048 speed for 1 kb file: ', 1024 / (End - Begin), 'bytes/sec') Begin = time.time() DSA_2048('large_file.txt', key) End = time.time() print('Time taken for DSA_2048 with 10 mb file: ', End - Begin) if End - Begin != 0: print('DSA_2048 speed for 1 kb file: ', 10485760 / (End - Begin), 'bytes/sec') exit()
from Crypto.PublicKey import DSA from Crypto.Signature import DSS from Crypto.Hash import SHA256 import os import time kB = 1024 # 1kB with open('small_file.txt', 'wb') as f: f.write(os.urandom(kB)) mB = 10485760 # 1GB with open('large_file.txt', 'wb') as f: f.write(os.urandom(mB)) Begin = time.time() key = DSA.generate(2048) with open("public_key.pem", "wb") as f: f.write(key.publickey().export_key()) f.close() End = time.time() print("Key Generation Time: ", End-Begin) def DSA_2048(filename,key): with open(filename, 'rb') as f: message = f.read() hash_obj = SHA256.new(message) signer = DSS.new(key, 'fips-186-3') signature = signer.sign(hash_obj) # Load the public key f = open("public_key.pem", "r") hash_obj = SHA256.new(message) pub_key = DSA.import_key(f.read()) verifier = DSS.new(pub_key, 'fips-186-3') # Verify the authenticity of the message try: verifier.verify(hash_obj, signature) print ("The message is authentic.") except ValueError: print ("The message is not authentic.") Begin=time.time() DSA_2048('small_file.txt',key) End=time.time() print("Time taken for DSA_2048 with 1 kb file: ",End-Begin) if End-Begin != 0: print("DSA_2048 speed for 1 kb file: ",1024/(End-Begin),"bytes/sec") Begin=time.time() DSA_2048('large_file.txt',key) End=time.time() print("Time taken for DSA_2048 with 10 mb file: ",End-Begin) if End-Begin != 0: print("DSA_2048 speed for 1 kb file: ",10485760/(End-Begin),"bytes/sec") exit()
[ 1, 2, 3, 4, 5 ]
2,102
6fc43919f521234d0dc9e167bb72f014e9c0bf17
<mask token> class simple_drawing_window1(simple_drawing_window): <mask token> <mask token>
<mask token> class simple_drawing_window1(simple_drawing_window): <mask token> def paintEvent(self, e): p = QPainter() p.begin(self) """ p.setPen(QColor(0,0,0)) p.setBrush(QColor(0,127,0)) p.drawPolygon( [QPoint(70,100), QPoint(100,110), QPoint(130, 100), QPoint(100,150),] ) """ p.setPen(QColor(255, 127, 0)) p.setBrush(QColor(255, 127, 0)) p.drawPolygon([QPoint(50, 100), QPoint(200, 100), QPoint(200, 400), QPoint(50, 400)]) p.drawPixmap(QRect(400, 150, 200, 200), self.rabbit) p.end()
<mask token> class simple_drawing_window1(simple_drawing_window): def __init__(self): super().__init__() def paintEvent(self, e): p = QPainter() p.begin(self) """ p.setPen(QColor(0,0,0)) p.setBrush(QColor(0,127,0)) p.drawPolygon( [QPoint(70,100), QPoint(100,110), QPoint(130, 100), QPoint(100,150),] ) """ p.setPen(QColor(255, 127, 0)) p.setBrush(QColor(255, 127, 0)) p.drawPolygon([QPoint(50, 100), QPoint(200, 100), QPoint(200, 400), QPoint(50, 400)]) p.drawPixmap(QRect(400, 150, 200, 200), self.rabbit) p.end()
import sys from PySide6.QtCore import * from PySide6.QtWidgets import * from PySide6.QtGui import * from simple_drawing_window import * class simple_drawing_window1(simple_drawing_window): def __init__(self): super().__init__() def paintEvent(self, e): p = QPainter() p.begin(self) """ p.setPen(QColor(0,0,0)) p.setBrush(QColor(0,127,0)) p.drawPolygon( [QPoint(70,100), QPoint(100,110), QPoint(130, 100), QPoint(100,150),] ) """ p.setPen(QColor(255, 127, 0)) p.setBrush(QColor(255, 127, 0)) p.drawPolygon([QPoint(50, 100), QPoint(200, 100), QPoint(200, 400), QPoint(50, 400)]) p.drawPixmap(QRect(400, 150, 200, 200), self.rabbit) p.end()
import sys from PySide6.QtCore import * from PySide6.QtWidgets import * from PySide6.QtGui import * from simple_drawing_window import * class simple_drawing_window1( simple_drawing_window): def __init__(self): super().__init__() def paintEvent(self, e): p = QPainter() p.begin(self) """ p.setPen(QColor(0,0,0)) p.setBrush(QColor(0,127,0)) p.drawPolygon( [QPoint(70,100), QPoint(100,110), QPoint(130, 100), QPoint(100,150),] ) """ p.setPen(QColor(255,127,0)) p.setBrush(QColor(255,127,0)) p.drawPolygon( [QPoint(50,100), QPoint(200,100),QPoint(200,400), QPoint(50,400),] ) p.drawPixmap(QRect(400,150,200,200), self.rabbit) p.end()
[ 1, 2, 3, 4, 5 ]
2,103
4f15e2743b33e2f672cd258172da852edb7e4118
<mask token>
<mask token> EvinceRelation('different from')
from utils import * EvinceRelation('different from')
from utils import * EvinceRelation("different from")
null
[ 0, 1, 2, 3 ]
2,104
9d8c4bf9f9279d5e30d0e9742cdd31713e5f4b9e
<mask token>
<mask token> @app.route('/') @app.route('/index') def index(): return 'Hello world' <mask token>
<mask token> @app.route('/') @app.route('/index') def index(): return 'Hello world' @app.route('/api_post', methods=['POST']) def postJsonHandler(): print(request.is_json) content = request.get_json() print(content) return 'JSON posted'
from app import app from flask import request @app.route('/') @app.route('/index') def index(): return 'Hello world' @app.route('/api_post', methods=['POST']) def postJsonHandler(): print(request.is_json) content = request.get_json() print(content) return 'JSON posted'
from app import app from flask import request @app.route('/') @app.route('/index') def index(): return 'Hello world' @app.route('/api_post', methods = ['POST']) def postJsonHandler(): print (request.is_json) content = request.get_json() print (content) return 'JSON posted'
[ 0, 1, 2, 3, 4 ]
2,105
166520ab5b9fd5a55dd2aa30b4d62f55096ce6cb
<mask token> def get_gff_from_list(gff_filename, listfile, partial_ok=False): seqs = [line.strip() for line in open(listfile)] for r in GFF.collapseGFFReader(gff_filename): if r.seqid in seqs or r.seqid.split('|')[0 ] in seqs or partial_ok and any(r.seqid.startswith(x) for x in seqs ): GFF.write_collapseGFF_format(sys.stdout, r) @app.command(name='') def main(gff_filename: str=typer.Argument(..., help= 'Input gff filename to extract sequences from'), list_filename: str= typer.Argument(..., help='List of sequence IDs to extract'), partial: bool=typer.Option(False, help='OK if seq IDs only match the beginning'), version: bool=typer.Option(None, '--version', callback=version_callback, is_eager=True, help='Prints the version of the SQANTI3 package.')) ->None: get_gff_from_list(gff_filename, list_filename, partial) <mask token>
<mask token> def get_gff_from_list(gff_filename, listfile, partial_ok=False): seqs = [line.strip() for line in open(listfile)] for r in GFF.collapseGFFReader(gff_filename): if r.seqid in seqs or r.seqid.split('|')[0 ] in seqs or partial_ok and any(r.seqid.startswith(x) for x in seqs ): GFF.write_collapseGFF_format(sys.stdout, r) @app.command(name='') def main(gff_filename: str=typer.Argument(..., help= 'Input gff filename to extract sequences from'), list_filename: str= typer.Argument(..., help='List of sequence IDs to extract'), partial: bool=typer.Option(False, help='OK if seq IDs only match the beginning'), version: bool=typer.Option(None, '--version', callback=version_callback, is_eager=True, help='Prints the version of the SQANTI3 package.')) ->None: get_gff_from_list(gff_filename, list_filename, partial) if __name__ == '__main__': typer.run(main)
<mask token> app = typer.Typer(name='cupcake.sequence.get_gffs_from_list', help= 'Get records from a GFF file from a list') def get_gff_from_list(gff_filename, listfile, partial_ok=False): seqs = [line.strip() for line in open(listfile)] for r in GFF.collapseGFFReader(gff_filename): if r.seqid in seqs or r.seqid.split('|')[0 ] in seqs or partial_ok and any(r.seqid.startswith(x) for x in seqs ): GFF.write_collapseGFF_format(sys.stdout, r) @app.command(name='') def main(gff_filename: str=typer.Argument(..., help= 'Input gff filename to extract sequences from'), list_filename: str= typer.Argument(..., help='List of sequence IDs to extract'), partial: bool=typer.Option(False, help='OK if seq IDs only match the beginning'), version: bool=typer.Option(None, '--version', callback=version_callback, is_eager=True, help='Prints the version of the SQANTI3 package.')) ->None: get_gff_from_list(gff_filename, list_filename, partial) if __name__ == '__main__': typer.run(main)
import sys import typer from cupcake import version_callback from cupcake.sequence import GFF app = typer.Typer(name='cupcake.sequence.get_gffs_from_list', help= 'Get records from a GFF file from a list') def get_gff_from_list(gff_filename, listfile, partial_ok=False): seqs = [line.strip() for line in open(listfile)] for r in GFF.collapseGFFReader(gff_filename): if r.seqid in seqs or r.seqid.split('|')[0 ] in seqs or partial_ok and any(r.seqid.startswith(x) for x in seqs ): GFF.write_collapseGFF_format(sys.stdout, r) @app.command(name='') def main(gff_filename: str=typer.Argument(..., help= 'Input gff filename to extract sequences from'), list_filename: str= typer.Argument(..., help='List of sequence IDs to extract'), partial: bool=typer.Option(False, help='OK if seq IDs only match the beginning'), version: bool=typer.Option(None, '--version', callback=version_callback, is_eager=True, help='Prints the version of the SQANTI3 package.')) ->None: get_gff_from_list(gff_filename, list_filename, partial) if __name__ == '__main__': typer.run(main)
#!/usr/bin/env python import sys import typer from cupcake import version_callback from cupcake.sequence import GFF app = typer.Typer( name="cupcake.sequence.get_gffs_from_list", help="Get records from a GFF file from a list", ) def get_gff_from_list(gff_filename, listfile, partial_ok=False): seqs = [line.strip() for line in open(listfile)] for r in GFF.collapseGFFReader(gff_filename): if ( r.seqid in seqs or r.seqid.split("|")[0] in seqs or (partial_ok and any(r.seqid.startswith(x) for x in seqs)) ): GFF.write_collapseGFF_format(sys.stdout, r) @app.command(name="") def main( gff_filename: str = typer.Argument( ..., help="Input gff filename to extract sequences from" ), list_filename: str = typer.Argument(..., help="List of sequence IDs to extract"), partial: bool = typer.Option( False, help="OK if seq IDs only match the beginning", ), version: bool = typer.Option( None, "--version", callback=version_callback, is_eager=True, help="Prints the version of the SQANTI3 package.", ), ) -> None: get_gff_from_list(gff_filename, list_filename, partial) if __name__ == "__main__": typer.run(main)
[ 2, 3, 4, 5, 6 ]
2,106
e6884afaae15e903c62eecb3baec868548998080
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('words', '0004_auto_20180330_0647')] operations = [migrations.AddField(model_name='review', name= 'modified_month', field=models.IntegerField(null=True)), migrations .AddField(model_name='review', name='modified_week', field=models. IntegerField(null=True)), migrations.AddField(model_name='review', name='modified_year', field=models.IntegerField(null=True))]
from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('words', '0004_auto_20180330_0647')] operations = [migrations.AddField(model_name='review', name= 'modified_month', field=models.IntegerField(null=True)), migrations .AddField(model_name='review', name='modified_week', field=models. IntegerField(null=True)), migrations.AddField(model_name='review', name='modified_year', field=models.IntegerField(null=True))]
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-03-31 17:58 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('words', '0004_auto_20180330_0647'), ] operations = [ migrations.AddField( model_name='review', name='modified_month', field=models.IntegerField(null=True), ), migrations.AddField( model_name='review', name='modified_week', field=models.IntegerField(null=True), ), migrations.AddField( model_name='review', name='modified_year', field=models.IntegerField(null=True), ), ]
[ 0, 1, 2, 3, 4 ]
2,107
1a42892095d820f1e91ba5e7f2804b5a21e39676
<mask token> def click(valor): global i screen.insert(i, valor) i += 1 <mask token> def hacer_operacion(): ecuacion = screen.get() try: result = eval(ecuacion) screen.delete(0, END) screen.insert(0, result) i = 0 except: screen.delete(0, END) r = screen.insert(0, 'ERROR') print(r) <mask token>
<mask token> root.title('Calculadora LE-1409') root.iconbitmap('calculadora.ico') root.geometry('510x480') root.config(bg='gray42') root.resizable(False, False) <mask token> screen.grid(row=0, column=0, columnspan=5, padx=20, pady=20) <mask token> def click(valor): global i screen.insert(i, valor) i += 1 def borrar(): screen.delete(0, END) i = 0 def hacer_operacion(): ecuacion = screen.get() try: result = eval(ecuacion) screen.delete(0, END) screen.insert(0, result) i = 0 except: screen.delete(0, END) r = screen.insert(0, 'ERROR') print(r) <mask token> Button_Pi.grid(row=1, column=0, padx=10, pady=10) <mask token> Button_Left.grid(row=1, column=1, padx=10, pady=10) <mask token> Button_Right.grid(row=1, column=2, padx=10, pady=10) <mask token> Button_AC.grid(row=1, column=3, padx=10, pady=10) <mask token> Button_Div.grid(row=1, column=4, padx=10, pady=10) <mask token> Button_Exp.grid(row=2, column=0, padx=10, pady=10) <mask token> Button_7.grid(row=2, column=1, padx=10, pady=10) <mask token> Button_8.grid(row=2, column=2, padx=10, pady=10) <mask token> Button_9.grid(row=2, column=3, padx=10, pady=10) <mask token> Button_Multi.grid(row=2, column=4, padx=10, pady=10) <mask token> Button_Raiz.grid(row=3, column=0, padx=10, pady=10) <mask token> Button_4.grid(row=3, column=1, padx=10, pady=10) <mask token> Button_5.grid(row=3, column=2, padx=10, pady=10) <mask token> Button_6.grid(row=3, column=3, padx=10, pady=10) <mask token> Button_Menos.grid(row=3, column=4, padx=10, pady=10) <mask token> Button_LN.grid(row=4, column=0, padx=10, pady=10) <mask token> Button_1.grid(row=4, column=1, padx=10, pady=10) <mask token> Button_2.grid(row=4, column=2, padx=10, pady=10) <mask token> Button_3.grid(row=4, column=3, padx=10, pady=10) <mask token> Button_Mas.grid(row=4, column=4, padx=10, pady=10) <mask token> Button_Point.grid(row=5, column=0, padx=10, pady=10) <mask token> Button_0.grid(row=5, column=1, padx=10, pady=10) <mask token> Button_Igual.grid(row=5, column=2, columnspan=3, padx=10, pady=10) root.mainloop()
<mask token> root = Tk() root.title('Calculadora LE-1409') root.iconbitmap('calculadora.ico') root.geometry('510x480') root.config(bg='gray42') root.resizable(False, False) screen = Entry(root, font=('arial', 20, 'bold'), width=22, borderwidth=10, background='CadetBlue1', justify='right') screen.grid(row=0, column=0, columnspan=5, padx=20, pady=20) i = 0 def click(valor): global i screen.insert(i, valor) i += 1 def borrar(): screen.delete(0, END) i = 0 def hacer_operacion(): ecuacion = screen.get() try: result = eval(ecuacion) screen.delete(0, END) screen.insert(0, result) i = 0 except: screen.delete(0, END) r = screen.insert(0, 'ERROR') print(r) button_color = 'gray99' width_button = 10 height_button = 3 Button_Pi = Button(root, text='π', bg=button_color, width=width_button, height=height_button, command=lambda : click('pi')) Button_Pi.grid(row=1, column=0, padx=10, pady=10) Button_Left = Button(root, text='(', bg=button_color, width=width_button, height=height_button, command=lambda : click('(')) Button_Left.grid(row=1, column=1, padx=10, pady=10) Button_Right = Button(root, text=')', bg=button_color, width=width_button, height=height_button, command=lambda : click(')')) Button_Right.grid(row=1, column=2, padx=10, pady=10) Button_AC = Button(root, text='AC', bg=button_color, width=width_button, height=height_button, command=lambda : borrar()) Button_AC.grid(row=1, column=3, padx=10, pady=10) Button_Div = Button(root, text='÷', bg=button_color, width=width_button, height=height_button, command=lambda : click('/')) Button_Div.grid(row=1, column=4, padx=10, pady=10) Button_Exp = Button(root, text='EXP', bg=button_color, width=width_button, height=height_button, command=lambda : click('exp')) Button_Exp.grid(row=2, column=0, padx=10, pady=10) Button_7 = Button(root, text='7', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(7)) Button_7.grid(row=2, column=1, padx=10, pady=10) Button_8 = Button(root, text='8', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(8)) Button_8.grid(row=2, column=2, padx=10, pady=10) Button_9 = Button(root, text='9', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(9)) Button_9.grid(row=2, column=3, padx=10, pady=10) Button_Multi = Button(root, text='x', bg=button_color, width=width_button, height=height_button, command=lambda : click('*')) Button_Multi.grid(row=2, column=4, padx=10, pady=10) Button_Raiz = Button(root, text='√', bg=button_color, width=width_button, height=height_button, command=lambda : click('sqrt')) Button_Raiz.grid(row=3, column=0, padx=10, pady=10) Button_4 = Button(root, text='4', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(4)) Button_4.grid(row=3, column=1, padx=10, pady=10) Button_5 = Button(root, text='5', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(5)) Button_5.grid(row=3, column=2, padx=10, pady=10) Button_6 = Button(root, text='6', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(6)) Button_6.grid(row=3, column=3, padx=10, pady=10) Button_Menos = Button(root, text='-', bg=button_color, width=width_button, height=height_button, command=lambda : click('-')) Button_Menos.grid(row=3, column=4, padx=10, pady=10) Button_LN = Button(root, text='LN', bg=button_color, width=width_button, height=height_button, command=lambda : click('log')) Button_LN.grid(row=4, column=0, padx=10, pady=10) Button_1 = Button(root, text='1', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(1)) Button_1.grid(row=4, column=1, padx=10, pady=10) Button_2 = Button(root, text='2', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(2)) Button_2.grid(row=4, column=2, padx=10, pady=10) Button_3 = Button(root, text='3', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(3)) Button_3.grid(row=4, column=3, padx=10, pady=10) Button_Mas = Button(root, text='+', bg=button_color, width=width_button, height=height_button, command=lambda : click('+')) Button_Mas.grid(row=4, column=4, padx=10, pady=10) Button_Point = Button(root, text='.', bg=button_color, width=width_button, height=height_button, command=lambda : click('.')) Button_Point.grid(row=5, column=0, padx=10, pady=10) Button_0 = Button(root, text='0', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(0)) Button_0.grid(row=5, column=1, padx=10, pady=10) Button_Igual = Button(root, text='=', bg=button_color, width='40', height= height_button, command=lambda : hacer_operacion()) Button_Igual.grid(row=5, column=2, columnspan=3, padx=10, pady=10) root.mainloop()
from tkinter import * from math import * root = Tk() root.title('Calculadora LE-1409') root.iconbitmap('calculadora.ico') root.geometry('510x480') root.config(bg='gray42') root.resizable(False, False) screen = Entry(root, font=('arial', 20, 'bold'), width=22, borderwidth=10, background='CadetBlue1', justify='right') screen.grid(row=0, column=0, columnspan=5, padx=20, pady=20) i = 0 def click(valor): global i screen.insert(i, valor) i += 1 def borrar(): screen.delete(0, END) i = 0 def hacer_operacion(): ecuacion = screen.get() try: result = eval(ecuacion) screen.delete(0, END) screen.insert(0, result) i = 0 except: screen.delete(0, END) r = screen.insert(0, 'ERROR') print(r) button_color = 'gray99' width_button = 10 height_button = 3 Button_Pi = Button(root, text='π', bg=button_color, width=width_button, height=height_button, command=lambda : click('pi')) Button_Pi.grid(row=1, column=0, padx=10, pady=10) Button_Left = Button(root, text='(', bg=button_color, width=width_button, height=height_button, command=lambda : click('(')) Button_Left.grid(row=1, column=1, padx=10, pady=10) Button_Right = Button(root, text=')', bg=button_color, width=width_button, height=height_button, command=lambda : click(')')) Button_Right.grid(row=1, column=2, padx=10, pady=10) Button_AC = Button(root, text='AC', bg=button_color, width=width_button, height=height_button, command=lambda : borrar()) Button_AC.grid(row=1, column=3, padx=10, pady=10) Button_Div = Button(root, text='÷', bg=button_color, width=width_button, height=height_button, command=lambda : click('/')) Button_Div.grid(row=1, column=4, padx=10, pady=10) Button_Exp = Button(root, text='EXP', bg=button_color, width=width_button, height=height_button, command=lambda : click('exp')) Button_Exp.grid(row=2, column=0, padx=10, pady=10) Button_7 = Button(root, text='7', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(7)) Button_7.grid(row=2, column=1, padx=10, pady=10) Button_8 = Button(root, text='8', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(8)) Button_8.grid(row=2, column=2, padx=10, pady=10) Button_9 = Button(root, text='9', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(9)) Button_9.grid(row=2, column=3, padx=10, pady=10) Button_Multi = Button(root, text='x', bg=button_color, width=width_button, height=height_button, command=lambda : click('*')) Button_Multi.grid(row=2, column=4, padx=10, pady=10) Button_Raiz = Button(root, text='√', bg=button_color, width=width_button, height=height_button, command=lambda : click('sqrt')) Button_Raiz.grid(row=3, column=0, padx=10, pady=10) Button_4 = Button(root, text='4', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(4)) Button_4.grid(row=3, column=1, padx=10, pady=10) Button_5 = Button(root, text='5', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(5)) Button_5.grid(row=3, column=2, padx=10, pady=10) Button_6 = Button(root, text='6', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(6)) Button_6.grid(row=3, column=3, padx=10, pady=10) Button_Menos = Button(root, text='-', bg=button_color, width=width_button, height=height_button, command=lambda : click('-')) Button_Menos.grid(row=3, column=4, padx=10, pady=10) Button_LN = Button(root, text='LN', bg=button_color, width=width_button, height=height_button, command=lambda : click('log')) Button_LN.grid(row=4, column=0, padx=10, pady=10) Button_1 = Button(root, text='1', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(1)) Button_1.grid(row=4, column=1, padx=10, pady=10) Button_2 = Button(root, text='2', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(2)) Button_2.grid(row=4, column=2, padx=10, pady=10) Button_3 = Button(root, text='3', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(3)) Button_3.grid(row=4, column=3, padx=10, pady=10) Button_Mas = Button(root, text='+', bg=button_color, width=width_button, height=height_button, command=lambda : click('+')) Button_Mas.grid(row=4, column=4, padx=10, pady=10) Button_Point = Button(root, text='.', bg=button_color, width=width_button, height=height_button, command=lambda : click('.')) Button_Point.grid(row=5, column=0, padx=10, pady=10) Button_0 = Button(root, text='0', bg='CadetBlue1', width=width_button, height=height_button, command=lambda : click(0)) Button_0.grid(row=5, column=1, padx=10, pady=10) Button_Igual = Button(root, text='=', bg=button_color, width='40', height= height_button, command=lambda : hacer_operacion()) Button_Igual.grid(row=5, column=2, columnspan=3, padx=10, pady=10) root.mainloop()
from tkinter import * from math import * #Raiz root=Tk() root.title('Calculadora LE-1409') root.iconbitmap('calculadora.ico') root.geometry('510x480') root.config(bg='gray42') root.resizable(False, False) #Pantalla screen=Entry(root, font=("arial",20, "bold"), width=22, borderwidth=10, background="CadetBlue1", justify="right") screen.grid(row=0, column=0, columnspan=5, padx=20, pady=20) #Logica i = 0 def click(valor): global i screen.insert(i, valor) i += 1 def borrar(): screen.delete(0, END) i = 0 def hacer_operacion(): ecuacion=screen.get() try: result=eval(ecuacion) screen.delete(0, END) screen.insert(0, result) i = 0 except: screen.delete(0, END) r=screen.insert(0, "ERROR") print(r) #Botones button_color="gray99" width_button=10 height_button=3 #Fila 1 Button_Pi=Button(root, text="π", bg=button_color, width=width_button, height=height_button, command=lambda:click("pi")) Button_Pi.grid(row=1, column=0, padx=10, pady=10) Button_Left=Button(root, text="(", bg=button_color, width=width_button, height=height_button, command=lambda:click("(")) Button_Left.grid(row=1, column=1, padx=10, pady=10) Button_Right=Button(root, text=")", bg=button_color, width=width_button, height=height_button, command=lambda:click(")")) Button_Right.grid(row=1, column=2, padx=10, pady=10) Button_AC=Button(root, text="AC", bg=button_color, width=width_button, height=height_button, command=lambda:borrar()) Button_AC.grid(row=1, column=3, padx=10, pady=10) Button_Div=Button(root, text="÷", bg=button_color, width=width_button, height=height_button, command=lambda:click("/")) Button_Div.grid(row=1, column=4, padx=10, pady=10) #Fila 2 Button_Exp=Button(root, text="EXP", bg=button_color, width=width_button, height=height_button, command=lambda:click("exp")) Button_Exp.grid(row=2, column=0, padx=10, pady=10) Button_7=Button(root, text="7", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(7)) Button_7.grid(row=2, column=1, padx=10, pady=10) Button_8=Button(root, text="8", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(8)) Button_8.grid(row=2, column=2, padx=10, pady=10) Button_9=Button(root, text="9", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(9)) Button_9.grid(row=2, column=3, padx=10, pady=10) Button_Multi=Button(root, text="x", bg=button_color, width=width_button, height=height_button, command=lambda:click("*")) Button_Multi.grid(row=2, column=4, padx=10, pady=10) #Fila 3 Button_Raiz=Button(root, text="√", bg=button_color, width=width_button, height=height_button, command=lambda:click("sqrt")) Button_Raiz.grid(row=3, column=0, padx=10, pady=10) Button_4=Button(root, text="4", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(4)) Button_4.grid(row=3, column=1, padx=10, pady=10) Button_5=Button(root, text="5", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(5)) Button_5.grid(row=3, column=2, padx=10, pady=10) Button_6=Button(root, text="6", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(6)) Button_6.grid(row=3, column=3, padx=10, pady=10) Button_Menos=Button(root, text="-", bg=button_color, width=width_button, height=height_button, command=lambda:click("-")) Button_Menos.grid(row=3, column=4, padx=10, pady=10) #Fila 4 Button_LN=Button(root, text="LN", bg=button_color, width=width_button, height=height_button, command=lambda:click("log")) Button_LN.grid(row=4, column=0, padx=10, pady=10) Button_1=Button(root, text="1", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(1)) Button_1.grid(row=4, column=1, padx=10, pady=10) Button_2=Button(root, text="2", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(2)) Button_2.grid(row=4, column=2, padx=10, pady=10) Button_3=Button(root, text="3", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(3)) Button_3.grid(row=4, column=3, padx=10, pady=10) Button_Mas=Button(root, text="+", bg=button_color, width=width_button, height=height_button, command=lambda:click("+")) Button_Mas.grid(row=4, column=4, padx=10, pady=10) #Fila 5 Button_Point=Button(root, text=".", bg=button_color, width=width_button, height=height_button, command=lambda:click(".")) Button_Point.grid(row=5, column=0, padx=10, pady=10) Button_0=Button(root, text="0", bg="CadetBlue1", width=width_button, height=height_button, command=lambda:click(0)) Button_0.grid(row=5, column=1, padx=10, pady=10) Button_Igual=Button(root, text="=", bg=button_color, width="40", height=height_button, command=lambda: hacer_operacion()) Button_Igual.grid(row=5, column=2, columnspan=3, padx=10, pady=10) root.mainloop()
[ 2, 4, 5, 6, 7 ]
2,108
4545d9756d1f396ead0b0c75d319fb6a718375cd
<mask token>
<mask token> for i in range(len(check_list)): if check_list[i] in sentence: check = True idx = sentence.find(check_list[i]) sentence = sentence[idx + 1:] else: check = False break if check == True: print('I love UCPC') else: print('I hate UCPC')
sentence = input() check_list = ['U', 'C', 'P', 'C'] check = True for i in range(len(check_list)): if check_list[i] in sentence: check = True idx = sentence.find(check_list[i]) sentence = sentence[idx + 1:] else: check = False break if check == True: print('I love UCPC') else: print('I hate UCPC')
sentence = input() check_list = ["U", "C", "P", "C"] check = True for i in range(len(check_list)): if check_list[i] in sentence: check = True idx = sentence.find(check_list[i]) sentence = sentence[idx+1:] else: check = False break if check == True: print("I love UCPC") else: print("I hate UCPC")
null
[ 0, 1, 2, 3 ]
2,109
c71e367ad320d7eadabbbfda728d94448db6441d
<mask token>
<mask token> if exists(filename): f = open(filename) footprint = f.read() f.close() headerEndIndex = footprint.find('(pad ') header = footprint[:headerEndIndex] lastPadIndex = headerEndIndex while footprint.find('(pad ', lastPadIndex) > -1: lastPadIndex = footprint.find('(pad ', lastPadIndex) + 5 footerStartIndex = footprint.find('))', lastPadIndex) + 2 footer = footprint[footerStartIndex:] if header.find('TE-Connectivity') < 0: header = """(module iCEstick (layer F.Cu) (tedit 5BD73D6F) (fp_text reference REF** (at 0 -12.7) (layer F.SilkS) (effects (font (size 1 1) (thickness 0.15))) ) (fp_text value iCEstick (at 0 25.4) (layer F.Fab) (effects (font (size 1 1) (thickness 0.15))) ) """ footer = ')' <mask token> y -= 21.81 for i in range(10): if i == 0: shape = Shape.RECT else: shape = Shape.CIRCLE newPad = Pad(designator=designators_j1[i], through_hole=True, plated= True, shape=shape, at=(x, y), size=(padWidth, padWidth), drill= drillDiameter) pads_j1 += [newPad] x -= 2.54 <mask token> for i in range(6): if i == 0: shape = Shape.RECT else: shape = Shape.CIRCLE newPad = Pad(designator=designators_j2[0][i], through_hole=True, plated =True, shape=shape, at=(x, y), size=(padWidth, padWidth), drill= drillDiameter) pads_j2 += [newPad] y -= 2.54 x -= 2.54 <mask token> for i in range(6): newPad = Pad(designator=designators_j2[1][i], through_hole=True, plated =True, shape=Shape.CIRCLE, at=(x, y), size=(padWidth, padWidth), drill=drillDiameter) pads_j2 += [newPad] y -= 2.54 <mask token> for i in range(10): if i == 0: shape = Shape.RECT else: shape = Shape.CIRCLE newPad = Pad(designator=designators_j3[i], through_hole=True, plated= True, shape=shape, at=(x, y), size=(padWidth, padWidth), drill= drillDiameter) pads_j1 += [newPad] x -= 2.54 <mask token> for pad in pads: newFootprint += str(pad) + '\n' newFootprint += footer.strip() print(newFootprint) <mask token> f.write(newFootprint) f.close()
x = 0.0 y = 0.0 drillDiameter = 1.0 padWidth = 1.6 <mask token> filename = 'iCEstick.kicad_mod' header = '' footer = '' if exists(filename): f = open(filename) footprint = f.read() f.close() headerEndIndex = footprint.find('(pad ') header = footprint[:headerEndIndex] lastPadIndex = headerEndIndex while footprint.find('(pad ', lastPadIndex) > -1: lastPadIndex = footprint.find('(pad ', lastPadIndex) + 5 footerStartIndex = footprint.find('))', lastPadIndex) + 2 footer = footprint[footerStartIndex:] if header.find('TE-Connectivity') < 0: header = """(module iCEstick (layer F.Cu) (tedit 5BD73D6F) (fp_text reference REF** (at 0 -12.7) (layer F.SilkS) (effects (font (size 1 1) (thickness 0.15))) ) (fp_text value iCEstick (at 0 25.4) (layer F.Fab) (effects (font (size 1 1) (thickness 0.15))) ) """ footer = ')' designators_j1 = ['3V3', 'GND'] + [str(n) for n in range(112, 120)] designators_j2 = [[str(n) for n in range(78, 82)] + ['GND', '3V3'], ['87', '88', '90', '91', 'GND', '3V3']] designators_j3 = ['3V3', 'GND', '62', '61', '60', '56', '48', '47', '45', '44'] pads_j1 = [] oldX = x oldY = y y -= 21.81 for i in range(10): if i == 0: shape = Shape.RECT else: shape = Shape.CIRCLE newPad = Pad(designator=designators_j1[i], through_hole=True, plated= True, shape=shape, at=(x, y), size=(padWidth, padWidth), drill= drillDiameter) pads_j1 += [newPad] x -= 2.54 pads_j2 = [] x = oldX - 5.8 newY = oldY - 21.81 + 4.49 + 5 * 2.54 y = newY for i in range(6): if i == 0: shape = Shape.RECT else: shape = Shape.CIRCLE newPad = Pad(designator=designators_j2[0][i], through_hole=True, plated =True, shape=shape, at=(x, y), size=(padWidth, padWidth), drill= drillDiameter) pads_j2 += [newPad] y -= 2.54 x -= 2.54 y = newY for i in range(6): newPad = Pad(designator=designators_j2[1][i], through_hole=True, plated =True, shape=Shape.CIRCLE, at=(x, y), size=(padWidth, padWidth), drill=drillDiameter) pads_j2 += [newPad] y -= 2.54 pads_j3 = [] x = oldX y = oldY for i in range(10): if i == 0: shape = Shape.RECT else: shape = Shape.CIRCLE newPad = Pad(designator=designators_j3[i], through_hole=True, plated= True, shape=shape, at=(x, y), size=(padWidth, padWidth), drill= drillDiameter) pads_j1 += [newPad] x -= 2.54 pads = pads_j1 + pads_j2 + pads_j3 newFootprint = header for pad in pads: newFootprint += str(pad) + '\n' newFootprint += footer.strip() print(newFootprint) f = open(filename, 'w') f.write(newFootprint) f.close()
x = 0.0 y = 0.0 drillDiameter = 1.0 padWidth = 1.6 from os.path import exists from pad import * filename = 'iCEstick.kicad_mod' header = '' footer = '' if exists(filename): f = open(filename) footprint = f.read() f.close() headerEndIndex = footprint.find('(pad ') header = footprint[:headerEndIndex] lastPadIndex = headerEndIndex while footprint.find('(pad ', lastPadIndex) > -1: lastPadIndex = footprint.find('(pad ', lastPadIndex) + 5 footerStartIndex = footprint.find('))', lastPadIndex) + 2 footer = footprint[footerStartIndex:] if header.find('TE-Connectivity') < 0: header = """(module iCEstick (layer F.Cu) (tedit 5BD73D6F) (fp_text reference REF** (at 0 -12.7) (layer F.SilkS) (effects (font (size 1 1) (thickness 0.15))) ) (fp_text value iCEstick (at 0 25.4) (layer F.Fab) (effects (font (size 1 1) (thickness 0.15))) ) """ footer = ')' designators_j1 = ['3V3', 'GND'] + [str(n) for n in range(112, 120)] designators_j2 = [[str(n) for n in range(78, 82)] + ['GND', '3V3'], ['87', '88', '90', '91', 'GND', '3V3']] designators_j3 = ['3V3', 'GND', '62', '61', '60', '56', '48', '47', '45', '44'] pads_j1 = [] oldX = x oldY = y y -= 21.81 for i in range(10): if i == 0: shape = Shape.RECT else: shape = Shape.CIRCLE newPad = Pad(designator=designators_j1[i], through_hole=True, plated= True, shape=shape, at=(x, y), size=(padWidth, padWidth), drill= drillDiameter) pads_j1 += [newPad] x -= 2.54 pads_j2 = [] x = oldX - 5.8 newY = oldY - 21.81 + 4.49 + 5 * 2.54 y = newY for i in range(6): if i == 0: shape = Shape.RECT else: shape = Shape.CIRCLE newPad = Pad(designator=designators_j2[0][i], through_hole=True, plated =True, shape=shape, at=(x, y), size=(padWidth, padWidth), drill= drillDiameter) pads_j2 += [newPad] y -= 2.54 x -= 2.54 y = newY for i in range(6): newPad = Pad(designator=designators_j2[1][i], through_hole=True, plated =True, shape=Shape.CIRCLE, at=(x, y), size=(padWidth, padWidth), drill=drillDiameter) pads_j2 += [newPad] y -= 2.54 pads_j3 = [] x = oldX y = oldY for i in range(10): if i == 0: shape = Shape.RECT else: shape = Shape.CIRCLE newPad = Pad(designator=designators_j3[i], through_hole=True, plated= True, shape=shape, at=(x, y), size=(padWidth, padWidth), drill= drillDiameter) pads_j1 += [newPad] x -= 2.54 pads = pads_j1 + pads_j2 + pads_j3 newFootprint = header for pad in pads: newFootprint += str(pad) + '\n' newFootprint += footer.strip() print(newFootprint) f = open(filename, 'w') f.write(newFootprint) f.close()
#!/usr/bin/python # Point of origin (connector J3, pad 1, net 3V3) x = 0.0 y = 0.0 drillDiameter = 1.0 padWidth = 1.6 from os.path import exists from pad import * filename="iCEstick.kicad_mod" header = "" footer = "" if exists(filename): # Read existing footprint f = open(filename) footprint = f.read() f.close() # Find the end of the header headerEndIndex = footprint.find("(pad ") header = footprint[:headerEndIndex] # Find the end of the pads list lastPadIndex = headerEndIndex while (footprint.find("(pad ", lastPadIndex) > -1): lastPadIndex = footprint.find("(pad ", lastPadIndex) + 5 footerStartIndex = footprint.find("))", lastPadIndex) + 2 footer = footprint[footerStartIndex:] if header.find("TE-Connectivity") < 0: header = \ """(module iCEstick (layer F.Cu) (tedit 5BD73D6F) (fp_text reference REF** (at 0 -12.7) (layer F.SilkS) (effects (font (size 1 1) (thickness 0.15))) ) (fp_text value iCEstick (at 0 25.4) (layer F.Fab) (effects (font (size 1 1) (thickness 0.15))) ) """ footer = ")" # # Generate pads according to schematic drawing # designators_j1 = ["3V3", "GND"] + [str(n) for n in range(112,120)] designators_j2 = [ \ [str(n) for n in range(78,82)] + ["GND", "3V3"], \ ["87", "88", "90", "91", "GND", "3V3"] \ ] designators_j3 = ["3V3", "GND", "62", "61", "60", "56", "48", "47", "45", "44"] # # J1 connector pad list # pads_j1 = [] oldX = x oldY = y y -= 21.81 for i in range(10): # The first pad is a rectangle, the remaining ones are circular if (i == 0): shape = Shape.RECT else: shape = Shape.CIRCLE # Create pad object newPad = Pad( designator = designators_j1[i], through_hole = True, plated = True, shape = shape, at = (x, y), size = (padWidth, padWidth), drill = drillDiameter ) pads_j1 += [newPad] x -= 2.54 # # J2 connector pad list # pads_j2 = [] x = oldX - 5.80 newY = oldY - 21.81 + 4.49 + 5*2.54 y = newY for i in range(6): # The first pad is a rectangle, the remaining ones are circular if (i == 0): shape = Shape.RECT else: shape = Shape.CIRCLE # Create pad object newPad = Pad( designator = designators_j2[0][i], through_hole = True, plated = True, shape = shape, at = (x, y), size = (padWidth, padWidth), drill = drillDiameter ) pads_j2 += [newPad] y -= 2.54 # Second (inner) row of pins of J2 x -= 2.54 y = newY for i in range(6): # Create pad object newPad = Pad( designator = designators_j2[1][i], through_hole = True, plated = True, shape = Shape.CIRCLE, at = (x, y), size = (padWidth, padWidth), drill = drillDiameter ) pads_j2 += [newPad] y -= 2.54 # # J3 connector pad list # pads_j3 = [] x = oldX y = oldY for i in range(10): # The first pad is a rectangle, the remaining ones are circular if (i == 0): shape = Shape.RECT else: shape = Shape.CIRCLE # Create pad object newPad = Pad( designator = designators_j3[i], through_hole = True, plated = True, shape = shape, at = (x, y), size = (padWidth, padWidth), drill = drillDiameter ) pads_j1 += [newPad] x -= 2.54 # Make a list of all pads pads = pads_j1 + pads_j2 + pads_j3 # Compose new footprint from header, pads and footer newFootprint = header for pad in pads: newFootprint += str(pad) + "\n" newFootprint += footer.strip() # Print generated footprint to screen print(newFootprint) # Save generated footprint to file f = open(filename, "w") f.write(newFootprint) f.close()
[ 0, 1, 2, 3, 4 ]
2,110
463f50567c9dd4b7b47a84eea715541cec5d3cb5
<mask token> class IndexPage: <mask token> <mask token>
<mask token> class IndexPage: def login(self, username, password): BasePage.open_url(self, self.base_url) BasePage.send_key(self, 'css', '#username', username) BasePage.send_key(self, 'css', '#password', password) BasePage.click_element(self, 'css', '.ant-btn') <mask token>
<mask token> sys.path.append('../') <mask token> class IndexPage: def login(self, username, password): BasePage.open_url(self, self.base_url) BasePage.send_key(self, 'css', '#username', username) BasePage.send_key(self, 'css', '#password', password) BasePage.click_element(self, 'css', '.ant-btn') if __name__ == '__main__': login_cookies(self)
from time import sleep import sys sys.path.append('../') from common.encapsulation import BasePage class IndexPage: def login(self, username, password): BasePage.open_url(self, self.base_url) BasePage.send_key(self, 'css', '#username', username) BasePage.send_key(self, 'css', '#password', password) BasePage.click_element(self, 'css', '.ant-btn') if __name__ == '__main__': login_cookies(self)
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: Dang Kai # @Date: 2018-10-30 15:52:57 # @Last Modified time: 2018-11-10 09:09:21 # @E-mail: [email protected] # @Description: from time import sleep import sys sys.path.append('../') from common.encapsulation import BasePage class IndexPage: def login(self, username, password): # 登录页面 BasePage.open_url(self,self.base_url) BasePage.send_key(self,'css','#username',username) BasePage.send_key(self,'css',"#password",password) BasePage.click_element(self,"css",".ant-btn") if __name__ == '__main__': login_cookies(self)
[ 1, 2, 3, 4, 5 ]
2,111
7ee5779625d53ff1e18f73b20ba5849666f89b55
<mask token> class RandomTest: def __init__(self, seed=42, deterministic=False): self.seed = seed self.deterministic = deterministic <mask token> <mask token>
<mask token> class RandomTest: def __init__(self, seed=42, deterministic=False): self.seed = seed self.deterministic = deterministic @fixed_random def test_function(self, i): return [random.randint(0, 10) for x in range(10)] <mask token>
<mask token> def fixed_random(func): """Create the data""" def _func(self, i): state = random.getstate() if self.deterministic or self.seed is not None: random.seed(self.seed + i) results = func(self, i) random.setstate(state) else: results = func(self, i) return results return _func class RandomTest: def __init__(self, seed=42, deterministic=False): self.seed = seed self.deterministic = deterministic @fixed_random def test_function(self, i): return [random.randint(0, 10) for x in range(10)] <mask token> print(rt.test_function(0)) print(rt.test_function(0)) <mask token> print(rt.test_function(0)) print(rt.test_function(0))
<mask token> import random def fixed_random(func): """Create the data""" def _func(self, i): state = random.getstate() if self.deterministic or self.seed is not None: random.seed(self.seed + i) results = func(self, i) random.setstate(state) else: results = func(self, i) return results return _func class RandomTest: def __init__(self, seed=42, deterministic=False): self.seed = seed self.deterministic = deterministic @fixed_random def test_function(self, i): return [random.randint(0, 10) for x in range(10)] rt = RandomTest(0) print(rt.test_function(0)) print(rt.test_function(0)) rt.seed = 1 print(rt.test_function(0)) print(rt.test_function(0))
#/usr/bin/env python3 """Demonstrates how to do deterministic task generation using l2l""" import random def fixed_random(func): """Create the data""" def _func(self, i): state = random.getstate() if self.deterministic or self.seed is not None: random.seed(self.seed + i) results = func(self, i) random.setstate(state) else: results = func(self, i) return results return _func class RandomTest: def __init__(self, seed=42, deterministic=False): self.seed = seed self.deterministic = deterministic @fixed_random def test_function(self, i): return [random.randint(0, 10) for x in range(10)] rt = RandomTest(0) print(rt.test_function(0)) print(rt.test_function(0)) rt.seed = 1 print(rt.test_function(0)) print(rt.test_function(0))
[ 2, 3, 5, 7, 8 ]
2,112
270dba92af583e37c35ed5365f764adfdc2f947d
<mask token> def test_ogr_toposjon_objects_is_dict(): ds = ogr.Open('data/topojson/topojson2.topojson') lyr = ds.GetLayer(0) assert lyr.GetName() == 'a_layer' assert lyr.GetLayerDefn().GetFieldCount() == 2 assert lyr.GetLayerDefn().GetFieldDefn(0).GetName() == 'id' assert lyr.GetLayerDefn().GetFieldDefn(1).GetName() == 'name' feat = lyr.GetNextFeature() assert feat['id'] == 'foo' assert feat['name'] == 'line' ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') lyr = ds.GetLayer(1) assert lyr.GetName() == 'TopoJSON' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') ds = None <mask token>
<mask token> def test_ogr_toposjon_objects_is_dict(): ds = ogr.Open('data/topojson/topojson2.topojson') lyr = ds.GetLayer(0) assert lyr.GetName() == 'a_layer' assert lyr.GetLayerDefn().GetFieldCount() == 2 assert lyr.GetLayerDefn().GetFieldDefn(0).GetName() == 'id' assert lyr.GetLayerDefn().GetFieldDefn(1).GetName() == 'name' feat = lyr.GetNextFeature() assert feat['id'] == 'foo' assert feat['name'] == 'line' ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') lyr = ds.GetLayer(1) assert lyr.GetName() == 'TopoJSON' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') ds = None def test_ogr_toposjon_no_transform(): ds = ogr.Open('data/topojson/topojson3.topojson') lyr = ds.GetLayer(0) assert lyr.GetName() == 'a_layer' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (0 0,10 0,0 10,10 0,0 0)') lyr = ds.GetLayer(1) assert lyr.GetName() == 'TopoJSON' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (0 0,10 0,0 10,10 0,0 0)') ds = None
<mask token> def test_ogr_toposjon_objects_is_array(): ds = ogr.Open('data/topojson/topojson1.topojson') lyr = ds.GetLayer(0) assert lyr.GetName() == 'a_layer' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') lyr = ds.GetLayer(1) assert lyr.GetName() == 'TopoJSON' assert lyr.GetLayerDefn().GetFieldCount() == 2 assert lyr.GetLayerDefn().GetFieldDefn(0).GetName() == 'id' assert lyr.GetLayerDefn().GetFieldDefn(1).GetName() == 'name' expected_results = [('foo', None, 'POINT EMPTY'), (None, None, 'POINT EMPTY'), (None, None, 'POINT EMPTY'), (None, None, 'POINT (100 1010)'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, '0', 'LINESTRING EMPTY'), (None, 'foo', 'LINESTRING EMPTY'), ('1', None, 'LINESTRING (100 1000,110 1000,110 1100)'), ('2', None, 'LINESTRING (110 1100,110 1000,100 1000)'), (None, None, 'POLYGON EMPTY'), (None, None, 'POLYGON EMPTY'), (None, None, 'POLYGON EMPTY'), (None, None, 'POLYGON ((100 1000,110 1000,110 1100,100 1100,100 1000),(101 1010,101 1090,109 1090,109 1010,101 1010))' ), (None, None, 'POLYGON ((110 1100,110 1000,100 1000,100 1100,110 1100),(101 1010,109 1010,109 1090,101 1090,101 1010))' ), (None, None, 'MULTIPOINT EMPTY'), (None, None, 'MULTIPOINT EMPTY'), (None, None, 'MULTIPOINT EMPTY'), (None, None, 'MULTIPOINT EMPTY'), (None, None, 'MULTIPOINT (100 1010,101 1020)'), (None, None, 'MULTIPOLYGON EMPTY'), (None, None, 'MULTIPOLYGON EMPTY'), (None, None, 'MULTIPOLYGON EMPTY'), (None, None, 'MULTIPOLYGON (((110 1100,110 1000,100 1000,100 1100,110 1100)),((101 1010,109 1010,109 1090,101 1090,101 1010)))' ), (None, None, 'MULTILINESTRING EMPTY'), (None, None, 'MULTILINESTRING EMPTY'), (None, None, 'MULTILINESTRING ((100 1000,110 1000,110 1100))'), (None, None, 'MULTILINESTRING ((100 1000,110 1000,110 1100,100 1100,100 1000))'), (None, None, 'MULTILINESTRING ((100 1000,110 1000,110 1100,100 1100,100 1000),(101 1010,101 1090,109 1090,109 1010,101 1010))' )] assert lyr.GetFeatureCount() == len(expected_results) for i, exp_result in enumerate(expected_results): feat = lyr.GetNextFeature() if feat.GetField('id') != exp_result[0] or feat.GetField('name' ) != exp_result[1] or feat.GetGeometryRef().ExportToWkt( ) != exp_result[2]: feat.DumpReadable() print(exp_result) print(feat.GetField('name')) pytest.fail('failure at feat index %d' % i) ds = None def test_ogr_toposjon_objects_is_dict(): ds = ogr.Open('data/topojson/topojson2.topojson') lyr = ds.GetLayer(0) assert lyr.GetName() == 'a_layer' assert lyr.GetLayerDefn().GetFieldCount() == 2 assert lyr.GetLayerDefn().GetFieldDefn(0).GetName() == 'id' assert lyr.GetLayerDefn().GetFieldDefn(1).GetName() == 'name' feat = lyr.GetNextFeature() assert feat['id'] == 'foo' assert feat['name'] == 'line' ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') lyr = ds.GetLayer(1) assert lyr.GetName() == 'TopoJSON' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') ds = None def test_ogr_toposjon_no_transform(): ds = ogr.Open('data/topojson/topojson3.topojson') lyr = ds.GetLayer(0) assert lyr.GetName() == 'a_layer' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (0 0,10 0,0 10,10 0,0 0)') lyr = ds.GetLayer(1) assert lyr.GetName() == 'TopoJSON' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (0 0,10 0,0 10,10 0,0 0)') ds = None
import ogrtest import pytest from osgeo import ogr def test_ogr_toposjon_objects_is_array(): ds = ogr.Open('data/topojson/topojson1.topojson') lyr = ds.GetLayer(0) assert lyr.GetName() == 'a_layer' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') lyr = ds.GetLayer(1) assert lyr.GetName() == 'TopoJSON' assert lyr.GetLayerDefn().GetFieldCount() == 2 assert lyr.GetLayerDefn().GetFieldDefn(0).GetName() == 'id' assert lyr.GetLayerDefn().GetFieldDefn(1).GetName() == 'name' expected_results = [('foo', None, 'POINT EMPTY'), (None, None, 'POINT EMPTY'), (None, None, 'POINT EMPTY'), (None, None, 'POINT (100 1010)'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, None, 'LINESTRING EMPTY'), (None, '0', 'LINESTRING EMPTY'), (None, 'foo', 'LINESTRING EMPTY'), ('1', None, 'LINESTRING (100 1000,110 1000,110 1100)'), ('2', None, 'LINESTRING (110 1100,110 1000,100 1000)'), (None, None, 'POLYGON EMPTY'), (None, None, 'POLYGON EMPTY'), (None, None, 'POLYGON EMPTY'), (None, None, 'POLYGON ((100 1000,110 1000,110 1100,100 1100,100 1000),(101 1010,101 1090,109 1090,109 1010,101 1010))' ), (None, None, 'POLYGON ((110 1100,110 1000,100 1000,100 1100,110 1100),(101 1010,109 1010,109 1090,101 1090,101 1010))' ), (None, None, 'MULTIPOINT EMPTY'), (None, None, 'MULTIPOINT EMPTY'), (None, None, 'MULTIPOINT EMPTY'), (None, None, 'MULTIPOINT EMPTY'), (None, None, 'MULTIPOINT (100 1010,101 1020)'), (None, None, 'MULTIPOLYGON EMPTY'), (None, None, 'MULTIPOLYGON EMPTY'), (None, None, 'MULTIPOLYGON EMPTY'), (None, None, 'MULTIPOLYGON (((110 1100,110 1000,100 1000,100 1100,110 1100)),((101 1010,109 1010,109 1090,101 1090,101 1010)))' ), (None, None, 'MULTILINESTRING EMPTY'), (None, None, 'MULTILINESTRING EMPTY'), (None, None, 'MULTILINESTRING ((100 1000,110 1000,110 1100))'), (None, None, 'MULTILINESTRING ((100 1000,110 1000,110 1100,100 1100,100 1000))'), (None, None, 'MULTILINESTRING ((100 1000,110 1000,110 1100,100 1100,100 1000),(101 1010,101 1090,109 1090,109 1010,101 1010))' )] assert lyr.GetFeatureCount() == len(expected_results) for i, exp_result in enumerate(expected_results): feat = lyr.GetNextFeature() if feat.GetField('id') != exp_result[0] or feat.GetField('name' ) != exp_result[1] or feat.GetGeometryRef().ExportToWkt( ) != exp_result[2]: feat.DumpReadable() print(exp_result) print(feat.GetField('name')) pytest.fail('failure at feat index %d' % i) ds = None def test_ogr_toposjon_objects_is_dict(): ds = ogr.Open('data/topojson/topojson2.topojson') lyr = ds.GetLayer(0) assert lyr.GetName() == 'a_layer' assert lyr.GetLayerDefn().GetFieldCount() == 2 assert lyr.GetLayerDefn().GetFieldDefn(0).GetName() == 'id' assert lyr.GetLayerDefn().GetFieldDefn(1).GetName() == 'name' feat = lyr.GetNextFeature() assert feat['id'] == 'foo' assert feat['name'] == 'line' ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') lyr = ds.GetLayer(1) assert lyr.GetName() == 'TopoJSON' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (100 1000,110 1000,110 1100)') ds = None def test_ogr_toposjon_no_transform(): ds = ogr.Open('data/topojson/topojson3.topojson') lyr = ds.GetLayer(0) assert lyr.GetName() == 'a_layer' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (0 0,10 0,0 10,10 0,0 0)') lyr = ds.GetLayer(1) assert lyr.GetName() == 'TopoJSON' feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, 'LINESTRING (0 0,10 0,0 10,10 0,0 0)') ds = None
#!/usr/bin/env pytest # -*- coding: utf-8 -*- ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: TopJSON driver test suite. # Author: Even Rouault # ############################################################################### # Copyright (c) 2020, Even Rouault <even dot rouault at spatialys.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import ogrtest import pytest from osgeo import ogr ############################################################################### # Test TopoJSON def test_ogr_toposjon_objects_is_array(): ds = ogr.Open("data/topojson/topojson1.topojson") lyr = ds.GetLayer(0) assert lyr.GetName() == "a_layer" feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, "LINESTRING (100 1000,110 1000,110 1100)") lyr = ds.GetLayer(1) assert lyr.GetName() == "TopoJSON" assert lyr.GetLayerDefn().GetFieldCount() == 2 assert lyr.GetLayerDefn().GetFieldDefn(0).GetName() == "id" assert lyr.GetLayerDefn().GetFieldDefn(1).GetName() == "name" expected_results = [ ("foo", None, "POINT EMPTY"), (None, None, "POINT EMPTY"), (None, None, "POINT EMPTY"), (None, None, "POINT (100 1010)"), (None, None, "LINESTRING EMPTY"), (None, None, "LINESTRING EMPTY"), (None, None, "LINESTRING EMPTY"), (None, None, "LINESTRING EMPTY"), (None, None, "LINESTRING EMPTY"), (None, None, "LINESTRING EMPTY"), (None, None, "LINESTRING EMPTY"), (None, None, "LINESTRING EMPTY"), (None, "0", "LINESTRING EMPTY"), (None, "foo", "LINESTRING EMPTY"), ("1", None, "LINESTRING (100 1000,110 1000,110 1100)"), ("2", None, "LINESTRING (110 1100,110 1000,100 1000)"), (None, None, "POLYGON EMPTY"), (None, None, "POLYGON EMPTY"), (None, None, "POLYGON EMPTY"), ( None, None, "POLYGON ((100 1000,110 1000,110 1100,100 1100,100 1000),(101 1010,101 1090,109 1090,109 1010,101 1010))", ), ( None, None, "POLYGON ((110 1100,110 1000,100 1000,100 1100,110 1100),(101 1010,109 1010,109 1090,101 1090,101 1010))", ), (None, None, "MULTIPOINT EMPTY"), (None, None, "MULTIPOINT EMPTY"), (None, None, "MULTIPOINT EMPTY"), (None, None, "MULTIPOINT EMPTY"), (None, None, "MULTIPOINT (100 1010,101 1020)"), (None, None, "MULTIPOLYGON EMPTY"), (None, None, "MULTIPOLYGON EMPTY"), (None, None, "MULTIPOLYGON EMPTY"), ( None, None, "MULTIPOLYGON (((110 1100,110 1000,100 1000,100 1100,110 1100)),((101 1010,109 1010,109 1090,101 1090,101 1010)))", ), (None, None, "MULTILINESTRING EMPTY"), (None, None, "MULTILINESTRING EMPTY"), (None, None, "MULTILINESTRING ((100 1000,110 1000,110 1100))"), ( None, None, "MULTILINESTRING ((100 1000,110 1000,110 1100,100 1100,100 1000))", ), ( None, None, "MULTILINESTRING ((100 1000,110 1000,110 1100,100 1100,100 1000),(101 1010,101 1090,109 1090,109 1010,101 1010))", ), ] assert lyr.GetFeatureCount() == len(expected_results) for i, exp_result in enumerate(expected_results): feat = lyr.GetNextFeature() if ( feat.GetField("id") != exp_result[0] or feat.GetField("name") != exp_result[1] or feat.GetGeometryRef().ExportToWkt() != exp_result[2] ): feat.DumpReadable() print(exp_result) print(feat.GetField("name")) pytest.fail("failure at feat index %d" % i) ds = None def test_ogr_toposjon_objects_is_dict(): ds = ogr.Open("data/topojson/topojson2.topojson") lyr = ds.GetLayer(0) assert lyr.GetName() == "a_layer" assert lyr.GetLayerDefn().GetFieldCount() == 2 assert lyr.GetLayerDefn().GetFieldDefn(0).GetName() == "id" assert lyr.GetLayerDefn().GetFieldDefn(1).GetName() == "name" feat = lyr.GetNextFeature() assert feat["id"] == "foo" assert feat["name"] == "line" ogrtest.check_feature_geometry(feat, "LINESTRING (100 1000,110 1000,110 1100)") lyr = ds.GetLayer(1) assert lyr.GetName() == "TopoJSON" feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, "LINESTRING (100 1000,110 1000,110 1100)") ds = None def test_ogr_toposjon_no_transform(): ds = ogr.Open("data/topojson/topojson3.topojson") lyr = ds.GetLayer(0) assert lyr.GetName() == "a_layer" feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, "LINESTRING (0 0,10 0,0 10,10 0,0 0)") lyr = ds.GetLayer(1) assert lyr.GetName() == "TopoJSON" feat = lyr.GetNextFeature() ogrtest.check_feature_geometry(feat, "LINESTRING (0 0,10 0,0 10,10 0,0 0)") ds = None
[ 1, 2, 3, 4, 5 ]
2,113
6c641ace8f1e5e8c42fa776bd7604daf243f9a41
<mask token> def dataset_cat_description(path, cmap=None): desc = yaml.load(open(path, 'r'), Loader=yaml.FullLoader) colors = {} names = [] for i, cat in enumerate(desc): names.append(cat['name']) if 'color' in cat: colors[cat['id']] = torch.tensor(cat['color']).float() / 255 else: colors[cat['id']] = torch.tensor(cmap[cat['id']]).float() colors[IGNORE_LABEL] = torch.tensor([0.0, 0.0, 0.0]).float() return names, colors <mask token> def rgb_denormalize(x, stats): """ x : N x C x * x \\in [-1, 1] """ mean = torch.tensor(stats['mean']) std = torch.tensor(stats['std']) for i in range(3): x[:, i, :, :] = x[:, i, :, :] * std[i] + mean[i] return x
<mask token> def seg_to_rgb(seg, colors): im = torch.zeros((seg.shape[0], seg.shape[1], seg.shape[2], 3)).float() cls = torch.unique(seg) for cl in cls: color = colors[int(cl)] if len(color.shape) > 1: color = color[0] im[seg == cl] = color return im def dataset_cat_description(path, cmap=None): desc = yaml.load(open(path, 'r'), Loader=yaml.FullLoader) colors = {} names = [] for i, cat in enumerate(desc): names.append(cat['name']) if 'color' in cat: colors[cat['id']] = torch.tensor(cat['color']).float() / 255 else: colors[cat['id']] = torch.tensor(cmap[cat['id']]).float() colors[IGNORE_LABEL] = torch.tensor([0.0, 0.0, 0.0]).float() return names, colors def rgb_normalize(x, stats): """ x : C x * x \\in [0, 1] """ return F.normalize(x, stats['mean'], stats['std']) def rgb_denormalize(x, stats): """ x : N x C x * x \\in [-1, 1] """ mean = torch.tensor(stats['mean']) std = torch.tensor(stats['std']) for i in range(3): x[:, i, :, :] = x[:, i, :, :] * std[i] + mean[i] return x
<mask token> IGNORE_LABEL = 255 STATS = {'vit': {'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5)}, 'deit': {'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225)}} def seg_to_rgb(seg, colors): im = torch.zeros((seg.shape[0], seg.shape[1], seg.shape[2], 3)).float() cls = torch.unique(seg) for cl in cls: color = colors[int(cl)] if len(color.shape) > 1: color = color[0] im[seg == cl] = color return im def dataset_cat_description(path, cmap=None): desc = yaml.load(open(path, 'r'), Loader=yaml.FullLoader) colors = {} names = [] for i, cat in enumerate(desc): names.append(cat['name']) if 'color' in cat: colors[cat['id']] = torch.tensor(cat['color']).float() / 255 else: colors[cat['id']] = torch.tensor(cmap[cat['id']]).float() colors[IGNORE_LABEL] = torch.tensor([0.0, 0.0, 0.0]).float() return names, colors def rgb_normalize(x, stats): """ x : C x * x \\in [0, 1] """ return F.normalize(x, stats['mean'], stats['std']) def rgb_denormalize(x, stats): """ x : N x C x * x \\in [-1, 1] """ mean = torch.tensor(stats['mean']) std = torch.tensor(stats['std']) for i in range(3): x[:, i, :, :] = x[:, i, :, :] * std[i] + mean[i] return x
import torch import torchvision.transforms.functional as F import numpy as np import yaml from pathlib import Path IGNORE_LABEL = 255 STATS = {'vit': {'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5)}, 'deit': {'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225)}} def seg_to_rgb(seg, colors): im = torch.zeros((seg.shape[0], seg.shape[1], seg.shape[2], 3)).float() cls = torch.unique(seg) for cl in cls: color = colors[int(cl)] if len(color.shape) > 1: color = color[0] im[seg == cl] = color return im def dataset_cat_description(path, cmap=None): desc = yaml.load(open(path, 'r'), Loader=yaml.FullLoader) colors = {} names = [] for i, cat in enumerate(desc): names.append(cat['name']) if 'color' in cat: colors[cat['id']] = torch.tensor(cat['color']).float() / 255 else: colors[cat['id']] = torch.tensor(cmap[cat['id']]).float() colors[IGNORE_LABEL] = torch.tensor([0.0, 0.0, 0.0]).float() return names, colors def rgb_normalize(x, stats): """ x : C x * x \\in [0, 1] """ return F.normalize(x, stats['mean'], stats['std']) def rgb_denormalize(x, stats): """ x : N x C x * x \\in [-1, 1] """ mean = torch.tensor(stats['mean']) std = torch.tensor(stats['std']) for i in range(3): x[:, i, :, :] = x[:, i, :, :] * std[i] + mean[i] return x
import torch import torchvision.transforms.functional as F import numpy as np import yaml from pathlib import Path IGNORE_LABEL = 255 STATS = { "vit": {"mean": (0.5, 0.5, 0.5), "std": (0.5, 0.5, 0.5)}, "deit": {"mean": (0.485, 0.456, 0.406), "std": (0.229, 0.224, 0.225)}, } def seg_to_rgb(seg, colors): im = torch.zeros((seg.shape[0], seg.shape[1], seg.shape[2], 3)).float() cls = torch.unique(seg) for cl in cls: color = colors[int(cl)] if len(color.shape) > 1: color = color[0] im[seg == cl] = color return im def dataset_cat_description(path, cmap=None): desc = yaml.load(open(path, "r"), Loader=yaml.FullLoader) colors = {} names = [] for i, cat in enumerate(desc): names.append(cat["name"]) if "color" in cat: colors[cat["id"]] = torch.tensor(cat["color"]).float() / 255 else: colors[cat["id"]] = torch.tensor(cmap[cat["id"]]).float() colors[IGNORE_LABEL] = torch.tensor([0.0, 0.0, 0.0]).float() return names, colors def rgb_normalize(x, stats): """ x : C x * x \in [0, 1] """ return F.normalize(x, stats["mean"], stats["std"]) def rgb_denormalize(x, stats): """ x : N x C x * x \in [-1, 1] """ mean = torch.tensor(stats["mean"]) std = torch.tensor(stats["std"]) for i in range(3): x[:, i, :, :] = x[:, i, :, :] * std[i] + mean[i] return x
[ 2, 4, 5, 6, 7 ]
2,114
d373d283a622262e2da974549907bdd8f61e89ec
<mask token> def get_profile_img(): os.chdir('static\\img\\profile_img') if os.access(f'{current_user.id}.jpg', os.F_OK): filename = str(current_user.id) elif current_user.gender[0] == 'М': filename = 'profilem' else: filename = 'profilef' os.chdir('..\\..\\..') return filename def find_products(tag): sessions = db_session.create_session() all_products = sessions.query(products.Products).all() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 sessions.commit() sessions = db_session.create_session() all_products = sessions.query(products.Products).all() ans_products = list() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 title = item.title.lower() if tag in title or title in tag: ans_products.append(item) return ans_products <mask token> class LoginForm(FlaskForm): email = EmailField('Почта', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) remember_me = BooleanField('Запомнить меня') submit = SubmitField('Войти') @app.route('/', methods=['GET', 'POST']) def index(): if current_user.is_authenticated: filename = get_profile_img() else: filename = 'profilem' if request.method == 'POST': session['tag'] = request.form['search'] return redirect('/') all_product = find_products(session.get('tag', '').lower()) if session.get('reverse', False): sim = '▲' else: sim = '▼' simp = simc = simn = simnal = '' pos = session.get('sort', 'none') if pos == 'price': all_product.sort(key=lambda x: x.price, reverse=session.get( 'reverse', False)) simp = sim elif pos == 'nal': all_product.sort(key=lambda x: x.existence, reverse=session.get( 'reverse', False)) simnal = sim elif pos == 'count': all_product.sort(key=lambda x: x.still_have, reverse=session.get( 'reverse', False)) simc = sim elif pos == 'name': simn = sim all_product.sort(key=lambda x: x.title, reverse=session.get( 'reverse', False)) else: shuffle(all_product) return render_template('index.html', basket_count=session.get( 'basket_count', 0), title='CoolStore', tag=session.get('tag', ''), size=len(all_product), filename=filename, product=all_product, simc =simc, simn=simn, simp=simp, simnal=simnal) <mask token> class RegisterForm(FlaskForm): email = EmailField('Email', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) password_again = PasswordField('Повторите пароль', validators=[ DataRequired()]) surname = StringField('Фамилия', validators=[DataRequired()]) name = StringField('Имя', validators=[DataRequired()]) mname = StringField('Отчество(при наличии)', validators=[DataRequired()]) gender = SelectField('Пол', validators=[DataRequired()], choices=[('1', 'М'), ('2', 'Ж')]) age = StringField('Возраст', validators=[DataRequired()]) submit = SubmitField('Подтвердить') class LengthError(Exception): error = 'Пароль должен состоять не менее чем из 8 символов!' class SymbolError(Exception): error = 'В пароле должен быть хотя бы один символ!' class LetterError(Exception): error = 'В пароле должна быть хотя бы одна большая и маленькая буква!' class DigitError(Exception): error = 'В пароле должна быть хотя бы одна цифра!' <mask token> def check_password(password): try: if len(password) <= 8: raise LengthError bool_ys(password) return 'OK' except (LengthError, SymbolError, LetterError, DigitError) as ex: return ex.error <mask token> @app.route('/delete/<int:product_id>/<int:count>', methods=['GET', 'POST']) def delete(product_id, count): sessions = db_session.create_session() prod = sessions.query(products.Products).get(product_id) prod.still_have += count user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user. basket.strip().split()] bask = list(filter(lambda x: x[0] != product_id, bask)) bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask sessions.commit() return redirect('/basket') @app.route('/redact_profile', methods=['GET', 'POST']) @login_required def redact_profile(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) form = RegisterForm() if request.method == 'GET': if user.gender == 'Мужской': gen = '1' else: gen = '2' form.gender.data = gen form.name.data = user.name form.mname.data = user.midname form.age.data = user.age form.surname.data = user.surname elif request.method == 'POST': if form.gender.data == '1': gen = 'Мужской' else: gen = 'Женский' user.gender = gen user.name = form.name.data user.midname = form.mname.data user.age = form.age.data user.surname = form.surname.data session_in_db.commit() return redirect('/profile') filename = get_profile_img() return render_template('redact_profile.html', form=form, filename= filename, basket_count=session.get('basket_count', 0), title= 'Редактирование') class Buy(FlaskForm): count = IntegerField('Колличество:', validators=[DataRequired(), NumberRange(1)], default=1) submit = SubmitField('В корзину') <mask token> class ChangePasswordForm(FlaskForm): old_password = PasswordField('Старый пароль', validators=[DataRequired()]) new_password = PasswordField('Новый пароль', validators=[DataRequired()]) again_password = PasswordField('Повторите новый пароль', validators=[ DataRequired()]) submit = SubmitField('Сменить пароль') @app.route('/change_password', methods=['GET', 'POST']) @login_required def change_password(): filename = get_profile_img() form = ChangePasswordForm() if form.validate_on_submit(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) if user.hashed_password != form.old_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='Неверный пароль', again_password_error='OK', new_password_error='OK', filename=filename) result = check_password(form.new_password.data) if user.hashed_password == form.new_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', again_password_error='OK', new_password_error= 'Новый пароль не должен совпадть со старым!', filename=filename ) if result != 'OK': return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', again_password_error='OK', new_password_error=result, filename=filename) if form.new_password.data != form.again_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', new_password_error='OK', again_password_error='Пароли не совпадают!', filename=filename) user.hashed_password = form.new_password.data session_in_db.commit() return redirect('/profile') return render_template('change_password.html', form=form, basket_count= session.get('basket_count', 0), title='Сменить пароль', filename= filename, old_password_error='OK', again_password_error='OK', new_password_error='OK') <mask token>
<mask token> def get_profile_img(): os.chdir('static\\img\\profile_img') if os.access(f'{current_user.id}.jpg', os.F_OK): filename = str(current_user.id) elif current_user.gender[0] == 'М': filename = 'profilem' else: filename = 'profilef' os.chdir('..\\..\\..') return filename def find_products(tag): sessions = db_session.create_session() all_products = sessions.query(products.Products).all() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 sessions.commit() sessions = db_session.create_session() all_products = sessions.query(products.Products).all() ans_products = list() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 title = item.title.lower() if tag in title or title in tag: ans_products.append(item) return ans_products @app.errorhandler(404) def not_found(error): return render_template('404.html', error=error) @login_manager.user_loader def load_user(user_id): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() return session_in_db.query(users.User).get(user_id) class LoginForm(FlaskForm): email = EmailField('Почта', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) remember_me = BooleanField('Запомнить меня') submit = SubmitField('Войти') @app.route('/', methods=['GET', 'POST']) def index(): if current_user.is_authenticated: filename = get_profile_img() else: filename = 'profilem' if request.method == 'POST': session['tag'] = request.form['search'] return redirect('/') all_product = find_products(session.get('tag', '').lower()) if session.get('reverse', False): sim = '▲' else: sim = '▼' simp = simc = simn = simnal = '' pos = session.get('sort', 'none') if pos == 'price': all_product.sort(key=lambda x: x.price, reverse=session.get( 'reverse', False)) simp = sim elif pos == 'nal': all_product.sort(key=lambda x: x.existence, reverse=session.get( 'reverse', False)) simnal = sim elif pos == 'count': all_product.sort(key=lambda x: x.still_have, reverse=session.get( 'reverse', False)) simc = sim elif pos == 'name': simn = sim all_product.sort(key=lambda x: x.title, reverse=session.get( 'reverse', False)) else: shuffle(all_product) return render_template('index.html', basket_count=session.get( 'basket_count', 0), title='CoolStore', tag=session.get('tag', ''), size=len(all_product), filename=filename, product=all_product, simc =simc, simn=simn, simp=simp, simnal=simnal) <mask token> @app.route('/logout') @login_required def logout(): session['tag'] = '' logout_user() return redirect('/') class RegisterForm(FlaskForm): email = EmailField('Email', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) password_again = PasswordField('Повторите пароль', validators=[ DataRequired()]) surname = StringField('Фамилия', validators=[DataRequired()]) name = StringField('Имя', validators=[DataRequired()]) mname = StringField('Отчество(при наличии)', validators=[DataRequired()]) gender = SelectField('Пол', validators=[DataRequired()], choices=[('1', 'М'), ('2', 'Ж')]) age = StringField('Возраст', validators=[DataRequired()]) submit = SubmitField('Подтвердить') class LengthError(Exception): error = 'Пароль должен состоять не менее чем из 8 символов!' class SymbolError(Exception): error = 'В пароле должен быть хотя бы один символ!' class LetterError(Exception): error = 'В пароле должна быть хотя бы одна большая и маленькая буква!' class DigitError(Exception): error = 'В пароле должна быть хотя бы одна цифра!' def bool_ys(password): ys = [0, 0, 0, 0] for i in password: if i.isdigit(): ys[0] = 1 elif i.isalpha(): if i.isupper(): ys[1] = 1 else: ys[2] = 1 else: ys[3] = 1 if ys[2] * ys[1] == 0: raise LetterError if ys[0] == 0: raise DigitError if ys[3] == 0: raise SymbolError return 'ok' def check_password(password): try: if len(password) <= 8: raise LengthError bool_ys(password) return 'OK' except (LengthError, SymbolError, LetterError, DigitError) as ex: return ex.error <mask token> @app.route('/delete/<int:product_id>/<int:count>', methods=['GET', 'POST']) def delete(product_id, count): sessions = db_session.create_session() prod = sessions.query(products.Products).get(product_id) prod.still_have += count user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user. basket.strip().split()] bask = list(filter(lambda x: x[0] != product_id, bask)) bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask sessions.commit() return redirect('/basket') @app.route('/redact_profile', methods=['GET', 'POST']) @login_required def redact_profile(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) form = RegisterForm() if request.method == 'GET': if user.gender == 'Мужской': gen = '1' else: gen = '2' form.gender.data = gen form.name.data = user.name form.mname.data = user.midname form.age.data = user.age form.surname.data = user.surname elif request.method == 'POST': if form.gender.data == '1': gen = 'Мужской' else: gen = 'Женский' user.gender = gen user.name = form.name.data user.midname = form.mname.data user.age = form.age.data user.surname = form.surname.data session_in_db.commit() return redirect('/profile') filename = get_profile_img() return render_template('redact_profile.html', form=form, filename= filename, basket_count=session.get('basket_count', 0), title= 'Редактирование') class Buy(FlaskForm): count = IntegerField('Колличество:', validators=[DataRequired(), NumberRange(1)], default=1) submit = SubmitField('В корзину') <mask token> @app.route('/redact_prod_minus/<int:product_id>', methods=['GET', 'POST']) def redact_prod_minus(product_id): sessions = db_session.create_session() user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user. basket.strip().split()] for item in bask: if item[0] == product_id: item[1] -= 1 bask = list(filter(lambda x: x[1] > 0, bask)) bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask prod = sessions.query(products.Products).get(product_id) prod.still_have += 1 sessions.commit() return redirect('/basket') <mask token> class ChangePasswordForm(FlaskForm): old_password = PasswordField('Старый пароль', validators=[DataRequired()]) new_password = PasswordField('Новый пароль', validators=[DataRequired()]) again_password = PasswordField('Повторите новый пароль', validators=[ DataRequired()]) submit = SubmitField('Сменить пароль') @app.route('/change_password', methods=['GET', 'POST']) @login_required def change_password(): filename = get_profile_img() form = ChangePasswordForm() if form.validate_on_submit(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) if user.hashed_password != form.old_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='Неверный пароль', again_password_error='OK', new_password_error='OK', filename=filename) result = check_password(form.new_password.data) if user.hashed_password == form.new_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', again_password_error='OK', new_password_error= 'Новый пароль не должен совпадть со старым!', filename=filename ) if result != 'OK': return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', again_password_error='OK', new_password_error=result, filename=filename) if form.new_password.data != form.again_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', new_password_error='OK', again_password_error='Пароли не совпадают!', filename=filename) user.hashed_password = form.new_password.data session_in_db.commit() return redirect('/profile') return render_template('change_password.html', form=form, basket_count= session.get('basket_count', 0), title='Сменить пароль', filename= filename, old_password_error='OK', again_password_error='OK', new_password_error='OK') def main(): db_session.global_init('db/blogs.sqlite') api.add_resource(product_resource.ProductListResource, '/api/v2/products') api.add_resource(product_resource.ProductResource, '/api/v2/products/<int:product_id>') app.run() <mask token>
<mask token> def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() == 'jpg' def get_profile_img(): os.chdir('static\\img\\profile_img') if os.access(f'{current_user.id}.jpg', os.F_OK): filename = str(current_user.id) elif current_user.gender[0] == 'М': filename = 'profilem' else: filename = 'profilef' os.chdir('..\\..\\..') return filename def find_products(tag): sessions = db_session.create_session() all_products = sessions.query(products.Products).all() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 sessions.commit() sessions = db_session.create_session() all_products = sessions.query(products.Products).all() ans_products = list() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 title = item.title.lower() if tag in title or title in tag: ans_products.append(item) return ans_products @app.errorhandler(404) def not_found(error): return render_template('404.html', error=error) @login_manager.user_loader def load_user(user_id): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() return session_in_db.query(users.User).get(user_id) class LoginForm(FlaskForm): email = EmailField('Почта', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) remember_me = BooleanField('Запомнить меня') submit = SubmitField('Войти') @app.route('/', methods=['GET', 'POST']) def index(): if current_user.is_authenticated: filename = get_profile_img() else: filename = 'profilem' if request.method == 'POST': session['tag'] = request.form['search'] return redirect('/') all_product = find_products(session.get('tag', '').lower()) if session.get('reverse', False): sim = '▲' else: sim = '▼' simp = simc = simn = simnal = '' pos = session.get('sort', 'none') if pos == 'price': all_product.sort(key=lambda x: x.price, reverse=session.get( 'reverse', False)) simp = sim elif pos == 'nal': all_product.sort(key=lambda x: x.existence, reverse=session.get( 'reverse', False)) simnal = sim elif pos == 'count': all_product.sort(key=lambda x: x.still_have, reverse=session.get( 'reverse', False)) simc = sim elif pos == 'name': simn = sim all_product.sort(key=lambda x: x.title, reverse=session.get( 'reverse', False)) else: shuffle(all_product) return render_template('index.html', basket_count=session.get( 'basket_count', 0), title='CoolStore', tag=session.get('tag', ''), size=len(all_product), filename=filename, product=all_product, simc =simc, simn=simn, simp=simp, simnal=simnal) <mask token> @app.route('/logout') @login_required def logout(): session['tag'] = '' logout_user() return redirect('/') class RegisterForm(FlaskForm): email = EmailField('Email', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) password_again = PasswordField('Повторите пароль', validators=[ DataRequired()]) surname = StringField('Фамилия', validators=[DataRequired()]) name = StringField('Имя', validators=[DataRequired()]) mname = StringField('Отчество(при наличии)', validators=[DataRequired()]) gender = SelectField('Пол', validators=[DataRequired()], choices=[('1', 'М'), ('2', 'Ж')]) age = StringField('Возраст', validators=[DataRequired()]) submit = SubmitField('Подтвердить') class LengthError(Exception): error = 'Пароль должен состоять не менее чем из 8 символов!' class SymbolError(Exception): error = 'В пароле должен быть хотя бы один символ!' class LetterError(Exception): error = 'В пароле должна быть хотя бы одна большая и маленькая буква!' class DigitError(Exception): error = 'В пароле должна быть хотя бы одна цифра!' def bool_ys(password): ys = [0, 0, 0, 0] for i in password: if i.isdigit(): ys[0] = 1 elif i.isalpha(): if i.isupper(): ys[1] = 1 else: ys[2] = 1 else: ys[3] = 1 if ys[2] * ys[1] == 0: raise LetterError if ys[0] == 0: raise DigitError if ys[3] == 0: raise SymbolError return 'ok' def check_password(password): try: if len(password) <= 8: raise LengthError bool_ys(password) return 'OK' except (LengthError, SymbolError, LetterError, DigitError) as ex: return ex.error <mask token> @app.route('/delete/<int:product_id>/<int:count>', methods=['GET', 'POST']) def delete(product_id, count): sessions = db_session.create_session() prod = sessions.query(products.Products).get(product_id) prod.still_have += count user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user. basket.strip().split()] bask = list(filter(lambda x: x[0] != product_id, bask)) bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask sessions.commit() return redirect('/basket') @app.route('/redact_profile', methods=['GET', 'POST']) @login_required def redact_profile(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) form = RegisterForm() if request.method == 'GET': if user.gender == 'Мужской': gen = '1' else: gen = '2' form.gender.data = gen form.name.data = user.name form.mname.data = user.midname form.age.data = user.age form.surname.data = user.surname elif request.method == 'POST': if form.gender.data == '1': gen = 'Мужской' else: gen = 'Женский' user.gender = gen user.name = form.name.data user.midname = form.mname.data user.age = form.age.data user.surname = form.surname.data session_in_db.commit() return redirect('/profile') filename = get_profile_img() return render_template('redact_profile.html', form=form, filename= filename, basket_count=session.get('basket_count', 0), title= 'Редактирование') class Buy(FlaskForm): count = IntegerField('Колличество:', validators=[DataRequired(), NumberRange(1)], default=1) submit = SubmitField('В корзину') <mask token> @app.route('/redact_prod_minus/<int:product_id>', methods=['GET', 'POST']) def redact_prod_minus(product_id): sessions = db_session.create_session() user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user. basket.strip().split()] for item in bask: if item[0] == product_id: item[1] -= 1 bask = list(filter(lambda x: x[1] > 0, bask)) bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask prod = sessions.query(products.Products).get(product_id) prod.still_have += 1 sessions.commit() return redirect('/basket') <mask token> class ChangePasswordForm(FlaskForm): old_password = PasswordField('Старый пароль', validators=[DataRequired()]) new_password = PasswordField('Новый пароль', validators=[DataRequired()]) again_password = PasswordField('Повторите новый пароль', validators=[ DataRequired()]) submit = SubmitField('Сменить пароль') @app.route('/change_password', methods=['GET', 'POST']) @login_required def change_password(): filename = get_profile_img() form = ChangePasswordForm() if form.validate_on_submit(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) if user.hashed_password != form.old_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='Неверный пароль', again_password_error='OK', new_password_error='OK', filename=filename) result = check_password(form.new_password.data) if user.hashed_password == form.new_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', again_password_error='OK', new_password_error= 'Новый пароль не должен совпадть со старым!', filename=filename ) if result != 'OK': return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', again_password_error='OK', new_password_error=result, filename=filename) if form.new_password.data != form.again_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', new_password_error='OK', again_password_error='Пароли не совпадают!', filename=filename) user.hashed_password = form.new_password.data session_in_db.commit() return redirect('/profile') return render_template('change_password.html', form=form, basket_count= session.get('basket_count', 0), title='Сменить пароль', filename= filename, old_password_error='OK', again_password_error='OK', new_password_error='OK') def main(): db_session.global_init('db/blogs.sqlite') api.add_resource(product_resource.ProductListResource, '/api/v2/products') api.add_resource(product_resource.ProductResource, '/api/v2/products/<int:product_id>') app.run() <mask token>
<mask token> def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() == 'jpg' def get_profile_img(): os.chdir('static\\img\\profile_img') if os.access(f'{current_user.id}.jpg', os.F_OK): filename = str(current_user.id) elif current_user.gender[0] == 'М': filename = 'profilem' else: filename = 'profilef' os.chdir('..\\..\\..') return filename def find_products(tag): sessions = db_session.create_session() all_products = sessions.query(products.Products).all() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 sessions.commit() sessions = db_session.create_session() all_products = sessions.query(products.Products).all() ans_products = list() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 title = item.title.lower() if tag in title or title in tag: ans_products.append(item) return ans_products @app.errorhandler(404) def not_found(error): return render_template('404.html', error=error) @login_manager.user_loader def load_user(user_id): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() return session_in_db.query(users.User).get(user_id) class LoginForm(FlaskForm): email = EmailField('Почта', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) remember_me = BooleanField('Запомнить меня') submit = SubmitField('Войти') @app.route('/', methods=['GET', 'POST']) def index(): if current_user.is_authenticated: filename = get_profile_img() else: filename = 'profilem' if request.method == 'POST': session['tag'] = request.form['search'] return redirect('/') all_product = find_products(session.get('tag', '').lower()) if session.get('reverse', False): sim = '▲' else: sim = '▼' simp = simc = simn = simnal = '' pos = session.get('sort', 'none') if pos == 'price': all_product.sort(key=lambda x: x.price, reverse=session.get( 'reverse', False)) simp = sim elif pos == 'nal': all_product.sort(key=lambda x: x.existence, reverse=session.get( 'reverse', False)) simnal = sim elif pos == 'count': all_product.sort(key=lambda x: x.still_have, reverse=session.get( 'reverse', False)) simc = sim elif pos == 'name': simn = sim all_product.sort(key=lambda x: x.title, reverse=session.get( 'reverse', False)) else: shuffle(all_product) return render_template('index.html', basket_count=session.get( 'basket_count', 0), title='CoolStore', tag=session.get('tag', ''), size=len(all_product), filename=filename, product=all_product, simc =simc, simn=simn, simp=simp, simnal=simnal) @app.route('/login', methods=['GET', 'POST']) def login(): session['tag'] = '' form = LoginForm() if form.validate_on_submit(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).filter(users.User.email == form.email.data).first() if user and user.check_password(form.password.data): login_user(user, remember=form.remember_me.data) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user.basket.strip().split()] bask = list(map(lambda x: [session_in_db.query(products. Products).get(x[0]), x[1]], bask)) session['basket_count'] = len(bask) return redirect('/') return render_template('login_form.html', message= 'Неправильный логин или пароль', form=form) return render_template('login_form.html', basket_count=session.get( 'basket_count', 0), title='Авторизация', form=form, filename='profilem' ) @app.route('/logout') @login_required def logout(): session['tag'] = '' logout_user() return redirect('/') class RegisterForm(FlaskForm): email = EmailField('Email', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) password_again = PasswordField('Повторите пароль', validators=[ DataRequired()]) surname = StringField('Фамилия', validators=[DataRequired()]) name = StringField('Имя', validators=[DataRequired()]) mname = StringField('Отчество(при наличии)', validators=[DataRequired()]) gender = SelectField('Пол', validators=[DataRequired()], choices=[('1', 'М'), ('2', 'Ж')]) age = StringField('Возраст', validators=[DataRequired()]) submit = SubmitField('Подтвердить') class LengthError(Exception): error = 'Пароль должен состоять не менее чем из 8 символов!' class SymbolError(Exception): error = 'В пароле должен быть хотя бы один символ!' class LetterError(Exception): error = 'В пароле должна быть хотя бы одна большая и маленькая буква!' class DigitError(Exception): error = 'В пароле должна быть хотя бы одна цифра!' def bool_ys(password): ys = [0, 0, 0, 0] for i in password: if i.isdigit(): ys[0] = 1 elif i.isalpha(): if i.isupper(): ys[1] = 1 else: ys[2] = 1 else: ys[3] = 1 if ys[2] * ys[1] == 0: raise LetterError if ys[0] == 0: raise DigitError if ys[3] == 0: raise SymbolError return 'ok' def check_password(password): try: if len(password) <= 8: raise LengthError bool_ys(password) return 'OK' except (LengthError, SymbolError, LetterError, DigitError) as ex: return ex.error <mask token> @app.route('/profile', methods=['GET', 'POST']) @login_required def profile(): if request.method == 'GET': filename = get_profile_img() params = {'title': 'Профиль', 'filename': filename, 'id': current_user.id, 'name': current_user.name, 'sname': current_user.surname, 'mname': current_user.midname, 'gender': current_user.gender, 'age': current_user.age, 'basket_count': session.get('basket_count', 0)} return render_template('profile.html', **params) elif request.method == 'POST': if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] if file.filename == '': flash('No selected file') return redirect(request.url) if file and allowed_file(file.filename): file.save(os.path.join(app.config['UPLOAD_FOLDER'], f'{current_user.id}.jpg')) return redirect('/profile') <mask token> @app.route('/delete/<int:product_id>/<int:count>', methods=['GET', 'POST']) def delete(product_id, count): sessions = db_session.create_session() prod = sessions.query(products.Products).get(product_id) prod.still_have += count user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user. basket.strip().split()] bask = list(filter(lambda x: x[0] != product_id, bask)) bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask sessions.commit() return redirect('/basket') @app.route('/redact_profile', methods=['GET', 'POST']) @login_required def redact_profile(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) form = RegisterForm() if request.method == 'GET': if user.gender == 'Мужской': gen = '1' else: gen = '2' form.gender.data = gen form.name.data = user.name form.mname.data = user.midname form.age.data = user.age form.surname.data = user.surname elif request.method == 'POST': if form.gender.data == '1': gen = 'Мужской' else: gen = 'Женский' user.gender = gen user.name = form.name.data user.midname = form.mname.data user.age = form.age.data user.surname = form.surname.data session_in_db.commit() return redirect('/profile') filename = get_profile_img() return render_template('redact_profile.html', form=form, filename= filename, basket_count=session.get('basket_count', 0), title= 'Редактирование') class Buy(FlaskForm): count = IntegerField('Колличество:', validators=[DataRequired(), NumberRange(1)], default=1) submit = SubmitField('В корзину') <mask token> @app.route('/redact_prod_minus/<int:product_id>', methods=['GET', 'POST']) def redact_prod_minus(product_id): sessions = db_session.create_session() user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user. basket.strip().split()] for item in bask: if item[0] == product_id: item[1] -= 1 bask = list(filter(lambda x: x[1] > 0, bask)) bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask prod = sessions.query(products.Products).get(product_id) prod.still_have += 1 sessions.commit() return redirect('/basket') @app.route('/change/<string:pos>') def change(pos): last_pos = session.get('sort', 'none') if last_pos == pos: session['reverse'] = not session.get('reverse', False) else: session['reverse'] = False session['sort'] = pos return redirect('/') class ChangePasswordForm(FlaskForm): old_password = PasswordField('Старый пароль', validators=[DataRequired()]) new_password = PasswordField('Новый пароль', validators=[DataRequired()]) again_password = PasswordField('Повторите новый пароль', validators=[ DataRequired()]) submit = SubmitField('Сменить пароль') @app.route('/change_password', methods=['GET', 'POST']) @login_required def change_password(): filename = get_profile_img() form = ChangePasswordForm() if form.validate_on_submit(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) if user.hashed_password != form.old_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='Неверный пароль', again_password_error='OK', new_password_error='OK', filename=filename) result = check_password(form.new_password.data) if user.hashed_password == form.new_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', again_password_error='OK', new_password_error= 'Новый пароль не должен совпадть со старым!', filename=filename ) if result != 'OK': return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', again_password_error='OK', new_password_error=result, filename=filename) if form.new_password.data != form.again_password.data: return render_template('change_password.html', basket_count= session.get('basket_count', 0), title='Регистрация', form= form, old_password_error='OK', new_password_error='OK', again_password_error='Пароли не совпадают!', filename=filename) user.hashed_password = form.new_password.data session_in_db.commit() return redirect('/profile') return render_template('change_password.html', form=form, basket_count= session.get('basket_count', 0), title='Сменить пароль', filename= filename, old_password_error='OK', again_password_error='OK', new_password_error='OK') def main(): db_session.global_init('db/blogs.sqlite') api.add_resource(product_resource.ProductListResource, '/api/v2/products') api.add_resource(product_resource.ProductResource, '/api/v2/products/<int:product_id>') app.run() <mask token>
from flask import Flask, render_template, redirect, request, session, flash from data import db_session from data import users, products import os from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField, BooleanField, SelectField, IntegerField from wtforms.fields.html5 import EmailField from wtforms.validators import DataRequired, NumberRange from flask_login import LoginManager, login_user, logout_user, login_required, current_user import datetime from flask_restful import Api import product_resource from random import shuffle app = Flask(__name__) api = Api(app) app.debug = True UPLOAD_FOLDER = f'{os.getcwd()}\\static\\img\\profile_img' app.config['SECRET_KEY'] = '12345aA' app.config['PERMANENT_SESSION_LIFETIME'] = datetime.timedelta(days=1) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER login_manager = LoginManager() login_manager.init_app(app) def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() == 'jpg' def get_profile_img(): os.chdir('static\\img\\profile_img') if os.access(f'{current_user.id}.jpg', os.F_OK): filename = str(current_user.id) else: if current_user.gender[0] == 'М': filename = 'profilem' else: filename = 'profilef' os.chdir('..\\..\\..') return filename def find_products(tag): sessions = db_session.create_session() all_products = sessions.query(products.Products).all() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 sessions.commit() sessions = db_session.create_session() all_products = sessions.query(products.Products).all() ans_products = list() for item in all_products: if item.existence and item.still_have == 0: item.existence = 0 elif not item.existence and item.still_have: item.existence = 1 title = item.title.lower() if tag in title or title in tag: ans_products.append(item) return ans_products @app.errorhandler(404) def not_found(error): return render_template('404.html', error=error) @login_manager.user_loader def load_user(user_id): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() return session_in_db.query(users.User).get(user_id) class LoginForm(FlaskForm): email = EmailField('Почта', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) remember_me = BooleanField('Запомнить меня') submit = SubmitField('Войти') @app.route('/', methods=['GET', 'POST']) def index(): if current_user.is_authenticated: filename = get_profile_img() else: filename = 'profilem' if request.method == 'POST': session['tag'] = request.form['search'] return redirect('/') all_product = find_products(session.get('tag', '').lower()) if session.get('reverse', False): sim = '▲' else: sim = '▼' simp = simc = simn = simnal = '' pos = session.get('sort', 'none') if pos == 'price': all_product.sort(key=lambda x: x.price, reverse=session.get('reverse', False)) simp = sim elif pos == 'nal': all_product.sort(key=lambda x: x.existence, reverse=session.get('reverse', False)) simnal = sim elif pos == 'count': all_product.sort(key=lambda x: x.still_have, reverse=session.get('reverse', False)) simc = sim elif pos == 'name': simn = sim all_product.sort(key=lambda x: x.title, reverse=session.get('reverse', False)) else: shuffle(all_product) return render_template('index.html', basket_count=session.get('basket_count', 0), title="CoolStore", tag=session.get('tag', ''), size=len(all_product), filename=filename, product=all_product, simc=simc, simn=simn, simp=simp, simnal=simnal) @app.route('/login', methods=['GET', 'POST']) def login(): session['tag'] = '' form = LoginForm() if form.validate_on_submit(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).filter(users.User.email == form.email.data).first() if user and user.check_password(form.password.data): login_user(user, remember=form.remember_me.data) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user.basket.strip().split()] bask = list( map(lambda x: [session_in_db.query(products.Products).get(x[0]), x[1]], bask)) session['basket_count'] = len(bask) return redirect("/") return render_template('login_form.html', message="Неправильный логин или пароль", form=form) return render_template('login_form.html', basket_count=session.get('basket_count', 0), title='Авторизация', form=form, filename="profilem") @app.route('/logout') @login_required def logout(): session['tag'] = '' logout_user() return redirect("/") class RegisterForm(FlaskForm): email = EmailField('Email', validators=[DataRequired()]) password = PasswordField('Пароль', validators=[DataRequired()]) password_again = PasswordField('Повторите пароль', validators=[DataRequired()]) surname = StringField('Фамилия', validators=[DataRequired()]) name = StringField('Имя', validators=[DataRequired()]) mname = StringField('Отчество(при наличии)', validators=[DataRequired()]) gender = SelectField("Пол", validators=[DataRequired()], choices=[('1', 'М'), ('2', "Ж")]) age = StringField('Возраст', validators=[DataRequired()]) submit = SubmitField('Подтвердить') class LengthError(Exception): error = 'Пароль должен состоять не менее чем из 8 символов!' class SymbolError(Exception): error = 'В пароле должен быть хотя бы один символ!' class LetterError(Exception): error = 'В пароле должна быть хотя бы одна большая и маленькая буква!' class DigitError(Exception): error = 'В пароле должна быть хотя бы одна цифра!' def bool_ys(password): ys = [0, 0, 0, 0] for i in password: if i.isdigit(): ys[0] = 1 elif i.isalpha(): if i.isupper(): ys[1] = 1 else: ys[2] = 1 else: ys[3] = 1 if ys[2] * ys[1] == 0: raise LetterError if ys[0] == 0: raise DigitError if ys[3] == 0: raise SymbolError return 'ok' def check_password(password): try: if len(password) <= 8: raise LengthError bool_ys(password) return 'OK' except (LengthError, SymbolError, LetterError, DigitError) as ex: return ex.error @app.route('/register', methods=['GET', 'POST']) def reqister(): form = RegisterForm() if form.validate_on_submit(): result = check_password(form.password.data) if result != 'OK': return render_template('reg.html', basket_count=session.get('basket_count', 0), title='Регистрация', form=form, email_error="OK", again_password_error="OK", password_error=result) if form.password.data != form.password_again.data: return render_template('reg.html', basket_count=session.get('basket_count', 0), title='Регистрация', form=form, email_error="OK", password_error="OK", again_password_error="Пароли не совпадают") db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() if session_in_db.query(users.User).filter(users.User.email == form.email.data).first(): return render_template('reg.html', basket_count=session.get('basket_count', 0), title='Регистрация', form=form, password_error="OK", again_password_error="OK", email_error="Такой пользователь уже есть") if form.gender.data == '1': gen = "Мужской" else: gen = "Женский" user = users.User( name=form.name.data, midname=form.mname.data, gender=gen, email=form.email.data, surname=form.surname.data, age=form.age.data, hashed_password=form.password.data ) session_in_db.add(user) session_in_db.commit() return redirect('/login') return render_template('reg.html', basket_count=session.get('basket_count', 0), title='Регистрация', form=form, filename="profilem", email_error="OK", password_error="OK", again_password_error="OK") @app.route('/profile', methods=['GET', 'POST']) @login_required def profile(): if request.method == 'GET': filename = get_profile_img() params = { 'title': 'Профиль', 'filename': filename, 'id': current_user.id, 'name': current_user.name, 'sname': current_user.surname, 'mname': current_user.midname, 'gender': current_user.gender, 'age': current_user.age, 'basket_count': session.get('basket_count', 0) } return render_template('profile.html', **params) elif request.method == 'POST': if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] if file.filename == '': flash('No selected file') return redirect(request.url) if file and allowed_file(file.filename): file.save(os.path.join(app.config['UPLOAD_FOLDER'], f'{current_user.id}.jpg')) return redirect('/profile') @app.route('/basket', methods=['GET', 'POST']) @login_required def basket(): sessions = db_session.create_session() filename = get_profile_img() user = load_user(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user.basket.strip().split()] bask = list(map(lambda x: [sessions.query(products.Products).get(x[0]), x[1]], bask)) session['basket_count'] = len(bask) return render_template('basket.html', basket_count=session.get('basket_count', 0), title='Корзина', filename=filename, bask=bask) @app.route('/delete/<int:product_id>/<int:count>', methods=['GET', 'POST']) def delete(product_id, count): sessions = db_session.create_session() prod = sessions.query(products.Products).get(product_id) prod.still_have += count user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user.basket.strip().split()] bask = list(filter(lambda x: x[0] != product_id, bask)) bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask sessions.commit() return redirect('/basket') @app.route('/redact_profile', methods=['GET', 'POST']) @login_required def redact_profile(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) form = RegisterForm() if request.method == 'GET': if user.gender == 'Мужской': gen = '1' else: gen = '2' form.gender.data = gen form.name.data = user.name form.mname.data = user.midname form.age.data = user.age form.surname.data = user.surname elif request.method == 'POST': if form.gender.data == '1': gen = "Мужской" else: gen = "Женский" user.gender = gen user.name = form.name.data user.midname = form.mname.data user.age = form.age.data user.surname = form.surname.data session_in_db.commit() return redirect('/profile') filename = get_profile_img() return render_template('redact_profile.html', form=form, filename=filename, basket_count=session.get('basket_count', 0), title='Редактирование') class Buy(FlaskForm): count = IntegerField('Колличество:', validators=[DataRequired(), NumberRange(1)], default=1) submit = SubmitField('В корзину') @app.route('/product/<int:product_id>', methods=['GET', 'POST']) def product(product_id): form = Buy() if current_user.is_authenticated: filename = get_profile_img() else: filename = 'profilem' sessions = db_session.create_session() prod = sessions.query(products.Products).get(product_id) if form.validate_on_submit(): if current_user.is_authenticated: if sessions.query(products.Products).get(product_id).existence and \ form.count.data <= prod.still_have: prod.still_have -= form.count.data if prod.still_have == 0: prod.existence = 0 user = sessions.query(users.User).get(current_user.id) if user.basket: bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user.basket.strip().split()] change_product = False for item in bask: if item[0] == product_id: item[1] += form.count.data change_product = True if not change_product: user.basket = user.basket + f'{product_id}-{form.count.data} ' else: bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask else: user.basket = f'{product_id}-{form.count.data} ' sessions.commit() else: return render_template('product.html', prod=prod, filename=filename, title=prod.title, form=form, basket_count=session.get('basket_count', 0), message='Товара в таком колличестве нет в наличии!') else: return render_template('product.html', prod=prod, filename=filename, basket_count=session.get('basket_count', 0), title=prod.title, form=form, message='Вы не авторизованы') return redirect('/basket') return render_template('product.html', prod=prod, filename=filename, basket_count=session.get('basket_count', 0), title=prod.title, form=form) @app.route('/redact_prod_plus/<int:product_id>', methods=['GET', 'POST']) def redact_prod_plus(product_id): sessions = db_session.create_session() prod = sessions.query(products.Products).get(product_id) if prod.still_have: user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user.basket.strip().split()] for item in bask: if item[0] == product_id: item[1] += 1 bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask prod.still_have -= 1 sessions.commit() return redirect('/basket') @app.route('/redact_prod_minus/<int:product_id>', methods=['GET', 'POST']) def redact_prod_minus(product_id): sessions = db_session.create_session() user = sessions.query(users.User).get(current_user.id) bask = [[int(x.split('-')[0]), int(x.split('-')[1])] for x in user.basket.strip().split()] for item in bask: if item[0] == product_id: item[1] -= 1 bask = list(filter(lambda x: x[1] > 0, bask)) bask = ' '.join(['-'.join([str(x[0]), str(x[1])]) for x in bask]) bask += ' ' user.basket = bask prod = sessions.query(products.Products).get(product_id) prod.still_have += 1 sessions.commit() return redirect('/basket') @app.route('/change/<string:pos>') def change(pos): last_pos = session.get('sort', 'none') if last_pos == pos: session['reverse'] = not session.get('reverse', False) else: session['reverse'] = False session['sort'] = pos return redirect('/') class ChangePasswordForm(FlaskForm): old_password = PasswordField('Старый пароль', validators=[DataRequired()]) new_password = PasswordField('Новый пароль', validators=[DataRequired()]) again_password = PasswordField('Повторите новый пароль', validators=[DataRequired()]) submit = SubmitField('Сменить пароль') @app.route('/change_password', methods=['GET', "POST"]) @login_required def change_password(): filename = get_profile_img() form = ChangePasswordForm() if form.validate_on_submit(): db_session.global_init('db/blogs.sqlite') session_in_db = db_session.create_session() user = session_in_db.query(users.User).get(current_user.id) if user.hashed_password != form.old_password.data: return render_template('change_password.html', basket_count=session.get('basket_count', 0), title='Регистрация', form=form, old_password_error="Неверный пароль", again_password_error="OK", new_password_error="OK", filename=filename) result = check_password(form.new_password.data) if user.hashed_password == form.new_password.data: return render_template('change_password.html', basket_count=session.get('basket_count', 0), title='Регистрация', form=form, old_password_error="OK", again_password_error="OK", new_password_error="Новый пароль не должен совпадть со старым!", filename=filename) if result != 'OK': return render_template('change_password.html', basket_count=session.get('basket_count', 0), title='Регистрация', form=form, old_password_error="OK", again_password_error="OK", new_password_error=result, filename=filename) if form.new_password.data != form.again_password.data: return render_template('change_password.html', basket_count=session.get('basket_count', 0), title='Регистрация', form=form, old_password_error="OK", new_password_error="OK", again_password_error="Пароли не совпадают!", filename=filename) user.hashed_password = form.new_password.data session_in_db.commit() return redirect('/profile') return render_template('change_password.html', form=form, basket_count=session.get('basket_count', 0), title="Сменить пароль", filename=filename, old_password_error="OK", again_password_error="OK", new_password_error="OK") def main(): db_session.global_init("db/blogs.sqlite") api.add_resource(product_resource.ProductListResource, '/api/v2/products') api.add_resource(product_resource.ProductResource, '/api/v2/products/<int:product_id>') app.run() if __name__ == '__main__': main()
[ 23, 29, 30, 33, 41 ]
2,115
ce12ede15f4ca4a085e38e455515d8a028da8fd2
<mask token> class StageOneCustomize: <mask token> def __init__(self, process, customize, metaConditions): self.process = process self.customize = customize self.metaConditions = metaConditions self.modifyForttH = True self.tagList = [['LOGICERROR', 0], ['NOTAG', 0], [ 'RECO_0J_PTH_0_10_Tag0', 0], ['RECO_0J_PTH_0_10_Tag1', 0], [ 'RECO_0J_PTH_0_10_Tag2', 0], ['RECO_0J_PTH_GT10_Tag0', 0], [ 'RECO_0J_PTH_GT10_Tag1', 0], ['RECO_0J_PTH_GT10_Tag2', 0], [ 'RECO_1J_PTH_0_60_Tag0', 0], ['RECO_1J_PTH_0_60_Tag1', 0], [ 'RECO_1J_PTH_0_60_Tag2', 0], ['RECO_1J_PTH_60_120_Tag0', 0], [ 'RECO_1J_PTH_60_120_Tag1', 0], ['RECO_1J_PTH_60_120_Tag2', 0], ['RECO_1J_PTH_120_200_Tag0', 0], ['RECO_1J_PTH_120_200_Tag1', 0 ], ['RECO_1J_PTH_120_200_Tag2', 0], ['RECO_GE2J_PTH_0_60_Tag0', 0], ['RECO_GE2J_PTH_0_60_Tag1', 0], ['RECO_GE2J_PTH_0_60_Tag2', 0], ['RECO_GE2J_PTH_60_120_Tag0', 0], [ 'RECO_GE2J_PTH_60_120_Tag1', 0], ['RECO_GE2J_PTH_60_120_Tag2', 0], ['RECO_GE2J_PTH_120_200_Tag0', 0], [ 'RECO_GE2J_PTH_120_200_Tag1', 0], ['RECO_GE2J_PTH_120_200_Tag2', 0], ['RECO_PTH_200_300_Tag0', 0], ['RECO_PTH_200_300_Tag1', 0], ['RECO_PTH_300_450_Tag0', 0], ['RECO_PTH_300_450_Tag1', 0], [ 'RECO_PTH_450_650_Tag0', 0], ['RECO_PTH_GT650_Tag0', 0], [ 'RECO_VBFTOPO_VHHAD_Tag0', 0], ['RECO_VBFTOPO_VHHAD_Tag1', 0], ['RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3_LOWMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3_LOWMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3_HIGHMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3_HIGHMJJ_Tag1', 0], ['RECO_VBFTOPO_BSM_Tag0', 0], ['RECO_VBFTOPO_BSM_Tag1', 0], ['RECO_VBFLIKEGGH_Tag0', 0], ['RECO_VBFLIKEGGH_Tag1', 0], ['RECO_TTH_HAD_PTH_0_60_Tag0', 0], ['RECO_TTH_HAD_PTH_0_60_Tag1', 0], [ 'RECO_TTH_HAD_PTH_0_60_Tag2', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag0', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag1', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag2', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag0', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag1', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag2', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag3', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag0', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag1', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag2', 0], [ 'RECO_TTH_HAD_PTH_GT300_Tag0', 0], [ 'RECO_TTH_HAD_PTH_GT300_Tag1', 0], ['RECO_WH_LEP_PTV_0_75_Tag0', 0], ['RECO_WH_LEP_PTV_0_75_Tag1', 0], [ 'RECO_WH_LEP_PTV_75_150_Tag0', 0], [ 'RECO_WH_LEP_PTV_75_150_Tag1', 0], [ 'RECO_WH_LEP_PTV_GT150_Tag0', 0], ['RECO_ZH_LEP_Tag0', 0], [ 'RECO_ZH_LEP_Tag1', 0], ['RECO_VH_MET_Tag0', 0], [ 'RECO_VH_MET_Tag1', 0], ['RECO_VH_MET_Tag2', 0], [ 'RECO_TTH_LEP_PTH_0_60_Tag0', 0], ['RECO_TTH_LEP_PTH_0_60_Tag1', 0], ['RECO_TTH_LEP_PTH_0_60_Tag2', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag0', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag1', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag2', 0], [ 'RECO_TTH_LEP_PTH_120_200_Tag0', 0], [ 'RECO_TTH_LEP_PTH_120_200_Tag1', 0], [ 'RECO_TTH_LEP_PTH_200_300_Tag0', 0], [ 'RECO_TTH_LEP_PTH_GT300_Tag0', 0], ['RECO_THQ_LEP', 0]] if self.customize.processId == 'Data': self.tagList.pop(1) self.stageOneVariable = [ 'stage1p2bin[57,-8.5,48.5] := tagTruth().HTXSstage1p2orderedBin'] self.tagPriorityRanges = cms.VPSet(cms.PSet(TagName=cms.InputTag( 'flashggTHQLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggTTHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggZHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggWHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggTTHHadronicTag')), cms.PSet(TagName=cms.InputTag( 'flashggVHMetTag')), cms.PSet(TagName=cms.InputTag( 'flashggStageOneCombinedTag'))) self.customizeTagSequence() <mask token> def systematicVariables(self): systematicVariables = [] systematicVariables += self.stageOneVariable systematicVariables += ['CMS_hgg_mass[160,100,180]:=diPhoton().mass'] return systematicVariables def noTagVariables(self): noTagVariables = [] noTagVariables += self.stageOneVariable for direction in ['Up', 'Down']: noTagVariables.append( 'THU_ggH_Mu%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mu%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Res%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Res%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Mig01%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mig01%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Mig12%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mig12%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_VBF2j%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_VBF2j%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_VBF3j%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_VBF3j%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_PT60%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_PT60%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_PT120%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_PT120%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_qmtop%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_qmtop%s01sigma")' % (direction, direction)) return noTagVariables <mask token> def modifyWorkflowForttH(self, systlabels, phosystlabels, metsystlabels, jetsystlabels): for tag in ['flashggTTHLeptonicTag', 'flashggTTHHadronicTag']: getattr(self.process, tag).DiPhotonSuffixes = cms.vstring( phosystlabels) getattr(self.process, tag).JetsSuffixes = cms.vstring(jetsystlabels ) getattr(self.process, tag).MetSuffixes = cms.vstring(metsystlabels) getattr(self.process, tag).ModifySystematicsWorkflow = cms.bool( True) getattr(self.process, tag).UseLargeMVAs = cms.bool(True) self.process.p.remove(self.process.flashggTagSorter) self.process.p.replace(self.process.flashggSystTagMerger, cms. Sequence(self.process.flashggTTHLeptonicTag + self.process. flashggTTHHadronicTag) * self.process.flashggTagSorter * self. process.flashggSystTagMerger) for systlabel in systlabels: if systlabel == '': continue self.process.p.remove(getattr(self.process, 'flashggTagSorter' + systlabel)) self.process.p.replace(self.process.flashggSystTagMerger, getattr(self.process, 'flashggTagSorter' + systlabel) * self.process.flashggSystTagMerger) modifiedPriorityRanges = cms.VPSet(cms.PSet(TagName=cms. InputTag('flashggTHQLeptonicTag' + systlabel)), cms.PSet( TagName=cms.InputTag('flashggTTHLeptonicTag', systlabel)), cms.PSet(TagName=cms.InputTag('flashggZHLeptonicTag' + systlabel)), cms.PSet(TagName=cms.InputTag( 'flashggWHLeptonicTag' + systlabel)), cms.PSet(TagName=cms. InputTag('flashggTTHHadronicTag', systlabel)), cms.PSet( TagName=cms.InputTag('flashggVHMetTag' + systlabel)), cms. PSet(TagName=cms.InputTag('flashggStageOneCombinedTag' + systlabel))) setattr(getattr(self.process, 'flashggTagSorter' + systlabel), 'TagPriorityRanges', modifiedPriorityRanges)
<mask token> class StageOneCustomize: <mask token> def __init__(self, process, customize, metaConditions): self.process = process self.customize = customize self.metaConditions = metaConditions self.modifyForttH = True self.tagList = [['LOGICERROR', 0], ['NOTAG', 0], [ 'RECO_0J_PTH_0_10_Tag0', 0], ['RECO_0J_PTH_0_10_Tag1', 0], [ 'RECO_0J_PTH_0_10_Tag2', 0], ['RECO_0J_PTH_GT10_Tag0', 0], [ 'RECO_0J_PTH_GT10_Tag1', 0], ['RECO_0J_PTH_GT10_Tag2', 0], [ 'RECO_1J_PTH_0_60_Tag0', 0], ['RECO_1J_PTH_0_60_Tag1', 0], [ 'RECO_1J_PTH_0_60_Tag2', 0], ['RECO_1J_PTH_60_120_Tag0', 0], [ 'RECO_1J_PTH_60_120_Tag1', 0], ['RECO_1J_PTH_60_120_Tag2', 0], ['RECO_1J_PTH_120_200_Tag0', 0], ['RECO_1J_PTH_120_200_Tag1', 0 ], ['RECO_1J_PTH_120_200_Tag2', 0], ['RECO_GE2J_PTH_0_60_Tag0', 0], ['RECO_GE2J_PTH_0_60_Tag1', 0], ['RECO_GE2J_PTH_0_60_Tag2', 0], ['RECO_GE2J_PTH_60_120_Tag0', 0], [ 'RECO_GE2J_PTH_60_120_Tag1', 0], ['RECO_GE2J_PTH_60_120_Tag2', 0], ['RECO_GE2J_PTH_120_200_Tag0', 0], [ 'RECO_GE2J_PTH_120_200_Tag1', 0], ['RECO_GE2J_PTH_120_200_Tag2', 0], ['RECO_PTH_200_300_Tag0', 0], ['RECO_PTH_200_300_Tag1', 0], ['RECO_PTH_300_450_Tag0', 0], ['RECO_PTH_300_450_Tag1', 0], [ 'RECO_PTH_450_650_Tag0', 0], ['RECO_PTH_GT650_Tag0', 0], [ 'RECO_VBFTOPO_VHHAD_Tag0', 0], ['RECO_VBFTOPO_VHHAD_Tag1', 0], ['RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3_LOWMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3_LOWMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3_HIGHMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3_HIGHMJJ_Tag1', 0], ['RECO_VBFTOPO_BSM_Tag0', 0], ['RECO_VBFTOPO_BSM_Tag1', 0], ['RECO_VBFLIKEGGH_Tag0', 0], ['RECO_VBFLIKEGGH_Tag1', 0], ['RECO_TTH_HAD_PTH_0_60_Tag0', 0], ['RECO_TTH_HAD_PTH_0_60_Tag1', 0], [ 'RECO_TTH_HAD_PTH_0_60_Tag2', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag0', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag1', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag2', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag0', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag1', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag2', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag3', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag0', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag1', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag2', 0], [ 'RECO_TTH_HAD_PTH_GT300_Tag0', 0], [ 'RECO_TTH_HAD_PTH_GT300_Tag1', 0], ['RECO_WH_LEP_PTV_0_75_Tag0', 0], ['RECO_WH_LEP_PTV_0_75_Tag1', 0], [ 'RECO_WH_LEP_PTV_75_150_Tag0', 0], [ 'RECO_WH_LEP_PTV_75_150_Tag1', 0], [ 'RECO_WH_LEP_PTV_GT150_Tag0', 0], ['RECO_ZH_LEP_Tag0', 0], [ 'RECO_ZH_LEP_Tag1', 0], ['RECO_VH_MET_Tag0', 0], [ 'RECO_VH_MET_Tag1', 0], ['RECO_VH_MET_Tag2', 0], [ 'RECO_TTH_LEP_PTH_0_60_Tag0', 0], ['RECO_TTH_LEP_PTH_0_60_Tag1', 0], ['RECO_TTH_LEP_PTH_0_60_Tag2', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag0', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag1', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag2', 0], [ 'RECO_TTH_LEP_PTH_120_200_Tag0', 0], [ 'RECO_TTH_LEP_PTH_120_200_Tag1', 0], [ 'RECO_TTH_LEP_PTH_200_300_Tag0', 0], [ 'RECO_TTH_LEP_PTH_GT300_Tag0', 0], ['RECO_THQ_LEP', 0]] if self.customize.processId == 'Data': self.tagList.pop(1) self.stageOneVariable = [ 'stage1p2bin[57,-8.5,48.5] := tagTruth().HTXSstage1p2orderedBin'] self.tagPriorityRanges = cms.VPSet(cms.PSet(TagName=cms.InputTag( 'flashggTHQLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggTTHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggZHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggWHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggTTHHadronicTag')), cms.PSet(TagName=cms.InputTag( 'flashggVHMetTag')), cms.PSet(TagName=cms.InputTag( 'flashggStageOneCombinedTag'))) self.customizeTagSequence() <mask token> def systematicVariables(self): systematicVariables = [] systematicVariables += self.stageOneVariable systematicVariables += ['CMS_hgg_mass[160,100,180]:=diPhoton().mass'] return systematicVariables def noTagVariables(self): noTagVariables = [] noTagVariables += self.stageOneVariable for direction in ['Up', 'Down']: noTagVariables.append( 'THU_ggH_Mu%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mu%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Res%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Res%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Mig01%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mig01%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Mig12%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mig12%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_VBF2j%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_VBF2j%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_VBF3j%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_VBF3j%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_PT60%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_PT60%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_PT120%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_PT120%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_qmtop%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_qmtop%s01sigma")' % (direction, direction)) return noTagVariables def customizeTagSequence(self): self.process.load('flashgg.Taggers.flashggStageOneCombinedTag_cfi') self.process.flashggTagSequence.remove(self.process. flashggVBFDiPhoDiJetMVA) self.process.flashggTagSequence.remove(self.process. flashggTTHDiLeptonTag) self.process.flashggTagSequence.remove(self.process. flashggTTHLeptonicTag) self.process.flashggTagSequence.remove(self.process. flashggTTHHadronicTag) self.process.flashggTagSequence.remove(self.process. flashggVHLeptonicLooseTag) self.process.flashggTagSequence.remove(self.process. flashggVHHadronicTag) self.process.flashggTagSequence.remove(self.process.flashggVBFTag) self.process.flashggTagSequence.replace(self.process. flashggUntagged, self.process.flashggStageOneCombinedTag) self.process.flashggStageOneCombinedTag.rawDiphoBounds = cms.vdouble( self.metaConditions['stageOneCombinedTag']['rawDiphoBounds']) self.process.flashggStageOneCombinedTag.rawDijetBounds = cms.vdouble( self.metaConditions['stageOneCombinedTag']['rawDijetBounds']) self.process.flashggStageOneCombinedTag.rawGghBounds = cms.vdouble(self .metaConditions['stageOneCombinedTag']['rawGghBounds']) self.process.flashggStageOneCombinedTag.rawVhHadBounds = cms.vdouble( self.metaConditions['stageOneCombinedTag']['rawVhHadBounds']) self.metaConditions['L1Prefiring']['applyToCentral'] = True self.process.flashggTagSorter.TagPriorityRanges = (self. tagPriorityRanges) self.process.flashggTagSorter.isGluonFusion = cms.bool(bool(self. customize.processId.count('ggh'))) self.process.flashggTagSorter.applyNNLOPSweight = cms.bool(self. customize.applyNNLOPSweight) self.process.flashggSystTagMerger = cms.EDProducer('TagMerger', src =cms.VInputTag('flashggTagSorter')) def modifyWorkflowForttH(self, systlabels, phosystlabels, metsystlabels, jetsystlabels): for tag in ['flashggTTHLeptonicTag', 'flashggTTHHadronicTag']: getattr(self.process, tag).DiPhotonSuffixes = cms.vstring( phosystlabels) getattr(self.process, tag).JetsSuffixes = cms.vstring(jetsystlabels ) getattr(self.process, tag).MetSuffixes = cms.vstring(metsystlabels) getattr(self.process, tag).ModifySystematicsWorkflow = cms.bool( True) getattr(self.process, tag).UseLargeMVAs = cms.bool(True) self.process.p.remove(self.process.flashggTagSorter) self.process.p.replace(self.process.flashggSystTagMerger, cms. Sequence(self.process.flashggTTHLeptonicTag + self.process. flashggTTHHadronicTag) * self.process.flashggTagSorter * self. process.flashggSystTagMerger) for systlabel in systlabels: if systlabel == '': continue self.process.p.remove(getattr(self.process, 'flashggTagSorter' + systlabel)) self.process.p.replace(self.process.flashggSystTagMerger, getattr(self.process, 'flashggTagSorter' + systlabel) * self.process.flashggSystTagMerger) modifiedPriorityRanges = cms.VPSet(cms.PSet(TagName=cms. InputTag('flashggTHQLeptonicTag' + systlabel)), cms.PSet( TagName=cms.InputTag('flashggTTHLeptonicTag', systlabel)), cms.PSet(TagName=cms.InputTag('flashggZHLeptonicTag' + systlabel)), cms.PSet(TagName=cms.InputTag( 'flashggWHLeptonicTag' + systlabel)), cms.PSet(TagName=cms. InputTag('flashggTTHHadronicTag', systlabel)), cms.PSet( TagName=cms.InputTag('flashggVHMetTag' + systlabel)), cms. PSet(TagName=cms.InputTag('flashggStageOneCombinedTag' + systlabel))) setattr(getattr(self.process, 'flashggTagSorter' + systlabel), 'TagPriorityRanges', modifiedPriorityRanges)
<mask token> class StageOneCustomize: <mask token> def __init__(self, process, customize, metaConditions): self.process = process self.customize = customize self.metaConditions = metaConditions self.modifyForttH = True self.tagList = [['LOGICERROR', 0], ['NOTAG', 0], [ 'RECO_0J_PTH_0_10_Tag0', 0], ['RECO_0J_PTH_0_10_Tag1', 0], [ 'RECO_0J_PTH_0_10_Tag2', 0], ['RECO_0J_PTH_GT10_Tag0', 0], [ 'RECO_0J_PTH_GT10_Tag1', 0], ['RECO_0J_PTH_GT10_Tag2', 0], [ 'RECO_1J_PTH_0_60_Tag0', 0], ['RECO_1J_PTH_0_60_Tag1', 0], [ 'RECO_1J_PTH_0_60_Tag2', 0], ['RECO_1J_PTH_60_120_Tag0', 0], [ 'RECO_1J_PTH_60_120_Tag1', 0], ['RECO_1J_PTH_60_120_Tag2', 0], ['RECO_1J_PTH_120_200_Tag0', 0], ['RECO_1J_PTH_120_200_Tag1', 0 ], ['RECO_1J_PTH_120_200_Tag2', 0], ['RECO_GE2J_PTH_0_60_Tag0', 0], ['RECO_GE2J_PTH_0_60_Tag1', 0], ['RECO_GE2J_PTH_0_60_Tag2', 0], ['RECO_GE2J_PTH_60_120_Tag0', 0], [ 'RECO_GE2J_PTH_60_120_Tag1', 0], ['RECO_GE2J_PTH_60_120_Tag2', 0], ['RECO_GE2J_PTH_120_200_Tag0', 0], [ 'RECO_GE2J_PTH_120_200_Tag1', 0], ['RECO_GE2J_PTH_120_200_Tag2', 0], ['RECO_PTH_200_300_Tag0', 0], ['RECO_PTH_200_300_Tag1', 0], ['RECO_PTH_300_450_Tag0', 0], ['RECO_PTH_300_450_Tag1', 0], [ 'RECO_PTH_450_650_Tag0', 0], ['RECO_PTH_GT650_Tag0', 0], [ 'RECO_VBFTOPO_VHHAD_Tag0', 0], ['RECO_VBFTOPO_VHHAD_Tag1', 0], ['RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3_LOWMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3_LOWMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3_HIGHMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3_HIGHMJJ_Tag1', 0], ['RECO_VBFTOPO_BSM_Tag0', 0], ['RECO_VBFTOPO_BSM_Tag1', 0], ['RECO_VBFLIKEGGH_Tag0', 0], ['RECO_VBFLIKEGGH_Tag1', 0], ['RECO_TTH_HAD_PTH_0_60_Tag0', 0], ['RECO_TTH_HAD_PTH_0_60_Tag1', 0], [ 'RECO_TTH_HAD_PTH_0_60_Tag2', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag0', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag1', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag2', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag0', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag1', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag2', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag3', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag0', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag1', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag2', 0], [ 'RECO_TTH_HAD_PTH_GT300_Tag0', 0], [ 'RECO_TTH_HAD_PTH_GT300_Tag1', 0], ['RECO_WH_LEP_PTV_0_75_Tag0', 0], ['RECO_WH_LEP_PTV_0_75_Tag1', 0], [ 'RECO_WH_LEP_PTV_75_150_Tag0', 0], [ 'RECO_WH_LEP_PTV_75_150_Tag1', 0], [ 'RECO_WH_LEP_PTV_GT150_Tag0', 0], ['RECO_ZH_LEP_Tag0', 0], [ 'RECO_ZH_LEP_Tag1', 0], ['RECO_VH_MET_Tag0', 0], [ 'RECO_VH_MET_Tag1', 0], ['RECO_VH_MET_Tag2', 0], [ 'RECO_TTH_LEP_PTH_0_60_Tag0', 0], ['RECO_TTH_LEP_PTH_0_60_Tag1', 0], ['RECO_TTH_LEP_PTH_0_60_Tag2', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag0', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag1', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag2', 0], [ 'RECO_TTH_LEP_PTH_120_200_Tag0', 0], [ 'RECO_TTH_LEP_PTH_120_200_Tag1', 0], [ 'RECO_TTH_LEP_PTH_200_300_Tag0', 0], [ 'RECO_TTH_LEP_PTH_GT300_Tag0', 0], ['RECO_THQ_LEP', 0]] if self.customize.processId == 'Data': self.tagList.pop(1) self.stageOneVariable = [ 'stage1p2bin[57,-8.5,48.5] := tagTruth().HTXSstage1p2orderedBin'] self.tagPriorityRanges = cms.VPSet(cms.PSet(TagName=cms.InputTag( 'flashggTHQLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggTTHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggZHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggWHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggTTHHadronicTag')), cms.PSet(TagName=cms.InputTag( 'flashggVHMetTag')), cms.PSet(TagName=cms.InputTag( 'flashggStageOneCombinedTag'))) self.customizeTagSequence() def variablesToDump(self): ws_variables = [] ws_variables += self.stageOneVariable ws_variables += ['CMS_hgg_mass[160,100,180]:=diPhoton().mass', 'dZ[40,-20.,20.]:=(tagTruth().genPV().z-diPhoton().vtx().z)', 'NNLOPSweight[1,-999999.,999999.] := tagTruth().weight("NNLOPSweight")' , 'btagReshapeNorm_TTH_LEP[1,-999999.,999999.] := weight("btagReshapeNorm_TTH_LEP")' , 'btagReshapeNorm_TTH_HAD[1,-999999.,999999.] := weight("btagReshapeNorm_TTH_HAD")' , 'btagReshapeNorm_THQ_LEP[1,-999999.,999999.] := weight("btagReshapeNorm_THQ_LEP")' , 'centralObjectWeight[1,-999999.,999999.] := centralWeight'] ntup_variables = ws_variables if self.customize.dumpWorkspace: return ws_variables else: return ntup_variables def systematicVariables(self): systematicVariables = [] systematicVariables += self.stageOneVariable systematicVariables += ['CMS_hgg_mass[160,100,180]:=diPhoton().mass'] return systematicVariables def noTagVariables(self): noTagVariables = [] noTagVariables += self.stageOneVariable for direction in ['Up', 'Down']: noTagVariables.append( 'THU_ggH_Mu%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mu%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Res%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Res%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Mig01%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mig01%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Mig12%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mig12%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_VBF2j%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_VBF2j%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_VBF3j%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_VBF3j%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_PT60%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_PT60%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_PT120%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_PT120%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_qmtop%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_qmtop%s01sigma")' % (direction, direction)) return noTagVariables def customizeTagSequence(self): self.process.load('flashgg.Taggers.flashggStageOneCombinedTag_cfi') self.process.flashggTagSequence.remove(self.process. flashggVBFDiPhoDiJetMVA) self.process.flashggTagSequence.remove(self.process. flashggTTHDiLeptonTag) self.process.flashggTagSequence.remove(self.process. flashggTTHLeptonicTag) self.process.flashggTagSequence.remove(self.process. flashggTTHHadronicTag) self.process.flashggTagSequence.remove(self.process. flashggVHLeptonicLooseTag) self.process.flashggTagSequence.remove(self.process. flashggVHHadronicTag) self.process.flashggTagSequence.remove(self.process.flashggVBFTag) self.process.flashggTagSequence.replace(self.process. flashggUntagged, self.process.flashggStageOneCombinedTag) self.process.flashggStageOneCombinedTag.rawDiphoBounds = cms.vdouble( self.metaConditions['stageOneCombinedTag']['rawDiphoBounds']) self.process.flashggStageOneCombinedTag.rawDijetBounds = cms.vdouble( self.metaConditions['stageOneCombinedTag']['rawDijetBounds']) self.process.flashggStageOneCombinedTag.rawGghBounds = cms.vdouble(self .metaConditions['stageOneCombinedTag']['rawGghBounds']) self.process.flashggStageOneCombinedTag.rawVhHadBounds = cms.vdouble( self.metaConditions['stageOneCombinedTag']['rawVhHadBounds']) self.metaConditions['L1Prefiring']['applyToCentral'] = True self.process.flashggTagSorter.TagPriorityRanges = (self. tagPriorityRanges) self.process.flashggTagSorter.isGluonFusion = cms.bool(bool(self. customize.processId.count('ggh'))) self.process.flashggTagSorter.applyNNLOPSweight = cms.bool(self. customize.applyNNLOPSweight) self.process.flashggSystTagMerger = cms.EDProducer('TagMerger', src =cms.VInputTag('flashggTagSorter')) def modifyWorkflowForttH(self, systlabels, phosystlabels, metsystlabels, jetsystlabels): for tag in ['flashggTTHLeptonicTag', 'flashggTTHHadronicTag']: getattr(self.process, tag).DiPhotonSuffixes = cms.vstring( phosystlabels) getattr(self.process, tag).JetsSuffixes = cms.vstring(jetsystlabels ) getattr(self.process, tag).MetSuffixes = cms.vstring(metsystlabels) getattr(self.process, tag).ModifySystematicsWorkflow = cms.bool( True) getattr(self.process, tag).UseLargeMVAs = cms.bool(True) self.process.p.remove(self.process.flashggTagSorter) self.process.p.replace(self.process.flashggSystTagMerger, cms. Sequence(self.process.flashggTTHLeptonicTag + self.process. flashggTTHHadronicTag) * self.process.flashggTagSorter * self. process.flashggSystTagMerger) for systlabel in systlabels: if systlabel == '': continue self.process.p.remove(getattr(self.process, 'flashggTagSorter' + systlabel)) self.process.p.replace(self.process.flashggSystTagMerger, getattr(self.process, 'flashggTagSorter' + systlabel) * self.process.flashggSystTagMerger) modifiedPriorityRanges = cms.VPSet(cms.PSet(TagName=cms. InputTag('flashggTHQLeptonicTag' + systlabel)), cms.PSet( TagName=cms.InputTag('flashggTTHLeptonicTag', systlabel)), cms.PSet(TagName=cms.InputTag('flashggZHLeptonicTag' + systlabel)), cms.PSet(TagName=cms.InputTag( 'flashggWHLeptonicTag' + systlabel)), cms.PSet(TagName=cms. InputTag('flashggTTHHadronicTag', systlabel)), cms.PSet( TagName=cms.InputTag('flashggVHMetTag' + systlabel)), cms. PSet(TagName=cms.InputTag('flashggStageOneCombinedTag' + systlabel))) setattr(getattr(self.process, 'flashggTagSorter' + systlabel), 'TagPriorityRanges', modifiedPriorityRanges)
import FWCore.ParameterSet.Config as cms class StageOneCustomize: """ Customizaton class for STXS stage 1 analysis """ def __init__(self, process, customize, metaConditions): self.process = process self.customize = customize self.metaConditions = metaConditions self.modifyForttH = True self.tagList = [['LOGICERROR', 0], ['NOTAG', 0], [ 'RECO_0J_PTH_0_10_Tag0', 0], ['RECO_0J_PTH_0_10_Tag1', 0], [ 'RECO_0J_PTH_0_10_Tag2', 0], ['RECO_0J_PTH_GT10_Tag0', 0], [ 'RECO_0J_PTH_GT10_Tag1', 0], ['RECO_0J_PTH_GT10_Tag2', 0], [ 'RECO_1J_PTH_0_60_Tag0', 0], ['RECO_1J_PTH_0_60_Tag1', 0], [ 'RECO_1J_PTH_0_60_Tag2', 0], ['RECO_1J_PTH_60_120_Tag0', 0], [ 'RECO_1J_PTH_60_120_Tag1', 0], ['RECO_1J_PTH_60_120_Tag2', 0], ['RECO_1J_PTH_120_200_Tag0', 0], ['RECO_1J_PTH_120_200_Tag1', 0 ], ['RECO_1J_PTH_120_200_Tag2', 0], ['RECO_GE2J_PTH_0_60_Tag0', 0], ['RECO_GE2J_PTH_0_60_Tag1', 0], ['RECO_GE2J_PTH_0_60_Tag2', 0], ['RECO_GE2J_PTH_60_120_Tag0', 0], [ 'RECO_GE2J_PTH_60_120_Tag1', 0], ['RECO_GE2J_PTH_60_120_Tag2', 0], ['RECO_GE2J_PTH_120_200_Tag0', 0], [ 'RECO_GE2J_PTH_120_200_Tag1', 0], ['RECO_GE2J_PTH_120_200_Tag2', 0], ['RECO_PTH_200_300_Tag0', 0], ['RECO_PTH_200_300_Tag1', 0], ['RECO_PTH_300_450_Tag0', 0], ['RECO_PTH_300_450_Tag1', 0], [ 'RECO_PTH_450_650_Tag0', 0], ['RECO_PTH_GT650_Tag0', 0], [ 'RECO_VBFTOPO_VHHAD_Tag0', 0], ['RECO_VBFTOPO_VHHAD_Tag1', 0], ['RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3_LOWMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3_LOWMJJ_Tag1', 0], [ 'RECO_VBFTOPO_JET3_HIGHMJJ_Tag0', 0], [ 'RECO_VBFTOPO_JET3_HIGHMJJ_Tag1', 0], ['RECO_VBFTOPO_BSM_Tag0', 0], ['RECO_VBFTOPO_BSM_Tag1', 0], ['RECO_VBFLIKEGGH_Tag0', 0], ['RECO_VBFLIKEGGH_Tag1', 0], ['RECO_TTH_HAD_PTH_0_60_Tag0', 0], ['RECO_TTH_HAD_PTH_0_60_Tag1', 0], [ 'RECO_TTH_HAD_PTH_0_60_Tag2', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag0', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag1', 0], [ 'RECO_TTH_HAD_PTH_60_120_Tag2', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag0', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag1', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag2', 0], [ 'RECO_TTH_HAD_PTH_120_200_Tag3', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag0', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag1', 0], [ 'RECO_TTH_HAD_PTH_200_300_Tag2', 0], [ 'RECO_TTH_HAD_PTH_GT300_Tag0', 0], [ 'RECO_TTH_HAD_PTH_GT300_Tag1', 0], ['RECO_WH_LEP_PTV_0_75_Tag0', 0], ['RECO_WH_LEP_PTV_0_75_Tag1', 0], [ 'RECO_WH_LEP_PTV_75_150_Tag0', 0], [ 'RECO_WH_LEP_PTV_75_150_Tag1', 0], [ 'RECO_WH_LEP_PTV_GT150_Tag0', 0], ['RECO_ZH_LEP_Tag0', 0], [ 'RECO_ZH_LEP_Tag1', 0], ['RECO_VH_MET_Tag0', 0], [ 'RECO_VH_MET_Tag1', 0], ['RECO_VH_MET_Tag2', 0], [ 'RECO_TTH_LEP_PTH_0_60_Tag0', 0], ['RECO_TTH_LEP_PTH_0_60_Tag1', 0], ['RECO_TTH_LEP_PTH_0_60_Tag2', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag0', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag1', 0], [ 'RECO_TTH_LEP_PTH_60_120_Tag2', 0], [ 'RECO_TTH_LEP_PTH_120_200_Tag0', 0], [ 'RECO_TTH_LEP_PTH_120_200_Tag1', 0], [ 'RECO_TTH_LEP_PTH_200_300_Tag0', 0], [ 'RECO_TTH_LEP_PTH_GT300_Tag0', 0], ['RECO_THQ_LEP', 0]] if self.customize.processId == 'Data': self.tagList.pop(1) self.stageOneVariable = [ 'stage1p2bin[57,-8.5,48.5] := tagTruth().HTXSstage1p2orderedBin'] self.tagPriorityRanges = cms.VPSet(cms.PSet(TagName=cms.InputTag( 'flashggTHQLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggTTHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggZHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggWHLeptonicTag')), cms.PSet(TagName=cms.InputTag( 'flashggTTHHadronicTag')), cms.PSet(TagName=cms.InputTag( 'flashggVHMetTag')), cms.PSet(TagName=cms.InputTag( 'flashggStageOneCombinedTag'))) self.customizeTagSequence() def variablesToDump(self): ws_variables = [] ws_variables += self.stageOneVariable ws_variables += ['CMS_hgg_mass[160,100,180]:=diPhoton().mass', 'dZ[40,-20.,20.]:=(tagTruth().genPV().z-diPhoton().vtx().z)', 'NNLOPSweight[1,-999999.,999999.] := tagTruth().weight("NNLOPSweight")' , 'btagReshapeNorm_TTH_LEP[1,-999999.,999999.] := weight("btagReshapeNorm_TTH_LEP")' , 'btagReshapeNorm_TTH_HAD[1,-999999.,999999.] := weight("btagReshapeNorm_TTH_HAD")' , 'btagReshapeNorm_THQ_LEP[1,-999999.,999999.] := weight("btagReshapeNorm_THQ_LEP")' , 'centralObjectWeight[1,-999999.,999999.] := centralWeight'] ntup_variables = ws_variables if self.customize.dumpWorkspace: return ws_variables else: return ntup_variables def systematicVariables(self): systematicVariables = [] systematicVariables += self.stageOneVariable systematicVariables += ['CMS_hgg_mass[160,100,180]:=diPhoton().mass'] return systematicVariables def noTagVariables(self): noTagVariables = [] noTagVariables += self.stageOneVariable for direction in ['Up', 'Down']: noTagVariables.append( 'THU_ggH_Mu%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mu%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Res%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Res%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Mig01%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mig01%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_Mig12%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_Mig12%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_VBF2j%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_VBF2j%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_VBF3j%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_VBF3j%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_PT60%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_PT60%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_PT120%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_PT120%s01sigma")' % (direction, direction)) noTagVariables.append( 'THU_ggH_qmtop%s01sigma[1,-999999.,999999.] := getTheoryWeight("THU_ggH_qmtop%s01sigma")' % (direction, direction)) return noTagVariables def customizeTagSequence(self): self.process.load('flashgg.Taggers.flashggStageOneCombinedTag_cfi') self.process.flashggTagSequence.remove(self.process. flashggVBFDiPhoDiJetMVA) self.process.flashggTagSequence.remove(self.process. flashggTTHDiLeptonTag) self.process.flashggTagSequence.remove(self.process. flashggTTHLeptonicTag) self.process.flashggTagSequence.remove(self.process. flashggTTHHadronicTag) self.process.flashggTagSequence.remove(self.process. flashggVHLeptonicLooseTag) self.process.flashggTagSequence.remove(self.process. flashggVHHadronicTag) self.process.flashggTagSequence.remove(self.process.flashggVBFTag) self.process.flashggTagSequence.replace(self.process. flashggUntagged, self.process.flashggStageOneCombinedTag) self.process.flashggStageOneCombinedTag.rawDiphoBounds = cms.vdouble( self.metaConditions['stageOneCombinedTag']['rawDiphoBounds']) self.process.flashggStageOneCombinedTag.rawDijetBounds = cms.vdouble( self.metaConditions['stageOneCombinedTag']['rawDijetBounds']) self.process.flashggStageOneCombinedTag.rawGghBounds = cms.vdouble(self .metaConditions['stageOneCombinedTag']['rawGghBounds']) self.process.flashggStageOneCombinedTag.rawVhHadBounds = cms.vdouble( self.metaConditions['stageOneCombinedTag']['rawVhHadBounds']) self.metaConditions['L1Prefiring']['applyToCentral'] = True self.process.flashggTagSorter.TagPriorityRanges = (self. tagPriorityRanges) self.process.flashggTagSorter.isGluonFusion = cms.bool(bool(self. customize.processId.count('ggh'))) self.process.flashggTagSorter.applyNNLOPSweight = cms.bool(self. customize.applyNNLOPSweight) self.process.flashggSystTagMerger = cms.EDProducer('TagMerger', src =cms.VInputTag('flashggTagSorter')) def modifyWorkflowForttH(self, systlabels, phosystlabels, metsystlabels, jetsystlabels): for tag in ['flashggTTHLeptonicTag', 'flashggTTHHadronicTag']: getattr(self.process, tag).DiPhotonSuffixes = cms.vstring( phosystlabels) getattr(self.process, tag).JetsSuffixes = cms.vstring(jetsystlabels ) getattr(self.process, tag).MetSuffixes = cms.vstring(metsystlabels) getattr(self.process, tag).ModifySystematicsWorkflow = cms.bool( True) getattr(self.process, tag).UseLargeMVAs = cms.bool(True) self.process.p.remove(self.process.flashggTagSorter) self.process.p.replace(self.process.flashggSystTagMerger, cms. Sequence(self.process.flashggTTHLeptonicTag + self.process. flashggTTHHadronicTag) * self.process.flashggTagSorter * self. process.flashggSystTagMerger) for systlabel in systlabels: if systlabel == '': continue self.process.p.remove(getattr(self.process, 'flashggTagSorter' + systlabel)) self.process.p.replace(self.process.flashggSystTagMerger, getattr(self.process, 'flashggTagSorter' + systlabel) * self.process.flashggSystTagMerger) modifiedPriorityRanges = cms.VPSet(cms.PSet(TagName=cms. InputTag('flashggTHQLeptonicTag' + systlabel)), cms.PSet( TagName=cms.InputTag('flashggTTHLeptonicTag', systlabel)), cms.PSet(TagName=cms.InputTag('flashggZHLeptonicTag' + systlabel)), cms.PSet(TagName=cms.InputTag( 'flashggWHLeptonicTag' + systlabel)), cms.PSet(TagName=cms. InputTag('flashggTTHHadronicTag', systlabel)), cms.PSet( TagName=cms.InputTag('flashggVHMetTag' + systlabel)), cms. PSet(TagName=cms.InputTag('flashggStageOneCombinedTag' + systlabel))) setattr(getattr(self.process, 'flashggTagSorter' + systlabel), 'TagPriorityRanges', modifiedPriorityRanges)
import FWCore.ParameterSet.Config as cms class StageOneCustomize(): """ Customizaton class for STXS stage 1 analysis """ def __init__(self, process, customize, metaConditions): self.process = process self.customize = customize self.metaConditions = metaConditions self.modifyForttH = True self.tagList = [ ["LOGICERROR",0], ["NOTAG",0], ["RECO_0J_PTH_0_10_Tag0",0], ["RECO_0J_PTH_0_10_Tag1",0], ["RECO_0J_PTH_0_10_Tag2",0], ["RECO_0J_PTH_GT10_Tag0",0], ["RECO_0J_PTH_GT10_Tag1",0],["RECO_0J_PTH_GT10_Tag2",0], ["RECO_1J_PTH_0_60_Tag0",0], ["RECO_1J_PTH_0_60_Tag1",0], ["RECO_1J_PTH_0_60_Tag2",0], ["RECO_1J_PTH_60_120_Tag0",0], ["RECO_1J_PTH_60_120_Tag1",0], ["RECO_1J_PTH_60_120_Tag2",0], ["RECO_1J_PTH_120_200_Tag0",0], ["RECO_1J_PTH_120_200_Tag1",0],["RECO_1J_PTH_120_200_Tag2",0], ["RECO_GE2J_PTH_0_60_Tag0",0], ["RECO_GE2J_PTH_0_60_Tag1",0], ["RECO_GE2J_PTH_0_60_Tag2",0], ["RECO_GE2J_PTH_60_120_Tag0",0], ["RECO_GE2J_PTH_60_120_Tag1",0], ["RECO_GE2J_PTH_60_120_Tag2",0], ["RECO_GE2J_PTH_120_200_Tag0",0], ["RECO_GE2J_PTH_120_200_Tag1",0], ["RECO_GE2J_PTH_120_200_Tag2",0], ["RECO_PTH_200_300_Tag0",0], ["RECO_PTH_200_300_Tag1",0], ["RECO_PTH_300_450_Tag0",0], ["RECO_PTH_300_450_Tag1",0], ["RECO_PTH_450_650_Tag0",0], ["RECO_PTH_GT650_Tag0",0], ["RECO_VBFTOPO_VHHAD_Tag0",0], ["RECO_VBFTOPO_VHHAD_Tag1",0], ["RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag0",0], ["RECO_VBFTOPO_JET3VETO_LOWMJJ_Tag1",0], ["RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag0",0], ["RECO_VBFTOPO_JET3VETO_HIGHMJJ_Tag1",0], ["RECO_VBFTOPO_JET3_LOWMJJ_Tag0",0], ["RECO_VBFTOPO_JET3_LOWMJJ_Tag1",0], ["RECO_VBFTOPO_JET3_HIGHMJJ_Tag0",0], ["RECO_VBFTOPO_JET3_HIGHMJJ_Tag1",0], ["RECO_VBFTOPO_BSM_Tag0",0], ["RECO_VBFTOPO_BSM_Tag1",0], ["RECO_VBFLIKEGGH_Tag0",0], ["RECO_VBFLIKEGGH_Tag1",0], ["RECO_TTH_HAD_PTH_0_60_Tag0",0], ["RECO_TTH_HAD_PTH_0_60_Tag1",0], ["RECO_TTH_HAD_PTH_0_60_Tag2",0], ["RECO_TTH_HAD_PTH_60_120_Tag0",0], ["RECO_TTH_HAD_PTH_60_120_Tag1",0], ["RECO_TTH_HAD_PTH_60_120_Tag2",0], ["RECO_TTH_HAD_PTH_120_200_Tag0",0], ["RECO_TTH_HAD_PTH_120_200_Tag1",0], ["RECO_TTH_HAD_PTH_120_200_Tag2",0], ["RECO_TTH_HAD_PTH_120_200_Tag3",0], ["RECO_TTH_HAD_PTH_200_300_Tag0",0], ["RECO_TTH_HAD_PTH_200_300_Tag1",0], ["RECO_TTH_HAD_PTH_200_300_Tag2",0], ["RECO_TTH_HAD_PTH_GT300_Tag0",0], ["RECO_TTH_HAD_PTH_GT300_Tag1",0], ["RECO_WH_LEP_PTV_0_75_Tag0",0], ["RECO_WH_LEP_PTV_0_75_Tag1",0], ["RECO_WH_LEP_PTV_75_150_Tag0",0], ["RECO_WH_LEP_PTV_75_150_Tag1",0], ["RECO_WH_LEP_PTV_GT150_Tag0",0], ["RECO_ZH_LEP_Tag0",0], ["RECO_ZH_LEP_Tag1",0], ["RECO_VH_MET_Tag0",0], ["RECO_VH_MET_Tag1",0], ["RECO_VH_MET_Tag2",0], ["RECO_TTH_LEP_PTH_0_60_Tag0",0], ["RECO_TTH_LEP_PTH_0_60_Tag1",0], ["RECO_TTH_LEP_PTH_0_60_Tag2",0], ["RECO_TTH_LEP_PTH_60_120_Tag0",0], ["RECO_TTH_LEP_PTH_60_120_Tag1",0], ["RECO_TTH_LEP_PTH_60_120_Tag2",0], ["RECO_TTH_LEP_PTH_120_200_Tag0",0], ["RECO_TTH_LEP_PTH_120_200_Tag1",0], ["RECO_TTH_LEP_PTH_200_300_Tag0",0], ["RECO_TTH_LEP_PTH_GT300_Tag0",0], ["RECO_THQ_LEP",0] ] if self.customize.processId == "Data": self.tagList.pop(1) ## remove NoTag for data self.stageOneVariable = ["stage1p2bin[57,-8.5,48.5] := tagTruth().HTXSstage1p2orderedBin"] self.tagPriorityRanges = cms.VPSet( cms.PSet(TagName = cms.InputTag('flashggTHQLeptonicTag')), cms.PSet(TagName = cms.InputTag('flashggTTHLeptonicTag')), cms.PSet(TagName = cms.InputTag('flashggZHLeptonicTag')), cms.PSet(TagName = cms.InputTag('flashggWHLeptonicTag')), cms.PSet(TagName = cms.InputTag('flashggTTHHadronicTag')), cms.PSet(TagName = cms.InputTag('flashggVHMetTag')), cms.PSet(TagName = cms.InputTag('flashggStageOneCombinedTag')) ) self.customizeTagSequence() def variablesToDump(self): ws_variables = [] ws_variables += self.stageOneVariable ws_variables += [ "CMS_hgg_mass[160,100,180]:=diPhoton().mass", "dZ[40,-20.,20.]:=(tagTruth().genPV().z-diPhoton().vtx().z)", "NNLOPSweight[1,-999999.,999999.] := tagTruth().weight(\"NNLOPSweight\")", "btagReshapeNorm_TTH_LEP[1,-999999.,999999.] := weight(\"btagReshapeNorm_TTH_LEP\")", "btagReshapeNorm_TTH_HAD[1,-999999.,999999.] := weight(\"btagReshapeNorm_TTH_HAD\")", "btagReshapeNorm_THQ_LEP[1,-999999.,999999.] := weight(\"btagReshapeNorm_THQ_LEP\")", "centralObjectWeight[1,-999999.,999999.] := centralWeight" ] ntup_variables = ws_variables #+ [ # "truthNNLOPS[1,-999999.,999999.]:=tagTruth().weight(\"NNLOPS\")", # "leadJetPt[1,-999999.,999999.]:=VBFMVA().dijet_LeadJPt" # ] if self.customize.dumpWorkspace: return ws_variables else: return ntup_variables def systematicVariables(self): systematicVariables = [] systematicVariables += self.stageOneVariable systematicVariables += [ "CMS_hgg_mass[160,100,180]:=diPhoton().mass" ] return systematicVariables def noTagVariables(self): noTagVariables = [] noTagVariables += self.stageOneVariable for direction in ["Up","Down"]: noTagVariables.append("THU_ggH_Mu%s01sigma[1,-999999.,999999.] := getTheoryWeight(\"THU_ggH_Mu%s01sigma\")" % (direction,direction)) noTagVariables.append("THU_ggH_Res%s01sigma[1,-999999.,999999.] := getTheoryWeight(\"THU_ggH_Res%s01sigma\")" % (direction,direction)) noTagVariables.append("THU_ggH_Mig01%s01sigma[1,-999999.,999999.] := getTheoryWeight(\"THU_ggH_Mig01%s01sigma\")" % (direction,direction)) noTagVariables.append("THU_ggH_Mig12%s01sigma[1,-999999.,999999.] := getTheoryWeight(\"THU_ggH_Mig12%s01sigma\")" % (direction,direction)) noTagVariables.append("THU_ggH_VBF2j%s01sigma[1,-999999.,999999.] := getTheoryWeight(\"THU_ggH_VBF2j%s01sigma\")" % (direction,direction)) noTagVariables.append("THU_ggH_VBF3j%s01sigma[1,-999999.,999999.] := getTheoryWeight(\"THU_ggH_VBF3j%s01sigma\")" % (direction,direction)) noTagVariables.append("THU_ggH_PT60%s01sigma[1,-999999.,999999.] := getTheoryWeight(\"THU_ggH_PT60%s01sigma\")" % (direction,direction)) noTagVariables.append("THU_ggH_PT120%s01sigma[1,-999999.,999999.] := getTheoryWeight(\"THU_ggH_PT120%s01sigma\")" % (direction,direction)) noTagVariables.append("THU_ggH_qmtop%s01sigma[1,-999999.,999999.] := getTheoryWeight(\"THU_ggH_qmtop%s01sigma\")" % (direction,direction)) return noTagVariables def customizeTagSequence(self): self.process.load("flashgg.Taggers.flashggStageOneCombinedTag_cfi") ## remove unneeded tags self.process.flashggTagSequence.remove(self.process.flashggVBFDiPhoDiJetMVA) #self.process.flashggTagSequence.remove(self.process.flashggTHQLeptonicTag) ## now included in analysis self.process.flashggTagSequence.remove(self.process.flashggTTHDiLeptonTag) self.process.flashggTagSequence.remove(self.process.flashggTTHLeptonicTag) ## will be added back in later self.process.flashggTagSequence.remove(self.process.flashggTTHHadronicTag) ## will be added back in later #self.process.flashggTagSequence.remove(self.process.flashggVHMetTag) ## now included in analysis #self.process.flashggTagSequence.remove(self.process.flashggZHLeptonicTag) ## now included in analysis #self.process.flashggTagSequence.remove(self.process.flashggWHLeptonicTag) ## now included in analysis self.process.flashggTagSequence.remove(self.process.flashggVHLeptonicLooseTag) self.process.flashggTagSequence.remove(self.process.flashggVHHadronicTag) self.process.flashggTagSequence.remove(self.process.flashggVBFTag) self.process.flashggTagSequence.replace(self.process.flashggUntagged,self.process.flashggStageOneCombinedTag) ## customize from meta conditions - category thresholds set here self.process.flashggStageOneCombinedTag.rawDiphoBounds = cms.vdouble( self.metaConditions["stageOneCombinedTag"]["rawDiphoBounds"] ) self.process.flashggStageOneCombinedTag.rawDijetBounds = cms.vdouble( self.metaConditions["stageOneCombinedTag"]["rawDijetBounds"] ) self.process.flashggStageOneCombinedTag.rawGghBounds = cms.vdouble( self.metaConditions["stageOneCombinedTag"]["rawGghBounds"] ) self.process.flashggStageOneCombinedTag.rawVhHadBounds = cms.vdouble( self.metaConditions["stageOneCombinedTag"]["rawVhHadBounds"] ) ## set the pre-firing to be applied self.metaConditions["L1Prefiring"]["applyToCentral"] = True ## set tag priorities self.process.flashggTagSorter.TagPriorityRanges = self.tagPriorityRanges self.process.flashggTagSorter.isGluonFusion = cms.bool(bool(self.customize.processId.count("ggh"))) self.process.flashggTagSorter.applyNNLOPSweight = cms.bool(self.customize.applyNNLOPSweight) ## set the tag merging self.process.flashggSystTagMerger = cms.EDProducer("TagMerger",src=cms.VInputTag("flashggTagSorter")) ## this adds in the ttH tags with their correct, modified systematics workflow def modifyWorkflowForttH(self, systlabels, phosystlabels, metsystlabels, jetsystlabels): # Set lists of systematics for each tag for tag in ["flashggTTHLeptonicTag", "flashggTTHHadronicTag"]: getattr(self.process, tag).DiPhotonSuffixes = cms.vstring(phosystlabels) getattr(self.process, tag).JetsSuffixes = cms.vstring(jetsystlabels) getattr(self.process, tag).MetSuffixes = cms.vstring(metsystlabels) getattr(self.process, tag).ModifySystematicsWorkflow = cms.bool(True) getattr(self.process, tag).UseLargeMVAs = cms.bool(True) # enable memory-intensive MVAs self.process.p.remove(self.process.flashggTagSorter) self.process.p.replace(self.process.flashggSystTagMerger, cms.Sequence(self.process.flashggTTHLeptonicTag + self.process.flashggTTHHadronicTag)*self.process.flashggTagSorter*self.process.flashggSystTagMerger) for systlabel in systlabels: if systlabel == "": continue self.process.p.remove(getattr(self.process, 'flashggTagSorter' + systlabel)) self.process.p.replace(self.process.flashggSystTagMerger, getattr(self.process, 'flashggTagSorter' + systlabel) * self.process.flashggSystTagMerger) modifiedPriorityRanges = cms.VPSet( cms.PSet(TagName = cms.InputTag('flashggTHQLeptonicTag'+systlabel)), cms.PSet(TagName = cms.InputTag('flashggTTHLeptonicTag', systlabel)), cms.PSet(TagName = cms.InputTag('flashggZHLeptonicTag'+systlabel)), cms.PSet(TagName = cms.InputTag('flashggWHLeptonicTag'+systlabel)), cms.PSet(TagName = cms.InputTag('flashggTTHHadronicTag', systlabel)), cms.PSet(TagName = cms.InputTag('flashggVHMetTag'+systlabel)), cms.PSet(TagName = cms.InputTag('flashggStageOneCombinedTag'+systlabel)) ) setattr(getattr(self.process, 'flashggTagSorter'+systlabel), 'TagPriorityRanges', modifiedPriorityRanges)
[ 5, 6, 7, 9, 10 ]
2,116
cc703690151acd17430b5a9715e71a694fdeca10
<mask token>
''' Can you print numbers from 1 to 100 without using any loop. ''' # Use Recursion
null
null
null
[ 0, 1 ]
2,117
ea3b8fe602357fa3d1de4daefce1e71a7de6e010
<mask token>
<mask token> print(flags)
<mask token> flags = [i for i in dir(cv2) if i.startswith('COLOR_')] print(flags)
<mask token> import cv2 flags = [i for i in dir(cv2) if i.startswith('COLOR_')] print(flags)
# -*- coding: utf-8 -*- """ Created on Fri Aug 31 16:55:33 2018 @author: GEAR """ ''' 在OpenCV中有超过150中进行颜色转换的方法,但我们经常用到的一般只有两种: BGR <-> Gray 和 BGR <-> HSV 我们需要用到的函数有:cv2.cvtColor(input_image, flag),其中flag是转换类型 对于BGR <-> Gray,我们用到的flag为cv2.COLOR_BGR2GRAY,但我们要注意在OpenCV 中HSV格式中H 色彩/亮度 的取值范围是[0 179], S 饱和度 和 V 亮度的取值范围是 [0, 255] ''' import cv2 flags = [i for i in dir(cv2) if i.startswith ('COLOR_')] print(flags)
[ 0, 1, 2, 3, 4 ]
2,118
d7876a078af8572e44b4eb16f3ec0898db73724d
<mask token>
<mask token> for index, elements in enumerate(a): if elements == 5: b.append(index) print(b)
a = 5, 1, 3, 5, 3, 1, 0, 9, 5, 3, 8, 6, 5, 7 b = [] for index, elements in enumerate(a): if elements == 5: b.append(index) print(b)
a = (5, 1, 3, 5, 3, 1, 0, 9, 5, 3, 8, 6, 5, 7) b = [] for index, elements in enumerate (a): if elements == 5: b.append(index) print(b)
null
[ 0, 1, 2, 3 ]
2,119
977841e0bb73cec879fbb1868f1e64102c6d8c1a
<mask token>
<mask token> for topic in topics: i += 1 arts = os.listdir(os.path.join(path, topic)) j = 0 for art in arts: j += 1 with open(os.path.join(path, topic, art), encoding='UTF-8') as f: lines = f.read() soup = BeautifulSoup(lines, 'html.parser') for text in soup.find_all('p'): text = text.get_text() filters = '!"\'#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n' translate_dict = dict((c, ' ') for c in filters) translate_map = str.maketrans(translate_dict) text = text.translate(translate_map) tokens = word_tokenize(text) lines = [str(i)] + [str(j)] + tokens if len(tokens) == 0: break else: data.append(' '.join(lines)) if True: random.shuffle(data) num_samples = len(data) for split, ratio in ratios: with open(os.path.join(root, '%s.txt' % split), 'w') as f: length = int(num_samples * ratio) f.write('\n'.join(data[:length])) data = data[length:] print('Building vocabulary from DUC data') counter = Counter() with open(os.path.join(root, 'train.txt')) as f: for line in f: words = line.strip().lower().split()[:max_len] counter.update(words) word_to_idx = {'<pad>': 0, '<unk>': 1, '<bos>': 2, '<eos>': 3} vocab = [word for word, freq in counter.most_common() if freq > 5] for word in vocab[:vocab_size - 2]: word_to_idx[word] = len(word_to_idx) print('Vocabulary size: %d' % (len(word_to_idx) - 2)) save_pickle(word_to_idx, os.path.join(root, 'vocab.pkl')) splits = ['train', 'valid', 'test'] num_sents, num_words = 0, 0 func = lambda seq: np.array([word_to_idx.get(symbol, word_to_idx[ '<unk>']) for symbol in seq]) for split in splits: print('Creating %s DUC data' % split) data = [] with open(os.path.join(root, '%s.txt' % split)) as f: for line in f: words = line.strip().lower().split()[:max_len + 2] topic, art, words = int(words[0]), int(words[1]), words[2:] length = len(words) paddings = ['<pad>'] * (max_len - length) enc_input = func(words + paddings) dec_input = func(['<bos>'] + words + paddings) target = func(words + ['<eos>'] + paddings) data.append((enc_input, dec_input, target, length, topic)) num_words += length print('%s samples: %d' % (split.capitalize(), len(data))) save_pickle(data, os.path.join(root, '%s.pkl' % split)) num_sents += len(data) print('Average length: %.2f' % (num_words / num_sents))
<mask token> root = 'data' ratios = [('train', 0.85), ('valid', 0.05), ('test', 0.1)] max_len = 64 vocab_size = 16000 data = [] path = os.path.join(root, 'main') topics = os.listdir(path) i = 0 for topic in topics: i += 1 arts = os.listdir(os.path.join(path, topic)) j = 0 for art in arts: j += 1 with open(os.path.join(path, topic, art), encoding='UTF-8') as f: lines = f.read() soup = BeautifulSoup(lines, 'html.parser') for text in soup.find_all('p'): text = text.get_text() filters = '!"\'#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n' translate_dict = dict((c, ' ') for c in filters) translate_map = str.maketrans(translate_dict) text = text.translate(translate_map) tokens = word_tokenize(text) lines = [str(i)] + [str(j)] + tokens if len(tokens) == 0: break else: data.append(' '.join(lines)) if True: random.shuffle(data) num_samples = len(data) for split, ratio in ratios: with open(os.path.join(root, '%s.txt' % split), 'w') as f: length = int(num_samples * ratio) f.write('\n'.join(data[:length])) data = data[length:] print('Building vocabulary from DUC data') counter = Counter() with open(os.path.join(root, 'train.txt')) as f: for line in f: words = line.strip().lower().split()[:max_len] counter.update(words) word_to_idx = {'<pad>': 0, '<unk>': 1, '<bos>': 2, '<eos>': 3} vocab = [word for word, freq in counter.most_common() if freq > 5] for word in vocab[:vocab_size - 2]: word_to_idx[word] = len(word_to_idx) print('Vocabulary size: %d' % (len(word_to_idx) - 2)) save_pickle(word_to_idx, os.path.join(root, 'vocab.pkl')) splits = ['train', 'valid', 'test'] num_sents, num_words = 0, 0 func = lambda seq: np.array([word_to_idx.get(symbol, word_to_idx[ '<unk>']) for symbol in seq]) for split in splits: print('Creating %s DUC data' % split) data = [] with open(os.path.join(root, '%s.txt' % split)) as f: for line in f: words = line.strip().lower().split()[:max_len + 2] topic, art, words = int(words[0]), int(words[1]), words[2:] length = len(words) paddings = ['<pad>'] * (max_len - length) enc_input = func(words + paddings) dec_input = func(['<bos>'] + words + paddings) target = func(words + ['<eos>'] + paddings) data.append((enc_input, dec_input, target, length, topic)) num_words += length print('%s samples: %d' % (split.capitalize(), len(data))) save_pickle(data, os.path.join(root, '%s.pkl' % split)) num_sents += len(data) print('Average length: %.2f' % (num_words / num_sents))
import requests import os import numpy as np from bs4 import BeautifulSoup from nltk import word_tokenize from collections import Counter import random from utils import save_pickle root = 'data' ratios = [('train', 0.85), ('valid', 0.05), ('test', 0.1)] max_len = 64 vocab_size = 16000 data = [] path = os.path.join(root, 'main') topics = os.listdir(path) i = 0 for topic in topics: i += 1 arts = os.listdir(os.path.join(path, topic)) j = 0 for art in arts: j += 1 with open(os.path.join(path, topic, art), encoding='UTF-8') as f: lines = f.read() soup = BeautifulSoup(lines, 'html.parser') for text in soup.find_all('p'): text = text.get_text() filters = '!"\'#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n' translate_dict = dict((c, ' ') for c in filters) translate_map = str.maketrans(translate_dict) text = text.translate(translate_map) tokens = word_tokenize(text) lines = [str(i)] + [str(j)] + tokens if len(tokens) == 0: break else: data.append(' '.join(lines)) if True: random.shuffle(data) num_samples = len(data) for split, ratio in ratios: with open(os.path.join(root, '%s.txt' % split), 'w') as f: length = int(num_samples * ratio) f.write('\n'.join(data[:length])) data = data[length:] print('Building vocabulary from DUC data') counter = Counter() with open(os.path.join(root, 'train.txt')) as f: for line in f: words = line.strip().lower().split()[:max_len] counter.update(words) word_to_idx = {'<pad>': 0, '<unk>': 1, '<bos>': 2, '<eos>': 3} vocab = [word for word, freq in counter.most_common() if freq > 5] for word in vocab[:vocab_size - 2]: word_to_idx[word] = len(word_to_idx) print('Vocabulary size: %d' % (len(word_to_idx) - 2)) save_pickle(word_to_idx, os.path.join(root, 'vocab.pkl')) splits = ['train', 'valid', 'test'] num_sents, num_words = 0, 0 func = lambda seq: np.array([word_to_idx.get(symbol, word_to_idx[ '<unk>']) for symbol in seq]) for split in splits: print('Creating %s DUC data' % split) data = [] with open(os.path.join(root, '%s.txt' % split)) as f: for line in f: words = line.strip().lower().split()[:max_len + 2] topic, art, words = int(words[0]), int(words[1]), words[2:] length = len(words) paddings = ['<pad>'] * (max_len - length) enc_input = func(words + paddings) dec_input = func(['<bos>'] + words + paddings) target = func(words + ['<eos>'] + paddings) data.append((enc_input, dec_input, target, length, topic)) num_words += length print('%s samples: %d' % (split.capitalize(), len(data))) save_pickle(data, os.path.join(root, '%s.pkl' % split)) num_sents += len(data) print('Average length: %.2f' % (num_words / num_sents))
import requests import os import numpy as np from bs4 import BeautifulSoup from nltk import word_tokenize from collections import Counter import random from utils import save_pickle root = 'data' ratios = [('train', 0.85), ('valid', 0.05), ('test', 0.1)] max_len = 64 vocab_size = 16000 data = [] path = os.path.join(root,'main') topics = os.listdir(path) i = 0 for topic in topics: i += 1 arts = os.listdir(os.path.join(path,topic)) j = 0 for art in arts: j += 1 with open(os.path.join(path,topic,art),encoding='UTF-8') as f: #lines = unicode(f.read(), errors='ignore') lines = f.read() #print(type(lines)) #print(i,j) soup = BeautifulSoup(lines, 'html.parser') for text in soup.find_all('p'): # replace punctuation characters with spaces text = text.get_text() filters = '!"\'#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n' translate_dict = dict((c, " ") for c in filters) translate_map = str.maketrans(translate_dict) text = text.translate(translate_map) tokens = word_tokenize(text) lines = [str(i)] + [str(j)] + tokens if(len(tokens)==0): break else: data.append(' '.join(lines)) if True: random.shuffle(data) num_samples = len(data) for split, ratio in ratios: with open(os.path.join(root, "%s.txt"%split), 'w') as f: length = int(num_samples * ratio) f.write('\n'.join(data[:length])) data = data[length:] print("Building vocabulary from DUC data") counter = Counter() with open(os.path.join(root, 'train.txt')) as f: for line in f: words = line.strip().lower().split()[:max_len] counter.update(words) word_to_idx = {'<pad>': 0, '<unk>': 1, '<bos>': 2, '<eos>': 3} vocab = [word for word, freq in counter.most_common() if freq > 5] for word in vocab[:vocab_size - 2]: word_to_idx[word] = len(word_to_idx) # exclude <bos> and <pad> symbols print("Vocabulary size: %d" % (len(word_to_idx) - 2)) save_pickle(word_to_idx, os.path.join(root, 'vocab.pkl')) splits = ['train', 'valid', 'test'] num_sents, num_words = 0, 0 func = lambda seq: np.array([ word_to_idx.get(symbol, word_to_idx['<unk>']) for symbol in seq]) for split in splits: print("Creating %s DUC data" % split) data = [] with open(os.path.join(root, "%s.txt" % split)) as f: for line in f: words = line.strip().lower().split()[:max_len + 2] topic, art, words = int(words[0]), int(words[1]), words[2:] ### length = len(words) paddings = ['<pad>'] * (max_len - length) enc_input = func(words + paddings) dec_input = func(['<bos>'] + words + paddings) target = func(words + ['<eos>'] + paddings) data.append((enc_input, dec_input, target, length, topic)) ### num_words += length print("%s samples: %d" %(split.capitalize(), len(data))) save_pickle(data, os.path.join(root, "%s.pkl" % split)) num_sents += len(data) print("Average length: %.2f" %(num_words / num_sents))
[ 0, 1, 2, 3, 4 ]
2,120
cc924892afe179e55166ea9b237b2bfe8ea900df
<mask token> def start_thread(target): thread = threading.Thread(target=target) thread.daemon = True thread.start() <mask token> def resize_image(event): new_width = event.width new_height = event.height image = copy_of_image.resize((new_width, new_height)) photo = ImageTk.PhotoImage(image) label.config(image=photo) label.image = photo <mask token> def checkwin(): global winner winner = False if b1['text'] == 'X' and b2['text'] == 'X' and b3['text'] == 'X': b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b4['text'] == 'X' and b5['text'] == 'X' and b6['text'] == 'X': b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b7['text'] == 'X' and b8['text'] == 'X' and b9['text'] == 'X': b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'X' and b4['text'] == 'X' and b7['text'] == 'X': b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b2['text'] == 'X' and b5['text'] == 'X' and b8['text'] == 'X': b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b3['text'] == 'X' and b6['text'] == 'X' and b9['text'] == 'X': b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'X' and b5['text'] == 'X' and b9['text'] == 'X': b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b3['text'] == 'X' and b5['text'] == 'X' and b7['text'] == 'X': b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'O' and b2['text'] == 'O' and b3['text'] == 'O': b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b4['text'] == 'O' and b5['text'] == 'O' and b6['text'] == 'O': b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b7['text'] == 'O' and b8['text'] == 'O' and b9['text'] == 'O': b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b1['text'] == 'O' and b4['text'] == 'O' and b7['text'] == 'O': b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b2['text'] == 'O' and b5['text'] == 'O' and b8['text'] == 'O': b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b3['text'] == 'O' and b6['text'] == 'O' and b9['text'] == 'O': b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b1['text'] == 'O' and b5['text'] == 'O' and b9['text'] == 'O': b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b3['text'] == 'O' and b5['text'] == 'O' and b7['text'] == 'O': b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') def b_click(b): to_send = str(b) to_send = to_send.replace('.', '') to_send = str(to_send.replace('!', '')) print(to_send) global clicked if b['text'] == '' and b['state'] != 'disabled': labels.config(text="X's Turn") b.configure(state=DISABLED) b['text'] = 'O' checkwin() if connection_established == True: sock.send(to_send.encode()) for w in New.winfo_children(): w.configure(state='disabled') <mask token>
<mask token> def start_thread(target): thread = threading.Thread(target=target) thread.daemon = True thread.start() <mask token> def receive_data(): while True: data = sock.recv(1024).decode() print('decoded is', data) if data == 'button': labels.config(text="My Turn or O's Turn") b1.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b1.config(state='disabled') elif data == 'button2': labels.config(text="My Turn or O's Turn") b2.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b2.config(state='disabled') elif data == 'button3': labels.config(text="My Turn or O's Turn") b3.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b3.config(state='disabled') elif data == 'button4': labels.config(text="My Turn or O's Turn") b4.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b4.config(state='disabled') elif data == 'button5': labels.config(text="My Turn or O's Turn") b5.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b5.config(state='disabled') elif data == 'button6': labels.config(text="My Turn or O's Turn") b6.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b6.config(state='disabled') elif data == 'button7': labels.config(text="My Turn or O's Turn") b7.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b7.config(state='disabled') elif data == 'button8': labels.config(text="My Turn or O's Turn") b8.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b8.config(state='disabled') elif data == 'button9': labels.config(text="My Turn or O's Turn") b9.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b9.config(state='disabled') <mask token> def resize_image(event): new_width = event.width new_height = event.height image = copy_of_image.resize((new_width, new_height)) photo = ImageTk.PhotoImage(image) label.config(image=photo) label.image = photo <mask token> def checkwin(): global winner winner = False if b1['text'] == 'X' and b2['text'] == 'X' and b3['text'] == 'X': b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b4['text'] == 'X' and b5['text'] == 'X' and b6['text'] == 'X': b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b7['text'] == 'X' and b8['text'] == 'X' and b9['text'] == 'X': b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'X' and b4['text'] == 'X' and b7['text'] == 'X': b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b2['text'] == 'X' and b5['text'] == 'X' and b8['text'] == 'X': b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b3['text'] == 'X' and b6['text'] == 'X' and b9['text'] == 'X': b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'X' and b5['text'] == 'X' and b9['text'] == 'X': b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b3['text'] == 'X' and b5['text'] == 'X' and b7['text'] == 'X': b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'O' and b2['text'] == 'O' and b3['text'] == 'O': b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b4['text'] == 'O' and b5['text'] == 'O' and b6['text'] == 'O': b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b7['text'] == 'O' and b8['text'] == 'O' and b9['text'] == 'O': b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b1['text'] == 'O' and b4['text'] == 'O' and b7['text'] == 'O': b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b2['text'] == 'O' and b5['text'] == 'O' and b8['text'] == 'O': b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b3['text'] == 'O' and b6['text'] == 'O' and b9['text'] == 'O': b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b1['text'] == 'O' and b5['text'] == 'O' and b9['text'] == 'O': b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b3['text'] == 'O' and b5['text'] == 'O' and b7['text'] == 'O': b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') def b_click(b): to_send = str(b) to_send = to_send.replace('.', '') to_send = str(to_send.replace('!', '')) print(to_send) global clicked if b['text'] == '' and b['state'] != 'disabled': labels.config(text="X's Turn") b.configure(state=DISABLED) b['text'] = 'O' checkwin() if connection_established == True: sock.send(to_send.encode()) for w in New.winfo_children(): w.configure(state='disabled') <mask token>
<mask token> root.title('Tic-Tac-Toe') root.geometry('600x600') <mask token> def start_thread(target): thread = threading.Thread(target=target) thread.daemon = True thread.start() <mask token> global connection_established <mask token> sock.connect((HOST, PORT)) <mask token> def receive_data(): while True: data = sock.recv(1024).decode() print('decoded is', data) if data == 'button': labels.config(text="My Turn or O's Turn") b1.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b1.config(state='disabled') elif data == 'button2': labels.config(text="My Turn or O's Turn") b2.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b2.config(state='disabled') elif data == 'button3': labels.config(text="My Turn or O's Turn") b3.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b3.config(state='disabled') elif data == 'button4': labels.config(text="My Turn or O's Turn") b4.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b4.config(state='disabled') elif data == 'button5': labels.config(text="My Turn or O's Turn") b5.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b5.config(state='disabled') elif data == 'button6': labels.config(text="My Turn or O's Turn") b6.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b6.config(state='disabled') elif data == 'button7': labels.config(text="My Turn or O's Turn") b7.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b7.config(state='disabled') elif data == 'button8': labels.config(text="My Turn or O's Turn") b8.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b8.config(state='disabled') elif data == 'button9': labels.config(text="My Turn or O's Turn") b9.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b9.config(state='disabled') start_thread(receive_data) def resize_image(event): new_width = event.width new_height = event.height image = copy_of_image.resize((new_width, new_height)) photo = ImageTk.PhotoImage(image) label.config(image=photo) label.image = photo <mask token> label.bind('<Configure>', resize_image) label.pack(fill=BOTH, expand=YES) root.after(5000, lambda : root.destroy()) root.mainloop() <mask token> New.title('Tic-Tac-Toe') New.iconbitmap('C:/Users/jainh/Downloads/Tic-tac-toe1.png') <mask token> def checkwin(): global winner winner = False if b1['text'] == 'X' and b2['text'] == 'X' and b3['text'] == 'X': b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b4['text'] == 'X' and b5['text'] == 'X' and b6['text'] == 'X': b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b7['text'] == 'X' and b8['text'] == 'X' and b9['text'] == 'X': b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'X' and b4['text'] == 'X' and b7['text'] == 'X': b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b2['text'] == 'X' and b5['text'] == 'X' and b8['text'] == 'X': b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b3['text'] == 'X' and b6['text'] == 'X' and b9['text'] == 'X': b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'X' and b5['text'] == 'X' and b9['text'] == 'X': b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b3['text'] == 'X' and b5['text'] == 'X' and b7['text'] == 'X': b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'O' and b2['text'] == 'O' and b3['text'] == 'O': b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b4['text'] == 'O' and b5['text'] == 'O' and b6['text'] == 'O': b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b7['text'] == 'O' and b8['text'] == 'O' and b9['text'] == 'O': b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b1['text'] == 'O' and b4['text'] == 'O' and b7['text'] == 'O': b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b2['text'] == 'O' and b5['text'] == 'O' and b8['text'] == 'O': b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b3['text'] == 'O' and b6['text'] == 'O' and b9['text'] == 'O': b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b1['text'] == 'O' and b5['text'] == 'O' and b9['text'] == 'O': b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b3['text'] == 'O' and b5['text'] == 'O' and b7['text'] == 'O': b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') def b_click(b): to_send = str(b) to_send = to_send.replace('.', '') to_send = str(to_send.replace('!', '')) print(to_send) global clicked if b['text'] == '' and b['state'] != 'disabled': labels.config(text="X's Turn") b.configure(state=DISABLED) b['text'] = 'O' checkwin() if connection_established == True: sock.send(to_send.encode()) for w in New.winfo_children(): w.configure(state='disabled') <mask token> b1.grid(row=0, column=0) <mask token> b2.grid(row=0, column=1) <mask token> b3.grid(row=0, column=2) <mask token> b4.grid(row=1, column=0) <mask token> b5.grid(row=1, column=1) <mask token> b6.grid(row=1, column=2) <mask token> b7.grid(row=2, column=0) <mask token> b8.grid(row=2, column=1) <mask token> b9.grid(row=2, column=2) <mask token> labels.grid(row=3, column=0) for w in New.winfo_children(): w.configure(state='disabled') New.mainloop()
<mask token> root = Tk() root.title('Tic-Tac-Toe') root.geometry('600x600') winner = False def start_thread(target): thread = threading.Thread(target=target) thread.daemon = True thread.start() HOST = '127.0.0.1' PORT = 65432 global connection_established sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((HOST, PORT)) connection_established = True def receive_data(): while True: data = sock.recv(1024).decode() print('decoded is', data) if data == 'button': labels.config(text="My Turn or O's Turn") b1.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b1.config(state='disabled') elif data == 'button2': labels.config(text="My Turn or O's Turn") b2.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b2.config(state='disabled') elif data == 'button3': labels.config(text="My Turn or O's Turn") b3.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b3.config(state='disabled') elif data == 'button4': labels.config(text="My Turn or O's Turn") b4.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b4.config(state='disabled') elif data == 'button5': labels.config(text="My Turn or O's Turn") b5.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b5.config(state='disabled') elif data == 'button6': labels.config(text="My Turn or O's Turn") b6.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b6.config(state='disabled') elif data == 'button7': labels.config(text="My Turn or O's Turn") b7.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b7.config(state='disabled') elif data == 'button8': labels.config(text="My Turn or O's Turn") b8.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b8.config(state='disabled') elif data == 'button9': labels.config(text="My Turn or O's Turn") b9.config(text='X') for w in New.winfo_children(): w.configure(state='normal') b9.config(state='disabled') start_thread(receive_data) def resize_image(event): new_width = event.width new_height = event.height image = copy_of_image.resize((new_width, new_height)) photo = ImageTk.PhotoImage(image) label.config(image=photo) label.image = photo image = Image.open('C:\\Users\\User\\Any_Path\\Tic-tac-toe1.png') copy_of_image = image.copy() photo = ImageTk.PhotoImage(image) label = ttk.Label(root, image=photo) label.bind('<Configure>', resize_image) label.pack(fill=BOTH, expand=YES) root.after(5000, lambda : root.destroy()) root.mainloop() New = Tk() New.title('Tic-Tac-Toe') New.iconbitmap('C:/Users/jainh/Downloads/Tic-tac-toe1.png') clicked = 'Y' def checkwin(): global winner winner = False if b1['text'] == 'X' and b2['text'] == 'X' and b3['text'] == 'X': b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b4['text'] == 'X' and b5['text'] == 'X' and b6['text'] == 'X': b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b7['text'] == 'X' and b8['text'] == 'X' and b9['text'] == 'X': b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'X' and b4['text'] == 'X' and b7['text'] == 'X': b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b2['text'] == 'X' and b5['text'] == 'X' and b8['text'] == 'X': b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b3['text'] == 'X' and b6['text'] == 'X' and b9['text'] == 'X': b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'X' and b5['text'] == 'X' and b9['text'] == 'X': b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b3['text'] == 'X' and b5['text'] == 'X' and b7['text'] == 'X': b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!X Wins!!!!!!!!') elif b1['text'] == 'O' and b2['text'] == 'O' and b3['text'] == 'O': b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b4['text'] == 'O' and b5['text'] == 'O' and b6['text'] == 'O': b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b7['text'] == 'O' and b8['text'] == 'O' and b9['text'] == 'O': b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b1['text'] == 'O' and b4['text'] == 'O' and b7['text'] == 'O': b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b2['text'] == 'O' and b5['text'] == 'O' and b8['text'] == 'O': b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b3['text'] == 'O' and b6['text'] == 'O' and b9['text'] == 'O': b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b1['text'] == 'O' and b5['text'] == 'O' and b9['text'] == 'O': b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') elif b3['text'] == 'O' and b5['text'] == 'O' and b7['text'] == 'O': b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state='disabled') messagebox.showinfo('Winner', 'Congo!!!!!!!O Wins!!!!!!!!') def b_click(b): to_send = str(b) to_send = to_send.replace('.', '') to_send = str(to_send.replace('!', '')) print(to_send) global clicked if b['text'] == '' and b['state'] != 'disabled': labels.config(text="X's Turn") b.configure(state=DISABLED) b['text'] = 'O' checkwin() if connection_established == True: sock.send(to_send.encode()) for w in New.winfo_children(): w.configure(state='disabled') b1 = Button(New, text='', font=('Verdana', 20), height=3, width=6, bg= 'SystemButtonFace', command=lambda : b_click(b1)) b1.grid(row=0, column=0) b2 = Button(New, text='', font=('Verdana', 20), height=3, width=6, bg= 'SystemButtonFace', command=lambda : b_click(b2)) b2.grid(row=0, column=1) b3 = Button(New, text='', font=('Verdana', 20), height=3, width=6, bg= 'SystemButtonFace', command=lambda : b_click(b3)) b3.grid(row=0, column=2) b4 = Button(New, text='', font=('Verdana', 20), height=3, width=6, bg= 'SystemButtonFace', command=lambda : b_click(b4)) b4.grid(row=1, column=0) b5 = Button(New, text='', font=('Verdana', 20), height=3, width=6, bg= 'SystemButtonFace', command=lambda : b_click(b5)) b5.grid(row=1, column=1) b6 = Button(New, text='', font=('Verdana', 20), height=3, width=6, bg= 'SystemButtonFace', command=lambda : b_click(b6)) b6.grid(row=1, column=2) b7 = Button(New, text='', font=('Verdana', 20), height=3, width=6, bg= 'SystemButtonFace', command=lambda : b_click(b7)) b7.grid(row=2, column=0) b8 = Button(New, text='', font=('Verdana', 20), height=3, width=6, bg= 'SystemButtonFace', command=lambda : b_click(b8)) b8.grid(row=2, column=1) b9 = Button(New, text='', font=('Verdana', 20), height=3, width=6, bg= 'SystemButtonFace', command=lambda : b_click(b9)) b9.grid(row=2, column=2) labels = Label(New, fg='white', bg='black', pady=1, text='Opponent Turn ', height=2, justify='center') labels.grid(row=3, column=0) for w in New.winfo_children(): w.configure(state='disabled') New.mainloop()
from tkinter import * from tkinter import messagebox from tkinter import ttk from PIL import Image, ImageTk import time import socket import threading root = Tk() root.title("Tic-Tac-Toe") root.geometry('600x600') winner = False def start_thread(target): thread = threading.Thread(target=target) thread.daemon = True thread.start() HOST = '127.0.0.1' PORT = 65432 global connection_established sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((HOST, PORT)) connection_established = True def receive_data(): while True: data = sock.recv(1024).decode() print('decoded is',data) if data == 'button': labels.config(text="My Turn or O's Turn") b1.config(text='X') for w in New.winfo_children(): w.configure(state="normal") b1.config(state="disabled") elif data == 'button2' : labels.config(text="My Turn or O's Turn") b2.config(text='X') for w in New.winfo_children(): w.configure(state="normal") b2.config(state="disabled") elif data == 'button3' : labels.config(text="My Turn or O's Turn") b3.config(text='X') for w in New.winfo_children(): w.configure(state="normal") b3.config(state="disabled") elif data == 'button4' : labels.config(text="My Turn or O's Turn") b4.config(text='X') for w in New.winfo_children(): w.configure(state="normal") b4.config(state="disabled") elif data == 'button5' : labels.config(text="My Turn or O's Turn") b5.config(text='X') for w in New.winfo_children(): w.configure(state="normal") b5.config(state="disabled") elif data == 'button6' : labels.config(text="My Turn or O's Turn") b6.config(text='X') for w in New.winfo_children(): w.configure(state="normal") b6.config(state="disabled") elif data == 'button7' : labels.config(text="My Turn or O's Turn") b7.config(text='X') for w in New.winfo_children(): w.configure(state="normal") b7.config(state="disabled") elif data == 'button8' : labels.config(text="My Turn or O's Turn") b8.config(text='X') for w in New.winfo_children(): w.configure(state="normal") b8.config(state="disabled") elif data == 'button9' : labels.config(text="My Turn or O's Turn") b9.config(text='X') for w in New.winfo_children(): w.configure(state="normal") b9.config(state="disabled") start_thread(receive_data) def resize_image(event): new_width = event.width new_height = event.height image = copy_of_image.resize((new_width, new_height)) photo = ImageTk.PhotoImage(image) label.config(image = photo) label.image = photo #avoid garbage collection image = Image.open('C:\\Users\\User\\Any_Path\\Tic-tac-toe1.png') copy_of_image = image.copy() photo = ImageTk.PhotoImage(image) label = ttk.Label(root, image = photo) label.bind('<Configure>', resize_image) label.pack(fill=BOTH, expand = YES) root.after(5000, lambda: root.destroy()) # Destroy the widget after 30 seconds root.mainloop() New = Tk() New.title('Tic-Tac-Toe') New.iconbitmap('C:/Users/jainh/Downloads/Tic-tac-toe1.png') clicked = 'Y' def checkwin(): global winner winner = False if b1["text"] == "X" and b2["text"] == "X" and b3["text"] == "X": b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!X Wins!!!!!!!!") elif b4["text"] == "X" and b5["text"] == "X" and b6["text"] == "X": b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!X Wins!!!!!!!!") elif b7["text"] == "X" and b8["text"] == "X" and b9["text"] == "X": b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!X Wins!!!!!!!!") elif b1["text"] == "X" and b4["text"] == "X" and b7["text"] == "X": b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!X Wins!!!!!!!!") elif b2["text"] == "X" and b5["text"] == "X" and b8["text"] == "X": b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!X Wins!!!!!!!!") elif b3["text"] == "X" and b6["text"] == "X" and b9["text"] == "X": b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True messagebox.showinfo("Winner","Congo!!!!!!!X Wins!!!!!!!!") for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!X Wins!!!!!!!!") elif b1["text"] == "X" and b5["text"] == "X" and b9["text"] == "X": b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!X Wins!!!!!!!!") elif b3["text"] == "X" and b5["text"] == "X" and b7["text"] == "X": b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!X Wins!!!!!!!!") ################################### elif b1["text"] == "O" and b2["text"] == "O" and b3["text"] == "O": b1.config(bg='green') b2.config(bg='green') b3.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!O Wins!!!!!!!!") elif b4["text"] == "O" and b5["text"] == "O" and b6["text"] == "O": b4.config(bg='green') b5.config(bg='green') b6.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!O Wins!!!!!!!!") elif b7["text"] == "O" and b8["text"] == "O" and b9["text"] == "O": b7.config(bg='green') b8.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!O Wins!!!!!!!!") elif b1["text"] == "O" and b4["text"] == "O" and b7["text"] == "O": b1.config(bg='green') b4.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!O Wins!!!!!!!!") elif b2["text"] == "O" and b5["text"] == "O" and b8["text"] == "O": b2.config(bg='green') b5.config(bg='green') b8.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!O Wins!!!!!!!!") elif b3["text"] == "O" and b6["text"] == "O" and b9["text"] == "O": b3.config(bg='green') b6.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!O Wins!!!!!!!!") elif b1["text"] == "O" and b5["text"] == "O" and b9["text"] == "O": b1.config(bg='green') b5.config(bg='green') b9.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo('Winner',"Congo!!!!!!!O Wins!!!!!!!!") elif b3["text"] == "O" and b5["text"] == "O" and b7["text"] == "O": b3.config(bg='green') b5.config(bg='green') b7.config(bg='green') winner = True for w in New.winfo_children(): w.configure(state="disabled") messagebox.showinfo("Winner","Congo!!!!!!!O Wins!!!!!!!!") def b_click(b): to_send = str(b) to_send = to_send.replace('.', '') to_send = str(to_send.replace('!', '')) print(to_send) global clicked if b["text"] == '' and b['state'] != 'disabled' : labels.config(text="X's Turn") b.configure(state=DISABLED) b['text'] = 'O' checkwin() if connection_established == True: sock.send(to_send.encode()) for w in New.winfo_children(): w.configure(state="disabled") b1 = Button(New, text='',font=('Verdana',20),height=3,width=6,bg="SystemButtonFace",command=lambda:b_click(b1)) b1.grid(row=0,column=0) b2 = Button(New, text='',font=('Verdana',20),height=3,width=6,bg="SystemButtonFace",command=lambda:b_click(b2)) b2.grid(row=0,column=1) b3 = Button(New, text='',font=('Verdana',20),height=3,width=6,bg="SystemButtonFace",command=lambda:b_click(b3)) b3.grid(row=0,column=2) b4 = Button(New, text='',font=('Verdana',20),height=3,width=6,bg="SystemButtonFace",command=lambda:b_click(b4)) b4.grid(row=1,column=0) b5 = Button(New, text='',font=('Verdana',20),height=3,width=6,bg="SystemButtonFace",command=lambda:b_click(b5)) b5.grid(row=1,column=1) b6 = Button(New, text='',font=('Verdana',20),height=3,width=6,bg="SystemButtonFace",command=lambda:b_click(b6)) b6.grid(row=1,column=2) b7 = Button(New, text='',font=('Verdana',20),height=3,width=6,bg="SystemButtonFace",command=lambda:b_click(b7)) b7.grid(row=2,column=0) b8 = Button(New, text='',font=('Verdana',20),height=3,width=6,bg="SystemButtonFace",command=lambda:b_click(b8)) b8.grid(row=2,column=1) b9 = Button(New, text='',font=('Verdana',20),height=3,width=6,bg="SystemButtonFace",command=lambda:b_click(b9)) b9.grid(row=2,column=2) labels = Label(New, fg="white",bg="black", pady=1,text="Opponent Turn ",height=2,justify="center") labels.grid(row=3,column=0) for w in New.winfo_children(): w.configure(state="disabled") #menu = Menu(New) #New.config(menu=menu) #options = Menu(menu,tearoff=False) New.mainloop()
[ 4, 5, 6, 7, 9 ]
2,121
2af590ad11704ecf21489a5d546e61f40dcceee6
<mask token>
<mask token> admin.site.register(Pack) admin.site.register(Cliente)
from django.contrib import admin from .models import Cliente, Pack admin.site.register(Pack) admin.site.register(Cliente)
from django.contrib import admin from .models import Cliente, Pack # Register your models here. admin.site.register(Pack) admin.site.register(Cliente)
null
[ 0, 1, 2, 3 ]
2,122
92317996f884befd646138cd3a3dc3f8345679f4
<mask token> def run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter= False, startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [(i / N) for i in recover] newsuspect = [(s / N) for s in suspect] newinfect = [(i / N) for i in infect] plt.plot(range(T + 1), newrecover, label='r: percentage of removed ') plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible') plt.plot(range(T + 1), newinfect, label='i: percentage of infected') plt.xlabel('T') plt.ylabel('percentage') plt.title('Percentage of Population, Discrete') plt.legend() plt.show() <mask token> def checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False, startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() return np.array([(count_infect(pop) + count_recover(pop)) / N, count_infect(pop) / N]) <mask token>
<mask token> sys.path.append('../') <mask token> def run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter= False, startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [(i / N) for i in recover] newsuspect = [(s / N) for s in suspect] newinfect = [(i / N) for i in infect] plt.plot(range(T + 1), newrecover, label='r: percentage of removed ') plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible') plt.plot(range(T + 1), newinfect, label='i: percentage of infected') plt.xlabel('T') plt.ylabel('percentage') plt.title('Percentage of Population, Discrete') plt.legend() plt.show() run_Simulation2(0.6, N=20000, T=30, start=10) def checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False, startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() return np.array([(count_infect(pop) + count_recover(pop)) / N, count_infect(pop) / N]) def plotcenterrange(): """ show how the total infected people i change with p start from center """ plist1 = np.arange(0.02, 0.1, 0.02) plist = np.arange(0.1, 1, 0.1) infectlist = [] for i in plist1: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) for i in plist: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) plt.plot(np.hstack((plist1, plist)), infectlist) plt.title('centerplot') plt.xlabel('p') plt.ylabel('total number of individuals infected') plt.title('Total Number of Individuals Infected vs p') plt.show() plotcenterrange() <mask token> print('p = 0.05, starting randomly, the total infected number is ' + str( valuerandom)) print('p = 0.05, starting from corner, the total infected number is ' + str (valuecorner)) print('p = 0.05, starting from center, the total infected number is ' + str (valuecenter))
<mask token> sys.path.append('../') <mask token> p = Person() def run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter= False, startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [(i / N) for i in recover] newsuspect = [(s / N) for s in suspect] newinfect = [(i / N) for i in infect] plt.plot(range(T + 1), newrecover, label='r: percentage of removed ') plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible') plt.plot(range(T + 1), newinfect, label='i: percentage of infected') plt.xlabel('T') plt.ylabel('percentage') plt.title('Percentage of Population, Discrete') plt.legend() plt.show() run_Simulation2(0.6, N=20000, T=30, start=10) def checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False, startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() return np.array([(count_infect(pop) + count_recover(pop)) / N, count_infect(pop) / N]) def plotcenterrange(): """ show how the total infected people i change with p start from center """ plist1 = np.arange(0.02, 0.1, 0.02) plist = np.arange(0.1, 1, 0.1) infectlist = [] for i in plist1: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) for i in plist: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) plt.plot(np.hstack((plist1, plist)), infectlist) plt.title('centerplot') plt.xlabel('p') plt.ylabel('total number of individuals infected') plt.title('Total Number of Individuals Infected vs p') plt.show() plotcenterrange() <mask token> valuecorner = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)), startcorner=True)[0] valuecenter = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)), startcenter=True)[0] valuerandom = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)))[0] print('p = 0.05, starting randomly, the total infected number is ' + str( valuerandom)) print('p = 0.05, starting from corner, the total infected number is ' + str (valuecorner)) print('p = 0.05, starting from center, the total infected number is ' + str (valuecenter))
import sys import os import numpy as np import math sys.path.append('../') from sir.improveagent import * import numpy as np import numpy.linalg as la import matplotlib.pyplot as plt from scipy.spatial import KDTree from scipy.spatial import cKDTree from scipy.spatial.distance import pdist import networkx as nx p = Person() def run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter= False, startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [(i / N) for i in recover] newsuspect = [(s / N) for s in suspect] newinfect = [(i / N) for i in infect] plt.plot(range(T + 1), newrecover, label='r: percentage of removed ') plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible') plt.plot(range(T + 1), newinfect, label='i: percentage of infected') plt.xlabel('T') plt.ylabel('percentage') plt.title('Percentage of Population, Discrete') plt.legend() plt.show() run_Simulation2(0.6, N=20000, T=30, start=10) def checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False, startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() return np.array([(count_infect(pop) + count_recover(pop)) / N, count_infect(pop) / N]) def plotcenterrange(): """ show how the total infected people i change with p start from center """ plist1 = np.arange(0.02, 0.1, 0.02) plist = np.arange(0.1, 1, 0.1) infectlist = [] for i in plist1: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) for i in plist: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) plt.plot(np.hstack((plist1, plist)), infectlist) plt.title('centerplot') plt.xlabel('p') plt.ylabel('total number of individuals infected') plt.title('Total Number of Individuals Infected vs p') plt.show() plotcenterrange() <mask token> valuecorner = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)), startcorner=True)[0] valuecenter = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)), startcenter=True)[0] valuerandom = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)))[0] print('p = 0.05, starting randomly, the total infected number is ' + str( valuerandom)) print('p = 0.05, starting from corner, the total infected number is ' + str (valuecorner)) print('p = 0.05, starting from center, the total infected number is ' + str (valuecenter))
import sys import os import numpy as np import math sys.path.append("../") from sir.improveagent import * import numpy as np import numpy.linalg as la import matplotlib.pyplot as plt #from sklearn.neighbors import BallTree from scipy.spatial import KDTree from scipy.spatial import cKDTree from scipy.spatial.distance import pdist import networkx as nx p = Person() def run_Simulation2(k,N=100,T=10,start = 1,p=0.5,q=0.08,startcenter = False,startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N-start] pop = [Person() for i in range(N)] ##we need to change the code for the case start people infected for i in range(start): pop[i].get_infected(); if(startcenter): resetcenter(start,pop) if(startcorner): resetcorner(start,pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] #may have problem here for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand()< k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [i/N for i in recover] newsuspect = [s/N for s in suspect] newinfect = [i/N for i in infect] plt.plot(range(T+1),newrecover,label = "r: percentage of removed ") plt.plot(range(T+1),newsuspect,label = "s: percentage of susceptible") plt.plot(range(T+1),newinfect,label = "i: percentage of infected") plt.xlabel("T") plt.ylabel("percentage") plt.title("Percentage of Population, Discrete") plt.legend() plt.show() #We run a simulation here,use the default value of p and q run_Simulation2(0.6,N=20000,T = 30,start=10) def checkinfectb(k,N,T,start=1,p=0.5,q=0.08,startcenter = False,startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N-start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected(); if(startcenter): resetcenter(start,pop) if(startcorner): resetcorner(start,pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand()<k: pop[j].get_recovered() return np.array([(count_infect(pop)+count_recover(pop))/N,count_infect(pop)/N]) def plotcenterrange(): """ show how the total infected people i change with p start from center """ plist1 = np.arange(0.02,0.1,0.02) plist = np.arange(0.1,1,0.1) infectlist = [] for i in plist1: infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter=True)[0]) for i in plist: infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter=True)[0]) plt.plot(np.hstack((plist1,plist)),infectlist) plt.title("centerplot") plt.xlabel("p") plt.ylabel("total number of individuals infected") plt.title("Total Number of Individuals Infected vs p") plt.show() plotcenterrange() """ def plotrandomcornerrange(): plist1 = np.arange(0.02,0.1,0.02) plist = np.arange(0.1,1,0.1) infectlist = [] infectlist2 = [] infectlist3 = [] for i in plist1: infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcorner=True)[0]) infectlist2.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)))[0]) infectlist3.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter = True)[0]) for i in plist: infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcorner=True)[0]) infectlist2.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)))[0]) infectlist3.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter = True)[0]) plt.plot(np.hstack((plist1,plist)),infectlist,label = "corner") plt.plot(np.hstack((plist1,plist)),infectlist2,label = "random") plt.plot(np.hstack((plist1,plist)),infectlist3,label = "center") plt.title("Change from random corner center") plt.xlabel("change of p") plt.ylabel("change of total infected people") plt.legend() plt.show() """ #plotrandomcornerrange() #no need for us to use this function valuecorner = checkinfectb(0.5,20000,30,200,p = 0.05,q = np.sqrt(2/(20000*math.pi)),startcorner=True)[0] valuecenter = checkinfectb(0.5,20000,30,200,p = 0.05,q = np.sqrt(2/(20000*math.pi)),startcenter=True)[0] valuerandom = checkinfectb(0.5,20000,30,200,p = 0.05,q = np.sqrt(2/(20000*math.pi)))[0] print("p = 0.05, starting randomly, the total infected number is "+ str(valuerandom)) print("p = 0.05, starting from corner, the total infected number is "+ str(valuecorner)) print("p = 0.05, starting from center, the total infected number is "+ str(valuecenter))
[ 2, 4, 5, 6, 7 ]
2,123
cffcfa08cd919f93dfe2ab8dc676efc76feafab3
<mask token> def create_axes(length, both=False, text=False, font=_glut. GLUT_BITMAP_HELVETICA_18): """ Create axes system. :param length: Axes length :param both: Both axes :param text: Show axes names (x,y,z) :param font: Font :type length: float, int :type both: bool :type text: bool :type font: int :return: OpenGL list """ if length > 0: x = Point3(length, 0, 0) y = Point3(0, length, 0) z = Point3(0, 0, length) o = Point3() lista = _gl.glGenLists(1) _gl.glNewList(lista, _gl.GL_COMPILE) _gl.glBegin(_gl.GL_LINES) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) if both: x = Point3(-length, 0, 0) y = Point3(0, -length, 0) z = Point3(0, 0, -length) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) _gl.glEnd() if text: draw_text('x', Point3(length + 60, 0, -15), [1, 0, 0], font) draw_text('y', Point3(0, length + 50, -15), [0, 1, 0], font) draw_text('z', Point3(+0, +0, length + 50), [0, 0, 1], font) if both: draw_text('-x', Point3(-length - 60, 0, -15), [1, 0, 0], font) draw_text('-y', Point3(0, -length - 70, -15), [0, 1, 0], font) draw_text('-z', Point3(+0, +0, -length - 80), [0, 0, 1], font) _gl.glEndList() return lista else: raise Exception('Axes length must be positive, greater than zero') def draw_text(text, pos, color=None, font=_glut.GLUT_BITMAP_TIMES_ROMAN_24, linespace=20): """Dibuja un texto en una posicon dada por un punto point3""" if color is None: color = _UTILS_COLOR_WHITE _gl.glColor3fv(color) if isinstance(pos, Point3): x = pos.get_x() y = pos.get_y() z = pos.get_z() _gl.glRasterPos3f(x, y, z) for char in text: if char == '\n': y += linespace _gl.glRasterPos3f(x, y, z) else: try: glutBitmapCharacter(font, ord(char)) except: if not _UTILS_ERRS[0]: print_gl_error( 'Actual OpenGL version doest not support glutBitmapCharacter function' ) _UTILS_ERRS[0] = True else: raise Exception('Point must be Point3 type') def get_rgb_normalized(r, g, b, a=1.0): """ Return rgb color normalized (from 0 to 1). :param r: Red color :param g: Green color :param b: Blue color :param a: Alpha :type r: float, int :type g: float, int :type b: float, int :type a: float :return: RGBA tuple :rtype: tuple """ if r <= 1 and g <= 1 and b <= 1: return r, g, b, a return r / 255.0, g / 255.0, b / 255.0, a
<mask token> def print_gl_error(err_msg): """ Prints an OpenGL error to console. :param err_msg: Error message :type err_msg: basestring """ if len(err_msg) == 0: return print('[GL-ERROR] {0}'.format(err_msg), file=_sys.stderr) def create_axes(length, both=False, text=False, font=_glut. GLUT_BITMAP_HELVETICA_18): """ Create axes system. :param length: Axes length :param both: Both axes :param text: Show axes names (x,y,z) :param font: Font :type length: float, int :type both: bool :type text: bool :type font: int :return: OpenGL list """ if length > 0: x = Point3(length, 0, 0) y = Point3(0, length, 0) z = Point3(0, 0, length) o = Point3() lista = _gl.glGenLists(1) _gl.glNewList(lista, _gl.GL_COMPILE) _gl.glBegin(_gl.GL_LINES) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) if both: x = Point3(-length, 0, 0) y = Point3(0, -length, 0) z = Point3(0, 0, -length) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) _gl.glEnd() if text: draw_text('x', Point3(length + 60, 0, -15), [1, 0, 0], font) draw_text('y', Point3(0, length + 50, -15), [0, 1, 0], font) draw_text('z', Point3(+0, +0, length + 50), [0, 0, 1], font) if both: draw_text('-x', Point3(-length - 60, 0, -15), [1, 0, 0], font) draw_text('-y', Point3(0, -length - 70, -15), [0, 1, 0], font) draw_text('-z', Point3(+0, +0, -length - 80), [0, 0, 1], font) _gl.glEndList() return lista else: raise Exception('Axes length must be positive, greater than zero') def draw_text(text, pos, color=None, font=_glut.GLUT_BITMAP_TIMES_ROMAN_24, linespace=20): """Dibuja un texto en una posicon dada por un punto point3""" if color is None: color = _UTILS_COLOR_WHITE _gl.glColor3fv(color) if isinstance(pos, Point3): x = pos.get_x() y = pos.get_y() z = pos.get_z() _gl.glRasterPos3f(x, y, z) for char in text: if char == '\n': y += linespace _gl.glRasterPos3f(x, y, z) else: try: glutBitmapCharacter(font, ord(char)) except: if not _UTILS_ERRS[0]: print_gl_error( 'Actual OpenGL version doest not support glutBitmapCharacter function' ) _UTILS_ERRS[0] = True else: raise Exception('Point must be Point3 type') def get_rgb_normalized(r, g, b, a=1.0): """ Return rgb color normalized (from 0 to 1). :param r: Red color :param g: Green color :param b: Blue color :param a: Alpha :type r: float, int :type g: float, int :type b: float, int :type a: float :return: RGBA tuple :rtype: tuple """ if r <= 1 and g <= 1 and b <= 1: return r, g, b, a return r / 255.0, g / 255.0, b / 255.0, a
<mask token> _UTILS_COLOR_BLACK = [0, 0, 0] _UTILS_COLOR_WHITE = [1, 1, 1] _UTILS_ERRS = [False] def print_gl_error(err_msg): """ Prints an OpenGL error to console. :param err_msg: Error message :type err_msg: basestring """ if len(err_msg) == 0: return print('[GL-ERROR] {0}'.format(err_msg), file=_sys.stderr) def create_axes(length, both=False, text=False, font=_glut. GLUT_BITMAP_HELVETICA_18): """ Create axes system. :param length: Axes length :param both: Both axes :param text: Show axes names (x,y,z) :param font: Font :type length: float, int :type both: bool :type text: bool :type font: int :return: OpenGL list """ if length > 0: x = Point3(length, 0, 0) y = Point3(0, length, 0) z = Point3(0, 0, length) o = Point3() lista = _gl.glGenLists(1) _gl.glNewList(lista, _gl.GL_COMPILE) _gl.glBegin(_gl.GL_LINES) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) if both: x = Point3(-length, 0, 0) y = Point3(0, -length, 0) z = Point3(0, 0, -length) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) _gl.glEnd() if text: draw_text('x', Point3(length + 60, 0, -15), [1, 0, 0], font) draw_text('y', Point3(0, length + 50, -15), [0, 1, 0], font) draw_text('z', Point3(+0, +0, length + 50), [0, 0, 1], font) if both: draw_text('-x', Point3(-length - 60, 0, -15), [1, 0, 0], font) draw_text('-y', Point3(0, -length - 70, -15), [0, 1, 0], font) draw_text('-z', Point3(+0, +0, -length - 80), [0, 0, 1], font) _gl.glEndList() return lista else: raise Exception('Axes length must be positive, greater than zero') def draw_text(text, pos, color=None, font=_glut.GLUT_BITMAP_TIMES_ROMAN_24, linespace=20): """Dibuja un texto en una posicon dada por un punto point3""" if color is None: color = _UTILS_COLOR_WHITE _gl.glColor3fv(color) if isinstance(pos, Point3): x = pos.get_x() y = pos.get_y() z = pos.get_z() _gl.glRasterPos3f(x, y, z) for char in text: if char == '\n': y += linespace _gl.glRasterPos3f(x, y, z) else: try: glutBitmapCharacter(font, ord(char)) except: if not _UTILS_ERRS[0]: print_gl_error( 'Actual OpenGL version doest not support glutBitmapCharacter function' ) _UTILS_ERRS[0] = True else: raise Exception('Point must be Point3 type') def get_rgb_normalized(r, g, b, a=1.0): """ Return rgb color normalized (from 0 to 1). :param r: Red color :param g: Green color :param b: Blue color :param a: Alpha :type r: float, int :type g: float, int :type b: float, int :type a: float :return: RGBA tuple :rtype: tuple """ if r <= 1 and g <= 1 and b <= 1: return r, g, b, a return r / 255.0, g / 255.0, b / 255.0, a
<mask token> from __future__ import print_function from PyOpenGLtoolbox.geometry import draw_vertex_list from PyOpenGLtoolbox.mathlib import Point3 import sys as _sys import OpenGL.GL as _gl import OpenGL.GLUT as _glut _UTILS_COLOR_BLACK = [0, 0, 0] _UTILS_COLOR_WHITE = [1, 1, 1] _UTILS_ERRS = [False] def print_gl_error(err_msg): """ Prints an OpenGL error to console. :param err_msg: Error message :type err_msg: basestring """ if len(err_msg) == 0: return print('[GL-ERROR] {0}'.format(err_msg), file=_sys.stderr) def create_axes(length, both=False, text=False, font=_glut. GLUT_BITMAP_HELVETICA_18): """ Create axes system. :param length: Axes length :param both: Both axes :param text: Show axes names (x,y,z) :param font: Font :type length: float, int :type both: bool :type text: bool :type font: int :return: OpenGL list """ if length > 0: x = Point3(length, 0, 0) y = Point3(0, length, 0) z = Point3(0, 0, length) o = Point3() lista = _gl.glGenLists(1) _gl.glNewList(lista, _gl.GL_COMPILE) _gl.glBegin(_gl.GL_LINES) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) if both: x = Point3(-length, 0, 0) y = Point3(0, -length, 0) z = Point3(0, 0, -length) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) _gl.glEnd() if text: draw_text('x', Point3(length + 60, 0, -15), [1, 0, 0], font) draw_text('y', Point3(0, length + 50, -15), [0, 1, 0], font) draw_text('z', Point3(+0, +0, length + 50), [0, 0, 1], font) if both: draw_text('-x', Point3(-length - 60, 0, -15), [1, 0, 0], font) draw_text('-y', Point3(0, -length - 70, -15), [0, 1, 0], font) draw_text('-z', Point3(+0, +0, -length - 80), [0, 0, 1], font) _gl.glEndList() return lista else: raise Exception('Axes length must be positive, greater than zero') def draw_text(text, pos, color=None, font=_glut.GLUT_BITMAP_TIMES_ROMAN_24, linespace=20): """Dibuja un texto en una posicon dada por un punto point3""" if color is None: color = _UTILS_COLOR_WHITE _gl.glColor3fv(color) if isinstance(pos, Point3): x = pos.get_x() y = pos.get_y() z = pos.get_z() _gl.glRasterPos3f(x, y, z) for char in text: if char == '\n': y += linespace _gl.glRasterPos3f(x, y, z) else: try: glutBitmapCharacter(font, ord(char)) except: if not _UTILS_ERRS[0]: print_gl_error( 'Actual OpenGL version doest not support glutBitmapCharacter function' ) _UTILS_ERRS[0] = True else: raise Exception('Point must be Point3 type') def get_rgb_normalized(r, g, b, a=1.0): """ Return rgb color normalized (from 0 to 1). :param r: Red color :param g: Green color :param b: Blue color :param a: Alpha :type r: float, int :type g: float, int :type b: float, int :type a: float :return: RGBA tuple :rtype: tuple """ if r <= 1 and g <= 1 and b <= 1: return r, g, b, a return r / 255.0, g / 255.0, b / 255.0, a
# coding=utf-8 """ PYOPENGL-TOOLBOX UTILS General purpouse functions. MIT License Copyright (c) 2015-2019 Pablo Pizarro R. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # Library imports from __future__ import print_function from PyOpenGLtoolbox.geometry import draw_vertex_list from PyOpenGLtoolbox.mathlib import Point3 import sys as _sys # noinspection PyPep8Naming import OpenGL.GL as _gl # noinspection PyPep8Naming import OpenGL.GLUT as _glut # Constants _UTILS_COLOR_BLACK = [0, 0, 0] _UTILS_COLOR_WHITE = [1, 1, 1] _UTILS_ERRS = [False] def print_gl_error(err_msg): """ Prints an OpenGL error to console. :param err_msg: Error message :type err_msg: basestring """ if len(err_msg) == 0: return print('[GL-ERROR] {0}'.format(err_msg), file=_sys.stderr) # noinspection PyUnresolvedReferences def create_axes(length, both=False, text=False, font=_glut.GLUT_BITMAP_HELVETICA_18): """ Create axes system. :param length: Axes length :param both: Both axes :param text: Show axes names (x,y,z) :param font: Font :type length: float, int :type both: bool :type text: bool :type font: int :return: OpenGL list """ if length > 0: # Valid length # Crate points x = Point3(length, 0, 0) y = Point3(0, length, 0) z = Point3(0, 0, length) o = Point3() # Create list lista = _gl.glGenLists(1) _gl.glNewList(lista, _gl.GL_COMPILE) # Init primitve _gl.glBegin(_gl.GL_LINES) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) if both: # Draw axes in both directions x = Point3(-length, 0, 0) y = Point3(0, -length, 0) z = Point3(0, 0, -length) _gl.glColor4fv([1, 0, 0, 1]) draw_vertex_list([o, x]) _gl.glColor4fv([0, 1, 0, 1]) draw_vertex_list([o, y]) _gl.glColor4fv([0, 0, 1, 1]) draw_vertex_list([o, z]) # End primitive _gl.glEnd() if text: # Draw axes names draw_text('x', Point3(length + 60, 0, -15), [1, 0, 0], font) draw_text('y', Point3(0, length + 50, -15), [0, 1, 0], font) draw_text('z', Point3(+0, +0, length + 50), [0, 0, 1], font) if both: draw_text('-x', Point3(-length - 60, 0, -15), [1, 0, 0], font) draw_text('-y', Point3(0, -length - 70, -15), [0, 1, 0], font) draw_text('-z', Point3(+0, +0, -length - 80), [0, 0, 1], font) # Returns list _gl.glEndList() return lista else: raise Exception('Axes length must be positive, greater than zero') # noinspection PyUnresolvedReferences def draw_text(text, pos, color=None, font=_glut.GLUT_BITMAP_TIMES_ROMAN_24, linespace=20): """Dibuja un texto en una posicon dada por un punto point3""" if color is None: color = _UTILS_COLOR_WHITE _gl.glColor3fv(color) if isinstance(pos, Point3): x = pos.get_x() y = pos.get_y() z = pos.get_z() _gl.glRasterPos3f(x, y, z) for char in text: if char == "\n": y += linespace _gl.glRasterPos3f(x, y, z) else: # noinspection PyBroadException try: glutBitmapCharacter(font, ord(char)) except: if not _UTILS_ERRS[0]: print_gl_error('Actual OpenGL version doest not support glutBitmapCharacter function') _UTILS_ERRS[0] = True else: raise Exception('Point must be Point3 type') def get_rgb_normalized(r, g, b, a=1.0): """ Return rgb color normalized (from 0 to 1). :param r: Red color :param g: Green color :param b: Blue color :param a: Alpha :type r: float, int :type g: float, int :type b: float, int :type a: float :return: RGBA tuple :rtype: tuple """ if r <= 1 and g <= 1 and b <= 1: return r, g, b, a return r / 255.0, g / 255.0, b / 255.0, a
[ 3, 4, 5, 6, 7 ]
2,124
817d7259b3607f3a94d2f363c9684f733ee87d37
<mask token> class Book(models.Model): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token>
<mask token> class Author(models.Model): <mask token> <mask token> <mask token> <mask token> class Book(models.Model): ISBN = models.CharField(primary_key=True, max_length=100) Title = models.CharField(max_length=200) AuthorID = models.IntegerField(max_length=100) Publisher = models.CharField(max_length=200) PublishDate = models.CharField(max_length=200) Price = models.FloatField(max_length=200)
<mask token> class Author(models.Model): AuthorID = models.IntegerField(primary_key=True) Name = models.CharField(max_length=200) Age = models.IntegerField(max_length=50) Country = models.CharField(max_length=100) class Book(models.Model): ISBN = models.CharField(primary_key=True, max_length=100) Title = models.CharField(max_length=200) AuthorID = models.IntegerField(max_length=100) Publisher = models.CharField(max_length=200) PublishDate = models.CharField(max_length=200) Price = models.FloatField(max_length=200)
from django.db import models class Author(models.Model): AuthorID = models.IntegerField(primary_key=True) Name = models.CharField(max_length=200) Age = models.IntegerField(max_length=50) Country = models.CharField(max_length=100) class Book(models.Model): ISBN = models.CharField(primary_key=True, max_length=100) Title = models.CharField(max_length=200) AuthorID = models.IntegerField(max_length=100) Publisher = models.CharField(max_length=200) PublishDate = models.CharField(max_length=200) Price = models.FloatField(max_length=200)
from django.db import models # Create your models here. class Author(models.Model): AuthorID = models.IntegerField(primary_key=True) Name = models.CharField(max_length=200) Age = models.IntegerField(max_length=50) Country = models.CharField(max_length=100) class Book(models.Model): ISBN = models.CharField(primary_key=True,max_length=100) Title = models.CharField(max_length=200) AuthorID = models.IntegerField(max_length=100) Publisher = models.CharField(max_length=200) PublishDate = models.CharField(max_length=200) Price = models.FloatField(max_length=200)
[ 1, 3, 4, 5, 6 ]
2,125
2a8032c23e3c7aa3a7b0593c79db7adbc0353f93
<mask token> class button: def __init__(self, colour, x, y, width, height, text=''): self.colour = colour self.x = x self.y = y self.width = width self.height = height self.text = text def draw(self, win, outline=None): if outline: pygame.draw.rect(win, outline, (self.x - 2, self.y - 2, self. width + 4, self.height + 4), 0) pygame.draw.rect(win, self.colour, (self.x, self.y, self.width, self.height), 0) if self.text != '': font = pygame.font.SysFont('calligrapher.ttf', 60) text = font.render(self.text, 1, (0, 0, 0)) win.blit(text, (self.x + (self.width / 2 - text.get_width() / 2 ), self.y + (self.height / 2 - text.get_height() / 2))) def isOver(self, pos): if pos[0] > self.x and pos[0] < self.x + self.width: if pos[1] > self.y and pos[1] < self.y + self.height: return True else: return False <mask token> def text(text, win, x, y): font = pygame.font.SysFont('freesansbold.ttf', 50) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def instructionText(text, win, x, y): font = pygame.font.SysFont('Arial', 20) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def header(text, win, x, y): font = pygame.font.SysFont('TimesNewRoman', 70) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def mouseClick(screen): x, y = pygame.mouse.get_pos() if (x >= 65 and x <= 727) and (y >= 82 and y <= 618): pygame.draw.circle(screen, (255, 0, 150), (x, y), 15) return True, x, y else: print('Out of bounds!') return False, x, y def skeleExit(win): aryadelight = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) win.blit(aryadelight, (0, 0)) pygame.display.update() xaxis = 100 for i in range(1, 42): image = str(i) + '.png' skele = pygame.image.load(os.path.join(image)) win.blit(skele, (250, 200)) text('Exiting...', win, xaxis + 20, 600) pygame.display.update() sleep(0.09) <mask token> def redrawMap(screen): NTUmap = pygame.image.load(os.path.join('NTUMap.jpg')) screen.blit(NTUmap, (0, 0)) for x in range(50, 900, 50): pygame.draw.rect(screen, (255, 0, 0), (x, 0, 1, 700), 0) for y in range(50, 700, 50): pygame.draw.rect(screen, (255, 0, 0), (0, y, 900, 1), 0) text('Please click on your current location!', screen, 200, 100) <mask token> def redrawMainWin(screen): aryadelight = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(aryadelight, (0, 0)) mapButton.draw(screen, (0, 0, 0)) instructionText( '(Choose your cuisines, preferences and budget for the meal here!)', screen, 215, 320) predictButton.draw(screen, (0, 0, 0)) instructionText('(Find the nearest canteen!)', screen, 132, 470) exitButton.draw(screen, (0, 0, 0)) ice = pygame.image.load(os.path.join('ice.png')) screen.blit(ice, (500, 670)) font = pygame.font.SysFont('verdana', 20) creator = font.render('Made by HweeHean X Arya', 1, (0, 0, 200)) screen.blit(creator, (535, 670)) <mask token> def redrawSearchWin(screen, x, y): bp = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(bp, (0, 0)) GordonRamsay = pygame.image.load(os.path.join('GordonRamsay.png')) screen.blit(GordonRamsay, (400, 100)) distList = [] for i in canteen_list: distList.append(i) print(distList) top3 = nearest_can(distList, x, y) print(top3) text('Nearest Canteen:', screen, 110, 400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == 'Food Court 1': canteenPic = pygame.image.load(os.path.join('Canteen1.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 2': canteenPic = pygame.image.load(os.path.join('Canteen2.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 4': canteenPic = pygame.image.load(os.path.join('Canteen4.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 9': canteenPic = pygame.image.load(os.path.join('Canteen9.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 11': canteenPic = pygame.image.load(os.path.join('Canteen11.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 13': canteenPic = pygame.image.load(os.path.join('Canteen13.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 14': canteenPic = pygame.image.load(os.path.join('Canteen14.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 16': canteenPic = pygame.image.load(os.path.join('Canteen16.png')) screen.blit(canteenPic, (150, 200)) if k == 'Tamarind Food Court': canteenPic = pygame.image.load(os.path.join('Tamarind.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Pioneer Food Court': canteenPic = pygame.image.load(os.path.join('Pioneer.png')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Food Court': canteenPic = pygame.image.load(os.path.join('NorthSpine.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Plaza': canteenPic = pygame.image.load(os.path.join( 'NorthSpinePlaza.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'South Spine Food Court': canteenPic = pygame.image.load(os.path.join( 'SouthSpineKoufuFoodCourt.png')) screen.blit(canteenPic, (150, 200)) if k == 'Quad Cafe': canteenPic = pygame.image.load(os.path.join('Quad.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Coffee Bean': canteenPic = pygame.image.load(os.path.join('Coffee.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Hill Food Court': canteenPic = pygame.image.load(os.path.join('NorthHill.jpg')) screen.blit(canteenPic, (150, 200)) text(str(canteenCount), screen, 110, yaxis) text('.', screen, 135, yaxis) text(k, screen, 150, yaxis) canteenCount += 1 yaxis += 70 return top3 def complicatedSearchWin(screen, top3): bp = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(bp, (0, 0)) GordonRamsay = pygame.image.load(os.path.join('GordonRamsay.png')) screen.blit(GordonRamsay, (400, 100)) text('Nearest Canteen:', screen, 110, 400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == 'Food Court 1': canteenPic = pygame.image.load(os.path.join('Canteen1.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 2': canteenPic = pygame.image.load(os.path.join('Canteen2.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 4': canteenPic = pygame.image.load(os.path.join('Canteen4.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 9': canteenPic = pygame.image.load(os.path.join('Canteen9.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 11': canteenPic = pygame.image.load(os.path.join('Canteen11.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 13': canteenPic = pygame.image.load(os.path.join('Canteen13.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 14': canteenPic = pygame.image.load(os.path.join('Canteen14.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 16': canteenPic = pygame.image.load(os.path.join('Canteen16.png')) screen.blit(canteenPic, (150, 200)) if k == 'Tamarind Food Court': canteenPic = pygame.image.load(os.path.join('Tamarind.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Pioneer Food Court': canteenPic = pygame.image.load(os.path.join('Pioneer.png')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Food Court': canteenPic = pygame.image.load(os.path.join('NorthSpine.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Plaza': canteenPic = pygame.image.load(os.path.join( 'NorthSpinePlaza.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'South Spine Food Court': canteenPic = pygame.image.load(os.path.join( 'SouthSpineKoufuFoodCourt.png')) screen.blit(canteenPic, (150, 200)) if k == 'Quad Cafe': canteenPic = pygame.image.load(os.path.join('Quad.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Coffee Bean': canteenPic = pygame.image.load(os.path.join('Coffee.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Hill Food Court': canteenPic = pygame.image.load(os.path.join('NorthHill.jpg')) screen.blit(canteenPic, (150, 200)) text(str(canteenCount), screen, 110, yaxis) text('.', screen, 135, yaxis) text(k, screen, 150, yaxis) canteenCount += 1 yaxis += 70 <mask token> def final_list(user_budget, user_cuisine, user_preference): new_list = [] for i in canteen_list: if user_budget >= canteen_list[i][1]: new_list.append(i) for c in user_cuisine: for i in canteen_list: if c in canteen_list[i][2]: new_list.append(i) for c in user_preference: for i in canteen_list: if c in canteen_list[i][4]: new_list.append(i) new_list = list(set(new_list)) if len(new_list) == 0: for i in canteen_list: new_list.append(i) return new_list def calc_dis(x1, y1, x2, y2): return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 1 / 2 def nearest_can(new_list, x, y): top3 = [] copy_list = new_list.copy() while len(top3) != 3: j = copy_list[0] coor = canteen_list[j][5] Min = calc_dis(x, y, coor[0], coor[1]) food_court = '' for k in copy_list: coor = canteen_list[k][5] dist = calc_dis(x, y, coor[0], coor[1]) if Min >= dist: Min = dist food_court = k index = copy_list.index(food_court) copy_list.pop(index) top3.append(food_court) print(top3) return top3 <mask token>
<mask token> class button: def __init__(self, colour, x, y, width, height, text=''): self.colour = colour self.x = x self.y = y self.width = width self.height = height self.text = text def draw(self, win, outline=None): if outline: pygame.draw.rect(win, outline, (self.x - 2, self.y - 2, self. width + 4, self.height + 4), 0) pygame.draw.rect(win, self.colour, (self.x, self.y, self.width, self.height), 0) if self.text != '': font = pygame.font.SysFont('calligrapher.ttf', 60) text = font.render(self.text, 1, (0, 0, 0)) win.blit(text, (self.x + (self.width / 2 - text.get_width() / 2 ), self.y + (self.height / 2 - text.get_height() / 2))) def isOver(self, pos): if pos[0] > self.x and pos[0] < self.x + self.width: if pos[1] > self.y and pos[1] < self.y + self.height: return True else: return False <mask token> def text(text, win, x, y): font = pygame.font.SysFont('freesansbold.ttf', 50) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def instructionText(text, win, x, y): font = pygame.font.SysFont('Arial', 20) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def header(text, win, x, y): font = pygame.font.SysFont('TimesNewRoman', 70) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def mouseClick(screen): x, y = pygame.mouse.get_pos() if (x >= 65 and x <= 727) and (y >= 82 and y <= 618): pygame.draw.circle(screen, (255, 0, 150), (x, y), 15) return True, x, y else: print('Out of bounds!') return False, x, y def skeleExit(win): aryadelight = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) win.blit(aryadelight, (0, 0)) pygame.display.update() xaxis = 100 for i in range(1, 42): image = str(i) + '.png' skele = pygame.image.load(os.path.join(image)) win.blit(skele, (250, 200)) text('Exiting...', win, xaxis + 20, 600) pygame.display.update() sleep(0.09) <mask token> def redrawMap(screen): NTUmap = pygame.image.load(os.path.join('NTUMap.jpg')) screen.blit(NTUmap, (0, 0)) for x in range(50, 900, 50): pygame.draw.rect(screen, (255, 0, 0), (x, 0, 1, 700), 0) for y in range(50, 700, 50): pygame.draw.rect(screen, (255, 0, 0), (0, y, 900, 1), 0) text('Please click on your current location!', screen, 200, 100) def redrawGPSMap(screen, top3, x, y): NTUmap = pygame.image.load(os.path.join('NTUMap.jpg')) screen.blit(NTUmap, (0, 0)) redGPS = pygame.image.load(os.path.join('redgps.png')) screen.blit(redGPS, (x - 16, y - 32)) instructionText('You are currently at this position.', screen, x + 4, y - 10) counter = 1 for i in top3: coor = canteen_list[i][5] if counter == 1: blueGPS = pygame.image.load(os.path.join('bluegps.png')) screen.blit(blueGPS, (coor[0] - 12, coor[1] - 24)) instructionText(i, screen, coor[0] - 24, coor[1]) pass if counter == 2: blackGPS = pygame.image.load(os.path.join('blackgps.png')) screen.blit(blackGPS, (coor[0] - 12, coor[1] - 24)) instructionText(i, screen, coor[0] - 24, coor[1]) pass if counter == 3: yellowGPS = pygame.image.load(os.path.join('yellowgps.png')) screen.blit(yellowGPS, (coor[0] - 12, coor[1] - 24)) instructionText(i, screen, coor[0] - 24, coor[1]) pass counter += 1 restartButton.draw(screen, (0, 0, 0)) def redrawMainWin(screen): aryadelight = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(aryadelight, (0, 0)) mapButton.draw(screen, (0, 0, 0)) instructionText( '(Choose your cuisines, preferences and budget for the meal here!)', screen, 215, 320) predictButton.draw(screen, (0, 0, 0)) instructionText('(Find the nearest canteen!)', screen, 132, 470) exitButton.draw(screen, (0, 0, 0)) ice = pygame.image.load(os.path.join('ice.png')) screen.blit(ice, (500, 670)) font = pygame.font.SysFont('verdana', 20) creator = font.render('Made by HweeHean X Arya', 1, (0, 0, 200)) screen.blit(creator, (535, 670)) <mask token> def redrawSearchWin(screen, x, y): bp = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(bp, (0, 0)) GordonRamsay = pygame.image.load(os.path.join('GordonRamsay.png')) screen.blit(GordonRamsay, (400, 100)) distList = [] for i in canteen_list: distList.append(i) print(distList) top3 = nearest_can(distList, x, y) print(top3) text('Nearest Canteen:', screen, 110, 400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == 'Food Court 1': canteenPic = pygame.image.load(os.path.join('Canteen1.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 2': canteenPic = pygame.image.load(os.path.join('Canteen2.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 4': canteenPic = pygame.image.load(os.path.join('Canteen4.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 9': canteenPic = pygame.image.load(os.path.join('Canteen9.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 11': canteenPic = pygame.image.load(os.path.join('Canteen11.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 13': canteenPic = pygame.image.load(os.path.join('Canteen13.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 14': canteenPic = pygame.image.load(os.path.join('Canteen14.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 16': canteenPic = pygame.image.load(os.path.join('Canteen16.png')) screen.blit(canteenPic, (150, 200)) if k == 'Tamarind Food Court': canteenPic = pygame.image.load(os.path.join('Tamarind.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Pioneer Food Court': canteenPic = pygame.image.load(os.path.join('Pioneer.png')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Food Court': canteenPic = pygame.image.load(os.path.join('NorthSpine.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Plaza': canteenPic = pygame.image.load(os.path.join( 'NorthSpinePlaza.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'South Spine Food Court': canteenPic = pygame.image.load(os.path.join( 'SouthSpineKoufuFoodCourt.png')) screen.blit(canteenPic, (150, 200)) if k == 'Quad Cafe': canteenPic = pygame.image.load(os.path.join('Quad.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Coffee Bean': canteenPic = pygame.image.load(os.path.join('Coffee.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Hill Food Court': canteenPic = pygame.image.load(os.path.join('NorthHill.jpg')) screen.blit(canteenPic, (150, 200)) text(str(canteenCount), screen, 110, yaxis) text('.', screen, 135, yaxis) text(k, screen, 150, yaxis) canteenCount += 1 yaxis += 70 return top3 def complicatedSearchWin(screen, top3): bp = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(bp, (0, 0)) GordonRamsay = pygame.image.load(os.path.join('GordonRamsay.png')) screen.blit(GordonRamsay, (400, 100)) text('Nearest Canteen:', screen, 110, 400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == 'Food Court 1': canteenPic = pygame.image.load(os.path.join('Canteen1.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 2': canteenPic = pygame.image.load(os.path.join('Canteen2.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 4': canteenPic = pygame.image.load(os.path.join('Canteen4.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 9': canteenPic = pygame.image.load(os.path.join('Canteen9.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 11': canteenPic = pygame.image.load(os.path.join('Canteen11.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 13': canteenPic = pygame.image.load(os.path.join('Canteen13.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 14': canteenPic = pygame.image.load(os.path.join('Canteen14.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 16': canteenPic = pygame.image.load(os.path.join('Canteen16.png')) screen.blit(canteenPic, (150, 200)) if k == 'Tamarind Food Court': canteenPic = pygame.image.load(os.path.join('Tamarind.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Pioneer Food Court': canteenPic = pygame.image.load(os.path.join('Pioneer.png')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Food Court': canteenPic = pygame.image.load(os.path.join('NorthSpine.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Plaza': canteenPic = pygame.image.load(os.path.join( 'NorthSpinePlaza.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'South Spine Food Court': canteenPic = pygame.image.load(os.path.join( 'SouthSpineKoufuFoodCourt.png')) screen.blit(canteenPic, (150, 200)) if k == 'Quad Cafe': canteenPic = pygame.image.load(os.path.join('Quad.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Coffee Bean': canteenPic = pygame.image.load(os.path.join('Coffee.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Hill Food Court': canteenPic = pygame.image.load(os.path.join('NorthHill.jpg')) screen.blit(canteenPic, (150, 200)) text(str(canteenCount), screen, 110, yaxis) text('.', screen, 135, yaxis) text(k, screen, 150, yaxis) canteenCount += 1 yaxis += 70 <mask token> def final_list(user_budget, user_cuisine, user_preference): new_list = [] for i in canteen_list: if user_budget >= canteen_list[i][1]: new_list.append(i) for c in user_cuisine: for i in canteen_list: if c in canteen_list[i][2]: new_list.append(i) for c in user_preference: for i in canteen_list: if c in canteen_list[i][4]: new_list.append(i) new_list = list(set(new_list)) if len(new_list) == 0: for i in canteen_list: new_list.append(i) return new_list def calc_dis(x1, y1, x2, y2): return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 1 / 2 def nearest_can(new_list, x, y): top3 = [] copy_list = new_list.copy() while len(top3) != 3: j = copy_list[0] coor = canteen_list[j][5] Min = calc_dis(x, y, coor[0], coor[1]) food_court = '' for k in copy_list: coor = canteen_list[k][5] dist = calc_dis(x, y, coor[0], coor[1]) if Min >= dist: Min = dist food_court = k index = copy_list.index(food_court) copy_list.pop(index) top3.append(food_court) print(top3) return top3 <mask token>
<mask token> screen.fill((255, 255, 255)) pygame.display.set_caption('NTUFOODIERECOMMENDSYSTEM') <mask token> class button: def __init__(self, colour, x, y, width, height, text=''): self.colour = colour self.x = x self.y = y self.width = width self.height = height self.text = text def draw(self, win, outline=None): if outline: pygame.draw.rect(win, outline, (self.x - 2, self.y - 2, self. width + 4, self.height + 4), 0) pygame.draw.rect(win, self.colour, (self.x, self.y, self.width, self.height), 0) if self.text != '': font = pygame.font.SysFont('calligrapher.ttf', 60) text = font.render(self.text, 1, (0, 0, 0)) win.blit(text, (self.x + (self.width / 2 - text.get_width() / 2 ), self.y + (self.height / 2 - text.get_height() / 2))) def isOver(self, pos): if pos[0] > self.x and pos[0] < self.x + self.width: if pos[1] > self.y and pos[1] < self.y + self.height: return True else: return False <mask token> def text(text, win, x, y): font = pygame.font.SysFont('freesansbold.ttf', 50) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def instructionText(text, win, x, y): font = pygame.font.SysFont('Arial', 20) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def header(text, win, x, y): font = pygame.font.SysFont('TimesNewRoman', 70) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def mouseClick(screen): x, y = pygame.mouse.get_pos() if (x >= 65 and x <= 727) and (y >= 82 and y <= 618): pygame.draw.circle(screen, (255, 0, 150), (x, y), 15) return True, x, y else: print('Out of bounds!') return False, x, y def skeleExit(win): aryadelight = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) win.blit(aryadelight, (0, 0)) pygame.display.update() xaxis = 100 for i in range(1, 42): image = str(i) + '.png' skele = pygame.image.load(os.path.join(image)) win.blit(skele, (250, 200)) text('Exiting...', win, xaxis + 20, 600) pygame.display.update() sleep(0.09) def loading(win): x = 0 while x < 3: load0 = pygame.image.load(os.path.join('load0.png')) win.blit(load0, (0, 0)) pygame.display.update() sleep(0.3) load1 = pygame.image.load(os.path.join('load1.png')) win.blit(load1, (0, 0)) pygame.display.update() sleep(0.3) load2 = pygame.image.load(os.path.join('load2.png')) win.blit(load2, (0, 0)) pygame.display.update() sleep(0.3) load3 = pygame.image.load(os.path.join('load3.png')) win.blit(load3, (0, 0)) pygame.display.update() sleep(0.3) x += 1 def redrawMap(screen): NTUmap = pygame.image.load(os.path.join('NTUMap.jpg')) screen.blit(NTUmap, (0, 0)) for x in range(50, 900, 50): pygame.draw.rect(screen, (255, 0, 0), (x, 0, 1, 700), 0) for y in range(50, 700, 50): pygame.draw.rect(screen, (255, 0, 0), (0, y, 900, 1), 0) text('Please click on your current location!', screen, 200, 100) def redrawGPSMap(screen, top3, x, y): NTUmap = pygame.image.load(os.path.join('NTUMap.jpg')) screen.blit(NTUmap, (0, 0)) redGPS = pygame.image.load(os.path.join('redgps.png')) screen.blit(redGPS, (x - 16, y - 32)) instructionText('You are currently at this position.', screen, x + 4, y - 10) counter = 1 for i in top3: coor = canteen_list[i][5] if counter == 1: blueGPS = pygame.image.load(os.path.join('bluegps.png')) screen.blit(blueGPS, (coor[0] - 12, coor[1] - 24)) instructionText(i, screen, coor[0] - 24, coor[1]) pass if counter == 2: blackGPS = pygame.image.load(os.path.join('blackgps.png')) screen.blit(blackGPS, (coor[0] - 12, coor[1] - 24)) instructionText(i, screen, coor[0] - 24, coor[1]) pass if counter == 3: yellowGPS = pygame.image.load(os.path.join('yellowgps.png')) screen.blit(yellowGPS, (coor[0] - 12, coor[1] - 24)) instructionText(i, screen, coor[0] - 24, coor[1]) pass counter += 1 restartButton.draw(screen, (0, 0, 0)) def redrawMainWin(screen): aryadelight = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(aryadelight, (0, 0)) mapButton.draw(screen, (0, 0, 0)) instructionText( '(Choose your cuisines, preferences and budget for the meal here!)', screen, 215, 320) predictButton.draw(screen, (0, 0, 0)) instructionText('(Find the nearest canteen!)', screen, 132, 470) exitButton.draw(screen, (0, 0, 0)) ice = pygame.image.load(os.path.join('ice.png')) screen.blit(ice, (500, 670)) font = pygame.font.SysFont('verdana', 20) creator = font.render('Made by HweeHean X Arya', 1, (0, 0, 200)) screen.blit(creator, (535, 670)) def redrawCustWin(screen): bp = pygame.image.load(os.path.join('gradient.jpg')) screen.blit(bp, (0, 0)) instructionText('Left click again to reset!', screen, 300, 20) text('Please select your food preference: ', screen, 100, 50) halalButton.draw(screen, (0, 0, 0)) vegButton.draw(screen, (0, 0, 0)) nonhalalButton.draw(screen, (0, 0, 0)) text('Please select your cuisine type: ', screen, 100, 200) koreanButton.draw(screen, (0, 0, 0)) malayButton.draw(screen, (0, 0, 0)) japanButton.draw(screen, (0, 0, 0)) chineseButton.draw(screen, (0, 0, 0)) indianButton.draw(screen, (0, 0, 0)) westernButton.draw(screen, (0, 0, 0)) text('Please select your maximum budget: ', screen, 100, 430) button3.draw(screen, (0, 0, 0)) button5.draw(screen, (0, 0, 0)) button7.draw(screen, (0, 0, 0)) button9.draw(screen, (0, 0, 0)) nextButton.draw(screen, (0, 0, 0)) def redrawSearchWin(screen, x, y): bp = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(bp, (0, 0)) GordonRamsay = pygame.image.load(os.path.join('GordonRamsay.png')) screen.blit(GordonRamsay, (400, 100)) distList = [] for i in canteen_list: distList.append(i) print(distList) top3 = nearest_can(distList, x, y) print(top3) text('Nearest Canteen:', screen, 110, 400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == 'Food Court 1': canteenPic = pygame.image.load(os.path.join('Canteen1.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 2': canteenPic = pygame.image.load(os.path.join('Canteen2.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 4': canteenPic = pygame.image.load(os.path.join('Canteen4.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 9': canteenPic = pygame.image.load(os.path.join('Canteen9.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 11': canteenPic = pygame.image.load(os.path.join('Canteen11.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 13': canteenPic = pygame.image.load(os.path.join('Canteen13.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 14': canteenPic = pygame.image.load(os.path.join('Canteen14.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 16': canteenPic = pygame.image.load(os.path.join('Canteen16.png')) screen.blit(canteenPic, (150, 200)) if k == 'Tamarind Food Court': canteenPic = pygame.image.load(os.path.join('Tamarind.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Pioneer Food Court': canteenPic = pygame.image.load(os.path.join('Pioneer.png')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Food Court': canteenPic = pygame.image.load(os.path.join('NorthSpine.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Plaza': canteenPic = pygame.image.load(os.path.join( 'NorthSpinePlaza.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'South Spine Food Court': canteenPic = pygame.image.load(os.path.join( 'SouthSpineKoufuFoodCourt.png')) screen.blit(canteenPic, (150, 200)) if k == 'Quad Cafe': canteenPic = pygame.image.load(os.path.join('Quad.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Coffee Bean': canteenPic = pygame.image.load(os.path.join('Coffee.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Hill Food Court': canteenPic = pygame.image.load(os.path.join('NorthHill.jpg')) screen.blit(canteenPic, (150, 200)) text(str(canteenCount), screen, 110, yaxis) text('.', screen, 135, yaxis) text(k, screen, 150, yaxis) canteenCount += 1 yaxis += 70 return top3 def complicatedSearchWin(screen, top3): bp = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(bp, (0, 0)) GordonRamsay = pygame.image.load(os.path.join('GordonRamsay.png')) screen.blit(GordonRamsay, (400, 100)) text('Nearest Canteen:', screen, 110, 400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == 'Food Court 1': canteenPic = pygame.image.load(os.path.join('Canteen1.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 2': canteenPic = pygame.image.load(os.path.join('Canteen2.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 4': canteenPic = pygame.image.load(os.path.join('Canteen4.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 9': canteenPic = pygame.image.load(os.path.join('Canteen9.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 11': canteenPic = pygame.image.load(os.path.join('Canteen11.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 13': canteenPic = pygame.image.load(os.path.join('Canteen13.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 14': canteenPic = pygame.image.load(os.path.join('Canteen14.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 16': canteenPic = pygame.image.load(os.path.join('Canteen16.png')) screen.blit(canteenPic, (150, 200)) if k == 'Tamarind Food Court': canteenPic = pygame.image.load(os.path.join('Tamarind.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Pioneer Food Court': canteenPic = pygame.image.load(os.path.join('Pioneer.png')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Food Court': canteenPic = pygame.image.load(os.path.join('NorthSpine.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Plaza': canteenPic = pygame.image.load(os.path.join( 'NorthSpinePlaza.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'South Spine Food Court': canteenPic = pygame.image.load(os.path.join( 'SouthSpineKoufuFoodCourt.png')) screen.blit(canteenPic, (150, 200)) if k == 'Quad Cafe': canteenPic = pygame.image.load(os.path.join('Quad.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Coffee Bean': canteenPic = pygame.image.load(os.path.join('Coffee.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Hill Food Court': canteenPic = pygame.image.load(os.path.join('NorthHill.jpg')) screen.blit(canteenPic, (150, 200)) text(str(canteenCount), screen, 110, yaxis) text('.', screen, 135, yaxis) text(k, screen, 150, yaxis) canteenCount += 1 yaxis += 70 <mask token> def final_list(user_budget, user_cuisine, user_preference): new_list = [] for i in canteen_list: if user_budget >= canteen_list[i][1]: new_list.append(i) for c in user_cuisine: for i in canteen_list: if c in canteen_list[i][2]: new_list.append(i) for c in user_preference: for i in canteen_list: if c in canteen_list[i][4]: new_list.append(i) new_list = list(set(new_list)) if len(new_list) == 0: for i in canteen_list: new_list.append(i) return new_list def calc_dis(x1, y1, x2, y2): return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 1 / 2 def nearest_can(new_list, x, y): top3 = [] copy_list = new_list.copy() while len(top3) != 3: j = copy_list[0] coor = canteen_list[j][5] Min = calc_dis(x, y, coor[0], coor[1]) food_court = '' for k in copy_list: coor = canteen_list[k][5] dist = calc_dis(x, y, coor[0], coor[1]) if Min >= dist: Min = dist food_court = k index = copy_list.index(food_court) copy_list.pop(index) top3.append(food_court) print(top3) return top3 <mask token> pygame.init() <mask token> while run: if checkButton: redrawMainWin(screen) if customisationMenu: redrawCustWin(screen) if easySearch: if oneTime: nearest_canteen = redrawSearchWin(screen, x, y) sleep(2) oneTime = False gpsButton.draw(screen, (0, 0, 0)) if complicatedMenu: if oneTime: complicatedSearchWin(screen, nearest_canteen) sleep(2) oneTime = False gpsButton.draw(screen, (0, 0, 0)) if gpsButtonPressed == True: redrawGPSMap(screen, nearest_canteen, x, y) pygame.display.update() clock.tick(30) for event in pygame.event.get(): pos = pygame.mouse.get_pos() if event.type == pygame.QUIT: run = False pygame.quit() if gpsButtonPressed: if event.type == pygame.MOUSEBUTTONDOWN: if restartButton.isOver(pos): restartButton.colour = 50, 50, 50 restartButton.draw(screen, (0, 0, 0)) pygame.display.update() print('clicked the restart button') halalButtonPressed = False vegButtonPressed = False nonhalalButtonPressed = False koreanButtonPressed = False malayButtonPressed = False japanButtonPressed = False chineseButtonPressed = False indianButtonPressed = False westernButtonPressed = False button3Pressed = False button5Pressed = False button7Pressed = False button9Pressed = False nextButtonPressed = False gpsButtonPressed = False checkButton = True mapCoor = False customisationMenu = False mapCoor2 = False easySearch = False complicatedMenu = False oneTime = True if event.type == pygame.MOUSEMOTION: if restartButton.isOver(pos): restartButton.colour = 0, 255, 0 continue else: restartButton.colour = 255, 255, 255 continue if easySearch == True or complicatedMenu == True: if event.type == pygame.MOUSEBUTTONDOWN: if gpsButton.isOver(pos): gpsButton.colour = 50, 50, 50 gpsButton.draw(screen, (0, 0, 0)) pygame.display.update() print('clicked gps button') gpsButtonPressed = True easySearch = False complicatedMenu = False continue if event.type == pygame.MOUSEMOTION: if gpsButton.isOver(pos): gpsButton.colour = 0, 255, 0 continue else: gpsButton.colour = 255, 255, 255 continue if checkButton: if event.type == pygame.MOUSEBUTTONDOWN: if mapButton.isOver(pos): mapButton.colour = 0, 255, 0 redrawMainWin(screen) pygame.display.update() print('clicked map button') sleep(0.5) redrawMap(screen) checkButton = False mapCoor = True continue if predictButton.isOver(pos): predictButton.colour = 0, 255, 0 redrawMainWin(screen) pygame.display.update() print('clicked predict button') sleep(0.5) redrawMap(screen) checkButton = False mapCoor2 = True continue if exitButton.isOver(pos): exitButton.colour = 0, 255, 0 print('Exiting...') skeleExit(screen) pygame.quit() run = False exit() if event.type == pygame.MOUSEMOTION: if mapButton.isOver(pos): mapButton.colour = 255, 0, 0 else: mapButton.colour = 255, 255, 255 if predictButton.isOver(pos): predictButton.colour = 255, 0, 0 else: predictButton.colour = 255, 255, 255 if exitButton.isOver(pos): exitButton.colour = 255, 0, 0 else: exitButton.colour = 255, 255, 255 if customisationMenu: if event.type == pygame.MOUSEMOTION: if nextButton.isOver(pos): nextButton.colour = 0, 0, 255 else: nextButton.colour = 255, 255, 255 continue if event.type == pygame.MOUSEBUTTONDOWN: if nextButton.isOver(pos): nextButton.colour = 255, 255, 0 nextButtonPressed = True customisationMenu = False continue if halalButton.isOver(pos): if halalButtonPressed == False: if nonhalalButtonPressed: nonhalalButton.colour = 255, 255, 255 nonhalalButtonPressed = False halalButton.colour = 0, 255, 0 print('clicked Halal button') halalButtonPressed = True continue else: halalButton.colour = 255, 255, 255 halalButtonPressed = False continue if vegButton.isOver(pos): if vegButtonPressed == False: if nonhalalButtonPressed: nonhalalButton.colour = 255, 255, 255 nonhalalButtonPressed = False vegButton.colour = 0, 255, 0 print('clicked Vegetarian button') vegButtonPressed = True continue else: vegButton.colour = 255, 255, 255 vegButtonPressed = False continue if nonhalalButton.isOver(pos): if nonhalalButtonPressed == False: if halalButtonPressed: halalButton.colour = 255, 255, 255 halalButtonPressed = False if vegButtonPressed: vegButton.colour = 255, 255, 255 vegButtonPressed = False nonhalalButton.colour = 0, 255, 0 print('clicked non-halal button') nonhalalButtonPressed = True continue else: nonhalalButton.colour = 255, 255, 255 nonhalalButtonPressed = False if koreanButton.isOver(pos): if koreanButtonPressed == False: koreanButton.colour = 0, 255, 0 print('clicked korean button') koreanButtonPressed = True continue else: koreanButton.colour = 255, 255, 255 koreanButtonPressed = False if malayButton.isOver(pos): if malayButtonPressed == False: malayButton.colour = 0, 255, 0 print('clicked Malay button') malayButtonPressed = True continue else: malayButton.colour = 255, 255, 255 malayButtonPressed = False if japanButton.isOver(pos): if japanButtonPressed == False: japanButton.colour = 0, 255, 0 print('clicked japan button') japanButtonPressed = True continue else: japanButton.colour = 255, 255, 255 japanButtonPressed = False if chineseButton.isOver(pos): if chineseButtonPressed == False: chineseButton.colour = 0, 255, 0 print('clicked chinese button') chineseButtonPressed = True continue else: chineseButton.colour = 255, 255, 255 chineseButtonPressed = False if indianButton.isOver(pos): if indianButtonPressed == False: indianButton.colour = 0, 255, 0 print('clicked indian button') indianButtonPressed = True continue else: indianButton.colour = 255, 255, 255 indianButtonPressed = False if westernButton.isOver(pos): if westernButtonPressed == False: westernButton.colour = 0, 255, 0 print('clicked western button') westernButtonPressed = True continue else: westernButton.colour = 255, 255, 255 westernButtonPressed = False if button3.isOver(pos): if button3Pressed == False: if button5Pressed == True: button5.colour = 255, 255, 255 button5Pressed = False if button7Pressed == True: button7.colour = 255, 255, 255 button7Pressed = False if button9Pressed == True: button9.colour = 255, 255, 255 button9Pressed = False button3.colour = 0, 255, 0 print('clicked $3') button3Pressed = True continue else: button3.colour = 255, 255, 255 button3Pressed = False if button5.isOver(pos): if button5Pressed == False: if button3Pressed == True: button3.colour = 255, 255, 255 button3Pressed = False if button7Pressed == True: button7.colour = 255, 255, 255 button7Pressed = False if button9Pressed == True: button9.colour = 255, 255, 255 button9Pressed = False button5.colour = 0, 255, 0 print('Clicked $5') button5Pressed = True continue else: button5.colour = 255, 255, 255 button5Pressed = False if button7.isOver(pos): if button7Pressed == False: if button3Pressed == True: button3.colour = 255, 255, 255 button3Pressed = False if button5Pressed == True: button5.colour = 255, 255, 255 button5Pressed = False if button9Pressed == True: button9.colour = 255, 255, 255 button9Pressed = False button7.colour = 0, 255, 0 print('Clicked $7') button7Pressed = True continue else: button7.colour = 255, 255, 255 button7Pressed = False if button9.isOver(pos): if button9Pressed == False: if button3Pressed == True: button3.colour = 255, 255, 255 button3Pressed = False if button5Pressed == True: button5.colour = 255, 255, 255 button5Pressed = False if button7Pressed == True: button7.colour = 255, 255, 255 button7Pressed = False button9.colour = 0, 255, 0 print('Clicked $10') button9Pressed = True continue else: button9.colour = 255, 255, 255 button9Pressed = False if mapCoor == True and event.type == pygame.MOUSEBUTTONDOWN: mouseclick = mouseClick(screen) if mouseclick[0]: pygame.display.update() x = mouseclick[1] y = mouseclick[2] print(x, ',', y) mapCoor = False sleep(1) customisationMenu = True if mapCoor2 == True and event.type == pygame.MOUSEBUTTONDOWN: mouseclick = mouseClick(screen) if mouseclick[0]: pygame.display.update() x = mouseclick[1] y = mouseclick[2] print(x, ',', y) mapCoor2 = False sleep(1) loading(screen) easySearch = True if nextButtonPressed: sleep(1) loading(screen) user_prefList = [] user_cuisineList = [] user_budget = 0 if halalButtonPressed: user_prefList.append('Halal') if vegButtonPressed: user_prefList.append('Vegetarian') if nonhalalButtonPressed: user_prefList.append('Non-Halal/Non-Vegetarian') if koreanButtonPressed: user_cuisineList.append('Korean') if malayButtonPressed: user_cuisineList.append('Malay') if japanButtonPressed: user_cuisineList.append('Japanese') if chineseButtonPressed: user_cuisineList.append('Chinese') if indianButtonPressed: user_cuisineList.append('Indian') if westernButtonPressed: user_cuisineList.append('Western') if button3Pressed: user_budget = 3 if button5Pressed: user_budget = 5 if button7Pressed: user_budget = 7 if button9Pressed: user_budget = 9 print(user_cuisineList) print(user_prefList) print(user_budget) finalID = final_list(user_budget, user_cuisineList, user_prefList) print(finalID) nearest_canteen = nearest_can(finalID, x, y) print(nearest_canteen) sleep(1) nextButtonPressed = False complicatedMenu = True
import pygame import os from time import sleep screen = pygame.display.set_mode((900, 700)) screen.fill((255, 255, 255)) pygame.display.set_caption('NTUFOODIERECOMMENDSYSTEM') <mask token> canteen_list = {'Food Court 1': [12, 3.5, ['Korean', 'Japanese', 'Western'], 2100, ['Halal', 'Non-Halal/Non-Vegetarian'], (442, 473)], 'Food Court 2': [10, 3.6, ['Korean', 'Chinese', 'Malay'], 2100, [ 'Halal', 'Vegetarian', 'Non-Halal/Non-Vegetarian'], (477, 409)], 'Food Court 4': [10, 3, ['Chinese', 'Western'], 2100, [ 'Non-Halal/Non-Vegetarian'], (358, 526)], 'Food Court 9': [10, 3.5, [ 'Chinese'], 2100, ['Halal', 'Vegetarian', 'Non-Halal/Non-Vegetarian'], (582, 288)], 'Food Court 11': [10, 2.5, ['Chinese', 'Indian', 'Japanese', 'Western'], 2100, ['Halal', 'Vegetarian', 'Non-Halal/Non-Vegetarian'], (682, 243)], 'Food Court 13': [9, 2, [ 'Western', 'Korean', 'Japanese', 'Chinese'], 2100, ['Halal', 'Vegetarian', 'Non-Halal/Non-Vegetarian'], (445, 176)], 'Food Court 14': [8, 3, ['Western', 'Chinese', 'Korean', 'Malay'], 2100, ['Halal', 'Vegetarian', 'Non-Halal/Non-Vegetarian'], (509, 182)], 'Food Court 16': [10, 3.3, ['Japanese', 'Chinese', 'Korean', 'Indian'], 2100, ['Halal', 'Vegetarian', 'Non-Halal/Non-Vegetarian'], (405, 221)], 'Tamarind Food Court': [10, 3, ['Malay', 'Chinese', 'Korean', 'Western' ], 2100, ['Halal', 'Non-Halal', 'Vegetarian', 'Non-Halal/Non-Vegetarian'], (627, 200)], 'Pioneer Food Court': [20, 2.3, ['Thai', 'Chinese'], 0, ['Vegetarian', 'Non-Halal/Non-Vegetarian'], (497, 561)], 'North Spine Food Court': [10, 2.5, ['Korean', 'Japanese', 'Chinese', 'Western', 'Malay'], 2100, ['Vegetarian', 'Non-Halal/Non-Vegetarian'], (275, 293)], 'North Spine Plaza': [10, 4, ['Western', 'Korean'], 2130, ['Vegetarian', 'Halal', 'Non-Halal/Non-Vegetarian'], (287, 339)], 'South Spine Food Court': [10, 2, ['Chinese', 'Malay', 'Korean', 'Japanese', 'Western'], 2100, [ 'Vegetarian', 'Halal', 'Non-Halal/Non-Vegetarian'], (227, 496)], 'Quad Cafe': [10, 2.4, ['Korean', 'Chinese', 'Indian', 'Malay'], 2100, ['Vegetarian', 'Halal', 'Non-Halal/Non-Vegetarian'], (224, 351)], 'Coffee Bean': [20, 4, ['Western'], 2000, ['Vegetarian', 'Halal', 'Non-Halal/Non-Vegetarian'], (219, 389)], 'North Hill Food Court': [10, 3.8, ['Chinese', 'Malay', 'Indian'], 2100, ['Vegetarian', 'Halal', 'Non-Halal/Non-Vegetarian'], (720, 314)]} <mask token> class button: def __init__(self, colour, x, y, width, height, text=''): self.colour = colour self.x = x self.y = y self.width = width self.height = height self.text = text def draw(self, win, outline=None): if outline: pygame.draw.rect(win, outline, (self.x - 2, self.y - 2, self. width + 4, self.height + 4), 0) pygame.draw.rect(win, self.colour, (self.x, self.y, self.width, self.height), 0) if self.text != '': font = pygame.font.SysFont('calligrapher.ttf', 60) text = font.render(self.text, 1, (0, 0, 0)) win.blit(text, (self.x + (self.width / 2 - text.get_width() / 2 ), self.y + (self.height / 2 - text.get_height() / 2))) def isOver(self, pos): if pos[0] > self.x and pos[0] < self.x + self.width: if pos[1] > self.y and pos[1] < self.y + self.height: return True else: return False <mask token> def text(text, win, x, y): font = pygame.font.SysFont('freesansbold.ttf', 50) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def instructionText(text, win, x, y): font = pygame.font.SysFont('Arial', 20) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def header(text, win, x, y): font = pygame.font.SysFont('TimesNewRoman', 70) phrase = font.render(text, 1, (0, 0, 0)) win.blit(phrase, (x, y)) def mouseClick(screen): x, y = pygame.mouse.get_pos() if (x >= 65 and x <= 727) and (y >= 82 and y <= 618): pygame.draw.circle(screen, (255, 0, 150), (x, y), 15) return True, x, y else: print('Out of bounds!') return False, x, y def skeleExit(win): aryadelight = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) win.blit(aryadelight, (0, 0)) pygame.display.update() xaxis = 100 for i in range(1, 42): image = str(i) + '.png' skele = pygame.image.load(os.path.join(image)) win.blit(skele, (250, 200)) text('Exiting...', win, xaxis + 20, 600) pygame.display.update() sleep(0.09) def loading(win): x = 0 while x < 3: load0 = pygame.image.load(os.path.join('load0.png')) win.blit(load0, (0, 0)) pygame.display.update() sleep(0.3) load1 = pygame.image.load(os.path.join('load1.png')) win.blit(load1, (0, 0)) pygame.display.update() sleep(0.3) load2 = pygame.image.load(os.path.join('load2.png')) win.blit(load2, (0, 0)) pygame.display.update() sleep(0.3) load3 = pygame.image.load(os.path.join('load3.png')) win.blit(load3, (0, 0)) pygame.display.update() sleep(0.3) x += 1 def redrawMap(screen): NTUmap = pygame.image.load(os.path.join('NTUMap.jpg')) screen.blit(NTUmap, (0, 0)) for x in range(50, 900, 50): pygame.draw.rect(screen, (255, 0, 0), (x, 0, 1, 700), 0) for y in range(50, 700, 50): pygame.draw.rect(screen, (255, 0, 0), (0, y, 900, 1), 0) text('Please click on your current location!', screen, 200, 100) def redrawGPSMap(screen, top3, x, y): NTUmap = pygame.image.load(os.path.join('NTUMap.jpg')) screen.blit(NTUmap, (0, 0)) redGPS = pygame.image.load(os.path.join('redgps.png')) screen.blit(redGPS, (x - 16, y - 32)) instructionText('You are currently at this position.', screen, x + 4, y - 10) counter = 1 for i in top3: coor = canteen_list[i][5] if counter == 1: blueGPS = pygame.image.load(os.path.join('bluegps.png')) screen.blit(blueGPS, (coor[0] - 12, coor[1] - 24)) instructionText(i, screen, coor[0] - 24, coor[1]) pass if counter == 2: blackGPS = pygame.image.load(os.path.join('blackgps.png')) screen.blit(blackGPS, (coor[0] - 12, coor[1] - 24)) instructionText(i, screen, coor[0] - 24, coor[1]) pass if counter == 3: yellowGPS = pygame.image.load(os.path.join('yellowgps.png')) screen.blit(yellowGPS, (coor[0] - 12, coor[1] - 24)) instructionText(i, screen, coor[0] - 24, coor[1]) pass counter += 1 restartButton.draw(screen, (0, 0, 0)) def redrawMainWin(screen): aryadelight = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(aryadelight, (0, 0)) mapButton.draw(screen, (0, 0, 0)) instructionText( '(Choose your cuisines, preferences and budget for the meal here!)', screen, 215, 320) predictButton.draw(screen, (0, 0, 0)) instructionText('(Find the nearest canteen!)', screen, 132, 470) exitButton.draw(screen, (0, 0, 0)) ice = pygame.image.load(os.path.join('ice.png')) screen.blit(ice, (500, 670)) font = pygame.font.SysFont('verdana', 20) creator = font.render('Made by HweeHean X Arya', 1, (0, 0, 200)) screen.blit(creator, (535, 670)) def redrawCustWin(screen): bp = pygame.image.load(os.path.join('gradient.jpg')) screen.blit(bp, (0, 0)) instructionText('Left click again to reset!', screen, 300, 20) text('Please select your food preference: ', screen, 100, 50) halalButton.draw(screen, (0, 0, 0)) vegButton.draw(screen, (0, 0, 0)) nonhalalButton.draw(screen, (0, 0, 0)) text('Please select your cuisine type: ', screen, 100, 200) koreanButton.draw(screen, (0, 0, 0)) malayButton.draw(screen, (0, 0, 0)) japanButton.draw(screen, (0, 0, 0)) chineseButton.draw(screen, (0, 0, 0)) indianButton.draw(screen, (0, 0, 0)) westernButton.draw(screen, (0, 0, 0)) text('Please select your maximum budget: ', screen, 100, 430) button3.draw(screen, (0, 0, 0)) button5.draw(screen, (0, 0, 0)) button7.draw(screen, (0, 0, 0)) button9.draw(screen, (0, 0, 0)) nextButton.draw(screen, (0, 0, 0)) def redrawSearchWin(screen, x, y): bp = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(bp, (0, 0)) GordonRamsay = pygame.image.load(os.path.join('GordonRamsay.png')) screen.blit(GordonRamsay, (400, 100)) distList = [] for i in canteen_list: distList.append(i) print(distList) top3 = nearest_can(distList, x, y) print(top3) text('Nearest Canteen:', screen, 110, 400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == 'Food Court 1': canteenPic = pygame.image.load(os.path.join('Canteen1.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 2': canteenPic = pygame.image.load(os.path.join('Canteen2.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 4': canteenPic = pygame.image.load(os.path.join('Canteen4.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 9': canteenPic = pygame.image.load(os.path.join('Canteen9.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 11': canteenPic = pygame.image.load(os.path.join('Canteen11.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 13': canteenPic = pygame.image.load(os.path.join('Canteen13.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 14': canteenPic = pygame.image.load(os.path.join('Canteen14.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 16': canteenPic = pygame.image.load(os.path.join('Canteen16.png')) screen.blit(canteenPic, (150, 200)) if k == 'Tamarind Food Court': canteenPic = pygame.image.load(os.path.join('Tamarind.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Pioneer Food Court': canteenPic = pygame.image.load(os.path.join('Pioneer.png')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Food Court': canteenPic = pygame.image.load(os.path.join('NorthSpine.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Plaza': canteenPic = pygame.image.load(os.path.join( 'NorthSpinePlaza.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'South Spine Food Court': canteenPic = pygame.image.load(os.path.join( 'SouthSpineKoufuFoodCourt.png')) screen.blit(canteenPic, (150, 200)) if k == 'Quad Cafe': canteenPic = pygame.image.load(os.path.join('Quad.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Coffee Bean': canteenPic = pygame.image.load(os.path.join('Coffee.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Hill Food Court': canteenPic = pygame.image.load(os.path.join('NorthHill.jpg')) screen.blit(canteenPic, (150, 200)) text(str(canteenCount), screen, 110, yaxis) text('.', screen, 135, yaxis) text(k, screen, 150, yaxis) canteenCount += 1 yaxis += 70 return top3 def complicatedSearchWin(screen, top3): bp = pygame.image.load(os.path.join('NTUFoodieRecsv1.png')) screen.blit(bp, (0, 0)) GordonRamsay = pygame.image.load(os.path.join('GordonRamsay.png')) screen.blit(GordonRamsay, (400, 100)) text('Nearest Canteen:', screen, 110, 400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == 'Food Court 1': canteenPic = pygame.image.load(os.path.join('Canteen1.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 2': canteenPic = pygame.image.load(os.path.join('Canteen2.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 4': canteenPic = pygame.image.load(os.path.join('Canteen4.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 9': canteenPic = pygame.image.load(os.path.join('Canteen9.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 11': canteenPic = pygame.image.load(os.path.join('Canteen11.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 13': canteenPic = pygame.image.load(os.path.join('Canteen13.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 14': canteenPic = pygame.image.load(os.path.join('Canteen14.png')) screen.blit(canteenPic, (150, 200)) if k == 'Food Court 16': canteenPic = pygame.image.load(os.path.join('Canteen16.png')) screen.blit(canteenPic, (150, 200)) if k == 'Tamarind Food Court': canteenPic = pygame.image.load(os.path.join('Tamarind.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Pioneer Food Court': canteenPic = pygame.image.load(os.path.join('Pioneer.png')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Food Court': canteenPic = pygame.image.load(os.path.join('NorthSpine.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Spine Plaza': canteenPic = pygame.image.load(os.path.join( 'NorthSpinePlaza.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'South Spine Food Court': canteenPic = pygame.image.load(os.path.join( 'SouthSpineKoufuFoodCourt.png')) screen.blit(canteenPic, (150, 200)) if k == 'Quad Cafe': canteenPic = pygame.image.load(os.path.join('Quad.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'Coffee Bean': canteenPic = pygame.image.load(os.path.join('Coffee.jpg')) screen.blit(canteenPic, (150, 200)) if k == 'North Hill Food Court': canteenPic = pygame.image.load(os.path.join('NorthHill.jpg')) screen.blit(canteenPic, (150, 200)) text(str(canteenCount), screen, 110, yaxis) text('.', screen, 135, yaxis) text(k, screen, 150, yaxis) canteenCount += 1 yaxis += 70 <mask token> def final_list(user_budget, user_cuisine, user_preference): new_list = [] for i in canteen_list: if user_budget >= canteen_list[i][1]: new_list.append(i) for c in user_cuisine: for i in canteen_list: if c in canteen_list[i][2]: new_list.append(i) for c in user_preference: for i in canteen_list: if c in canteen_list[i][4]: new_list.append(i) new_list = list(set(new_list)) if len(new_list) == 0: for i in canteen_list: new_list.append(i) return new_list def calc_dis(x1, y1, x2, y2): return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 1 / 2 def nearest_can(new_list, x, y): top3 = [] copy_list = new_list.copy() while len(top3) != 3: j = copy_list[0] coor = canteen_list[j][5] Min = calc_dis(x, y, coor[0], coor[1]) food_court = '' for k in copy_list: coor = canteen_list[k][5] dist = calc_dis(x, y, coor[0], coor[1]) if Min >= dist: Min = dist food_court = k index = copy_list.index(food_court) copy_list.pop(index) top3.append(food_court) print(top3) return top3 <mask token> mapButton = button((255, 255, 255), 200, 250, 500, 100, 'Canteen Customisation' ) predictButton = button((255, 255, 255), 100, 400, 300, 100, 'Prediction') exitButton = button((255, 255, 255), 500, 400, 300, 100, 'Exit') halalButton = button((255, 255, 255), 50, 120, 250, 50, 'Halal') vegButton = button((255, 255, 255), 320, 120, 250, 50, 'Vegetarian') nonhalalButton = button((255, 255, 255), 590, 120, 250, 50, 'Non-Halal') koreanButton = button((255, 255, 255), 50, 270, 250, 50, 'Korean') malayButton = button((255, 255, 255), 320, 270, 250, 50, 'Malay') japanButton = button((255, 255, 255), 590, 270, 250, 50, 'Japanese') chineseButton = button((255, 255, 255), 50, 340, 250, 50, 'Chinese') indianButton = button((255, 255, 255), 320, 340, 250, 50, 'Indian') westernButton = button((255, 255, 255), 590, 340, 250, 50, 'Western') button3 = button((255, 255, 255), 235, 490, 70, 50, '$3') button5 = button((255, 255, 255), 355, 490, 70, 50, '$5') button7 = button((255, 255, 255), 475, 490, 70, 50, '$7') button9 = button((255, 255, 255), 595, 490, 70, 50, '$10') nextButton = button((255, 255, 255), 730, 580, 120, 70, 'Next') gpsButton = button((255, 255, 255), 700, 600, 170, 50, 'to Map') restartButton = button((255, 255, 255), 700, 600, 190, 50, 'Restart?') <mask token> halalButtonPressed = False vegButtonPressed = False nonhalalButtonPressed = False koreanButtonPressed = False malayButtonPressed = False japanButtonPressed = False chineseButtonPressed = False indianButtonPressed = False westernButtonPressed = False button3Pressed = False button5Pressed = False button7Pressed = False button9Pressed = False nextButtonPressed = False gpsButtonPressed = False checkButton = True mapCoor = False customisationMenu = False mapCoor2 = False easySearch = False complicatedMenu = False oneTime = True <mask token> pygame.init() run = True clock = pygame.time.Clock() while run: if checkButton: redrawMainWin(screen) if customisationMenu: redrawCustWin(screen) if easySearch: if oneTime: nearest_canteen = redrawSearchWin(screen, x, y) sleep(2) oneTime = False gpsButton.draw(screen, (0, 0, 0)) if complicatedMenu: if oneTime: complicatedSearchWin(screen, nearest_canteen) sleep(2) oneTime = False gpsButton.draw(screen, (0, 0, 0)) if gpsButtonPressed == True: redrawGPSMap(screen, nearest_canteen, x, y) pygame.display.update() clock.tick(30) for event in pygame.event.get(): pos = pygame.mouse.get_pos() if event.type == pygame.QUIT: run = False pygame.quit() if gpsButtonPressed: if event.type == pygame.MOUSEBUTTONDOWN: if restartButton.isOver(pos): restartButton.colour = 50, 50, 50 restartButton.draw(screen, (0, 0, 0)) pygame.display.update() print('clicked the restart button') halalButtonPressed = False vegButtonPressed = False nonhalalButtonPressed = False koreanButtonPressed = False malayButtonPressed = False japanButtonPressed = False chineseButtonPressed = False indianButtonPressed = False westernButtonPressed = False button3Pressed = False button5Pressed = False button7Pressed = False button9Pressed = False nextButtonPressed = False gpsButtonPressed = False checkButton = True mapCoor = False customisationMenu = False mapCoor2 = False easySearch = False complicatedMenu = False oneTime = True if event.type == pygame.MOUSEMOTION: if restartButton.isOver(pos): restartButton.colour = 0, 255, 0 continue else: restartButton.colour = 255, 255, 255 continue if easySearch == True or complicatedMenu == True: if event.type == pygame.MOUSEBUTTONDOWN: if gpsButton.isOver(pos): gpsButton.colour = 50, 50, 50 gpsButton.draw(screen, (0, 0, 0)) pygame.display.update() print('clicked gps button') gpsButtonPressed = True easySearch = False complicatedMenu = False continue if event.type == pygame.MOUSEMOTION: if gpsButton.isOver(pos): gpsButton.colour = 0, 255, 0 continue else: gpsButton.colour = 255, 255, 255 continue if checkButton: if event.type == pygame.MOUSEBUTTONDOWN: if mapButton.isOver(pos): mapButton.colour = 0, 255, 0 redrawMainWin(screen) pygame.display.update() print('clicked map button') sleep(0.5) redrawMap(screen) checkButton = False mapCoor = True continue if predictButton.isOver(pos): predictButton.colour = 0, 255, 0 redrawMainWin(screen) pygame.display.update() print('clicked predict button') sleep(0.5) redrawMap(screen) checkButton = False mapCoor2 = True continue if exitButton.isOver(pos): exitButton.colour = 0, 255, 0 print('Exiting...') skeleExit(screen) pygame.quit() run = False exit() if event.type == pygame.MOUSEMOTION: if mapButton.isOver(pos): mapButton.colour = 255, 0, 0 else: mapButton.colour = 255, 255, 255 if predictButton.isOver(pos): predictButton.colour = 255, 0, 0 else: predictButton.colour = 255, 255, 255 if exitButton.isOver(pos): exitButton.colour = 255, 0, 0 else: exitButton.colour = 255, 255, 255 if customisationMenu: if event.type == pygame.MOUSEMOTION: if nextButton.isOver(pos): nextButton.colour = 0, 0, 255 else: nextButton.colour = 255, 255, 255 continue if event.type == pygame.MOUSEBUTTONDOWN: if nextButton.isOver(pos): nextButton.colour = 255, 255, 0 nextButtonPressed = True customisationMenu = False continue if halalButton.isOver(pos): if halalButtonPressed == False: if nonhalalButtonPressed: nonhalalButton.colour = 255, 255, 255 nonhalalButtonPressed = False halalButton.colour = 0, 255, 0 print('clicked Halal button') halalButtonPressed = True continue else: halalButton.colour = 255, 255, 255 halalButtonPressed = False continue if vegButton.isOver(pos): if vegButtonPressed == False: if nonhalalButtonPressed: nonhalalButton.colour = 255, 255, 255 nonhalalButtonPressed = False vegButton.colour = 0, 255, 0 print('clicked Vegetarian button') vegButtonPressed = True continue else: vegButton.colour = 255, 255, 255 vegButtonPressed = False continue if nonhalalButton.isOver(pos): if nonhalalButtonPressed == False: if halalButtonPressed: halalButton.colour = 255, 255, 255 halalButtonPressed = False if vegButtonPressed: vegButton.colour = 255, 255, 255 vegButtonPressed = False nonhalalButton.colour = 0, 255, 0 print('clicked non-halal button') nonhalalButtonPressed = True continue else: nonhalalButton.colour = 255, 255, 255 nonhalalButtonPressed = False if koreanButton.isOver(pos): if koreanButtonPressed == False: koreanButton.colour = 0, 255, 0 print('clicked korean button') koreanButtonPressed = True continue else: koreanButton.colour = 255, 255, 255 koreanButtonPressed = False if malayButton.isOver(pos): if malayButtonPressed == False: malayButton.colour = 0, 255, 0 print('clicked Malay button') malayButtonPressed = True continue else: malayButton.colour = 255, 255, 255 malayButtonPressed = False if japanButton.isOver(pos): if japanButtonPressed == False: japanButton.colour = 0, 255, 0 print('clicked japan button') japanButtonPressed = True continue else: japanButton.colour = 255, 255, 255 japanButtonPressed = False if chineseButton.isOver(pos): if chineseButtonPressed == False: chineseButton.colour = 0, 255, 0 print('clicked chinese button') chineseButtonPressed = True continue else: chineseButton.colour = 255, 255, 255 chineseButtonPressed = False if indianButton.isOver(pos): if indianButtonPressed == False: indianButton.colour = 0, 255, 0 print('clicked indian button') indianButtonPressed = True continue else: indianButton.colour = 255, 255, 255 indianButtonPressed = False if westernButton.isOver(pos): if westernButtonPressed == False: westernButton.colour = 0, 255, 0 print('clicked western button') westernButtonPressed = True continue else: westernButton.colour = 255, 255, 255 westernButtonPressed = False if button3.isOver(pos): if button3Pressed == False: if button5Pressed == True: button5.colour = 255, 255, 255 button5Pressed = False if button7Pressed == True: button7.colour = 255, 255, 255 button7Pressed = False if button9Pressed == True: button9.colour = 255, 255, 255 button9Pressed = False button3.colour = 0, 255, 0 print('clicked $3') button3Pressed = True continue else: button3.colour = 255, 255, 255 button3Pressed = False if button5.isOver(pos): if button5Pressed == False: if button3Pressed == True: button3.colour = 255, 255, 255 button3Pressed = False if button7Pressed == True: button7.colour = 255, 255, 255 button7Pressed = False if button9Pressed == True: button9.colour = 255, 255, 255 button9Pressed = False button5.colour = 0, 255, 0 print('Clicked $5') button5Pressed = True continue else: button5.colour = 255, 255, 255 button5Pressed = False if button7.isOver(pos): if button7Pressed == False: if button3Pressed == True: button3.colour = 255, 255, 255 button3Pressed = False if button5Pressed == True: button5.colour = 255, 255, 255 button5Pressed = False if button9Pressed == True: button9.colour = 255, 255, 255 button9Pressed = False button7.colour = 0, 255, 0 print('Clicked $7') button7Pressed = True continue else: button7.colour = 255, 255, 255 button7Pressed = False if button9.isOver(pos): if button9Pressed == False: if button3Pressed == True: button3.colour = 255, 255, 255 button3Pressed = False if button5Pressed == True: button5.colour = 255, 255, 255 button5Pressed = False if button7Pressed == True: button7.colour = 255, 255, 255 button7Pressed = False button9.colour = 0, 255, 0 print('Clicked $10') button9Pressed = True continue else: button9.colour = 255, 255, 255 button9Pressed = False if mapCoor == True and event.type == pygame.MOUSEBUTTONDOWN: mouseclick = mouseClick(screen) if mouseclick[0]: pygame.display.update() x = mouseclick[1] y = mouseclick[2] print(x, ',', y) mapCoor = False sleep(1) customisationMenu = True if mapCoor2 == True and event.type == pygame.MOUSEBUTTONDOWN: mouseclick = mouseClick(screen) if mouseclick[0]: pygame.display.update() x = mouseclick[1] y = mouseclick[2] print(x, ',', y) mapCoor2 = False sleep(1) loading(screen) easySearch = True if nextButtonPressed: sleep(1) loading(screen) user_prefList = [] user_cuisineList = [] user_budget = 0 if halalButtonPressed: user_prefList.append('Halal') if vegButtonPressed: user_prefList.append('Vegetarian') if nonhalalButtonPressed: user_prefList.append('Non-Halal/Non-Vegetarian') if koreanButtonPressed: user_cuisineList.append('Korean') if malayButtonPressed: user_cuisineList.append('Malay') if japanButtonPressed: user_cuisineList.append('Japanese') if chineseButtonPressed: user_cuisineList.append('Chinese') if indianButtonPressed: user_cuisineList.append('Indian') if westernButtonPressed: user_cuisineList.append('Western') if button3Pressed: user_budget = 3 if button5Pressed: user_budget = 5 if button7Pressed: user_budget = 7 if button9Pressed: user_budget = 9 print(user_cuisineList) print(user_prefList) print(user_budget) finalID = final_list(user_budget, user_cuisineList, user_prefList) print(finalID) nearest_canteen = nearest_can(finalID, x, y) print(nearest_canteen) sleep(1) nextButtonPressed = False complicatedMenu = True
import pygame import os from time import sleep screen = pygame.display.set_mode((900,700)) screen.fill((255,255,255)) pygame.display.set_caption("NTUFOODIERECOMMENDSYSTEM") ''' ########################### ──╔╗────╔╗ ──║║───╔╝╚╗ ╔═╝╠╦══╬╗╔╬╦══╦═╗╔══╦═╦╗─╔╗ ║╔╗╠╣╔═╝║║╠╣╔╗║╔╗╣╔╗║╔╣║─║║ ║╚╝║║╚═╗║╚╣║╚╝║║║║╔╗║║║╚═╝║ ╚══╩╩══╝╚═╩╩══╩╝╚╩╝╚╩╝╚═╗╔╝ ──────────────────────╔═╝║ ──────────────────────╚══╝ ########################### ● Database is stored on site. ● Updating is relatively simple. ● Programme runs on the basis of pygame, it's hard to update it without text input. ● However, it can easily be done so on shell/console accordingly. ''' # Food court lists is sorted by [Highest Cost, Lowest Cost, Cuisines Available, Closing Time, Food Preferences Available, Coordinates on NTU Map] ; THE items have keys and corresponding values expressed as a pair, key: value # where the keys would be that of the canteen names and this would be associated with that of the corresponding properties tht is alloted to it. canteen_list = { "Food Court 1": [12, 3.5, ["Korean", "Japanese", "Western"], 2100, ["Halal", "Non-Halal/Non-Vegetarian"], (442, 473)], "Food Court 2": [10, 3.6, ["Korean", "Chinese", "Malay", ], 2100, ["Halal", "Vegetarian", "Non-Halal/Non-Vegetarian"], (477, 409)], "Food Court 4": [10, 3, ["Chinese", "Western"], 2100, ["Non-Halal/Non-Vegetarian"], (358,526)], "Food Court 9": [10, 3.5, ["Chinese"], 2100, ["Halal", "Vegetarian", "Non-Halal/Non-Vegetarian"], (582, 288)], "Food Court 11": [10, 2.5, ["Chinese", "Indian", "Japanese", "Western"], 2100, ["Halal", "Vegetarian", "Non-Halal/Non-Vegetarian"], (682, 243)], "Food Court 13": [9, 2, ["Western", "Korean", "Japanese", "Chinese"], 2100, ["Halal", "Vegetarian", "Non-Halal/Non-Vegetarian"], (445, 176)], "Food Court 14": [8, 3, ["Western", "Chinese", "Korean", "Malay"], 2100, ["Halal", "Vegetarian", "Non-Halal/Non-Vegetarian"], (509, 182)], "Food Court 16": [10, 3.3, ["Japanese", "Chinese", "Korean", "Indian"], 2100, ["Halal", "Vegetarian", "Non-Halal/Non-Vegetarian"], (405, 221)], "Tamarind Food Court": [10, 3, ["Malay", "Chinese", "Korean", "Western"], 2100, ["Halal", "Non-Halal", "Vegetarian","Non-Halal/Non-Vegetarian"], (627, 200)], "Pioneer Food Court": [20, 2.3, ["Thai", "Chinese"], 0000, ["Vegetarian", "Non-Halal/Non-Vegetarian"], (497, 561)], "North Spine Food Court": [10, 2.5, ["Korean", "Japanese", "Chinese", "Western", "Malay"], 2100, ["Vegetarian", "Non-Halal/Non-Vegetarian"], (275, 293)], "North Spine Plaza": [10, 4, ["Western", "Korean"], 2130, ["Vegetarian", "Halal", "Non-Halal/Non-Vegetarian"], (287, 339)], "South Spine Food Court": [10, 2, ["Chinese", "Malay", "Korean", "Japanese", "Western"], 2100, ["Vegetarian", "Halal", "Non-Halal/Non-Vegetarian"], (227, 496)], "Quad Cafe": [10, 2.4, ["Korean", "Chinese", "Indian", "Malay"], 2100, ["Vegetarian", "Halal", "Non-Halal/Non-Vegetarian"], (224, 351)], "Coffee Bean": [20, 4, ["Western"], 2000, ["Vegetarian", "Halal", "Non-Halal/Non-Vegetarian"], (219, 389)], "North Hill Food Court": [10, 3.8, ["Chinese", "Malay", "Indian"], 2100, ["Vegetarian", "Halal", "Non-Halal/Non-Vegetarian"], (720,314)] } ''' ########################################### ───╔╗───────────╔═╗─────╔╗─────╔╗─╔╗ ───║║───────────║╔╝─────║║────╔╝╚╦╝╚╗ ╔══╣║╔══╦══╦══╗╔╝╚╦══╦═╗║╚═╦╗╔╬╗╔╩╗╔╬══╦═╗ ║╔═╣║║╔╗║══╣══╣╚╗╔╣╔╗║╔╝║╔╗║║║║║║─║║║╔╗║╔╗╗ ║╚═╣╚╣╔╗╠══╠══║─║║║╚╝║║─║╚╝║╚╝║║╚╗║╚╣╚╝║║║║ ╚══╩═╩╝╚╩══╩══╝─╚╝╚══╩╝─╚══╩══╝╚═╝╚═╩══╩╝╚╝ ########################################### ● We had help from online tutorials to workout the UI buttons functionality. ● A bit of corresponding tweaks incorporating into project from the tutorial that I learnt from ● ref: https://www.youtube.com/watch?v=4_9twnEduFA ''' class button(): def __init__(self, colour, x, y, width, height, text=''): self.colour = colour self.x = x self.y = y self.width = width self.height = height self.text = text def draw(self,win,outline = None): if outline: #draw a bigger rectangle behind to create a border pygame.draw.rect(win, outline, (self.x-2, self.y-2, self.width+4, self.height+4),0) #draws the button rectangle pygame.draw.rect(win, self.colour, (self.x, self.y, self.width, self.height),0) if self.text != '': font = pygame.font.SysFont('calligrapher.ttf', 60) text = font.render(self.text, 1, (0,0,0)) win.blit(text, (self.x + (self.width/2 - text.get_width()/2), self.y + (self.height/2 - text.get_height()/2))) def isOver(self, pos): #pos is the mouse position (x,y) coordinates if pos[0] > self.x and pos[0] < self.x + self.width: if pos[1] > self.y and pos[1] < self.y + self.height: return True else: return False ''' ################################## ─╔═╗─────────╔╗ ─║╔╝────────╔╝╚╗ ╔╝╚╦╗╔╦═╗╔══╬╗╔╬╦══╦═╗╔══╗ ╚╗╔╣║║║╔╗╣╔═╝║║╠╣╔╗║╔╗╣══╣ ─║║║╚╝║║║║╚═╗║╚╣║╚╝║║║╠══║ ─╚╝╚══╩╝╚╩══╝╚═╩╩══╩╝╚╩══╝ ################################## ╔═╗────────╔╗ ║═╬═╦╦╗╔═╦╦╬╣ ║╔╣╬║╔╝║╬║║║║ ╚╝╚═╩╝─╠╗╠═╩╝ ───────╚═╝ ################# ● Most of the functions here help to draw out the different states of the screen, that the screen could be in ● The redraw functions help to update the display based on it's respective transitory states ''' #3 functions here controls the Surface Text appearancese def text(text,win,x,y): font = pygame.font.SysFont('freesansbold.ttf', 50) phrase = font.render(text, 1, (0,0,0)) win.blit(phrase, (x,y)) def instructionText(text,win,x,y): font = pygame.font.SysFont('Arial', 20) phrase = font.render(text, 1, (0,0,0)) win.blit(phrase, (x,y)) def header(text,win,x,y): font = pygame.font.SysFont('TimesNewRoman', 70) phrase = font.render(text, 1, (0,0,0)) win.blit(phrase, (x,y)) def mouseClick(screen): #checks for mouseclick event, and fetches corresp. positions x,y = pygame.mouse.get_pos() if (x >= 65 and x <=727) and (y >=82 and y <= 618): #print(event.button) pygame.draw.circle(screen, (255,0,150), (x,y), 15) return True, x, y else: print("Out of bounds!") return False, x, y def skeleExit(win): #exit event aryadelight = pygame.image.load(os.path.join("NTUFoodieRecsv1.png")) win.blit(aryadelight,(0,0)) pygame.display.update() xaxis = 100 for i in range(1,42): image = str(i) + ".png" skele = pygame.image.load(os.path.join(image)) win.blit(skele, (250,200)) text("Exiting...", win, (xaxis+20), 600) pygame.display.update() sleep(0.09) def loading(win): #loading screen, slep interval defined as 0.3 seconds to load subs. frame x = 0 while x < 3: load0 = pygame.image.load(os.path.join("load0.png")) win.blit(load0, (0,0)) pygame.display.update() sleep(0.3) load1 = pygame.image.load(os.path.join("load1.png")) win.blit(load1, (0,0)) pygame.display.update() sleep(0.3) load2 = pygame.image.load(os.path.join("load2.png")) win.blit(load2, (0,0)) pygame.display.update() sleep(0.3) load3 = pygame.image.load(os.path.join("load3.png")) win.blit(load3, (0,0)) pygame.display.update() sleep(0.3) x += 1 # ---------------------------------------------------------------------------# def redrawMap(screen): #draws the embedded NTU map image provided NTUmap = pygame.image.load(os.path.join("NTUMap.jpg")) screen.blit(NTUmap, (0,0)) for x in range(50,900,50): #y axial grids pygame.draw.rect(screen, (255,0,0), (x, 0, 1, 700), 0) for y in range(50,700,50): #x axial grids pygame.draw.rect(screen, (255,0,0), (0, y, 900, 1), 0) text('Please click on your current location!',screen,200,100) def redrawGPSMap(screen, top3, x, y): #redraw NTU map, but this time with corresponding location coordinates NTUmap = pygame.image.load(os.path.join("NTUMap.jpg")) screen.blit(NTUmap, (0,0)) redGPS = pygame.image.load(os.path.join("redgps.png")) screen.blit(redGPS, (x-16,y-32)) instructionText("You are currently at this position.", screen, x+4, y-10) counter = 1 for i in top3: coor = canteen_list[i][5] if counter == 1: blueGPS = pygame.image.load(os.path.join("bluegps.png")) screen.blit(blueGPS, (coor[0]-12,coor[1]-24)) instructionText(i, screen, coor[0]-24, coor[1]) pass if counter == 2: blackGPS = pygame.image.load(os.path.join("blackgps.png")) screen.blit(blackGPS, (coor[0]-12,coor[1]-24)) instructionText(i, screen, coor[0]-24, coor[1]) pass if counter == 3: yellowGPS = pygame.image.load(os.path.join("yellowgps.png")) screen.blit(yellowGPS, (coor[0]-12,coor[1]-24)) instructionText(i, screen, coor[0]-24, coor[1]) pass counter += 1 restartButton.draw(screen, (0,0,0)) def redrawMainWin(screen): #functionality that controls what is displayed on the main window aryadelight = pygame.image.load(os.path.join("NTUFoodieRecsv1.png")) screen.blit(aryadelight,(0,0)) mapButton.draw(screen, (0,0,0)) instructionText("(Choose your cuisines, preferences and budget for the meal here!)",screen,215,320) predictButton.draw(screen, (0,0,0)) instructionText("(Find the nearest canteen!)",screen,132,470) exitButton.draw(screen, (0,0,0)) ice = pygame.image.load(os.path.join("ice.png")) screen.blit(ice, (500,670)) font = pygame.font.SysFont('verdana', 20) creator = font.render("Made by HweeHean X Arya", 1, (0,0,200)) screen.blit(creator, (535,670)) def redrawCustWin(screen): #controls what is displayed on the customisation window bp = pygame.image.load(os.path.join("gradient.jpg")) screen.blit(bp,(0,0)) instructionText('Left click again to reset!',screen,300,20) text('Please select your food preference: ', screen, 100, 50) halalButton.draw(screen, (0,0,0)) vegButton.draw(screen, (0,0,0)) nonhalalButton.draw(screen, (0,0,0)) text('Please select your cuisine type: ', screen, 100, 200) koreanButton.draw(screen, (0,0,0)) malayButton.draw(screen, (0,0,0)) japanButton.draw(screen, (0,0,0)) chineseButton.draw(screen, (0,0,0)) indianButton.draw(screen, (0,0,0)) westernButton.draw(screen, (0,0,0)) text('Please select your maximum budget: ', screen, 100, 430) button3.draw(screen, (0,0,0)) button5.draw(screen, (0,0,0)) button7.draw(screen, (0,0,0)) button9.draw(screen, (0,0,0)) nextButton.draw(screen, (0,0,0)) def redrawSearchWin(screen,x,y): #gives the top 3 most relevant results for the prediction tab bp = pygame.image.load(os.path.join("NTUFoodieRecsv1.png")) screen.blit(bp,(0,0)) GordonRamsay = pygame.image.load(os.path.join("GordonRamsay.png")) screen.blit(GordonRamsay, (400,100)) distList = [] for i in canteen_list: distList.append(i) print(distList) top3 = nearest_can(distList, x, y) print(top3) text("Nearest Canteen:",screen,110,400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == "Food Court 1": canteenPic = pygame.image.load(os.path.join("Canteen1.jpg")) screen.blit(canteenPic, (150,200)) if k == "Food Court 2": canteenPic = pygame.image.load(os.path.join("Canteen2.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 4": canteenPic = pygame.image.load(os.path.join("Canteen4.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 9": canteenPic = pygame.image.load(os.path.join("Canteen9.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 11": canteenPic = pygame.image.load(os.path.join("Canteen11.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 13": canteenPic = pygame.image.load(os.path.join("Canteen13.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 14": canteenPic = pygame.image.load(os.path.join("Canteen14.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 16": canteenPic = pygame.image.load(os.path.join("Canteen16.png")) screen.blit(canteenPic, (150,200)) if k == "Tamarind Food Court": canteenPic = pygame.image.load(os.path.join("Tamarind.jpg")) screen.blit(canteenPic, (150,200)) if k == "Pioneer Food Court": canteenPic = pygame.image.load(os.path.join("Pioneer.png")) screen.blit(canteenPic, (150,200)) if k == "North Spine Food Court": canteenPic = pygame.image.load(os.path.join("NorthSpine.jpg")) screen.blit(canteenPic, (150,200)) if k == "North Spine Plaza": canteenPic = pygame.image.load(os.path.join("NorthSpinePlaza.jpg")) screen.blit(canteenPic, (150,200)) if k == "South Spine Food Court": canteenPic = pygame.image.load(os.path.join("SouthSpineKoufuFoodCourt.png")) screen.blit(canteenPic, (150,200)) if k == "Quad Cafe": canteenPic = pygame.image.load(os.path.join("Quad.jpg")) screen.blit(canteenPic, (150,200)) if k == "Coffee Bean": canteenPic = pygame.image.load(os.path.join("Coffee.jpg")) screen.blit(canteenPic, (150,200)) if k == "North Hill Food Court": canteenPic = pygame.image.load(os.path.join("NorthHill.jpg")) screen.blit(canteenPic, (150,200)) text(str(canteenCount), screen, 110, yaxis) text(".", screen, 135, yaxis) text(k,screen,150,yaxis) canteenCount += 1 yaxis += 70 return top3 def complicatedSearchWin(screen,top3): #displays the top3 results for the end user after clicking customisation bp = pygame.image.load(os.path.join("NTUFoodieRecsv1.png")) screen.blit(bp,(0,0)) GordonRamsay = pygame.image.load(os.path.join("GordonRamsay.png")) screen.blit(GordonRamsay, (400,100)) text("Nearest Canteen:",screen,110,400) yaxis = 490 canteenCount = 1 for k in top3: if canteenCount == 1: if k == "Food Court 1": canteenPic = pygame.image.load(os.path.join("Canteen1.jpg")) screen.blit(canteenPic, (150,200)) if k == "Food Court 2": canteenPic = pygame.image.load(os.path.join("Canteen2.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 4": canteenPic = pygame.image.load(os.path.join("Canteen4.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 9": canteenPic = pygame.image.load(os.path.join("Canteen9.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 11": canteenPic = pygame.image.load(os.path.join("Canteen11.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 13": canteenPic = pygame.image.load(os.path.join("Canteen13.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 14": canteenPic = pygame.image.load(os.path.join("Canteen14.png")) screen.blit(canteenPic, (150,200)) if k == "Food Court 16": canteenPic = pygame.image.load(os.path.join("Canteen16.png")) screen.blit(canteenPic, (150,200)) if k == "Tamarind Food Court": canteenPic = pygame.image.load(os.path.join("Tamarind.jpg")) screen.blit(canteenPic, (150,200)) if k == "Pioneer Food Court": canteenPic = pygame.image.load(os.path.join("Pioneer.png")) screen.blit(canteenPic, (150,200)) if k == "North Spine Food Court": canteenPic = pygame.image.load(os.path.join("NorthSpine.jpg")) screen.blit(canteenPic, (150,200)) if k == "North Spine Plaza": canteenPic = pygame.image.load(os.path.join("NorthSpinePlaza.jpg")) screen.blit(canteenPic, (150,200)) if k == "South Spine Food Court": canteenPic = pygame.image.load(os.path.join("SouthSpineKoufuFoodCourt.png")) screen.blit(canteenPic, (150,200)) if k == "Quad Cafe": canteenPic = pygame.image.load(os.path.join("Quad.jpg")) screen.blit(canteenPic, (150,200)) if k == "Coffee Bean": canteenPic = pygame.image.load(os.path.join("Coffee.jpg")) screen.blit(canteenPic, (150,200)) if k == "North Hill Food Court": canteenPic = pygame.image.load(os.path.join("NorthHill.jpg")) screen.blit(canteenPic, (150,200)) text(str(canteenCount), screen, 110, yaxis) text(".", screen, 135, yaxis) text(k,screen,150,yaxis) canteenCount += 1 yaxis += 70 ''' ╔═╗────╔═╗───╔╗╔╗ ║═╬═╦╦╗║═╬═╦╦╣╚╬╬═╦╦═╗ ║╔╣╬║╔╝╠═║╬║╔╣╔╣║║║║╬║ ╚╝╚═╩╝─╚═╩═╩╝╚═╩╩╩═╬╗║ ───────────────────╚═╝ ########################### ● Functions below control how we do the sorting for the distance and the different cuisines ''' #function provided by ARYA #function to compile a list of all the relevant food courts def final_list(user_budget, user_cuisine, user_preference): new_list = [] #Creating a list of all food courts that fit in the user's budget for i in canteen_list: if user_budget >= canteen_list[i][1]: new_list.append(i) #Creating a list of all food courts according to the imposed constraints on cuisine for c in user_cuisine: for i in canteen_list: if c in canteen_list[i][2]: new_list.append(i) #Adding to the list, all the food courts according to the food preferences specified for c in user_preference: for i in canteen_list: if c in canteen_list[i][4]: new_list.append(i) #eliminating all the repeated options new_list = list(set(new_list)) #if new_list is empty due to no selection made if len(new_list) == 0: for i in canteen_list: new_list.append(i) return(new_list) #function to calulate the horizontal distance from you to proposed option def calc_dis(x1, y1, x2, y2): return ((x1-x2)**2 + (y1-y2)**2)**1/2 #function to find out the nearest suitable food outlet/food court def nearest_can(new_list, x, y): top3 = [] copy_list = new_list.copy() while len(top3) != 3: j = copy_list[0] coor = canteen_list[j][5] Min = calc_dis(x, y, coor[0], coor[1]) food_court = '' for k in copy_list: #coordinates of the food court coor = canteen_list[k][5] dist = calc_dis(x, y, coor[0], coor[1]) if Min >= dist: Min = dist food_court = k index = copy_list.index(food_court) copy_list.pop(index) top3.append(food_court) print(top3) return top3 ''' ######################### ╔╗─────╔╗─╔╗ ║║────╔╝╚╦╝╚╗ ║╚═╦╗╔╬╗╔╩╗╔╬══╦═╗╔══╗ ║╔╗║║║║║║─║║║╔╗║╔╗╣══╣ ║╚╝║╚╝║║╚╗║╚╣╚╝║║║╠══║ ╚══╩══╝╚═╝╚═╩══╩╝╚╩══╝ ######################### ● This is where the buttons are defined. Using the class... ● They are relatively self-explanatory ''' #buttons for the main loading page: mapButton = button((255,255,255), 200, 250, 500, 100, 'Canteen Customisation') predictButton = button((255,255,255), 100, 400, 300, 100, 'Prediction') exitButton = button((255,255,255), 500, 400, 300, 100, 'Exit') #buttons for the custimisation screen: halalButton = button((255,255,255), 50, 120, 250, 50, 'Halal') vegButton = button((255,255,255), 320, 120, 250, 50, 'Vegetarian') nonhalalButton = button((255,255,255), 590, 120, 250, 50, 'Non-Halal') koreanButton = button((255,255,255), 50, 270, 250, 50, 'Korean') malayButton = button((255,255,255), 320, 270, 250, 50, 'Malay') japanButton = button((255,255,255), 590, 270, 250, 50, 'Japanese') chineseButton = button((255,255,255), 50, 340, 250, 50, 'Chinese') indianButton = button((255,255,255), 320, 340, 250, 50, 'Indian') westernButton = button((255,255,255), 590, 340, 250, 50, 'Western') button3 = button((255,255,255), 235, 490, 70, 50, '$3') button5 = button((255,255,255), 355, 490, 70, 50, '$5') button7 = button((255,255,255), 475, 490, 70, 50, '$7') button9 = button((255,255,255), 595, 490, 70, 50, '$10') nextButton = button((255,255,255), 730, 580, 120, 70, 'Next') #buttons to showcase GPS: gpsButton = button((255,255,255), 700, 600, 170, 50, 'to Map') restartButton = button((255,255,255), 700, 600, 190, 50, 'Restart?') ''' ############################# ────╔╗────╔╗ ───╔╝╚╗──╔╝╚╗ ╔══╬╗╔╬══╬╗╔╬══╦══╗ ║══╣║║║╔╗║║║║║═╣══╣ ╠══║║╚╣╔╗║║╚╣║═╬══║ ╚══╝╚═╩╝╚╝╚═╩══╩══╝ ############################# ● Since I'm only using one while loop and all the functions are in here, it is important to note that none of the "if" statements interfere with each other ● Acts like a flip-flop which stores the data of the different STATES ''' #originalstate of customisation buttons halalButtonPressed = False vegButtonPressed = False nonhalalButtonPressed = False koreanButtonPressed = False malayButtonPressed = False japanButtonPressed = False chineseButtonPressed = False indianButtonPressed = False westernButtonPressed = False button3Pressed = False button5Pressed = False button7Pressed = False button9Pressed = False nextButtonPressed = False gpsButtonPressed = False #original state of events checkButton = True mapCoor = False customisationMenu = False mapCoor2 = False easySearch = False complicatedMenu = False oneTime = True ''' #################################### ╔═╗╔═╗───────╔═══╗ ║║╚╝║║───────║╔═╗║ ║╔╗╔╗╠══╦╦═╗─║╚═╝╠═╦══╦══╦═╦══╦╗╔╗ ║║║║║║╔╗╠╣╔╗╗║╔══╣╔╣╔╗║╔╗║╔╣╔╗║╚╝║ ║║║║║║╔╗║║║║║║║──║║║╚╝║╚╝║║║╔╗║║║║ ╚╝╚╝╚╩╝╚╩╩╝╚╝╚╝──╚╝╚══╩═╗╠╝╚╝╚╩╩╩╝ ──────────────────────╔═╝║ ──────────────────────╚══╝ #################################### ● It involves a lot of existing predefined states, turning on and off to display multiple things without them interfering with each other's functionality ● I.e. Clicking customisation button will disable itself, hence if the mouse is clicked over at the same area, it will not be activated again. ● This is every important to have a smooth flow. ● Also left some debugging messages within the console to help understand what is going on behind the scenes ''' pygame.init() run = True clock = pygame.time.Clock() #start the pygame programme while run: #if true, redraws the main window if checkButton: redrawMainWin(screen) #if true, redraws the customisation window if customisationMenu: redrawCustWin(screen) if easySearch: if oneTime: nearest_canteen = redrawSearchWin(screen, x, y) sleep(2) oneTime = False gpsButton.draw(screen, (0,0,0)) #if true, redraws the complicated cusomisation results if complicatedMenu: if oneTime: complicatedSearchWin(screen, nearest_canteen) sleep(2) oneTime = False gpsButton.draw(screen, (0,0,0)) #redraws the GPS map, with point locaters indicated if gpsButtonPressed == True: redrawGPSMap(screen, nearest_canteen, x, y) pygame.display.update() clock.tick(30) #checks event for event in pygame.event.get(): #Fetches the mouse position pos = pygame.mouse.get_pos() #Quits the pygame programme if event.type == pygame.QUIT: run = False pygame.quit() if gpsButtonPressed: if event.type == pygame.MOUSEBUTTONDOWN: if restartButton.isOver(pos): restartButton.colour = (50,50,50) restartButton.draw(screen, (0,0,0)) pygame.display.update() print('clicked the restart button') #original state of customisation buttons halalButtonPressed = False vegButtonPressed = False nonhalalButtonPressed = False koreanButtonPressed = False malayButtonPressed = False japanButtonPressed = False chineseButtonPressed = False indianButtonPressed = False westernButtonPressed = False button3Pressed = False button5Pressed = False button7Pressed = False button9Pressed = False nextButtonPressed = False gpsButtonPressed = False #original state of events checkButton = True mapCoor = False customisationMenu = False mapCoor2 = False easySearch = False complicatedMenu = False oneTime = True if event.type == pygame.MOUSEMOTION: if restartButton.isOver(pos): restartButton.colour = (0,255,0) continue else: restartButton.colour = (255,255,255) continue if easySearch == True or complicatedMenu == True: if event.type == pygame.MOUSEBUTTONDOWN: if gpsButton.isOver(pos): gpsButton.colour = (50,50,50) gpsButton.draw(screen, (0,0,0)) pygame.display.update() print('clicked gps button') gpsButtonPressed = True easySearch = False complicatedMenu = False continue if event.type == pygame.MOUSEMOTION: if gpsButton.isOver(pos): gpsButton.colour = (0,255,0) continue else: gpsButton.colour = (255,255,255) continue #if mouse is clicked over buttons (main page) if checkButton: if event.type == pygame.MOUSEBUTTONDOWN: if mapButton.isOver(pos): mapButton.colour = (0,255,0) redrawMainWin(screen) pygame.display.update() print('clicked map button') sleep(0.5) redrawMap(screen) checkButton = False mapCoor = True continue if predictButton.isOver(pos): predictButton.colour = (0,255,0) redrawMainWin(screen) pygame.display.update() print('clicked predict button') sleep(0.5) redrawMap(screen) checkButton = False mapCoor2 = True continue if exitButton.isOver(pos): exitButton.colour = (0,255,0) print('Exiting...') skeleExit(screen) pygame.quit() run = False exit() #if mouse hovered over the button (main page) if event.type == pygame.MOUSEMOTION: if mapButton.isOver(pos): mapButton.colour = (255,0,0) else: mapButton.colour = (255,255,255) if predictButton.isOver(pos): predictButton.colour = (255,0,0) else: predictButton.colour = (255,255,255) if exitButton.isOver(pos): exitButton.colour = (255,0,0) else: exitButton.colour = (255,255,255) #clicking buttons in the customisation menu: if customisationMenu: if event.type == pygame.MOUSEMOTION: if nextButton.isOver(pos): nextButton.colour = (0,0,255) else: nextButton.colour = (255,255,255) continue if event.type == pygame.MOUSEBUTTONDOWN: #clicking on next button if nextButton.isOver(pos): nextButton.colour = (255,255,0) nextButtonPressed = True customisationMenu = False continue if halalButton.isOver(pos): if halalButtonPressed == False: if nonhalalButtonPressed: nonhalalButton.colour = (255,255,255) nonhalalButtonPressed = False halalButton.colour = (0,255,0) print('clicked Halal button') halalButtonPressed = True continue else: halalButton.colour = (255,255,255) halalButtonPressed = False continue if vegButton.isOver(pos): if vegButtonPressed == False: if nonhalalButtonPressed: nonhalalButton.colour = (255,255,255) nonhalalButtonPressed = False vegButton.colour = (0,255,0) print('clicked Vegetarian button') vegButtonPressed = True continue else: vegButton.colour = (255,255,255) vegButtonPressed = False continue if nonhalalButton.isOver(pos): if nonhalalButtonPressed == False: if halalButtonPressed: halalButton.colour = (255,255,255) halalButtonPressed = False if vegButtonPressed: vegButton.colour = (255,255,255) vegButtonPressed = False nonhalalButton.colour = (0,255,0) print('clicked non-halal button') nonhalalButtonPressed = True continue else: nonhalalButton.colour = (255,255,255) nonhalalButtonPressed = False if koreanButton.isOver(pos): if koreanButtonPressed == False: koreanButton.colour = (0,255,0) print('clicked korean button') koreanButtonPressed = True continue else: koreanButton.colour = (255,255,255) koreanButtonPressed = False if malayButton.isOver(pos): if malayButtonPressed == False: malayButton.colour = (0,255,0) print('clicked Malay button') malayButtonPressed = True continue else: malayButton.colour = (255,255,255) malayButtonPressed = False if japanButton.isOver(pos): if japanButtonPressed == False: japanButton.colour = (0,255,0) print('clicked japan button') japanButtonPressed = True continue else: japanButton.colour = (255,255,255) japanButtonPressed = False if chineseButton.isOver(pos): if chineseButtonPressed == False: chineseButton.colour = (0,255,0) print('clicked chinese button') chineseButtonPressed = True continue else: chineseButton.colour = (255,255,255) chineseButtonPressed = False if indianButton.isOver(pos): if indianButtonPressed == False: indianButton.colour = (0,255,0) print('clicked indian button') indianButtonPressed = True continue else: indianButton.colour = (255,255,255) indianButtonPressed = False if westernButton.isOver(pos): if westernButtonPressed == False: westernButton.colour = (0,255,0) print('clicked western button') westernButtonPressed = True continue else: westernButton.colour = (255,255,255) westernButtonPressed = False if button3.isOver(pos): if button3Pressed == False: if button5Pressed == True: button5.colour = (255,255,255) button5Pressed = False if button7Pressed == True: button7.colour = (255,255,255) button7Pressed = False if button9Pressed == True: button9.colour = (255,255,255) button9Pressed = False button3.colour = (0,255,0) print('clicked $3') button3Pressed = True continue else: button3.colour = (255,255,255) button3Pressed = False if button5.isOver(pos): if button5Pressed == False: if button3Pressed == True: button3.colour = (255,255,255) button3Pressed = False if button7Pressed == True: button7.colour = (255,255,255) button7Pressed = False if button9Pressed == True: button9.colour = (255,255,255) button9Pressed = False button5.colour = (0,255,0) print('Clicked $5') button5Pressed = True continue else: button5.colour = (255,255,255) button5Pressed = False if button7.isOver(pos): if button7Pressed == False: if button3Pressed == True: button3.colour = (255,255,255) button3Pressed = False if button5Pressed == True: button5.colour = (255,255,255) button5Pressed = False if button9Pressed == True: button9.colour = (255,255,255) button9Pressed = False button7.colour = (0,255,0) print('Clicked $7') button7Pressed = True continue else: button7.colour = (255,255,255) button7Pressed = False if button9.isOver(pos): if button9Pressed == False: if button3Pressed == True: button3.colour = (255,255,255) button3Pressed = False if button5Pressed == True: button5.colour = (255,255,255) button5Pressed = False if button7Pressed == True: button7.colour = (255,255,255) button7Pressed = False button9.colour = (0,255,0) print('Clicked $10') button9Pressed = True continue else: button9.colour = (255,255,255) button9Pressed = False #if mousebuttondown and map is already displayed if mapCoor == True and event.type == pygame.MOUSEBUTTONDOWN: mouseclick = mouseClick(screen) if mouseclick[0]: pygame.display.update() x = mouseclick[1] y = mouseclick[2] print(x, ',', y) #pygame.time.delay(2000) mapCoor = False sleep(1) customisationMenu = True #if prediction button is clicked if mapCoor2 == True and event.type == pygame.MOUSEBUTTONDOWN: mouseclick = mouseClick(screen) if mouseclick[0]: pygame.display.update() x = mouseclick[1] y = mouseclick[2] print(x, ',', y) #pygame.time.delay(2000) mapCoor2 = False sleep(1) loading(screen) easySearch = True #things that happen after the next button is pressed if nextButtonPressed: sleep(1) loading(screen) user_prefList = [] user_cuisineList = [] user_budget = 0 if halalButtonPressed: user_prefList.append("Halal") if vegButtonPressed: user_prefList.append("Vegetarian") if nonhalalButtonPressed: user_prefList.append("Non-Halal/Non-Vegetarian") if koreanButtonPressed: user_cuisineList.append("Korean") if malayButtonPressed: user_cuisineList.append("Malay") if japanButtonPressed: user_cuisineList.append("Japanese") if chineseButtonPressed: user_cuisineList.append("Chinese") if indianButtonPressed: user_cuisineList.append("Indian") if westernButtonPressed: user_cuisineList.append("Western") if button3Pressed: user_budget = 3 if button5Pressed: user_budget = 5 if button7Pressed: user_budget = 7 if button9Pressed: user_budget = 9 #debug print(user_cuisineList) print(user_prefList) print(user_budget) #continue# finalID = final_list(user_budget, user_cuisineList, user_prefList) print(finalID) nearest_canteen = nearest_can(finalID, x, y) print(nearest_canteen) sleep(1) nextButtonPressed = False complicatedMenu = True
[ 16, 17, 20, 22, 23 ]
2,126
ee91e8c9dcb940882733b2d23b74a76d0392f4fe
<mask token> class TypeCheck(TypeBase): is_persistent_editor = True @classmethod def control(cls, delegate, property_item, parent): check = CheckBox(property_item, parent) return check @classmethod def set_value(cls, control, value): control.setCheckState(Qt.Checked if value else Qt.Unchecked) @classmethod def value(cls, control): return control.isChecked() class TypeFilePath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return FilePathWidget(delegate, property_item.params, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return '' if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeDirPath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return PathParamWidget(delegate, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return '' if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeRelDirPath(TypeDirPath): @classmethod def create(cls, params): return cls(params) def __init__(self, params): self.relpath = params.get('relpath', '.') def control(self, delegate, property_item, parent): return RelPathParamWidget(delegate, relpath=self.relpath, parent=parent ) def default(self, path): self.relpath = path or '.' return '.' def set_link(self, value): self.relpath = value or '.' def filter(self, value): if not value: return '.' try: if os.path.isabs(value): return os.path.relpath(value, self.relpath) else: return value except ValueError: return '.' class TypeChoice(TypeBase): @classmethod def create(cls, params): return cls(params.get('choices', [])) def __init__(self, choices): self.selects = [] self._data_dict = {} self.setup_choices(choices) def setup_choices(self, choices): self.selects = [] for item in choices: if isinstance(item, string_types): item = {'text': item, 'value': item} self.selects.append(item) self._data_dict = {item['value']: item for item in self.selects} def control(self, delegate, property_item, parent): combo = QComboBox(parent) self.setup_combo_box(combo) return combo def setup_combo_box(self, combo): for i, item in enumerate(self.selects): combo.addItem(item['text']) combo.setItemData(i, item['value']) if 'icon' in item: combo.setItemIcon(i, item['icon']) @staticmethod def set_value(combo, value): index = combo.findData(value) combo.setCurrentIndex(index) @classmethod def value(cls, combo): return combo.itemData(combo.currentIndex()) def data(self, value): return self._data_dict[value]['text' ] if value in self._data_dict else None def icon(self, value): try: return self._data_dict[value]['icon' ] if value in self._data_dict else None except KeyError: return None
<mask token> class TypeBase(object): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> class TypeBool(TypeBase): @classmethod def control(cls, delegate, property_item, parent): combo = QComboBox(parent) combo.addItem('Yes') combo.addItem('No') return combo @classmethod def set_value(cls, control, value): control.setCurrentIndex(0 if value else 1) @classmethod def value(cls, control): return control.currentIndex() == 0 @staticmethod def data(value): return 'Yes' if value else 'No' class CheckBox(QCheckBox): def __init__(self, item, parent): super(CheckBox, self).__init__(parent) self.item = item self.stateChanged.connect(self.on_state_changed) def on_state_changed(self, state): self.item.set_value(state == Qt.Checked, force_update=True) class TypeCheck(TypeBase): is_persistent_editor = True @classmethod def control(cls, delegate, property_item, parent): check = CheckBox(property_item, parent) return check @classmethod def set_value(cls, control, value): control.setCheckState(Qt.Checked if value else Qt.Unchecked) @classmethod def value(cls, control): return control.isChecked() class TypeFilePath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return FilePathWidget(delegate, property_item.params, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return '' if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeDirPath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return PathParamWidget(delegate, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return '' if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeRelDirPath(TypeDirPath): @classmethod def create(cls, params): return cls(params) def __init__(self, params): self.relpath = params.get('relpath', '.') def control(self, delegate, property_item, parent): return RelPathParamWidget(delegate, relpath=self.relpath, parent=parent ) def default(self, path): self.relpath = path or '.' return '.' def set_link(self, value): self.relpath = value or '.' def filter(self, value): if not value: return '.' try: if os.path.isabs(value): return os.path.relpath(value, self.relpath) else: return value except ValueError: return '.' class TypeChoice(TypeBase): @classmethod def create(cls, params): return cls(params.get('choices', [])) def __init__(self, choices): self.selects = [] self._data_dict = {} self.setup_choices(choices) def setup_choices(self, choices): self.selects = [] for item in choices: if isinstance(item, string_types): item = {'text': item, 'value': item} self.selects.append(item) self._data_dict = {item['value']: item for item in self.selects} def control(self, delegate, property_item, parent): combo = QComboBox(parent) self.setup_combo_box(combo) return combo def setup_combo_box(self, combo): for i, item in enumerate(self.selects): combo.addItem(item['text']) combo.setItemData(i, item['value']) if 'icon' in item: combo.setItemIcon(i, item['icon']) @staticmethod def set_value(combo, value): index = combo.findData(value) combo.setCurrentIndex(index) @classmethod def value(cls, combo): return combo.itemData(combo.currentIndex()) def data(self, value): return self._data_dict[value]['text' ] if value in self._data_dict else None def icon(self, value): try: return self._data_dict[value]['icon' ] if value in self._data_dict else None except KeyError: return None
<mask token> class TypeBase(object): @classmethod def create(cls, _): """ Create instance or return class """ return cls @classmethod def control(cls, delegate, property_item, parent): return None @staticmethod def data(value): """ return item's data() value """ return value @classmethod def value(cls, control): return None <mask token> @classmethod def height(cls): return -1 @classmethod def default(cls, value): return value @classmethod def filter(cls, value): return value @classmethod def set_link(cls, value): pass <mask token> @classmethod def sizeHint(cls): return QSize(-1, -1) @classmethod def setup(cls, item): pass @classmethod def set_value(cls, control, value): control.setText(value) <mask token> class TypeBool(TypeBase): @classmethod def control(cls, delegate, property_item, parent): combo = QComboBox(parent) combo.addItem('Yes') combo.addItem('No') return combo @classmethod def set_value(cls, control, value): control.setCurrentIndex(0 if value else 1) @classmethod def value(cls, control): return control.currentIndex() == 0 @staticmethod def data(value): return 'Yes' if value else 'No' class CheckBox(QCheckBox): def __init__(self, item, parent): super(CheckBox, self).__init__(parent) self.item = item self.stateChanged.connect(self.on_state_changed) def on_state_changed(self, state): self.item.set_value(state == Qt.Checked, force_update=True) class TypeCheck(TypeBase): is_persistent_editor = True @classmethod def control(cls, delegate, property_item, parent): check = CheckBox(property_item, parent) return check @classmethod def set_value(cls, control, value): control.setCheckState(Qt.Checked if value else Qt.Unchecked) @classmethod def value(cls, control): return control.isChecked() class TypeFilePath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return FilePathWidget(delegate, property_item.params, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return '' if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeDirPath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return PathParamWidget(delegate, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return '' if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeRelDirPath(TypeDirPath): @classmethod def create(cls, params): return cls(params) def __init__(self, params): self.relpath = params.get('relpath', '.') def control(self, delegate, property_item, parent): return RelPathParamWidget(delegate, relpath=self.relpath, parent=parent ) def default(self, path): self.relpath = path or '.' return '.' def set_link(self, value): self.relpath = value or '.' def filter(self, value): if not value: return '.' try: if os.path.isabs(value): return os.path.relpath(value, self.relpath) else: return value except ValueError: return '.' class TypeChoice(TypeBase): @classmethod def create(cls, params): return cls(params.get('choices', [])) def __init__(self, choices): self.selects = [] self._data_dict = {} self.setup_choices(choices) def setup_choices(self, choices): self.selects = [] for item in choices: if isinstance(item, string_types): item = {'text': item, 'value': item} self.selects.append(item) self._data_dict = {item['value']: item for item in self.selects} def control(self, delegate, property_item, parent): combo = QComboBox(parent) self.setup_combo_box(combo) return combo def setup_combo_box(self, combo): for i, item in enumerate(self.selects): combo.addItem(item['text']) combo.setItemData(i, item['value']) if 'icon' in item: combo.setItemIcon(i, item['icon']) @staticmethod def set_value(combo, value): index = combo.findData(value) combo.setCurrentIndex(index) @classmethod def value(cls, combo): return combo.itemData(combo.currentIndex()) def data(self, value): return self._data_dict[value]['text' ] if value in self._data_dict else None def icon(self, value): try: return self._data_dict[value]['icon' ] if value in self._data_dict else None except KeyError: return None
<mask token> class TypeBase(object): @classmethod def create(cls, _): """ Create instance or return class """ return cls @classmethod def control(cls, delegate, property_item, parent): return None @staticmethod def data(value): """ return item's data() value """ return value @classmethod def value(cls, control): return None @staticmethod def icon(_): return None @classmethod def height(cls): return -1 @classmethod def default(cls, value): return value @classmethod def filter(cls, value): return value @classmethod def set_link(cls, value): pass @classmethod def link_value(cls, default_value, link_value): return link_value or default_value @classmethod def sizeHint(cls): return QSize(-1, -1) @classmethod def setup(cls, item): pass @classmethod def set_value(cls, control, value): control.setText(value) is_persistent_editor = False class TypeBool(TypeBase): @classmethod def control(cls, delegate, property_item, parent): combo = QComboBox(parent) combo.addItem('Yes') combo.addItem('No') return combo @classmethod def set_value(cls, control, value): control.setCurrentIndex(0 if value else 1) @classmethod def value(cls, control): return control.currentIndex() == 0 @staticmethod def data(value): return 'Yes' if value else 'No' class CheckBox(QCheckBox): def __init__(self, item, parent): super(CheckBox, self).__init__(parent) self.item = item self.stateChanged.connect(self.on_state_changed) def on_state_changed(self, state): self.item.set_value(state == Qt.Checked, force_update=True) class TypeCheck(TypeBase): is_persistent_editor = True @classmethod def control(cls, delegate, property_item, parent): check = CheckBox(property_item, parent) return check @classmethod def set_value(cls, control, value): control.setCheckState(Qt.Checked if value else Qt.Unchecked) @classmethod def value(cls, control): return control.isChecked() class TypeFilePath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return FilePathWidget(delegate, property_item.params, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return '' if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeDirPath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return PathParamWidget(delegate, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return '' if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeRelDirPath(TypeDirPath): @classmethod def create(cls, params): return cls(params) def __init__(self, params): self.relpath = params.get('relpath', '.') def control(self, delegate, property_item, parent): return RelPathParamWidget(delegate, relpath=self.relpath, parent=parent ) def default(self, path): self.relpath = path or '.' return '.' def set_link(self, value): self.relpath = value or '.' def filter(self, value): if not value: return '.' try: if os.path.isabs(value): return os.path.relpath(value, self.relpath) else: return value except ValueError: return '.' class TypeChoice(TypeBase): @classmethod def create(cls, params): return cls(params.get('choices', [])) def __init__(self, choices): self.selects = [] self._data_dict = {} self.setup_choices(choices) def setup_choices(self, choices): self.selects = [] for item in choices: if isinstance(item, string_types): item = {'text': item, 'value': item} self.selects.append(item) self._data_dict = {item['value']: item for item in self.selects} def control(self, delegate, property_item, parent): combo = QComboBox(parent) self.setup_combo_box(combo) return combo def setup_combo_box(self, combo): for i, item in enumerate(self.selects): combo.addItem(item['text']) combo.setItemData(i, item['value']) if 'icon' in item: combo.setItemIcon(i, item['icon']) @staticmethod def set_value(combo, value): index = combo.findData(value) combo.setCurrentIndex(index) @classmethod def value(cls, combo): return combo.itemData(combo.currentIndex()) def data(self, value): return self._data_dict[value]['text' ] if value in self._data_dict else None def icon(self, value): try: return self._data_dict[value]['icon' ] if value in self._data_dict else None except KeyError: return None
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import, unicode_literals import os from qtpy.QtCore import * # from qtpy.QtGui import * from qtpy.QtWidgets import * from six import string_types from ..widgets import PathParamWidget, RelPathParamWidget, FilePathWidget class TypeBase(object): @classmethod def create(cls, _): """ Create instance or return class """ return cls @classmethod def control(cls, delegate, property_item, parent): return None @staticmethod def data(value): """ return item's data() value """ return value @classmethod def value(cls, control): return None @staticmethod def icon(_): return None @classmethod def height(cls): return -1 @classmethod def default(cls, value): return value @classmethod def filter(cls, value): return value @classmethod def set_link(cls, value): pass @classmethod def link_value(cls, default_value, link_value): return link_value or default_value @classmethod def sizeHint(cls): return QSize(-1, -1) @classmethod def setup(cls, item): pass @classmethod def set_value(cls, control, value): control.setText(value) is_persistent_editor = False class TypeBool(TypeBase): @classmethod def control(cls, delegate, property_item, parent): combo = QComboBox(parent) combo.addItem("Yes") combo.addItem("No") return combo @classmethod def set_value(cls, control, value): control.setCurrentIndex(0 if value else 1) @classmethod def value(cls, control): return control.currentIndex() == 0 @staticmethod def data(value): return "Yes" if value else "No" class CheckBox(QCheckBox): def __init__(self, item, parent): super(CheckBox, self).__init__(parent) self.item = item # noinspection PyUnresolvedReferences self.stateChanged.connect(self.on_state_changed) def on_state_changed(self, state): self.item.set_value(state == Qt.Checked, force_update=True) class TypeCheck(TypeBase): is_persistent_editor = True @classmethod def control(cls, delegate, property_item, parent): check = CheckBox(property_item, parent) return check @classmethod def set_value(cls, control, value): # type: (QCheckBox, bool) -> None control.setCheckState(Qt.Checked if value else Qt.Unchecked) @classmethod def value(cls, control): # type: (QCheckBox) -> bool return control.isChecked() class TypeFilePath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return FilePathWidget(delegate, property_item.params, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return "" if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeDirPath(TypeBase): @classmethod def control(cls, delegate, property_item, parent): return PathParamWidget(delegate, parent=parent) @classmethod def set_value(cls, control, value): control.setText(value) @classmethod def value(cls, control): return control.text() @classmethod def filter(cls, value): return os.path.normpath(value) if value else value @classmethod def link_value(cls, default_value, link_value): if default_value is None and link_value is None: return "" if link_value is None: return default_value if default_value is None: return link_value return os.path.join(default_value, link_value) @classmethod def sizeHint(cls): return QSize(-1, 28) class TypeRelDirPath(TypeDirPath): @classmethod def create(cls, params): return cls(params) def __init__(self, params): self.relpath = params.get("relpath", ".") def control(self, delegate, property_item, parent): return RelPathParamWidget(delegate, relpath=self.relpath, parent=parent) def default(self, path): self.relpath = path or "." return "." def set_link(self, value): self.relpath = value or "." def filter(self, value): if not value: return "." try: if os.path.isabs(value): return os.path.relpath(value, self.relpath) else: return value except ValueError: return "." # noinspection PyArgumentList class TypeChoice(TypeBase): @classmethod def create(cls, params): return cls(params.get("choices", [])) def __init__(self, choices): self.selects = [] self._data_dict = {} self.setup_choices(choices) def setup_choices(self, choices): self.selects = [] for item in choices: if isinstance(item, string_types): item = { "text": item, "value": item, } self.selects.append(item) self._data_dict = {item["value"]: item for item in self.selects} def control(self, delegate, property_item, parent): combo = QComboBox(parent) self.setup_combo_box(combo) return combo def setup_combo_box(self, combo): for i, item in enumerate(self.selects): combo.addItem(item["text"]) combo.setItemData(i, item["value"]) if "icon" in item: combo.setItemIcon(i, item["icon"]) # noinspection PyMethodOverriding @staticmethod def set_value(combo, value): # type: (QComboBox, str) -> None index = combo.findData(value) combo.setCurrentIndex(index) @classmethod def value(cls, combo): # type: (QComboBox, str) -> None return combo.itemData(combo.currentIndex()) # noinspection PyMethodOverriding def data(self, value): return self._data_dict[value]["text"] if value in self._data_dict else None # noinspection PyMethodOverriding def icon(self, value): try: return self._data_dict[value]["icon"] if value in self._data_dict else None except KeyError: return None
[ 36, 45, 56, 59, 61 ]
2,127
8f1ec65ca60605747f46f596e0b5848922bcd0b5
<mask token>
<mask token> for group in groups: allananswers = set(list('abcdefghijklmnopqrstuvwxyz')) answers = set() people = group.split('\n') for person in people: allananswers = allananswers & set(list(person)) for answer in person: if answer not in answers: answers.add(answer) count = count + 1 groupanswers.append(allananswers) print(count) <mask token> for group in groupanswers: answer2 = answer2 + len(group) print(answer2)
<mask token> groups = input.split('\n\n') count = 0 groupanswers = [] for group in groups: allananswers = set(list('abcdefghijklmnopqrstuvwxyz')) answers = set() people = group.split('\n') for person in people: allananswers = allananswers & set(list(person)) for answer in person: if answer not in answers: answers.add(answer) count = count + 1 groupanswers.append(allananswers) print(count) answer2 = 0 for group in groupanswers: answer2 = answer2 + len(group) print(answer2)
from day6input import * groups = input.split('\n\n') count = 0 groupanswers = [] for group in groups: allananswers = set(list('abcdefghijklmnopqrstuvwxyz')) answers = set() people = group.split('\n') for person in people: allananswers = allananswers & set(list(person)) for answer in person: if answer not in answers: answers.add(answer) count = count + 1 groupanswers.append(allananswers) print(count) answer2 = 0 for group in groupanswers: answer2 = answer2 + len(group) print(answer2)
from day6input import * groups = input.split('\n\n') count = 0 #1 groupanswers = [] #2 for group in groups: allananswers = set(list('abcdefghijklmnopqrstuvwxyz')) #2 answers = set() #1 people = group.split('\n') for person in people: allananswers = allananswers & set(list(person)) #2 #1 for answer in person: if answer not in answers: answers.add(answer) count = count + 1 groupanswers.append(allananswers) #2 print(count) #1 #####2 answer2 = 0 for group in groupanswers: answer2 = answer2 + len(group) print(answer2)
[ 0, 1, 2, 3, 4 ]
2,128
542bd52e3d5bc79077277034234419983005f78e
<mask token> class OrderClient(PayPalClient): <mask token> <mask token> <mask token>
<mask token> class PayPalClient: <mask token> <mask token> def array_to_json_array(self, json_array): result = [] if isinstance(json_array, list): for item in json_array: result.append(self.object_to_json(item) if not self. is_primittive(item) else self.array_to_json_array(item) if isinstance(item, list) else item) return result <mask token> class OrderClient(PayPalClient): """ This is the sample function to create an order. It uses the JSON body returned by buildRequestBody() to create an order.""" def create_order(self, order_body, debug=False): request = OrdersCreateRequest() request.prefer('return=representation') request.request_body(order_body) response = self.client.execute(request) if debug: print('Status Code: ', response.status_code) print('Status: ', response.result.status) print('Order ID: ', response.result.id) print('Intent: ', response.result.intent) print('Links:') for link in response.result.links: print('\t{}: {}\tCall Type: {}'.format(link.rel, link.href, link.method)) print('Total Amount: {} {}'.format(response.result. purchase_units[0].amount.currency_code, response.result. purchase_units[0].amount.value)) return response def capture_order(self, token, debug=False): request = OrdersCaptureRequest(token) try: response = self.client.execute(request) order_id = response.result.id return order_id except IOError as ioe: return 0
<mask token> class PayPalClient: def __init__(self): self.client_id = settings.PAYPAL_CLIENT_ID self.client_secret = settings.PAYPAL_SECRET """Set up and return PayPal Python SDK environment with PayPal access credentials. This sample uses SandboxEnvironment. In production, use LiveEnvironment.""" self.environment = SandboxEnvironment(client_id=self.client_id, client_secret=self.client_secret) """ Returns PayPal HTTP client instance with environment that has access credentials context. Use this instance to invoke PayPal APIs, provided the credentials have access. """ self.client = PayPalHttpClient(self.environment) def object_to_json(self, json_data): """ Function to print all json data in an organized readable manner """ result = {} if sys.version_info[0] < 3: itr = json_data.__dict__.iteritems() else: itr = json_data.__dict__.items() for key, value in itr: if key.startswith('__'): continue result[key] = self.array_to_json_array(value) if isinstance(value, list) else self.object_to_json(value ) if not self.is_primittive(value) else value return result def array_to_json_array(self, json_array): result = [] if isinstance(json_array, list): for item in json_array: result.append(self.object_to_json(item) if not self. is_primittive(item) else self.array_to_json_array(item) if isinstance(item, list) else item) return result <mask token> class OrderClient(PayPalClient): """ This is the sample function to create an order. It uses the JSON body returned by buildRequestBody() to create an order.""" def create_order(self, order_body, debug=False): request = OrdersCreateRequest() request.prefer('return=representation') request.request_body(order_body) response = self.client.execute(request) if debug: print('Status Code: ', response.status_code) print('Status: ', response.result.status) print('Order ID: ', response.result.id) print('Intent: ', response.result.intent) print('Links:') for link in response.result.links: print('\t{}: {}\tCall Type: {}'.format(link.rel, link.href, link.method)) print('Total Amount: {} {}'.format(response.result. purchase_units[0].amount.currency_code, response.result. purchase_units[0].amount.value)) return response def capture_order(self, token, debug=False): request = OrdersCaptureRequest(token) try: response = self.client.execute(request) order_id = response.result.id return order_id except IOError as ioe: return 0
from paypalcheckoutsdk.core import PayPalHttpClient, SandboxEnvironment from paypalcheckoutsdk.orders import OrdersCaptureRequest, OrdersCreateRequest from django.conf import settings import sys class PayPalClient: def __init__(self): self.client_id = settings.PAYPAL_CLIENT_ID self.client_secret = settings.PAYPAL_SECRET """Set up and return PayPal Python SDK environment with PayPal access credentials. This sample uses SandboxEnvironment. In production, use LiveEnvironment.""" self.environment = SandboxEnvironment(client_id=self.client_id, client_secret=self.client_secret) """ Returns PayPal HTTP client instance with environment that has access credentials context. Use this instance to invoke PayPal APIs, provided the credentials have access. """ self.client = PayPalHttpClient(self.environment) def object_to_json(self, json_data): """ Function to print all json data in an organized readable manner """ result = {} if sys.version_info[0] < 3: itr = json_data.__dict__.iteritems() else: itr = json_data.__dict__.items() for key, value in itr: if key.startswith('__'): continue result[key] = self.array_to_json_array(value) if isinstance(value, list) else self.object_to_json(value ) if not self.is_primittive(value) else value return result def array_to_json_array(self, json_array): result = [] if isinstance(json_array, list): for item in json_array: result.append(self.object_to_json(item) if not self. is_primittive(item) else self.array_to_json_array(item) if isinstance(item, list) else item) return result def is_primittive(self, data): return isinstance(data, str) or isinstance(data, int) class OrderClient(PayPalClient): """ This is the sample function to create an order. It uses the JSON body returned by buildRequestBody() to create an order.""" def create_order(self, order_body, debug=False): request = OrdersCreateRequest() request.prefer('return=representation') request.request_body(order_body) response = self.client.execute(request) if debug: print('Status Code: ', response.status_code) print('Status: ', response.result.status) print('Order ID: ', response.result.id) print('Intent: ', response.result.intent) print('Links:') for link in response.result.links: print('\t{}: {}\tCall Type: {}'.format(link.rel, link.href, link.method)) print('Total Amount: {} {}'.format(response.result. purchase_units[0].amount.currency_code, response.result. purchase_units[0].amount.value)) return response def capture_order(self, token, debug=False): request = OrdersCaptureRequest(token) try: response = self.client.execute(request) order_id = response.result.id return order_id except IOError as ioe: return 0
from paypalcheckoutsdk.core import PayPalHttpClient, SandboxEnvironment from paypalcheckoutsdk.orders import OrdersCaptureRequest, OrdersCreateRequest from django.conf import settings import sys class PayPalClient: def __init__(self): self.client_id = settings.PAYPAL_CLIENT_ID self.client_secret = settings.PAYPAL_SECRET """Set up and return PayPal Python SDK environment with PayPal access credentials. This sample uses SandboxEnvironment. In production, use LiveEnvironment.""" self.environment = SandboxEnvironment(client_id=self.client_id, client_secret=self.client_secret) """ Returns PayPal HTTP client instance with environment that has access credentials context. Use this instance to invoke PayPal APIs, provided the credentials have access. """ self.client = PayPalHttpClient(self.environment) def object_to_json(self, json_data): """ Function to print all json data in an organized readable manner """ result = {} if sys.version_info[0] < 3: itr = json_data.__dict__.iteritems() else: itr = json_data.__dict__.items() for key,value in itr: # Skip internal attributes. if key.startswith("__"): continue result[key] = self.array_to_json_array(value) if isinstance(value, list) else\ self.object_to_json(value) if not self.is_primittive(value) else\ value return result; def array_to_json_array(self, json_array): result =[] if isinstance(json_array, list): for item in json_array: result.append(self.object_to_json(item) if not self.is_primittive(item) \ else self.array_to_json_array(item) if isinstance(item, list) else item) return result def is_primittive(self, data): return isinstance(data, str) or isinstance(data, int) class OrderClient(PayPalClient): #2. Set up your server to receive a call from the client """ This is the sample function to create an order. It uses the JSON body returned by buildRequestBody() to create an order.""" def create_order(self, order_body, debug=False): request = OrdersCreateRequest() request.prefer('return=representation') #3. Call PayPal to set up a transaction request.request_body(order_body) response = self.client.execute(request) if debug: print('Status Code: ', response.status_code) print( 'Status: ', response.result.status) print( 'Order ID: ', response.result.id) print( 'Intent: ', response.result.intent) print ('Links:') for link in response.result.links: print('\t{}: {}\tCall Type: {}'.format(link.rel, link.href, link.method)) print ('Total Amount: {} {}'.format(response.result.purchase_units[0].amount.currency_code, response.result.purchase_units[0].amount.value)) return response def capture_order(self, token, debug=False): request = OrdersCaptureRequest(token) try : response = self.client.execute(request) order_id = response.result.id return order_id except IOError as ioe: return 0
[ 1, 6, 8, 10, 11 ]
2,129
d71ec86f68cc81c93a39f15c785c75c2a1023f14
<mask token>
<mask token> def fetch_data(faultNumber, position): df1 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) + '_Pos_' + str(position) + '%.csv') df1.set_index(df1.columns[0]) df1 = df1.drop(columns=[df1.columns[0]]) df2 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) + '_Pos_' + str(position) + '%_LSTM-AE_Output.csv') df2.set_index(df2.columns[0]) df2 = df2.drop(columns=[df2.columns[0]]) df1 = df1.join(df2['Loss_mae']) df1 = df1.join(df2['Threshold']) df1['pointType'] = df1.apply(lambda row: _label_point(row), axis=1) df2.join(df1['pointType']) return df1 <mask token>
<mask token> def fetch_data(faultNumber, position): df1 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) + '_Pos_' + str(position) + '%.csv') df1.set_index(df1.columns[0]) df1 = df1.drop(columns=[df1.columns[0]]) df2 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) + '_Pos_' + str(position) + '%_LSTM-AE_Output.csv') df2.set_index(df2.columns[0]) df2 = df2.drop(columns=[df2.columns[0]]) df1 = df1.join(df2['Loss_mae']) df1 = df1.join(df2['Threshold']) df1['pointType'] = df1.apply(lambda row: _label_point(row), axis=1) df2.join(df1['pointType']) return df1 def _label_point(row): if np.isnan(row.Threshold): return 'TR' if row['Loss_mae'] >= row['Threshold'] and row['faultNumber'] != 0: return 'TP' if row['Loss_mae'] < row['Threshold'] and row['faultNumber'] != 0: return 'FN' if row['Loss_mae'] >= row['Threshold'] and row['faultNumber'] == 0: return 'FP' if row['Loss_mae'] < row['Threshold'] and row['faultNumber'] == 0: return 'TN'
import numpy as np import pandas as pd def fetch_data(faultNumber, position): df1 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) + '_Pos_' + str(position) + '%.csv') df1.set_index(df1.columns[0]) df1 = df1.drop(columns=[df1.columns[0]]) df2 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) + '_Pos_' + str(position) + '%_LSTM-AE_Output.csv') df2.set_index(df2.columns[0]) df2 = df2.drop(columns=[df2.columns[0]]) df1 = df1.join(df2['Loss_mae']) df1 = df1.join(df2['Threshold']) df1['pointType'] = df1.apply(lambda row: _label_point(row), axis=1) df2.join(df1['pointType']) return df1 def _label_point(row): if np.isnan(row.Threshold): return 'TR' if row['Loss_mae'] >= row['Threshold'] and row['faultNumber'] != 0: return 'TP' if row['Loss_mae'] < row['Threshold'] and row['faultNumber'] != 0: return 'FN' if row['Loss_mae'] >= row['Threshold'] and row['faultNumber'] == 0: return 'FP' if row['Loss_mae'] < row['Threshold'] and row['faultNumber'] == 0: return 'TN'
import numpy as np import pandas as pd def fetch_data(faultNumber, position): df1 = pd.read_csv("./data/TEP_CaseStudy_Fault_" + str(faultNumber) + "_Pos_" + str(position) + "%.csv") df1.set_index(df1.columns[0]) df1 = df1.drop(columns=[df1.columns[0]]) df2 = pd.read_csv("./data/TEP_CaseStudy_Fault_" + str(faultNumber) + "_Pos_" + str(position) + "%_LSTM-AE_Output.csv") df2.set_index(df2.columns[0]) df2 = df2.drop(columns=[df2.columns[0]]) df1 = df1.join(df2["Loss_mae"]) df1 = df1.join(df2["Threshold"]) df1["pointType"] = df1.apply(lambda row: _label_point(row), axis=1) df2.join(df1["pointType"]) return df1 def _label_point(row): if np.isnan(row.Threshold): return "TR" if (row["Loss_mae"] >= row["Threshold"]) and (row["faultNumber"] != 0): return "TP" if (row["Loss_mae"] < row["Threshold"]) and (row["faultNumber"] != 0): return "FN" if (row["Loss_mae"] >= row["Threshold"]) and (row["faultNumber"] == 0): return "FP" if (row["Loss_mae"] < row["Threshold"]) and (row["faultNumber"] == 0): return "TN"
[ 0, 1, 2, 3, 4 ]
2,130
fcb13b087b9c967ab16b64885411cc4aae98583c
<mask token>
<mask token> class InviteAdmin(admin.ModelAdmin): list_display = ('invitee', 'inviter', 'created_on', 'approved', 'rejected', 'used') <mask token>
<mask token> class InviteAdmin(admin.ModelAdmin): list_display = ('invitee', 'inviter', 'created_on', 'approved', 'rejected', 'used') admin.site.register(Invite, InviteAdmin)
from django.contrib import admin from .models import Invite class InviteAdmin(admin.ModelAdmin): list_display = ('invitee', 'inviter', 'created_on', 'approved', 'rejected', 'used') admin.site.register(Invite, InviteAdmin)
from django.contrib import admin from .models import Invite class InviteAdmin(admin.ModelAdmin): list_display = ('invitee', 'inviter', 'created_on', 'approved', 'rejected','used') admin.site.register(Invite, InviteAdmin)
[ 0, 2, 3, 4, 5 ]
2,131
07dc058ecef323ffd41299245e4fcafdc9e41506
<mask token> def resultados(request, total): latest_question_list = Pregunta.objects.order_by('fecha')[:total] output = ', '.join([q.descripcion for q in latest_question_list]) return HttpResponse(output) <mask token>
<mask token> def detalle(request, id_pregunta): pregunta = Pregunta.objects.get(id=id_pregunta) template = loader.get_template('polls/detalle.html') context = {'pregunta': pregunta} return HttpResponse(template.render(context, request)) def resultados(request, total): latest_question_list = Pregunta.objects.order_by('fecha')[:total] output = ', '.join([q.descripcion for q in latest_question_list]) return HttpResponse(output) <mask token>
<mask token> def index(request): preguntas = Pregunta.objects.order_by('-fecha')[:5] template = loader.get_template('polls/index.html') context = {'listado': preguntas} return HttpResponse(template.render(context, request)) def detalle(request, id_pregunta): pregunta = Pregunta.objects.get(id=id_pregunta) template = loader.get_template('polls/detalle.html') context = {'pregunta': pregunta} return HttpResponse(template.render(context, request)) def resultados(request, total): latest_question_list = Pregunta.objects.order_by('fecha')[:total] output = ', '.join([q.descripcion for q in latest_question_list]) return HttpResponse(output) <mask token>
from django.http import HttpResponse from polls.models import Pregunta from django.template import loader def index(request): preguntas = Pregunta.objects.order_by('-fecha')[:5] template = loader.get_template('polls/index.html') context = {'listado': preguntas} return HttpResponse(template.render(context, request)) def detalle(request, id_pregunta): pregunta = Pregunta.objects.get(id=id_pregunta) template = loader.get_template('polls/detalle.html') context = {'pregunta': pregunta} return HttpResponse(template.render(context, request)) def resultados(request, total): latest_question_list = Pregunta.objects.order_by('fecha')[:total] output = ', '.join([q.descripcion for q in latest_question_list]) return HttpResponse(output) <mask token>
from django.http import HttpResponse from polls.models import Pregunta from django.template import loader def index(request): preguntas = Pregunta.objects.order_by('-fecha')[:5] template = loader.get_template('polls/index.html') context = { 'listado': preguntas,} return HttpResponse(template.render(context, request)) def detalle(request, id_pregunta): pregunta = Pregunta.objects.get(id=id_pregunta) template = loader.get_template('polls/detalle.html') context = { 'pregunta': pregunta } return HttpResponse(template.render(context, request)) def resultados(request, total): latest_question_list = Pregunta.objects.order_by('fecha')[:total] output = ', '.join([q.descripcion for q in latest_question_list]) return HttpResponse(output) """ -Construir una vista que retorne todas las opciones asociadas a una pregunta *FILTRAR POR ID DE PREGUNTA """
[ 1, 2, 3, 4, 5 ]
2,132
8fe45332ce09195beabb24c8cbb56868c564ded4
<mask token>
<mask token> def test(data): actions.navigate(data.env.url + 'tabs/') actions.send_keys('#title', 'lorem ipsum') actions.click('#goButtonCustom') actions.assert_amount_of_windows(2) actions.close_window_by_partial_title('lorem') golem_steps.assert_last_step_message( "Close window by partial title 'lorem'") actions.assert_amount_of_windows(1)
<mask token> description = 'close_window_by_partial_title action' def test(data): actions.navigate(data.env.url + 'tabs/') actions.send_keys('#title', 'lorem ipsum') actions.click('#goButtonCustom') actions.assert_amount_of_windows(2) actions.close_window_by_partial_title('lorem') golem_steps.assert_last_step_message( "Close window by partial title 'lorem'") actions.assert_amount_of_windows(1)
from golem import actions from projects.golem_integration.pages import golem_steps description = 'close_window_by_partial_title action' def test(data): actions.navigate(data.env.url + 'tabs/') actions.send_keys('#title', 'lorem ipsum') actions.click('#goButtonCustom') actions.assert_amount_of_windows(2) actions.close_window_by_partial_title('lorem') golem_steps.assert_last_step_message( "Close window by partial title 'lorem'") actions.assert_amount_of_windows(1)
from golem import actions from projects.golem_integration.pages import golem_steps description = 'close_window_by_partial_title action' def test(data): actions.navigate(data.env.url + 'tabs/') actions.send_keys('#title', 'lorem ipsum') actions.click('#goButtonCustom') actions.assert_amount_of_windows(2) actions.close_window_by_partial_title('lorem') golem_steps.assert_last_step_message("Close window by partial title 'lorem'") actions.assert_amount_of_windows(1)
[ 0, 1, 2, 3, 4 ]
2,133
d45ca839a24093266c48e5f97164b160190b154d
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('django_otp', '0001_initial')] operations = [migrations.AddField(model_name='otpsecrets', name= 'issuer_name', field=models.CharField(blank=True, db_index=True, max_length=40))]
from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('django_otp', '0001_initial')] operations = [migrations.AddField(model_name='otpsecrets', name= 'issuer_name', field=models.CharField(blank=True, db_index=True, max_length=40))]
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-29 03:38 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('django_otp', '0001_initial'), ] operations = [ migrations.AddField( model_name='otpsecrets', name='issuer_name', field=models.CharField(blank=True, db_index=True, max_length=40), ), ]
[ 0, 1, 2, 3, 4 ]
2,134
b2b961c6ff1d975d80a84be361321ab44dc026a0
<mask token>
<mask token> class QueueMaster(QueueSubscriberManager, QueuePublisherManager, QueueLifecycleManager): <mask token> pass
<mask token> class QueueMaster(QueueSubscriberManager, QueuePublisherManager, QueueLifecycleManager): """ This class interfaces all types of queue objects that you might want. """ pass
from queuingservices.managers.queue_lifecycle_manager import QueueLifecycleManager from queuingservices.managers.queue_publisher_manager import QueuePublisherManager from queuingservices.managers.queue_subscriber_manager import QueueSubscriberManager class QueueMaster(QueueSubscriberManager, QueuePublisherManager, QueueLifecycleManager): """ This class interfaces all types of queue objects that you might want. """ pass
from queuingservices.managers.queue_lifecycle_manager import QueueLifecycleManager from queuingservices.managers.queue_publisher_manager import QueuePublisherManager from queuingservices.managers.queue_subscriber_manager import QueueSubscriberManager class QueueMaster(QueueSubscriberManager, QueuePublisherManager, QueueLifecycleManager): """ This class interfaces all types of queue objects that you might want. """ pass
[ 0, 1, 2, 3, 4 ]
2,135
302634b93725ceb9333e236021cbb64e023ff798
<mask token> def main(stdscr): res = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) curses.noecho() curses.cbreak() curses.curs_set(0) stdscr.erase() while True: height, width = stdscr.getmaxyx() stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.border(0) stdscr.hline(height - 4, 1, curses.ACS_BSBS, width - 2) stdscr.addstr(height - 3, 2, '[A]', curses.A_BOLD) stdscr.addstr(height - 3, 6, 'Arrivals') stdscr.addstr(height - 3, 15, '[D]', curses.A_BOLD) stdscr.addstr(height - 3, 19, 'Departures') stdscr.addstr(height - 2, 2, '[Q]', curses.A_BOLD) stdscr.addstr(height - 2, 6, 'Quit') stdscr.addstr(height - 2, width - 28, 'Version 1.0 By RaithSphere') stdscr.addstr(1, 2, 'Train info powered by National Rail') stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.hline(2, 1, curses.ACS_BSBS, width - 2) stdscr.refresh() stdscr.refresh() key = stdscr.getch() if key == ord('q'): break elif key == ord('d'): res2 = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Departure's from " + res2.locationName) stdscr.addstr(5, width - width + 5, 'Time', curses.A_BOLD) stdscr.addstr(5, width - width + 15, 'Destination', curses.A_BOLD) stdscr.addstr(5, width - 25, 'Plat', curses.A_BOLD) stdscr.addstr(5, width - 15, 'Expected', curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res2.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = '?' stdscr.addstr(7 + i, width - width + 5, t.std) stdscr.addstr(7 + i, width - width + 15, t.destination. location[0].locationName, curses.color_pair(2) | curses .A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.etd != 'On time': stdscr.addstr(7 + i, width - 15, t.etd, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.etd) i += 1 elif key == ord('a'): res3 = client.service.GetArrivalBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Arrivals's at " + res3.locationName) stdscr.addstr(5, width - width + 5, 'Time', curses.A_BOLD) stdscr.addstr(5, width - width + 15, 'Origin', curses.A_BOLD) stdscr.addstr(5, width - 25, 'Plat', curses.A_BOLD) stdscr.addstr(5, width - 15, 'Expected', curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res3.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = '?' stdscr.addstr(7 + i, width - width + 5, t.sta) stdscr.addstr(7 + i, width - width + 15, t.origin.location[ 0].locationName, curses.color_pair(2) | curses.A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.eta != 'On time': stdscr.addstr(7 + i, width - 15, t.eta, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.eta) i += 1 stdscr.refresh() <mask token>
<mask token> if LDB_TOKEN == '': raise Exception( 'Please configure your OpenLDBWS token in getDepartureBoardExample!') <mask token> def main(stdscr): res = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) curses.noecho() curses.cbreak() curses.curs_set(0) stdscr.erase() while True: height, width = stdscr.getmaxyx() stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.border(0) stdscr.hline(height - 4, 1, curses.ACS_BSBS, width - 2) stdscr.addstr(height - 3, 2, '[A]', curses.A_BOLD) stdscr.addstr(height - 3, 6, 'Arrivals') stdscr.addstr(height - 3, 15, '[D]', curses.A_BOLD) stdscr.addstr(height - 3, 19, 'Departures') stdscr.addstr(height - 2, 2, '[Q]', curses.A_BOLD) stdscr.addstr(height - 2, 6, 'Quit') stdscr.addstr(height - 2, width - 28, 'Version 1.0 By RaithSphere') stdscr.addstr(1, 2, 'Train info powered by National Rail') stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.hline(2, 1, curses.ACS_BSBS, width - 2) stdscr.refresh() stdscr.refresh() key = stdscr.getch() if key == ord('q'): break elif key == ord('d'): res2 = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Departure's from " + res2.locationName) stdscr.addstr(5, width - width + 5, 'Time', curses.A_BOLD) stdscr.addstr(5, width - width + 15, 'Destination', curses.A_BOLD) stdscr.addstr(5, width - 25, 'Plat', curses.A_BOLD) stdscr.addstr(5, width - 15, 'Expected', curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res2.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = '?' stdscr.addstr(7 + i, width - width + 5, t.std) stdscr.addstr(7 + i, width - width + 15, t.destination. location[0].locationName, curses.color_pair(2) | curses .A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.etd != 'On time': stdscr.addstr(7 + i, width - 15, t.etd, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.etd) i += 1 elif key == ord('a'): res3 = client.service.GetArrivalBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Arrivals's at " + res3.locationName) stdscr.addstr(5, width - width + 5, 'Time', curses.A_BOLD) stdscr.addstr(5, width - width + 15, 'Origin', curses.A_BOLD) stdscr.addstr(5, width - 25, 'Plat', curses.A_BOLD) stdscr.addstr(5, width - 15, 'Expected', curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res3.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = '?' stdscr.addstr(7 + i, width - width + 5, t.sta) stdscr.addstr(7 + i, width - width + 15, t.origin.location[ 0].locationName, curses.color_pair(2) | curses.A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.eta != 'On time': stdscr.addstr(7 + i, width - 15, t.eta, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.eta) i += 1 stdscr.refresh() curses.wrapper(main)
<mask token> LDB_TOKEN = 'NULLTOKEN' WSDL = ( 'http://lite.realtime.nationalrail.co.uk/OpenLDBWS/wsdl.aspx?ver=2017-10-01' ) if LDB_TOKEN == '': raise Exception( 'Please configure your OpenLDBWS token in getDepartureBoardExample!') history = HistoryPlugin() client = Client(wsdl=WSDL, plugins=[history]) header = xsd.Element( '{http://thalesgroup.com/RTTI/2013-11-28/Token/types}AccessToken', xsd. ComplexType([xsd.Element( '{http://thalesgroup.com/RTTI/2013-11-28/Token/types}TokenValue', xsd. String())])) header_value = header(TokenValue=LDB_TOKEN) def main(stdscr): res = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) curses.noecho() curses.cbreak() curses.curs_set(0) stdscr.erase() while True: height, width = stdscr.getmaxyx() stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.border(0) stdscr.hline(height - 4, 1, curses.ACS_BSBS, width - 2) stdscr.addstr(height - 3, 2, '[A]', curses.A_BOLD) stdscr.addstr(height - 3, 6, 'Arrivals') stdscr.addstr(height - 3, 15, '[D]', curses.A_BOLD) stdscr.addstr(height - 3, 19, 'Departures') stdscr.addstr(height - 2, 2, '[Q]', curses.A_BOLD) stdscr.addstr(height - 2, 6, 'Quit') stdscr.addstr(height - 2, width - 28, 'Version 1.0 By RaithSphere') stdscr.addstr(1, 2, 'Train info powered by National Rail') stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.hline(2, 1, curses.ACS_BSBS, width - 2) stdscr.refresh() stdscr.refresh() key = stdscr.getch() if key == ord('q'): break elif key == ord('d'): res2 = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Departure's from " + res2.locationName) stdscr.addstr(5, width - width + 5, 'Time', curses.A_BOLD) stdscr.addstr(5, width - width + 15, 'Destination', curses.A_BOLD) stdscr.addstr(5, width - 25, 'Plat', curses.A_BOLD) stdscr.addstr(5, width - 15, 'Expected', curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res2.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = '?' stdscr.addstr(7 + i, width - width + 5, t.std) stdscr.addstr(7 + i, width - width + 15, t.destination. location[0].locationName, curses.color_pair(2) | curses .A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.etd != 'On time': stdscr.addstr(7 + i, width - 15, t.etd, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.etd) i += 1 elif key == ord('a'): res3 = client.service.GetArrivalBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Arrivals's at " + res3.locationName) stdscr.addstr(5, width - width + 5, 'Time', curses.A_BOLD) stdscr.addstr(5, width - width + 15, 'Origin', curses.A_BOLD) stdscr.addstr(5, width - 25, 'Plat', curses.A_BOLD) stdscr.addstr(5, width - 15, 'Expected', curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res3.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = '?' stdscr.addstr(7 + i, width - width + 5, t.sta) stdscr.addstr(7 + i, width - width + 15, t.origin.location[ 0].locationName, curses.color_pair(2) | curses.A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.eta != 'On time': stdscr.addstr(7 + i, width - 15, t.eta, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.eta) i += 1 stdscr.refresh() curses.wrapper(main)
import curses from zeep import Client from zeep import xsd from zeep.plugins import HistoryPlugin import time from datetime import datetime import os LDB_TOKEN = 'NULLTOKEN' WSDL = ( 'http://lite.realtime.nationalrail.co.uk/OpenLDBWS/wsdl.aspx?ver=2017-10-01' ) if LDB_TOKEN == '': raise Exception( 'Please configure your OpenLDBWS token in getDepartureBoardExample!') history = HistoryPlugin() client = Client(wsdl=WSDL, plugins=[history]) header = xsd.Element( '{http://thalesgroup.com/RTTI/2013-11-28/Token/types}AccessToken', xsd. ComplexType([xsd.Element( '{http://thalesgroup.com/RTTI/2013-11-28/Token/types}TokenValue', xsd. String())])) header_value = header(TokenValue=LDB_TOKEN) def main(stdscr): res = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) curses.noecho() curses.cbreak() curses.curs_set(0) stdscr.erase() while True: height, width = stdscr.getmaxyx() stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.border(0) stdscr.hline(height - 4, 1, curses.ACS_BSBS, width - 2) stdscr.addstr(height - 3, 2, '[A]', curses.A_BOLD) stdscr.addstr(height - 3, 6, 'Arrivals') stdscr.addstr(height - 3, 15, '[D]', curses.A_BOLD) stdscr.addstr(height - 3, 19, 'Departures') stdscr.addstr(height - 2, 2, '[Q]', curses.A_BOLD) stdscr.addstr(height - 2, 6, 'Quit') stdscr.addstr(height - 2, width - 28, 'Version 1.0 By RaithSphere') stdscr.addstr(1, 2, 'Train info powered by National Rail') stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.hline(2, 1, curses.ACS_BSBS, width - 2) stdscr.refresh() stdscr.refresh() key = stdscr.getch() if key == ord('q'): break elif key == ord('d'): res2 = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Departure's from " + res2.locationName) stdscr.addstr(5, width - width + 5, 'Time', curses.A_BOLD) stdscr.addstr(5, width - width + 15, 'Destination', curses.A_BOLD) stdscr.addstr(5, width - 25, 'Plat', curses.A_BOLD) stdscr.addstr(5, width - 15, 'Expected', curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res2.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = '?' stdscr.addstr(7 + i, width - width + 5, t.std) stdscr.addstr(7 + i, width - width + 15, t.destination. location[0].locationName, curses.color_pair(2) | curses .A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.etd != 'On time': stdscr.addstr(7 + i, width - 15, t.etd, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.etd) i += 1 elif key == ord('a'): res3 = client.service.GetArrivalBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Arrivals's at " + res3.locationName) stdscr.addstr(5, width - width + 5, 'Time', curses.A_BOLD) stdscr.addstr(5, width - width + 15, 'Origin', curses.A_BOLD) stdscr.addstr(5, width - 25, 'Plat', curses.A_BOLD) stdscr.addstr(5, width - 15, 'Expected', curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res3.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = '?' stdscr.addstr(7 + i, width - width + 5, t.sta) stdscr.addstr(7 + i, width - width + 15, t.origin.location[ 0].locationName, curses.color_pair(2) | curses.A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.eta != 'On time': stdscr.addstr(7 + i, width - 15, t.eta, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.eta) i += 1 stdscr.refresh() curses.wrapper(main)
import curses from zeep import Client from zeep import xsd from zeep.plugins import HistoryPlugin import time from datetime import datetime import os LDB_TOKEN = 'NULLTOKEN' WSDL = 'http://lite.realtime.nationalrail.co.uk/OpenLDBWS/wsdl.aspx?ver=2017-10-01' if LDB_TOKEN == '': raise Exception("Please configure your OpenLDBWS token in getDepartureBoardExample!") history = HistoryPlugin() client = Client(wsdl=WSDL, plugins=[history]) header = xsd.Element( '{http://thalesgroup.com/RTTI/2013-11-28/Token/types}AccessToken', xsd.ComplexType([ xsd.Element( '{http://thalesgroup.com/RTTI/2013-11-28/Token/types}TokenValue', xsd.String()), ]) ) header_value = header(TokenValue=LDB_TOKEN) def main(stdscr): res = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) curses.noecho() curses.cbreak() curses.curs_set(0) stdscr.erase() while True: height, width = stdscr.getmaxyx() stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.border(0) stdscr.hline(height - 4, 1, curses.ACS_BSBS, width - 2) stdscr.addstr(height - 3, 2, "[A]", curses.A_BOLD) stdscr.addstr(height - 3, 6, "Arrivals") stdscr.addstr(height - 3, 15, "[D]", curses.A_BOLD) stdscr.addstr(height - 3, 19, "Departures") stdscr.addstr(height - 2, 2, "[Q]", curses.A_BOLD) stdscr.addstr(height - 2, 6, "Quit") stdscr.addstr(height - 2, width - 28, "Version 1.0 By RaithSphere") stdscr.addstr(1, 2, "Train info powered by National Rail") stdscr.addstr(1, width - 10, datetime.now().strftime('%H:%M:%S')) stdscr.hline(2, 1, curses.ACS_BSBS, width - 2) stdscr.refresh() stdscr.refresh() key = stdscr.getch() if key == ord('q'): break elif key == ord('d'): res2 = client.service.GetDepartureBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Departure's from " + res2.locationName) stdscr.addstr(5, width - width + 5, "Time", curses.A_BOLD) stdscr.addstr(5, width - width + 15, "Destination", curses.A_BOLD) stdscr.addstr(5, width - 25, "Plat", curses.A_BOLD) stdscr.addstr(5, width - 15, "Expected", curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res2.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = "?" stdscr.addstr(7 + i, width - width + 5, t.std) stdscr.addstr(7 + i, width - width + 15, t.destination.location[0].locationName, curses.color_pair(2) | curses.A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.etd != "On time": stdscr.addstr(7 + i, width - 15, t.etd, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.etd) i += 1 elif key == ord('a'): res3 = client.service.GetArrivalBoard(numRows=10, crs='NAN', _soapheaders=[header_value]) stdscr.erase() stdscr.border(0) stdscr.addstr(3, 2, "Arrivals's at " + res3.locationName) stdscr.addstr(5, width - width + 5, "Time", curses.A_BOLD) stdscr.addstr(5, width - width + 15, "Origin", curses.A_BOLD) stdscr.addstr(5, width - 25, "Plat", curses.A_BOLD) stdscr.addstr(5, width - 15, "Expected", curses.A_BOLD) stdscr.hline(6, width - width + 5, curses.ACS_BSBS, 4) stdscr.hline(6, width - width + 15, curses.ACS_BSBS, 11) stdscr.hline(6, width - 25, curses.ACS_BSBS, 4) stdscr.hline(6, width - 15, curses.ACS_BSBS, 8) services = res3.trainServices.service i = 0 while i < len(services): t = services[i] if not t.platform: t.platform = "?" stdscr.addstr(7 + i, width - width + 5, t.sta) stdscr.addstr(7 + i, width - width + 15, t.origin.location[0].locationName, curses.color_pair(2) | curses.A_BOLD) stdscr.addstr(7 + i, width - 25, t.platform) if t.eta != "On time": stdscr.addstr(7 + i, width - 15, t.eta, curses.A_STANDOUT) else: stdscr.addstr(7 + i, width - 15, t.eta) i += 1 stdscr.refresh() curses.wrapper(main)
[ 1, 2, 3, 4, 5 ]
2,136
3314ffdbc2f10170176c590aebf49c416bcc8856
import os import mysql.connector import time from flask import Flask, render_template app = Flask(__name__) def dbconnect(): return mysql.connector.connect(user= , password= , host="mysqlshereen.mysql.database.azure.com", port=3306, database='test') @app.route('/result', methods=['POST', 'GET']) def query(): start_time = time.time() display = [] conn=dbconnect() curr=conn.cursor() curr.execute(""" UPDATE TABLE SET columnName = null WHERE YourCondition delete from FOOD where DIGITS >900;""") sql=curr.fetchall() for row in sql: tuple = (row[0], row[1], row[3]) display.append(tuple) end_time = time.time() total_time = end_time - start_time print("final time:", total_time) display.append(total_time) curr.close() conn.close() return render_template('display.html', display=display) @app.route('/download', methods=['POST', 'GET']) def download(): list = [] if request.method == 'POST': mytext = request.form['text1'] mytext1 = request.form['text2'] conn = dbconnect() curr = conn.cursor() r1=int(mytext) r2 = int(mytext1) curr.execute('select DIGITS,CATEGORY from food DIGITS ">"' +r1+'DIGITS"<"'+r2) sql = curr.fetchall() #curr.execute('select PICTURE from FOOD') data = curr.fetchone()[0] for row in data: with open('/home/shereen/quiz8/static/'+name+'.jpg','w') as local_file: local_file.write(data) list.append(data) #img_name = name+'.jpg' curr.close() conn.close() #return img_name return render_template('result.html',list=list,) def insert(): conn = dbconnect() curr = conn.cursor() path = '/home/shereen/quiz8/data/' for root, dirs, files in os.walk('/home/shereen/quiz8/data/'): for file in files: img_file = file.replace('csv', 'jpg') print(img_file) if file.endswith(".csv"): with open(path + file) as f: name = file[:-4] lines = f.readlines() line1 = lines[0].replace('\r', '') line2 = lines[1].replace('\r', '') line3 = lines[2].replace('\r', '') with open('/home/shereen/quiz8/data/' + img_file, 'rb') as img: image = img.read() sql = 'insert into FOOD (NAME,ingred,digits,category,picture) values (%s,%s,%s,%s,%s)' args = (name,line2, line1, line3, image) curr.execute(sql, args) conn.commit() def dbcount(): print('hi') conn = dbconnect() cur = conn.cursor() start_time = time.time() conn = dbconnect() cur = conn.cursor() quer = 'select count(*) from FOOD' cur.execute(quer) res = cur.fetchone() print(res[0]) conn.commit() cur.close() conn.close() end_time = time.time() tot = end_time - start_time cur.close() conn.close() return res @app.route('/') def hello_world(): insert() #query() img_name = download() #return render_template('result.html', img_name=img_name) return render_template('main.html') if __name__ == '__main__': app.run()
null
null
null
null
[ 0 ]
2,137
c632c50028fee2f19fb65458f0b55ec228b8006f
<mask token> def mutualexclusion(set_a, set_b): res = [i for i in set_a if i not in set_b] res2 = [i for i in set_b if i not in set_a] res += res2 return res <mask token> def intersection(set_a, set_b): res = [i for i in set_a if i in set_b] return res <mask token>
<mask token> def mutualexclusion(set_a, set_b): res = [i for i in set_a if i not in set_b] res2 = [i for i in set_b if i not in set_a] res += res2 return res <mask token> def intersection(set_a, set_b): res = [i for i in set_a if i in set_b] return res <mask token> def repetitionAudit(set): pass
<mask token> def recursiveUnioniser(set): if isinstance(set[0], int): return set res = [] for i in range(len(set)): for j in range(len(set[i])): res.append(set[i][j]) if isinstance(res[0], list): return recursiveUnioniser(res) else: return res <mask token> def mutualexclusion(set_a, set_b): res = [i for i in set_a if i not in set_b] res2 = [i for i in set_b if i not in set_a] res += res2 return res <mask token> def intersection(set_a, set_b): res = [i for i in set_a if i in set_b] return res <mask token> def repetitionAudit(set): pass
trial = [1, 2, 3] trial2 = [3, 4, 5] def recursiveUnioniser(set): if isinstance(set[0], int): return set res = [] for i in range(len(set)): for j in range(len(set[i])): res.append(set[i][j]) if isinstance(res[0], list): return recursiveUnioniser(res) else: return res print(recursiveUnioniser(trial)) def mutualexclusion(set_a, set_b): res = [i for i in set_a if i not in set_b] res2 = [i for i in set_b if i not in set_a] res += res2 return res print(mutualexclusion(trial, trial2)) def intersection(set_a, set_b): res = [i for i in set_a if i in set_b] return res print(intersection(trial, trial2)) def repetitionAudit(set): pass
#This is a module which implements Naive Set Theory in Python. #It will be useful for Unions, Intersections, Mutual Exclusion, and more. #ideas: print(sum([[[1],[2]], [[3],[4]], [[5],[6]]], [])) Monoid - abstraction on + trial = [1, 2, 3] trial2 = [3, 4, 5] def recursiveUnioniser(set): if isinstance(set[0], int): return set res = [] for i in range(len(set)): for j in range(len(set[i])): res.append(set[i][j]) if isinstance(res[0], list): return recursiveUnioniser(res) else: return res print(recursiveUnioniser(trial)) def mutualexclusion(set_a, set_b): res = [i for i in set_a if i not in set_b] res2 = [i for i in set_b if i not in set_a] res += res2 return res print(mutualexclusion(trial, trial2)) def intersection(set_a, set_b): res = [i for i in set_a if i in set_b] return res print(intersection(trial, trial2)) def repetitionAudit(set): pass #this will audit a list to see if an element occurs more than once #If it does, it will remove this element and return the list
[ 2, 3, 4, 6, 7 ]
2,138
17ac827d181650cd8bd6e75ca7ff363d70d3c4a7
import collections import cPickle as pickle import os import shutil import warnings import numpy as np import theano import theano.tensor as T import tables #theano.config.compute_test_value = 'warn' class SGD_Trainer(object): """Implementation of a stochastic gradient descent trainer """ #{{{ Properties @property def inputs(self): return self._inputs @inputs.setter def inputs(self, val): #FIXME: make this work for other input types if not isinstance(val, np.ndarray): raise TypeError('Resetting trainer inputs currently only works for ' 'ndarray inputs!') self._inputs = val self._inputs_theano = theano.shared( self._inputs[:self._loadsize], name='inputs') self._numcases = self._inputs.shape[0] self._numloads = self._numcases // self._loadsize print 'recompiling trainer functions...' self._compile_functions() @property def gradient_clip_threshold(self): return self._gradient_clip_threshold.get_value() @property def learningrate_decay_factor(self): return self._learningrate_decay_factor.get_value() @learningrate_decay_factor.setter def learningrate_decay_factor(self, val): self._learningrate_decay_factor.set_value(np.float32(val)) @property def learningrate_decay_interval(self): return self._learningrate_decay_interval.get_value() @learningrate_decay_interval.setter def learningrate_decay_interval(self, val): self._learningrate_decay_interval.set_value(np.int64(val)) @gradient_clip_threshold.setter def gradient_clip_threshold(self, val): self._gradient_clip_threshold.set_value(np.float32(val)) @property def learningrate(self): return self._learningrate.get_value() @learningrate.setter def learningrate(self, value): self._learningrate.set_value(np.float32(value)) @property def momentum(self): return self._momentum.get_value() @momentum.setter def momentum(self, val): self._momentum.set_value(np.float32(val)) @property def batchsize(self): return self._batchsize @property def loadsize(self): return self._loadsize @property def numcases(self): return self._numcases @property def verbose(self): return self._verbose @verbose.setter def verbose(self, val): self._verbose = bool(val) @property def epochcount(self): return self._epochcount @epochcount.setter def epochcount(self, val): self._epochcount = int(val) @property def momentum_batchcounter(self): return self._momentum_batchcounter #}}} def __init__(self, model=None, inputs=None, batchsize=100, learningrate=.01, momentum=0.9, loadsize=None, rng=None, verbose=True, numcases=None, gradient_clip_threshold=1000, numepochs_per_load=1, rmsprop=None, cost=None, params=None, inputvar=None, grads=None): #{{{ Initialization of Properties assert model is not None or ( cost is not None and params is not None and inputvar is not None and grads is not None), ( "either a model instance or cost, params and inputvar " "have to be passed to the SGD_Trainer constructor") if model is not None: self._model = model self._params = model.params self._cost = model._cost self._inputvar = model.inputs self._grads = model._grads else: self._params = params self._cost = cost self._inputvar = inputvar self._grads = grads self._learningrate = theano.shared(np.float32(learningrate), name='learningrate') self.numepochs_per_load = numepochs_per_load self._momentum = theano.shared(np.float32(momentum), name='momentum') self._total_stepcount = 0 self._gradient_clip_threshold = theano.shared( np.float32(gradient_clip_threshold), name='gradient_clip_threshold') self._avg_gradnorm = theano.shared(np.float32(0.), name='avg_gradnorm') self._learningrate_decay_factor = theano.shared( np.float32, name='learningrate_decay_factor') self._learningrate_decay_interval = theano.shared( np.int64, name='learningrate_decay_interval') if isinstance(inputs, str): self._inputs_type = 'h5' self._inputsfile = tables.openFile(inputs, 'r') self._inputs = self._inputsfile.root.inputs_white elif hasattr(inputs, '__call__'): self._inputs_type = 'function' self._inputs_fn = inputs else: self._inputs_type = 'numpy' self._inputs = inputs self._model = model self._numparams = reduce(lambda x,y: x+y, [p.get_value().size for p in self._params]) if self._inputs_type == 'function': numcases = loadsize else: if numcases is None or numcases > self._inputs.shape[0]: numcases = self._inputs.shape[0] self._numcases = numcases self._batchsize = batchsize self._loadsize = loadsize self._verbose = verbose if self._batchsize > self._numcases: self._batchsize = self._numcases if self._loadsize == None: self._loadsize = self._batchsize * 100 if self._loadsize > self._numcases: self._loadsize = self._numcases self._numloads = self._numcases // self._loadsize self._numbatches = self._loadsize // self._batchsize if self._inputs_type == 'h5': self._inputs_theano = theano.shared( self._inputs.read(stop=self._loadsize)) elif self._inputs_type == 'function': # TODO: generate inputs for first load print "generating first load..." inp = np.empty((self._loadsize, ) + (self._inputs_fn().shape), dtype=np.float32) for i in xrange(self._loadsize): inp[i] = self._inputs_fn() if (i + 1) % 100 == 0: print '{0}/{1}'.format(i + 1, self.loadsize) self._inputs_theano = theano.shared( inp) else: self._inputs_theano = theano.shared( self._inputs[:self._loadsize], name='inputs') #self._inputs_theano.tag.test_value = np.random.randn(100, model.n_vis*4) self._momentum_batchcounter = 0 if rng is None: self._rng = np.random.RandomState(1) else: self._rng = rng self._epochcount = 0 self._index = T.lscalar() self._incs = \ dict([(p, theano.shared(value=np.zeros(p.get_value().shape, dtype=theano.config.floatX), name='inc_'+p.name)) for p in self._params]) self._inc_updates = collections.OrderedDict() self.rmsprop = rmsprop if self.rmsprop is not None: self.averaging_coeff=0.95 self.stabilizer=1e-2 self._avg_grad_sqrs = \ dict([(p, theano.shared(value=np.zeros(p.get_value().shape, dtype=theano.config.floatX), name='avg_grad_sqr_'+p.name)) for p in self._params]) self._avg_grad_sqrs_updates = collections.OrderedDict() self._updates_nomomentum = collections.OrderedDict() self._updates = collections.OrderedDict() self._n = T.lscalar('n') self._n.tag.test_value = 0. self._noop = 0.0 * self._n self._batch_idx = theano.shared( value=np.array(0, dtype=np.int64), name='batch_idx') self.costs = [] self._compile_functions() #}}} def __del__(self): if self._inputs_type == 'h5': self._inputsfile.close() def save(self, filename): """Saves the trainers parameters to a file Params: filename: path to the file """ ext = os.path.splitext(filename)[1] if ext == '.pkl': print 'saving trainer params to a pkl file' self.save_pkl(filename) else: print 'saving trainer params to a hdf5 file' self.save_h5(filename) def save_h5(self, filename): """Saves a HDF5 file containing the trainers parameters Params: filename: path to the file """ try: shutil.copyfile(filename, '{0}_bak'.format(filename)) except IOError: print 'could not make backup of trainer param file (which is \ normal if we haven\'t saved one until now)' paramfile = tables.openFile(filename, 'w') paramfile.createArray(paramfile.root, 'learningrate', self.learningrate) paramfile.createArray(paramfile.root, 'verbose', self.verbose) paramfile.createArray(paramfile.root, 'loadsize', self.loadsize) paramfile.createArray(paramfile.root, 'batchsize', self.batchsize) paramfile.createArray(paramfile.root, 'momentum', self.momentum) paramfile.createArray(paramfile.root, 'epochcount', self.epochcount) paramfile.createArray(paramfile.root, 'momentum_batchcounter', self.momentum_batchcounter) incsgrp = paramfile.createGroup(paramfile.root, 'incs', 'increments') for p in self._params: paramfile.createArray(incsgrp, p.name, self._incs[p].get_value()) if self.rmsprop is not None: avg_grad_sqrs_grp = paramfile.createGroup(paramfile.root, 'avg_grad_sqrs') for p in self._params: paramfile.createArray(avg_grad_sqrs_grp, p.name, self._avg_grad_sqrs[p].get_value()) paramfile.close() def save_pkl(self, filename): """Saves a pickled dictionary containing the parameters to a file Params: filename: path to the file """ param_dict = {} param_dict['learningrate'] = self.learningrate param_dict['verbose'] = self.verbose param_dict['loadsize'] = self.loadsize param_dict['batchsize'] = self.batchsize param_dict['momentum'] = self.momentum param_dict['epochcount'] = self.epochcount param_dict['momentum_batchcounter'] = self.momentum_batchcounter param_dict['incs'] = dict( [(p.name, self._incs[p].get_value()) for p in self._params]) if self.rmsprop is not None: param_dict['avg_grad_sqrs'] = dict( [(p.name, self._avg_grad_sqrs[p].get_value()) for p in self._params]) pickle.dump(param_dict, open(filename, 'wb')) def load(self, filename): """Loads pickled dictionary containing parameters from a file Params: filename: path to the file """ param_dict = pickle.load(open('%s' % filename, 'rb')) self.learningrate = param_dict['learningrate'] self.verbose = param_dict['verbose'] self._loadsize = param_dict['loadsize'] self._batchsize = param_dict['batchsize'] self.momentum = param_dict['momentum'] self.epochcount = param_dict['epochcount'] self._momentum_batchcounter = param_dict['momentum_batchcounter'] for param_name in param_dict['incs'].keys(): for p in self._params: if p.name == param_name: self._incs[p].set_value(param_dict['incs'][param_name]) if self.rmsprop is not None: for param_name in param_dict['avg_grad_sqrs'].keys(): for p in self._params: if p.name == param_name: self._avg_grad_sqrs[p].set_value(param_dict['avg_grad_sqrs'][param_name]) self._numbatches = self._loadsize // self._batchsize if self._inputs_type != 'function': self._numloads = self._inputs.shape[0] // self._loadsize if self._inputs_type == 'h5': self._inputs_theano.set_value( self._inputs.read(stop=self._loadsize)) else: self._inputs_theano.set_value(self._inputs[:self._loadsize]) def reset_incs(self): for p in self._params: self._incs[p].set_value( np.zeros(p.get_value().shape, dtype=theano.config.floatX)) def reset_avg_grad_sqrs(self): for p in self._params: self._avg_grad_sqrs[p].set_value( np.zeros(p.get_value().shape, dtype=theano.config.floatX)) def _compile_functions(self): self._gradnorm = T.zeros([]) for _param, _grad in zip(self._params, self._grads): # apply rmsprop to before clipping gradients if self.rmsprop is not None: avg_grad_sqr = self._avg_grad_sqrs[_param] new_avg_grad_sqr = self.averaging_coeff * avg_grad_sqr + \ (1 - self.averaging_coeff) * T.sqr(_grad) self._avg_grad_sqrs_updates[avg_grad_sqr] = new_avg_grad_sqr rms_grad_t = T.sqrt(new_avg_grad_sqr) rms_grad_t = T.maximum(rms_grad_t, self.stabilizer) _grad = _grad / rms_grad_t self._gradnorm += T.sum(_grad**2) # calculated on the rmsprop 'grad' self._gradnorm = T.sqrt(self._gradnorm) self.gradnorm = theano.function( inputs=[], outputs=self._gradnorm, givens={ self._inputvar: self._inputs_theano[ self._batch_idx*self.batchsize: (self._batch_idx+1)*self.batchsize]}) avg_gradnorm_update = { self._avg_gradnorm: self._avg_gradnorm * .8 + self._gradnorm * .2} for _param, _grad in zip(self._params, self._grads): if hasattr(self._model, 'skip_params'): if _param.name in self._model.skip_params: continue _clip_grad = T.switch( T.gt(self._gradnorm, self._gradient_clip_threshold), _grad * self._gradient_clip_threshold / self._gradnorm, _grad) try: # ... to apply learningrate_modifiers # Cliphid version: self._inc_updates[self._incs[_param]] = \ self._momentum * self._incs[_param] - \ self._learningrate * \ self._model.layer.learningrate_modifiers[ _param.name] * _clip_grad self._updates[_param] = _param + self._incs[_param] self._updates_nomomentum[_param] = _param - \ self._learningrate * \ self._model.layer.learningrate_modifiers[_param.name] * \ _clip_grad except AttributeError: self._inc_updates[self._incs[_param]] = self._momentum * \ self._incs[_param] - self._learningrate * _clip_grad self._updates[_param] = _param + self._incs[_param] self._updates_nomomentum[_param] = _param - \ self._learningrate * _clip_grad # first update gradient norm running avg ordered_updates = collections.OrderedDict(avg_gradnorm_update) # so that it is considered in the parameter update computations ordered_updates.update(self._inc_updates) self._updateincs = theano.function( [], [self._cost, self._avg_gradnorm], updates = ordered_updates, givens = {self._inputvar:self._inputs_theano[ self._batch_idx*self._batchsize:(self._batch_idx+1)* \ self._batchsize]}) self._trainmodel = theano.function( [self._n], self._noop, updates = self._updates) self._trainmodel_nomomentum = theano.function( [self._n], self._noop, updates = self._updates_nomomentum, givens = {self._inputvar:self._inputs_theano[ self._batch_idx*self._batchsize:(self._batch_idx+1)* \ self._batchsize]}) self._momentum_batchcounter = 0 def _trainsubstep(self, batchidx): self._batch_idx.set_value(batchidx) stepcost, avg_gradnorm = self._updateincs() # catch NaN, before updating params if np.isnan(stepcost): raise ValueError, 'Cost function returned nan!' elif np.isinf(stepcost): raise ValueError, 'Cost function returned infinity!' if self._momentum_batchcounter < 10: self._momentum_batchcounter += 1 self._trainmodel_nomomentum(0) else: self._momentum_batchcounter = 10 self._trainmodel(0) return stepcost, avg_gradnorm def get_avg_gradnorm(self): avg_gradnorm = 0.0 print self.gradnorm() for batch_idx in range(self._numbatches): self._batch_idx.set_value(batch_idx) tmp = self.gradnorm() avg_gradnorm += tmp / self._numbatches print avg_gradnorm return avg_gradnorm def step(self): total_cost = 0.0 cost = 0.0 stepcount = 0.0 self._epochcount += 1 for load_index in range(self._numloads): indices = np.random.permutation(self._loadsize) if self._inputs_type == 'h5': self._inputs_theano.set_value( self._inputs.read( start=load_index * self._loadsize, stop=(load_index + 1) * self._loadsize)[indices]) elif self._inputs_type == 'function': # if load has been used n times, gen new load if self._epochcount % self.numepochs_per_load == 0: print 'using data function to generate new load...' inp = np.empty((self._loadsize, ) + (self._inputs_fn().shape), dtype=np.float32) for i in xrange(self._loadsize): inp[i] = self._inputs_fn() if (i + 1) % 100 == 0: print '{0}/{1}'.format(i + 1, self.loadsize) self._inputs_theano.set_value(inp) print 'done' else: self._inputs_theano.set_value( self._inputs[load_index * self._loadsize + indices]) for batch_index in self._rng.permutation(self._numbatches): stepcount += 1.0 self._total_stepcount += 1.0 stepcost, avg_gradnorm = self._trainsubstep(batch_index) cost = (1.0-1.0/stepcount)*cost + (1.0/stepcount)* \ stepcost if self._verbose: print '> epoch {0:d}, load {1:d}/{2:d}, cost: {3:f}, avg. gradnorm: {4}'.format( self._epochcount, load_index + 1, self._numloads, cost, avg_gradnorm) if hasattr(self._model, 'monitor'): self._model.monitor() self.costs.append(cost) return cost
null
null
null
null
[ 0 ]
2,139
f5b18673dd5a3ba3070c07e88ae83a531669311a
<mask token> def test_create_all(): eng = create_engine('cql://user:password@localhost:49154/system') metadata.create_all(eng)
<mask token> def test_create_engine(): eng = create_engine('cql://user:password@localhost:49154/system') assert eng.execute('select * from system.schema_keyspaces') def test_table_names(): eng = create_engine('cql://user:password@localhost:49154/system') eng.table_names() def test_create_all(): eng = create_engine('cql://user:password@localhost:49154/system') metadata.create_all(eng)
<mask token> metadata = MetaData() users = Table('users', metadata, Column('id', Integer, primary_key=True), Column('name', String), Column('fullname', String)) def test_create_engine(): eng = create_engine('cql://user:password@localhost:49154/system') assert eng.execute('select * from system.schema_keyspaces') def test_table_names(): eng = create_engine('cql://user:password@localhost:49154/system') eng.table_names() def test_create_all(): eng = create_engine('cql://user:password@localhost:49154/system') metadata.create_all(eng)
<mask token> import pytest from sqlalchemy import create_engine from sqlalchemy import Table, Column, Integer, String, MetaData, ForeignKey metadata = MetaData() users = Table('users', metadata, Column('id', Integer, primary_key=True), Column('name', String), Column('fullname', String)) def test_create_engine(): eng = create_engine('cql://user:password@localhost:49154/system') assert eng.execute('select * from system.schema_keyspaces') def test_table_names(): eng = create_engine('cql://user:password@localhost:49154/system') eng.table_names() def test_create_all(): eng = create_engine('cql://user:password@localhost:49154/system') metadata.create_all(eng)
""" Tests for `sqlalchemy-cql` module. """ import pytest from sqlalchemy import create_engine from sqlalchemy import Table, Column, Integer, String, MetaData, ForeignKey metadata = MetaData() users = Table('users', metadata, Column('id', Integer, primary_key=True), Column('name', String), Column('fullname', String), ) def test_create_engine(): eng = create_engine("cql://user:password@localhost:49154/system") assert eng.execute("select * from system.schema_keyspaces") def test_table_names(): eng = create_engine("cql://user:password@localhost:49154/system") eng.table_names() def test_create_all(): eng = create_engine("cql://user:password@localhost:49154/system") metadata.create_all(eng)
[ 1, 3, 4, 5, 6 ]
2,140
eb890c68885cbab032ce9d6f3be3fd7013a2788b
<mask token>
<mask token> os.chdir(main_dir) <mask token> for col in loan_seller_cols: cmbs.drop(columns=col, axis=1, inplace=True) <mask token> for key, value in regex_dict.items(): cmbs.columns = [re.sub(key, value, col) for col in cmbs.columns] for col in list(cmbs.columns.values): try: if cmbs[col].str.normalize('NFKD').str.match(' ').all(): cmbs.drop(columns=col, axis=1, inplace=True) except AttributeError: continue cmbs.to_csv('CMBS Final.csv', index=False, encoding='ISO-8859-1')
<mask token> main_dir = ( 'C:\\Users\\Username\\Desktop\\Python\\End-to-End-Data-Analysis\\1. Get the Data\\table' ) file = 'CMBS Table.csv' os.chdir(main_dir) cmbs = pd.read_csv(file, encoding='ISO-8859-1') loan_seller_cols = [val for val in cmbs.columns.values if re.search( '(^Loan\\s#|^Seller|^Property\\sName)', val)][3:] for col in loan_seller_cols: cmbs.drop(columns=col, axis=1, inplace=True) regex_dict = {'_\\d': '', '\\(.+\\)+': '', '#': '', '%': '', '\\/': '', '\\s\\s+': ' ', '^\\s+': '', '\\s+$': ''} for key, value in regex_dict.items(): cmbs.columns = [re.sub(key, value, col) for col in cmbs.columns] for col in list(cmbs.columns.values): try: if cmbs[col].str.normalize('NFKD').str.match(' ').all(): cmbs.drop(columns=col, axis=1, inplace=True) except AttributeError: continue cmbs.to_csv('CMBS Final.csv', index=False, encoding='ISO-8859-1')
import pandas as pd import os import re main_dir = ( 'C:\\Users\\Username\\Desktop\\Python\\End-to-End-Data-Analysis\\1. Get the Data\\table' ) file = 'CMBS Table.csv' os.chdir(main_dir) cmbs = pd.read_csv(file, encoding='ISO-8859-1') loan_seller_cols = [val for val in cmbs.columns.values if re.search( '(^Loan\\s#|^Seller|^Property\\sName)', val)][3:] for col in loan_seller_cols: cmbs.drop(columns=col, axis=1, inplace=True) regex_dict = {'_\\d': '', '\\(.+\\)+': '', '#': '', '%': '', '\\/': '', '\\s\\s+': ' ', '^\\s+': '', '\\s+$': ''} for key, value in regex_dict.items(): cmbs.columns = [re.sub(key, value, col) for col in cmbs.columns] for col in list(cmbs.columns.values): try: if cmbs[col].str.normalize('NFKD').str.match(' ').all(): cmbs.drop(columns=col, axis=1, inplace=True) except AttributeError: continue cmbs.to_csv('CMBS Final.csv', index=False, encoding='ISO-8859-1')
import pandas as pd import os import re main_dir = r'C:\Users\Username\Desktop\Python\End-to-End-Data-Analysis\1. Get the Data\table' file = 'CMBS Table.csv' os.chdir(main_dir) cmbs = pd.read_csv(file, encoding='ISO-8859-1') # Delete extra Loan & Seller columns loan_seller_cols = [val for val in cmbs.columns.values if re.search('(^Loan\s#|^Seller|^Property\sName)', val)][3:] for col in loan_seller_cols: cmbs.drop(columns=col, axis=1, inplace=True) # Regex to edit headers regex_dict = {'_\d': '', '\(.+\)+': '', '#': '', '%': '', r'\/' : '', '\s\s+': ' ', '^\s+': '', '\s+$': ''} for key, value in regex_dict.items(): cmbs.columns = [re.sub(key, value, col) for col in cmbs.columns] # Delete for col in list(cmbs.columns.values): try: if cmbs[col].str.normalize('NFKD').str.match(' ').all(): cmbs.drop(columns=col, axis=1, inplace=True) except AttributeError: continue cmbs.to_csv('CMBS Final.csv', index=False, encoding='ISO-8859-1')
[ 0, 1, 2, 3, 4 ]
2,141
0e03a3b3401075384e580bc2bb8af1a106f1d238
<mask token> class AuditMiddleware(object): <mask token> <mask token> <mask token> <mask token>
<mask token> class AuditMiddleware(object): <mask token> def process_request(self, request, *args, **kwargs): if not settings.CHANGE_LOGGING: return user = getattr(request, 'user', None) if user and not user.is_authenticated(): user = None update_kwargs = {} if user and isinstance(user, get_user_model()): update_kwargs['user'] = user if request.META.get('REMOTE_ADDR'): update_kwargs['remote_addr'] = request.META.get('REMOTE_ADDR') if request.META.get('REMOTE_HOST'): update_kwargs['remote_host'] = request.META.get('REMOTE_HOST') request._handler_func = partial(self.pre_action_handler, update_kwargs=update_kwargs) signals.audit_presave.connect(request._handler_func, dispatch_uid=( settings.DISPATCH_UID, request)) def process_response(self, request, response): signals.audit_presave.disconnect(dispatch_uid=(settings. DISPATCH_UID, request)) return response def pre_action_handler(self, sender, model_instance, audit_meta, update_kwargs=None, **kwargs): if audit_meta and getattr(audit_meta, 'audit' ) and update_kwargs is not None: audit_meta.update_additional_kwargs(update_kwargs)
<mask token> class AuditMiddleware(object): """ middleware to add the user from requests to ModelChange objects. This is independent of request logging and can be used separately. """ def process_request(self, request, *args, **kwargs): if not settings.CHANGE_LOGGING: return user = getattr(request, 'user', None) if user and not user.is_authenticated(): user = None update_kwargs = {} if user and isinstance(user, get_user_model()): update_kwargs['user'] = user if request.META.get('REMOTE_ADDR'): update_kwargs['remote_addr'] = request.META.get('REMOTE_ADDR') if request.META.get('REMOTE_HOST'): update_kwargs['remote_host'] = request.META.get('REMOTE_HOST') request._handler_func = partial(self.pre_action_handler, update_kwargs=update_kwargs) signals.audit_presave.connect(request._handler_func, dispatch_uid=( settings.DISPATCH_UID, request)) def process_response(self, request, response): signals.audit_presave.disconnect(dispatch_uid=(settings. DISPATCH_UID, request)) return response def pre_action_handler(self, sender, model_instance, audit_meta, update_kwargs=None, **kwargs): if audit_meta and getattr(audit_meta, 'audit' ) and update_kwargs is not None: audit_meta.update_additional_kwargs(update_kwargs)
from __future__ import unicode_literals from functools import partial from django.contrib.auth import get_user_model from .default_settings import settings from . import signals class AuditMiddleware(object): """ middleware to add the user from requests to ModelChange objects. This is independent of request logging and can be used separately. """ def process_request(self, request, *args, **kwargs): if not settings.CHANGE_LOGGING: return user = getattr(request, 'user', None) if user and not user.is_authenticated(): user = None update_kwargs = {} if user and isinstance(user, get_user_model()): update_kwargs['user'] = user if request.META.get('REMOTE_ADDR'): update_kwargs['remote_addr'] = request.META.get('REMOTE_ADDR') if request.META.get('REMOTE_HOST'): update_kwargs['remote_host'] = request.META.get('REMOTE_HOST') request._handler_func = partial(self.pre_action_handler, update_kwargs=update_kwargs) signals.audit_presave.connect(request._handler_func, dispatch_uid=( settings.DISPATCH_UID, request)) def process_response(self, request, response): signals.audit_presave.disconnect(dispatch_uid=(settings. DISPATCH_UID, request)) return response def pre_action_handler(self, sender, model_instance, audit_meta, update_kwargs=None, **kwargs): if audit_meta and getattr(audit_meta, 'audit' ) and update_kwargs is not None: audit_meta.update_additional_kwargs(update_kwargs)
from __future__ import unicode_literals from functools import partial from django.contrib.auth import get_user_model from .default_settings import settings from . import signals class AuditMiddleware(object): """ middleware to add the user from requests to ModelChange objects. This is independent of request logging and can be used separately. """ def process_request(self, request, *args, **kwargs): if not settings.CHANGE_LOGGING: return user = getattr(request, 'user', None) if user and not user.is_authenticated(): user = None # build kwargs to pass to the signal handler update_kwargs = {} if user and isinstance(user, get_user_model()): update_kwargs['user'] = user if request.META.get('REMOTE_ADDR'): update_kwargs['remote_addr'] = request.META.get('REMOTE_ADDR') if request.META.get('REMOTE_HOST'): update_kwargs['remote_host'] = request.META.get('REMOTE_HOST') # keep the strong ref on the request, its a sane lifetime request._handler_func = partial(self.pre_action_handler, update_kwargs=update_kwargs) signals.audit_presave.connect(request._handler_func, dispatch_uid=(settings.DISPATCH_UID, request,),) def process_response(self, request, response): # disconnect signals for this request # runs even if change logging is disabled in case it was disabled after the signal was created signals.audit_presave.disconnect(dispatch_uid=(settings.DISPATCH_UID, request,)) return response def pre_action_handler(self, sender, model_instance, audit_meta, update_kwargs=None, **kwargs): if audit_meta and getattr(audit_meta, 'audit') and update_kwargs is not None: audit_meta.update_additional_kwargs(update_kwargs)
[ 1, 4, 5, 6, 7 ]
2,142
f5f1a4db33cea8421cb4236606dfb288efee7621
<mask token> @admin.route('/', methods=['GET']) @login_required def index(): headers = {'Content-Type': 'text/html'} return make_response(render_template('index.html'), headers) <mask token>
<mask token> @admin.route('/', methods=['GET']) @login_required def index(): headers = {'Content-Type': 'text/html'} return make_response(render_template('index.html'), headers) @admin.route('/clients/<client_id>', methods=['GET']) @admin.route('/clients/new', methods=['GET']) @admin.route('/clients', methods=['GET']) @login_required def clients(client_id=None): headers = {'Content-Type': 'text/html'} if request.path[-4:] == '/new': clients = [Client()] operation_type = 'new' else: clients = list_clients(client_id) operation_type = 'list' if not client_id else 'edit' return make_response(render_template('clients.html', clients=clients, operation_type=operation_type)) @admin.route('/roles/<role_id>', methods=['GET']) @admin.route('/roles/new', methods=['GET']) @admin.route('/roles', methods=['GET']) @login_required def roles(role_id=None, operation_type=None): headers = {'Content-Type': 'text/html'} if request.path[-4:] == '/new': roles = [Role()] operation_type = 'new' if not operation_type: roles = list_roles(role_id) operation_type = 'list' if not role_id else 'edit' return make_response(render_template('roles.html', roles=roles, operation_type=operation_type))
<mask token> admin = Blueprint('admin', __name__, url_prefix='/passport/admin') @admin.route('/', methods=['GET']) @login_required def index(): headers = {'Content-Type': 'text/html'} return make_response(render_template('index.html'), headers) @admin.route('/clients/<client_id>', methods=['GET']) @admin.route('/clients/new', methods=['GET']) @admin.route('/clients', methods=['GET']) @login_required def clients(client_id=None): headers = {'Content-Type': 'text/html'} if request.path[-4:] == '/new': clients = [Client()] operation_type = 'new' else: clients = list_clients(client_id) operation_type = 'list' if not client_id else 'edit' return make_response(render_template('clients.html', clients=clients, operation_type=operation_type)) @admin.route('/roles/<role_id>', methods=['GET']) @admin.route('/roles/new', methods=['GET']) @admin.route('/roles', methods=['GET']) @login_required def roles(role_id=None, operation_type=None): headers = {'Content-Type': 'text/html'} if request.path[-4:] == '/new': roles = [Role()] operation_type = 'new' if not operation_type: roles = list_roles(role_id) operation_type = 'list' if not role_id else 'edit' return make_response(render_template('roles.html', roles=roles, operation_type=operation_type))
from flask import Blueprint, make_response, render_template, request from flask_restful import Resource from flask_security import login_required from ..clients.service import list_clients from ..roles.service import list_roles from ...models import Client, Role admin = Blueprint('admin', __name__, url_prefix='/passport/admin') @admin.route('/', methods=['GET']) @login_required def index(): headers = {'Content-Type': 'text/html'} return make_response(render_template('index.html'), headers) @admin.route('/clients/<client_id>', methods=['GET']) @admin.route('/clients/new', methods=['GET']) @admin.route('/clients', methods=['GET']) @login_required def clients(client_id=None): headers = {'Content-Type': 'text/html'} if request.path[-4:] == '/new': clients = [Client()] operation_type = 'new' else: clients = list_clients(client_id) operation_type = 'list' if not client_id else 'edit' return make_response(render_template('clients.html', clients=clients, operation_type=operation_type)) @admin.route('/roles/<role_id>', methods=['GET']) @admin.route('/roles/new', methods=['GET']) @admin.route('/roles', methods=['GET']) @login_required def roles(role_id=None, operation_type=None): headers = {'Content-Type': 'text/html'} if request.path[-4:] == '/new': roles = [Role()] operation_type = 'new' if not operation_type: roles = list_roles(role_id) operation_type = 'list' if not role_id else 'edit' return make_response(render_template('roles.html', roles=roles, operation_type=operation_type))
# coding: utf-8 from flask import Blueprint, make_response, render_template, request from flask_restful import Resource from flask_security import login_required from ..clients.service import list_clients from ..roles.service import list_roles from ...models import Client, Role admin = Blueprint('admin', __name__, url_prefix='/passport/admin') @admin.route('/', methods=['GET']) @login_required def index(): headers = {'Content-Type': 'text/html'} return make_response(render_template( 'index.html'), headers) @admin.route('/clients/<client_id>', methods=['GET']) @admin.route('/clients/new', methods=['GET']) @admin.route('/clients', methods=['GET']) @login_required def clients(client_id=None): headers = {'Content-Type': 'text/html'} if request.path[-4:] == '/new': clients = [Client()] operation_type = 'new' else: clients = list_clients(client_id) operation_type = 'list' if not client_id else 'edit' return make_response(render_template( 'clients.html', clients=clients, operation_type=operation_type)) @admin.route('/roles/<role_id>', methods=['GET']) @admin.route('/roles/new', methods=['GET']) @admin.route('/roles', methods=['GET']) @login_required def roles(role_id=None, operation_type=None): headers = {'Content-Type': 'text/html'} if request.path[-4:] == '/new': roles = [Role()] operation_type = 'new' if not operation_type: roles = list_roles(role_id) operation_type = 'list' if not role_id else 'edit' return make_response(render_template( 'roles.html', roles=roles, operation_type=operation_type))
[ 1, 3, 4, 5, 6 ]
2,143
9db1887c5379623687d1dea343d72122bab66303
<mask token>
<mask token> urlpatterns = [path('', views.home, name='home'), path('ppt1', views.ppt1, name='ppt1'), path('ppt2', views.ppt2, name='ppt2')]
from django.urls import path from . import views urlpatterns = [path('', views.home, name='home'), path('ppt1', views.ppt1, name='ppt1'), path('ppt2', views.ppt2, name='ppt2')]
from django.urls import path from . import views # 현재 패키지에서 views 모듈을 가져옴 urlpatterns = [ path('', views.home, name='home'), path('ppt1',views.ppt1,name='ppt1'), path('ppt2',views.ppt2,name='ppt2'), ]
null
[ 0, 1, 2, 3 ]
2,144
b30e6af035b589d5f4bd1bc6cccdd53c157861a0
#!/usr/bin/env python # including libraries import roslib import sys import rospy import cv2 import math from std_msgs.msg import String from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError import numpy as np import matplotlib.pyplot as plt MAP = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,0],[0,1,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,1,0,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,0],[0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0],[0,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,1,1,1,0],[0,0,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,0,1,0],[0,1,1,1,0,1,0,1,1,1,0,1,1,1,0,1,1,1,1,0],[0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0],[0,1,0,1,0,1,0,1,0,1,1,1,0,1,1,1,1,1,1,0],[0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,0],[0,1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,1,1,1,0],[0,1,0,0,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0],[0,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,1,1,1,0],[0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,1,0,1,1,1,1,1,1,0,1,1,1,0,1,1,1,0,1,0],[0,1,0,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0],[0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0],[0,1,0,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]) position_history = (0,0) class labyrinth_solver: def __init__(self): self.image_pub = rospy.Publisher("final_image",Image) self.bridge = CvBridge() self.image_sub = rospy.Subscriber("/usb_cam/image_raw",Image,self.callback) def callback(self,data): try: cv_image = self.bridge.imgmsg_to_cv2(data, desired_encoding="bgr8") except CvBridgeError, e: print e # crop out the labyrinth region (y by x) cv_image = cv_image[22:240, 44:268] # resize the image to 200x200 each region is 10x10 cv_image = cv2.resize(cv_image, (400, 400)) # transfer the image from RGB to HSV hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV) # Red Ball Segmentation lower_red = np.array([0,50,150]) upper_red = np.array([50,150,250]) temp_ball = cv2.inRange(hsv_image,lower_red,upper_red) # Erosion and Dilation processing kernel = np.ones((3,3),np.uint8) temp_ball = cv2.dilate(temp_ball,kernel,iterations = 2) #cv2.imshow("Red Ball", temp_ball) # Calculate the contour contours,hierarcy = cv2.findContours(temp_ball,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # Select the biggest contout as the target max_area = 0 for cnt in contours: area=cv2.contourArea(cnt) if area > max_area: max_area=area target = cnt global position_history # calling global variable # handling with target missing if max_area >= 10: (x,y),radius = cv2.minEnclosingCircle(target) center = (int(x),int(y)) else: center = position_history # Compensate with some noise radius = 10 if abs(center[0]-position_history[0])+abs(center[1]-position_history[1])<=4: center = position_history cv2.circle(cv_image,center,radius,(0,255,0),2) position_history = center cv2.imshow("Ball tracking", cv_image) # manipulate the center coordinate to be the nearest 10 while extract the position in 20 by 20 # FIRST check who is more close to 0 checkx = center[0]%20-10 checky = center[1]%20-15 if abs(checkx) <= abs(checky): newx = center[0] - checkx newy = center[1]*0.955 elif abs(checkx) > abs(checky): newx = center[0] newy = 0.955*(center[1] - checky) newcenter = (newx, int(newy)) # read the reference map for animation map_ref = cv2.imread('/home/sunyue/catkin_ws/src/tracking/map.png') cv2.circle(map_ref,newcenter,radius,(0,0,255),-5) # SECOND transfer the real location to the 20x20 grid gridx = newcenter[0]/20+1 gridy = newcenter[1]/20+1 # A* for path planning goal = [10,2] current = [gridx, gridy] precheck = abs(current[0]-goal[0])+abs(current[1]-goal[1]) if precheck == 0: check = 0 else: check = 100 path = np.array([current]) backup = np.array([[0,0,0,0]]) while check!=0: # generate the potential candidate north = [current[0],current[1]-1] south = [current[0],current[1]+1] east = [current[0]+1,current[1]] west = [current[0]-1,current[1]] #print current # calculate the heuristic n_heuristic = math.sqrt(pow(north[0]-goal[0],2)+pow(north[1]-goal[1],2)) s_heuristic = math.sqrt(pow(south[0]-goal[0],2)+pow(south[1]-goal[1],2)) e_heuristic = math.sqrt(pow(east[0]-goal[0],2)+pow(east[1]-goal[1],2)) w_heuristic = math.sqrt(pow(west[0]-goal[0],2)+pow(west[1]-goal[1],2)) # check the punishment of obstacle if MAP[north[1]-1,north[0]-1]==0: n_punish = 2000 else: n_punish = 0 if MAP[south[1]-1,south[0]-1]==0: s_punish = 2000 else: s_punish = 0 if MAP[east[1]-1,east[0]-1]==0: e_punish = 2000 else: e_punish = 0 if MAP[west[1]-1,west[0]-1]==0: w_punish = 2000 else: w_punish = 0 #print n_punish, s_punish, e_punish, w_punish # check last node never go back num = path.shape[0] # get the path step number if num!=1: last_step = path[-2] n_check = north - last_step s_check = south - last_step e_check = east - last_step w_check = west - last_step if ( n_check[0]==0 and n_check[1]==0): n_punish = 2000 if ( s_check[0]==0 and s_check[1]==0): s_punish = 2000 if ( e_check[0]==0 and e_check[1]==0): e_punish = 2000 if ( w_check[0]==0 and w_check[1]==0): w_punish = 2000 # sum the cost together n_cost = int(n_heuristic + n_punish) s_cost = int(s_heuristic + s_punish) e_cost = int(e_heuristic + e_punish) w_cost = int(w_heuristic + w_punish) cost = [n_cost, s_cost, e_cost, w_cost] # there will be some situations should be taken into consideration index = np.argmin(cost) # where the smallest cost is located mincost = cost[index] # First only one direction cost is less than 1000, then just pick that if mincost<=1000: # there must be at least one solution sumcheck = cost[0]+cost[1]+cost[2]+cost[3] if sumcheck >= 6000: # only one next choice if index == 0: next = north elif index == 1: next = south elif index == 2: next = east elif index == 3: next = west # update the path path = np.append(path,[next],axis=0) # update the check for next while precheck = abs(next[0]-goal[0])+abs(next[1]-goal[1]) if precheck == 0: check = 0 # updat the current current = next elif (sumcheck >= 4000 and sumcheck < 6000) : # two posible choices if index == 0: next = north elif index == 1: next = south elif index == 2: next = east elif index == 3: next = west # update the path choose the one have the least cost path = np.append(path,[next],axis=0) # update the check for next while precheck = abs(next[0]-goal[0])+abs(next[1]-goal[1]) if precheck == 0: check = 0 # save the branch to the back up [current, branch] fakecost = cost fakecost[index] = 2000 # mannually fake the minimum cost choice fakeindex = np.argmin(fakecost) # where the smallest cost is located if fakeindex == 0: branch = north elif fakeindex == 1: branch = south elif fakeindex == 2: branch = east elif fakeindex == 3: branch = west backup = np.append([[current[0],current[1],branch[0],branch[1]]], backup, axis=0) # updat the current current = next elif (sumcheck >= 2000 and sumcheck < 4000) : # three posible choices if index == 0: next = north elif index == 1: next = south elif index == 2: next = east elif index == 3: next = west # update the path choose the one have the least cost path = np.append(path,[next],axis=0) # update the check for next while precheck = abs(next[0]-goal[0])+abs(next[1]-goal[1]) if precheck == 0: check = 0 # save the branch to the back up [current, branch] # second cost secondcost = cost secondcost[index] = 2000 # mannually fake the minimum cost choice secondindex = np.argmin(secondcost) # where the smallest cost is located if secondindex == 0: branch1 = north elif secondindex == 1: branch1 = south elif secondindex == 2: branch1 = east elif secondindex == 3: branch1 = west thirdcost = secondcost thirdcost[secondindex] = 2000 # mannually fake the minimum cost choice thirdindex = np.argmin(thirdcost) # where the smallest cost is located if thirdindex == 0: branch2 = north elif thirdindex == 1: branch2 = south elif thirdindex == 2: branch2 = east elif thirdindex == 3: branch2 = west # update branch based on cost difference backup = np.append([[current[0],current[1],branch2[0],branch2[1]]], backup, axis=0) backup = np.append([[current[0],current[1],branch1[0],branch1[1]]], backup, axis=0) # updat the current current = next elif mincost>=2000: # there is no next choice we have go to backup branchs # next step is the first ranking branch next = [backup[0,2],backup[0,3]] # cut the path back current = [backup[0,0],backup[0,1]] compare = abs(path-current) summation = sum(np.transpose(compare)) index = np.argmin(summation) # cut the path from 0 to current one path = path[:index+1] # update the path with next step path = np.append(path,[next],axis=0) # delete the first backup backup = backup[1:] # update the check for next while precheck = abs(next[0]-goal[0])+abs(next[1]-goal[1]) if precheck == 0: check = 0 # updat the current current = next # A* algorithm is ended steps = path.shape[0] i = 0 while i < steps-1: cv2.line(map_ref,(20*path[i,0]-10,20*path[i,1]-10),(20*path[i+1,0]-10,20*path[i+1,1]-10),(255,0,0),3) i = i+1 cv2.imshow("Map Image", map_ref) cv2.waitKey(1) try: self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, encoding="bgr8")) except CvBridgeError, e: print e def main(args): ic = labyrinth_solver() rospy.init_node('labyrinth_solver', anonymous=True) try: rospy.spin() except KeyboardInterrupt: print "Shutting down" cv2.destroyAllWindows() if __name__ == '__main__': main(sys.argv)
null
null
null
null
[ 0 ]
2,145
ba2f8598ec7e107ac71786cf9191777a93ae2c7a
<mask token>
<mask token> for i in sys.stdin: i = float(i) key = math.floor(i * 10) print('%s\t%s' % (key, i))
import os import sys import csv import math for i in sys.stdin: i = float(i) key = math.floor(i * 10) print('%s\t%s' % (key, i))
import os import sys import csv import math for i in sys.stdin: i = float(i) key = math.floor(i*10) print('%s\t%s' % (key, i))
null
[ 0, 1, 2, 3 ]
2,146
d296e528d399ee772039777d139a1d8271711ee9
<mask token> class AssessmentDetail(DetailView): <mask token> class AnswerQuestions(ListView): model = Question def post(self, request): company, mine, assessment = self.get_assessment(request) for key, value in request.POST.items(): print(key, value) self.create_response(key, value, assessment) self.add_null_responses(assessment) messages.success(request, 'Assessment Received; Thank You!') return redirect(reverse('assessment_detail', kwargs={'pk': assessment.id})) def get_assessment(self, request): company, created = Company.objects.get_or_create(name=request.POST. get('company')) mine, created = Mine.objects.get_or_create(name=request.POST.get( 'mine'), company=company, location=request.POST.get('location')) assessment = Assessment.objects.create(mine=mine) if request.user.is_authenticated: assessment.user = request.user assessment.save() return company, mine, assessment def create_response(self, key, value, assessment): try: question = Question.objects.get(id=int(key)) response = Response.objects.create(question=question, response= self.get_response(value), assessment=assessment) except Exception as error: print(error) def get_response(self, response): if response == 'True': return True else: return False def add_null_responses(self, assessment): remaining_questions = Question.objects.exclude(response__assessment =assessment).distinct() for question in remaining_questions: Response.objects.create(assessment=assessment, question=question)
<mask token> class AssessmentList(ListView): <mask token> class AssessmentDetail(DetailView): model = Assessment class AnswerQuestions(ListView): model = Question def post(self, request): company, mine, assessment = self.get_assessment(request) for key, value in request.POST.items(): print(key, value) self.create_response(key, value, assessment) self.add_null_responses(assessment) messages.success(request, 'Assessment Received; Thank You!') return redirect(reverse('assessment_detail', kwargs={'pk': assessment.id})) def get_assessment(self, request): company, created = Company.objects.get_or_create(name=request.POST. get('company')) mine, created = Mine.objects.get_or_create(name=request.POST.get( 'mine'), company=company, location=request.POST.get('location')) assessment = Assessment.objects.create(mine=mine) if request.user.is_authenticated: assessment.user = request.user assessment.save() return company, mine, assessment def create_response(self, key, value, assessment): try: question = Question.objects.get(id=int(key)) response = Response.objects.create(question=question, response= self.get_response(value), assessment=assessment) except Exception as error: print(error) def get_response(self, response): if response == 'True': return True else: return False def add_null_responses(self, assessment): remaining_questions = Question.objects.exclude(response__assessment =assessment).distinct() for question in remaining_questions: Response.objects.create(assessment=assessment, question=question)
<mask token> class MineList(ListView): <mask token> def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['maps_api_key'] = settings.GOOGLEMAPS_API_KEY return context class MineDetail(DetailView): model = Mine class AssessmentList(ListView): model = Assessment class AssessmentDetail(DetailView): model = Assessment class AnswerQuestions(ListView): model = Question def post(self, request): company, mine, assessment = self.get_assessment(request) for key, value in request.POST.items(): print(key, value) self.create_response(key, value, assessment) self.add_null_responses(assessment) messages.success(request, 'Assessment Received; Thank You!') return redirect(reverse('assessment_detail', kwargs={'pk': assessment.id})) def get_assessment(self, request): company, created = Company.objects.get_or_create(name=request.POST. get('company')) mine, created = Mine.objects.get_or_create(name=request.POST.get( 'mine'), company=company, location=request.POST.get('location')) assessment = Assessment.objects.create(mine=mine) if request.user.is_authenticated: assessment.user = request.user assessment.save() return company, mine, assessment def create_response(self, key, value, assessment): try: question = Question.objects.get(id=int(key)) response = Response.objects.create(question=question, response= self.get_response(value), assessment=assessment) except Exception as error: print(error) def get_response(self, response): if response == 'True': return True else: return False def add_null_responses(self, assessment): remaining_questions = Question.objects.exclude(response__assessment =assessment).distinct() for question in remaining_questions: Response.objects.create(assessment=assessment, question=question)
<mask token> class Home(View): def get(self, request): return render(request, 'home.html') class MineList(ListView): model = Mine def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['maps_api_key'] = settings.GOOGLEMAPS_API_KEY return context class MineDetail(DetailView): model = Mine class AssessmentList(ListView): model = Assessment class AssessmentDetail(DetailView): model = Assessment class AnswerQuestions(ListView): model = Question def post(self, request): company, mine, assessment = self.get_assessment(request) for key, value in request.POST.items(): print(key, value) self.create_response(key, value, assessment) self.add_null_responses(assessment) messages.success(request, 'Assessment Received; Thank You!') return redirect(reverse('assessment_detail', kwargs={'pk': assessment.id})) def get_assessment(self, request): company, created = Company.objects.get_or_create(name=request.POST. get('company')) mine, created = Mine.objects.get_or_create(name=request.POST.get( 'mine'), company=company, location=request.POST.get('location')) assessment = Assessment.objects.create(mine=mine) if request.user.is_authenticated: assessment.user = request.user assessment.save() return company, mine, assessment def create_response(self, key, value, assessment): try: question = Question.objects.get(id=int(key)) response = Response.objects.create(question=question, response= self.get_response(value), assessment=assessment) except Exception as error: print(error) def get_response(self, response): if response == 'True': return True else: return False def add_null_responses(self, assessment): remaining_questions = Question.objects.exclude(response__assessment =assessment).distinct() for question in remaining_questions: Response.objects.create(assessment=assessment, question=question)
from django.conf import settings from django.contrib import messages from django.shortcuts import redirect, render from django.urls import reverse from django.views.generic import DetailView, ListView, View from assessments.models import (Mine, Company, QuestionCategory, Question, Assessment, Response) class Home(View): def get(self, request): return render(request, 'home.html') class MineList(ListView): model = Mine def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['maps_api_key'] = settings.GOOGLEMAPS_API_KEY return context class MineDetail(DetailView): model = Mine class AssessmentList(ListView): model = Assessment class AssessmentDetail(DetailView): model = Assessment class AnswerQuestions(ListView): model = Question def post(self, request): company, mine, assessment = self.get_assessment( request) for key, value in request.POST.items(): print(key, value) self.create_response(key, value, assessment) self.add_null_responses(assessment) messages.success(request, 'Assessment Received; Thank You!') return redirect(reverse('assessment_detail', kwargs={'pk':assessment.id})) def get_assessment(self, request): company, created = Company.objects.get_or_create( name=request.POST.get('company') ) mine, created = Mine.objects.get_or_create( name=request.POST.get('mine'), company=company, location=request.POST.get('location') ) assessment = Assessment.objects.create( mine=mine, ) if request.user.is_authenticated: assessment.user =request.user assessment.save() return company, mine, assessment def create_response(self, key, value, assessment): try: question = Question.objects.get(id=int(key)) response = Response.objects.create( question=question, response=self.get_response(value), assessment=assessment ) except Exception as error: print(error) def get_response(self, response): if response == 'True': return True else: return False def add_null_responses(self, assessment): remaining_questions = Question.objects.exclude( response__assessment=assessment).distinct() for question in remaining_questions: Response.objects.create( assessment=assessment, question=question, )
[ 8, 10, 15, 18, 20 ]
2,147
64368679aa2e387e25a36b2f3d0312a99b819e95
<mask token>
<mask token> api.main()
from xrouter import api api.main()
#!/usr/bin/env python from xrouter import api api.main()
null
[ 0, 1, 2, 3 ]
2,148
49995e60b817e2c5a2ea7e85e4fe96ca95363cb2
<mask token> def test_linearSVC(*data): X_train, X_test, y_train, y_test = data cls = svm.LinearSVC() cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s' % (cls.coef_, cls.intercept_)) print('Scors:%.2f' % cls.score(X_test, y_test)) def test_SVC_linear(*data): X_train, X_test, y_train, y_test = data cls = svm.SVC(kernel='linear') cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s' % (cls.coef_, cls.intercept_)) print('Scors:%.2f' % cls.score(X_test, y_test)) <mask token> def test_SVC_rbf(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() cls = svm.SVC(C=1000.0, kernel='rbf', gamma=0.1, probability=True) cls.fit(X_train, y_train) print('Scors:%.2f' % cls.score(X_test, y_test)) print('probability') print(cls.predict(X_test)) return cls.predict_proba(X_test) <mask token> def main(): DATA_TRAIN = 'train-autd365-2018-8-31-day-high100-round-select2-0split.csv' DATA_TEST = 'test-autd365-2018-8-31-day-high100-round-select2-0split.csv' train_datas = base.load_csv_without_header(DATA_TRAIN, target_dtype=np. int16, features_dtype=np.float32, target_column=0) test_datas = base.load_csv_without_header(DATA_TEST, target_dtype=np. int16, features_dtype=np.float32, target_column=0) test_SVC_sigmod(train_datas.data, test_datas.data, train_datas.target, test_datas.target) <mask token>
<mask token> def test_linearSVC(*data): X_train, X_test, y_train, y_test = data cls = svm.LinearSVC() cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s' % (cls.coef_, cls.intercept_)) print('Scors:%.2f' % cls.score(X_test, y_test)) def test_SVC_linear(*data): X_train, X_test, y_train, y_test = data cls = svm.SVC(kernel='linear') cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s' % (cls.coef_, cls.intercept_)) print('Scors:%.2f' % cls.score(X_test, y_test)) def test_SVC_poly(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() degrees = range(1, 2) train_scores = [] test_scores = [] for degree in degrees: cls = svm.SVC(kernel='poly', degree=degree) cls.fit(X_train, y_train) train_scores.append(cls.score(X_train, y_train)) test_scores.append(cls.score(X_test, y_test)) print('Scors:%.2f' % cls.score(X_test, y_test)) ax = fig.add_subplot(1, 3, 1) ax.plot(degrees, train_scores, label='Training score ', marker='+') ax.plot(degrees, test_scores, label='Testing score ', marker='o') ax.set_title('SVC_poly_degree ') ax.set_xlabel('p') ax.set_ylabel('score') ax.set_ylim(0, 1.05) ax.legend(loc='best', framealpha=0.5) plt.show() def test_SVC_rbf(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() cls = svm.SVC(C=1000.0, kernel='rbf', gamma=0.1, probability=True) cls.fit(X_train, y_train) print('Scors:%.2f' % cls.score(X_test, y_test)) print('probability') print(cls.predict(X_test)) return cls.predict_proba(X_test) def grid_SVC_rbf(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() param_grid = {'C': [1000.0, 5000.0, 10000.0, 50000.0, 100000.0], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1]} cls = GridSearchCV(svm.SVC(kernel='rbf'), param_grid) cls.fit(X_train, y_train) print('Best estimotor by GridSearchCV:') print(cls.best_estimator_) def test_SVC_sigmod(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() gammas = range(1, 2) train_scores = [] test_scores = [] for gamma in gammas: cls = svm.SVC(kernel='sigmoid', gamma=gamma, coef0=0) cls.fit(X_train, y_train) train_scores.append(cls.score(X_train, y_train)) test_scores.append(cls.score(X_test, y_test)) print('Scors:%.2f' % cls.score(X_test, y_test)) ax = fig.add_subplot(1, 1, 1) ax.plot(gammas, train_scores, label='Training score ', marker='+') ax.plot(gammas, test_scores, label='Testing score ', marker='o') ax.set_title('SVC_sigmoid_gamma ') ax.set_xscale('log') ax.set_xlabel('$\\gamma$') ax.set_ylabel('score') ax.set_ylim(0, 1.05) ax.legend(loc='best', framealpha=0.5) plt.show() def main(): DATA_TRAIN = 'train-autd365-2018-8-31-day-high100-round-select2-0split.csv' DATA_TEST = 'test-autd365-2018-8-31-day-high100-round-select2-0split.csv' train_datas = base.load_csv_without_header(DATA_TRAIN, target_dtype=np. int16, features_dtype=np.float32, target_column=0) test_datas = base.load_csv_without_header(DATA_TEST, target_dtype=np. int16, features_dtype=np.float32, target_column=0) test_SVC_sigmod(train_datas.data, test_datas.data, train_datas.target, test_datas.target) <mask token>
<mask token> def test_linearSVC(*data): X_train, X_test, y_train, y_test = data cls = svm.LinearSVC() cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s' % (cls.coef_, cls.intercept_)) print('Scors:%.2f' % cls.score(X_test, y_test)) def test_SVC_linear(*data): X_train, X_test, y_train, y_test = data cls = svm.SVC(kernel='linear') cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s' % (cls.coef_, cls.intercept_)) print('Scors:%.2f' % cls.score(X_test, y_test)) def test_SVC_poly(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() degrees = range(1, 2) train_scores = [] test_scores = [] for degree in degrees: cls = svm.SVC(kernel='poly', degree=degree) cls.fit(X_train, y_train) train_scores.append(cls.score(X_train, y_train)) test_scores.append(cls.score(X_test, y_test)) print('Scors:%.2f' % cls.score(X_test, y_test)) ax = fig.add_subplot(1, 3, 1) ax.plot(degrees, train_scores, label='Training score ', marker='+') ax.plot(degrees, test_scores, label='Testing score ', marker='o') ax.set_title('SVC_poly_degree ') ax.set_xlabel('p') ax.set_ylabel('score') ax.set_ylim(0, 1.05) ax.legend(loc='best', framealpha=0.5) plt.show() def test_SVC_rbf(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() cls = svm.SVC(C=1000.0, kernel='rbf', gamma=0.1, probability=True) cls.fit(X_train, y_train) print('Scors:%.2f' % cls.score(X_test, y_test)) print('probability') print(cls.predict(X_test)) return cls.predict_proba(X_test) def grid_SVC_rbf(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() param_grid = {'C': [1000.0, 5000.0, 10000.0, 50000.0, 100000.0], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1]} cls = GridSearchCV(svm.SVC(kernel='rbf'), param_grid) cls.fit(X_train, y_train) print('Best estimotor by GridSearchCV:') print(cls.best_estimator_) def test_SVC_sigmod(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() gammas = range(1, 2) train_scores = [] test_scores = [] for gamma in gammas: cls = svm.SVC(kernel='sigmoid', gamma=gamma, coef0=0) cls.fit(X_train, y_train) train_scores.append(cls.score(X_train, y_train)) test_scores.append(cls.score(X_test, y_test)) print('Scors:%.2f' % cls.score(X_test, y_test)) ax = fig.add_subplot(1, 1, 1) ax.plot(gammas, train_scores, label='Training score ', marker='+') ax.plot(gammas, test_scores, label='Testing score ', marker='o') ax.set_title('SVC_sigmoid_gamma ') ax.set_xscale('log') ax.set_xlabel('$\\gamma$') ax.set_ylabel('score') ax.set_ylim(0, 1.05) ax.legend(loc='best', framealpha=0.5) plt.show() def main(): DATA_TRAIN = 'train-autd365-2018-8-31-day-high100-round-select2-0split.csv' DATA_TEST = 'test-autd365-2018-8-31-day-high100-round-select2-0split.csv' train_datas = base.load_csv_without_header(DATA_TRAIN, target_dtype=np. int16, features_dtype=np.float32, target_column=0) test_datas = base.load_csv_without_header(DATA_TEST, target_dtype=np. int16, features_dtype=np.float32, target_column=0) test_SVC_sigmod(train_datas.data, test_datas.data, train_datas.target, test_datas.target) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--learning_rate', type=float, default=0.01, help= 'Initial learning rate.') parser.add_argument('--max_steps', type=int, default=100000, help= 'Number of steps to run trainer.') parser.add_argument('--percentage', type=float, default=0.99, help= 'Number of float for pca remain percentage.') parser.add_argument('--hidden2', type=int, default=32, help= 'Number of units in hidden layer 2.') parser.add_argument('--batch_size', type=int, default=1, help= 'Batch size. Must divide evenly into the dataset sizes.') parser.add_argument('--input_data_dir', type=str, default= '/home/freebirdweij/tf_works/invest', help= 'Directory to put the input data.') parser.add_argument('--log_dir', type=str, default= '/home/freebirdweij/tf_works/invest/logs', help= 'Directory to put the log data.') parser.add_argument('--fake_data', default=False, help= 'If true, uses fake data for unit testing.', action='store_true') FLAGS, unparsed = parser.parse_known_args() main()
<mask token> from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os.path import sys import time import numpy as np from numpy import shape from scipy import linalg from sklearn import datasets, linear_model, cross_validation, svm from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import com.freebirdweij.goldanalyse.ml.data_util as base import matplotlib.pyplot as plt def test_linearSVC(*data): X_train, X_test, y_train, y_test = data cls = svm.LinearSVC() cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s' % (cls.coef_, cls.intercept_)) print('Scors:%.2f' % cls.score(X_test, y_test)) def test_SVC_linear(*data): X_train, X_test, y_train, y_test = data cls = svm.SVC(kernel='linear') cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s' % (cls.coef_, cls.intercept_)) print('Scors:%.2f' % cls.score(X_test, y_test)) def test_SVC_poly(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() degrees = range(1, 2) train_scores = [] test_scores = [] for degree in degrees: cls = svm.SVC(kernel='poly', degree=degree) cls.fit(X_train, y_train) train_scores.append(cls.score(X_train, y_train)) test_scores.append(cls.score(X_test, y_test)) print('Scors:%.2f' % cls.score(X_test, y_test)) ax = fig.add_subplot(1, 3, 1) ax.plot(degrees, train_scores, label='Training score ', marker='+') ax.plot(degrees, test_scores, label='Testing score ', marker='o') ax.set_title('SVC_poly_degree ') ax.set_xlabel('p') ax.set_ylabel('score') ax.set_ylim(0, 1.05) ax.legend(loc='best', framealpha=0.5) plt.show() def test_SVC_rbf(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() cls = svm.SVC(C=1000.0, kernel='rbf', gamma=0.1, probability=True) cls.fit(X_train, y_train) print('Scors:%.2f' % cls.score(X_test, y_test)) print('probability') print(cls.predict(X_test)) return cls.predict_proba(X_test) def grid_SVC_rbf(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() param_grid = {'C': [1000.0, 5000.0, 10000.0, 50000.0, 100000.0], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1]} cls = GridSearchCV(svm.SVC(kernel='rbf'), param_grid) cls.fit(X_train, y_train) print('Best estimotor by GridSearchCV:') print(cls.best_estimator_) def test_SVC_sigmod(*data): X_train, X_test, y_train, y_test = data fig = plt.figure() gammas = range(1, 2) train_scores = [] test_scores = [] for gamma in gammas: cls = svm.SVC(kernel='sigmoid', gamma=gamma, coef0=0) cls.fit(X_train, y_train) train_scores.append(cls.score(X_train, y_train)) test_scores.append(cls.score(X_test, y_test)) print('Scors:%.2f' % cls.score(X_test, y_test)) ax = fig.add_subplot(1, 1, 1) ax.plot(gammas, train_scores, label='Training score ', marker='+') ax.plot(gammas, test_scores, label='Testing score ', marker='o') ax.set_title('SVC_sigmoid_gamma ') ax.set_xscale('log') ax.set_xlabel('$\\gamma$') ax.set_ylabel('score') ax.set_ylim(0, 1.05) ax.legend(loc='best', framealpha=0.5) plt.show() def main(): DATA_TRAIN = 'train-autd365-2018-8-31-day-high100-round-select2-0split.csv' DATA_TEST = 'test-autd365-2018-8-31-day-high100-round-select2-0split.csv' train_datas = base.load_csv_without_header(DATA_TRAIN, target_dtype=np. int16, features_dtype=np.float32, target_column=0) test_datas = base.load_csv_without_header(DATA_TEST, target_dtype=np. int16, features_dtype=np.float32, target_column=0) test_SVC_sigmod(train_datas.data, test_datas.data, train_datas.target, test_datas.target) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--learning_rate', type=float, default=0.01, help= 'Initial learning rate.') parser.add_argument('--max_steps', type=int, default=100000, help= 'Number of steps to run trainer.') parser.add_argument('--percentage', type=float, default=0.99, help= 'Number of float for pca remain percentage.') parser.add_argument('--hidden2', type=int, default=32, help= 'Number of units in hidden layer 2.') parser.add_argument('--batch_size', type=int, default=1, help= 'Batch size. Must divide evenly into the dataset sizes.') parser.add_argument('--input_data_dir', type=str, default= '/home/freebirdweij/tf_works/invest', help= 'Directory to put the input data.') parser.add_argument('--log_dir', type=str, default= '/home/freebirdweij/tf_works/invest/logs', help= 'Directory to put the log data.') parser.add_argument('--fake_data', default=False, help= 'If true, uses fake data for unit testing.', action='store_true') FLAGS, unparsed = parser.parse_known_args() main()
''' Created on 2018-9-8 @author: weij ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os.path import sys import time import numpy as np from numpy import shape from scipy import linalg from sklearn import datasets,linear_model,cross_validation,svm from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import com.freebirdweij.goldanalyse.ml.data_util as base import matplotlib.pyplot as plt def test_linearSVC(*data): X_train,X_test,y_train,y_test = data cls = svm.LinearSVC() cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s'%(cls.coef_,cls.intercept_)) print('Scors:%.2f'%cls.score(X_test, y_test)) def test_SVC_linear(*data): X_train,X_test,y_train,y_test = data cls = svm.SVC(kernel='linear') cls.fit(X_train, y_train) print('Coefficients:%s,Intercept:%s'%(cls.coef_,cls.intercept_)) print('Scors:%.2f'%cls.score(X_test, y_test)) def test_SVC_poly(*data): X_train,X_test,y_train,y_test = data fig = plt.figure() ### test degree ### degrees = range(1,2) train_scores=[] test_scores=[] for degree in degrees: cls = svm.SVC(kernel='poly',degree=degree) cls.fit(X_train, y_train) train_scores.append(cls.score(X_train, y_train)) test_scores.append(cls.score(X_test, y_test)) print('Scors:%.2f'%cls.score(X_test, y_test)) ax=fig.add_subplot(1,3,1) ax.plot(degrees,train_scores,label="Training score ",marker='+') ax.plot(degrees,test_scores,label="Testing score ",marker='o') ax.set_title("SVC_poly_degree ") ax.set_xlabel("p") ax.set_ylabel("score") ax.set_ylim(0,1.05) ax.legend(loc="best",framealpha=0.5) plt.show() def test_SVC_rbf(*data): X_train,X_test,y_train,y_test = data fig = plt.figure() ### test degree ### #gammas = range(1,2) #train_scores=[] #test_scores=[] #for gamma in gammas: cls = svm.SVC(C=1e3,kernel='rbf',gamma=0.1,probability=True) cls.fit(X_train, y_train) #train_scores.append(cls.score(X_train, y_train)) #test_scores.append(cls.score(X_test, y_test)) print('Scors:%.2f'%cls.score(X_test, y_test)) print('probability') print(cls.predict(X_test)) return cls.predict_proba(X_test) #ax=fig.add_subplot(1,1,1) #ax.plot(gammas,train_scores,label="Training score ",marker='+') #ax.plot(gammas,test_scores,label="Testing score ",marker='o') #ax.set_title("SVC_rbf ") #ax.set_xlabel(r"$\gamma$") #ax.set_ylabel("score") #ax.set_ylim(0,1.05) #ax.legend(loc="best",framealpha=0.5) #plt.show() def grid_SVC_rbf(*data): X_train,X_test,y_train,y_test = data fig = plt.figure() ### test degree ### param_grid = {'C':[1e3,5e3,1e4,5e4,1e5], 'gamma':[0.0001,0.0005,0.001,0.005,0.01,0.1]} cls = GridSearchCV(svm.SVC(kernel='rbf'),param_grid) cls.fit(X_train, y_train) print('Best estimotor by GridSearchCV:') print(cls.best_estimator_) def test_SVC_sigmod(*data): X_train,X_test,y_train,y_test = data fig = plt.figure() ### test degree ### gammas = range(1,2) train_scores=[] test_scores=[] for gamma in gammas: cls = svm.SVC(kernel='sigmoid',gamma=gamma,coef0=0) cls.fit(X_train, y_train) train_scores.append(cls.score(X_train, y_train)) test_scores.append(cls.score(X_test, y_test)) print('Scors:%.2f'%cls.score(X_test, y_test)) ax=fig.add_subplot(1,1,1) ax.plot(gammas,train_scores,label="Training score ",marker='+') ax.plot(gammas,test_scores,label="Testing score ",marker='o') ax.set_title("SVC_sigmoid_gamma ") ax.set_xscale("log") ax.set_xlabel(r"$\gamma$") ax.set_ylabel("score") ax.set_ylim(0,1.05) ax.legend(loc="best",framealpha=0.5) plt.show() def main(): DATA_TRAIN = 'train-autd365-2018-8-31-day-high100-round-select2-0split.csv' DATA_TEST = 'test-autd365-2018-8-31-day-high100-round-select2-0split.csv' train_datas = base.load_csv_without_header(DATA_TRAIN,target_dtype=np.int16, features_dtype=np.float32,target_column=0) test_datas = base.load_csv_without_header(DATA_TEST,target_dtype=np.int16, features_dtype=np.float32,target_column=0) test_SVC_sigmod(train_datas.data,test_datas.data,train_datas.target,test_datas.target) #pro_date = test_SVC_rbf(train_datas.data,test_datas.data,train_datas.target,test_datas.target) #dataMat = input_datas.data #print('dataMat:-----------------------') #print(dataMat) #pcaData = np.dot(dataMat,eig_vect) #reconMat = np.dot(pcaData,eig_vect.T)+mean_v #Reconstructed datas. #print('k:-----------------------') #print(k) #print('pcaData:-----------------------') #print(pcaData) #print('reconMat:-----------------------') #print(reconMat) #base.write_a_dataset_to_a_csv('audt365-2018-2-21-day-class21-high100-round-test-svm.csv', pro_date) #base.write_a_dataset_to_a_csv('hjxh365-2018-4-16-day-plus-norm-clear-pca9999-recn.csv', reconMat) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--learning_rate', type=float, default=0.01, help='Initial learning rate.' ) parser.add_argument( '--max_steps', type=int, default=100000, help='Number of steps to run trainer.' ) parser.add_argument( '--percentage', type=float, default=0.99, help='Number of float for pca remain percentage.' ) parser.add_argument( '--hidden2', type=int, default=32, help='Number of units in hidden layer 2.' ) parser.add_argument( '--batch_size', type=int, default=1, help='Batch size. Must divide evenly into the dataset sizes.' ) parser.add_argument( '--input_data_dir', type=str, default='/home/freebirdweij/tf_works/invest', help='Directory to put the input data.' ) parser.add_argument( '--log_dir', type=str, default='/home/freebirdweij/tf_works/invest/logs', help='Directory to put the log data.' ) parser.add_argument( '--fake_data', default=False, help='If true, uses fake data for unit testing.', action='store_true' ) FLAGS, unparsed = parser.parse_known_args() main()
[ 4, 7, 8, 9, 10 ]
2,149
16215ee42c4ea284dca0ebb7372fef04c0cc54b9
<mask token> def segment_ts(): ts_len = len(x1) mod = ts_len % window_size rnge = 0 if skip_offset == 0: ts_len = int((ts_len - mod - window_size) / 1) rnge = int(ts_len / window_size) else: ts_len = int(math.ceil((ts_len - window_size) / skip_offset)) rnge = int(ts_len) curr_count = 0 words = list() indices = list() complete_indices = list() for i in range(0, rnge): sub_section = x1[curr_count:curr_count + window_size] sub_section = normalize(sub_section) curr_word = '' chunk_size = int(len(sub_section) / word_lenth) num = 0 curr_letter = '' for j in range(0, word_lenth): chunk = sub_section[num:num + chunk_size] curr_letter = alphabetize_ts(chunk) curr_word += str(curr_letter) complete_indices.append(curr_count) num += chunk_size words.append(curr_word) indices.append(curr_count) temp_list = [] temp_list.append(sub_section) temp_df = pd.DataFrame() temp_df.insert(loc=0, column='sub_section', value=temp_list) temp_df.insert(loc=0, column='keys', value=curr_word) temp_df.insert(loc=0, column='position', value=sorted(sub_section)[ len(sub_section) // 2]) temp_df.insert(loc=0, column='scale_high', value=np.max(sub_section)) temp_df.insert(loc=0, column='scale_low', value=np.min(sub_section)) temp_df.insert(loc=0, column='indices', value=curr_count) curr_count = curr_count + skip_offset - 1 if i == 0: df_sax = temp_df.copy() else: df_sax = df_sax.append(temp_df, ignore_index=True) return words, indices, df_sax <mask token> def complete_word(): complete_word = list() complete_indices = indices """ Simillar Words """ complete_word = alphabetize sax = defaultdict(list) for i in range(0, len(complete_word)): if len(complete_word[i]) == word_lenth: sax[complete_word[i]].append(complete_indices[i]) return sax def Compare_Shape(): simillar_word = complete_word() map_keys = defaultdict(list) map_indices = defaultdict(list) for key_i in simillar_word: temp_list = list() temp_list.append(simillar_word.get(key_i)) map_keys[key_i].append(key_i) for key_j in simillar_word: dist = hamming_distance(key_i, key_j) if dist == ham_distance and key_i != key_j: map_keys[key_i].append(key_j) temp_list.append(simillar_word.get(key_j)) else: map_keys[key_i].append([]) tempp = list(itertools.chain(*temp_list)) map_indices[key_i].append(tempp) return map_keys, map_indices <mask token> def dtw_test2(): df_dtw_prep = df_sax dtw_df = pd.DataFrame() for k, v in compare_list.items(): v_temp = str(v)[2:-2] v1 = [int(s) for s in v_temp.split(',')] for i in range(0, len(v1) - 1): for j in range(i, len(v1)): if v1[i] != v1[j]: row1 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[i]] row2 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[j]] sub_section1 = row1.iloc[0]['sub_section'] sub_section2 = row2.iloc[0]['sub_section'] index1 = row1.iloc[0]['indices'] index2 = row2.iloc[0]['indices'] x = np.array(sub_section1).reshape(-1, 1) y = np.array(sub_section2).reshape(-1, 1) euclidean_norm = lambda x, y: np.abs(x - y) dtw_value, cost_matrix, acc_cost_matrix, path = dtw(x, y, dist=euclidean_norm) temp_df = pd.DataFrame([[k, index1, index2, sub_section1, sub_section2, dtw_value]], columns=[ 'keyy', 'index1', 'index2', 'sub_section1', 'sub_section2', 'dtw_value']) dtw_df = dtw_df.append(temp_df, ignore_index=True) return dtw_df <mask token>
<mask token> def segment_ts(): ts_len = len(x1) mod = ts_len % window_size rnge = 0 if skip_offset == 0: ts_len = int((ts_len - mod - window_size) / 1) rnge = int(ts_len / window_size) else: ts_len = int(math.ceil((ts_len - window_size) / skip_offset)) rnge = int(ts_len) curr_count = 0 words = list() indices = list() complete_indices = list() for i in range(0, rnge): sub_section = x1[curr_count:curr_count + window_size] sub_section = normalize(sub_section) curr_word = '' chunk_size = int(len(sub_section) / word_lenth) num = 0 curr_letter = '' for j in range(0, word_lenth): chunk = sub_section[num:num + chunk_size] curr_letter = alphabetize_ts(chunk) curr_word += str(curr_letter) complete_indices.append(curr_count) num += chunk_size words.append(curr_word) indices.append(curr_count) temp_list = [] temp_list.append(sub_section) temp_df = pd.DataFrame() temp_df.insert(loc=0, column='sub_section', value=temp_list) temp_df.insert(loc=0, column='keys', value=curr_word) temp_df.insert(loc=0, column='position', value=sorted(sub_section)[ len(sub_section) // 2]) temp_df.insert(loc=0, column='scale_high', value=np.max(sub_section)) temp_df.insert(loc=0, column='scale_low', value=np.min(sub_section)) temp_df.insert(loc=0, column='indices', value=curr_count) curr_count = curr_count + skip_offset - 1 if i == 0: df_sax = temp_df.copy() else: df_sax = df_sax.append(temp_df, ignore_index=True) return words, indices, df_sax <mask token> def complete_word(): complete_word = list() complete_indices = indices """ Simillar Words """ complete_word = alphabetize sax = defaultdict(list) for i in range(0, len(complete_word)): if len(complete_word[i]) == word_lenth: sax[complete_word[i]].append(complete_indices[i]) return sax def Compare_Shape(): simillar_word = complete_word() map_keys = defaultdict(list) map_indices = defaultdict(list) for key_i in simillar_word: temp_list = list() temp_list.append(simillar_word.get(key_i)) map_keys[key_i].append(key_i) for key_j in simillar_word: dist = hamming_distance(key_i, key_j) if dist == ham_distance and key_i != key_j: map_keys[key_i].append(key_j) temp_list.append(simillar_word.get(key_j)) else: map_keys[key_i].append([]) tempp = list(itertools.chain(*temp_list)) map_indices[key_i].append(tempp) return map_keys, map_indices <mask token> def dtw_test2(): df_dtw_prep = df_sax dtw_df = pd.DataFrame() for k, v in compare_list.items(): v_temp = str(v)[2:-2] v1 = [int(s) for s in v_temp.split(',')] for i in range(0, len(v1) - 1): for j in range(i, len(v1)): if v1[i] != v1[j]: row1 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[i]] row2 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[j]] sub_section1 = row1.iloc[0]['sub_section'] sub_section2 = row2.iloc[0]['sub_section'] index1 = row1.iloc[0]['indices'] index2 = row2.iloc[0]['indices'] x = np.array(sub_section1).reshape(-1, 1) y = np.array(sub_section2).reshape(-1, 1) euclidean_norm = lambda x, y: np.abs(x - y) dtw_value, cost_matrix, acc_cost_matrix, path = dtw(x, y, dist=euclidean_norm) temp_df = pd.DataFrame([[k, index1, index2, sub_section1, sub_section2, dtw_value]], columns=[ 'keyy', 'index1', 'index2', 'sub_section1', 'sub_section2', 'dtw_value']) dtw_df = dtw_df.append(temp_df, ignore_index=True) return dtw_df <mask token> print('Time: ', stop - start)
<mask token> start = timeit.default_timer() data = pd.read_csv('test_data2.csv', sep=',', header=None) x1 = data.iloc[1:, 1].values.flatten() x1 = np.asfarray(x1, float) y_alphabet_size = 4 word_lenth = 3 window_size = round(len(x1) * 10 / 100) skip_offset = round(window_size / 2) ham_distance = 1 epsilon = 1e-06 def segment_ts(): ts_len = len(x1) mod = ts_len % window_size rnge = 0 if skip_offset == 0: ts_len = int((ts_len - mod - window_size) / 1) rnge = int(ts_len / window_size) else: ts_len = int(math.ceil((ts_len - window_size) / skip_offset)) rnge = int(ts_len) curr_count = 0 words = list() indices = list() complete_indices = list() for i in range(0, rnge): sub_section = x1[curr_count:curr_count + window_size] sub_section = normalize(sub_section) curr_word = '' chunk_size = int(len(sub_section) / word_lenth) num = 0 curr_letter = '' for j in range(0, word_lenth): chunk = sub_section[num:num + chunk_size] curr_letter = alphabetize_ts(chunk) curr_word += str(curr_letter) complete_indices.append(curr_count) num += chunk_size words.append(curr_word) indices.append(curr_count) temp_list = [] temp_list.append(sub_section) temp_df = pd.DataFrame() temp_df.insert(loc=0, column='sub_section', value=temp_list) temp_df.insert(loc=0, column='keys', value=curr_word) temp_df.insert(loc=0, column='position', value=sorted(sub_section)[ len(sub_section) // 2]) temp_df.insert(loc=0, column='scale_high', value=np.max(sub_section)) temp_df.insert(loc=0, column='scale_low', value=np.min(sub_section)) temp_df.insert(loc=0, column='indices', value=curr_count) curr_count = curr_count + skip_offset - 1 if i == 0: df_sax = temp_df.copy() else: df_sax = df_sax.append(temp_df, ignore_index=True) return words, indices, df_sax alphabetize, indices, df_sax = segment_ts() <mask token> def complete_word(): complete_word = list() complete_indices = indices """ Simillar Words """ complete_word = alphabetize sax = defaultdict(list) for i in range(0, len(complete_word)): if len(complete_word[i]) == word_lenth: sax[complete_word[i]].append(complete_indices[i]) return sax def Compare_Shape(): simillar_word = complete_word() map_keys = defaultdict(list) map_indices = defaultdict(list) for key_i in simillar_word: temp_list = list() temp_list.append(simillar_word.get(key_i)) map_keys[key_i].append(key_i) for key_j in simillar_word: dist = hamming_distance(key_i, key_j) if dist == ham_distance and key_i != key_j: map_keys[key_i].append(key_j) temp_list.append(simillar_word.get(key_j)) else: map_keys[key_i].append([]) tempp = list(itertools.chain(*temp_list)) map_indices[key_i].append(tempp) return map_keys, map_indices compare_strings, compare_list = Compare_Shape() def dtw_test2(): df_dtw_prep = df_sax dtw_df = pd.DataFrame() for k, v in compare_list.items(): v_temp = str(v)[2:-2] v1 = [int(s) for s in v_temp.split(',')] for i in range(0, len(v1) - 1): for j in range(i, len(v1)): if v1[i] != v1[j]: row1 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[i]] row2 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[j]] sub_section1 = row1.iloc[0]['sub_section'] sub_section2 = row2.iloc[0]['sub_section'] index1 = row1.iloc[0]['indices'] index2 = row2.iloc[0]['indices'] x = np.array(sub_section1).reshape(-1, 1) y = np.array(sub_section2).reshape(-1, 1) euclidean_norm = lambda x, y: np.abs(x - y) dtw_value, cost_matrix, acc_cost_matrix, path = dtw(x, y, dist=euclidean_norm) temp_df = pd.DataFrame([[k, index1, index2, sub_section1, sub_section2, dtw_value]], columns=[ 'keyy', 'index1', 'index2', 'sub_section1', 'sub_section2', 'dtw_value']) dtw_df = dtw_df.append(temp_df, ignore_index=True) return dtw_df dt_test = dtw_test2() stop = timeit.default_timer() print('Time: ', stop - start)
<mask token> import numpy as np import pandas as pd import matplotlib.pyplot as plt from collections import defaultdict import math import itertools from dtw import dtw import timeit from helper_functions import normalize, alphabetize_ts, hamming_distance <mask token> start = timeit.default_timer() data = pd.read_csv('test_data2.csv', sep=',', header=None) x1 = data.iloc[1:, 1].values.flatten() x1 = np.asfarray(x1, float) y_alphabet_size = 4 word_lenth = 3 window_size = round(len(x1) * 10 / 100) skip_offset = round(window_size / 2) ham_distance = 1 epsilon = 1e-06 def segment_ts(): ts_len = len(x1) mod = ts_len % window_size rnge = 0 if skip_offset == 0: ts_len = int((ts_len - mod - window_size) / 1) rnge = int(ts_len / window_size) else: ts_len = int(math.ceil((ts_len - window_size) / skip_offset)) rnge = int(ts_len) curr_count = 0 words = list() indices = list() complete_indices = list() for i in range(0, rnge): sub_section = x1[curr_count:curr_count + window_size] sub_section = normalize(sub_section) curr_word = '' chunk_size = int(len(sub_section) / word_lenth) num = 0 curr_letter = '' for j in range(0, word_lenth): chunk = sub_section[num:num + chunk_size] curr_letter = alphabetize_ts(chunk) curr_word += str(curr_letter) complete_indices.append(curr_count) num += chunk_size words.append(curr_word) indices.append(curr_count) temp_list = [] temp_list.append(sub_section) temp_df = pd.DataFrame() temp_df.insert(loc=0, column='sub_section', value=temp_list) temp_df.insert(loc=0, column='keys', value=curr_word) temp_df.insert(loc=0, column='position', value=sorted(sub_section)[ len(sub_section) // 2]) temp_df.insert(loc=0, column='scale_high', value=np.max(sub_section)) temp_df.insert(loc=0, column='scale_low', value=np.min(sub_section)) temp_df.insert(loc=0, column='indices', value=curr_count) curr_count = curr_count + skip_offset - 1 if i == 0: df_sax = temp_df.copy() else: df_sax = df_sax.append(temp_df, ignore_index=True) return words, indices, df_sax alphabetize, indices, df_sax = segment_ts() <mask token> def complete_word(): complete_word = list() complete_indices = indices """ Simillar Words """ complete_word = alphabetize sax = defaultdict(list) for i in range(0, len(complete_word)): if len(complete_word[i]) == word_lenth: sax[complete_word[i]].append(complete_indices[i]) return sax def Compare_Shape(): simillar_word = complete_word() map_keys = defaultdict(list) map_indices = defaultdict(list) for key_i in simillar_word: temp_list = list() temp_list.append(simillar_word.get(key_i)) map_keys[key_i].append(key_i) for key_j in simillar_word: dist = hamming_distance(key_i, key_j) if dist == ham_distance and key_i != key_j: map_keys[key_i].append(key_j) temp_list.append(simillar_word.get(key_j)) else: map_keys[key_i].append([]) tempp = list(itertools.chain(*temp_list)) map_indices[key_i].append(tempp) return map_keys, map_indices compare_strings, compare_list = Compare_Shape() def dtw_test2(): df_dtw_prep = df_sax dtw_df = pd.DataFrame() for k, v in compare_list.items(): v_temp = str(v)[2:-2] v1 = [int(s) for s in v_temp.split(',')] for i in range(0, len(v1) - 1): for j in range(i, len(v1)): if v1[i] != v1[j]: row1 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[i]] row2 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[j]] sub_section1 = row1.iloc[0]['sub_section'] sub_section2 = row2.iloc[0]['sub_section'] index1 = row1.iloc[0]['indices'] index2 = row2.iloc[0]['indices'] x = np.array(sub_section1).reshape(-1, 1) y = np.array(sub_section2).reshape(-1, 1) euclidean_norm = lambda x, y: np.abs(x - y) dtw_value, cost_matrix, acc_cost_matrix, path = dtw(x, y, dist=euclidean_norm) temp_df = pd.DataFrame([[k, index1, index2, sub_section1, sub_section2, dtw_value]], columns=[ 'keyy', 'index1', 'index2', 'sub_section1', 'sub_section2', 'dtw_value']) dtw_df = dtw_df.append(temp_df, ignore_index=True) return dtw_df dt_test = dtw_test2() stop = timeit.default_timer() print('Time: ', stop - start)
# -*- coding: utf-8 -*- """ Created on Sat Aug 3 17:16:12 2019 @author: Meagatron """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from collections import defaultdict import math import itertools from dtw import dtw import timeit from helper_functions import normalize,alphabetize_ts,hamming_distance """------------- Intialization ------------- """ start = timeit.default_timer() data = pd.read_csv('test_data2.csv', sep=',', header=None) x1 = data.iloc[1:,1].values.flatten() x1=np.asfarray(x1,float) y_alphabet_size=4 word_lenth=3 window_size=round( len(x1) *10 /100 ) skip_offset=round(window_size/2) ham_distance=1 epsilon = 1e-6 def segment_ts(): ts_len=len(x1) mod = ts_len%window_size rnge=0 if(skip_offset==0): ts_len=int((ts_len-mod-window_size)/1) rnge=int(ts_len/window_size) else: ts_len=int(math.ceil((ts_len-window_size)/skip_offset)) rnge=int(ts_len) curr_count=0 words=list() indices=list() complete_indices=list() for i in range(0, rnge): sub_section = x1[curr_count:(curr_count+window_size)] sub_section=normalize(sub_section) curr_word="" chunk_size=int(len(sub_section)/word_lenth) num=0 curr_letter="" for j in range(0,word_lenth): chunk = sub_section[num:num + chunk_size] curr_letter=alphabetize_ts(chunk) curr_word+=str(curr_letter) complete_indices.append(curr_count) num+=chunk_size words.append(curr_word) indices.append(curr_count) temp_list=[] temp_list.append(sub_section) temp_df = pd.DataFrame() temp_df.insert(loc=0, column='sub_section', value=temp_list) temp_df.insert(loc=0, column='keys', value=curr_word) temp_df.insert(loc=0, column='position', value=sorted(sub_section)[len(sub_section) // 2]) temp_df.insert(loc=0, column='scale_high', value=np.max(sub_section)) temp_df.insert(loc=0, column='scale_low', value=np.min(sub_section)) temp_df.insert(loc=0, column='indices', value=curr_count) curr_count=curr_count+skip_offset-1 if(i==0): df_sax =temp_df.copy() else: df_sax=df_sax.append(temp_df, ignore_index=True) return (words,indices,df_sax) alphabetize,indices,df_sax=segment_ts() """ Complete Words """ def complete_word(): complete_word=list() complete_indices=indices """ Simillar Words """ complete_word=alphabetize sax = defaultdict(list) for i in range(0,len(complete_word)): if(len(complete_word[i])==word_lenth): sax[complete_word[i]].append(complete_indices[i]) return sax #alphabetize1,indices1,df_sax=segment_ts() def Compare_Shape(): simillar_word=complete_word() map_keys = defaultdict(list) map_indices=defaultdict(list) for key_i in simillar_word: temp_list=list() temp_list.append(simillar_word.get(key_i)) map_keys[key_i].append(key_i) for key_j in simillar_word: dist=hamming_distance(key_i, key_j) if(dist==ham_distance and key_i !=key_j): map_keys[key_i].append(key_j) temp_list.append(simillar_word.get(key_j)) else: map_keys[key_i].append([]) tempp = list(itertools.chain(*temp_list)) map_indices[key_i].append(tempp) return (map_keys,map_indices) compare_strings,compare_list=Compare_Shape() def dtw_test2 (): df_dtw_prep=df_sax dtw_df=pd.DataFrame() for k, v in compare_list.items(): v_temp=str(v)[2:-2] v1=[int(s) for s in v_temp.split(',')] for i in range(0,len(v1)-1): for j in range(i,len(v1)): if(v1[i] != v1[j]): row1 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[i]] row2 = df_dtw_prep.loc[df_dtw_prep['indices'] == v1[j]] sub_section1 = row1.iloc[0]['sub_section'] sub_section2 = row2.iloc[0]['sub_section'] index1 = row1.iloc[0]['indices'] index2 = row2.iloc[0]['indices'] x=np.array(sub_section1).reshape(-1, 1) y=np.array(sub_section2).reshape(-1, 1) euclidean_norm = lambda x, y: np.abs(x - y) dtw_value, cost_matrix, acc_cost_matrix, path = dtw(x, y, dist=euclidean_norm) temp_df = pd.DataFrame([[k,index1,index2,sub_section1,sub_section2,dtw_value]], columns=['keyy','index1','index2','sub_section1','sub_section2','dtw_value']) dtw_df=dtw_df.append(temp_df,ignore_index=True) return(dtw_df) dt_test=dtw_test2 () stop = timeit.default_timer() print('Time: ', stop - start)
[ 4, 5, 6, 7, 8 ]
2,150
9aee715e976db632f0829a06cb9e0101c90512be
<mask token>
<mask token> fout.close() <mask token> if not drive: drive = 'C:' <mask token> os.system(runString) <mask token> fout.close() <mask token> for index, line in enumerate(lines): panelData.append(np.array(list(map(float, lines[index].split())))) <mask token> for index in panelNums: ax.plot_wireframe(panelData[panelData[:, 0] == index][:, np.array([ False, True, False, False, False])], panelData[panelData[:, 0] == index][:, np.array([False, False, True, False, False])], panelData[ panelData[:, 0] == index][:, np.array([False, False, False, True, False])]) for index in panelNums: symFlag = panelData[panelData[:, 0] == index][0, np.array([False, False, False, False, True])] if symFlag == 0 or symFlag == 2: ax.plot_wireframe(panelData[panelData[:, 0] == index][:, np.array([ False, True, False, False, False])], -1 * panelData[panelData[:, 0] == index][:, np.array([False, False, True, False, False])], panelData[panelData[:, 0] == index][:, np.array([False, False, False, True, False])]) ax.grid() ax.set(ylabel='y-in', xlabel='x-in', zlabel='z-in', title='') ax.xaxis.label.set_size(16) ax.yaxis.label.set_size(16) ax.zaxis.label.set_size(16) <mask token> ax.set_aspect('equal') <mask token> ax.set_xlim(mid_x - max_range, mid_x + max_range) ax.set_ylim(mid_y - max_range, mid_y + max_range) ax.set_zlim(mid_z - max_range, mid_z + max_range) plt.show()
<mask token> fout = open('path.txt', 'r') userExePath = fout.readline() fout.close() drive, exePath = userExePath.split('\\', 1) if not drive: drive = 'C:' runString = drive + ' && cd \\' + exePath + ' && vorlax.exe' os.system(runString) fout = open(drive + '\\' + exePath + '\\VORLAX.WIRE', 'r') lines = fout.readlines() fout.close() panelData = [] for index, line in enumerate(lines): panelData.append(np.array(list(map(float, lines[index].split())))) panelData = np.array(panelData) panelNums = np.unique(panelData[0:, 0:1]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for index in panelNums: ax.plot_wireframe(panelData[panelData[:, 0] == index][:, np.array([ False, True, False, False, False])], panelData[panelData[:, 0] == index][:, np.array([False, False, True, False, False])], panelData[ panelData[:, 0] == index][:, np.array([False, False, False, True, False])]) for index in panelNums: symFlag = panelData[panelData[:, 0] == index][0, np.array([False, False, False, False, True])] if symFlag == 0 or symFlag == 2: ax.plot_wireframe(panelData[panelData[:, 0] == index][:, np.array([ False, True, False, False, False])], -1 * panelData[panelData[:, 0] == index][:, np.array([False, False, True, False, False])], panelData[panelData[:, 0] == index][:, np.array([False, False, False, True, False])]) ax.grid() ax.set(ylabel='y-in', xlabel='x-in', zlabel='z-in', title='') ax.xaxis.label.set_size(16) ax.yaxis.label.set_size(16) ax.zaxis.label.set_size(16) x = panelData[:, 1] y = panelData[:, 2] negativey = -1 * panelData[:, 2] y = np.concatenate((y, negativey), axis=0) z = panelData[:, 3] ax.set_aspect('equal') max_range = np.array([x.max() - x.min(), y.max() - y.min(), z.max() - z.min()] ).max() / 2.0 mid_x = (x.max() + x.min()) * 0.5 mid_y = (y.max() + y.min()) * 0.5 mid_z = (z.max() + z.min()) * 0.5 ax.set_xlim(mid_x - max_range, mid_x + max_range) ax.set_ylim(mid_y - max_range, mid_y + max_range) ax.set_zlim(mid_z - max_range, mid_z + max_range) plt.show()
<mask token> import os from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np fout = open('path.txt', 'r') userExePath = fout.readline() fout.close() drive, exePath = userExePath.split('\\', 1) if not drive: drive = 'C:' runString = drive + ' && cd \\' + exePath + ' && vorlax.exe' os.system(runString) fout = open(drive + '\\' + exePath + '\\VORLAX.WIRE', 'r') lines = fout.readlines() fout.close() panelData = [] for index, line in enumerate(lines): panelData.append(np.array(list(map(float, lines[index].split())))) panelData = np.array(panelData) panelNums = np.unique(panelData[0:, 0:1]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for index in panelNums: ax.plot_wireframe(panelData[panelData[:, 0] == index][:, np.array([ False, True, False, False, False])], panelData[panelData[:, 0] == index][:, np.array([False, False, True, False, False])], panelData[ panelData[:, 0] == index][:, np.array([False, False, False, True, False])]) for index in panelNums: symFlag = panelData[panelData[:, 0] == index][0, np.array([False, False, False, False, True])] if symFlag == 0 or symFlag == 2: ax.plot_wireframe(panelData[panelData[:, 0] == index][:, np.array([ False, True, False, False, False])], -1 * panelData[panelData[:, 0] == index][:, np.array([False, False, True, False, False])], panelData[panelData[:, 0] == index][:, np.array([False, False, False, True, False])]) ax.grid() ax.set(ylabel='y-in', xlabel='x-in', zlabel='z-in', title='') ax.xaxis.label.set_size(16) ax.yaxis.label.set_size(16) ax.zaxis.label.set_size(16) x = panelData[:, 1] y = panelData[:, 2] negativey = -1 * panelData[:, 2] y = np.concatenate((y, negativey), axis=0) z = panelData[:, 3] ax.set_aspect('equal') max_range = np.array([x.max() - x.min(), y.max() - y.min(), z.max() - z.min()] ).max() / 2.0 mid_x = (x.max() + x.min()) * 0.5 mid_y = (y.max() + y.min()) * 0.5 mid_z = (z.max() + z.min()) * 0.5 ax.set_xlim(mid_x - max_range, mid_x + max_range) ax.set_ylim(mid_y - max_range, mid_y + max_range) ax.set_zlim(mid_z - max_range, mid_z + max_range) plt.show()
# -*- coding: utf-8 -*- """ VorRun Runs Vorlax and plots wireframe output from Vorlax (https://github.com/GalaxyHobo/VORLAX) NOTE! Type: "%matplotlib auto" in iPython console to switch to interactive plots, or "%matplotlib inline" to switch to inline, in the console. NOTE! Reads path to Vorlax .exe in "path.txt" file that resides in same directory as vorRun.py. The path in that file must be on the first line and begin with drive letter + colon, or "\". Assumes C-drive if path begins with "\". Lance Bays """ import os from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np # Establish working directory with exe... # Copy & paste absolute path on Local machine here within double quotes # Read path to working directory fout = open("path.txt", 'r') userExePath=fout.readline() fout.close() # Split drive Letter from path drive, exePath = userExePath.split("\\", 1) # Handle case where user doesn't include drive in path — # we will assume it's on the C drive. if not drive: drive="C:" # Run program # Command-line instructions to change drive & directory, and run program runString = drive + " && cd \\" + exePath + " && vorlax.exe" os.system( runString) # Read output file fout = open(drive + "\\" + exePath + "\\VORLAX.WIRE", 'r') lines=fout.readlines() fout.close() # Convert to numpy array panelData=[] for index, line in enumerate(lines): panelData.append(np.array(list(map(float,lines[index].split())))) panelData=np.array(panelData) # Determine array of unique panel ID's panelNums = np.unique(panelData[0:,0:1]) # Add subplot fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Plot the Vorlax wireframe (one side) for index in panelNums: ax.plot_wireframe( panelData[panelData[:,0]==index][:,np.array([False,True,False,False,False])], panelData[panelData[:,0]==index][:,np.array([False,False,True,False,False])], panelData[panelData[:,0]==index][:,np.array([False,False,False,True,False])]) # Plot the mirror image (if symmetry is indicated in wire file) for index in panelNums: symFlag=panelData[panelData[:,0]==index][0,np.array([False,False,False,False,True])] if symFlag==0 or symFlag==2: ax.plot_wireframe( panelData[panelData[:,0]==index][:,np.array([False,True,False,False,False])], -1*panelData[panelData[:,0]==index][:,np.array([False,False,True,False,False])], panelData[panelData[:,0]==index][:,np.array([False,False,False,True,False])]) # Format plot ax.grid() ax.set(ylabel='y-in', xlabel='x-in', zlabel='z-in', title='') ax.xaxis.label.set_size(16) ax.yaxis.label.set_size(16) ax.zaxis.label.set_size(16) # Create super-set of data to establish ranges x=panelData[:,1] y=panelData[:,2] negativey = -1 * panelData[:,2] y=np.concatenate((y, negativey), axis=0) z=panelData[:,3] # Set equal scales on axes ax.set_aspect('equal') # Set ranges for plot max_range = np.array([x.max() - x.min(), y.max() - y.min(), z.max() - z.min()]).max() / 2.0 # Compute midpoints in each direction mid_x = (x.max() + x.min()) * 0.5 mid_y = (y.max() + y.min()) * 0.5 mid_z = (z.max() + z.min()) * 0.5 # Set final ranges ax.set_xlim(mid_x - max_range, mid_x + max_range) ax.set_ylim(mid_y - max_range, mid_y + max_range) ax.set_zlim(mid_z - max_range, mid_z + max_range) plt.show()
[ 0, 1, 2, 3, 4 ]
2,151
aa15f684d23d97a45a416b1fdcfb192710ebb56f
<mask token>
<mask token> if (sum(prices) - prices[k]) // 2 == taken: print('Bon Appetit') else: print(taken - (sum(prices) - prices[k]) // 2)
n, k = map(int, input().split()) prices = [int(temp) for temp in input().split()] taken = int(input()) if (sum(prices) - prices[k]) // 2 == taken: print('Bon Appetit') else: print(taken - (sum(prices) - prices[k]) // 2)
# https://www.hackerrank.com/challenges/bon-appetit n, k = map(int, input().split()) prices = [int(temp) for temp in input().split()] taken = int(input()) if (sum(prices) - prices[k]) // 2 == taken: print("Bon Appetit") else: print(taken - (sum(prices) - prices[k])// 2)
null
[ 0, 1, 2, 3 ]
2,152
3553fa72cb831f82a1030b9eadc9594eee1d1422
<mask token> class Guest: <mask token> <mask token> <mask token> def park_car(self): self.parked_and_linkedplatform_value() if self.parked == True: print('Your car is already parked!\n') return platform = self.CarRotationManager.return_empty_platform() if platform == None: return -1 self.CarRotationManager.return_platform_to_base(platform.Position) platform.link(self) self.linkedplatform = platform self.parked = True self.CarRotationManager.occupiedPlatforms = (self. CarRotationManager.occupiedPlatforms + 1) print('Your ' + self.Car.model + ' has been parked!\n') now = datetime.now() array = str(now).split() string_into_file = array[0] + '@' + array[1] self.controlboard.add_guest_to_file(self, string_into_file) self.Start = string_into_file
<mask token> class Guest: <mask token> def parked_and_linkedplatform_value(self): boolean, linkedplatform = (self.CarRotationManager. check_if_guest_parked(self)) if boolean == True: self.parked = True self.linkedplatform = linkedplatform else: self.parked = False self.linkedplatform = None def request_car(self): self.parked_and_linkedplatform_value() if self.parked == False: print('Your car is not parked!\n') return pos = self.CarRotationManager.get_platform_position(self) if pos == -1: print('Your car is not parked!\n') return self.CarRotationManager.return_platform_to_base(pos) self.CarRotationManager.release_car(self.linkedplatform) self.parked = False self.CarRotationManager.occupiedPlatforms = (self. CarRotationManager.occupiedPlatforms - 1) print('Your ' + self.Car.model + ' has been released.') print('Have a great day ' + self.Name + '!\n') self.controlboard.remove_guest_from_file(self) def park_car(self): self.parked_and_linkedplatform_value() if self.parked == True: print('Your car is already parked!\n') return platform = self.CarRotationManager.return_empty_platform() if platform == None: return -1 self.CarRotationManager.return_platform_to_base(platform.Position) platform.link(self) self.linkedplatform = platform self.parked = True self.CarRotationManager.occupiedPlatforms = (self. CarRotationManager.occupiedPlatforms + 1) print('Your ' + self.Car.model + ' has been parked!\n') now = datetime.now() array = str(now).split() string_into_file = array[0] + '@' + array[1] self.controlboard.add_guest_to_file(self, string_into_file) self.Start = string_into_file
<mask token> class Guest: def __init__(self, Name, FamilyName, Car, controlboard, CarRotationManager, ID=0, linkedplatform=None, Start=0): self.Name = Name self.FamilyName = FamilyName self.Car = Car self.controlboard = controlboard self.CarRotationManager = CarRotationManager if ID == 0: self.uniqueID = controlboard.set_id() else: self.uniqueID = ID self.parked = False self.linkedplatform = None self.Start = Start def parked_and_linkedplatform_value(self): boolean, linkedplatform = (self.CarRotationManager. check_if_guest_parked(self)) if boolean == True: self.parked = True self.linkedplatform = linkedplatform else: self.parked = False self.linkedplatform = None def request_car(self): self.parked_and_linkedplatform_value() if self.parked == False: print('Your car is not parked!\n') return pos = self.CarRotationManager.get_platform_position(self) if pos == -1: print('Your car is not parked!\n') return self.CarRotationManager.return_platform_to_base(pos) self.CarRotationManager.release_car(self.linkedplatform) self.parked = False self.CarRotationManager.occupiedPlatforms = (self. CarRotationManager.occupiedPlatforms - 1) print('Your ' + self.Car.model + ' has been released.') print('Have a great day ' + self.Name + '!\n') self.controlboard.remove_guest_from_file(self) def park_car(self): self.parked_and_linkedplatform_value() if self.parked == True: print('Your car is already parked!\n') return platform = self.CarRotationManager.return_empty_platform() if platform == None: return -1 self.CarRotationManager.return_platform_to_base(platform.Position) platform.link(self) self.linkedplatform = platform self.parked = True self.CarRotationManager.occupiedPlatforms = (self. CarRotationManager.occupiedPlatforms + 1) print('Your ' + self.Car.model + ' has been parked!\n') now = datetime.now() array = str(now).split() string_into_file = array[0] + '@' + array[1] self.controlboard.add_guest_to_file(self, string_into_file) self.Start = string_into_file
from datetime import datetime class Guest: def __init__(self, Name, FamilyName, Car, controlboard, CarRotationManager, ID=0, linkedplatform=None, Start=0): self.Name = Name self.FamilyName = FamilyName self.Car = Car self.controlboard = controlboard self.CarRotationManager = CarRotationManager if ID == 0: self.uniqueID = controlboard.set_id() else: self.uniqueID = ID self.parked = False self.linkedplatform = None self.Start = Start def parked_and_linkedplatform_value(self): boolean, linkedplatform = (self.CarRotationManager. check_if_guest_parked(self)) if boolean == True: self.parked = True self.linkedplatform = linkedplatform else: self.parked = False self.linkedplatform = None def request_car(self): self.parked_and_linkedplatform_value() if self.parked == False: print('Your car is not parked!\n') return pos = self.CarRotationManager.get_platform_position(self) if pos == -1: print('Your car is not parked!\n') return self.CarRotationManager.return_platform_to_base(pos) self.CarRotationManager.release_car(self.linkedplatform) self.parked = False self.CarRotationManager.occupiedPlatforms = (self. CarRotationManager.occupiedPlatforms - 1) print('Your ' + self.Car.model + ' has been released.') print('Have a great day ' + self.Name + '!\n') self.controlboard.remove_guest_from_file(self) def park_car(self): self.parked_and_linkedplatform_value() if self.parked == True: print('Your car is already parked!\n') return platform = self.CarRotationManager.return_empty_platform() if platform == None: return -1 self.CarRotationManager.return_platform_to_base(platform.Position) platform.link(self) self.linkedplatform = platform self.parked = True self.CarRotationManager.occupiedPlatforms = (self. CarRotationManager.occupiedPlatforms + 1) print('Your ' + self.Car.model + ' has been parked!\n') now = datetime.now() array = str(now).split() string_into_file = array[0] + '@' + array[1] self.controlboard.add_guest_to_file(self, string_into_file) self.Start = string_into_file
from datetime import datetime class Guest: def __init__(self, Name, FamilyName, Car, controlboard, CarRotationManager, ID=0, linkedplatform=None,Start=0): # --Initializing Guest credentials/info--- self.Name = Name self.FamilyName = FamilyName self.Car = Car self.controlboard = controlboard self.CarRotationManager = CarRotationManager if ID == 0: # In this case, the guest would be a new guest, so when we register him as a guest we don't give him an ID, and we ask the controlboard to generate the ID self.uniqueID = controlboard.set_id() # ----calling controlboard class to set ID---unique ID given by control board/decision engine else: # In this case, the guest would have already parked before and he would already have an ID, so instead of generating a new ID we just give him his old one self.uniqueID = ID self.parked = False # Boolean variable which indicates if guest is parked or not self.linkedplatform = None # Variable containing the platform where the guest's car is parked self.Start=Start # This is the time when the guest parks def parked_and_linkedplatform_value(self): # This function checks if the guest is parked and sets the values of linkedplatform and parked accordingly (boolean, linkedplatform) = self.CarRotationManager.check_if_guest_parked(self) if boolean == True: self.parked = True self.linkedplatform = linkedplatform else: self.parked = False self.linkedplatform = None def request_car(self): # Function that releases the car if it is parked self.parked_and_linkedplatform_value() if self.parked == False: print("Your car is not parked!\n") return pos = self.CarRotationManager.get_platform_position(self) # Get the car's current position in the parking if (pos == -1): print("Your car is not parked!\n") return self.CarRotationManager.return_platform_to_base(pos) # Move the car to the base position self.CarRotationManager.release_car(self.linkedplatform) # Release the car self.parked = False self.CarRotationManager.occupiedPlatforms = self.CarRotationManager.occupiedPlatforms - 1 print("Your " + self.Car.model + " has been released.") print("Have a great day " + self.Name + "!\n") self.controlboard.remove_guest_from_file(self) # We remove the guest from the file once his car is not parked anymore def park_car(self): # Function that parks the guest's car if it's not already parked self.parked_and_linkedplatform_value() if (self.parked == True): print("Your car is already parked!\n") return platform = self.CarRotationManager.return_empty_platform() # FOUND CLOSEST EMPTY PLATFORM if (platform == None): return -1 # PARKING IS FULL self.CarRotationManager.return_platform_to_base(platform.Position) platform.link(self) # NOW USER'S CAR IS PARKED ON BASE PLATFORM self.linkedplatform = platform self.parked = True self.CarRotationManager.occupiedPlatforms = self.CarRotationManager.occupiedPlatforms + 1 print("Your " + self.Car.model + " has been parked!\n") now = datetime.now() # Get the current time, i.e when the user parks his car array = str(now).split() string_into_file = array[0] + "@" + array[1] self.controlboard.add_guest_to_file(self,string_into_file) # Add the current time (when the user parked) next to his information in the guest file self.Start=string_into_file
[ 2, 4, 5, 6, 7 ]
2,153
879f7503f7f427f92109024b4646d1dc7f15d63d
<mask token>
<mask token> print('YES', 'NO')[max(mat.count(str(i)) for i in xrange(1, 10)) > K * 2]
K = input() mat = ''.join(raw_input() for i in xrange(4)) print('YES', 'NO')[max(mat.count(str(i)) for i in xrange(1, 10)) > K * 2]
K = input() mat = "".join(raw_input() for i in xrange(4)) print ("YES", "NO")[max(mat.count(str(i)) for i in xrange(1, 10)) > K*2]
null
[ 0, 1, 2, 3 ]
2,154
076e10b3741542b7137f6ac517dba482f545b123
<mask token> def calc_rec_vol(): lengthh = eval(input('Enter the length: ')) widthh = eval(input('Enter the width: ')) heighth = eval(input('Enter the height: ')) volume = lengthh * widthh * heighth print('Volume =', volume) <mask token>
<mask token> def calc_rec_area(): length = eval(input('Enter the length: ')) width = eval(input('Enter the width: ')) area = length * width print('Area =', area) def calc_rec_vol(): lengthh = eval(input('Enter the length: ')) widthh = eval(input('Enter the width: ')) heighth = eval(input('Enter the height: ')) volume = lengthh * widthh * heighth print('Volume =', volume) def shot_percentage(): shotm = eval(input('enter the shots made: ')) shott = eval(input('enter the total shots: ')) shotper = shotm / shott print('Shot percentage = ', shotper) <mask token>
<mask token> def calc_rec_area(): length = eval(input('Enter the length: ')) width = eval(input('Enter the width: ')) area = length * width print('Area =', area) def calc_rec_vol(): lengthh = eval(input('Enter the length: ')) widthh = eval(input('Enter the width: ')) heighth = eval(input('Enter the height: ')) volume = lengthh * widthh * heighth print('Volume =', volume) def shot_percentage(): shotm = eval(input('enter the shots made: ')) shott = eval(input('enter the total shots: ')) shotper = shotm / shott print('Shot percentage = ', shotper) def coffee(): pound = eval(input('enter the amount of pounds purchased: ')) cost = pound * 10.5 + pound * 0.86 + 1.5 print('The total cost of coffee are', cost) <mask token>
<mask token> def calc_rec_area(): length = eval(input('Enter the length: ')) width = eval(input('Enter the width: ')) area = length * width print('Area =', area) def calc_rec_vol(): lengthh = eval(input('Enter the length: ')) widthh = eval(input('Enter the width: ')) heighth = eval(input('Enter the height: ')) volume = lengthh * widthh * heighth print('Volume =', volume) def shot_percentage(): shotm = eval(input('enter the shots made: ')) shott = eval(input('enter the total shots: ')) shotper = shotm / shott print('Shot percentage = ', shotper) def coffee(): pound = eval(input('enter the amount of pounds purchased: ')) cost = pound * 10.5 + pound * 0.86 + 1.5 print('The total cost of coffee are', cost) def kilometers_to_miles(): """1 mile = 1.61 kilometers""" miles = eval(input('enter the amount of miles driven: ')) driven = miles * 1.61 print('The amount of kilometers driven are: ', driven)
""" Name: Thomas Scola lab1.py Problem: This function calculates the area of a rectangle """ '''def calc_area():''' def calc_rec_area(): length = eval(input("Enter the length: ")) width = eval(input("Enter the width: ")) area = length * width print("Area =", area) def calc_rec_vol(): lengthh = eval(input("Enter the length: ")) widthh = eval(input("Enter the width: ")) heighth = eval(input("Enter the height: ")) volume = lengthh * widthh * heighth print("Volume =", volume) def shot_percentage(): shotm = eval(input("enter the shots made: ")) shott = eval(input("enter the total shots: ")) shotper = shotm / shott print("Shot percentage = ", shotper) def coffee(): pound = eval(input("enter the amount of pounds purchased: ")) cost = (pound * 10.50) + (pound * 0.86) + 1.50 print("The total cost of coffee are", cost) def kilometers_to_miles(): """1 mile = 1.61 kilometers""" miles = eval(input("enter the amount of miles driven: ")) driven = miles * 1.61 print("The amount of kilometers driven are: ", driven)
[ 1, 3, 4, 5, 6 ]
2,155
0e3bf0ddd654b92b2cd962a2f3935c639eeb0695
<mask token>
<mask token> for i in range(n): for j in range(n): if graph[i][j] == 2: graph[i][j] = 0 virus_lst.append((i, j)) <mask token> def bfs(start_nodes, g): dq = deque() dq.extend(start_nodes) for i, j in start_nodes: g[i][j] = -1 while dq: y, x = dq.popleft() for k in range(4): b, a = dy[k] + y, dx[k] + x if 0 <= b < n and 0 <= a < n and g[b][a] == 0: g[b][a] = g[y][x] - 1 dq.append((b, a)) mm = 25000 for i in range(n): for j in range(n): if g[i][j] == 0: return -1 mm = min(g[i][j], mm) return -mm - 1 <mask token> for comb in combs: result.append(bfs(comb, deepcopy(graph))) <mask token> for r in result: if r != -1: time = min(time, r) flag = True print(time if flag else -1)
<mask token> input = sys.stdin.readline <mask token> n, m = map(int, input().split()) graph = [list(map(int, input().split())) for i in range(n)] virus_lst = [] for i in range(n): for j in range(n): if graph[i][j] == 2: graph[i][j] = 0 virus_lst.append((i, j)) combs = combinations(virus_lst, m) dy, dx = [-1, 1, 0, 0], [0, 0, -1, 1] def bfs(start_nodes, g): dq = deque() dq.extend(start_nodes) for i, j in start_nodes: g[i][j] = -1 while dq: y, x = dq.popleft() for k in range(4): b, a = dy[k] + y, dx[k] + x if 0 <= b < n and 0 <= a < n and g[b][a] == 0: g[b][a] = g[y][x] - 1 dq.append((b, a)) mm = 25000 for i in range(n): for j in range(n): if g[i][j] == 0: return -1 mm = min(g[i][j], mm) return -mm - 1 result = [] for comb in combs: result.append(bfs(comb, deepcopy(graph))) flag = False time = 25000 for r in result: if r != -1: time = min(time, r) flag = True print(time if flag else -1)
import sys input = sys.stdin.readline from collections import deque from itertools import combinations from copy import deepcopy n, m = map(int, input().split()) graph = [list(map(int, input().split())) for i in range(n)] virus_lst = [] for i in range(n): for j in range(n): if graph[i][j] == 2: graph[i][j] = 0 virus_lst.append((i, j)) combs = combinations(virus_lst, m) dy, dx = [-1, 1, 0, 0], [0, 0, -1, 1] def bfs(start_nodes, g): dq = deque() dq.extend(start_nodes) for i, j in start_nodes: g[i][j] = -1 while dq: y, x = dq.popleft() for k in range(4): b, a = dy[k] + y, dx[k] + x if 0 <= b < n and 0 <= a < n and g[b][a] == 0: g[b][a] = g[y][x] - 1 dq.append((b, a)) mm = 25000 for i in range(n): for j in range(n): if g[i][j] == 0: return -1 mm = min(g[i][j], mm) return -mm - 1 result = [] for comb in combs: result.append(bfs(comb, deepcopy(graph))) flag = False time = 25000 for r in result: if r != -1: time = min(time, r) flag = True print(time if flag else -1)
import sys; input = sys.stdin.readline from collections import deque from itertools import combinations from copy import deepcopy n, m = map(int, input().split()) graph = [list(map(int,input().split())) for i in range(n)] virus_lst = [] for i in range(n): for j in range(n): if graph[i][j]==2: graph[i][j] = 0 virus_lst.append((i, j)) combs = combinations(virus_lst, m) dy, dx = [-1, 1, 0, 0], [0, 0, -1, 1] def bfs(start_nodes, g): dq = deque() dq.extend(start_nodes) for i, j in start_nodes: g[i][j] = -1 while dq: y, x = dq.popleft() for k in range(4): b, a = dy[k]+y, dx[k]+x if 0<=b<n and 0<=a<n and g[b][a]==0: g[b][a] = g[y][x] - 1 dq.append((b,a)) mm = 25000 for i in range(n): for j in range(n): if g[i][j]==0: return -1 mm = min(g[i][j], mm) return -mm-1 result = [] for comb in combs: result.append(bfs(comb, deepcopy(graph))) flag = False time = 25000 for r in result: if r!=-1: time = min(time, r) flag = True print(time if flag else -1)
[ 0, 2, 3, 4, 5 ]
2,156
ef57f0dfea261f022ced36ef9e27a07d63c21026
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('eCom', '0014_auto_20210617_1503')] operations = [migrations.RemoveField(model_name='order', name='items'), migrations.AddField(model_name='order', name='items', field=models. ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='eCom.orderitem'))]
from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [('eCom', '0014_auto_20210617_1503')] operations = [migrations.RemoveField(model_name='order', name='items'), migrations.AddField(model_name='order', name='items', field=models. ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='eCom.orderitem'))]
# Generated by Django 3.2.4 on 2021-06-18 01:20 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('eCom', '0014_auto_20210617_1503'), ] operations = [ migrations.RemoveField( model_name='order', name='items', ), migrations.AddField( model_name='order', name='items', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='eCom.orderitem'), ), ]
[ 0, 1, 2, 3, 4 ]
2,157
43b9d308bb8d2b38c5f539e8700f5c2d8fe2287d
<mask token> def simplify_string(inp): inp = inp.lower().strip() inp = re.sub('[^A-Za-z0-9]', '_', inp) return inp <mask token> def initialize(url, browser=None): if browser == None: print('creating browser for the first and last time') chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--headless') browser = webdriver.Chrome(driver_path, chrome_options=chrome_options) browser.implicitly_wait(3) browser.get(url) browser.implicitly_wait(3) return browser <mask token> def getCastInfo(page_soup): cast_table = page_soup.find('table', {'class': 'cast_list'}) cast_elem_arr = cast_table.findAll('tr', {'class': 'odd'} ) + cast_table.findAll('tr', {'class': 'even'}) cast_and_character = [] for cast_elem in cast_elem_arr: td_arr = cast_elem.findAll('td') if len(td_arr) < 4: continue actor_elem = td_arr[1] actor_anchor = actor_elem.find('a') actor_url, actor_name = processPageAnchor(actor_anchor) actor_info = {'@type': 'Person', 'url': actor_url, 'name': actor_name} character_elem = td_arr[3] character_info = [] character_anchor_arr = character_elem.findAll('a') for character_anchor in character_anchor_arr: character_url, character_name = processPageAnchor(character_anchor) character_info.append({'url': character_url, 'name': character_name}) cast_and_character.append({'actor': actor_info, 'character_and_episodes': character_info}) return cast_and_character def checkvalidtext(txt): if txt.isspace(): return False arr = ['|', 'See more', '»', ','] if txt in arr: return False if txt.strip() in arr: return False return True def filter(arr): ret = [] attr = '#' for val in arr: if checkvalidtext(val) == False: continue if val[-1] == ':': attr = val[0:-1] continue ret.append(val.strip()) return attr, ret def parseDetailInfo(page_soup): detail_elem = page_soup.find('div', {'class': 'article', 'id': 'titleDetails'}) divs = detail_elem.findAll('div') details = {} for div in divs: vrr = div.findAll() attr, value = filter(div.findAll(text=True)) if attr == 'Official Sites' or attr == '#' or attr == 'Color': continue details[attr] = value return details <mask token>
<mask token> def simplify_string(inp): inp = inp.lower().strip() inp = re.sub('[^A-Za-z0-9]', '_', inp) return inp def makeDirectory(path): print('creating directory ' + path) try: os.mkdir(path) except FileExistsError: pass def initialize(url, browser=None): if browser == None: print('creating browser for the first and last time') chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--headless') browser = webdriver.Chrome(driver_path, chrome_options=chrome_options) browser.implicitly_wait(3) browser.get(url) browser.implicitly_wait(3) return browser <mask token> def getSoupFromElement(element): html = element.get_attribute('innerHTML') soup = BeautifulSoup(html, 'html.parser') return soup <mask token> def getCastInfo(page_soup): cast_table = page_soup.find('table', {'class': 'cast_list'}) cast_elem_arr = cast_table.findAll('tr', {'class': 'odd'} ) + cast_table.findAll('tr', {'class': 'even'}) cast_and_character = [] for cast_elem in cast_elem_arr: td_arr = cast_elem.findAll('td') if len(td_arr) < 4: continue actor_elem = td_arr[1] actor_anchor = actor_elem.find('a') actor_url, actor_name = processPageAnchor(actor_anchor) actor_info = {'@type': 'Person', 'url': actor_url, 'name': actor_name} character_elem = td_arr[3] character_info = [] character_anchor_arr = character_elem.findAll('a') for character_anchor in character_anchor_arr: character_url, character_name = processPageAnchor(character_anchor) character_info.append({'url': character_url, 'name': character_name}) cast_and_character.append({'actor': actor_info, 'character_and_episodes': character_info}) return cast_and_character def checkvalidtext(txt): if txt.isspace(): return False arr = ['|', 'See more', '»', ','] if txt in arr: return False if txt.strip() in arr: return False return True def filter(arr): ret = [] attr = '#' for val in arr: if checkvalidtext(val) == False: continue if val[-1] == ':': attr = val[0:-1] continue ret.append(val.strip()) return attr, ret def parseDetailInfo(page_soup): detail_elem = page_soup.find('div', {'class': 'article', 'id': 'titleDetails'}) divs = detail_elem.findAll('div') details = {} for div in divs: vrr = div.findAll() attr, value = filter(div.findAll(text=True)) if attr == 'Official Sites' or attr == '#' or attr == 'Color': continue details[attr] = value return details <mask token>
<mask token> def simplify_string(inp): inp = inp.lower().strip() inp = re.sub('[^A-Za-z0-9]', '_', inp) return inp def makeDirectory(path): print('creating directory ' + path) try: os.mkdir(path) except FileExistsError: pass def initialize(url, browser=None): if browser == None: print('creating browser for the first and last time') chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--headless') browser = webdriver.Chrome(driver_path, chrome_options=chrome_options) browser.implicitly_wait(3) browser.get(url) browser.implicitly_wait(3) return browser <mask token> def getSoupFromElement(element): html = element.get_attribute('innerHTML') soup = BeautifulSoup(html, 'html.parser') return soup def processPageAnchor(anchorElem): url = anchorElem['href'] text = anchorElem.find(text=True).strip() return url, text def getCastInfo(page_soup): cast_table = page_soup.find('table', {'class': 'cast_list'}) cast_elem_arr = cast_table.findAll('tr', {'class': 'odd'} ) + cast_table.findAll('tr', {'class': 'even'}) cast_and_character = [] for cast_elem in cast_elem_arr: td_arr = cast_elem.findAll('td') if len(td_arr) < 4: continue actor_elem = td_arr[1] actor_anchor = actor_elem.find('a') actor_url, actor_name = processPageAnchor(actor_anchor) actor_info = {'@type': 'Person', 'url': actor_url, 'name': actor_name} character_elem = td_arr[3] character_info = [] character_anchor_arr = character_elem.findAll('a') for character_anchor in character_anchor_arr: character_url, character_name = processPageAnchor(character_anchor) character_info.append({'url': character_url, 'name': character_name}) cast_and_character.append({'actor': actor_info, 'character_and_episodes': character_info}) return cast_and_character def checkvalidtext(txt): if txt.isspace(): return False arr = ['|', 'See more', '»', ','] if txt in arr: return False if txt.strip() in arr: return False return True def filter(arr): ret = [] attr = '#' for val in arr: if checkvalidtext(val) == False: continue if val[-1] == ':': attr = val[0:-1] continue ret.append(val.strip()) return attr, ret def parseDetailInfo(page_soup): detail_elem = page_soup.find('div', {'class': 'article', 'id': 'titleDetails'}) divs = detail_elem.findAll('div') details = {} for div in divs: vrr = div.findAll() attr, value = filter(div.findAll(text=True)) if attr == 'Official Sites' or attr == '#' or attr == 'Color': continue details[attr] = value return details <mask token>
<mask token> def simplify_string(inp): inp = inp.lower().strip() inp = re.sub('[^A-Za-z0-9]', '_', inp) return inp def makeDirectory(path): print('creating directory ' + path) try: os.mkdir(path) except FileExistsError: pass def initialize(url, browser=None): if browser == None: print('creating browser for the first and last time') chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--headless') browser = webdriver.Chrome(driver_path, chrome_options=chrome_options) browser.implicitly_wait(3) browser.get(url) browser.implicitly_wait(3) return browser def performClick(driver, element): driver.execute_script('arguments[0].click();', element) def getSoupFromElement(element): html = element.get_attribute('innerHTML') soup = BeautifulSoup(html, 'html.parser') return soup def processPageAnchor(anchorElem): url = anchorElem['href'] text = anchorElem.find(text=True).strip() return url, text def getCastInfo(page_soup): cast_table = page_soup.find('table', {'class': 'cast_list'}) cast_elem_arr = cast_table.findAll('tr', {'class': 'odd'} ) + cast_table.findAll('tr', {'class': 'even'}) cast_and_character = [] for cast_elem in cast_elem_arr: td_arr = cast_elem.findAll('td') if len(td_arr) < 4: continue actor_elem = td_arr[1] actor_anchor = actor_elem.find('a') actor_url, actor_name = processPageAnchor(actor_anchor) actor_info = {'@type': 'Person', 'url': actor_url, 'name': actor_name} character_elem = td_arr[3] character_info = [] character_anchor_arr = character_elem.findAll('a') for character_anchor in character_anchor_arr: character_url, character_name = processPageAnchor(character_anchor) character_info.append({'url': character_url, 'name': character_name}) cast_and_character.append({'actor': actor_info, 'character_and_episodes': character_info}) return cast_and_character def checkvalidtext(txt): if txt.isspace(): return False arr = ['|', 'See more', '»', ','] if txt in arr: return False if txt.strip() in arr: return False return True def filter(arr): ret = [] attr = '#' for val in arr: if checkvalidtext(val) == False: continue if val[-1] == ':': attr = val[0:-1] continue ret.append(val.strip()) return attr, ret def parseDetailInfo(page_soup): detail_elem = page_soup.find('div', {'class': 'article', 'id': 'titleDetails'}) divs = detail_elem.findAll('div') details = {} for div in divs: vrr = div.findAll() attr, value = filter(div.findAll(text=True)) if attr == 'Official Sites' or attr == '#' or attr == 'Color': continue details[attr] = value return details <mask token> def loadFailCases(): try: with open('fail_cases.json', 'r') as f: fail_cases = json.load(f) except: print( 'Could not find fail_cases.json -- initializing with empty folder') fail_cases = [] return fail_cases <mask token>
from selenium import webdriver from bs4 import BeautifulSoup from selenium.webdriver.common.action_chains import ActionChains import time import json import re import os import datetime ########################################################################### driver_path = "/home/arnab/Codes/00_Libs/chromedriver_linux64/chromedriver" ########################################################################### def simplify_string(inp): inp = inp.lower().strip() inp = re.sub(r'[^A-Za-z0-9]', '_', inp) return inp def makeDirectory(path): print("creating directory " + path) try: os.mkdir(path) except FileExistsError: pass def initialize(url, browser=None): if(browser == None): print("creating browser for the first and last time") chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--headless') # chrome_options.add_argument('--no-sandbox') # chrome_options.add_argument('--disable-dev-shm-usage') browser = webdriver.Chrome(driver_path, chrome_options=chrome_options) browser.implicitly_wait(3) browser.get(url) browser.implicitly_wait(3) return browser def performClick(driver, element): driver.execute_script("arguments[0].click();", element) def getSoupFromElement(element): html = element.get_attribute('innerHTML') soup = BeautifulSoup(html, 'html.parser') return soup def processPageAnchor(anchorElem): url = anchorElem['href'] text = anchorElem.find(text=True).strip() return url, text def getCastInfo(page_soup): cast_table = page_soup.find("table", {"class": "cast_list"}) # print(" >>>>>>>>>>>>>>>>>>>>>>>>> ") # print(cast_table.prettify()) cast_elem_arr = cast_table.findAll("tr", {"class": "odd"}) + cast_table.findAll("tr", {"class": "even"}) # print(len(cast_elem_arr)) # print(cast_elem_arr[0].prettify()) cast_and_character = [] for cast_elem in cast_elem_arr: td_arr = cast_elem.findAll("td") if(len(td_arr) < 4): continue # print(td_arr[1].prettify()) actor_elem = td_arr[1] actor_anchor = actor_elem.find("a") actor_url, actor_name = processPageAnchor(actor_anchor) actor_info = { "@type" : "Person", "url" : actor_url, "name" : actor_name } # print(actor_info) # print(td_arr[3].prettify()) character_elem = td_arr[3] character_info = [] character_anchor_arr = character_elem.findAll('a') for character_anchor in character_anchor_arr: character_url, character_name = processPageAnchor(character_anchor) character_info.append({ "url" : character_url, "name" : character_name }) # print(character_info) cast_and_character.append({ "actor" : actor_info, "character_and_episodes" : character_info }) # print(cast_and_character) # print(len(cast_and_character)) return cast_and_character def checkvalidtext(txt): if(txt.isspace()): return False arr = ["|", "See more", "\u00bb", ","] if txt in arr: return False if txt.strip() in arr: return False return True def filter(arr): ret = [] attr = "#" for val in arr: if(checkvalidtext(val) == False): continue if(val[-1] == ":"): attr = val[0:-1] continue ret.append(val.strip()) return attr, ret def parseDetailInfo(page_soup): detail_elem = page_soup.find("div", { 'class': 'article', 'id': "titleDetails" }) divs = detail_elem.findAll("div") details = {} for div in divs: vrr = div.findAll() attr, value = filter(div.findAll(text=True)) if(attr == "Official Sites" or attr == "#" or attr == "Color"): continue # print(attr, " >>>>>> ", value) details[attr] = value return details def processOneMovie(movie_url, folder_path, driver, try_cnt = 0): # if(True): try: if(try_cnt == 0): driver = initialize(movie_url, driver) page_html = driver.page_source page_soup = BeautifulSoup(page_html, 'html.parser') # print(page_soup.prettify()) query_result = page_soup.find("script", {"type": "application/ld+json"}) # print(query_result.string) meta_data = json.loads(query_result.string) try: meta_data["cast_and_character"] = getCastInfo(page_soup) except: meta_data["cast_and_character"] = "Error loading cast information -- checked {}".format(datetime.datetime.now()) meta_data['details'] = parseDetailInfo(page_soup) movie_id = meta_data["url"].split('/')[-2] movie_name = meta_data["name"] file_name = "{}__{}".format(movie_id, simplify_string(movie_name)) + ".json" # print(file_name) # print(meta_data) with open(folder_path + "/" + file_name, "w") as f: json.dump(meta_data, f) print("saved movie < {} > to < {} >".format(movie_name, file_name)) return True except: if(try_cnt == 17): print("Error loading movie -- skip this") return False print("maybe temporary internet connection problem. trying again < {} >".format(try_cnt + 1)) driver.refresh() time.sleep(2) return processOneMovie(movie_url, folder_path, driver, try_cnt+1) ############################################################################################################# url_root = "https://www.imdb.com/" save_path = "MOVIES" summary_path = "IMDB_SUMMARY/SUMMARY_DATA" frm = 1 rng = 250 limit = 600000 # set it to -1 for all processing ############################################################################################################# makeDirectory(save_path) summary_files = sorted(os.listdir(summary_path)) driver = initialize(url_root) def loadFailCases(): try: with open("fail_cases.json", "r") as f: fail_cases = json.load(f) except: print("Could not find fail_cases.json -- initializing with empty folder") fail_cases = [] return fail_cases print(summary_files) # for summary in summary_files: while(True): summary = "{} - {}.json".format(frm, frm+rng-1) if(summary not in summary_files): print("Could not fild summary file < {} >".format(summary)) break print("Now processing < {} >".format(summary)) folder_name = summary.split('.')[0] folder_path = save_path + "/" + folder_name makeDirectory(folder_path) with open(summary_path + "/" + summary) as f: movie_arr = json.load(f) # print(type(movie_arr)) # print(movie_arr) process_cnt = 0 st = 0 # if(frm == 65251): # st = 173 for idx in range(st, len(movie_arr)): movie = movie_arr[idx] # print(movie["link"]) movie_url = url_root + movie["link"] success = processOneMovie(movie_url, folder_path, driver) if(success == False): fail_cases = loadFailCases() fail_cases.append(movie) with open("fail_cases.json", "w") as f: json.dump(fail_cases, f) process_cnt += 1 print(">>>>>>>>>>>>>>>>>>>>>>>>>> processed {} of {} --- of :: {}".format(st + process_cnt, len(movie_arr), summary)) frm += rng if limit == -1: continue elif (frm > limit): break
[ 6, 8, 9, 11, 16 ]
2,158
06848ec0e327fed1da00446cec6392c6f42130af
<mask token>
<mask token> for i in range(x, y + 1): if i > 1: for j in range(2, i): if i % j == 0: break else: count += 1 print(count)
<mask token> x, y = map(int, input().split()) count = 0 for i in range(x, y + 1): if i > 1: for j in range(2, i): if i % j == 0: break else: count += 1 print(count)
'''Given a range of 2 numbers (i.e) L and R count the number of prime numbers in the range (inclusive of L and R ). Input Size : L <= R <= 100000(complexity O(n) read about Sieve of Eratosthenes) Sample Testcase : INPUT 2 5 OUTPUT 3''' x,y=map(int,input().split()) count=0 for i in range(x,y+1): if i>1: for j in range(2,i): if(i%j==0): break else: count+=1 print(count)
null
[ 0, 1, 2, 3 ]
2,159
e9918f4fac2e13b36d9b20ffc28dc6508aad6f9b
<mask token>
class Solution: <mask token>
class Solution: def numSmallerByFrequency(self, queries: List[str], words: List[str] ) ->List[int]: words_freq = {word: word.count(min(word)) for word in words} queries_freq = {} ans = [] for query in queries: if query in queries_freq: ans.append(queries_freq[query]) continue query_freq = query.count(min(query)) num = sum([(1 if query_freq < words_freq[word] else 0) for word in words]) ans.append(num) queries_freq[query] = num return ans
class Solution: # complexity: 2*n^2 + 4*n^2 -> 8*n^2 def numSmallerByFrequency(self, queries: List[str], words: List[str]) -> List[int]: # complexity: n*2*l where l is the length of the word -> 2*n^2 words_freq = { word: word.count(min(word)) for word in words } queries_freq = {} ans = [] # complexity: q*4*n where q is the length of queries -> 4n^2 for query in queries: if query in queries_freq: ans.append(queries_freq[query]) continue # complexity: 2*l where l is the length of the word -> 2*n query_freq = query.count(min(query)) # complexity: n*n due the iteration and the sum -> 2*n num = sum([1 if query_freq < words_freq[word] else 0 for word in words]) ans.append(num) queries_freq[query] = num return ans
null
[ 0, 1, 2, 3 ]
2,160
a718949ed95b7d78f091b1e0f237eed151b102ae
<mask token>
from .most_serializers import *
from .most_serializers import *
null
null
[ 0, 1, 2 ]
2,161
e1172cadeb8b2ce036d8431cef78cfe19bda0cb8
<mask token>
<mask token> print('Temp in ', celsius, 'celsius=', fah, ' Fahrenheit')
celsius = input('Enter temperature in Celsius') celsius = int(celsius) fah = celsius * 9 / 5 + 32 print('Temp in ', celsius, 'celsius=', fah, ' Fahrenheit')
#Program to convert temp in degree Celsius to temp in degree Fahrenheit celsius=input("Enter temperature in Celsius") celsius=int(celsius) fah=(celsius*9/5)+32 print("Temp in ",celsius,"celsius=",fah," Fahrenheit")
null
[ 0, 1, 2, 3 ]
2,162
0ad529298f321d2f3a63cde8179a50cf2881ee00
<mask token> def main(): global args torch.manual_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False log_name = 'log_test.txt' sys.stdout = Logger(osp.join(args.save_dir, log_name)) print('==========\nArgs:{}\n=========='.format(args)) if use_gpu: print('Currently using GPU {}'.format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print('Currently using CPU, however, GPU is highly recommended') print('Initializing image data manager') if not args.convert_to_onnx: dm = ImageDataManager(use_gpu, **image_dataset_kwargs(args)) trainloader, trainloader_dict, testloader_dict = dm.return_dataloaders( ) num_train_pids = 100 print('Initializing model: {}'.format(args.arch)) model = models.init_model(name=args.arch, num_classes=num_train_pids, loss={'xent', 'htri'}, pretrained=False if args.load_weights else 'imagenet', grayscale=args.grayscale, ceil_mode=not args. convert_to_onnx, infer=True, bits=args.bits, normalize_embeddings= args.normalize_embeddings, normalize_fc=args.normalize_fc, convbn= args.convbn) print('Model size: {:.3f} M'.format(count_num_param(model))) if args.load_weights and check_isfile(args.load_weights): load_weights(model, args.load_weights) print("Loaded pretrained weights from '{}'".format(args.load_weights)) if args.absorb_bn: search_absorbed_bn(model) if args.quantization or args.save_quantized_model: from gap_quantization.quantization import ModelQuantizer from gap_quantization.dump_utils import dump_quant_params, remove_extra_dump, remove_cat_files if args.quant_data_dir is None: raise AttributeError('quant-data-dir argument is required.') num_channels = 1 if args.grayscale else 3 cfg = {'bits': args.bits, 'accum_bits': 32, 'signed': True, 'save_folder': args.save_dir, 'data_source': args. quant_data_dir, 'use_gpu': False, 'batch_size': 1, 'num_workers': 0, 'verbose': True, 'save_params': args. save_quantized_model, 'quantize_forward': True, 'num_input_channels': num_channels, 'raw_input': args. no_normalize, 'double_precision': args.double_precision} model = model.cpu() quantizer = ModelQuantizer(model, cfg, dm.transform_test) quantizer.quantize_model() if args.infer: if args.image_path == '': raise AttributeError('Image for inference is required') quantizer.dump_activations(args.image_path, dm.transform_test, save_dir=os.path.join(args.save_dir, 'activations_dump')) dump_quant_params(args.save_dir, args.convbn) if args.convbn: remove_extra_dump(os.path.join(args.save_dir, 'activations_dump')) remove_cat_files(args.save_dir) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print('Evaluate only') for name in args.target_names: if not 'lfw' in name.lower(): print('Evaluating {} ...'.format(name)) queryloader = testloader_dict[name]['query'] galleryloader = testloader_dict[name]['gallery'] distmat = test(args, model, queryloader, galleryloader, use_gpu, return_distmat=True) if args.visualize_ranks: visualize_ranked_results(distmat, dm. return_testdataset_by_name(name), save_dir=osp.join (args.save_dir, 'ranked_results', name), topk=20) else: model.eval() same_acc, diff_acc, all_acc, auc, thresh = evaluate(args, dm.lfw_dataset, model, compute_embeddings_lfw, args. test_batch_size, verbose=False, show_failed=args. show_failed, load_embeddings=args.load_embeddings) log.info('Validation accuracy: {0:.4f}, {1:.4f}'.format( same_acc, diff_acc)) log.info('Validation accuracy mean: {0:.4f}'.format(all_acc)) log.info('Validation AUC: {0:.4f}'.format(auc)) log.info('Estimated threshold: {0:.4f}'.format(thresh)) return <mask token>
<mask token> def main(): global args torch.manual_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False log_name = 'log_test.txt' sys.stdout = Logger(osp.join(args.save_dir, log_name)) print('==========\nArgs:{}\n=========='.format(args)) if use_gpu: print('Currently using GPU {}'.format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print('Currently using CPU, however, GPU is highly recommended') print('Initializing image data manager') if not args.convert_to_onnx: dm = ImageDataManager(use_gpu, **image_dataset_kwargs(args)) trainloader, trainloader_dict, testloader_dict = dm.return_dataloaders( ) num_train_pids = 100 print('Initializing model: {}'.format(args.arch)) model = models.init_model(name=args.arch, num_classes=num_train_pids, loss={'xent', 'htri'}, pretrained=False if args.load_weights else 'imagenet', grayscale=args.grayscale, ceil_mode=not args. convert_to_onnx, infer=True, bits=args.bits, normalize_embeddings= args.normalize_embeddings, normalize_fc=args.normalize_fc, convbn= args.convbn) print('Model size: {:.3f} M'.format(count_num_param(model))) if args.load_weights and check_isfile(args.load_weights): load_weights(model, args.load_weights) print("Loaded pretrained weights from '{}'".format(args.load_weights)) if args.absorb_bn: search_absorbed_bn(model) if args.quantization or args.save_quantized_model: from gap_quantization.quantization import ModelQuantizer from gap_quantization.dump_utils import dump_quant_params, remove_extra_dump, remove_cat_files if args.quant_data_dir is None: raise AttributeError('quant-data-dir argument is required.') num_channels = 1 if args.grayscale else 3 cfg = {'bits': args.bits, 'accum_bits': 32, 'signed': True, 'save_folder': args.save_dir, 'data_source': args. quant_data_dir, 'use_gpu': False, 'batch_size': 1, 'num_workers': 0, 'verbose': True, 'save_params': args. save_quantized_model, 'quantize_forward': True, 'num_input_channels': num_channels, 'raw_input': args. no_normalize, 'double_precision': args.double_precision} model = model.cpu() quantizer = ModelQuantizer(model, cfg, dm.transform_test) quantizer.quantize_model() if args.infer: if args.image_path == '': raise AttributeError('Image for inference is required') quantizer.dump_activations(args.image_path, dm.transform_test, save_dir=os.path.join(args.save_dir, 'activations_dump')) dump_quant_params(args.save_dir, args.convbn) if args.convbn: remove_extra_dump(os.path.join(args.save_dir, 'activations_dump')) remove_cat_files(args.save_dir) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print('Evaluate only') for name in args.target_names: if not 'lfw' in name.lower(): print('Evaluating {} ...'.format(name)) queryloader = testloader_dict[name]['query'] galleryloader = testloader_dict[name]['gallery'] distmat = test(args, model, queryloader, galleryloader, use_gpu, return_distmat=True) if args.visualize_ranks: visualize_ranked_results(distmat, dm. return_testdataset_by_name(name), save_dir=osp.join (args.save_dir, 'ranked_results', name), topk=20) else: model.eval() same_acc, diff_acc, all_acc, auc, thresh = evaluate(args, dm.lfw_dataset, model, compute_embeddings_lfw, args. test_batch_size, verbose=False, show_failed=args. show_failed, load_embeddings=args.load_embeddings) log.info('Validation accuracy: {0:.4f}, {1:.4f}'.format( same_acc, diff_acc)) log.info('Validation accuracy mean: {0:.4f}'.format(all_acc)) log.info('Validation AUC: {0:.4f}'.format(auc)) log.info('Estimated threshold: {0:.4f}'.format(thresh)) return if __name__ == '__main__': main()
<mask token> parser = argument_parser() args = parser.parse_args() def main(): global args torch.manual_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False log_name = 'log_test.txt' sys.stdout = Logger(osp.join(args.save_dir, log_name)) print('==========\nArgs:{}\n=========='.format(args)) if use_gpu: print('Currently using GPU {}'.format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print('Currently using CPU, however, GPU is highly recommended') print('Initializing image data manager') if not args.convert_to_onnx: dm = ImageDataManager(use_gpu, **image_dataset_kwargs(args)) trainloader, trainloader_dict, testloader_dict = dm.return_dataloaders( ) num_train_pids = 100 print('Initializing model: {}'.format(args.arch)) model = models.init_model(name=args.arch, num_classes=num_train_pids, loss={'xent', 'htri'}, pretrained=False if args.load_weights else 'imagenet', grayscale=args.grayscale, ceil_mode=not args. convert_to_onnx, infer=True, bits=args.bits, normalize_embeddings= args.normalize_embeddings, normalize_fc=args.normalize_fc, convbn= args.convbn) print('Model size: {:.3f} M'.format(count_num_param(model))) if args.load_weights and check_isfile(args.load_weights): load_weights(model, args.load_weights) print("Loaded pretrained weights from '{}'".format(args.load_weights)) if args.absorb_bn: search_absorbed_bn(model) if args.quantization or args.save_quantized_model: from gap_quantization.quantization import ModelQuantizer from gap_quantization.dump_utils import dump_quant_params, remove_extra_dump, remove_cat_files if args.quant_data_dir is None: raise AttributeError('quant-data-dir argument is required.') num_channels = 1 if args.grayscale else 3 cfg = {'bits': args.bits, 'accum_bits': 32, 'signed': True, 'save_folder': args.save_dir, 'data_source': args. quant_data_dir, 'use_gpu': False, 'batch_size': 1, 'num_workers': 0, 'verbose': True, 'save_params': args. save_quantized_model, 'quantize_forward': True, 'num_input_channels': num_channels, 'raw_input': args. no_normalize, 'double_precision': args.double_precision} model = model.cpu() quantizer = ModelQuantizer(model, cfg, dm.transform_test) quantizer.quantize_model() if args.infer: if args.image_path == '': raise AttributeError('Image for inference is required') quantizer.dump_activations(args.image_path, dm.transform_test, save_dir=os.path.join(args.save_dir, 'activations_dump')) dump_quant_params(args.save_dir, args.convbn) if args.convbn: remove_extra_dump(os.path.join(args.save_dir, 'activations_dump')) remove_cat_files(args.save_dir) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print('Evaluate only') for name in args.target_names: if not 'lfw' in name.lower(): print('Evaluating {} ...'.format(name)) queryloader = testloader_dict[name]['query'] galleryloader = testloader_dict[name]['gallery'] distmat = test(args, model, queryloader, galleryloader, use_gpu, return_distmat=True) if args.visualize_ranks: visualize_ranked_results(distmat, dm. return_testdataset_by_name(name), save_dir=osp.join (args.save_dir, 'ranked_results', name), topk=20) else: model.eval() same_acc, diff_acc, all_acc, auc, thresh = evaluate(args, dm.lfw_dataset, model, compute_embeddings_lfw, args. test_batch_size, verbose=False, show_failed=args. show_failed, load_embeddings=args.load_embeddings) log.info('Validation accuracy: {0:.4f}, {1:.4f}'.format( same_acc, diff_acc)) log.info('Validation accuracy mean: {0:.4f}'.format(all_acc)) log.info('Validation AUC: {0:.4f}'.format(auc)) log.info('Estimated threshold: {0:.4f}'.format(thresh)) return if __name__ == '__main__': main()
from __future__ import print_function from __future__ import division import os import sys import time import datetime import os.path as osp from collections import defaultdict import numpy as np import math from functools import partial from tqdm import tqdm import glog as log import torch import torch.nn as nn import torch.backends.cudnn as cudnn from args import argument_parser, image_dataset_kwargs, optimizer_kwargs from torchreid.data_manager import ImageDataManager from torchreid import models from torchreid.utils.iotools import save_checkpoint, check_isfile from torchreid.utils.avgmeter import AverageMeter from torchreid.utils.loggers import Logger from torchreid.utils.torchtools import count_num_param from torchreid.utils.reidtools import visualize_ranked_results, distmat_hist, calc_distmat from torchreid.eval_metrics import test from torchreid.utils.load_weights import load_weights from torchreid.utils.absorb_bn import search_absorbed_bn from torchreid.evaluate_lfw import evaluate, compute_embeddings_lfw parser = argument_parser() args = parser.parse_args() def main(): global args torch.manual_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False log_name = 'log_test.txt' sys.stdout = Logger(osp.join(args.save_dir, log_name)) print('==========\nArgs:{}\n=========='.format(args)) if use_gpu: print('Currently using GPU {}'.format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print('Currently using CPU, however, GPU is highly recommended') print('Initializing image data manager') if not args.convert_to_onnx: dm = ImageDataManager(use_gpu, **image_dataset_kwargs(args)) trainloader, trainloader_dict, testloader_dict = dm.return_dataloaders( ) num_train_pids = 100 print('Initializing model: {}'.format(args.arch)) model = models.init_model(name=args.arch, num_classes=num_train_pids, loss={'xent', 'htri'}, pretrained=False if args.load_weights else 'imagenet', grayscale=args.grayscale, ceil_mode=not args. convert_to_onnx, infer=True, bits=args.bits, normalize_embeddings= args.normalize_embeddings, normalize_fc=args.normalize_fc, convbn= args.convbn) print('Model size: {:.3f} M'.format(count_num_param(model))) if args.load_weights and check_isfile(args.load_weights): load_weights(model, args.load_weights) print("Loaded pretrained weights from '{}'".format(args.load_weights)) if args.absorb_bn: search_absorbed_bn(model) if args.quantization or args.save_quantized_model: from gap_quantization.quantization import ModelQuantizer from gap_quantization.dump_utils import dump_quant_params, remove_extra_dump, remove_cat_files if args.quant_data_dir is None: raise AttributeError('quant-data-dir argument is required.') num_channels = 1 if args.grayscale else 3 cfg = {'bits': args.bits, 'accum_bits': 32, 'signed': True, 'save_folder': args.save_dir, 'data_source': args. quant_data_dir, 'use_gpu': False, 'batch_size': 1, 'num_workers': 0, 'verbose': True, 'save_params': args. save_quantized_model, 'quantize_forward': True, 'num_input_channels': num_channels, 'raw_input': args. no_normalize, 'double_precision': args.double_precision} model = model.cpu() quantizer = ModelQuantizer(model, cfg, dm.transform_test) quantizer.quantize_model() if args.infer: if args.image_path == '': raise AttributeError('Image for inference is required') quantizer.dump_activations(args.image_path, dm.transform_test, save_dir=os.path.join(args.save_dir, 'activations_dump')) dump_quant_params(args.save_dir, args.convbn) if args.convbn: remove_extra_dump(os.path.join(args.save_dir, 'activations_dump')) remove_cat_files(args.save_dir) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print('Evaluate only') for name in args.target_names: if not 'lfw' in name.lower(): print('Evaluating {} ...'.format(name)) queryloader = testloader_dict[name]['query'] galleryloader = testloader_dict[name]['gallery'] distmat = test(args, model, queryloader, galleryloader, use_gpu, return_distmat=True) if args.visualize_ranks: visualize_ranked_results(distmat, dm. return_testdataset_by_name(name), save_dir=osp.join (args.save_dir, 'ranked_results', name), topk=20) else: model.eval() same_acc, diff_acc, all_acc, auc, thresh = evaluate(args, dm.lfw_dataset, model, compute_embeddings_lfw, args. test_batch_size, verbose=False, show_failed=args. show_failed, load_embeddings=args.load_embeddings) log.info('Validation accuracy: {0:.4f}, {1:.4f}'.format( same_acc, diff_acc)) log.info('Validation accuracy mean: {0:.4f}'.format(all_acc)) log.info('Validation AUC: {0:.4f}'.format(auc)) log.info('Estimated threshold: {0:.4f}'.format(thresh)) return if __name__ == '__main__': main()
from __future__ import print_function from __future__ import division import os import sys import time import datetime import os.path as osp from collections import defaultdict import numpy as np import math from functools import partial from tqdm import tqdm import glog as log import torch import torch.nn as nn import torch.backends.cudnn as cudnn from args import argument_parser, image_dataset_kwargs, optimizer_kwargs from torchreid.data_manager import ImageDataManager from torchreid import models from torchreid.utils.iotools import save_checkpoint, check_isfile from torchreid.utils.avgmeter import AverageMeter from torchreid.utils.loggers import Logger from torchreid.utils.torchtools import count_num_param from torchreid.utils.reidtools import visualize_ranked_results, distmat_hist, calc_distmat from torchreid.eval_metrics import test from torchreid.utils.load_weights import load_weights from torchreid.utils.absorb_bn import search_absorbed_bn from torchreid.evaluate_lfw import evaluate, compute_embeddings_lfw # global variables parser = argument_parser() args = parser.parse_args() def main(): global args torch.manual_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False log_name = 'log_test.txt' sys.stdout = Logger(osp.join(args.save_dir, log_name)) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU, however, GPU is highly recommended") print("Initializing image data manager") if not args.convert_to_onnx: # and not args.infer: dm = ImageDataManager(use_gpu, **image_dataset_kwargs(args)) trainloader, trainloader_dict, testloader_dict = dm.return_dataloaders() num_train_pids = 100 print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=num_train_pids, loss={'xent', 'htri'}, pretrained=False if args.load_weights else 'imagenet', grayscale=args.grayscale, ceil_mode=not args.convert_to_onnx, infer=True, bits=args.bits, normalize_embeddings=args.normalize_embeddings, normalize_fc=args.normalize_fc, convbn=args.convbn) print("Model size: {:.3f} M".format(count_num_param(model))) if args.load_weights and check_isfile(args.load_weights): # load pretrained weights but ignore layers that don't match in size load_weights(model, args.load_weights) print("Loaded pretrained weights from '{}'".format(args.load_weights)) if args.absorb_bn: search_absorbed_bn(model) if args.quantization or args.save_quantized_model: from gap_quantization.quantization import ModelQuantizer from gap_quantization.dump_utils import dump_quant_params, remove_extra_dump, remove_cat_files if args.quant_data_dir is None: raise AttributeError('quant-data-dir argument is required.') num_channels = 1 if args.grayscale else 3 cfg = { "bits": args.bits, # number of bits to store weights and activations "accum_bits": 32, # number of bits to store intermediate convolution result "signed": True, # use signed numbers "save_folder": args.save_dir, # folder to save results "data_source": args.quant_data_dir, # folder with images to collect dataset statistics "use_gpu": False, # use GPU for inference "batch_size": 1, "num_workers": 0, # number of workers for PyTorch dataloader "verbose": True, "save_params": args.save_quantized_model, # save quantization parameters to the file "quantize_forward": True, # replace usual convs, poolings, ... with GAP-like ones "num_input_channels": num_channels, "raw_input": args.no_normalize, "double_precision": args.double_precision # use double precision convolutions } model = model.cpu() quantizer = ModelQuantizer(model, cfg, dm.transform_test) # transform test is OK if we use args.no_normalize quantizer.quantize_model() # otherwise we need to add QuantizeInput operation if args.infer: if args.image_path == '': raise AttributeError('Image for inference is required') quantizer.dump_activations(args.image_path, dm.transform_test, save_dir=os.path.join(args.save_dir, 'activations_dump')) dump_quant_params(args.save_dir, args.convbn) if args.convbn: remove_extra_dump(os.path.join(args.save_dir, 'activations_dump')) remove_cat_files(args.save_dir) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") for name in args.target_names: if not 'lfw' in name.lower(): print("Evaluating {} ...".format(name)) queryloader = testloader_dict[name]['query'] galleryloader = testloader_dict[name]['gallery'] distmat = test(args, model, queryloader, galleryloader, use_gpu, return_distmat=True) if args.visualize_ranks: visualize_ranked_results( distmat, dm.return_testdataset_by_name(name), save_dir=osp.join(args.save_dir, 'ranked_results', name), topk=20 ) else: model.eval() same_acc, diff_acc, all_acc, auc, thresh = evaluate(args, dm.lfw_dataset, model, compute_embeddings_lfw, args.test_batch_size, verbose=False, show_failed=args.show_failed, load_embeddings=args.load_embeddings) log.info('Validation accuracy: {0:.4f}, {1:.4f}'.format(same_acc, diff_acc)) log.info('Validation accuracy mean: {0:.4f}'.format(all_acc)) log.info('Validation AUC: {0:.4f}'.format(auc)) log.info('Estimated threshold: {0:.4f}'.format(thresh)) #roc_auc(model, '/home/maxim/data/lfw/pairsTest.txt', '/media/slow_drive/cropped_lfw', args, use_gpu) return if __name__ == '__main__': main()
[ 1, 2, 3, 4, 5 ]
2,163
6cba431650ee8b74baa8310c144321b2e587155e
<mask token>
<mask token> for color in list_1: for size in list_2: print(color, size) <mask token> list_3.reverse() print(list_3)
list_1 = ['color', 'white', 'black'] list_2 = ['short', 'medium', 'large', 'xl'] for color in list_1: for size in list_2: print(color, size) list_3 = [(color, size) for color in list_1 for size in list_2] list_3.reverse() print(list_3)
list_1 = ['color','white','black']#taking the colors of t-shirts as input list_2 = ['short','medium','large','xl']#taking sizes of t-shirts as input for color in list_1: for size in list_2: #using cartesien product asking to give output as the combinations of color and size of t-shirts we have print(color,size) #using list comprehension for the above input giving the same output but in reverse order list_3 = [ (color,size) for color in list_1 for size in list_2] list_3.reverse()#used reverse method in lists print(list_3)
null
[ 0, 1, 2, 3 ]
2,164
810017cd5814fc20ebcdbdf26a32ea1bcfc88625
<mask token> def test_linear_slope_2(): eta = ETA(100) eta._timing_data = deque([(10, 20), (20, 40), (30, 60), (40, 80)]) getattr(eta, '_calculate')() assert 50 == eta.eta_epoch assert 2.0 == eta.rate assert 2.0 == eta.rate_unstable def test_linear_transform(): """Wolfram Alpha: x is the timestamp. y is the numerator. 120 is the denominator. linear fit {1.2, 22},{2.4, 58},{3.1, 102},{4.4, 118} The closer we get to 100%, the more vertical shift/transform is applied to the line. As we near the end we want the line to get closer to the last point on the graph. This avoids having 99% with an ETA in the past. """ eta = ETA(120) eta._timing_data = deque([(1.2, 22), (2.4, 58), (3.1, 102), (4.4, 118)]) getattr(eta, '_calculate')() assert 4.4 < eta.eta_epoch < 4.6 assert 30 < eta.rate < 35 assert 12 < eta.rate_unstable < 13 <mask token>
<mask token> def test_linear_slope_1(): eta = ETA(100) eta._timing_data = deque([(10, 10), (20, 20), (30, 30), (40, 40)]) getattr(eta, '_calculate')() assert 100 == eta.eta_epoch assert 1.0 == eta.rate assert 1.0 == eta.rate_unstable def test_linear_slope_2(): eta = ETA(100) eta._timing_data = deque([(10, 20), (20, 40), (30, 60), (40, 80)]) getattr(eta, '_calculate')() assert 50 == eta.eta_epoch assert 2.0 == eta.rate assert 2.0 == eta.rate_unstable def test_linear_transform(): """Wolfram Alpha: x is the timestamp. y is the numerator. 120 is the denominator. linear fit {1.2, 22},{2.4, 58},{3.1, 102},{4.4, 118} The closer we get to 100%, the more vertical shift/transform is applied to the line. As we near the end we want the line to get closer to the last point on the graph. This avoids having 99% with an ETA in the past. """ eta = ETA(120) eta._timing_data = deque([(1.2, 22), (2.4, 58), (3.1, 102), (4.4, 118)]) getattr(eta, '_calculate')() assert 4.4 < eta.eta_epoch < 4.6 assert 30 < eta.rate < 35 assert 12 < eta.rate_unstable < 13 <mask token>
<mask token> def test_linear_slope_1(): eta = ETA(100) eta._timing_data = deque([(10, 10), (20, 20), (30, 30), (40, 40)]) getattr(eta, '_calculate')() assert 100 == eta.eta_epoch assert 1.0 == eta.rate assert 1.0 == eta.rate_unstable def test_linear_slope_2(): eta = ETA(100) eta._timing_data = deque([(10, 20), (20, 40), (30, 60), (40, 80)]) getattr(eta, '_calculate')() assert 50 == eta.eta_epoch assert 2.0 == eta.rate assert 2.0 == eta.rate_unstable def test_linear_transform(): """Wolfram Alpha: x is the timestamp. y is the numerator. 120 is the denominator. linear fit {1.2, 22},{2.4, 58},{3.1, 102},{4.4, 118} The closer we get to 100%, the more vertical shift/transform is applied to the line. As we near the end we want the line to get closer to the last point on the graph. This avoids having 99% with an ETA in the past. """ eta = ETA(120) eta._timing_data = deque([(1.2, 22), (2.4, 58), (3.1, 102), (4.4, 118)]) getattr(eta, '_calculate')() assert 4.4 < eta.eta_epoch < 4.6 assert 30 < eta.rate < 35 assert 12 < eta.rate_unstable < 13 def test_linear_transform_undefined(): eta = ETA() eta._timing_data = deque([(1.2, 22), (2.4, 58), (3.1, 102), (4.4, 118)]) getattr(eta, '_calculate')() assert eta.eta_epoch is None assert 30 < eta.rate < 35 assert 12 < eta.rate_unstable < 13
from collections import deque from etaprogress.eta import ETA def test_linear_slope_1(): eta = ETA(100) eta._timing_data = deque([(10, 10), (20, 20), (30, 30), (40, 40)]) getattr(eta, '_calculate')() assert 100 == eta.eta_epoch assert 1.0 == eta.rate assert 1.0 == eta.rate_unstable def test_linear_slope_2(): eta = ETA(100) eta._timing_data = deque([(10, 20), (20, 40), (30, 60), (40, 80)]) getattr(eta, '_calculate')() assert 50 == eta.eta_epoch assert 2.0 == eta.rate assert 2.0 == eta.rate_unstable def test_linear_transform(): """Wolfram Alpha: x is the timestamp. y is the numerator. 120 is the denominator. linear fit {1.2, 22},{2.4, 58},{3.1, 102},{4.4, 118} The closer we get to 100%, the more vertical shift/transform is applied to the line. As we near the end we want the line to get closer to the last point on the graph. This avoids having 99% with an ETA in the past. """ eta = ETA(120) eta._timing_data = deque([(1.2, 22), (2.4, 58), (3.1, 102), (4.4, 118)]) getattr(eta, '_calculate')() assert 4.4 < eta.eta_epoch < 4.6 assert 30 < eta.rate < 35 assert 12 < eta.rate_unstable < 13 def test_linear_transform_undefined(): eta = ETA() eta._timing_data = deque([(1.2, 22), (2.4, 58), (3.1, 102), (4.4, 118)]) getattr(eta, '_calculate')() assert eta.eta_epoch is None assert 30 < eta.rate < 35 assert 12 < eta.rate_unstable < 13
from collections import deque from etaprogress.eta import ETA def test_linear_slope_1(): eta = ETA(100) eta._timing_data = deque([(10, 10), (20, 20), (30, 30), (40, 40)]) getattr(eta, '_calculate')() assert 100 == eta.eta_epoch assert 1.0 == eta.rate assert 1.0 == eta.rate_unstable def test_linear_slope_2(): eta = ETA(100) eta._timing_data = deque([(10, 20), (20, 40), (30, 60), (40, 80)]) getattr(eta, '_calculate')() assert 50 == eta.eta_epoch assert 2.0 == eta.rate assert 2.0 == eta.rate_unstable def test_linear_transform(): """Wolfram Alpha: x is the timestamp. y is the numerator. 120 is the denominator. linear fit {1.2, 22},{2.4, 58},{3.1, 102},{4.4, 118} The closer we get to 100%, the more vertical shift/transform is applied to the line. As we near the end we want the line to get closer to the last point on the graph. This avoids having 99% with an ETA in the past. """ eta = ETA(120) eta._timing_data = deque([(1.2, 22), (2.4, 58), (3.1, 102), (4.4, 118)]) getattr(eta, '_calculate')() assert 4.4 < eta.eta_epoch < 4.6 assert 30 < eta.rate < 35 assert 12 < eta.rate_unstable < 13 def test_linear_transform_undefined(): eta = ETA() eta._timing_data = deque([(1.2, 22), (2.4, 58), (3.1, 102), (4.4, 118)]) getattr(eta, '_calculate')() assert eta.eta_epoch is None assert 30 < eta.rate < 35 assert 12 < eta.rate_unstable < 13
[ 2, 3, 4, 5, 6 ]
2,165
013189cd67cc44efd539c75ed235a0753d95f54e
<mask token> def getData(): power_file = './data/power_20210129_20210429_preprocess_1hour' power_df = read_csv(power_file + '.csv', encoding='CP949', converters={ 'date': int}) print(power_df.shape) sensor_file = 'data/sensor_20210129_20210429_preprocess_1hour' sensor_df = read_csv(sensor_file + '.csv', encoding='CP949', converters ={'date': int}) sensor_df = sensor_df.sort_values('date') print(sensor_df.shape) power_df.drop(['date'], axis=1, inplace=True) pow_scaler = MinMaxScaler(feature_range=(0, 1)) scaled_pow = pow_scaler.fit_transform(power_df.values) power_scaleddf = pd.DataFrame(scaled_pow, columns=power_df.columns, index=list(power_df.index.values)) weather_df = sensor_df.copy() weather_df.drop(['date'], axis=1, inplace=True) weather_scaler = MinMaxScaler(feature_range=(0, 1)) scaled_weather = weather_scaler.fit_transform(weather_df.values) weather_scaleddf = pd.DataFrame(scaled_weather, columns=weather_df. columns, index=list(weather_df.index.values)) df = weather_scaleddf.copy() df.insert(0, 'pow', power_scaleddf.values, True) return pow_scaler, df <mask token>
<mask token> np.set_printoptions(suppress=True) <mask token> def getData(): power_file = './data/power_20210129_20210429_preprocess_1hour' power_df = read_csv(power_file + '.csv', encoding='CP949', converters={ 'date': int}) print(power_df.shape) sensor_file = 'data/sensor_20210129_20210429_preprocess_1hour' sensor_df = read_csv(sensor_file + '.csv', encoding='CP949', converters ={'date': int}) sensor_df = sensor_df.sort_values('date') print(sensor_df.shape) power_df.drop(['date'], axis=1, inplace=True) pow_scaler = MinMaxScaler(feature_range=(0, 1)) scaled_pow = pow_scaler.fit_transform(power_df.values) power_scaleddf = pd.DataFrame(scaled_pow, columns=power_df.columns, index=list(power_df.index.values)) weather_df = sensor_df.copy() weather_df.drop(['date'], axis=1, inplace=True) weather_scaler = MinMaxScaler(feature_range=(0, 1)) scaled_weather = weather_scaler.fit_transform(weather_df.values) weather_scaleddf = pd.DataFrame(scaled_weather, columns=weather_df. columns, index=list(weather_df.index.values)) df = weather_scaleddf.copy() df.insert(0, 'pow', power_scaleddf.values, True) return pow_scaler, df <mask token> print(data_x.shape) print(data_y.shape) <mask token> clf.fit(x=data_x, y=data_y, validation_data=(data_x_val, data_y_val), batch_size=128, epochs=10) <mask token> print(predictions.shape) print(clf.evaluate(data_x_val, data_y_val))
<mask token> np.set_printoptions(suppress=True) EPOCHS = 10 BATCH_SIZE = 128 SHIFT_DAYS = 3 PRED_STEPS = 24 * 6 TIME_STEPS = SHIFT_DAYS * PRED_STEPS DIMENSION = 15 MODEL_NUM = 10 CAPACITY = 89.7 TRAIN_RATIO = 0.6 VAL_RATIO = 0.2 START_DATE = '2021012899' END_DATE = '2021042924' SAVE_PATH = './data/' SAVE_NAME = 'autoML_Test' def getData(): power_file = './data/power_20210129_20210429_preprocess_1hour' power_df = read_csv(power_file + '.csv', encoding='CP949', converters={ 'date': int}) print(power_df.shape) sensor_file = 'data/sensor_20210129_20210429_preprocess_1hour' sensor_df = read_csv(sensor_file + '.csv', encoding='CP949', converters ={'date': int}) sensor_df = sensor_df.sort_values('date') print(sensor_df.shape) power_df.drop(['date'], axis=1, inplace=True) pow_scaler = MinMaxScaler(feature_range=(0, 1)) scaled_pow = pow_scaler.fit_transform(power_df.values) power_scaleddf = pd.DataFrame(scaled_pow, columns=power_df.columns, index=list(power_df.index.values)) weather_df = sensor_df.copy() weather_df.drop(['date'], axis=1, inplace=True) weather_scaler = MinMaxScaler(feature_range=(0, 1)) scaled_weather = weather_scaler.fit_transform(weather_df.values) weather_scaleddf = pd.DataFrame(scaled_weather, columns=weather_df. columns, index=list(weather_df.index.values)) df = weather_scaleddf.copy() df.insert(0, 'pow', power_scaleddf.values, True) return pow_scaler, df pow_scaler, df = getData() dataset = df val_split = int(len(dataset) * 0.7) data_train = dataset[:val_split] validation_data = dataset[val_split:] data_x = data_train[['pow', 'temp', 'humidity', 'windspeed', 'windgust', 'maxdailygust', 'winddir', 'hourlyrainin', 'dailyrainin', 'weeklyrainin', 'monthlyrainin', 'yearlyrainin', 'solarradiation', 'uv', 'feelslike', 'dewpoint', 'outside_status']].astype('float64') data_x_val = validation_data[['pow', 'temp', 'humidity', 'windspeed', 'windgust', 'maxdailygust', 'winddir', 'hourlyrainin', 'dailyrainin', 'weeklyrainin', 'monthlyrainin', 'yearlyrainin', 'solarradiation', 'uv', 'feelslike', 'dewpoint', 'outside_status']].astype('float64') data_x_test = dataset[['pow', 'temp', 'humidity', 'windspeed', 'windgust', 'maxdailygust', 'winddir', 'hourlyrainin', 'dailyrainin', 'weeklyrainin', 'monthlyrainin', 'yearlyrainin', 'solarradiation', 'uv', 'feelslike', 'dewpoint', 'outside_status']].astype('float64') data_y = data_train['pow'].astype('float64') data_y_val = validation_data['pow'].astype('float64') print(data_x.shape) print(data_y.shape) predict_from = 1 predict_until = 10 lookback = 3 clf = ak.TimeseriesForecaster(lookback=lookback, predict_from=predict_from, objective='val_loss') clf.fit(x=data_x, y=data_y, validation_data=(data_x_val, data_y_val), batch_size=128, epochs=10) predictions = clf.predict(data_x_test) print(predictions.shape) print(clf.evaluate(data_x_val, data_y_val))
import pandas as pd import tensorflow as tf import autokeras as ak import numpy as np import matplotlib.pyplot as plt import pandas as pd import tensorflow as tf from numpy import concatenate from pandas import read_csv, DataFrame, concat from sklearn.preprocessing import MinMaxScaler np.set_printoptions(suppress=True) EPOCHS = 10 BATCH_SIZE = 128 SHIFT_DAYS = 3 PRED_STEPS = 24 * 6 TIME_STEPS = SHIFT_DAYS * PRED_STEPS DIMENSION = 15 MODEL_NUM = 10 CAPACITY = 89.7 TRAIN_RATIO = 0.6 VAL_RATIO = 0.2 START_DATE = '2021012899' END_DATE = '2021042924' SAVE_PATH = './data/' SAVE_NAME = 'autoML_Test' def getData(): power_file = './data/power_20210129_20210429_preprocess_1hour' power_df = read_csv(power_file + '.csv', encoding='CP949', converters={ 'date': int}) print(power_df.shape) sensor_file = 'data/sensor_20210129_20210429_preprocess_1hour' sensor_df = read_csv(sensor_file + '.csv', encoding='CP949', converters ={'date': int}) sensor_df = sensor_df.sort_values('date') print(sensor_df.shape) power_df.drop(['date'], axis=1, inplace=True) pow_scaler = MinMaxScaler(feature_range=(0, 1)) scaled_pow = pow_scaler.fit_transform(power_df.values) power_scaleddf = pd.DataFrame(scaled_pow, columns=power_df.columns, index=list(power_df.index.values)) weather_df = sensor_df.copy() weather_df.drop(['date'], axis=1, inplace=True) weather_scaler = MinMaxScaler(feature_range=(0, 1)) scaled_weather = weather_scaler.fit_transform(weather_df.values) weather_scaleddf = pd.DataFrame(scaled_weather, columns=weather_df. columns, index=list(weather_df.index.values)) df = weather_scaleddf.copy() df.insert(0, 'pow', power_scaleddf.values, True) return pow_scaler, df pow_scaler, df = getData() dataset = df val_split = int(len(dataset) * 0.7) data_train = dataset[:val_split] validation_data = dataset[val_split:] data_x = data_train[['pow', 'temp', 'humidity', 'windspeed', 'windgust', 'maxdailygust', 'winddir', 'hourlyrainin', 'dailyrainin', 'weeklyrainin', 'monthlyrainin', 'yearlyrainin', 'solarradiation', 'uv', 'feelslike', 'dewpoint', 'outside_status']].astype('float64') data_x_val = validation_data[['pow', 'temp', 'humidity', 'windspeed', 'windgust', 'maxdailygust', 'winddir', 'hourlyrainin', 'dailyrainin', 'weeklyrainin', 'monthlyrainin', 'yearlyrainin', 'solarradiation', 'uv', 'feelslike', 'dewpoint', 'outside_status']].astype('float64') data_x_test = dataset[['pow', 'temp', 'humidity', 'windspeed', 'windgust', 'maxdailygust', 'winddir', 'hourlyrainin', 'dailyrainin', 'weeklyrainin', 'monthlyrainin', 'yearlyrainin', 'solarradiation', 'uv', 'feelslike', 'dewpoint', 'outside_status']].astype('float64') data_y = data_train['pow'].astype('float64') data_y_val = validation_data['pow'].astype('float64') print(data_x.shape) print(data_y.shape) predict_from = 1 predict_until = 10 lookback = 3 clf = ak.TimeseriesForecaster(lookback=lookback, predict_from=predict_from, objective='val_loss') clf.fit(x=data_x, y=data_y, validation_data=(data_x_val, data_y_val), batch_size=128, epochs=10) predictions = clf.predict(data_x_test) print(predictions.shape) print(clf.evaluate(data_x_val, data_y_val))
import pandas as pd import tensorflow as tf import autokeras as ak import numpy as np import matplotlib.pyplot as plt import pandas as pd import tensorflow as tf from numpy import concatenate from pandas import read_csv, DataFrame, concat from sklearn.preprocessing import MinMaxScaler np.set_printoptions(suppress=True) EPOCHS = 10 BATCH_SIZE = 128 SHIFT_DAYS = 3 PRED_STEPS = 24*6 #48hr * 10분단위 예측 TIME_STEPS = SHIFT_DAYS*PRED_STEPS #hours step DIMENSION = 15 MODEL_NUM = 10 CAPACITY = 89.7 TRAIN_RATIO = 0.6 VAL_RATIO = 0.2 START_DATE = '2021012899' END_DATE = '2021042924' SAVE_PATH = './data/' SAVE_NAME = 'autoML_Test' def getData(): # power power_file = './data/power_20210129_20210429_preprocess_1hour' power_df = read_csv(power_file+'.csv', encoding='CP949', converters={'date':int}) print(power_df.shape) # sensor sensor_file = 'data/sensor_20210129_20210429_preprocess_1hour' sensor_df = read_csv(sensor_file+'.csv', encoding='CP949', converters={'date':int}) sensor_df = sensor_df.sort_values('date') print(sensor_df.shape) # scale power_df.drop(['date'], axis=1, inplace=True) pow_scaler = MinMaxScaler(feature_range = (0, 1)) scaled_pow = pow_scaler.fit_transform(power_df.values) power_scaleddf = pd.DataFrame(scaled_pow, columns=power_df.columns, index=list(power_df.index.values)) weather_df = sensor_df.copy() weather_df.drop(['date'], axis=1, inplace=True) weather_scaler = MinMaxScaler(feature_range = (0, 1))#scale scaled_weather = weather_scaler.fit_transform(weather_df.values) weather_scaleddf = pd.DataFrame(scaled_weather, columns=weather_df.columns, index=list(weather_df.index.values)) # JOIN df = weather_scaleddf.copy() # pow + weather + powY df.insert(0, 'pow', power_scaleddf.values, True) #df = df.iloc[0:-TIME_STEPS, :] #df.insert(df.shape[1], 'pow_Y', power_scaleddf.iloc[TIME_STEPS:, :].values, True) #df.insert(df.shape[1], 'pow_Y', power_scaleddf.iloc[TIME_STEPS:, :].values, True) #df.to_csv(SAVE_PATH+"total_scaled"+SAVE_NAME+".csv",mode='w',index=False, encoding='CP949') #display(df) return pow_scaler, df pow_scaler, df = getData() #display(df) dataset = df val_split = int(len(dataset) * 0.7) data_train = dataset[:val_split] validation_data = dataset[val_split:] data_x = data_train[ [ 'pow', 'temp', 'humidity', 'windspeed', 'windgust', 'maxdailygust', 'winddir', 'hourlyrainin', 'dailyrainin', 'weeklyrainin', 'monthlyrainin', 'yearlyrainin', 'solarradiation', 'uv', 'feelslike', 'dewpoint', 'outside_status' ] ].astype("float64") data_x_val = validation_data[ [ 'pow', 'temp', 'humidity', 'windspeed', 'windgust', 'maxdailygust', 'winddir', 'hourlyrainin', 'dailyrainin', 'weeklyrainin', 'monthlyrainin', 'yearlyrainin', 'solarradiation', 'uv', 'feelslike', 'dewpoint', 'outside_status' ] ].astype("float64") # Data with train data and the unseen data from subsequent time steps. data_x_test = dataset[ [ 'pow', 'temp', 'humidity', 'windspeed', 'windgust', 'maxdailygust', 'winddir', 'hourlyrainin', 'dailyrainin', 'weeklyrainin', 'monthlyrainin', 'yearlyrainin', 'solarradiation', 'uv', 'feelslike', 'dewpoint', 'outside_status' ] ].astype("float64") data_y = data_train["pow"].astype("float64") data_y_val = validation_data["pow"].astype("float64") print(data_x.shape) # (6549, 12) print(data_y.shape) # (6549,) predict_from = 1 predict_until = 10 lookback = 3 clf = ak.TimeseriesForecaster( lookback=lookback, predict_from=predict_from, #predict_until=predict_until, #max_trials=1, objective="val_loss", ) # Train the TimeSeriesForecaster with train data clf.fit( x=data_x, y=data_y, validation_data=(data_x_val, data_y_val), batch_size=128, epochs=10, ) # Predict with the best model(includes original training data). predictions = clf.predict(data_x_test) print(predictions.shape) # Evaluate the best model with testing data. print(clf.evaluate(data_x_val, data_y_val))
[ 1, 2, 3, 4, 5 ]
2,166
957e18b2536cda69ba1db571d0308d5e392fe488
<mask token> def FetchData(cfg): with open(cfg.FILE, 'rb') as f: data = pickle.load(f) if cfg.SHUFFLE: features, targets = shuffle(data[0], data[1]) else: features = data[0] targets = data[1] training_features = features[:int(len(data[0]) * cfg.TRAINING_CUT) - 1] training_targets = targets[:int(len(data[1]) * cfg.TRAINING_CUT) - 1] test_features = features[int(len(data[0]) * cfg.TRAINING_CUT):] test_targets = targets[int(len(data[1]) * cfg.TRAINING_CUT):] if cfg.NEGATIVE_SAMPLES_RATIO != 0: training_features, training_targets = limit_negative_samples( training_features, training_targets, cfg.NEGATIVE_SAMPLES_RATIO ) return training_features, training_targets, test_features, test_targets def BuildModel(cfg, input_shape, iftest, hidden_layers, regularizer, activation_function): if regularizer == 'l1': regularizer = regularizers.l1(0.05) elif regularizer == 'l2': regularizer = regularizers.l2(0.05) elif regularizer == 'none': regularizer = None model = Sequential() model.add(InputLayer(input_shape)) if iftest: for layer in hidden_layers: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer= regularizer, activation=activation_function)) else: for layer in cfg.HIDDEN_LAYERS: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer= cfg.REGULARIZER, activation=cfg.ACTIVATION_FUNCTION)) model.add(Dense(1, use_bias=cfg.BIAS, activation='sigmoid')) model.compile(loss=cfg.LOSS, optimizer=cfg.OPTIMIZER, metrics=['accuracy']) return model def TrainModel(cfg, model, training_features, training_targets, cw): if cfg.EARLY_STOPPING: es = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=cfg.EARLY_STOPPING_PATIENCE, verbose=0, mode='min') model.fit(training_features, training_targets, epochs=cfg.EPOCHS, callbacks=[es], class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) else: model.fit(training_features, training_targets, epochs=cfg.EPOCHS, class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) return model def EvaluateModel(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support( test_targets, predictions, average='macro') f1 = 2 * (precision * recall / (precision + recall)) print(str(precision) + ', ' + str(recall) + ', ' + str(f1)) <mask token> def EvaluateModelTest(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support( test_targets, predictions, average='macro') f1 = 2 * (precision * recall / (precision + recall)) return precision, recall, f1 <mask token>
<mask token> def FetchData(cfg): with open(cfg.FILE, 'rb') as f: data = pickle.load(f) if cfg.SHUFFLE: features, targets = shuffle(data[0], data[1]) else: features = data[0] targets = data[1] training_features = features[:int(len(data[0]) * cfg.TRAINING_CUT) - 1] training_targets = targets[:int(len(data[1]) * cfg.TRAINING_CUT) - 1] test_features = features[int(len(data[0]) * cfg.TRAINING_CUT):] test_targets = targets[int(len(data[1]) * cfg.TRAINING_CUT):] if cfg.NEGATIVE_SAMPLES_RATIO != 0: training_features, training_targets = limit_negative_samples( training_features, training_targets, cfg.NEGATIVE_SAMPLES_RATIO ) return training_features, training_targets, test_features, test_targets def BuildModel(cfg, input_shape, iftest, hidden_layers, regularizer, activation_function): if regularizer == 'l1': regularizer = regularizers.l1(0.05) elif regularizer == 'l2': regularizer = regularizers.l2(0.05) elif regularizer == 'none': regularizer = None model = Sequential() model.add(InputLayer(input_shape)) if iftest: for layer in hidden_layers: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer= regularizer, activation=activation_function)) else: for layer in cfg.HIDDEN_LAYERS: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer= cfg.REGULARIZER, activation=cfg.ACTIVATION_FUNCTION)) model.add(Dense(1, use_bias=cfg.BIAS, activation='sigmoid')) model.compile(loss=cfg.LOSS, optimizer=cfg.OPTIMIZER, metrics=['accuracy']) return model def TrainModel(cfg, model, training_features, training_targets, cw): if cfg.EARLY_STOPPING: es = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=cfg.EARLY_STOPPING_PATIENCE, verbose=0, mode='min') model.fit(training_features, training_targets, epochs=cfg.EPOCHS, callbacks=[es], class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) else: model.fit(training_features, training_targets, epochs=cfg.EPOCHS, class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) return model def EvaluateModel(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support( test_targets, predictions, average='macro') f1 = 2 * (precision * recall / (precision + recall)) print(str(precision) + ', ' + str(recall) + ', ' + str(f1)) def reset_keras(): sess = K.get_session() K.clear_session() sess.close() sess = K.get_session() np.random.seed(1) tf.set_random_seed(2) def EvaluateModelTest(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support( test_targets, predictions, average='macro') f1 = 2 * (precision * recall / (precision + recall)) return precision, recall, f1 <mask token> if cfg.MULTIPLE_ARCHITECTURES: best_architecture = [] best_regularizer = '' best_activation_function = '' best_precision = 0 best_recall = 0 best_f1 = 0 count_max = 0 counter = 0 architecture_list = [] for i in range(cfg.TEST_LAYERS_MIN, cfg.TEST_LAYERS_MAX + 1): prod = list(product(cfg.TEST_NOTES, repeat=i)) architecture_list.extend(prod) count_max = len(architecture_list) * len(cfg.TEST_REGULARIZERS) * len(cfg .TEST_ACTIVATION_FUNCTIONS) * len(cfg.TEST_CLASS_WEIGHTS) with open('output/wrapper_test_mean.csv', 'a') as f: f.write('1,2,3,4,5,cw,regularizer,activation,precision,recall,f1\n') for architecture in architecture_list: for regularizer in cfg.TEST_REGULARIZERS: for activation_function in cfg.TEST_ACTIVATION_FUNCTIONS: for class_weight in cfg.TEST_CLASS_WEIGHTS: reset_keras() print(str(counter) + '/' + str(count_max)) model = BuildModel(cfg, input_shape, True, list( architecture), regularizer, activation_function) model_trained = TrainModel(cfg, model, training_features, training_targets, {(0): 1.0, (1): class_weight}) precision, recall, f1 = EvaluateModelTest(cfg, model_trained, test_features, test_targets) if recall > best_recall: best_precision = precision best_recall = recall best_f1 = f1 best_architecture = list(architecture) best_regularizer = regularizer best_activation_function = activation_function la1 = list(architecture)[0] la2 = 0 la3 = 0 la4 = 0 la5 = 0 if len(list(architecture)) >= 2: la2 = list(architecture)[1] if len(list(architecture)) >= 3: la3 = list(architecture)[2] if len(list(architecture)) >= 4: la4 = list(architecture)[3] if len(list(architecture)) >= 5: la5 = list(architecture)[4] f.write(str(la1) + ',' + str(la2) + ',' + str(la3) + ',' + str(la4) + ',' + str(la5) + ',' + str( class_weight) + ',' + regularizer + ',' + activation_function + ',' + str(precision) + ',' + str(recall) + ',' + str(f1) + '\n') counter += 1 print('BEST ARCHITECTURE:') print(best_architecture) print(best_regularizer) print(best_activation_function) print('precision: ' + str(best_precision) + ', recall: ' + str( best_recall) + ', f1: ' + str(best_f1)) else: reset_keras() model = BuildModel(cfg, input_shape, False, 0, 0, 0) model = TrainModel(cfg, model, training_features, training_targets, cfg .CLASS_WEIGHT) EvaluateModel(cfg, model, test_features, test_targets)
<mask token> cfg = Config() def FetchData(cfg): with open(cfg.FILE, 'rb') as f: data = pickle.load(f) if cfg.SHUFFLE: features, targets = shuffle(data[0], data[1]) else: features = data[0] targets = data[1] training_features = features[:int(len(data[0]) * cfg.TRAINING_CUT) - 1] training_targets = targets[:int(len(data[1]) * cfg.TRAINING_CUT) - 1] test_features = features[int(len(data[0]) * cfg.TRAINING_CUT):] test_targets = targets[int(len(data[1]) * cfg.TRAINING_CUT):] if cfg.NEGATIVE_SAMPLES_RATIO != 0: training_features, training_targets = limit_negative_samples( training_features, training_targets, cfg.NEGATIVE_SAMPLES_RATIO ) return training_features, training_targets, test_features, test_targets def BuildModel(cfg, input_shape, iftest, hidden_layers, regularizer, activation_function): if regularizer == 'l1': regularizer = regularizers.l1(0.05) elif regularizer == 'l2': regularizer = regularizers.l2(0.05) elif regularizer == 'none': regularizer = None model = Sequential() model.add(InputLayer(input_shape)) if iftest: for layer in hidden_layers: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer= regularizer, activation=activation_function)) else: for layer in cfg.HIDDEN_LAYERS: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer= cfg.REGULARIZER, activation=cfg.ACTIVATION_FUNCTION)) model.add(Dense(1, use_bias=cfg.BIAS, activation='sigmoid')) model.compile(loss=cfg.LOSS, optimizer=cfg.OPTIMIZER, metrics=['accuracy']) return model def TrainModel(cfg, model, training_features, training_targets, cw): if cfg.EARLY_STOPPING: es = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=cfg.EARLY_STOPPING_PATIENCE, verbose=0, mode='min') model.fit(training_features, training_targets, epochs=cfg.EPOCHS, callbacks=[es], class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) else: model.fit(training_features, training_targets, epochs=cfg.EPOCHS, class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) return model def EvaluateModel(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support( test_targets, predictions, average='macro') f1 = 2 * (precision * recall / (precision + recall)) print(str(precision) + ', ' + str(recall) + ', ' + str(f1)) def reset_keras(): sess = K.get_session() K.clear_session() sess.close() sess = K.get_session() np.random.seed(1) tf.set_random_seed(2) def EvaluateModelTest(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support( test_targets, predictions, average='macro') f1 = 2 * (precision * recall / (precision + recall)) return precision, recall, f1 training_X, training_y, test_X, test_Y = FetchData(cfg) training_features = np.array(training_X) training_targets = np.array(training_y) test_features = np.array(test_X) test_targets = np.array(test_Y) input_shape = len(training_features[0]), if cfg.MULTIPLE_ARCHITECTURES: best_architecture = [] best_regularizer = '' best_activation_function = '' best_precision = 0 best_recall = 0 best_f1 = 0 count_max = 0 counter = 0 architecture_list = [] for i in range(cfg.TEST_LAYERS_MIN, cfg.TEST_LAYERS_MAX + 1): prod = list(product(cfg.TEST_NOTES, repeat=i)) architecture_list.extend(prod) count_max = len(architecture_list) * len(cfg.TEST_REGULARIZERS) * len(cfg .TEST_ACTIVATION_FUNCTIONS) * len(cfg.TEST_CLASS_WEIGHTS) with open('output/wrapper_test_mean.csv', 'a') as f: f.write('1,2,3,4,5,cw,regularizer,activation,precision,recall,f1\n') for architecture in architecture_list: for regularizer in cfg.TEST_REGULARIZERS: for activation_function in cfg.TEST_ACTIVATION_FUNCTIONS: for class_weight in cfg.TEST_CLASS_WEIGHTS: reset_keras() print(str(counter) + '/' + str(count_max)) model = BuildModel(cfg, input_shape, True, list( architecture), regularizer, activation_function) model_trained = TrainModel(cfg, model, training_features, training_targets, {(0): 1.0, (1): class_weight}) precision, recall, f1 = EvaluateModelTest(cfg, model_trained, test_features, test_targets) if recall > best_recall: best_precision = precision best_recall = recall best_f1 = f1 best_architecture = list(architecture) best_regularizer = regularizer best_activation_function = activation_function la1 = list(architecture)[0] la2 = 0 la3 = 0 la4 = 0 la5 = 0 if len(list(architecture)) >= 2: la2 = list(architecture)[1] if len(list(architecture)) >= 3: la3 = list(architecture)[2] if len(list(architecture)) >= 4: la4 = list(architecture)[3] if len(list(architecture)) >= 5: la5 = list(architecture)[4] f.write(str(la1) + ',' + str(la2) + ',' + str(la3) + ',' + str(la4) + ',' + str(la5) + ',' + str( class_weight) + ',' + regularizer + ',' + activation_function + ',' + str(precision) + ',' + str(recall) + ',' + str(f1) + '\n') counter += 1 print('BEST ARCHITECTURE:') print(best_architecture) print(best_regularizer) print(best_activation_function) print('precision: ' + str(best_precision) + ', recall: ' + str( best_recall) + ', f1: ' + str(best_f1)) else: reset_keras() model = BuildModel(cfg, input_shape, False, 0, 0, 0) model = TrainModel(cfg, model, training_features, training_targets, cfg .CLASS_WEIGHT) EvaluateModel(cfg, model, test_features, test_targets)
from config import Config import numpy as np from itertools import product from sklearn.utils import shuffle from sklearn.metrics import precision_recall_fscore_support from keras import callbacks, regularizers from keras.models import Sequential from keras.layers import Dense, InputLayer from keras import backend as K from keras.wrappers.scikit_learn import KerasClassifier from sklearn.model_selection import StratifiedKFold, cross_val_score from src.classification_data_tools import limit_negative_samples import pickle from tensorflow import set_random_seed import tensorflow as tf cfg = Config() def FetchData(cfg): with open(cfg.FILE, 'rb') as f: data = pickle.load(f) if cfg.SHUFFLE: features, targets = shuffle(data[0], data[1]) else: features = data[0] targets = data[1] training_features = features[:int(len(data[0]) * cfg.TRAINING_CUT) - 1] training_targets = targets[:int(len(data[1]) * cfg.TRAINING_CUT) - 1] test_features = features[int(len(data[0]) * cfg.TRAINING_CUT):] test_targets = targets[int(len(data[1]) * cfg.TRAINING_CUT):] if cfg.NEGATIVE_SAMPLES_RATIO != 0: training_features, training_targets = limit_negative_samples( training_features, training_targets, cfg.NEGATIVE_SAMPLES_RATIO ) return training_features, training_targets, test_features, test_targets def BuildModel(cfg, input_shape, iftest, hidden_layers, regularizer, activation_function): if regularizer == 'l1': regularizer = regularizers.l1(0.05) elif regularizer == 'l2': regularizer = regularizers.l2(0.05) elif regularizer == 'none': regularizer = None model = Sequential() model.add(InputLayer(input_shape)) if iftest: for layer in hidden_layers: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer= regularizer, activation=activation_function)) else: for layer in cfg.HIDDEN_LAYERS: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer= cfg.REGULARIZER, activation=cfg.ACTIVATION_FUNCTION)) model.add(Dense(1, use_bias=cfg.BIAS, activation='sigmoid')) model.compile(loss=cfg.LOSS, optimizer=cfg.OPTIMIZER, metrics=['accuracy']) return model def TrainModel(cfg, model, training_features, training_targets, cw): if cfg.EARLY_STOPPING: es = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=cfg.EARLY_STOPPING_PATIENCE, verbose=0, mode='min') model.fit(training_features, training_targets, epochs=cfg.EPOCHS, callbacks=[es], class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) else: model.fit(training_features, training_targets, epochs=cfg.EPOCHS, class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) return model def EvaluateModel(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support( test_targets, predictions, average='macro') f1 = 2 * (precision * recall / (precision + recall)) print(str(precision) + ', ' + str(recall) + ', ' + str(f1)) def reset_keras(): sess = K.get_session() K.clear_session() sess.close() sess = K.get_session() np.random.seed(1) tf.set_random_seed(2) def EvaluateModelTest(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support( test_targets, predictions, average='macro') f1 = 2 * (precision * recall / (precision + recall)) return precision, recall, f1 training_X, training_y, test_X, test_Y = FetchData(cfg) training_features = np.array(training_X) training_targets = np.array(training_y) test_features = np.array(test_X) test_targets = np.array(test_Y) input_shape = len(training_features[0]), if cfg.MULTIPLE_ARCHITECTURES: best_architecture = [] best_regularizer = '' best_activation_function = '' best_precision = 0 best_recall = 0 best_f1 = 0 count_max = 0 counter = 0 architecture_list = [] for i in range(cfg.TEST_LAYERS_MIN, cfg.TEST_LAYERS_MAX + 1): prod = list(product(cfg.TEST_NOTES, repeat=i)) architecture_list.extend(prod) count_max = len(architecture_list) * len(cfg.TEST_REGULARIZERS) * len(cfg .TEST_ACTIVATION_FUNCTIONS) * len(cfg.TEST_CLASS_WEIGHTS) with open('output/wrapper_test_mean.csv', 'a') as f: f.write('1,2,3,4,5,cw,regularizer,activation,precision,recall,f1\n') for architecture in architecture_list: for regularizer in cfg.TEST_REGULARIZERS: for activation_function in cfg.TEST_ACTIVATION_FUNCTIONS: for class_weight in cfg.TEST_CLASS_WEIGHTS: reset_keras() print(str(counter) + '/' + str(count_max)) model = BuildModel(cfg, input_shape, True, list( architecture), regularizer, activation_function) model_trained = TrainModel(cfg, model, training_features, training_targets, {(0): 1.0, (1): class_weight}) precision, recall, f1 = EvaluateModelTest(cfg, model_trained, test_features, test_targets) if recall > best_recall: best_precision = precision best_recall = recall best_f1 = f1 best_architecture = list(architecture) best_regularizer = regularizer best_activation_function = activation_function la1 = list(architecture)[0] la2 = 0 la3 = 0 la4 = 0 la5 = 0 if len(list(architecture)) >= 2: la2 = list(architecture)[1] if len(list(architecture)) >= 3: la3 = list(architecture)[2] if len(list(architecture)) >= 4: la4 = list(architecture)[3] if len(list(architecture)) >= 5: la5 = list(architecture)[4] f.write(str(la1) + ',' + str(la2) + ',' + str(la3) + ',' + str(la4) + ',' + str(la5) + ',' + str( class_weight) + ',' + regularizer + ',' + activation_function + ',' + str(precision) + ',' + str(recall) + ',' + str(f1) + '\n') counter += 1 print('BEST ARCHITECTURE:') print(best_architecture) print(best_regularizer) print(best_activation_function) print('precision: ' + str(best_precision) + ', recall: ' + str( best_recall) + ', f1: ' + str(best_f1)) else: reset_keras() model = BuildModel(cfg, input_shape, False, 0, 0, 0) model = TrainModel(cfg, model, training_features, training_targets, cfg .CLASS_WEIGHT) EvaluateModel(cfg, model, test_features, test_targets)
from config import Config import numpy as np from itertools import product from sklearn.utils import shuffle from sklearn.metrics import precision_recall_fscore_support from keras import callbacks, regularizers from keras.models import Sequential from keras.layers import Dense, InputLayer from keras import backend as K from keras.wrappers.scikit_learn import KerasClassifier from sklearn.model_selection import StratifiedKFold, cross_val_score from src.classification_data_tools import limit_negative_samples import pickle from tensorflow import set_random_seed import tensorflow as tf cfg = Config() def FetchData(cfg): with open(cfg.FILE, 'rb') as f: data = pickle.load(f) if cfg.SHUFFLE: features, targets = shuffle(data[0], data[1]) else: features = data[0] targets = data[1] training_features = features[:int(len(data[0]) * cfg.TRAINING_CUT) - 1] training_targets = targets[:int(len(data[1]) * cfg.TRAINING_CUT) - 1] test_features = features[int(len(data[0]) * cfg.TRAINING_CUT):] test_targets = targets[int(len(data[1]) * cfg.TRAINING_CUT):] if cfg.NEGATIVE_SAMPLES_RATIO != 0: training_features, training_targets = limit_negative_samples(training_features, training_targets, cfg.NEGATIVE_SAMPLES_RATIO) return training_features, training_targets, test_features, test_targets def BuildModel(cfg, input_shape, iftest, hidden_layers, regularizer, activation_function): if regularizer == 'l1': regularizer = regularizers.l1(0.05) elif regularizer == 'l2': regularizer = regularizers.l2(0.05) elif regularizer == 'none': regularizer = None model = Sequential() model.add(InputLayer(input_shape)) if iftest: for layer in hidden_layers: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer=regularizer, activation=activation_function)) else: for layer in cfg.HIDDEN_LAYERS: model.add(Dense(layer, use_bias=cfg.BIAS, kernel_regularizer=cfg.REGULARIZER, activation=cfg.ACTIVATION_FUNCTION)) model.add(Dense(1, use_bias=cfg.BIAS, activation='sigmoid')) model.compile(loss=cfg.LOSS, optimizer=cfg.OPTIMIZER, metrics=['accuracy']) return model def TrainModel(cfg, model, training_features, training_targets, cw): if cfg.EARLY_STOPPING: es = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=cfg.EARLY_STOPPING_PATIENCE, verbose=0, mode='min') model.fit(training_features, training_targets, epochs=cfg.EPOCHS, callbacks=[es], class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) else: model.fit(training_features, training_targets, epochs=cfg.EPOCHS, class_weight=cw, batch_size=cfg.BATCH_SIZE, verbose=1, validation_split=1 - cfg.TRAINING_CUT) return model def EvaluateModel(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support(test_targets, predictions, average='macro') f1 = 2 * ((precision * recall) / (precision + recall)) print(str(precision) + ', ' + str(recall) + ', ' + str(f1)) def reset_keras(): sess = K.get_session() K.clear_session() sess.close() sess = K.get_session() np.random.seed(1) tf.set_random_seed(2) def EvaluateModelTest(cfg, model, test_features, test_targets): predictions = model.predict(test_features) for prediction in predictions: if prediction[0] < 0.5: prediction[0] = 0 else: prediction[0] = 1 precision, recall, fscore, support = precision_recall_fscore_support(test_targets, predictions, average='macro') f1 = 2 * ((precision * recall) / (precision + recall)) return precision, recall, f1 #estimator = KerasClassifier(build_fn=model, epochs=4, batch_size=32, verbose=1) #kfold = StratifiedKFold(n_splits=10, shuffle=True) #results = cross_val_score(estimator, test_features, test_targets, cv=kfold) #print("Results: %.2f%% (%.2f%%)" % (results.mean() * 100, results.std() * 100)) training_X, training_y, test_X, test_Y = FetchData(cfg) training_features = np.array(training_X) training_targets = np.array(training_y) test_features = np.array(test_X) test_targets = np.array(test_Y) input_shape = (len(training_features[0]),) if cfg.MULTIPLE_ARCHITECTURES: best_architecture = [] best_regularizer = '' best_activation_function = '' best_precision = 0 best_recall = 0 best_f1 = 0 count_max = 0 counter = 0 architecture_list = [] for i in range(cfg.TEST_LAYERS_MIN, cfg.TEST_LAYERS_MAX + 1): prod = list(product(cfg.TEST_NOTES, repeat = i)) architecture_list.extend(prod) count_max = len(architecture_list) * len(cfg.TEST_REGULARIZERS) * len(cfg.TEST_ACTIVATION_FUNCTIONS) * len(cfg.TEST_CLASS_WEIGHTS) with open('output/wrapper_test_mean.csv', 'a') as f: f.write('1,2,3,4,5,cw,regularizer,activation,precision,recall,f1\n') for architecture in architecture_list: for regularizer in cfg.TEST_REGULARIZERS: for activation_function in cfg.TEST_ACTIVATION_FUNCTIONS: for class_weight in cfg.TEST_CLASS_WEIGHTS: reset_keras() print(str(counter) + '/' + str(count_max)) model = BuildModel(cfg, input_shape, True, list(architecture), regularizer, activation_function) model_trained = TrainModel(cfg, model, training_features, training_targets, {0: 1., 1: class_weight}) precision, recall, f1 = EvaluateModelTest(cfg, model_trained, test_features, test_targets) if recall > best_recall: best_precision = precision best_recall = recall best_f1 = f1 best_architecture = list(architecture) best_regularizer = regularizer best_activation_function = activation_function la1 = list(architecture)[0] la2 = 0 la3 = 0 la4 = 0 la5 = 0 if len(list(architecture)) >= 2: la2 = list(architecture)[1] if len(list(architecture)) >= 3: la3 = list(architecture)[2] if len(list(architecture)) >= 4: la4 = list(architecture)[3] if len(list(architecture)) >= 5: la5 = list(architecture)[4] f.write(str(la1) + ',' + str(la2) + ',' + str(la3) + ',' + str(la4) + ',' + str(la5) + ',' + str(class_weight) + ',' + regularizer + ',' + activation_function + ',' + str(precision) + ',' + str(recall) + ',' + str(f1) + '\n') counter += 1 print('BEST ARCHITECTURE:') print(best_architecture) print(best_regularizer) print(best_activation_function) print('precision: ' + str(best_precision) + ', recall: ' + str(best_recall) + ', f1: ' + str(best_f1)) else: reset_keras() model = BuildModel(cfg, input_shape, False, 0, 0, 0) model = TrainModel(cfg, model, training_features, training_targets, cfg.CLASS_WEIGHT) EvaluateModel(cfg, model, test_features, test_targets)
[ 5, 7, 8, 9, 10 ]
2,167
9a9fdf0f3cfb876a384059f3dcf2508f960168c2
# hi :) import numpy as np import random from copy import deepcopy # initialization.... # see also prepare.sh header = np.loadtxt("header.txt", dtype=int) TIME = header[2] CARS = header[3] STARTPOINT = header[4] GRAPH = np.loadtxt("links.txt",dtype=int) number_of_links = GRAPH.shape[0] N = len(GRAPH[:,1]) VOIS=[] TPS=[] DIST=[] AWARD=[] for i in range(N): VOIS.append([]) TPS.append([]) DIST.append([]) for i in range(N): VOIS[GRAPH[i,0]].append(GRAPH[i,1]) TPS[GRAPH[i,0]].append(GRAPH[i,3]) DIST[GRAPH[i,0]].append(GRAPH[i,4]) if GRAPH[i,2] == 2: VOIS[GRAPH[i,1]].append(GRAPH[i,0]) TPS[GRAPH[i,1]].append(GRAPH[i,3]) DIST[GRAPH[i,1]].append(GRAPH[i,4]) # VOIS[2803] = [1231, 123,123] # TPS[2803] = [10s, 20s, 30s] # DIST[2803] = [10m, 200m, 300m] # the main code def best_neighbour(current_node, current_cost): # fix neighbours = VOIS[current_node] # filter very costly good_neighbours_indexes = [] for n in range(len(neighbours)): if current_cost + TPS[current_node][n] <= TIME: good_neighbours_indexes.append(n) if len(good_neighbours_indexes) > 0: for n in good_neighbours_indexes: possible_next_node = VOIS[current_node][n] possible_cost = TPS[current_node][n] bn = best_neighbour(possible_next_node, current_cost + possible_next_node) # awards = [DIST[current_node][ind] # for ind in good_neighbours_indexes] # maward = max(awards) # indexes = [ind for ind in good_neighbours_indexes # if DIST[current_node][ind] == maward] best_neighbour_index = random.choice(indexes) cost = TPS[current_node][best_neighbour_index] best_neighbour = neighbours[best_neighbour_index] else: # error cost = -100 best_neighbour = -100 return (best_neighbour, cost) def remove_award(current_node, next_node): next_node_index = VOIS[current_node].index(next_node) # the distance will be zero DIST[current_node][next_node_index] = 0 if current_node in VOIS[next_node]: current_node_index = VOIS[next_node].index(current_node) DIST[next_node][current_node_index] = 0 print CARS # CAR par CAR for CAR in range(CARS): visited_nodes = [] current_node = STARTPOINT current_time = 0 visited_nodes.append(current_node) while current_time < TIME: # choose a neighbour next_node, time = best_neighbour(current_node, current_time) if next_node == -100: break else: # we was here, so we remove award remove_award(current_node, next_node) visited_nodes.append(next_node) current_node = next_node current_time = current_time + time # output for that CAR # print len(visited_nodes) print len(visited_nodes) for n in visited_nodes: print n
null
null
null
null
[ 0 ]
2,168
bd179fda18551d4f3d8a4d695a9da38ee607ef1d
<mask token> class GenomicJobControllerTest(BaseTestCase): def setUp(self): super(GenomicJobControllerTest, self).setUp() self.data_file_dao = GenomicGcDataFileDao() self.event_data_dao = MessageBrokenEventDataDao() self.incident_dao = GenomicIncidentDao() self.member_dao = GenomicSetMemberDao() self.metrics_dao = GenomicGCValidationMetricsDao() self.user_event_metrics_dao = UserEventMetricsDao() self.job_run_dao = GenomicJobRunDao() self.report_state_dao = GenomicMemberReportStateDao() self.appointment_event_dao = GenomicAppointmentEventDao() self.appointment_metrics_dao = GenomicAppointmentEventMetricsDao() def test_incident_with_long_message(self): """Make sure the length of incident messages doesn't cause issues when recording them""" incident_message = '1' * (GenomicIncident.message.type.length + 20) mock_slack_handler = mock.MagicMock() job_controller = GenomicJobController(job_id=1) job_controller.genomic_alert_slack = mock_slack_handler job_controller.create_incident(message=incident_message, slack=True) incident: GenomicIncident = self.session.query(GenomicIncident).one() self.assertTrue(incident_message.startswith(incident.message)) mock_slack_handler.send_message_to_webhook.assert_called_with( message_data={'text': incident_message}) <mask token> def test_gvcf_files_ingestion_create_incident(self): bucket_name = 'test_bucket' file_path = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz' ) gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='111111111', sampleId= '222222222222', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=gen_job_run.id, startTime=clock.CLOCK.now(), filePath='/test_file_path', bucketName=bucket_name, fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= gen_processed_file.id) with GenomicJobController(GenomicJob.INGEST_DATA_FILES) as controller: controller.ingest_data_files_into_gc_metrics(file_path, bucket_name ) incident = self.incident_dao.get(1) self.assertIsNotNone(incident) self.assertEqual(incident.code, GenomicIncidentCode. UNABLE_TO_FIND_METRIC.name) self.assertEqual(incident.data_file_path, file_path) self.assertEqual(incident.message, 'INGEST_DATA_FILES: Cannot find genomics metric record for sample id: 21042005280' ) <mask token> def test_updating_members_blocklists(self): gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) ids_should_be_updated = [] for i in range(4): ids_should_be_updated.append(self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType= 'test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW0, ai_an='Y' if i & 2 == 0 else 'N').id) for i in range(2): self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType='aou_array', genomicWorkflowState= GenomicWorkflowState.AW0, ai_an='N') with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS ) as controller: controller.update_members_blocklists() created_members = self.member_dao.get_all() blocklisted = list(filter(lambda x: x.blockResults == 1 or x. blockResearch == 1, created_members)) self.assertTrue(ids_should_be_updated.sort() == [obj.id for obj in blocklisted].sort()) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in created_members if obj.ai_an == 'Y' and obj. genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in created_members if obj. ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 1 and obj. blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResearch == 0 and obj. blockResearchReason is None for obj in created_members if obj. genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in created_members if obj. genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) with self.member_dao.session() as session: session.query(GenomicSetMember).delete() run_result = self.job_run_dao.get(1) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus. COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) for i in range(4): self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType='test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW1, ai_an='Y' if i & 2 == 0 else 'N') with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS ) as controller: controller.update_members_blocklists() modified_members = self.member_dao.get_all() self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in modified_members if obj.ai_an == 'Y' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in modified_members if obj. ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in modified_members if obj. genomeType == 'test_investigation_one' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResults == 1 and obj. blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in modified_members if obj. genomeType == 'test_investigation_one' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) run_result = self.job_run_dao.get(2) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus. COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) def test_ingest_user_metrics_file(self): test_file = 'Genomic-Metrics-File-User-Events-Test.csv' bucket_name = 'test_bucket' sub_folder = 'user_events' pids = [] file_ingester = GenomicFileIngester() for _ in range(2): pid = self.data_generator.create_database_participant() pids.append(pid.participantId) test_metrics_file = create_ingestion_test_file(test_file, bucket_name, sub_folder) test_file_path = f'{bucket_name}/{sub_folder}/{test_metrics_file}' with open_cloud_file(test_file_path) as csv_file: metrics_to_ingest = file_ingester._read_data_to_ingest(csv_file) with GenomicJobController(GenomicJob.METRICS_FILE_INGEST ) as controller: controller.ingest_metrics_file(metric_type='user_events', file_path=test_file_path) job_run_id = controller.job_run.id metrics = self.user_event_metrics_dao.get_all() for pid in pids: file_metrics = list(filter(lambda x: int(x['participant_id']. split('P')[-1]) == pid, metrics_to_ingest['rows'])) participant_ingested_metrics = list(filter(lambda x: x. participant_id == pid, metrics)) self.assertEqual(len(file_metrics), len( participant_ingested_metrics)) self.assertTrue(all(obj.run_id == job_run_id for obj in participant_ingested_metrics)) @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_reconcile_pdr_data(self, mock_cloud_task): with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() cloud_task_endpoint = 'rebuild_genomic_table_records_task' first_run = self.job_run_dao.get_all() self.assertEqual(mock_cloud_task.call_count, 1) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 1) self.assertEqual(call_args[0].args[0]['table'], self.job_run_dao. model_type.__tablename__) self.assertTrue(type(call_args[0].args[0]['ids']) is list) self.assertEqual(call_args[0].args[0]['ids'], [obj.id for obj in first_run]) self.assertEqual(call_args[0].args[1], cloud_task_endpoint) participant = self.data_generator.create_database_participant() gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) plus_ten = clock.CLOCK.now() + datetime.timedelta(minutes=10) plus_ten = plus_ten.replace(microsecond=0) with FakeClock(plus_ten): for i in range(2): gen_member = (self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set .id, biobankId='100153482', sampleId='21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1)) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=first_run[ 0].id, startTime=clock.CLOCK.now(), filePath= f'test_file_path_{i}', bucketName='test_bucket', fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId=gen_processed_file.id) manifest = (self.data_generator. create_database_genomic_manifest_file(manifestTypeId=2, filePath=f'test_file_path_{i}')) self.data_generator.create_database_genomic_manifest_feedback( inputManifestFileId=manifest.id, feedbackRecordCount=2) self.data_generator.create_database_genomic_user_event_metrics( participant_id=participant.participantId, event_name= 'test_event', run_id=1) self.data_generator.create_database_genomic_informing_loop( message_record_id=1, event_type= 'informing_loop_decision', module_type='gem', participant_id=participant.participantId, decision_value='maybe_later', event_authored_time=clock .CLOCK.now()) self.data_generator.create_database_genomic_cvl_past_due( cvl_site_id='co', email_notification_sent=0, sample_id= 'sample_test', results_type='hdr', genomic_set_member_id=gen_member.id) self.data_generator.create_database_genomic_appointment( message_record_id=i, appointment_id=i, event_type= 'appointment_scheduled', module_type='hdr', participant_id=participant.participantId, event_authored_time=clock.CLOCK.now(), source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now() ), appointment_timezone='America/Los_Angeles', location ='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_member_report_state( genomic_set_member_id=gen_member.id, participant_id= participant.participantId, module='gem', genomic_report_state=GenomicReportState.GEM_RPT_READY, event_authored_time=clock.CLOCK.now()) self.data_generator.create_genomic_result_viewed(participant_id =participant.participantId, event_type='result_viewed', event_authored_time=clock.CLOCK.now(), module_type= 'gem', sample_id=gen_member.sampleId) with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() affected_tables = ['genomic_set', 'genomic_set_member', 'genomic_job_run', 'genomic_file_processed', 'genomic_gc_validation_metrics', 'genomic_manifest_file', 'genomic_manifest_feedback', 'genomic_informing_loop', 'genomic_cvl_results_past_due', 'user_event_metrics', 'genomic_member_report_state', 'genomic_result_viewed', 'genomic_appointment_event'] num_calls = len(affected_tables) + 1 self.assertEqual(mock_cloud_task.call_count, num_calls) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), num_calls) mock_tables = set([obj[0][0]['table'] for obj in call_args]) mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue([mock_tables].sort() == affected_tables.sort()) self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_retry_manifest_ingestions_if_deltas(self, mock_cloud_task): bucket_name = 'test-bucket' aw1_file_name = ( 'AW1_wgs_sample_manifests/RDR_AoU_SEQ_PKG-2104-026571.csv') aw1_manifest_path = f'{bucket_name}/{aw1_file_name}' aw2_file_name = ( 'AW2_wgs_data_manifests/RDR_AoU_SEQ_DataManifest_04092021.csv') aw2_manifest_path = f'{bucket_name}/{aw2_file_name}' gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) aw1_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), endTime= clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) aw2_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.METRICS_INGESTION, startTime=clock.CLOCK.now(), endTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult. SUCCESS) with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(3) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) self.data_generator.create_database_genomic_aw1_raw(file_path= aw1_manifest_path, package_id='PKG-2104-026571', biobank_id= 'A10001') self.data_generator.create_database_genomic_aw2_raw(file_path= aw2_manifest_path, biobank_id='A10001', sample_id='100001', biobankidsampleid='A10001_100001') aw1_manifest_file = (self.data_generator. create_database_genomic_manifest_file(created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW1, filePath= aw1_manifest_path, fileName=aw1_file_name, bucketName= bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now())) aw2_manifest_file = (self.data_generator. create_database_genomic_manifest_file(created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW2, filePath= aw2_manifest_path, fileName=aw2_file_name, bucketName= bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now())) aw1_file_processed = (self.data_generator. create_database_genomic_file_processed(runId=aw1_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId= aw1_manifest_file.id, filePath=f'/{aw1_manifest_path}', bucketName=bucket_name, fileName=aw1_file_name)) aw2_file_processed = (self.data_generator. create_database_genomic_file_processed(runId=aw2_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId= aw2_manifest_file.id, filePath=f'/{aw2_manifest_path}', bucketName=bucket_name, fileName=aw2_file_name)) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='100153482', sampleId= '21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1, aw1FileProcessedId=aw1_file_processed.id) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= aw2_file_processed.id) with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(4) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) with self.member_dao.session() as session: session.query(GenomicGCValidationMetrics).delete() session.query(GenomicSetMember).delete() with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(5) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.SUCCESS) self.assertEqual(mock_cloud_task.call_count, 2) self.assertTrue(mock_cloud_task.call_count) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 2) cloud_task_endpoint = ['ingest_aw1_manifest_task', 'ingest_aw2_manifest_task'] mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) mock_buckets = set([obj[0][0]['bucket_name'] for obj in call_args]) self.assertTrue(len(mock_buckets), 1) self.assertTrue(list(mock_buckets)[0] == bucket_name) def test_calculate_informing_loop_ready_flags(self): num_participants = 4 gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) for num in range(num_participants): plus_num = clock.CLOCK.now() + datetime.timedelta(minutes=num) plus_num = plus_num.replace(microsecond=0) with FakeClock(plus_num): summary = (self.data_generator. create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1)) stored_sample = (self.data_generator. create_database_biobank_stored_sample(biobankId=summary .biobankId, biobankOrderIdentifier=self.fake.pyint())) collection_site = self.data_generator.create_database_site( siteType='Clinic') order = self.data_generator.create_database_biobank_order( collectedSiteId=collection_site.siteId, participantId= summary.participantId, finalizedTime=plus_num) self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system='1') self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system='2') member = (self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set .id, participantId=summary.participantId, genomeType= config.GENOME_TYPE_WGS, qcStatus=GenomicQcStatus.PASS, gcManifestSampleSource='Whole Blood', collectionTubeId= stored_sample.biobankStoredSampleId)) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=member.id, sexConcordance='True', drcFpConcordance='Pass', drcSexConcordance='Pass', processingStatus='Pass') members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants) current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 0 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is None for obj in current_set_members)) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants) calculation_limit = 2 config.override_setting(config.CALCULATE_READY_FLAG_LIMIT, [ calculation_limit]) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(any(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(any(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) current_loops_set = [obj for obj in current_set_members if obj. informingLoopReadyFlag == 1 and obj. informingLoopReadyFlagModified is not None] self.assertEqual(len(current_loops_set), calculation_limit) members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants // 2) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), 0) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_getting_results_withdrawn(self, email_mock): num_participants = 4 result_withdrawal_dao = GenomicResultWithdrawalsDao() gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) pids = [] for num in range(num_participants): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1, withdrawalStatus=WithdrawalStatus.EARLY_OUT) self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_ARRAY, gemA1ManifestJobRunId= gen_job_run.id if num % 2 == 0 else None) self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_WGS, cvlW1ilHdrJobRunId= gen_job_run.id) pids.append(summary.participantId) config.override_setting(config.RDR_GENOMICS_NOTIFICATION_EMAIL, '[email protected]') with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS ) as controller: controller.check_results_withdrawals() self.assertEqual(email_mock.call_count, 2) call_args = email_mock.call_args_list self.assertTrue(any('GEM' in call.args[0].subject for call in call_args)) self.assertTrue(any('HEALTH' in call.args[0].subject for call in call_args)) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob. RESULTS_PIPELINE_WITHDRAWALS, job_runs))[0] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) all_withdrawal_records = result_withdrawal_dao.get_all() self.assertTrue(len(all_withdrawal_records) == len(pids)) self.assertTrue(all(obj.participant_id in pids for obj in all_withdrawal_records)) array_results = list(filter(lambda x: x.array_results == 1, all_withdrawal_records)) self.assertTrue(len(array_results), 2) cvl_results = list(filter(lambda x: x.cvl_results == 1, all_withdrawal_records)) self.assertTrue(len(cvl_results), num_participants) with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS ) as controller: controller.check_results_withdrawals() self.assertEqual(email_mock.call_count, 2) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob. RESULTS_PIPELINE_WITHDRAWALS, job_runs))[1] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) <mask token> <mask token> def test_reconcile_message_broker_results_ready(self): self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) self.data_generator.create_database_genomic_job_run(jobId= GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now()) for pid in range(7): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) for i in range(1, 6): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType='aou_wgs' ) if i < 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='pgx.result_ready', run_id=1) if i == 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.result_ready.informative', run_id=1) if i == 5: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.result_ready.uninformative', run_id=1) genomic_cvl_pipeline.reconcile_message_broker_results_ready() report_state_dao = GenomicMemberReportStateDao() states = report_state_dao.get_all() self.assertEqual(5, len(states)) pgx_records = [rec for rec in states if rec.module == 'pgx_v1'] hdr_record_uninf = [rec for rec in states if rec. genomic_report_state == GenomicReportState.HDR_RPT_UNINFORMATIVE][0 ] hdr_record_pos = [rec for rec in states if rec.genomic_report_state == GenomicReportState.HDR_RPT_POSITIVE][0] for pgx_record in pgx_records: self.assertEqual(GenomicReportState.PGX_RPT_READY, pgx_record. genomic_report_state) self.assertEqual('PGX_RPT_READY', pgx_record. genomic_report_state_str) self.assertEqual(int(pgx_record.sample_id), pgx_record. participant_id + 10) self.assertEqual('result_ready', pgx_record.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), pgx_record. event_authored_time) self.assertIsNotNone(pgx_record.created_from_metric_id) self.assertEqual('HDR_RPT_UNINFORMATIVE', hdr_record_uninf. genomic_report_state_str) self.assertEqual(int(hdr_record_uninf.sample_id), hdr_record_uninf. participant_id + 10) self.assertEqual('result_ready', hdr_record_uninf.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), hdr_record_uninf.event_authored_time) self.assertIsNotNone(hdr_record_uninf.created_from_metric_id) self.assertEqual('HDR_RPT_POSITIVE', hdr_record_pos. genomic_report_state_str) self.assertEqual(int(hdr_record_pos.sample_id), hdr_record_pos. participant_id + 10) self.assertEqual('result_ready', hdr_record_pos.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), hdr_record_pos. event_authored_time) self.assertIsNotNone(hdr_record_pos.created_from_metric_id) <mask token> def test_ingest_appointment_metrics_file(self): test_file = 'Genomic-Metrics-File-Appointment-Events-Test.json' bucket_name = 'test_bucket' sub_folder = 'appointment_events' pids = [] for _ in range(4): summary = self.data_generator.create_database_participant_summary() pids.append(summary.participantId) test_file_path = f'{bucket_name}/{sub_folder}/{test_file}' appointment_data = test_data.load_test_data_json( 'Genomic-Metrics-File-Appointment-Events-Test.json') appointment_data_str = json.dumps(appointment_data, indent=4) with open_cloud_file(test_file_path, mode='wb') as cloud_file: cloud_file.write(appointment_data_str.encode('utf-8')) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_FILE_INGEST ) as controller: controller.ingest_appointment_metrics_file(file_path=test_file_path ) all_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(all_metrics), 5) self.assertTrue(all(obj.participant_id in pids for obj in all_metrics)) self.assertTrue(all(obj.file_path == test_file_path for obj in all_metrics)) self.assertTrue(all(obj.appointment_event is not None for obj in all_metrics)) self.assertTrue(all(obj.created is not None for obj in all_metrics)) self.assertTrue(all(obj.modified is not None for obj in all_metrics)) self.assertTrue(all(obj.module_type is not None for obj in all_metrics) ) self.assertTrue(all(obj.event_authored_time is not None for obj in all_metrics)) self.assertTrue(all(obj.event_type is not None for obj in all_metrics)) current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 1) current_job_run = current_job_runs[0] self.assertTrue(current_job_run.jobId == GenomicJob. APPOINTMENT_METRICS_FILE_INGEST) self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) self.clear_table_after_test('genomic_appointment_event_metrics') def test_reconcile_appointments_with_metrics(self): fake_date = parser.parse('2020-05-29T08:00:01-05:00') for num in range(4): summary = self.data_generator.create_database_participant_summary() missing_json = {'event': 'appointment_updated', 'eventAuthoredTime': '2022-09-16T17:18:38Z', 'participantId': f'P{summary.participantId}', 'messageBody': {'module_type': 'hdr', 'appointment_timestamp': '2022-09-19T19:30:00+00:00', 'id': 55, 'appointment_timezone': 'America/Los_Angeles', 'location': 'CA', 'contact_number': '18043704252', 'language': 'en', 'source': 'Color'}} if num % 2 == 0: self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type= 'appointment_scheduled', module_type='hdr', participant_id=summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now() ), appointment_timezone='America/Los_Angeles', location ='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment_metric( participant_id=summary.participantId, appointment_event= json.dumps(missing_json, indent=4) if num % 2 != 0 else 'foo', file_path='test_file_path', module_type='hdr', event_authored_time=fake_date, event_type= 'appointment_updated' if num % 2 != 0 else 'appointment_scheduled') current_events = self.appointment_event_dao.get_all() self.assertEqual(len(current_events), 2) current_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is None for obj in current_metrics)) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_RECONCILE ) as controller: controller.reconcile_appointment_events_from_metrics() job_run = self.job_run_dao.get_all() self.assertEqual(len(job_run), 1) self.assertTrue(job_run[0].jobId == GenomicJob. APPOINTMENT_METRICS_RECONCILE) current_events = self.appointment_event_dao.get_all() self.assertEqual(len(current_events), 4) scheduled = list(filter(lambda x: x.event_type == 'appointment_scheduled', current_events)) self.assertEqual(len(scheduled), 2) self.assertTrue(all(obj.created_from_metric_id is None for obj in scheduled)) updated = list(filter(lambda x: x.event_type == 'appointment_updated', current_events)) self.assertEqual(len(updated), 2) self.assertTrue(all(obj.created_from_metric_id is not None for obj in updated)) current_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is not None for obj in current_metrics)) self.assertTrue(all(obj.reconcile_job_run_id == job_run[0].id for obj in current_metrics)) self.clear_table_after_test('genomic_appointment_event_metrics') @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_appointments_gror_changed(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') notified_dao = GenomicAppointmentEventNotifiedDao() config.override_setting(config.GENOMIC_COLOR_PM_EMAIL, [ '[email protected]']) num_participants = 4 for num in range(num_participants): gror = num if num > 1 else 1 summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=gror) self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type= 'appointment_scheduled', module_type='hdr', participant_id= summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock .CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') changed_ppts = (self.appointment_event_dao. get_appointments_gror_changed()) self.assertEqual(2, len(changed_ppts)) with GenomicJobController(GenomicJob.CHECK_APPOINTMENT_GROR_CHANGED ) as controller: controller.check_appointments_gror_changed() self.assertEqual(email_mock.call_count, 1) notified_appointments = notified_dao.get_all() self.assertEqual(2, len(notified_appointments)) summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=2) self.data_generator.create_database_genomic_appointment( message_record_id=5, appointment_id=5, event_type= 'appointment_scheduled', module_type='hdr', participant_id= summary.participantId, event_authored_time=fake_date, source= 'Color', appointment_timestamp=format_datetime(clock.CLOCK.now( )), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') changed_ppts = (self.appointment_event_dao. get_appointments_gror_changed()) self.assertEqual(1, len(changed_ppts)) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_14day_escalation(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') fake_date2 = parser.parse('2022-09-02T14:14:00') fake_date3 = parser.parse('2022-09-03T15:15:00') config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, [ '[email protected]']) self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) pids = [] for _ in range(6): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1) set_member = (self.data_generator. create_database_genomic_set_member(participantId=summary. participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType='aou_wgs')) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state= GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id= set_member.id, module='hdr_v1', event_authored_time=fake_date) pids.append(summary.participantId) self.data_generator.create_database_genomic_appointment( message_record_id=101, appointment_id=102, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [0], event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type= 'appointment_completed', module_type='hdr', participant_id=pids [1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone= 'America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=103, appointment_id=104, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date2, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=104, appointment_id=104, event_type= 'appointment_cancelled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date3, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') notified_dao = GenomicDefaultBaseDao(model_type= GenomicGCROutreachEscalationNotified) notified_dao.insert_bulk([{'participant_id': pids[4], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': True}, {'participant_id': pids[5], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': False}]) with clock.FakeClock(parser.parse('2022-11-1T05:15:00')): escalated_participants = (self.report_state_dao. get_hdr_result_positive_no_appointment(num_days=14)) results = [pid[0] for pid in escalated_participants] self.assertIn(pids[2], results) self.assertIn(pids[3], results) self.assertIn(pids[5], results) self.assertNotIn(pids[0], results) self.assertNotIn(pids[1], results) self.assertNotIn(pids[4], results) with GenomicJobController(GenomicJob.CHECK_GCR_OUTREACH_ESCALATION ) as controller: controller.check_gcr_escalation(controller.job_id) self.assertEqual(email_mock.call_count, 3) self.assertEqual(email_mock.call_args.args[0].subject, 'GCR Outreach 14 Day Escalation') self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') <mask token> <mask token> @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_execute_auto_generation_from_last_run(self, cloud_task_mock): with GenomicJobController(GenomicJob.PR_PR_WORKFLOW) as controller: controller.job_result = GenomicSubProcessResult.ERROR controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id( job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult.ERROR ) self.assertEqual(cloud_task_mock.called, False) self.assertEqual(cloud_task_mock.call_count, 0) with GenomicJobController(GenomicJob.PR_PR_WORKFLOW) as controller: controller.job_result = GenomicSubProcessResult.SUCCESS controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id( job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult. SUCCESS) self.assertEqual(cloud_task_mock.called, True) self.assertTrue(cloud_task_mock.call_args[1].get('payload').get( 'manifest_type') == 'p0') self.assertTrue(cloud_task_mock.call_args[1].get('task_queue') == 'genomic-generate-manifest') all_job_runs = self.job_run_dao.get_all() self.assertEqual(len(all_job_runs), 2) self.assertTrue(all(obj.runResult in [GenomicSubProcessResult. SUCCESS, GenomicSubProcessResult.ERROR] for obj in all_job_runs)) self.assertTrue(all(obj.jobId == GenomicJob.PR_PR_WORKFLOW for obj in all_job_runs))
<mask token> class GenomicJobControllerTest(BaseTestCase): def setUp(self): super(GenomicJobControllerTest, self).setUp() self.data_file_dao = GenomicGcDataFileDao() self.event_data_dao = MessageBrokenEventDataDao() self.incident_dao = GenomicIncidentDao() self.member_dao = GenomicSetMemberDao() self.metrics_dao = GenomicGCValidationMetricsDao() self.user_event_metrics_dao = UserEventMetricsDao() self.job_run_dao = GenomicJobRunDao() self.report_state_dao = GenomicMemberReportStateDao() self.appointment_event_dao = GenomicAppointmentEventDao() self.appointment_metrics_dao = GenomicAppointmentEventMetricsDao() def test_incident_with_long_message(self): """Make sure the length of incident messages doesn't cause issues when recording them""" incident_message = '1' * (GenomicIncident.message.type.length + 20) mock_slack_handler = mock.MagicMock() job_controller = GenomicJobController(job_id=1) job_controller.genomic_alert_slack = mock_slack_handler job_controller.create_incident(message=incident_message, slack=True) incident: GenomicIncident = self.session.query(GenomicIncident).one() self.assertTrue(incident_message.startswith(incident.message)) mock_slack_handler.send_message_to_webhook.assert_called_with( message_data={'text': incident_message}) def test_gvcf_files_ingestion(self): job_controller = GenomicJobController(job_id=38) bucket_name = 'test_bucket' file_path = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz' ) file_path_md5 = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz.md5sum' ) full_path = f'{bucket_name}/{file_path}' full_path_md5 = f'{bucket_name}/{file_path_md5}' gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='100153482', sampleId= '21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=gen_job_run.id, startTime=clock.CLOCK.now(), filePath='/test_file_path', bucketName='test_bucket', fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= gen_processed_file.id) job_controller.ingest_data_files_into_gc_metrics(file_path_md5, bucket_name) metrics = self.metrics_dao.get_metrics_by_member_id(gen_member.id) self.assertIsNotNone(metrics.gvcfMd5Path) self.assertEqual(metrics.gvcfMd5Path, full_path_md5) job_controller.ingest_data_files_into_gc_metrics(file_path, bucket_name ) metrics = self.metrics_dao.get_metrics_by_member_id(gen_member.id) self.assertIsNotNone(metrics.gvcfPath) self.assertEqual(metrics.gvcfPath, full_path) def test_gvcf_files_ingestion_create_incident(self): bucket_name = 'test_bucket' file_path = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz' ) gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='111111111', sampleId= '222222222222', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=gen_job_run.id, startTime=clock.CLOCK.now(), filePath='/test_file_path', bucketName=bucket_name, fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= gen_processed_file.id) with GenomicJobController(GenomicJob.INGEST_DATA_FILES) as controller: controller.ingest_data_files_into_gc_metrics(file_path, bucket_name ) incident = self.incident_dao.get(1) self.assertIsNotNone(incident) self.assertEqual(incident.code, GenomicIncidentCode. UNABLE_TO_FIND_METRIC.name) self.assertEqual(incident.data_file_path, file_path) self.assertEqual(incident.message, 'INGEST_DATA_FILES: Cannot find genomics metric record for sample id: 21042005280' ) def test_accession_data_files(self): test_bucket_baylor = 'fake-data-bucket-baylor' test_idat_file = ( 'fake-data-bucket-baylor/Genotyping_sample_raw_data/204027270091_R02C01_Grn.idat' ) test_vcf_file = ( 'fake-data-bucket-baylor/Genotyping_sample_raw_data/204027270091_R02C01.vcf.gz' ) test_cram_file = ( 'fake-data-bucket-baylor/Wgs_sample_raw_data/CRAMs_CRAIs/BCM_A100134256_21063006771_SIA0017196_1.cram' ) test_files = [test_idat_file, test_vcf_file, test_cram_file] test_time = datetime.datetime(2021, 7, 9, 14, 1, 1) with clock.FakeClock(test_time): for file_path in test_files: with GenomicJobController(GenomicJob.ACCESSION_DATA_FILES ) as controller: controller.accession_data_files(file_path, test_bucket_baylor) inserted_files = self.data_file_dao.get_all() expected_idat = GenomicGcDataFile(id=1, created=test_time, modified =test_time, file_path=test_idat_file, gc_site_id='jh', bucket_name='fake-data-bucket-baylor', file_prefix= 'Genotyping_sample_raw_data', file_name= '204027270091_R02C01_Grn.idat', file_type='Grn.idat', identifier_type='chipwellbarcode', identifier_value= '204027270091_R02C01', ignore_flag=0) expected_vcf = GenomicGcDataFile(id=2, created=test_time, modified= test_time, file_path=test_vcf_file, gc_site_id='jh', bucket_name='fake-data-bucket-baylor', file_prefix= 'Genotyping_sample_raw_data', file_name= '204027270091_R02C01.vcf.gz', file_type='vcf.gz', identifier_type='chipwellbarcode', identifier_value= '204027270091_R02C01', ignore_flag=0) expected_cram = GenomicGcDataFile(id=3, created=test_time, modified =test_time, file_path=test_cram_file, gc_site_id='bcm', bucket_name='fake-data-bucket-baylor', file_prefix= 'Wgs_sample_raw_data/CRAMs_CRAIs', file_name= 'BCM_A100134256_21063006771_SIA0017196_1.cram', file_type= 'cram', identifier_type='sample_id', identifier_value= '21063006771', ignore_flag=0) expected_objs = {(0): expected_idat, (1): expected_vcf, (2): expected_cram} for i in range(3): self.assertEqual(expected_objs[i].bucket_name, inserted_files[i ].bucket_name) self.assertEqual(expected_objs[i].created, inserted_files[i]. created) self.assertEqual(expected_objs[i].file_name, inserted_files[i]. file_name) self.assertEqual(expected_objs[i].file_path, inserted_files[i]. file_path) self.assertEqual(expected_objs[i].file_prefix, inserted_files[i ].file_prefix) self.assertEqual(expected_objs[i].file_type, inserted_files[i]. file_type) self.assertEqual(expected_objs[i].gc_site_id, inserted_files[i] .gc_site_id) self.assertEqual(expected_objs[i].id, inserted_files[i].id) self.assertEqual(expected_objs[i].identifier_type, inserted_files[i].identifier_type) self.assertEqual(expected_objs[i].identifier_value, inserted_files[i].identifier_value) self.assertEqual(expected_objs[i].ignore_flag, inserted_files[i ].ignore_flag) self.assertEqual(expected_objs[i].metadata, inserted_files[i]. metadata) self.assertEqual(expected_objs[i].modified, inserted_files[i]. modified) def test_updating_members_blocklists(self): gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) ids_should_be_updated = [] for i in range(4): ids_should_be_updated.append(self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType= 'test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW0, ai_an='Y' if i & 2 == 0 else 'N').id) for i in range(2): self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType='aou_array', genomicWorkflowState= GenomicWorkflowState.AW0, ai_an='N') with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS ) as controller: controller.update_members_blocklists() created_members = self.member_dao.get_all() blocklisted = list(filter(lambda x: x.blockResults == 1 or x. blockResearch == 1, created_members)) self.assertTrue(ids_should_be_updated.sort() == [obj.id for obj in blocklisted].sort()) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in created_members if obj.ai_an == 'Y' and obj. genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in created_members if obj. ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 1 and obj. blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResearch == 0 and obj. blockResearchReason is None for obj in created_members if obj. genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in created_members if obj. genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) with self.member_dao.session() as session: session.query(GenomicSetMember).delete() run_result = self.job_run_dao.get(1) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus. COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) for i in range(4): self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType='test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW1, ai_an='Y' if i & 2 == 0 else 'N') with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS ) as controller: controller.update_members_blocklists() modified_members = self.member_dao.get_all() self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in modified_members if obj.ai_an == 'Y' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in modified_members if obj. ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in modified_members if obj. genomeType == 'test_investigation_one' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResults == 1 and obj. blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in modified_members if obj. genomeType == 'test_investigation_one' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) run_result = self.job_run_dao.get(2) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus. COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) def test_ingest_user_metrics_file(self): test_file = 'Genomic-Metrics-File-User-Events-Test.csv' bucket_name = 'test_bucket' sub_folder = 'user_events' pids = [] file_ingester = GenomicFileIngester() for _ in range(2): pid = self.data_generator.create_database_participant() pids.append(pid.participantId) test_metrics_file = create_ingestion_test_file(test_file, bucket_name, sub_folder) test_file_path = f'{bucket_name}/{sub_folder}/{test_metrics_file}' with open_cloud_file(test_file_path) as csv_file: metrics_to_ingest = file_ingester._read_data_to_ingest(csv_file) with GenomicJobController(GenomicJob.METRICS_FILE_INGEST ) as controller: controller.ingest_metrics_file(metric_type='user_events', file_path=test_file_path) job_run_id = controller.job_run.id metrics = self.user_event_metrics_dao.get_all() for pid in pids: file_metrics = list(filter(lambda x: int(x['participant_id']. split('P')[-1]) == pid, metrics_to_ingest['rows'])) participant_ingested_metrics = list(filter(lambda x: x. participant_id == pid, metrics)) self.assertEqual(len(file_metrics), len( participant_ingested_metrics)) self.assertTrue(all(obj.run_id == job_run_id for obj in participant_ingested_metrics)) @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_reconcile_pdr_data(self, mock_cloud_task): with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() cloud_task_endpoint = 'rebuild_genomic_table_records_task' first_run = self.job_run_dao.get_all() self.assertEqual(mock_cloud_task.call_count, 1) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 1) self.assertEqual(call_args[0].args[0]['table'], self.job_run_dao. model_type.__tablename__) self.assertTrue(type(call_args[0].args[0]['ids']) is list) self.assertEqual(call_args[0].args[0]['ids'], [obj.id for obj in first_run]) self.assertEqual(call_args[0].args[1], cloud_task_endpoint) participant = self.data_generator.create_database_participant() gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) plus_ten = clock.CLOCK.now() + datetime.timedelta(minutes=10) plus_ten = plus_ten.replace(microsecond=0) with FakeClock(plus_ten): for i in range(2): gen_member = (self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set .id, biobankId='100153482', sampleId='21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1)) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=first_run[ 0].id, startTime=clock.CLOCK.now(), filePath= f'test_file_path_{i}', bucketName='test_bucket', fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId=gen_processed_file.id) manifest = (self.data_generator. create_database_genomic_manifest_file(manifestTypeId=2, filePath=f'test_file_path_{i}')) self.data_generator.create_database_genomic_manifest_feedback( inputManifestFileId=manifest.id, feedbackRecordCount=2) self.data_generator.create_database_genomic_user_event_metrics( participant_id=participant.participantId, event_name= 'test_event', run_id=1) self.data_generator.create_database_genomic_informing_loop( message_record_id=1, event_type= 'informing_loop_decision', module_type='gem', participant_id=participant.participantId, decision_value='maybe_later', event_authored_time=clock .CLOCK.now()) self.data_generator.create_database_genomic_cvl_past_due( cvl_site_id='co', email_notification_sent=0, sample_id= 'sample_test', results_type='hdr', genomic_set_member_id=gen_member.id) self.data_generator.create_database_genomic_appointment( message_record_id=i, appointment_id=i, event_type= 'appointment_scheduled', module_type='hdr', participant_id=participant.participantId, event_authored_time=clock.CLOCK.now(), source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now() ), appointment_timezone='America/Los_Angeles', location ='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_member_report_state( genomic_set_member_id=gen_member.id, participant_id= participant.participantId, module='gem', genomic_report_state=GenomicReportState.GEM_RPT_READY, event_authored_time=clock.CLOCK.now()) self.data_generator.create_genomic_result_viewed(participant_id =participant.participantId, event_type='result_viewed', event_authored_time=clock.CLOCK.now(), module_type= 'gem', sample_id=gen_member.sampleId) with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() affected_tables = ['genomic_set', 'genomic_set_member', 'genomic_job_run', 'genomic_file_processed', 'genomic_gc_validation_metrics', 'genomic_manifest_file', 'genomic_manifest_feedback', 'genomic_informing_loop', 'genomic_cvl_results_past_due', 'user_event_metrics', 'genomic_member_report_state', 'genomic_result_viewed', 'genomic_appointment_event'] num_calls = len(affected_tables) + 1 self.assertEqual(mock_cloud_task.call_count, num_calls) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), num_calls) mock_tables = set([obj[0][0]['table'] for obj in call_args]) mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue([mock_tables].sort() == affected_tables.sort()) self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_retry_manifest_ingestions_if_deltas(self, mock_cloud_task): bucket_name = 'test-bucket' aw1_file_name = ( 'AW1_wgs_sample_manifests/RDR_AoU_SEQ_PKG-2104-026571.csv') aw1_manifest_path = f'{bucket_name}/{aw1_file_name}' aw2_file_name = ( 'AW2_wgs_data_manifests/RDR_AoU_SEQ_DataManifest_04092021.csv') aw2_manifest_path = f'{bucket_name}/{aw2_file_name}' gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) aw1_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), endTime= clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) aw2_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.METRICS_INGESTION, startTime=clock.CLOCK.now(), endTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult. SUCCESS) with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(3) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) self.data_generator.create_database_genomic_aw1_raw(file_path= aw1_manifest_path, package_id='PKG-2104-026571', biobank_id= 'A10001') self.data_generator.create_database_genomic_aw2_raw(file_path= aw2_manifest_path, biobank_id='A10001', sample_id='100001', biobankidsampleid='A10001_100001') aw1_manifest_file = (self.data_generator. create_database_genomic_manifest_file(created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW1, filePath= aw1_manifest_path, fileName=aw1_file_name, bucketName= bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now())) aw2_manifest_file = (self.data_generator. create_database_genomic_manifest_file(created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW2, filePath= aw2_manifest_path, fileName=aw2_file_name, bucketName= bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now())) aw1_file_processed = (self.data_generator. create_database_genomic_file_processed(runId=aw1_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId= aw1_manifest_file.id, filePath=f'/{aw1_manifest_path}', bucketName=bucket_name, fileName=aw1_file_name)) aw2_file_processed = (self.data_generator. create_database_genomic_file_processed(runId=aw2_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId= aw2_manifest_file.id, filePath=f'/{aw2_manifest_path}', bucketName=bucket_name, fileName=aw2_file_name)) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='100153482', sampleId= '21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1, aw1FileProcessedId=aw1_file_processed.id) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= aw2_file_processed.id) with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(4) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) with self.member_dao.session() as session: session.query(GenomicGCValidationMetrics).delete() session.query(GenomicSetMember).delete() with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(5) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.SUCCESS) self.assertEqual(mock_cloud_task.call_count, 2) self.assertTrue(mock_cloud_task.call_count) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 2) cloud_task_endpoint = ['ingest_aw1_manifest_task', 'ingest_aw2_manifest_task'] mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) mock_buckets = set([obj[0][0]['bucket_name'] for obj in call_args]) self.assertTrue(len(mock_buckets), 1) self.assertTrue(list(mock_buckets)[0] == bucket_name) def test_calculate_informing_loop_ready_flags(self): num_participants = 4 gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) for num in range(num_participants): plus_num = clock.CLOCK.now() + datetime.timedelta(minutes=num) plus_num = plus_num.replace(microsecond=0) with FakeClock(plus_num): summary = (self.data_generator. create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1)) stored_sample = (self.data_generator. create_database_biobank_stored_sample(biobankId=summary .biobankId, biobankOrderIdentifier=self.fake.pyint())) collection_site = self.data_generator.create_database_site( siteType='Clinic') order = self.data_generator.create_database_biobank_order( collectedSiteId=collection_site.siteId, participantId= summary.participantId, finalizedTime=plus_num) self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system='1') self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system='2') member = (self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set .id, participantId=summary.participantId, genomeType= config.GENOME_TYPE_WGS, qcStatus=GenomicQcStatus.PASS, gcManifestSampleSource='Whole Blood', collectionTubeId= stored_sample.biobankStoredSampleId)) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=member.id, sexConcordance='True', drcFpConcordance='Pass', drcSexConcordance='Pass', processingStatus='Pass') members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants) current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 0 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is None for obj in current_set_members)) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants) calculation_limit = 2 config.override_setting(config.CALCULATE_READY_FLAG_LIMIT, [ calculation_limit]) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(any(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(any(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) current_loops_set = [obj for obj in current_set_members if obj. informingLoopReadyFlag == 1 and obj. informingLoopReadyFlagModified is not None] self.assertEqual(len(current_loops_set), calculation_limit) members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants // 2) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), 0) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_getting_results_withdrawn(self, email_mock): num_participants = 4 result_withdrawal_dao = GenomicResultWithdrawalsDao() gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) pids = [] for num in range(num_participants): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1, withdrawalStatus=WithdrawalStatus.EARLY_OUT) self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_ARRAY, gemA1ManifestJobRunId= gen_job_run.id if num % 2 == 0 else None) self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_WGS, cvlW1ilHdrJobRunId= gen_job_run.id) pids.append(summary.participantId) config.override_setting(config.RDR_GENOMICS_NOTIFICATION_EMAIL, '[email protected]') with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS ) as controller: controller.check_results_withdrawals() self.assertEqual(email_mock.call_count, 2) call_args = email_mock.call_args_list self.assertTrue(any('GEM' in call.args[0].subject for call in call_args)) self.assertTrue(any('HEALTH' in call.args[0].subject for call in call_args)) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob. RESULTS_PIPELINE_WITHDRAWALS, job_runs))[0] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) all_withdrawal_records = result_withdrawal_dao.get_all() self.assertTrue(len(all_withdrawal_records) == len(pids)) self.assertTrue(all(obj.participant_id in pids for obj in all_withdrawal_records)) array_results = list(filter(lambda x: x.array_results == 1, all_withdrawal_records)) self.assertTrue(len(array_results), 2) cvl_results = list(filter(lambda x: x.cvl_results == 1, all_withdrawal_records)) self.assertTrue(len(cvl_results), num_participants) with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS ) as controller: controller.check_results_withdrawals() self.assertEqual(email_mock.call_count, 2) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob. RESULTS_PIPELINE_WITHDRAWALS, job_runs))[1] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) def test_gem_results_to_report_state(self): num_participants = 8 gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gem_a2_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.GEM_A2_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) pids_to_update, member_ids = [], [] for num in range(num_participants): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1, withdrawalStatus=WithdrawalStatus.EARLY_OUT) member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, participantId=summary. participantId, genomeType=config.GENOME_TYPE_ARRAY) if num % 2 == 0: member_ids.append(member.id) pids_to_update.append(summary.participantId) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 2) current_job_run = list(filter(lambda x: x.jobId == GenomicJob. GEM_RESULT_REPORTS, current_job_runs))[0] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) current_members = self.member_dao.get_all() for member in current_members: if member.participantId in pids_to_update: member.gemA2ManifestJobRunId = gem_a2_job_run.id member.genomicWorkflowState = (GenomicWorkflowState. GEM_RPT_READY) self.member_dao.update(member) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 3) current_job_run = list(filter(lambda x: x.jobId == GenomicJob. GEM_RESULT_REPORTS, current_job_runs))[1] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) current_gem_report_states = self.report_state_dao.get_all() self.assertEqual(len(current_gem_report_states), len(pids_to_update)) self.assertTrue(all(obj.event_type == 'result_ready' for obj in current_gem_report_states)) self.assertTrue(all(obj.event_authored_time is not None for obj in current_gem_report_states)) self.assertTrue(all(obj.module == 'gem' for obj in current_gem_report_states)) self.assertTrue(all(obj.genomic_report_state == GenomicReportState. GEM_RPT_READY for obj in current_gem_report_states)) self.assertTrue(all(obj.genomic_report_state_str == GenomicReportState.GEM_RPT_READY.name for obj in current_gem_report_states)) self.assertTrue(all(obj.genomic_set_member_id in member_ids for obj in current_gem_report_states)) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 4) current_job_run = list(filter(lambda x: x.jobId == GenomicJob. GEM_RESULT_REPORTS, current_job_runs))[2] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) self.clear_table_after_test('genomic_member_report_state') <mask token> def test_reconcile_message_broker_results_ready(self): self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) self.data_generator.create_database_genomic_job_run(jobId= GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now()) for pid in range(7): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) for i in range(1, 6): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType='aou_wgs' ) if i < 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='pgx.result_ready', run_id=1) if i == 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.result_ready.informative', run_id=1) if i == 5: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.result_ready.uninformative', run_id=1) genomic_cvl_pipeline.reconcile_message_broker_results_ready() report_state_dao = GenomicMemberReportStateDao() states = report_state_dao.get_all() self.assertEqual(5, len(states)) pgx_records = [rec for rec in states if rec.module == 'pgx_v1'] hdr_record_uninf = [rec for rec in states if rec. genomic_report_state == GenomicReportState.HDR_RPT_UNINFORMATIVE][0 ] hdr_record_pos = [rec for rec in states if rec.genomic_report_state == GenomicReportState.HDR_RPT_POSITIVE][0] for pgx_record in pgx_records: self.assertEqual(GenomicReportState.PGX_RPT_READY, pgx_record. genomic_report_state) self.assertEqual('PGX_RPT_READY', pgx_record. genomic_report_state_str) self.assertEqual(int(pgx_record.sample_id), pgx_record. participant_id + 10) self.assertEqual('result_ready', pgx_record.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), pgx_record. event_authored_time) self.assertIsNotNone(pgx_record.created_from_metric_id) self.assertEqual('HDR_RPT_UNINFORMATIVE', hdr_record_uninf. genomic_report_state_str) self.assertEqual(int(hdr_record_uninf.sample_id), hdr_record_uninf. participant_id + 10) self.assertEqual('result_ready', hdr_record_uninf.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), hdr_record_uninf.event_authored_time) self.assertIsNotNone(hdr_record_uninf.created_from_metric_id) self.assertEqual('HDR_RPT_POSITIVE', hdr_record_pos. genomic_report_state_str) self.assertEqual(int(hdr_record_pos.sample_id), hdr_record_pos. participant_id + 10) self.assertEqual('result_ready', hdr_record_pos.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), hdr_record_pos. event_authored_time) self.assertIsNotNone(hdr_record_pos.created_from_metric_id) <mask token> def test_ingest_appointment_metrics_file(self): test_file = 'Genomic-Metrics-File-Appointment-Events-Test.json' bucket_name = 'test_bucket' sub_folder = 'appointment_events' pids = [] for _ in range(4): summary = self.data_generator.create_database_participant_summary() pids.append(summary.participantId) test_file_path = f'{bucket_name}/{sub_folder}/{test_file}' appointment_data = test_data.load_test_data_json( 'Genomic-Metrics-File-Appointment-Events-Test.json') appointment_data_str = json.dumps(appointment_data, indent=4) with open_cloud_file(test_file_path, mode='wb') as cloud_file: cloud_file.write(appointment_data_str.encode('utf-8')) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_FILE_INGEST ) as controller: controller.ingest_appointment_metrics_file(file_path=test_file_path ) all_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(all_metrics), 5) self.assertTrue(all(obj.participant_id in pids for obj in all_metrics)) self.assertTrue(all(obj.file_path == test_file_path for obj in all_metrics)) self.assertTrue(all(obj.appointment_event is not None for obj in all_metrics)) self.assertTrue(all(obj.created is not None for obj in all_metrics)) self.assertTrue(all(obj.modified is not None for obj in all_metrics)) self.assertTrue(all(obj.module_type is not None for obj in all_metrics) ) self.assertTrue(all(obj.event_authored_time is not None for obj in all_metrics)) self.assertTrue(all(obj.event_type is not None for obj in all_metrics)) current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 1) current_job_run = current_job_runs[0] self.assertTrue(current_job_run.jobId == GenomicJob. APPOINTMENT_METRICS_FILE_INGEST) self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) self.clear_table_after_test('genomic_appointment_event_metrics') def test_reconcile_appointments_with_metrics(self): fake_date = parser.parse('2020-05-29T08:00:01-05:00') for num in range(4): summary = self.data_generator.create_database_participant_summary() missing_json = {'event': 'appointment_updated', 'eventAuthoredTime': '2022-09-16T17:18:38Z', 'participantId': f'P{summary.participantId}', 'messageBody': {'module_type': 'hdr', 'appointment_timestamp': '2022-09-19T19:30:00+00:00', 'id': 55, 'appointment_timezone': 'America/Los_Angeles', 'location': 'CA', 'contact_number': '18043704252', 'language': 'en', 'source': 'Color'}} if num % 2 == 0: self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type= 'appointment_scheduled', module_type='hdr', participant_id=summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now() ), appointment_timezone='America/Los_Angeles', location ='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment_metric( participant_id=summary.participantId, appointment_event= json.dumps(missing_json, indent=4) if num % 2 != 0 else 'foo', file_path='test_file_path', module_type='hdr', event_authored_time=fake_date, event_type= 'appointment_updated' if num % 2 != 0 else 'appointment_scheduled') current_events = self.appointment_event_dao.get_all() self.assertEqual(len(current_events), 2) current_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is None for obj in current_metrics)) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_RECONCILE ) as controller: controller.reconcile_appointment_events_from_metrics() job_run = self.job_run_dao.get_all() self.assertEqual(len(job_run), 1) self.assertTrue(job_run[0].jobId == GenomicJob. APPOINTMENT_METRICS_RECONCILE) current_events = self.appointment_event_dao.get_all() self.assertEqual(len(current_events), 4) scheduled = list(filter(lambda x: x.event_type == 'appointment_scheduled', current_events)) self.assertEqual(len(scheduled), 2) self.assertTrue(all(obj.created_from_metric_id is None for obj in scheduled)) updated = list(filter(lambda x: x.event_type == 'appointment_updated', current_events)) self.assertEqual(len(updated), 2) self.assertTrue(all(obj.created_from_metric_id is not None for obj in updated)) current_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is not None for obj in current_metrics)) self.assertTrue(all(obj.reconcile_job_run_id == job_run[0].id for obj in current_metrics)) self.clear_table_after_test('genomic_appointment_event_metrics') @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_appointments_gror_changed(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') notified_dao = GenomicAppointmentEventNotifiedDao() config.override_setting(config.GENOMIC_COLOR_PM_EMAIL, [ '[email protected]']) num_participants = 4 for num in range(num_participants): gror = num if num > 1 else 1 summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=gror) self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type= 'appointment_scheduled', module_type='hdr', participant_id= summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock .CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') changed_ppts = (self.appointment_event_dao. get_appointments_gror_changed()) self.assertEqual(2, len(changed_ppts)) with GenomicJobController(GenomicJob.CHECK_APPOINTMENT_GROR_CHANGED ) as controller: controller.check_appointments_gror_changed() self.assertEqual(email_mock.call_count, 1) notified_appointments = notified_dao.get_all() self.assertEqual(2, len(notified_appointments)) summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=2) self.data_generator.create_database_genomic_appointment( message_record_id=5, appointment_id=5, event_type= 'appointment_scheduled', module_type='hdr', participant_id= summary.participantId, event_authored_time=fake_date, source= 'Color', appointment_timestamp=format_datetime(clock.CLOCK.now( )), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') changed_ppts = (self.appointment_event_dao. get_appointments_gror_changed()) self.assertEqual(1, len(changed_ppts)) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_14day_escalation(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') fake_date2 = parser.parse('2022-09-02T14:14:00') fake_date3 = parser.parse('2022-09-03T15:15:00') config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, [ '[email protected]']) self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) pids = [] for _ in range(6): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1) set_member = (self.data_generator. create_database_genomic_set_member(participantId=summary. participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType='aou_wgs')) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state= GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id= set_member.id, module='hdr_v1', event_authored_time=fake_date) pids.append(summary.participantId) self.data_generator.create_database_genomic_appointment( message_record_id=101, appointment_id=102, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [0], event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type= 'appointment_completed', module_type='hdr', participant_id=pids [1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone= 'America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=103, appointment_id=104, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date2, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=104, appointment_id=104, event_type= 'appointment_cancelled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date3, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') notified_dao = GenomicDefaultBaseDao(model_type= GenomicGCROutreachEscalationNotified) notified_dao.insert_bulk([{'participant_id': pids[4], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': True}, {'participant_id': pids[5], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': False}]) with clock.FakeClock(parser.parse('2022-11-1T05:15:00')): escalated_participants = (self.report_state_dao. get_hdr_result_positive_no_appointment(num_days=14)) results = [pid[0] for pid in escalated_participants] self.assertIn(pids[2], results) self.assertIn(pids[3], results) self.assertIn(pids[5], results) self.assertNotIn(pids[0], results) self.assertNotIn(pids[1], results) self.assertNotIn(pids[4], results) with GenomicJobController(GenomicJob.CHECK_GCR_OUTREACH_ESCALATION ) as controller: controller.check_gcr_escalation(controller.job_id) self.assertEqual(email_mock.call_count, 3) self.assertEqual(email_mock.call_args.args[0].subject, 'GCR Outreach 14 Day Escalation') self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') <mask token> <mask token> @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_execute_auto_generation_from_last_run(self, cloud_task_mock): with GenomicJobController(GenomicJob.PR_PR_WORKFLOW) as controller: controller.job_result = GenomicSubProcessResult.ERROR controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id( job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult.ERROR ) self.assertEqual(cloud_task_mock.called, False) self.assertEqual(cloud_task_mock.call_count, 0) with GenomicJobController(GenomicJob.PR_PR_WORKFLOW) as controller: controller.job_result = GenomicSubProcessResult.SUCCESS controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id( job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult. SUCCESS) self.assertEqual(cloud_task_mock.called, True) self.assertTrue(cloud_task_mock.call_args[1].get('payload').get( 'manifest_type') == 'p0') self.assertTrue(cloud_task_mock.call_args[1].get('task_queue') == 'genomic-generate-manifest') all_job_runs = self.job_run_dao.get_all() self.assertEqual(len(all_job_runs), 2) self.assertTrue(all(obj.runResult in [GenomicSubProcessResult. SUCCESS, GenomicSubProcessResult.ERROR] for obj in all_job_runs)) self.assertTrue(all(obj.jobId == GenomicJob.PR_PR_WORKFLOW for obj in all_job_runs))
<mask token> class GenomicJobControllerTest(BaseTestCase): def setUp(self): super(GenomicJobControllerTest, self).setUp() self.data_file_dao = GenomicGcDataFileDao() self.event_data_dao = MessageBrokenEventDataDao() self.incident_dao = GenomicIncidentDao() self.member_dao = GenomicSetMemberDao() self.metrics_dao = GenomicGCValidationMetricsDao() self.user_event_metrics_dao = UserEventMetricsDao() self.job_run_dao = GenomicJobRunDao() self.report_state_dao = GenomicMemberReportStateDao() self.appointment_event_dao = GenomicAppointmentEventDao() self.appointment_metrics_dao = GenomicAppointmentEventMetricsDao() def test_incident_with_long_message(self): """Make sure the length of incident messages doesn't cause issues when recording them""" incident_message = '1' * (GenomicIncident.message.type.length + 20) mock_slack_handler = mock.MagicMock() job_controller = GenomicJobController(job_id=1) job_controller.genomic_alert_slack = mock_slack_handler job_controller.create_incident(message=incident_message, slack=True) incident: GenomicIncident = self.session.query(GenomicIncident).one() self.assertTrue(incident_message.startswith(incident.message)) mock_slack_handler.send_message_to_webhook.assert_called_with( message_data={'text': incident_message}) def test_gvcf_files_ingestion(self): job_controller = GenomicJobController(job_id=38) bucket_name = 'test_bucket' file_path = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz' ) file_path_md5 = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz.md5sum' ) full_path = f'{bucket_name}/{file_path}' full_path_md5 = f'{bucket_name}/{file_path_md5}' gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='100153482', sampleId= '21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=gen_job_run.id, startTime=clock.CLOCK.now(), filePath='/test_file_path', bucketName='test_bucket', fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= gen_processed_file.id) job_controller.ingest_data_files_into_gc_metrics(file_path_md5, bucket_name) metrics = self.metrics_dao.get_metrics_by_member_id(gen_member.id) self.assertIsNotNone(metrics.gvcfMd5Path) self.assertEqual(metrics.gvcfMd5Path, full_path_md5) job_controller.ingest_data_files_into_gc_metrics(file_path, bucket_name ) metrics = self.metrics_dao.get_metrics_by_member_id(gen_member.id) self.assertIsNotNone(metrics.gvcfPath) self.assertEqual(metrics.gvcfPath, full_path) def test_gvcf_files_ingestion_create_incident(self): bucket_name = 'test_bucket' file_path = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz' ) gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='111111111', sampleId= '222222222222', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=gen_job_run.id, startTime=clock.CLOCK.now(), filePath='/test_file_path', bucketName=bucket_name, fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= gen_processed_file.id) with GenomicJobController(GenomicJob.INGEST_DATA_FILES) as controller: controller.ingest_data_files_into_gc_metrics(file_path, bucket_name ) incident = self.incident_dao.get(1) self.assertIsNotNone(incident) self.assertEqual(incident.code, GenomicIncidentCode. UNABLE_TO_FIND_METRIC.name) self.assertEqual(incident.data_file_path, file_path) self.assertEqual(incident.message, 'INGEST_DATA_FILES: Cannot find genomics metric record for sample id: 21042005280' ) def test_accession_data_files(self): test_bucket_baylor = 'fake-data-bucket-baylor' test_idat_file = ( 'fake-data-bucket-baylor/Genotyping_sample_raw_data/204027270091_R02C01_Grn.idat' ) test_vcf_file = ( 'fake-data-bucket-baylor/Genotyping_sample_raw_data/204027270091_R02C01.vcf.gz' ) test_cram_file = ( 'fake-data-bucket-baylor/Wgs_sample_raw_data/CRAMs_CRAIs/BCM_A100134256_21063006771_SIA0017196_1.cram' ) test_files = [test_idat_file, test_vcf_file, test_cram_file] test_time = datetime.datetime(2021, 7, 9, 14, 1, 1) with clock.FakeClock(test_time): for file_path in test_files: with GenomicJobController(GenomicJob.ACCESSION_DATA_FILES ) as controller: controller.accession_data_files(file_path, test_bucket_baylor) inserted_files = self.data_file_dao.get_all() expected_idat = GenomicGcDataFile(id=1, created=test_time, modified =test_time, file_path=test_idat_file, gc_site_id='jh', bucket_name='fake-data-bucket-baylor', file_prefix= 'Genotyping_sample_raw_data', file_name= '204027270091_R02C01_Grn.idat', file_type='Grn.idat', identifier_type='chipwellbarcode', identifier_value= '204027270091_R02C01', ignore_flag=0) expected_vcf = GenomicGcDataFile(id=2, created=test_time, modified= test_time, file_path=test_vcf_file, gc_site_id='jh', bucket_name='fake-data-bucket-baylor', file_prefix= 'Genotyping_sample_raw_data', file_name= '204027270091_R02C01.vcf.gz', file_type='vcf.gz', identifier_type='chipwellbarcode', identifier_value= '204027270091_R02C01', ignore_flag=0) expected_cram = GenomicGcDataFile(id=3, created=test_time, modified =test_time, file_path=test_cram_file, gc_site_id='bcm', bucket_name='fake-data-bucket-baylor', file_prefix= 'Wgs_sample_raw_data/CRAMs_CRAIs', file_name= 'BCM_A100134256_21063006771_SIA0017196_1.cram', file_type= 'cram', identifier_type='sample_id', identifier_value= '21063006771', ignore_flag=0) expected_objs = {(0): expected_idat, (1): expected_vcf, (2): expected_cram} for i in range(3): self.assertEqual(expected_objs[i].bucket_name, inserted_files[i ].bucket_name) self.assertEqual(expected_objs[i].created, inserted_files[i]. created) self.assertEqual(expected_objs[i].file_name, inserted_files[i]. file_name) self.assertEqual(expected_objs[i].file_path, inserted_files[i]. file_path) self.assertEqual(expected_objs[i].file_prefix, inserted_files[i ].file_prefix) self.assertEqual(expected_objs[i].file_type, inserted_files[i]. file_type) self.assertEqual(expected_objs[i].gc_site_id, inserted_files[i] .gc_site_id) self.assertEqual(expected_objs[i].id, inserted_files[i].id) self.assertEqual(expected_objs[i].identifier_type, inserted_files[i].identifier_type) self.assertEqual(expected_objs[i].identifier_value, inserted_files[i].identifier_value) self.assertEqual(expected_objs[i].ignore_flag, inserted_files[i ].ignore_flag) self.assertEqual(expected_objs[i].metadata, inserted_files[i]. metadata) self.assertEqual(expected_objs[i].modified, inserted_files[i]. modified) def test_updating_members_blocklists(self): gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) ids_should_be_updated = [] for i in range(4): ids_should_be_updated.append(self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType= 'test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW0, ai_an='Y' if i & 2 == 0 else 'N').id) for i in range(2): self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType='aou_array', genomicWorkflowState= GenomicWorkflowState.AW0, ai_an='N') with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS ) as controller: controller.update_members_blocklists() created_members = self.member_dao.get_all() blocklisted = list(filter(lambda x: x.blockResults == 1 or x. blockResearch == 1, created_members)) self.assertTrue(ids_should_be_updated.sort() == [obj.id for obj in blocklisted].sort()) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in created_members if obj.ai_an == 'Y' and obj. genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in created_members if obj. ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 1 and obj. blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResearch == 0 and obj. blockResearchReason is None for obj in created_members if obj. genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in created_members if obj. genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) with self.member_dao.session() as session: session.query(GenomicSetMember).delete() run_result = self.job_run_dao.get(1) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus. COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) for i in range(4): self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType='test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW1, ai_an='Y' if i & 2 == 0 else 'N') with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS ) as controller: controller.update_members_blocklists() modified_members = self.member_dao.get_all() self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in modified_members if obj.ai_an == 'Y' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in modified_members if obj. ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in modified_members if obj. genomeType == 'test_investigation_one' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResults == 1 and obj. blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in modified_members if obj. genomeType == 'test_investigation_one' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) run_result = self.job_run_dao.get(2) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus. COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) def test_ingest_user_metrics_file(self): test_file = 'Genomic-Metrics-File-User-Events-Test.csv' bucket_name = 'test_bucket' sub_folder = 'user_events' pids = [] file_ingester = GenomicFileIngester() for _ in range(2): pid = self.data_generator.create_database_participant() pids.append(pid.participantId) test_metrics_file = create_ingestion_test_file(test_file, bucket_name, sub_folder) test_file_path = f'{bucket_name}/{sub_folder}/{test_metrics_file}' with open_cloud_file(test_file_path) as csv_file: metrics_to_ingest = file_ingester._read_data_to_ingest(csv_file) with GenomicJobController(GenomicJob.METRICS_FILE_INGEST ) as controller: controller.ingest_metrics_file(metric_type='user_events', file_path=test_file_path) job_run_id = controller.job_run.id metrics = self.user_event_metrics_dao.get_all() for pid in pids: file_metrics = list(filter(lambda x: int(x['participant_id']. split('P')[-1]) == pid, metrics_to_ingest['rows'])) participant_ingested_metrics = list(filter(lambda x: x. participant_id == pid, metrics)) self.assertEqual(len(file_metrics), len( participant_ingested_metrics)) self.assertTrue(all(obj.run_id == job_run_id for obj in participant_ingested_metrics)) @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_reconcile_pdr_data(self, mock_cloud_task): with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() cloud_task_endpoint = 'rebuild_genomic_table_records_task' first_run = self.job_run_dao.get_all() self.assertEqual(mock_cloud_task.call_count, 1) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 1) self.assertEqual(call_args[0].args[0]['table'], self.job_run_dao. model_type.__tablename__) self.assertTrue(type(call_args[0].args[0]['ids']) is list) self.assertEqual(call_args[0].args[0]['ids'], [obj.id for obj in first_run]) self.assertEqual(call_args[0].args[1], cloud_task_endpoint) participant = self.data_generator.create_database_participant() gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) plus_ten = clock.CLOCK.now() + datetime.timedelta(minutes=10) plus_ten = plus_ten.replace(microsecond=0) with FakeClock(plus_ten): for i in range(2): gen_member = (self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set .id, biobankId='100153482', sampleId='21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1)) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=first_run[ 0].id, startTime=clock.CLOCK.now(), filePath= f'test_file_path_{i}', bucketName='test_bucket', fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId=gen_processed_file.id) manifest = (self.data_generator. create_database_genomic_manifest_file(manifestTypeId=2, filePath=f'test_file_path_{i}')) self.data_generator.create_database_genomic_manifest_feedback( inputManifestFileId=manifest.id, feedbackRecordCount=2) self.data_generator.create_database_genomic_user_event_metrics( participant_id=participant.participantId, event_name= 'test_event', run_id=1) self.data_generator.create_database_genomic_informing_loop( message_record_id=1, event_type= 'informing_loop_decision', module_type='gem', participant_id=participant.participantId, decision_value='maybe_later', event_authored_time=clock .CLOCK.now()) self.data_generator.create_database_genomic_cvl_past_due( cvl_site_id='co', email_notification_sent=0, sample_id= 'sample_test', results_type='hdr', genomic_set_member_id=gen_member.id) self.data_generator.create_database_genomic_appointment( message_record_id=i, appointment_id=i, event_type= 'appointment_scheduled', module_type='hdr', participant_id=participant.participantId, event_authored_time=clock.CLOCK.now(), source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now() ), appointment_timezone='America/Los_Angeles', location ='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_member_report_state( genomic_set_member_id=gen_member.id, participant_id= participant.participantId, module='gem', genomic_report_state=GenomicReportState.GEM_RPT_READY, event_authored_time=clock.CLOCK.now()) self.data_generator.create_genomic_result_viewed(participant_id =participant.participantId, event_type='result_viewed', event_authored_time=clock.CLOCK.now(), module_type= 'gem', sample_id=gen_member.sampleId) with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() affected_tables = ['genomic_set', 'genomic_set_member', 'genomic_job_run', 'genomic_file_processed', 'genomic_gc_validation_metrics', 'genomic_manifest_file', 'genomic_manifest_feedback', 'genomic_informing_loop', 'genomic_cvl_results_past_due', 'user_event_metrics', 'genomic_member_report_state', 'genomic_result_viewed', 'genomic_appointment_event'] num_calls = len(affected_tables) + 1 self.assertEqual(mock_cloud_task.call_count, num_calls) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), num_calls) mock_tables = set([obj[0][0]['table'] for obj in call_args]) mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue([mock_tables].sort() == affected_tables.sort()) self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_retry_manifest_ingestions_if_deltas(self, mock_cloud_task): bucket_name = 'test-bucket' aw1_file_name = ( 'AW1_wgs_sample_manifests/RDR_AoU_SEQ_PKG-2104-026571.csv') aw1_manifest_path = f'{bucket_name}/{aw1_file_name}' aw2_file_name = ( 'AW2_wgs_data_manifests/RDR_AoU_SEQ_DataManifest_04092021.csv') aw2_manifest_path = f'{bucket_name}/{aw2_file_name}' gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) aw1_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), endTime= clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) aw2_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.METRICS_INGESTION, startTime=clock.CLOCK.now(), endTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult. SUCCESS) with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(3) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) self.data_generator.create_database_genomic_aw1_raw(file_path= aw1_manifest_path, package_id='PKG-2104-026571', biobank_id= 'A10001') self.data_generator.create_database_genomic_aw2_raw(file_path= aw2_manifest_path, biobank_id='A10001', sample_id='100001', biobankidsampleid='A10001_100001') aw1_manifest_file = (self.data_generator. create_database_genomic_manifest_file(created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW1, filePath= aw1_manifest_path, fileName=aw1_file_name, bucketName= bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now())) aw2_manifest_file = (self.data_generator. create_database_genomic_manifest_file(created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW2, filePath= aw2_manifest_path, fileName=aw2_file_name, bucketName= bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now())) aw1_file_processed = (self.data_generator. create_database_genomic_file_processed(runId=aw1_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId= aw1_manifest_file.id, filePath=f'/{aw1_manifest_path}', bucketName=bucket_name, fileName=aw1_file_name)) aw2_file_processed = (self.data_generator. create_database_genomic_file_processed(runId=aw2_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId= aw2_manifest_file.id, filePath=f'/{aw2_manifest_path}', bucketName=bucket_name, fileName=aw2_file_name)) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='100153482', sampleId= '21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1, aw1FileProcessedId=aw1_file_processed.id) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= aw2_file_processed.id) with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(4) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) with self.member_dao.session() as session: session.query(GenomicGCValidationMetrics).delete() session.query(GenomicSetMember).delete() with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(5) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.SUCCESS) self.assertEqual(mock_cloud_task.call_count, 2) self.assertTrue(mock_cloud_task.call_count) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 2) cloud_task_endpoint = ['ingest_aw1_manifest_task', 'ingest_aw2_manifest_task'] mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) mock_buckets = set([obj[0][0]['bucket_name'] for obj in call_args]) self.assertTrue(len(mock_buckets), 1) self.assertTrue(list(mock_buckets)[0] == bucket_name) def test_calculate_informing_loop_ready_flags(self): num_participants = 4 gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) for num in range(num_participants): plus_num = clock.CLOCK.now() + datetime.timedelta(minutes=num) plus_num = plus_num.replace(microsecond=0) with FakeClock(plus_num): summary = (self.data_generator. create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1)) stored_sample = (self.data_generator. create_database_biobank_stored_sample(biobankId=summary .biobankId, biobankOrderIdentifier=self.fake.pyint())) collection_site = self.data_generator.create_database_site( siteType='Clinic') order = self.data_generator.create_database_biobank_order( collectedSiteId=collection_site.siteId, participantId= summary.participantId, finalizedTime=plus_num) self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system='1') self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system='2') member = (self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set .id, participantId=summary.participantId, genomeType= config.GENOME_TYPE_WGS, qcStatus=GenomicQcStatus.PASS, gcManifestSampleSource='Whole Blood', collectionTubeId= stored_sample.biobankStoredSampleId)) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=member.id, sexConcordance='True', drcFpConcordance='Pass', drcSexConcordance='Pass', processingStatus='Pass') members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants) current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 0 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is None for obj in current_set_members)) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants) calculation_limit = 2 config.override_setting(config.CALCULATE_READY_FLAG_LIMIT, [ calculation_limit]) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(any(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(any(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) current_loops_set = [obj for obj in current_set_members if obj. informingLoopReadyFlag == 1 and obj. informingLoopReadyFlagModified is not None] self.assertEqual(len(current_loops_set), calculation_limit) members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants // 2) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), 0) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_getting_results_withdrawn(self, email_mock): num_participants = 4 result_withdrawal_dao = GenomicResultWithdrawalsDao() gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) pids = [] for num in range(num_participants): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1, withdrawalStatus=WithdrawalStatus.EARLY_OUT) self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_ARRAY, gemA1ManifestJobRunId= gen_job_run.id if num % 2 == 0 else None) self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_WGS, cvlW1ilHdrJobRunId= gen_job_run.id) pids.append(summary.participantId) config.override_setting(config.RDR_GENOMICS_NOTIFICATION_EMAIL, '[email protected]') with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS ) as controller: controller.check_results_withdrawals() self.assertEqual(email_mock.call_count, 2) call_args = email_mock.call_args_list self.assertTrue(any('GEM' in call.args[0].subject for call in call_args)) self.assertTrue(any('HEALTH' in call.args[0].subject for call in call_args)) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob. RESULTS_PIPELINE_WITHDRAWALS, job_runs))[0] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) all_withdrawal_records = result_withdrawal_dao.get_all() self.assertTrue(len(all_withdrawal_records) == len(pids)) self.assertTrue(all(obj.participant_id in pids for obj in all_withdrawal_records)) array_results = list(filter(lambda x: x.array_results == 1, all_withdrawal_records)) self.assertTrue(len(array_results), 2) cvl_results = list(filter(lambda x: x.cvl_results == 1, all_withdrawal_records)) self.assertTrue(len(cvl_results), num_participants) with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS ) as controller: controller.check_results_withdrawals() self.assertEqual(email_mock.call_count, 2) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob. RESULTS_PIPELINE_WITHDRAWALS, job_runs))[1] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) def test_gem_results_to_report_state(self): num_participants = 8 gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gem_a2_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.GEM_A2_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) pids_to_update, member_ids = [], [] for num in range(num_participants): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1, withdrawalStatus=WithdrawalStatus.EARLY_OUT) member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, participantId=summary. participantId, genomeType=config.GENOME_TYPE_ARRAY) if num % 2 == 0: member_ids.append(member.id) pids_to_update.append(summary.participantId) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 2) current_job_run = list(filter(lambda x: x.jobId == GenomicJob. GEM_RESULT_REPORTS, current_job_runs))[0] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) current_members = self.member_dao.get_all() for member in current_members: if member.participantId in pids_to_update: member.gemA2ManifestJobRunId = gem_a2_job_run.id member.genomicWorkflowState = (GenomicWorkflowState. GEM_RPT_READY) self.member_dao.update(member) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 3) current_job_run = list(filter(lambda x: x.jobId == GenomicJob. GEM_RESULT_REPORTS, current_job_runs))[1] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) current_gem_report_states = self.report_state_dao.get_all() self.assertEqual(len(current_gem_report_states), len(pids_to_update)) self.assertTrue(all(obj.event_type == 'result_ready' for obj in current_gem_report_states)) self.assertTrue(all(obj.event_authored_time is not None for obj in current_gem_report_states)) self.assertTrue(all(obj.module == 'gem' for obj in current_gem_report_states)) self.assertTrue(all(obj.genomic_report_state == GenomicReportState. GEM_RPT_READY for obj in current_gem_report_states)) self.assertTrue(all(obj.genomic_report_state_str == GenomicReportState.GEM_RPT_READY.name for obj in current_gem_report_states)) self.assertTrue(all(obj.genomic_set_member_id in member_ids for obj in current_gem_report_states)) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 4) current_job_run = list(filter(lambda x: x.jobId == GenomicJob. GEM_RESULT_REPORTS, current_job_runs))[2] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) self.clear_table_after_test('genomic_member_report_state') def test_reconcile_informing_loop(self): event_dao = UserEventMetricsDao() event_dao.truncate() il_dao = GenomicInformingLoopDao() for pid in range(8): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) self.data_generator.create_database_genomic_job_run(jobId= GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now()) self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) for b in ['aou_array', 'aou_wgs']: for i in range(1, 9): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType=b) events = ['gem.informing_loop.started', 'gem.informing_loop.screen8_no', 'gem.informing_loop.screen8_yes', 'hdr.informing_loop.started', 'gem.informing_loop.screen3', 'pgx.informing_loop.screen8_no', 'hdr.informing_loop.screen10_no'] for p in range(4): for i in range(len(events)): self.data_generator.create_database_genomic_user_event_metrics( created=clock.CLOCK.now(), modified=clock.CLOCK.now(), participant_id=p + 1, created_at=datetime.datetime(2021, 12, 29, 0) + datetime.timedelta(hours=i), event_name= events[i], run_id=1, ignore_flag=0) decisions = [None, 'no', 'yes'] for p in range(3): for i in range(2): self.data_generator.create_database_genomic_informing_loop( message_record_id=i, event_type= 'informing_loop_started' if i == 0 else 'informing_loop_decision', module_type='gem', participant_id=p + 1, decision_value=decisions[i], sample_id=100 + p, event_authored_time=datetime. datetime(2021, 12, 29, 0) + datetime.timedelta(hours=i)) self.data_generator.create_database_genomic_user_event_metrics(created =clock.CLOCK.now(), modified=clock.CLOCK.now(), participant_id= 6, created_at=datetime.datetime(2021, 12, 29, 0), event_name= 'gem.informing_loop.screen8_yes', run_id=1, ignore_flag=0) genomic_pipeline.reconcile_informing_loop_responses() pid_list = [1, 2, 3, 6] new_il_values = il_dao.get_latest_il_for_pids(pid_list=pid_list, module='gem') for value in new_il_values: self.assertEqual('yes', value.decision_value) pid_list = [1, 2, 3, 4] for module in ['hdr', 'pgx']: new_il_values = il_dao.get_latest_il_for_pids(pid_list=pid_list, module=module) for value in new_il_values: self.assertEqual('no', value.decision_value) self.assertIsNotNone(value.created_from_metric_id) def test_reconcile_message_broker_results_ready(self): self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) self.data_generator.create_database_genomic_job_run(jobId= GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now()) for pid in range(7): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) for i in range(1, 6): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType='aou_wgs' ) if i < 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='pgx.result_ready', run_id=1) if i == 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.result_ready.informative', run_id=1) if i == 5: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.result_ready.uninformative', run_id=1) genomic_cvl_pipeline.reconcile_message_broker_results_ready() report_state_dao = GenomicMemberReportStateDao() states = report_state_dao.get_all() self.assertEqual(5, len(states)) pgx_records = [rec for rec in states if rec.module == 'pgx_v1'] hdr_record_uninf = [rec for rec in states if rec. genomic_report_state == GenomicReportState.HDR_RPT_UNINFORMATIVE][0 ] hdr_record_pos = [rec for rec in states if rec.genomic_report_state == GenomicReportState.HDR_RPT_POSITIVE][0] for pgx_record in pgx_records: self.assertEqual(GenomicReportState.PGX_RPT_READY, pgx_record. genomic_report_state) self.assertEqual('PGX_RPT_READY', pgx_record. genomic_report_state_str) self.assertEqual(int(pgx_record.sample_id), pgx_record. participant_id + 10) self.assertEqual('result_ready', pgx_record.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), pgx_record. event_authored_time) self.assertIsNotNone(pgx_record.created_from_metric_id) self.assertEqual('HDR_RPT_UNINFORMATIVE', hdr_record_uninf. genomic_report_state_str) self.assertEqual(int(hdr_record_uninf.sample_id), hdr_record_uninf. participant_id + 10) self.assertEqual('result_ready', hdr_record_uninf.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), hdr_record_uninf.event_authored_time) self.assertIsNotNone(hdr_record_uninf.created_from_metric_id) self.assertEqual('HDR_RPT_POSITIVE', hdr_record_pos. genomic_report_state_str) self.assertEqual(int(hdr_record_pos.sample_id), hdr_record_pos. participant_id + 10) self.assertEqual('result_ready', hdr_record_pos.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), hdr_record_pos. event_authored_time) self.assertIsNotNone(hdr_record_pos.created_from_metric_id) def test_reconcile_message_broker_results_viewed(self): self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) self.data_generator.create_database_genomic_job_run(jobId= GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now()) for pid in range(3): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) for i in range(1, 3): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType='aou_wgs' ) if i == 1: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='pgx.opened_at', run_id=1) if i == 2: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.opened_at', run_id=1) genomic_cvl_pipeline.reconcile_message_broker_results_viewed() result_viewed_dao = GenomicResultViewedDao() results = result_viewed_dao.get_all() self.assertEqual(2, len(results)) for record in results: if record.participant_id == 1: self.assertEqual('pgx_v1', record.module_type) else: self.assertEqual('hdr_v1', record.module_type) self.assertEqual(int(record.sample_id), record.participant_id + 10) self.assertEqual('result_viewed', record.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), record. first_viewed) self.assertIsNotNone(record.created_from_metric_id) def test_ingest_appointment_metrics_file(self): test_file = 'Genomic-Metrics-File-Appointment-Events-Test.json' bucket_name = 'test_bucket' sub_folder = 'appointment_events' pids = [] for _ in range(4): summary = self.data_generator.create_database_participant_summary() pids.append(summary.participantId) test_file_path = f'{bucket_name}/{sub_folder}/{test_file}' appointment_data = test_data.load_test_data_json( 'Genomic-Metrics-File-Appointment-Events-Test.json') appointment_data_str = json.dumps(appointment_data, indent=4) with open_cloud_file(test_file_path, mode='wb') as cloud_file: cloud_file.write(appointment_data_str.encode('utf-8')) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_FILE_INGEST ) as controller: controller.ingest_appointment_metrics_file(file_path=test_file_path ) all_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(all_metrics), 5) self.assertTrue(all(obj.participant_id in pids for obj in all_metrics)) self.assertTrue(all(obj.file_path == test_file_path for obj in all_metrics)) self.assertTrue(all(obj.appointment_event is not None for obj in all_metrics)) self.assertTrue(all(obj.created is not None for obj in all_metrics)) self.assertTrue(all(obj.modified is not None for obj in all_metrics)) self.assertTrue(all(obj.module_type is not None for obj in all_metrics) ) self.assertTrue(all(obj.event_authored_time is not None for obj in all_metrics)) self.assertTrue(all(obj.event_type is not None for obj in all_metrics)) current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 1) current_job_run = current_job_runs[0] self.assertTrue(current_job_run.jobId == GenomicJob. APPOINTMENT_METRICS_FILE_INGEST) self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) self.clear_table_after_test('genomic_appointment_event_metrics') def test_reconcile_appointments_with_metrics(self): fake_date = parser.parse('2020-05-29T08:00:01-05:00') for num in range(4): summary = self.data_generator.create_database_participant_summary() missing_json = {'event': 'appointment_updated', 'eventAuthoredTime': '2022-09-16T17:18:38Z', 'participantId': f'P{summary.participantId}', 'messageBody': {'module_type': 'hdr', 'appointment_timestamp': '2022-09-19T19:30:00+00:00', 'id': 55, 'appointment_timezone': 'America/Los_Angeles', 'location': 'CA', 'contact_number': '18043704252', 'language': 'en', 'source': 'Color'}} if num % 2 == 0: self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type= 'appointment_scheduled', module_type='hdr', participant_id=summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now() ), appointment_timezone='America/Los_Angeles', location ='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment_metric( participant_id=summary.participantId, appointment_event= json.dumps(missing_json, indent=4) if num % 2 != 0 else 'foo', file_path='test_file_path', module_type='hdr', event_authored_time=fake_date, event_type= 'appointment_updated' if num % 2 != 0 else 'appointment_scheduled') current_events = self.appointment_event_dao.get_all() self.assertEqual(len(current_events), 2) current_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is None for obj in current_metrics)) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_RECONCILE ) as controller: controller.reconcile_appointment_events_from_metrics() job_run = self.job_run_dao.get_all() self.assertEqual(len(job_run), 1) self.assertTrue(job_run[0].jobId == GenomicJob. APPOINTMENT_METRICS_RECONCILE) current_events = self.appointment_event_dao.get_all() self.assertEqual(len(current_events), 4) scheduled = list(filter(lambda x: x.event_type == 'appointment_scheduled', current_events)) self.assertEqual(len(scheduled), 2) self.assertTrue(all(obj.created_from_metric_id is None for obj in scheduled)) updated = list(filter(lambda x: x.event_type == 'appointment_updated', current_events)) self.assertEqual(len(updated), 2) self.assertTrue(all(obj.created_from_metric_id is not None for obj in updated)) current_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is not None for obj in current_metrics)) self.assertTrue(all(obj.reconcile_job_run_id == job_run[0].id for obj in current_metrics)) self.clear_table_after_test('genomic_appointment_event_metrics') @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_appointments_gror_changed(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') notified_dao = GenomicAppointmentEventNotifiedDao() config.override_setting(config.GENOMIC_COLOR_PM_EMAIL, [ '[email protected]']) num_participants = 4 for num in range(num_participants): gror = num if num > 1 else 1 summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=gror) self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type= 'appointment_scheduled', module_type='hdr', participant_id= summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock .CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') changed_ppts = (self.appointment_event_dao. get_appointments_gror_changed()) self.assertEqual(2, len(changed_ppts)) with GenomicJobController(GenomicJob.CHECK_APPOINTMENT_GROR_CHANGED ) as controller: controller.check_appointments_gror_changed() self.assertEqual(email_mock.call_count, 1) notified_appointments = notified_dao.get_all() self.assertEqual(2, len(notified_appointments)) summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=2) self.data_generator.create_database_genomic_appointment( message_record_id=5, appointment_id=5, event_type= 'appointment_scheduled', module_type='hdr', participant_id= summary.participantId, event_authored_time=fake_date, source= 'Color', appointment_timestamp=format_datetime(clock.CLOCK.now( )), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') changed_ppts = (self.appointment_event_dao. get_appointments_gror_changed()) self.assertEqual(1, len(changed_ppts)) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_14day_escalation(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') fake_date2 = parser.parse('2022-09-02T14:14:00') fake_date3 = parser.parse('2022-09-03T15:15:00') config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, [ '[email protected]']) self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) pids = [] for _ in range(6): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1) set_member = (self.data_generator. create_database_genomic_set_member(participantId=summary. participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType='aou_wgs')) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state= GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id= set_member.id, module='hdr_v1', event_authored_time=fake_date) pids.append(summary.participantId) self.data_generator.create_database_genomic_appointment( message_record_id=101, appointment_id=102, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [0], event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type= 'appointment_completed', module_type='hdr', participant_id=pids [1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone= 'America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=103, appointment_id=104, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date2, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=104, appointment_id=104, event_type= 'appointment_cancelled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date3, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') notified_dao = GenomicDefaultBaseDao(model_type= GenomicGCROutreachEscalationNotified) notified_dao.insert_bulk([{'participant_id': pids[4], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': True}, {'participant_id': pids[5], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': False}]) with clock.FakeClock(parser.parse('2022-11-1T05:15:00')): escalated_participants = (self.report_state_dao. get_hdr_result_positive_no_appointment(num_days=14)) results = [pid[0] for pid in escalated_participants] self.assertIn(pids[2], results) self.assertIn(pids[3], results) self.assertIn(pids[5], results) self.assertNotIn(pids[0], results) self.assertNotIn(pids[1], results) self.assertNotIn(pids[4], results) with GenomicJobController(GenomicJob.CHECK_GCR_OUTREACH_ESCALATION ) as controller: controller.check_gcr_escalation(controller.job_id) self.assertEqual(email_mock.call_count, 3) self.assertEqual(email_mock.call_args.args[0].subject, 'GCR Outreach 14 Day Escalation') self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') <mask token> @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_ce_escalation(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') fake_date2 = parser.parse('2022-09-02T14:14:00') fake_date3 = parser.parse('2022-09-03T15:15:00') config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, [ '[email protected]']) self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) pids = [] for _ in range(6): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1) set_member = (self.data_generator. create_database_genomic_set_member(participantId=summary. participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType='aou_wgs', participantOrigin='careevolution')) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state= GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id= set_member.id, module='hdr_v1', event_authored_time=fake_date) pids.append(summary.participantId) self.data_generator.create_database_genomic_appointment( message_record_id=101, appointment_id=102, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [0], event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type= 'appointment_completed', module_type='hdr', participant_id=pids [1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone= 'America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=103, appointment_id=104, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date2, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=104, appointment_id=104, event_type= 'appointment_cancelled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date3, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') notified_dao = GenomicDefaultBaseDao(model_type= GenomicGCROutreachEscalationNotified) notified_dao.insert_bulk([{'participant_id': pids[4], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': True}, {'participant_id': pids[5], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': False}]) with clock.FakeClock(parser.parse('2022-11-1T05:15:00')): escalated_participants = (self.report_state_dao. get_hdr_result_positive_no_appointment(num_days=30, participant_origin='careevolution')) results = [pid[0] for pid in escalated_participants] self.assertIn(pids[2], results) self.assertIn(pids[3], results) self.assertIn(pids[5], results) self.assertNotIn(pids[0], results) self.assertNotIn(pids[1], results) self.assertNotIn(pids[4], results) with GenomicJobController(GenomicJob.CHECK_GCR_CE_OUTREACH_ESCALATION ) as controller: controller.check_gcr_escalation(controller.job_id) self.assertEqual(email_mock.call_count, 3) self.assertEqual(email_mock.call_args.args[0].subject, 'GCR Outreach 30 Day Escalation') self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_execute_auto_generation_from_last_run(self, cloud_task_mock): with GenomicJobController(GenomicJob.PR_PR_WORKFLOW) as controller: controller.job_result = GenomicSubProcessResult.ERROR controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id( job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult.ERROR ) self.assertEqual(cloud_task_mock.called, False) self.assertEqual(cloud_task_mock.call_count, 0) with GenomicJobController(GenomicJob.PR_PR_WORKFLOW) as controller: controller.job_result = GenomicSubProcessResult.SUCCESS controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id( job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult. SUCCESS) self.assertEqual(cloud_task_mock.called, True) self.assertTrue(cloud_task_mock.call_args[1].get('payload').get( 'manifest_type') == 'p0') self.assertTrue(cloud_task_mock.call_args[1].get('task_queue') == 'genomic-generate-manifest') all_job_runs = self.job_run_dao.get_all() self.assertEqual(len(all_job_runs), 2) self.assertTrue(all(obj.runResult in [GenomicSubProcessResult. SUCCESS, GenomicSubProcessResult.ERROR] for obj in all_job_runs)) self.assertTrue(all(obj.jobId == GenomicJob.PR_PR_WORKFLOW for obj in all_job_runs))
<mask token> class GenomicJobControllerTest(BaseTestCase): def setUp(self): super(GenomicJobControllerTest, self).setUp() self.data_file_dao = GenomicGcDataFileDao() self.event_data_dao = MessageBrokenEventDataDao() self.incident_dao = GenomicIncidentDao() self.member_dao = GenomicSetMemberDao() self.metrics_dao = GenomicGCValidationMetricsDao() self.user_event_metrics_dao = UserEventMetricsDao() self.job_run_dao = GenomicJobRunDao() self.report_state_dao = GenomicMemberReportStateDao() self.appointment_event_dao = GenomicAppointmentEventDao() self.appointment_metrics_dao = GenomicAppointmentEventMetricsDao() def test_incident_with_long_message(self): """Make sure the length of incident messages doesn't cause issues when recording them""" incident_message = '1' * (GenomicIncident.message.type.length + 20) mock_slack_handler = mock.MagicMock() job_controller = GenomicJobController(job_id=1) job_controller.genomic_alert_slack = mock_slack_handler job_controller.create_incident(message=incident_message, slack=True) incident: GenomicIncident = self.session.query(GenomicIncident).one() self.assertTrue(incident_message.startswith(incident.message)) mock_slack_handler.send_message_to_webhook.assert_called_with( message_data={'text': incident_message}) def test_gvcf_files_ingestion(self): job_controller = GenomicJobController(job_id=38) bucket_name = 'test_bucket' file_path = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz' ) file_path_md5 = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz.md5sum' ) full_path = f'{bucket_name}/{file_path}' full_path_md5 = f'{bucket_name}/{file_path_md5}' gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='100153482', sampleId= '21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=gen_job_run.id, startTime=clock.CLOCK.now(), filePath='/test_file_path', bucketName='test_bucket', fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= gen_processed_file.id) job_controller.ingest_data_files_into_gc_metrics(file_path_md5, bucket_name) metrics = self.metrics_dao.get_metrics_by_member_id(gen_member.id) self.assertIsNotNone(metrics.gvcfMd5Path) self.assertEqual(metrics.gvcfMd5Path, full_path_md5) job_controller.ingest_data_files_into_gc_metrics(file_path, bucket_name ) metrics = self.metrics_dao.get_metrics_by_member_id(gen_member.id) self.assertIsNotNone(metrics.gvcfPath) self.assertEqual(metrics.gvcfPath, full_path) def test_gvcf_files_ingestion_create_incident(self): bucket_name = 'test_bucket' file_path = ( 'Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz' ) gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='111111111', sampleId= '222222222222', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=gen_job_run.id, startTime=clock.CLOCK.now(), filePath='/test_file_path', bucketName=bucket_name, fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= gen_processed_file.id) with GenomicJobController(GenomicJob.INGEST_DATA_FILES) as controller: controller.ingest_data_files_into_gc_metrics(file_path, bucket_name ) incident = self.incident_dao.get(1) self.assertIsNotNone(incident) self.assertEqual(incident.code, GenomicIncidentCode. UNABLE_TO_FIND_METRIC.name) self.assertEqual(incident.data_file_path, file_path) self.assertEqual(incident.message, 'INGEST_DATA_FILES: Cannot find genomics metric record for sample id: 21042005280' ) def test_accession_data_files(self): test_bucket_baylor = 'fake-data-bucket-baylor' test_idat_file = ( 'fake-data-bucket-baylor/Genotyping_sample_raw_data/204027270091_R02C01_Grn.idat' ) test_vcf_file = ( 'fake-data-bucket-baylor/Genotyping_sample_raw_data/204027270091_R02C01.vcf.gz' ) test_cram_file = ( 'fake-data-bucket-baylor/Wgs_sample_raw_data/CRAMs_CRAIs/BCM_A100134256_21063006771_SIA0017196_1.cram' ) test_files = [test_idat_file, test_vcf_file, test_cram_file] test_time = datetime.datetime(2021, 7, 9, 14, 1, 1) with clock.FakeClock(test_time): for file_path in test_files: with GenomicJobController(GenomicJob.ACCESSION_DATA_FILES ) as controller: controller.accession_data_files(file_path, test_bucket_baylor) inserted_files = self.data_file_dao.get_all() expected_idat = GenomicGcDataFile(id=1, created=test_time, modified =test_time, file_path=test_idat_file, gc_site_id='jh', bucket_name='fake-data-bucket-baylor', file_prefix= 'Genotyping_sample_raw_data', file_name= '204027270091_R02C01_Grn.idat', file_type='Grn.idat', identifier_type='chipwellbarcode', identifier_value= '204027270091_R02C01', ignore_flag=0) expected_vcf = GenomicGcDataFile(id=2, created=test_time, modified= test_time, file_path=test_vcf_file, gc_site_id='jh', bucket_name='fake-data-bucket-baylor', file_prefix= 'Genotyping_sample_raw_data', file_name= '204027270091_R02C01.vcf.gz', file_type='vcf.gz', identifier_type='chipwellbarcode', identifier_value= '204027270091_R02C01', ignore_flag=0) expected_cram = GenomicGcDataFile(id=3, created=test_time, modified =test_time, file_path=test_cram_file, gc_site_id='bcm', bucket_name='fake-data-bucket-baylor', file_prefix= 'Wgs_sample_raw_data/CRAMs_CRAIs', file_name= 'BCM_A100134256_21063006771_SIA0017196_1.cram', file_type= 'cram', identifier_type='sample_id', identifier_value= '21063006771', ignore_flag=0) expected_objs = {(0): expected_idat, (1): expected_vcf, (2): expected_cram} for i in range(3): self.assertEqual(expected_objs[i].bucket_name, inserted_files[i ].bucket_name) self.assertEqual(expected_objs[i].created, inserted_files[i]. created) self.assertEqual(expected_objs[i].file_name, inserted_files[i]. file_name) self.assertEqual(expected_objs[i].file_path, inserted_files[i]. file_path) self.assertEqual(expected_objs[i].file_prefix, inserted_files[i ].file_prefix) self.assertEqual(expected_objs[i].file_type, inserted_files[i]. file_type) self.assertEqual(expected_objs[i].gc_site_id, inserted_files[i] .gc_site_id) self.assertEqual(expected_objs[i].id, inserted_files[i].id) self.assertEqual(expected_objs[i].identifier_type, inserted_files[i].identifier_type) self.assertEqual(expected_objs[i].identifier_value, inserted_files[i].identifier_value) self.assertEqual(expected_objs[i].ignore_flag, inserted_files[i ].ignore_flag) self.assertEqual(expected_objs[i].metadata, inserted_files[i]. metadata) self.assertEqual(expected_objs[i].modified, inserted_files[i]. modified) def test_updating_members_blocklists(self): gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) ids_should_be_updated = [] for i in range(4): ids_should_be_updated.append(self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType= 'test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW0, ai_an='Y' if i & 2 == 0 else 'N').id) for i in range(2): self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType='aou_array', genomicWorkflowState= GenomicWorkflowState.AW0, ai_an='N') with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS ) as controller: controller.update_members_blocklists() created_members = self.member_dao.get_all() blocklisted = list(filter(lambda x: x.blockResults == 1 or x. blockResearch == 1, created_members)) self.assertTrue(ids_should_be_updated.sort() == [obj.id for obj in blocklisted].sort()) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in created_members if obj.ai_an == 'Y' and obj. genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in created_members if obj. ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 1 and obj. blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResearch == 0 and obj. blockResearchReason is None for obj in created_members if obj. genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in created_members if obj. genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0)) with self.member_dao.session() as session: session.query(GenomicSetMember).delete() run_result = self.job_run_dao.get(1) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus. COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) for i in range(4): self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, biobankId='100153482', sampleId='21042005280', genomeType='test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW1, ai_an='Y' if i & 2 == 0 else 'N') with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS ) as controller: controller.update_members_blocklists() modified_members = self.member_dao.get_all() self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in modified_members if obj.ai_an == 'Y' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResults == 0 and obj. blockResultsReason is None for obj in modified_members if obj. ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResearch == 1 and obj. blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in modified_members if obj. genomeType == 'test_investigation_one' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) self.assertTrue(all(obj.blockResults == 1 and obj. blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in modified_members if obj. genomeType == 'test_investigation_one' and obj. genomicWorkflowState == GenomicWorkflowState.AW1)) run_result = self.job_run_dao.get(2) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus. COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) def test_ingest_user_metrics_file(self): test_file = 'Genomic-Metrics-File-User-Events-Test.csv' bucket_name = 'test_bucket' sub_folder = 'user_events' pids = [] file_ingester = GenomicFileIngester() for _ in range(2): pid = self.data_generator.create_database_participant() pids.append(pid.participantId) test_metrics_file = create_ingestion_test_file(test_file, bucket_name, sub_folder) test_file_path = f'{bucket_name}/{sub_folder}/{test_metrics_file}' with open_cloud_file(test_file_path) as csv_file: metrics_to_ingest = file_ingester._read_data_to_ingest(csv_file) with GenomicJobController(GenomicJob.METRICS_FILE_INGEST ) as controller: controller.ingest_metrics_file(metric_type='user_events', file_path=test_file_path) job_run_id = controller.job_run.id metrics = self.user_event_metrics_dao.get_all() for pid in pids: file_metrics = list(filter(lambda x: int(x['participant_id']. split('P')[-1]) == pid, metrics_to_ingest['rows'])) participant_ingested_metrics = list(filter(lambda x: x. participant_id == pid, metrics)) self.assertEqual(len(file_metrics), len( participant_ingested_metrics)) self.assertTrue(all(obj.run_id == job_run_id for obj in participant_ingested_metrics)) @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_reconcile_pdr_data(self, mock_cloud_task): with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() cloud_task_endpoint = 'rebuild_genomic_table_records_task' first_run = self.job_run_dao.get_all() self.assertEqual(mock_cloud_task.call_count, 1) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 1) self.assertEqual(call_args[0].args[0]['table'], self.job_run_dao. model_type.__tablename__) self.assertTrue(type(call_args[0].args[0]['ids']) is list) self.assertEqual(call_args[0].args[0]['ids'], [obj.id for obj in first_run]) self.assertEqual(call_args[0].args[1], cloud_task_endpoint) participant = self.data_generator.create_database_participant() gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) plus_ten = clock.CLOCK.now() + datetime.timedelta(minutes=10) plus_ten = plus_ten.replace(microsecond=0) with FakeClock(plus_ten): for i in range(2): gen_member = (self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set .id, biobankId='100153482', sampleId='21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1)) gen_processed_file = (self.data_generator. create_database_genomic_file_processed(runId=first_run[ 0].id, startTime=clock.CLOCK.now(), filePath= f'test_file_path_{i}', bucketName='test_bucket', fileName='test_file_name')) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId=gen_processed_file.id) manifest = (self.data_generator. create_database_genomic_manifest_file(manifestTypeId=2, filePath=f'test_file_path_{i}')) self.data_generator.create_database_genomic_manifest_feedback( inputManifestFileId=manifest.id, feedbackRecordCount=2) self.data_generator.create_database_genomic_user_event_metrics( participant_id=participant.participantId, event_name= 'test_event', run_id=1) self.data_generator.create_database_genomic_informing_loop( message_record_id=1, event_type= 'informing_loop_decision', module_type='gem', participant_id=participant.participantId, decision_value='maybe_later', event_authored_time=clock .CLOCK.now()) self.data_generator.create_database_genomic_cvl_past_due( cvl_site_id='co', email_notification_sent=0, sample_id= 'sample_test', results_type='hdr', genomic_set_member_id=gen_member.id) self.data_generator.create_database_genomic_appointment( message_record_id=i, appointment_id=i, event_type= 'appointment_scheduled', module_type='hdr', participant_id=participant.participantId, event_authored_time=clock.CLOCK.now(), source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now() ), appointment_timezone='America/Los_Angeles', location ='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_member_report_state( genomic_set_member_id=gen_member.id, participant_id= participant.participantId, module='gem', genomic_report_state=GenomicReportState.GEM_RPT_READY, event_authored_time=clock.CLOCK.now()) self.data_generator.create_genomic_result_viewed(participant_id =participant.participantId, event_type='result_viewed', event_authored_time=clock.CLOCK.now(), module_type= 'gem', sample_id=gen_member.sampleId) with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() affected_tables = ['genomic_set', 'genomic_set_member', 'genomic_job_run', 'genomic_file_processed', 'genomic_gc_validation_metrics', 'genomic_manifest_file', 'genomic_manifest_feedback', 'genomic_informing_loop', 'genomic_cvl_results_past_due', 'user_event_metrics', 'genomic_member_report_state', 'genomic_result_viewed', 'genomic_appointment_event'] num_calls = len(affected_tables) + 1 self.assertEqual(mock_cloud_task.call_count, num_calls) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), num_calls) mock_tables = set([obj[0][0]['table'] for obj in call_args]) mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue([mock_tables].sort() == affected_tables.sort()) self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_retry_manifest_ingestions_if_deltas(self, mock_cloud_task): bucket_name = 'test-bucket' aw1_file_name = ( 'AW1_wgs_sample_manifests/RDR_AoU_SEQ_PKG-2104-026571.csv') aw1_manifest_path = f'{bucket_name}/{aw1_file_name}' aw2_file_name = ( 'AW2_wgs_data_manifests/RDR_AoU_SEQ_DataManifest_04092021.csv') aw2_manifest_path = f'{bucket_name}/{aw2_file_name}' gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) aw1_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), endTime= clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) aw2_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.METRICS_INGESTION, startTime=clock.CLOCK.now(), endTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult. SUCCESS) with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(3) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) self.data_generator.create_database_genomic_aw1_raw(file_path= aw1_manifest_path, package_id='PKG-2104-026571', biobank_id= 'A10001') self.data_generator.create_database_genomic_aw2_raw(file_path= aw2_manifest_path, biobank_id='A10001', sample_id='100001', biobankidsampleid='A10001_100001') aw1_manifest_file = (self.data_generator. create_database_genomic_manifest_file(created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW1, filePath= aw1_manifest_path, fileName=aw1_file_name, bucketName= bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now())) aw2_manifest_file = (self.data_generator. create_database_genomic_manifest_file(created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW2, filePath= aw2_manifest_path, fileName=aw2_file_name, bucketName= bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now())) aw1_file_processed = (self.data_generator. create_database_genomic_file_processed(runId=aw1_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId= aw1_manifest_file.id, filePath=f'/{aw1_manifest_path}', bucketName=bucket_name, fileName=aw1_file_name)) aw2_file_processed = (self.data_generator. create_database_genomic_file_processed(runId=aw2_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId= aw2_manifest_file.id, filePath=f'/{aw2_manifest_path}', bucketName=bucket_name, fileName=aw2_file_name)) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId='100153482', sampleId= '21042005280', genomeType='aou_wgs', genomicWorkflowState= GenomicWorkflowState.AW1, aw1FileProcessedId=aw1_file_processed.id) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId= aw2_file_processed.id) with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(4) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) with self.member_dao.session() as session: session.query(GenomicGCValidationMetrics).delete() session.query(GenomicSetMember).delete() with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS ) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(5) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.SUCCESS) self.assertEqual(mock_cloud_task.call_count, 2) self.assertTrue(mock_cloud_task.call_count) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 2) cloud_task_endpoint = ['ingest_aw1_manifest_task', 'ingest_aw2_manifest_task'] mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) mock_buckets = set([obj[0][0]['bucket_name'] for obj in call_args]) self.assertTrue(len(mock_buckets), 1) self.assertTrue(list(mock_buckets)[0] == bucket_name) def test_calculate_informing_loop_ready_flags(self): num_participants = 4 gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) for num in range(num_participants): plus_num = clock.CLOCK.now() + datetime.timedelta(minutes=num) plus_num = plus_num.replace(microsecond=0) with FakeClock(plus_num): summary = (self.data_generator. create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1)) stored_sample = (self.data_generator. create_database_biobank_stored_sample(biobankId=summary .biobankId, biobankOrderIdentifier=self.fake.pyint())) collection_site = self.data_generator.create_database_site( siteType='Clinic') order = self.data_generator.create_database_biobank_order( collectedSiteId=collection_site.siteId, participantId= summary.participantId, finalizedTime=plus_num) self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system='1') self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system='2') member = (self.data_generator. create_database_genomic_set_member(genomicSetId=gen_set .id, participantId=summary.participantId, genomeType= config.GENOME_TYPE_WGS, qcStatus=GenomicQcStatus.PASS, gcManifestSampleSource='Whole Blood', collectionTubeId= stored_sample.biobankStoredSampleId)) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=member.id, sexConcordance='True', drcFpConcordance='Pass', drcSexConcordance='Pass', processingStatus='Pass') members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants) current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 0 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is None for obj in current_set_members)) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants) calculation_limit = 2 config.override_setting(config.CALCULATE_READY_FLAG_LIMIT, [ calculation_limit]) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(any(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(any(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) current_loops_set = [obj for obj in current_set_members if obj. informingLoopReadyFlag == 1 and obj. informingLoopReadyFlagModified is not None] self.assertEqual(len(current_loops_set), calculation_limit) members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), num_participants // 2) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY ) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) members_for_ready_loop = (self.member_dao. get_members_for_informing_loop_ready()) self.assertEqual(len(members_for_ready_loop), 0) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_getting_results_withdrawn(self, email_mock): num_participants = 4 result_withdrawal_dao = GenomicResultWithdrawalsDao() gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gen_job_run = self.data_generator.create_database_genomic_job_run(jobId =GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) pids = [] for num in range(num_participants): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1, withdrawalStatus=WithdrawalStatus.EARLY_OUT) self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_ARRAY, gemA1ManifestJobRunId= gen_job_run.id if num % 2 == 0 else None) self.data_generator.create_database_genomic_set_member(genomicSetId =gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_WGS, cvlW1ilHdrJobRunId= gen_job_run.id) pids.append(summary.participantId) config.override_setting(config.RDR_GENOMICS_NOTIFICATION_EMAIL, '[email protected]') with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS ) as controller: controller.check_results_withdrawals() self.assertEqual(email_mock.call_count, 2) call_args = email_mock.call_args_list self.assertTrue(any('GEM' in call.args[0].subject for call in call_args)) self.assertTrue(any('HEALTH' in call.args[0].subject for call in call_args)) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob. RESULTS_PIPELINE_WITHDRAWALS, job_runs))[0] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) all_withdrawal_records = result_withdrawal_dao.get_all() self.assertTrue(len(all_withdrawal_records) == len(pids)) self.assertTrue(all(obj.participant_id in pids for obj in all_withdrawal_records)) array_results = list(filter(lambda x: x.array_results == 1, all_withdrawal_records)) self.assertTrue(len(array_results), 2) cvl_results = list(filter(lambda x: x.cvl_results == 1, all_withdrawal_records)) self.assertTrue(len(cvl_results), num_participants) with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS ) as controller: controller.check_results_withdrawals() self.assertEqual(email_mock.call_count, 2) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob. RESULTS_PIPELINE_WITHDRAWALS, job_runs))[1] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) def test_gem_results_to_report_state(self): num_participants = 8 gen_set = self.data_generator.create_database_genomic_set( genomicSetName='.', genomicSetCriteria='.', genomicSetVersion=1) gem_a2_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.GEM_A2_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS) pids_to_update, member_ids = [], [] for num in range(num_participants): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1, withdrawalStatus=WithdrawalStatus.EARLY_OUT) member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, participantId=summary. participantId, genomeType=config.GENOME_TYPE_ARRAY) if num % 2 == 0: member_ids.append(member.id) pids_to_update.append(summary.participantId) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 2) current_job_run = list(filter(lambda x: x.jobId == GenomicJob. GEM_RESULT_REPORTS, current_job_runs))[0] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) current_members = self.member_dao.get_all() for member in current_members: if member.participantId in pids_to_update: member.gemA2ManifestJobRunId = gem_a2_job_run.id member.genomicWorkflowState = (GenomicWorkflowState. GEM_RPT_READY) self.member_dao.update(member) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 3) current_job_run = list(filter(lambda x: x.jobId == GenomicJob. GEM_RESULT_REPORTS, current_job_runs))[1] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) current_gem_report_states = self.report_state_dao.get_all() self.assertEqual(len(current_gem_report_states), len(pids_to_update)) self.assertTrue(all(obj.event_type == 'result_ready' for obj in current_gem_report_states)) self.assertTrue(all(obj.event_authored_time is not None for obj in current_gem_report_states)) self.assertTrue(all(obj.module == 'gem' for obj in current_gem_report_states)) self.assertTrue(all(obj.genomic_report_state == GenomicReportState. GEM_RPT_READY for obj in current_gem_report_states)) self.assertTrue(all(obj.genomic_report_state_str == GenomicReportState.GEM_RPT_READY.name for obj in current_gem_report_states)) self.assertTrue(all(obj.genomic_set_member_id in member_ids for obj in current_gem_report_states)) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 4) current_job_run = list(filter(lambda x: x.jobId == GenomicJob. GEM_RESULT_REPORTS, current_job_runs))[2] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) self.clear_table_after_test('genomic_member_report_state') def test_reconcile_informing_loop(self): event_dao = UserEventMetricsDao() event_dao.truncate() il_dao = GenomicInformingLoopDao() for pid in range(8): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) self.data_generator.create_database_genomic_job_run(jobId= GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now()) self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) for b in ['aou_array', 'aou_wgs']: for i in range(1, 9): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType=b) events = ['gem.informing_loop.started', 'gem.informing_loop.screen8_no', 'gem.informing_loop.screen8_yes', 'hdr.informing_loop.started', 'gem.informing_loop.screen3', 'pgx.informing_loop.screen8_no', 'hdr.informing_loop.screen10_no'] for p in range(4): for i in range(len(events)): self.data_generator.create_database_genomic_user_event_metrics( created=clock.CLOCK.now(), modified=clock.CLOCK.now(), participant_id=p + 1, created_at=datetime.datetime(2021, 12, 29, 0) + datetime.timedelta(hours=i), event_name= events[i], run_id=1, ignore_flag=0) decisions = [None, 'no', 'yes'] for p in range(3): for i in range(2): self.data_generator.create_database_genomic_informing_loop( message_record_id=i, event_type= 'informing_loop_started' if i == 0 else 'informing_loop_decision', module_type='gem', participant_id=p + 1, decision_value=decisions[i], sample_id=100 + p, event_authored_time=datetime. datetime(2021, 12, 29, 0) + datetime.timedelta(hours=i)) self.data_generator.create_database_genomic_user_event_metrics(created =clock.CLOCK.now(), modified=clock.CLOCK.now(), participant_id= 6, created_at=datetime.datetime(2021, 12, 29, 0), event_name= 'gem.informing_loop.screen8_yes', run_id=1, ignore_flag=0) genomic_pipeline.reconcile_informing_loop_responses() pid_list = [1, 2, 3, 6] new_il_values = il_dao.get_latest_il_for_pids(pid_list=pid_list, module='gem') for value in new_il_values: self.assertEqual('yes', value.decision_value) pid_list = [1, 2, 3, 4] for module in ['hdr', 'pgx']: new_il_values = il_dao.get_latest_il_for_pids(pid_list=pid_list, module=module) for value in new_il_values: self.assertEqual('no', value.decision_value) self.assertIsNotNone(value.created_from_metric_id) def test_reconcile_message_broker_results_ready(self): self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) self.data_generator.create_database_genomic_job_run(jobId= GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now()) for pid in range(7): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) for i in range(1, 6): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType='aou_wgs' ) if i < 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='pgx.result_ready', run_id=1) if i == 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.result_ready.informative', run_id=1) if i == 5: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.result_ready.uninformative', run_id=1) genomic_cvl_pipeline.reconcile_message_broker_results_ready() report_state_dao = GenomicMemberReportStateDao() states = report_state_dao.get_all() self.assertEqual(5, len(states)) pgx_records = [rec for rec in states if rec.module == 'pgx_v1'] hdr_record_uninf = [rec for rec in states if rec. genomic_report_state == GenomicReportState.HDR_RPT_UNINFORMATIVE][0 ] hdr_record_pos = [rec for rec in states if rec.genomic_report_state == GenomicReportState.HDR_RPT_POSITIVE][0] for pgx_record in pgx_records: self.assertEqual(GenomicReportState.PGX_RPT_READY, pgx_record. genomic_report_state) self.assertEqual('PGX_RPT_READY', pgx_record. genomic_report_state_str) self.assertEqual(int(pgx_record.sample_id), pgx_record. participant_id + 10) self.assertEqual('result_ready', pgx_record.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), pgx_record. event_authored_time) self.assertIsNotNone(pgx_record.created_from_metric_id) self.assertEqual('HDR_RPT_UNINFORMATIVE', hdr_record_uninf. genomic_report_state_str) self.assertEqual(int(hdr_record_uninf.sample_id), hdr_record_uninf. participant_id + 10) self.assertEqual('result_ready', hdr_record_uninf.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), hdr_record_uninf.event_authored_time) self.assertIsNotNone(hdr_record_uninf.created_from_metric_id) self.assertEqual('HDR_RPT_POSITIVE', hdr_record_pos. genomic_report_state_str) self.assertEqual(int(hdr_record_pos.sample_id), hdr_record_pos. participant_id + 10) self.assertEqual('result_ready', hdr_record_pos.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), hdr_record_pos. event_authored_time) self.assertIsNotNone(hdr_record_pos.created_from_metric_id) def test_reconcile_message_broker_results_viewed(self): self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) self.data_generator.create_database_genomic_job_run(jobId= GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now()) for pid in range(3): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) for i in range(1, 3): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType='aou_wgs' ) if i == 1: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='pgx.opened_at', run_id=1) if i == 2: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 0), event_name='hdr.opened_at', run_id=1) genomic_cvl_pipeline.reconcile_message_broker_results_viewed() result_viewed_dao = GenomicResultViewedDao() results = result_viewed_dao.get_all() self.assertEqual(2, len(results)) for record in results: if record.participant_id == 1: self.assertEqual('pgx_v1', record.module_type) else: self.assertEqual('hdr_v1', record.module_type) self.assertEqual(int(record.sample_id), record.participant_id + 10) self.assertEqual('result_viewed', record.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 0), record. first_viewed) self.assertIsNotNone(record.created_from_metric_id) def test_ingest_appointment_metrics_file(self): test_file = 'Genomic-Metrics-File-Appointment-Events-Test.json' bucket_name = 'test_bucket' sub_folder = 'appointment_events' pids = [] for _ in range(4): summary = self.data_generator.create_database_participant_summary() pids.append(summary.participantId) test_file_path = f'{bucket_name}/{sub_folder}/{test_file}' appointment_data = test_data.load_test_data_json( 'Genomic-Metrics-File-Appointment-Events-Test.json') appointment_data_str = json.dumps(appointment_data, indent=4) with open_cloud_file(test_file_path, mode='wb') as cloud_file: cloud_file.write(appointment_data_str.encode('utf-8')) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_FILE_INGEST ) as controller: controller.ingest_appointment_metrics_file(file_path=test_file_path ) all_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(all_metrics), 5) self.assertTrue(all(obj.participant_id in pids for obj in all_metrics)) self.assertTrue(all(obj.file_path == test_file_path for obj in all_metrics)) self.assertTrue(all(obj.appointment_event is not None for obj in all_metrics)) self.assertTrue(all(obj.created is not None for obj in all_metrics)) self.assertTrue(all(obj.modified is not None for obj in all_metrics)) self.assertTrue(all(obj.module_type is not None for obj in all_metrics) ) self.assertTrue(all(obj.event_authored_time is not None for obj in all_metrics)) self.assertTrue(all(obj.event_type is not None for obj in all_metrics)) current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 1) current_job_run = current_job_runs[0] self.assertTrue(current_job_run.jobId == GenomicJob. APPOINTMENT_METRICS_FILE_INGEST) self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) self.clear_table_after_test('genomic_appointment_event_metrics') def test_reconcile_appointments_with_metrics(self): fake_date = parser.parse('2020-05-29T08:00:01-05:00') for num in range(4): summary = self.data_generator.create_database_participant_summary() missing_json = {'event': 'appointment_updated', 'eventAuthoredTime': '2022-09-16T17:18:38Z', 'participantId': f'P{summary.participantId}', 'messageBody': {'module_type': 'hdr', 'appointment_timestamp': '2022-09-19T19:30:00+00:00', 'id': 55, 'appointment_timezone': 'America/Los_Angeles', 'location': 'CA', 'contact_number': '18043704252', 'language': 'en', 'source': 'Color'}} if num % 2 == 0: self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type= 'appointment_scheduled', module_type='hdr', participant_id=summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now() ), appointment_timezone='America/Los_Angeles', location ='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment_metric( participant_id=summary.participantId, appointment_event= json.dumps(missing_json, indent=4) if num % 2 != 0 else 'foo', file_path='test_file_path', module_type='hdr', event_authored_time=fake_date, event_type= 'appointment_updated' if num % 2 != 0 else 'appointment_scheduled') current_events = self.appointment_event_dao.get_all() self.assertEqual(len(current_events), 2) current_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is None for obj in current_metrics)) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_RECONCILE ) as controller: controller.reconcile_appointment_events_from_metrics() job_run = self.job_run_dao.get_all() self.assertEqual(len(job_run), 1) self.assertTrue(job_run[0].jobId == GenomicJob. APPOINTMENT_METRICS_RECONCILE) current_events = self.appointment_event_dao.get_all() self.assertEqual(len(current_events), 4) scheduled = list(filter(lambda x: x.event_type == 'appointment_scheduled', current_events)) self.assertEqual(len(scheduled), 2) self.assertTrue(all(obj.created_from_metric_id is None for obj in scheduled)) updated = list(filter(lambda x: x.event_type == 'appointment_updated', current_events)) self.assertEqual(len(updated), 2) self.assertTrue(all(obj.created_from_metric_id is not None for obj in updated)) current_metrics = self.appointment_metrics_dao.get_all() self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is not None for obj in current_metrics)) self.assertTrue(all(obj.reconcile_job_run_id == job_run[0].id for obj in current_metrics)) self.clear_table_after_test('genomic_appointment_event_metrics') @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_appointments_gror_changed(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') notified_dao = GenomicAppointmentEventNotifiedDao() config.override_setting(config.GENOMIC_COLOR_PM_EMAIL, [ '[email protected]']) num_participants = 4 for num in range(num_participants): gror = num if num > 1 else 1 summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=gror) self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type= 'appointment_scheduled', module_type='hdr', participant_id= summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock .CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') changed_ppts = (self.appointment_event_dao. get_appointments_gror_changed()) self.assertEqual(2, len(changed_ppts)) with GenomicJobController(GenomicJob.CHECK_APPOINTMENT_GROR_CHANGED ) as controller: controller.check_appointments_gror_changed() self.assertEqual(email_mock.call_count, 1) notified_appointments = notified_dao.get_all() self.assertEqual(2, len(notified_appointments)) summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=2) self.data_generator.create_database_genomic_appointment( message_record_id=5, appointment_id=5, event_type= 'appointment_scheduled', module_type='hdr', participant_id= summary.participantId, event_authored_time=fake_date, source= 'Color', appointment_timestamp=format_datetime(clock.CLOCK.now( )), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') changed_ppts = (self.appointment_event_dao. get_appointments_gror_changed()) self.assertEqual(1, len(changed_ppts)) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_14day_escalation(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') fake_date2 = parser.parse('2022-09-02T14:14:00') fake_date3 = parser.parse('2022-09-03T15:15:00') config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, [ '[email protected]']) self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) pids = [] for _ in range(6): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1) set_member = (self.data_generator. create_database_genomic_set_member(participantId=summary. participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType='aou_wgs')) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state= GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id= set_member.id, module='hdr_v1', event_authored_time=fake_date) pids.append(summary.participantId) self.data_generator.create_database_genomic_appointment( message_record_id=101, appointment_id=102, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [0], event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type= 'appointment_completed', module_type='hdr', participant_id=pids [1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone= 'America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=103, appointment_id=104, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date2, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=104, appointment_id=104, event_type= 'appointment_cancelled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date3, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') notified_dao = GenomicDefaultBaseDao(model_type= GenomicGCROutreachEscalationNotified) notified_dao.insert_bulk([{'participant_id': pids[4], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': True}, {'participant_id': pids[5], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': False}]) with clock.FakeClock(parser.parse('2022-11-1T05:15:00')): escalated_participants = (self.report_state_dao. get_hdr_result_positive_no_appointment(num_days=14)) results = [pid[0] for pid in escalated_participants] self.assertIn(pids[2], results) self.assertIn(pids[3], results) self.assertIn(pids[5], results) self.assertNotIn(pids[0], results) self.assertNotIn(pids[1], results) self.assertNotIn(pids[4], results) with GenomicJobController(GenomicJob.CHECK_GCR_OUTREACH_ESCALATION ) as controller: controller.check_gcr_escalation(controller.job_id) self.assertEqual(email_mock.call_count, 3) self.assertEqual(email_mock.call_args.args[0].subject, 'GCR Outreach 14 Day Escalation') self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_14day_escalation_error(self, email_mock): email_mock.side_effect = ForbiddenError(mock.Mock(code=403)) mock_slack_handler = mock.MagicMock() fake_date = parser.parse('2023-06-01T13:43:23') config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, [ '[email protected]']) self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) pids = [] for _ in range(2): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1) set_member = (self.data_generator. create_database_genomic_set_member(participantId=summary. participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType='aou_wgs')) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state= GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id= set_member.id, module='hdr_v1', event_authored_time=fake_date) pids.append(summary.participantId) self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type= 'appointment_completed', module_type='hdr', participant_id=pids [1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone= 'America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') with GenomicJobController(GenomicJob.CHECK_GCR_OUTREACH_ESCALATION ) as controller: controller.genomic_alert_slack = mock_slack_handler controller.check_gcr_escalation(controller.job_id) notified_dao = GenomicDefaultBaseDao(model_type= GenomicGCROutreachEscalationNotified) with notified_dao.session() as session: notification = session.query(GenomicGCROutreachEscalationNotified ).filter(GenomicGCROutreachEscalationNotified. participant_id == pids[0]).one() self.assertEqual(email_mock.call_count, 1) self.assertEqual(mock_slack_handler.send_message_to_webhook. call_count, 1) self.assertEqual(False, notification.message_sent) self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_ce_escalation(self, email_mock): fake_date = parser.parse('2022-09-01T13:43:23') fake_date2 = parser.parse('2022-09-02T14:14:00') fake_date3 = parser.parse('2022-09-03T15:15:00') config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, [ '[email protected]']) self.data_generator.create_database_genomic_set(genomicSetName= 'test', genomicSetCriteria='.', genomicSetVersion=1) pids = [] for _ in range(6): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1) set_member = (self.data_generator. create_database_genomic_set_member(participantId=summary. participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType='aou_wgs', participantOrigin='careevolution')) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state= GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id= set_member.id, module='hdr_v1', event_authored_time=fake_date) pids.append(summary.participantId) self.data_generator.create_database_genomic_appointment( message_record_id=101, appointment_id=102, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [0], event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type= 'appointment_completed', module_type='hdr', participant_id=pids [1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone= 'America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=103, appointment_id=104, event_type= 'appointment_scheduled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date2, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') self.data_generator.create_database_genomic_appointment( message_record_id=104, appointment_id=104, event_type= 'appointment_cancelled', module_type='hdr', participant_id=pids [2], event_authored_time=fake_date3, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location= '123 address st', contact_number='17348675309', language='en') notified_dao = GenomicDefaultBaseDao(model_type= GenomicGCROutreachEscalationNotified) notified_dao.insert_bulk([{'participant_id': pids[4], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': True}, {'participant_id': pids[5], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': False}]) with clock.FakeClock(parser.parse('2022-11-1T05:15:00')): escalated_participants = (self.report_state_dao. get_hdr_result_positive_no_appointment(num_days=30, participant_origin='careevolution')) results = [pid[0] for pid in escalated_participants] self.assertIn(pids[2], results) self.assertIn(pids[3], results) self.assertIn(pids[5], results) self.assertNotIn(pids[0], results) self.assertNotIn(pids[1], results) self.assertNotIn(pids[4], results) with GenomicJobController(GenomicJob.CHECK_GCR_CE_OUTREACH_ESCALATION ) as controller: controller.check_gcr_escalation(controller.job_id) self.assertEqual(email_mock.call_count, 3) self.assertEqual(email_mock.call_args.args[0].subject, 'GCR Outreach 30 Day Escalation') self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') @mock.patch( 'rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task' ) def test_execute_auto_generation_from_last_run(self, cloud_task_mock): with GenomicJobController(GenomicJob.PR_PR_WORKFLOW) as controller: controller.job_result = GenomicSubProcessResult.ERROR controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id( job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult.ERROR ) self.assertEqual(cloud_task_mock.called, False) self.assertEqual(cloud_task_mock.call_count, 0) with GenomicJobController(GenomicJob.PR_PR_WORKFLOW) as controller: controller.job_result = GenomicSubProcessResult.SUCCESS controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id( job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult. SUCCESS) self.assertEqual(cloud_task_mock.called, True) self.assertTrue(cloud_task_mock.call_args[1].get('payload').get( 'manifest_type') == 'p0') self.assertTrue(cloud_task_mock.call_args[1].get('task_queue') == 'genomic-generate-manifest') all_job_runs = self.job_run_dao.get_all() self.assertEqual(len(all_job_runs), 2) self.assertTrue(all(obj.runResult in [GenomicSubProcessResult. SUCCESS, GenomicSubProcessResult.ERROR] for obj in all_job_runs)) self.assertTrue(all(obj.jobId == GenomicJob.PR_PR_WORKFLOW for obj in all_job_runs))
import datetime import json from dateutil import parser import mock from python_http_client.exceptions import ForbiddenError from rdr_service import clock, config from rdr_service.api_util import open_cloud_file from rdr_service.clock import FakeClock from rdr_service.dao.database_utils import format_datetime from rdr_service.dao.genomics_dao import GenomicGcDataFileDao, GenomicGCValidationMetricsDao, GenomicIncidentDao, \ GenomicSetMemberDao, UserEventMetricsDao, GenomicJobRunDao, GenomicResultWithdrawalsDao, \ GenomicMemberReportStateDao, GenomicAppointmentEventMetricsDao, GenomicAppointmentEventDao, GenomicResultViewedDao, \ GenomicInformingLoopDao, GenomicAppointmentEventNotifiedDao, GenomicDefaultBaseDao from rdr_service.dao.message_broker_dao import MessageBrokenEventDataDao from rdr_service.genomic_enums import GenomicIncidentCode, GenomicJob, GenomicWorkflowState, GenomicSubProcessResult, \ GenomicSubProcessStatus, GenomicManifestTypes, GenomicQcStatus, GenomicReportState from rdr_service.genomic.genomic_job_components import GenomicFileIngester from rdr_service.genomic.genomic_job_controller import GenomicJobController from rdr_service.model.genomics import GenomicGcDataFile, GenomicIncident, GenomicSetMember, GenomicGCValidationMetrics,\ GenomicGCROutreachEscalationNotified from rdr_service.offline.genomics import genomic_pipeline, genomic_cvl_pipeline from rdr_service.participant_enums import WithdrawalStatus from tests import test_data from tests.genomics_tests.test_genomic_utils import create_ingestion_test_file from tests.helpers.unittest_base import BaseTestCase class GenomicJobControllerTest(BaseTestCase): def setUp(self): super(GenomicJobControllerTest, self).setUp() self.data_file_dao = GenomicGcDataFileDao() self.event_data_dao = MessageBrokenEventDataDao() self.incident_dao = GenomicIncidentDao() self.member_dao = GenomicSetMemberDao() self.metrics_dao = GenomicGCValidationMetricsDao() self.user_event_metrics_dao = UserEventMetricsDao() self.job_run_dao = GenomicJobRunDao() self.report_state_dao = GenomicMemberReportStateDao() self.appointment_event_dao = GenomicAppointmentEventDao() self.appointment_metrics_dao = GenomicAppointmentEventMetricsDao() def test_incident_with_long_message(self): """Make sure the length of incident messages doesn't cause issues when recording them""" incident_message = "1" * (GenomicIncident.message.type.length + 20) mock_slack_handler = mock.MagicMock() job_controller = GenomicJobController(job_id=1) job_controller.genomic_alert_slack = mock_slack_handler job_controller.create_incident(message=incident_message, slack=True) # Double check that the incident was saved successfully, with part of the message incident: GenomicIncident = self.session.query(GenomicIncident).one() self.assertTrue(incident_message.startswith(incident.message)) # Make sure Slack received the full message mock_slack_handler.send_message_to_webhook.assert_called_with( message_data={ 'text': incident_message } ) def test_gvcf_files_ingestion(self): job_controller = GenomicJobController(job_id=38) bucket_name = "test_bucket" file_path = "Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz" file_path_md5 = "Wgs_sample_raw_data/SS_VCF_research/" \ "BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz.md5sum" full_path = f'{bucket_name}/{file_path}' full_path_md5 = f'{bucket_name}/{file_path_md5}' gen_set = self.data_generator.create_database_genomic_set( genomicSetName=".", genomicSetCriteria=".", genomicSetVersion=1 ) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId="100153482", sampleId="21042005280", genomeType="aou_wgs", genomicWorkflowState=GenomicWorkflowState.AW1 ) gen_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS ) gen_processed_file = self.data_generator.create_database_genomic_file_processed( runId=gen_job_run.id, startTime=clock.CLOCK.now(), filePath='/test_file_path', bucketName='test_bucket', fileName='test_file_name', ) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId=gen_processed_file.id ) job_controller.ingest_data_files_into_gc_metrics(file_path_md5, bucket_name) metrics = self.metrics_dao.get_metrics_by_member_id(gen_member.id) self.assertIsNotNone(metrics.gvcfMd5Path) self.assertEqual(metrics.gvcfMd5Path, full_path_md5) job_controller.ingest_data_files_into_gc_metrics(file_path, bucket_name) metrics = self.metrics_dao.get_metrics_by_member_id(gen_member.id) self.assertIsNotNone(metrics.gvcfPath) self.assertEqual(metrics.gvcfPath, full_path) def test_gvcf_files_ingestion_create_incident(self): bucket_name = "test_bucket" file_path = "Wgs_sample_raw_data/SS_VCF_research/BCM_A100153482_21042005280_SIA0013441__1.hard-filtered.gvcf.gz" gen_set = self.data_generator.create_database_genomic_set( genomicSetName=".", genomicSetCriteria=".", genomicSetVersion=1 ) gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId="111111111", sampleId="222222222222", genomeType="aou_wgs", genomicWorkflowState=GenomicWorkflowState.AW1 ) gen_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS ) gen_processed_file = self.data_generator.create_database_genomic_file_processed( runId=gen_job_run.id, startTime=clock.CLOCK.now(), filePath='/test_file_path', bucketName=bucket_name, fileName='test_file_name', ) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId=gen_processed_file.id ) with GenomicJobController(GenomicJob.INGEST_DATA_FILES) as controller: controller.ingest_data_files_into_gc_metrics(file_path, bucket_name) incident = self.incident_dao.get(1) self.assertIsNotNone(incident) self.assertEqual(incident.code, GenomicIncidentCode.UNABLE_TO_FIND_METRIC.name) self.assertEqual(incident.data_file_path, file_path) self.assertEqual(incident.message, 'INGEST_DATA_FILES: Cannot find ' 'genomics metric record for sample id: ' '21042005280') def test_accession_data_files(self): test_bucket_baylor = "fake-data-bucket-baylor" test_idat_file = "fake-data-bucket-baylor/Genotyping_sample_raw_data/204027270091_R02C01_Grn.idat" test_vcf_file = "fake-data-bucket-baylor/Genotyping_sample_raw_data/204027270091_R02C01.vcf.gz" test_cram_file = "fake-data-bucket-baylor/Wgs_sample_raw_data/" \ "CRAMs_CRAIs/BCM_A100134256_21063006771_SIA0017196_1.cram" test_files = [test_idat_file, test_vcf_file, test_cram_file] test_time = datetime.datetime(2021, 7, 9, 14, 1, 1) # run job controller method on each file with clock.FakeClock(test_time): for file_path in test_files: with GenomicJobController(GenomicJob.ACCESSION_DATA_FILES) as controller: controller.accession_data_files(file_path, test_bucket_baylor) inserted_files = self.data_file_dao.get_all() # idat expected_idat = GenomicGcDataFile( id=1, created=test_time, modified=test_time, file_path=test_idat_file, gc_site_id='jh', bucket_name='fake-data-bucket-baylor', file_prefix='Genotyping_sample_raw_data', file_name='204027270091_R02C01_Grn.idat', file_type='Grn.idat', identifier_type='chipwellbarcode', identifier_value='204027270091_R02C01', ignore_flag=0, ) # vcf expected_vcf = GenomicGcDataFile( id=2, created=test_time, modified=test_time, file_path=test_vcf_file, gc_site_id='jh', bucket_name='fake-data-bucket-baylor', file_prefix='Genotyping_sample_raw_data', file_name='204027270091_R02C01.vcf.gz', file_type='vcf.gz', identifier_type='chipwellbarcode', identifier_value='204027270091_R02C01', ignore_flag=0, ) # cram expected_cram = GenomicGcDataFile( id=3, created=test_time, modified=test_time, file_path=test_cram_file, gc_site_id='bcm', bucket_name='fake-data-bucket-baylor', file_prefix='Wgs_sample_raw_data/CRAMs_CRAIs', file_name='BCM_A100134256_21063006771_SIA0017196_1.cram', file_type='cram', identifier_type='sample_id', identifier_value='21063006771', ignore_flag=0, ) # obj mapping expected_objs = { 0: expected_idat, 1: expected_vcf, 2: expected_cram } # verify test objects match expectations for i in range(3): self.assertEqual(expected_objs[i].bucket_name, inserted_files[i].bucket_name) self.assertEqual(expected_objs[i].created, inserted_files[i].created) self.assertEqual(expected_objs[i].file_name, inserted_files[i].file_name) self.assertEqual(expected_objs[i].file_path, inserted_files[i].file_path) self.assertEqual(expected_objs[i].file_prefix, inserted_files[i].file_prefix) self.assertEqual(expected_objs[i].file_type, inserted_files[i].file_type) self.assertEqual(expected_objs[i].gc_site_id, inserted_files[i].gc_site_id) self.assertEqual(expected_objs[i].id, inserted_files[i].id) self.assertEqual(expected_objs[i].identifier_type, inserted_files[i].identifier_type) self.assertEqual(expected_objs[i].identifier_value, inserted_files[i].identifier_value) self.assertEqual(expected_objs[i].ignore_flag, inserted_files[i].ignore_flag) self.assertEqual(expected_objs[i].metadata, inserted_files[i].metadata) self.assertEqual(expected_objs[i].modified, inserted_files[i].modified) def test_updating_members_blocklists(self): gen_set = self.data_generator.create_database_genomic_set( genomicSetName=".", genomicSetCriteria=".", genomicSetVersion=1 ) ids_should_be_updated = [] # for just created and wf state query and MATCHES criteria for i in range(4): ids_should_be_updated.append( self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId="100153482", sampleId="21042005280", genomeType='test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW0, ai_an='Y' if i & 2 == 0 else 'N' ).id ) # for just created and wf state query and DOES NOT MATCH criteria for i in range(2): self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId="100153482", sampleId="21042005280", genomeType='aou_array', genomicWorkflowState=GenomicWorkflowState.AW0, ai_an='N' ) with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS) as controller: controller.update_members_blocklists() # current config json in base_config.json created_members = self.member_dao.get_all() blocklisted = list(filter(lambda x: x.blockResults == 1 or x.blockResearch == 1, created_members)) self.assertTrue(ids_should_be_updated.sort() == [obj.id for obj in blocklisted].sort()) # should be RESEARCH blocked self.assertTrue(all( obj.blockResearch == 1 and obj.blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in created_members if obj.ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW0) ) # should NOT be RESULTS blocked self.assertTrue(all( obj.blockResults == 0 and obj.blockResultsReason is None for obj in created_members if obj.ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW0) ) # should be RESEARCH blocked self.assertTrue(all( obj.blockResearch == 1 and obj.blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0) ) # should be RESULTS blocked self.assertTrue(all( obj.blockResults == 1 and obj.blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in created_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW0) ) # should NOT be RESEARCH/RESULTS blocked self.assertTrue(all( obj.blockResearch == 0 and obj.blockResearchReason is None for obj in created_members if obj.genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0) ) self.assertTrue(all( obj.blockResults == 0 and obj.blockResultsReason is None for obj in created_members if obj.genomeType == 'aou_array' and obj.genomicWorkflowState == GenomicWorkflowState.AW0) ) # clear current set member records with self.member_dao.session() as session: session.query(GenomicSetMember).delete() run_result = self.job_run_dao.get(1) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) # for modified data query and MATCHES criteria for i in range(4): self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId="100153482", sampleId="21042005280", genomeType='test_investigation_one' if i & 2 != 0 else 'aou_wgs', genomicWorkflowState=GenomicWorkflowState.AW1, ai_an='Y' if i & 2 == 0 else 'N' ) with GenomicJobController(GenomicJob.UPDATE_MEMBERS_BLOCKLISTS) as controller: controller.update_members_blocklists() modified_members = self.member_dao.get_all() # should be RESEARCH blocked self.assertTrue(all( obj.blockResearch == 1 and obj.blockResearchReason is not None and obj.blockResearchReason == 'aian' for obj in modified_members if obj.ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW1) ) # should NOT be RESULTS blocked self.assertTrue(all( obj.blockResults == 0 and obj.blockResultsReason is None for obj in modified_members if obj.ai_an == 'Y' and obj.genomicWorkflowState == GenomicWorkflowState.AW1) ) # should be RESEARCH blocked self.assertTrue(all( obj.blockResearch == 1 and obj.blockResearchReason is not None and obj.blockResearchReason == 'test_sample_swap' for obj in modified_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW1) ) # should be RESULTS blocked self.assertTrue(all( obj.blockResults == 1 and obj.blockResultsReason is not None and obj.blockResultsReason == 'test_sample_swap' for obj in modified_members if obj.genomeType == 'test_investigation_one' and obj.genomicWorkflowState == GenomicWorkflowState.AW1) ) run_result = self.job_run_dao.get(2) self.assertEqual(run_result.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(run_result.runResult, GenomicSubProcessResult.SUCCESS) def test_ingest_user_metrics_file(self): test_file = 'Genomic-Metrics-File-User-Events-Test.csv' bucket_name = 'test_bucket' sub_folder = 'user_events' pids = [] file_ingester = GenomicFileIngester() for _ in range(2): pid = self.data_generator.create_database_participant() pids.append(pid.participantId) test_metrics_file = create_ingestion_test_file( test_file, bucket_name, sub_folder) test_file_path = f'{bucket_name}/{sub_folder}/{test_metrics_file}' with open_cloud_file(test_file_path) as csv_file: metrics_to_ingest = file_ingester._read_data_to_ingest(csv_file) with GenomicJobController(GenomicJob.METRICS_FILE_INGEST) as controller: controller.ingest_metrics_file( metric_type='user_events', file_path=test_file_path, ) job_run_id = controller.job_run.id metrics = self.user_event_metrics_dao.get_all() for pid in pids: file_metrics = list(filter(lambda x: int(x['participant_id'].split('P')[-1]) == pid, metrics_to_ingest[ 'rows'])) participant_ingested_metrics = list(filter(lambda x: x.participant_id == pid, metrics)) self.assertEqual(len(file_metrics), len(participant_ingested_metrics)) self.assertTrue(all(obj.run_id == job_run_id for obj in participant_ingested_metrics)) @mock.patch('rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task') def test_reconcile_pdr_data(self, mock_cloud_task): # init new job run in __enter__ with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() cloud_task_endpoint = 'rebuild_genomic_table_records_task' first_run = self.job_run_dao.get_all() self.assertEqual(mock_cloud_task.call_count, 1) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 1) self.assertEqual(call_args[0].args[0]['table'], self.job_run_dao.model_type.__tablename__) self.assertTrue(type(call_args[0].args[0]['ids']) is list) self.assertEqual(call_args[0].args[0]['ids'], [obj.id for obj in first_run]) self.assertEqual(call_args[0].args[1], cloud_task_endpoint) participant = self.data_generator.create_database_participant() gen_set = self.data_generator.create_database_genomic_set( genomicSetName=".", genomicSetCriteria=".", genomicSetVersion=1 ) plus_ten = clock.CLOCK.now() + datetime.timedelta(minutes=10) plus_ten = plus_ten.replace(microsecond=0) with FakeClock(plus_ten): for i in range(2): gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId="100153482", sampleId="21042005280", genomeType="aou_wgs", genomicWorkflowState=GenomicWorkflowState.AW1 ) gen_processed_file = self.data_generator.create_database_genomic_file_processed( runId=first_run[0].id, startTime=clock.CLOCK.now(), filePath=f'test_file_path_{i}', bucketName='test_bucket', fileName='test_file_name', ) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId=gen_processed_file.id ) manifest = self.data_generator.create_database_genomic_manifest_file( manifestTypeId=2, filePath=f'test_file_path_{i}' ) self.data_generator.create_database_genomic_manifest_feedback( inputManifestFileId=manifest.id, feedbackRecordCount=2 ) self.data_generator.create_database_genomic_user_event_metrics( participant_id=participant.participantId, event_name='test_event', run_id=1, ) self.data_generator.create_database_genomic_informing_loop( message_record_id=1, event_type='informing_loop_decision', module_type='gem', participant_id=participant.participantId, decision_value='maybe_later', event_authored_time=clock.CLOCK.now() ) self.data_generator.create_database_genomic_cvl_past_due( cvl_site_id='co', email_notification_sent=0, sample_id='sample_test', results_type='hdr', genomic_set_member_id=gen_member.id ) self.data_generator.create_database_genomic_appointment( message_record_id=i, appointment_id=i, event_type='appointment_scheduled', module_type='hdr', participant_id=participant.participantId, event_authored_time=clock.CLOCK.now(), source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) self.data_generator.create_database_genomic_member_report_state( genomic_set_member_id=gen_member.id, participant_id=participant.participantId, module='gem', genomic_report_state=GenomicReportState.GEM_RPT_READY, event_authored_time=clock.CLOCK.now() ) self.data_generator.create_genomic_result_viewed( participant_id=participant.participantId, event_type='result_viewed', event_authored_time=clock.CLOCK.now(), module_type='gem', sample_id=gen_member.sampleId ) # gets new records that were created with last job run from above with GenomicJobController(GenomicJob.RECONCILE_PDR_DATA) as controller: controller.reconcile_pdr_data() affected_tables = [ 'genomic_set', 'genomic_set_member', 'genomic_job_run', 'genomic_file_processed', 'genomic_gc_validation_metrics', 'genomic_manifest_file', 'genomic_manifest_feedback', 'genomic_informing_loop', 'genomic_cvl_results_past_due', 'user_event_metrics', 'genomic_member_report_state', 'genomic_result_viewed', 'genomic_appointment_event' ] num_calls = len(affected_tables) + 1 self.assertEqual(mock_cloud_task.call_count, num_calls) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), num_calls) mock_tables = set([obj[0][0]['table'] for obj in call_args]) mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue([mock_tables].sort() == affected_tables.sort()) self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) @mock.patch('rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task') def test_retry_manifest_ingestions_if_deltas(self, mock_cloud_task): bucket_name = "test-bucket" aw1_file_name = "AW1_wgs_sample_manifests/RDR_AoU_SEQ_PKG-2104-026571.csv" aw1_manifest_path = f"{bucket_name}/{aw1_file_name}" aw2_file_name = "AW2_wgs_data_manifests/RDR_AoU_SEQ_DataManifest_04092021.csv" aw2_manifest_path = f"{bucket_name}/{aw2_file_name}" gen_set = self.data_generator.create_database_genomic_set( genomicSetName=".", genomicSetCriteria=".", genomicSetVersion=1 ) # Create AW1 job_run aw1_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), endTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS ) # Create AW2 job_run aw2_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.METRICS_INGESTION, startTime=clock.CLOCK.now(), endTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS ) # should have no data with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(3) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) # Create genomic_aw1_raw record self.data_generator.create_database_genomic_aw1_raw( file_path=aw1_manifest_path, package_id="PKG-2104-026571", biobank_id="A10001", ) # Create genomic_aw2_raw record self.data_generator.create_database_genomic_aw2_raw( file_path=aw2_manifest_path, biobank_id="A10001", sample_id="100001", biobankidsampleid="A10001_100001", ) # Create AW1 genomic_manifest_file record aw1_manifest_file = self.data_generator.create_database_genomic_manifest_file( created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW1, filePath=aw1_manifest_path, fileName=aw1_file_name, bucketName=bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now(), ) # Create AW2 genomic_manifest_file record aw2_manifest_file = self.data_generator.create_database_genomic_manifest_file( created=clock.CLOCK.now(), modified=clock.CLOCK.now(), uploadDate=clock.CLOCK.now(), manifestTypeId=GenomicManifestTypes.AW2, filePath=aw2_manifest_path, fileName=aw2_file_name, bucketName=bucket_name, recordCount=1, rdrProcessingComplete=1, rdrProcessingCompleteDate=clock.CLOCK.now(), ) # Create AW1 file_processed aw1_file_processed = self.data_generator.create_database_genomic_file_processed( runId=aw1_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId=aw1_manifest_file.id, filePath=f"/{aw1_manifest_path}", bucketName=bucket_name, fileName=aw1_file_name, ) # Create AW2 file_processed aw2_file_processed = self.data_generator.create_database_genomic_file_processed( runId=aw2_job_run.id, startTime=clock.CLOCK.now(), genomicManifestFileId=aw2_manifest_file.id, filePath=f"/{aw2_manifest_path}", bucketName=bucket_name, fileName=aw2_file_name, ) # genomic_set_member for AW1 gen_member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, biobankId="100153482", sampleId="21042005280", genomeType="aou_wgs", genomicWorkflowState=GenomicWorkflowState.AW1, aw1FileProcessedId=aw1_file_processed.id ) # genomic_gc_validation_metrics for AW1 self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=gen_member.id, genomicFileProcessedId=aw2_file_processed.id ) # one AW1/AW2 with no deltas with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(4) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.NO_FILES) self.assertEqual(mock_cloud_task.call_count, 0) self.assertFalse(mock_cloud_task.call_count) # empty tables resulting in deltas and cloud task calls with self.member_dao.session() as session: session.query(GenomicGCValidationMetrics).delete() session.query(GenomicSetMember).delete() with GenomicJobController(GenomicJob.RETRY_MANIFEST_INGESTIONS) as controller: controller.retry_manifest_ingestions() job_run = self.job_run_dao.get(5) self.assertEqual(job_run.jobId, GenomicJob.RETRY_MANIFEST_INGESTIONS) self.assertEqual(job_run.runStatus, GenomicSubProcessStatus.COMPLETED) self.assertEqual(job_run.runResult, GenomicSubProcessResult.SUCCESS) # one AW1/AW2 with deltas self.assertEqual(mock_cloud_task.call_count, 2) self.assertTrue(mock_cloud_task.call_count) call_args = mock_cloud_task.call_args_list self.assertEqual(len(call_args), 2) cloud_task_endpoint = ['ingest_aw1_manifest_task', 'ingest_aw2_manifest_task'] mock_endpoint = [obj[0][1] for obj in call_args] self.assertTrue(all(obj for obj in mock_endpoint if obj == cloud_task_endpoint)) mock_buckets = set([obj[0][0]['bucket_name'] for obj in call_args]) self.assertTrue(len(mock_buckets), 1) self.assertTrue(list(mock_buckets)[0] == bucket_name) def test_calculate_informing_loop_ready_flags(self): num_participants = 4 gen_set = self.data_generator.create_database_genomic_set( genomicSetName=".", genomicSetCriteria=".", genomicSetVersion=1 ) for num in range(num_participants): plus_num = clock.CLOCK.now() + datetime.timedelta(minutes=num) plus_num = plus_num.replace(microsecond=0) with FakeClock(plus_num): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1 ) stored_sample = self.data_generator.create_database_biobank_stored_sample( biobankId=summary.biobankId, biobankOrderIdentifier=self.fake.pyint() ) collection_site = self.data_generator.create_database_site( siteType='Clinic' ) order = self.data_generator.create_database_biobank_order( collectedSiteId=collection_site.siteId, participantId=summary.participantId, finalizedTime=plus_num ) self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system="1", ) self.data_generator.create_database_biobank_order_identifier( value=stored_sample.biobankOrderIdentifier, biobankOrderId=order.biobankOrderId, system="2", ) member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_WGS, qcStatus=GenomicQcStatus.PASS, gcManifestSampleSource='Whole Blood', collectionTubeId=stored_sample.biobankStoredSampleId ) self.data_generator.create_database_genomic_gc_validation_metrics( genomicSetMemberId=member.id, sexConcordance='True', drcFpConcordance='Pass', drcSexConcordance='Pass', processingStatus='Pass' ) members_for_ready_loop = self.member_dao.get_members_for_informing_loop_ready() self.assertEqual(len(members_for_ready_loop), num_participants) current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 0 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is None for obj in current_set_members)) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY) as controller: controller.calculate_informing_loop_ready_flags() # no config object, controller method should return members_for_ready_loop = self.member_dao.get_members_for_informing_loop_ready() self.assertEqual(len(members_for_ready_loop), num_participants) calculation_limit = 2 config.override_setting(config.CALCULATE_READY_FLAG_LIMIT, [calculation_limit]) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(any(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(any(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) current_loops_set = [obj for obj in current_set_members if obj.informingLoopReadyFlag == 1 and obj.informingLoopReadyFlagModified is not None] self.assertEqual(len(current_loops_set), calculation_limit) members_for_ready_loop = self.member_dao.get_members_for_informing_loop_ready() self.assertEqual(len(members_for_ready_loop), num_participants // 2) with GenomicJobController(GenomicJob.CALCULATE_INFORMING_LOOP_READY) as controller: controller.calculate_informing_loop_ready_flags() current_set_members = self.member_dao.get_all() self.assertTrue(all(obj.informingLoopReadyFlag == 1 for obj in current_set_members)) self.assertTrue(all(obj.informingLoopReadyFlagModified is not None for obj in current_set_members)) members_for_ready_loop = self.member_dao.get_members_for_informing_loop_ready() self.assertEqual(len(members_for_ready_loop), 0) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_getting_results_withdrawn(self, email_mock): num_participants = 4 result_withdrawal_dao = GenomicResultWithdrawalsDao() gen_set = self.data_generator.create_database_genomic_set( genomicSetName=".", genomicSetCriteria=".", genomicSetVersion=1 ) gen_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.AW1_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS ) pids = [] for num in range(num_participants): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1, withdrawalStatus=WithdrawalStatus.EARLY_OUT ) self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_ARRAY, gemA1ManifestJobRunId=gen_job_run.id if num % 2 == 0 else None ) self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_WGS, cvlW1ilHdrJobRunId=gen_job_run.id ) pids.append(summary.participantId) config.override_setting(config.RDR_GENOMICS_NOTIFICATION_EMAIL, '[email protected]') with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS) as controller: controller.check_results_withdrawals() # mock checks should be two => 1 GEM 1 HEALTH self.assertEqual(email_mock.call_count, 2) call_args = email_mock.call_args_list self.assertTrue(any('GEM' in call.args[0].subject for call in call_args)) self.assertTrue(any('HEALTH' in call.args[0].subject for call in call_args)) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob.RESULTS_PIPELINE_WITHDRAWALS, job_runs))[0] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) all_withdrawal_records = result_withdrawal_dao.get_all() self.assertTrue(len(all_withdrawal_records) == len(pids)) self.assertTrue(all(obj.participant_id in pids for obj in all_withdrawal_records)) array_results = list(filter(lambda x: x.array_results == 1, all_withdrawal_records)) # should only be 2 self.assertTrue(len(array_results), 2) cvl_results = list(filter(lambda x: x.cvl_results == 1, all_withdrawal_records)) # should be 4 for num of participants self.assertTrue(len(cvl_results), num_participants) with GenomicJobController(GenomicJob.RESULTS_PIPELINE_WITHDRAWALS) as controller: controller.check_results_withdrawals() # mock checks should still be two on account of no records self.assertEqual(email_mock.call_count, 2) job_runs = self.job_run_dao.get_all() current_job_run = list(filter(lambda x: x.jobId == GenomicJob.RESULTS_PIPELINE_WITHDRAWALS, job_runs))[1] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) def test_gem_results_to_report_state(self): num_participants = 8 gen_set = self.data_generator.create_database_genomic_set( genomicSetName=".", genomicSetCriteria=".", genomicSetVersion=1 ) gem_a2_job_run = self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.GEM_A2_MANIFEST, startTime=clock.CLOCK.now(), runResult=GenomicSubProcessResult.SUCCESS ) pids_to_update, member_ids = [], [] for num in range(num_participants): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1, withdrawalStatus=WithdrawalStatus.EARLY_OUT ) member = self.data_generator.create_database_genomic_set_member( genomicSetId=gen_set.id, participantId=summary.participantId, genomeType=config.GENOME_TYPE_ARRAY ) if num % 2 == 0: member_ids.append(member.id) pids_to_update.append(summary.participantId) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 2) current_job_run = list(filter(lambda x: x.jobId == GenomicJob.GEM_RESULT_REPORTS, current_job_runs))[0] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) current_members = self.member_dao.get_all() # 4 members updated correctly should return for member in current_members: if member.participantId in pids_to_update: member.gemA2ManifestJobRunId = gem_a2_job_run.id member.genomicWorkflowState = GenomicWorkflowState.GEM_RPT_READY self.member_dao.update(member) with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 3) current_job_run = list(filter(lambda x: x.jobId == GenomicJob.GEM_RESULT_REPORTS, current_job_runs))[1] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) current_gem_report_states = self.report_state_dao.get_all() self.assertEqual(len(current_gem_report_states), len(pids_to_update)) self.assertTrue(all(obj.event_type == 'result_ready' for obj in current_gem_report_states)) self.assertTrue(all(obj.event_authored_time is not None for obj in current_gem_report_states)) self.assertTrue(all(obj.module == 'gem' for obj in current_gem_report_states)) self.assertTrue( all(obj.genomic_report_state == GenomicReportState.GEM_RPT_READY for obj in current_gem_report_states) ) self.assertTrue( all(obj.genomic_report_state_str == GenomicReportState.GEM_RPT_READY.name for obj in current_gem_report_states) ) self.assertTrue( all(obj.genomic_set_member_id in member_ids for obj in current_gem_report_states) ) # 4 members inserted already should not return with GenomicJobController(GenomicJob.GEM_RESULT_REPORTS) as controller: controller.gem_results_to_report_state() current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 4) current_job_run = list(filter(lambda x: x.jobId == GenomicJob.GEM_RESULT_REPORTS, current_job_runs))[2] self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.NO_RESULTS) self.clear_table_after_test('genomic_member_report_state') def test_reconcile_informing_loop(self): event_dao = UserEventMetricsDao() event_dao.truncate() # for test suite il_dao = GenomicInformingLoopDao() for pid in range(8): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) # Set up initial job run ID self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now() ) # create genomic set self.data_generator.create_database_genomic_set( genomicSetName='test', genomicSetCriteria='.', genomicSetVersion=1 ) # insert set members for b in ["aou_array", "aou_wgs"]: for i in range(1, 9): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType=b, ) # Set up ingested metrics data events = ['gem.informing_loop.started', 'gem.informing_loop.screen8_no', 'gem.informing_loop.screen8_yes', 'hdr.informing_loop.started', 'gem.informing_loop.screen3', 'pgx.informing_loop.screen8_no', 'hdr.informing_loop.screen10_no'] for p in range(4): for i in range(len(events)): self.data_generator.create_database_genomic_user_event_metrics( created=clock.CLOCK.now(), modified=clock.CLOCK.now(), participant_id=p + 1, created_at=datetime.datetime(2021, 12, 29, 00) + datetime.timedelta(hours=i), event_name=events[i], run_id=1, ignore_flag=0, ) # Set up informing loop from message broker records decisions = [None, 'no', 'yes'] for p in range(3): for i in range(2): self.data_generator.create_database_genomic_informing_loop( message_record_id=i, event_type='informing_loop_started' if i == 0 else 'informing_loop_decision', module_type='gem', participant_id=p + 1, decision_value=decisions[i], sample_id=100 + p, event_authored_time=datetime.datetime(2021, 12, 29, 00) + datetime.timedelta(hours=i) ) # Test for no message but yes user event self.data_generator.create_database_genomic_user_event_metrics( created=clock.CLOCK.now(), modified=clock.CLOCK.now(), participant_id=6, created_at=datetime.datetime(2021, 12, 29, 00), event_name='gem.informing_loop.screen8_yes', run_id=1, ignore_flag=0, ) # Run reconcile job genomic_pipeline.reconcile_informing_loop_responses() # Test mismatched GEM data ingested correctly pid_list = [1, 2, 3, 6] new_il_values = il_dao.get_latest_il_for_pids( pid_list=pid_list, module="gem" ) for value in new_il_values: self.assertEqual("yes", value.decision_value) pid_list = [1, 2, 3, 4] for module in ["hdr", "pgx"]: new_il_values = il_dao.get_latest_il_for_pids( pid_list=pid_list, module=module ) for value in new_il_values: self.assertEqual("no", value.decision_value) self.assertIsNotNone(value.created_from_metric_id) def test_reconcile_message_broker_results_ready(self): # Create Test Participants' data # create genomic set self.data_generator.create_database_genomic_set( genomicSetName='test', genomicSetCriteria='.', genomicSetVersion=1 ) # Set up initial job run ID self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now() ) for pid in range(7): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) # insert set members and event metrics records for i in range(1, 6): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType="aou_wgs", ) # 3 PGX records if i < 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 00), event_name="pgx.result_ready", run_id=1, ) # 1 HDR Positive if i == 4: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 00), event_name="hdr.result_ready.informative", run_id=1, ) # 1 HDR uninformative if i == 5: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 00), event_name="hdr.result_ready.uninformative", run_id=1, ) # Run job genomic_cvl_pipeline.reconcile_message_broker_results_ready() # Test correct data inserted report_state_dao = GenomicMemberReportStateDao() states = report_state_dao.get_all() self.assertEqual(5, len(states)) pgx_records = [rec for rec in states if rec.module == "pgx_v1"] hdr_record_uninf = [rec for rec in states if rec.genomic_report_state == GenomicReportState.HDR_RPT_UNINFORMATIVE][0] hdr_record_pos = [rec for rec in states if rec.genomic_report_state == GenomicReportState.HDR_RPT_POSITIVE][0] for pgx_record in pgx_records: self.assertEqual(GenomicReportState.PGX_RPT_READY, pgx_record.genomic_report_state) self.assertEqual("PGX_RPT_READY", pgx_record.genomic_report_state_str) self.assertEqual(int(pgx_record.sample_id), pgx_record.participant_id + 10) self.assertEqual("result_ready", pgx_record.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 00), pgx_record.event_authored_time) self.assertIsNotNone(pgx_record.created_from_metric_id) self.assertEqual("HDR_RPT_UNINFORMATIVE", hdr_record_uninf.genomic_report_state_str) self.assertEqual(int(hdr_record_uninf.sample_id), hdr_record_uninf.participant_id + 10) self.assertEqual("result_ready", hdr_record_uninf.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 00), hdr_record_uninf.event_authored_time) self.assertIsNotNone(hdr_record_uninf.created_from_metric_id) self.assertEqual("HDR_RPT_POSITIVE", hdr_record_pos.genomic_report_state_str) self.assertEqual(int(hdr_record_pos.sample_id), hdr_record_pos.participant_id + 10) self.assertEqual("result_ready", hdr_record_pos.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 00), hdr_record_pos.event_authored_time) self.assertIsNotNone(hdr_record_pos.created_from_metric_id) def test_reconcile_message_broker_results_viewed(self): # Create Test Participants' data # create genomic set self.data_generator.create_database_genomic_set( genomicSetName='test', genomicSetCriteria='.', genomicSetVersion=1 ) # Set up initial job run ID self.data_generator.create_database_genomic_job_run( jobId=GenomicJob.METRICS_FILE_INGEST, startTime=clock.CLOCK.now() ) for pid in range(3): self.data_generator.create_database_participant(participantId=1 + pid, biobankId=1 + pid) # insert set members and event metrics records for i in range(1, 3): self.data_generator.create_database_genomic_set_member( participantId=i, genomicSetId=1, biobankId=i, collectionTubeId=100 + i, sampleId=10 + i, genomeType="aou_wgs", ) # 1 PGX Viewed if i == 1: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 00), event_name="pgx.opened_at", run_id=1, ) # 1 HDR Viewed if i == 2: self.data_generator.create_database_genomic_user_event_metrics( participant_id=i, created_at=datetime.datetime(2022, 10, 6, 00), event_name="hdr.opened_at", run_id=1, ) genomic_cvl_pipeline.reconcile_message_broker_results_viewed() # Test correct data inserted result_viewed_dao = GenomicResultViewedDao() results = result_viewed_dao.get_all() self.assertEqual(2, len(results)) for record in results: if record.participant_id == 1: self.assertEqual("pgx_v1", record.module_type) else: self.assertEqual("hdr_v1", record.module_type) self.assertEqual(int(record.sample_id), record.participant_id + 10) self.assertEqual("result_viewed", record.event_type) self.assertEqual(datetime.datetime(2022, 10, 6, 00), record.first_viewed) self.assertIsNotNone(record.created_from_metric_id) def test_ingest_appointment_metrics_file(self): test_file = 'Genomic-Metrics-File-Appointment-Events-Test.json' bucket_name = 'test_bucket' sub_folder = 'appointment_events' pids = [] for _ in range(4): summary = self.data_generator.create_database_participant_summary() pids.append(summary.participantId) test_file_path = f'{bucket_name}/{sub_folder}/{test_file}' appointment_data = test_data.load_test_data_json( "Genomic-Metrics-File-Appointment-Events-Test.json") appointment_data_str = json.dumps(appointment_data, indent=4) with open_cloud_file(test_file_path, mode='wb') as cloud_file: cloud_file.write(appointment_data_str.encode("utf-8")) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_FILE_INGEST) as controller: controller.ingest_appointment_metrics_file( file_path=test_file_path, ) all_metrics = self.appointment_metrics_dao.get_all() # should be 5 metric records for whats in json file self.assertEqual(len(all_metrics), 5) self.assertTrue(all((obj.participant_id in pids for obj in all_metrics))) self.assertTrue(all((obj.file_path == test_file_path for obj in all_metrics))) self.assertTrue(all((obj.appointment_event is not None for obj in all_metrics))) self.assertTrue(all((obj.created is not None for obj in all_metrics))) self.assertTrue(all((obj.modified is not None for obj in all_metrics))) self.assertTrue(all((obj.module_type is not None for obj in all_metrics))) self.assertTrue(all((obj.event_authored_time is not None for obj in all_metrics))) self.assertTrue(all((obj.event_type is not None for obj in all_metrics))) current_job_runs = self.job_run_dao.get_all() self.assertEqual(len(current_job_runs), 1) current_job_run = current_job_runs[0] self.assertTrue(current_job_run.jobId == GenomicJob.APPOINTMENT_METRICS_FILE_INGEST) self.assertTrue(current_job_run.runResult == GenomicSubProcessResult.SUCCESS) self.clear_table_after_test('genomic_appointment_event_metrics') def test_reconcile_appointments_with_metrics(self): fake_date = parser.parse('2020-05-29T08:00:01-05:00') for num in range(4): summary = self.data_generator.create_database_participant_summary() missing_json = { "event": "appointment_updated", "eventAuthoredTime": "2022-09-16T17:18:38Z", "participantId": f'P{summary.participantId}', "messageBody": { "module_type": "hdr", "appointment_timestamp": "2022-09-19T19:30:00+00:00", "id": 55, "appointment_timezone": "America/Los_Angeles", "location": "CA", "contact_number": "18043704252", "language": "en", "source": "Color" } } if num % 2 == 0: self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type='appointment_scheduled', module_type='hdr', participant_id=summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) self.data_generator.create_database_genomic_appointment_metric( participant_id=summary.participantId, appointment_event=json.dumps(missing_json, indent=4) if num % 2 != 0 else 'foo', file_path='test_file_path', module_type='hdr', event_authored_time=fake_date, event_type='appointment_updated' if num % 2 != 0 else 'appointment_scheduled' ) current_events = self.appointment_event_dao.get_all() # should be 2 initial appointment events self.assertEqual(len(current_events), 2) current_metrics = self.appointment_metrics_dao.get_all() # should be 4 initial appointment events self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is None for obj in current_metrics)) with GenomicJobController(GenomicJob.APPOINTMENT_METRICS_RECONCILE) as controller: controller.reconcile_appointment_events_from_metrics() job_run = self.job_run_dao.get_all() self.assertEqual(len(job_run), 1) self.assertTrue(job_run[0].jobId == GenomicJob.APPOINTMENT_METRICS_RECONCILE) current_events = self.appointment_event_dao.get_all() # should be 4 appointment events 2 initial + 2 added self.assertEqual(len(current_events), 4) scheduled = list(filter(lambda x: x.event_type == 'appointment_scheduled', current_events)) self.assertEqual(len(scheduled), 2) self.assertTrue(all(obj.created_from_metric_id is None for obj in scheduled)) updated = list(filter(lambda x: x.event_type == 'appointment_updated', current_events)) self.assertEqual(len(updated), 2) self.assertTrue(all(obj.created_from_metric_id is not None for obj in updated)) current_metrics = self.appointment_metrics_dao.get_all() # should STILL be 4 initial appointment events self.assertEqual(len(current_metrics), 4) self.assertTrue(all(obj.reconcile_job_run_id is not None for obj in current_metrics)) self.assertTrue(all(obj.reconcile_job_run_id == job_run[0].id for obj in current_metrics)) self.clear_table_after_test('genomic_appointment_event_metrics') @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_appointments_gror_changed(self, email_mock): fake_date = parser.parse("2022-09-01T13:43:23") notified_dao = GenomicAppointmentEventNotifiedDao() config.override_setting(config.GENOMIC_COLOR_PM_EMAIL, ['[email protected]']) num_participants = 4 for num in range(num_participants): gror = num if num > 1 else 1 summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=gror ) self.data_generator.create_database_genomic_appointment( message_record_id=num, appointment_id=num, event_type='appointment_scheduled', module_type='hdr', participant_id=summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) changed_ppts = self.appointment_event_dao.get_appointments_gror_changed() self.assertEqual(2, len(changed_ppts)) with GenomicJobController(GenomicJob.CHECK_APPOINTMENT_GROR_CHANGED) as controller: controller.check_appointments_gror_changed() self.assertEqual(email_mock.call_count, 1) notified_appointments = notified_dao.get_all() self.assertEqual(2, len(notified_appointments)) # test notified not returned by query summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=2 ) self.data_generator.create_database_genomic_appointment( message_record_id=5, appointment_id=5, event_type='appointment_scheduled', module_type='hdr', participant_id=summary.participantId, event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) changed_ppts = self.appointment_event_dao.get_appointments_gror_changed() self.assertEqual(1, len(changed_ppts)) @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_14day_escalation(self, email_mock): fake_date = parser.parse("2022-09-01T13:43:23") fake_date2 = parser.parse("2022-09-02T14:14:00") fake_date3 = parser.parse("2022-09-03T15:15:00") config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, ['[email protected]']) self.data_generator.create_database_genomic_set( genomicSetName='test', genomicSetCriteria='.', genomicSetVersion=1 ) pids = [] for _ in range(6): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1 ) set_member = self.data_generator.create_database_genomic_set_member( participantId=summary.participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType="aou_wgs", ) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state=GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id=set_member.id, module='hdr_v1', event_authored_time=fake_date ) pids.append(summary.participantId) # Appointment scheduled in future: don't notify self.data_generator.create_database_genomic_appointment( message_record_id=101, appointment_id=102, event_type='appointment_scheduled', module_type='hdr', participant_id=pids[0], event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) # Appointment completed: don't notify self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type='appointment_completed', module_type='hdr', participant_id=pids[1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) # Appointment scheduled then canceled: notify self.data_generator.create_database_genomic_appointment( message_record_id=103, appointment_id=104, event_type='appointment_scheduled', module_type='hdr', participant_id=pids[2], event_authored_time=fake_date2, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) self.data_generator.create_database_genomic_appointment( message_record_id=104, appointment_id=104, event_type='appointment_cancelled', module_type='hdr', participant_id=pids[2], event_authored_time=fake_date3, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) notified_dao = GenomicDefaultBaseDao(model_type=GenomicGCROutreachEscalationNotified) notified_dao.insert_bulk([{ 'participant_id': pids[4], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': True },{ 'participant_id': pids[5], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': False }]) with clock.FakeClock(parser.parse('2022-11-1T05:15:00')): escalated_participants = self.report_state_dao.get_hdr_result_positive_no_appointment(num_days=14) results = [pid[0] for pid in escalated_participants] self.assertIn(pids[2], results) self.assertIn(pids[3], results) self.assertIn(pids[5], results) self.assertNotIn(pids[0], results) self.assertNotIn(pids[1], results) self.assertNotIn(pids[4], results) with GenomicJobController(GenomicJob.CHECK_GCR_OUTREACH_ESCALATION) as controller: controller.check_gcr_escalation(controller.job_id) self.assertEqual(email_mock.call_count, 3) self.assertEqual(email_mock.call_args.args[0].subject, 'GCR Outreach 14 Day Escalation') self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_14day_escalation_error(self, email_mock): email_mock.side_effect = ForbiddenError(mock.Mock(code=403)) mock_slack_handler = mock.MagicMock() fake_date = parser.parse("2023-06-01T13:43:23") config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, ['[email protected]']) self.data_generator.create_database_genomic_set( genomicSetName='test', genomicSetCriteria='.', genomicSetVersion=1 ) pids = [] for _ in range(2): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1 ) set_member = self.data_generator.create_database_genomic_set_member( participantId=summary.participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType="aou_wgs", ) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state=GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id=set_member.id, module='hdr_v1', event_authored_time=fake_date ) pids.append(summary.participantId) self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type='appointment_completed', module_type='hdr', participant_id=pids[1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) with GenomicJobController(GenomicJob.CHECK_GCR_OUTREACH_ESCALATION) as controller: controller.genomic_alert_slack = mock_slack_handler controller.check_gcr_escalation(controller.job_id) notified_dao = GenomicDefaultBaseDao(model_type=GenomicGCROutreachEscalationNotified) with notified_dao.session() as session: notification = session.query( GenomicGCROutreachEscalationNotified ).filter( GenomicGCROutreachEscalationNotified.participant_id == pids[0] ).one() self.assertEqual(email_mock.call_count, 1) self.assertEqual(mock_slack_handler.send_message_to_webhook.call_count, 1) self.assertEqual(False, notification.message_sent) self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') @mock.patch('rdr_service.services.email_service.EmailService.send_email') def test_check_gcr_ce_escalation(self, email_mock): fake_date = parser.parse("2022-09-01T13:43:23") fake_date2 = parser.parse("2022-09-02T14:14:00") fake_date3 = parser.parse("2022-09-03T15:15:00") config.override_setting(config.GENOMIC_GCR_ESCALATION_EMAILS, ['[email protected]']) self.data_generator.create_database_genomic_set( genomicSetName='test', genomicSetCriteria='.', genomicSetVersion=1 ) pids = [] for _ in range(6): summary = self.data_generator.create_database_participant_summary( consentForStudyEnrollment=1, consentForGenomicsROR=1 ) set_member = self.data_generator.create_database_genomic_set_member( participantId=summary.participantId, genomicSetId=1, biobankId=1001, collectionTubeId=100, sampleId=10, genomeType="aou_wgs", participantOrigin='careevolution' ) self.data_generator.create_database_genomic_member_report_state( participant_id=summary.participantId, genomic_report_state=GenomicReportState.HDR_RPT_POSITIVE, genomic_set_member_id=set_member.id, module='hdr_v1', event_authored_time=fake_date ) pids.append(summary.participantId) # Appointment scheduled in future: don't notify self.data_generator.create_database_genomic_appointment( message_record_id=101, appointment_id=102, event_type='appointment_scheduled', module_type='hdr', participant_id=pids[0], event_authored_time=fake_date, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) # Appointment completed: don't notify self.data_generator.create_database_genomic_appointment( message_record_id=102, appointment_id=103, event_type='appointment_completed', module_type='hdr', participant_id=pids[1], event_authored_time=fake_date, source='Color', appointment_timestamp=fake_date, appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) # Appointment scheduled then canceled: notify self.data_generator.create_database_genomic_appointment( message_record_id=103, appointment_id=104, event_type='appointment_scheduled', module_type='hdr', participant_id=pids[2], event_authored_time=fake_date2, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) self.data_generator.create_database_genomic_appointment( message_record_id=104, appointment_id=104, event_type='appointment_cancelled', module_type='hdr', participant_id=pids[2], event_authored_time=fake_date3, source='Color', appointment_timestamp=format_datetime(clock.CLOCK.now()), appointment_timezone='America/Los_Angeles', location='123 address st', contact_number='17348675309', language='en' ) notified_dao = GenomicDefaultBaseDao(model_type=GenomicGCROutreachEscalationNotified) notified_dao.insert_bulk([{ 'participant_id': pids[4], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': True },{ 'participant_id': pids[5], 'created': clock.CLOCK.now(), 'modified': clock.CLOCK.now(), 'message_sent': False }]) with clock.FakeClock(parser.parse('2022-11-1T05:15:00')): escalated_participants = self.report_state_dao.get_hdr_result_positive_no_appointment( num_days=30, participant_origin='careevolution' ) results = [pid[0] for pid in escalated_participants] self.assertIn(pids[2], results) self.assertIn(pids[3], results) self.assertIn(pids[5], results) self.assertNotIn(pids[0], results) self.assertNotIn(pids[1], results) self.assertNotIn(pids[4], results) with GenomicJobController(GenomicJob.CHECK_GCR_CE_OUTREACH_ESCALATION) as controller: controller.check_gcr_escalation(controller.job_id) self.assertEqual(email_mock.call_count, 3) self.assertEqual(email_mock.call_args.args[0].subject, 'GCR Outreach 30 Day Escalation') self.clear_table_after_test('genomic_gcr_outreach_escalation_notified') @mock.patch('rdr_service.genomic.genomic_job_controller.GenomicJobController.execute_cloud_task') def test_execute_auto_generation_from_last_run(self, cloud_task_mock): with GenomicJobController( GenomicJob.PR_PR_WORKFLOW ) as controller: controller.job_result = GenomicSubProcessResult.ERROR controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id(job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult.ERROR) # task SHOULD NOT be called self.assertEqual(cloud_task_mock.called, False) self.assertEqual(cloud_task_mock.call_count, 0) with GenomicJobController( GenomicJob.PR_PR_WORKFLOW ) as controller: controller.job_result = GenomicSubProcessResult.SUCCESS controller._end_run() controller.execute_auto_generation_from_cloud_task() last_job_run_status = self.job_run_dao.get_last_run_status_for_job_id(job_id=GenomicJob.PR_PR_WORKFLOW) self.assertTrue(last_job_run_status is not None) self.assertTrue(last_job_run_status[0] == GenomicSubProcessResult.SUCCESS) # task SHOULD be called self.assertEqual(cloud_task_mock.called, True) self.assertTrue(cloud_task_mock.call_args[1].get('payload').get('manifest_type') == 'p0') self.assertTrue(cloud_task_mock.call_args[1].get('task_queue') == 'genomic-generate-manifest') all_job_runs = self.job_run_dao.get_all() self.assertEqual(len(all_job_runs), 2) self.assertTrue(all(obj.runResult in [GenomicSubProcessResult.SUCCESS, GenomicSubProcessResult.ERROR] for obj in all_job_runs)) self.assertTrue(all(obj.jobId == GenomicJob.PR_PR_WORKFLOW for obj in all_job_runs))
[ 16, 19, 22, 23, 25 ]
2,169
e00cbe6e177ee841c6e64de842e5b8f95463b3a8
<mask token>
<mask token> pandas2ri.activate() <mask token>
<mask token> ts = robjects.r('ts') forecast = importr('forecast', lib_loc= 'C:/Users/sand9888/Documents/sand9888/R/win-library/3.3') <mask token> pandas2ri.activate() train = os.path.join('C:/DAT203.3x/Lab01/cadairydata.csv') traindf = pd.read_csv(train, index_col=0) traindf.index = traindf.index.to_datetime() rdata = ts(traindf.Price.values, frequency=4) fit = forecast.auto_arima(rdata) forecast_output = forecast.forecast(fit, h=16, level=95.0)
import rpy2.robjects as robjects from rpy2.robjects.packages import importr ts = robjects.r('ts') forecast = importr('forecast', lib_loc= 'C:/Users/sand9888/Documents/sand9888/R/win-library/3.3') import os import pandas as pd from rpy2.robjects import pandas2ri pandas2ri.activate() train = os.path.join('C:/DAT203.3x/Lab01/cadairydata.csv') traindf = pd.read_csv(train, index_col=0) traindf.index = traindf.index.to_datetime() rdata = ts(traindf.Price.values, frequency=4) fit = forecast.auto_arima(rdata) forecast_output = forecast.forecast(fit, h=16, level=95.0)
import rpy2.robjects as robjects from rpy2.robjects.packages import importr ts=robjects.r('ts') forecast = importr("forecast", lib_loc = "C:/Users/sand9888/Documents/sand9888/R/win-library/3.3") import os import pandas as pd from rpy2.robjects import pandas2ri pandas2ri.activate() train = os.path.join('C:/DAT203.3x/Lab01/cadairydata.csv') traindf=pd.read_csv(train, index_col=0) traindf.index=traindf.index.to_datetime() rdata=ts(traindf.Price.values,frequency=4) fit=forecast.auto_arima(rdata) forecast_output=forecast.forecast(fit,h=16,level=(95.0))
[ 0, 1, 2, 3, 4 ]
2,170
188f82b0fb04d6814d77617fa9148113d0e6ef01
<mask token> class Model(nn.Module): <mask token> <mask token> def _loss_fn(self, seq_pred, target_seq): return F.mse_loss(seq_pred, target_seq) <mask token> def infer_batch(self, input_seq, logger): """ model inference. The given data can be in the form of batch or single isinstance """ return self.forward(input_seq, None)
<mask token> class Model(nn.Module): def __init__(self, hidden_size, encoder_layer=2, step=4, is_bidir=False, **kw): super(Model, self).__init__() fc_embedding = [] for i in range(int(math.log(hidden_size, step))): fc_embedding.append(nn.Linear(int(math.pow(step, i)), int(math. pow(step, i + 1)))) fc_embedding.append(nn.Linear(int(math.pow(step, int(math.log( hidden_size, step)))), hidden_size)) self.fc_embedding = nn.Sequential(*fc_embedding) self.encoder = nn.GRU(hidden_size, hidden_size, encoder_layer, False, True, bidirectional=is_bidir) self.decoder = nn.Sequential(nn.Linear(encoder_layer * (int( is_bidir) + 1) * hidden_size, hidden_size), nn.Linear( hidden_size, hidden_size // step), nn.Linear(hidden_size // step, 1)) def forward(self, input_seq, target_seq=None): input_seq = self.fc_embedding(input_seq.unsqueeze(-1)) _, encoding_result = self.encoder(input_seq) encoding_result = torch.transpose(encoding_result, 0, 1).contiguous() encoding_result = torch.reshape(encoding_result, [encoding_result. shape[0], encoding_result.shape[1] * encoding_result.shape[2]]) seq_pred = self.decoder(encoding_result) return seq_pred.squeeze(1) def _loss_fn(self, seq_pred, target_seq): return F.mse_loss(seq_pred, target_seq) <mask token> def infer_batch(self, input_seq, logger): """ model inference. The given data can be in the form of batch or single isinstance """ return self.forward(input_seq, None)
<mask token> class Model(nn.Module): def __init__(self, hidden_size, encoder_layer=2, step=4, is_bidir=False, **kw): super(Model, self).__init__() fc_embedding = [] for i in range(int(math.log(hidden_size, step))): fc_embedding.append(nn.Linear(int(math.pow(step, i)), int(math. pow(step, i + 1)))) fc_embedding.append(nn.Linear(int(math.pow(step, int(math.log( hidden_size, step)))), hidden_size)) self.fc_embedding = nn.Sequential(*fc_embedding) self.encoder = nn.GRU(hidden_size, hidden_size, encoder_layer, False, True, bidirectional=is_bidir) self.decoder = nn.Sequential(nn.Linear(encoder_layer * (int( is_bidir) + 1) * hidden_size, hidden_size), nn.Linear( hidden_size, hidden_size // step), nn.Linear(hidden_size // step, 1)) def forward(self, input_seq, target_seq=None): input_seq = self.fc_embedding(input_seq.unsqueeze(-1)) _, encoding_result = self.encoder(input_seq) encoding_result = torch.transpose(encoding_result, 0, 1).contiguous() encoding_result = torch.reshape(encoding_result, [encoding_result. shape[0], encoding_result.shape[1] * encoding_result.shape[2]]) seq_pred = self.decoder(encoding_result) return seq_pred.squeeze(1) def _loss_fn(self, seq_pred, target_seq): return F.mse_loss(seq_pred, target_seq) def train_batch(self, input_seq, target_seq, category, optimizer, logger): """ doc: train the model with given data and optimizer, return log info param: input_seq: torch.LongTensor, [batch, max_seq_len] target_seq: torch.LongTensor, [batch, max_seq_len] optimizer: optimizer object logger: logger object """ seq_pred = self.forward(input_seq, target_seq) loss = self._loss_fn(seq_pred, target_seq) optimizer.zero_grad() loss.backward() optimizer.step() return loss.item(), seq_pred def infer_batch(self, input_seq, logger): """ model inference. The given data can be in the form of batch or single isinstance """ return self.forward(input_seq, None)
import math import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, hidden_size, encoder_layer=2, step=4, is_bidir=False, **kw): super(Model, self).__init__() fc_embedding = [] for i in range(int(math.log(hidden_size, step))): fc_embedding.append(nn.Linear(int(math.pow(step, i)), int(math. pow(step, i + 1)))) fc_embedding.append(nn.Linear(int(math.pow(step, int(math.log( hidden_size, step)))), hidden_size)) self.fc_embedding = nn.Sequential(*fc_embedding) self.encoder = nn.GRU(hidden_size, hidden_size, encoder_layer, False, True, bidirectional=is_bidir) self.decoder = nn.Sequential(nn.Linear(encoder_layer * (int( is_bidir) + 1) * hidden_size, hidden_size), nn.Linear( hidden_size, hidden_size // step), nn.Linear(hidden_size // step, 1)) def forward(self, input_seq, target_seq=None): input_seq = self.fc_embedding(input_seq.unsqueeze(-1)) _, encoding_result = self.encoder(input_seq) encoding_result = torch.transpose(encoding_result, 0, 1).contiguous() encoding_result = torch.reshape(encoding_result, [encoding_result. shape[0], encoding_result.shape[1] * encoding_result.shape[2]]) seq_pred = self.decoder(encoding_result) return seq_pred.squeeze(1) def _loss_fn(self, seq_pred, target_seq): return F.mse_loss(seq_pred, target_seq) def train_batch(self, input_seq, target_seq, category, optimizer, logger): """ doc: train the model with given data and optimizer, return log info param: input_seq: torch.LongTensor, [batch, max_seq_len] target_seq: torch.LongTensor, [batch, max_seq_len] optimizer: optimizer object logger: logger object """ seq_pred = self.forward(input_seq, target_seq) loss = self._loss_fn(seq_pred, target_seq) optimizer.zero_grad() loss.backward() optimizer.step() return loss.item(), seq_pred def infer_batch(self, input_seq, logger): """ model inference. The given data can be in the form of batch or single isinstance """ return self.forward(input_seq, None)
import math import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, hidden_size, encoder_layer=2, step=4, is_bidir=False, **kw): super(Model, self).__init__() fc_embedding = [] # First, we should convert the 1 dim data to a higher dim for i in range(int(math.log(hidden_size, step))): fc_embedding.append(nn.Linear(int(math.pow(step, i)), int(math.pow(step, i + 1)))) fc_embedding.append(nn.Linear(int(math.pow(step, int(math.log(hidden_size, step)))), hidden_size)) self.fc_embedding = nn.Sequential(*fc_embedding) self.encoder = nn.GRU(hidden_size, hidden_size, encoder_layer, False, True, bidirectional=is_bidir) self.decoder = nn.Sequential( nn.Linear(encoder_layer * (int(is_bidir) + 1) * hidden_size, hidden_size), nn.Linear(hidden_size, hidden_size // step), nn.Linear(hidden_size // step, 1), ) def forward(self, input_seq, target_seq=None): input_seq = self.fc_embedding(input_seq.unsqueeze(-1)) _, encoding_result = self.encoder(input_seq) encoding_result = torch.transpose(encoding_result, 0, 1).contiguous() encoding_result = torch.reshape(encoding_result, [encoding_result.shape[0], encoding_result.shape[1] * encoding_result.shape[2]]) seq_pred = self.decoder(encoding_result) return seq_pred.squeeze(1) def _loss_fn(self, seq_pred, target_seq): return F.mse_loss(seq_pred, target_seq) def train_batch(self, input_seq, target_seq, category, optimizer, logger): """ doc: train the model with given data and optimizer, return log info param: input_seq: torch.LongTensor, [batch, max_seq_len] target_seq: torch.LongTensor, [batch, max_seq_len] optimizer: optimizer object logger: logger object """ seq_pred = self.forward(input_seq, target_seq) loss = self._loss_fn(seq_pred, target_seq) # optimize optimizer.zero_grad() loss.backward() optimizer.step() return loss.item(), seq_pred def infer_batch(self, input_seq, logger): """ model inference. The given data can be in the form of batch or single isinstance """ return self.forward(input_seq, None)
[ 3, 5, 6, 7, 8 ]
2,171
9d22a90835f5cf293808ab359244fe1bde81f3e1
<mask token>
<mask token> for ticker in tickers: params = urlencode([('market', market), ('em', tickers[ticker]), ( 'code', ticker), ('apply', 0), ('df', start_date.day), ('mf', start_date.month - 1), ('yf', start_date.year), ('from', start_date ), ('dt', end_date.day), ('mt', end_date.month - 1), ('yt', end_date.year), ('to', end_date), ('p', period), ('f', ticker + '_' + start_date_rev + '_' + end_date_rev), ('e', '.csv'), ('cn', ticker), ('dtf', 1), ('tmf', 1), ('MSOR', 0), ('mstime', 'on'), ('mstimever', 1), ('sep', 1), ('sep2', 1), ('datf', 1), ('at', 1)]) url = (FINAM_URL + ticker + '_' + start_date_rev + '_' + end_date_rev + '.csv?' + params) print('Стучимся на Финам по ссылке: ' + url) txt = urlopen(Request(url, headers={'User-Agent': 'Mozilla'})).readlines() local_file = open(f'{ticker}_{start}_{end}.txt', 'w') for line in txt: local_file.write(line.strip().decode('utf-8') + '\n') local_file.close() print('Готово. Проверьте файл quotes.txt в папке где лежит скрипт')
<mask token> period = 7 start = '01.01.2021' end = '10.06.2021' periods = {'tick': 1, 'min': 2, '5min': 3, '10min': 4, '15min': 5, '30min': 6, 'hour': 7, 'daily': 8, 'week': 9, 'month': 10} tickers = {'ABRD': 82460, 'AESL': 181867, 'AFKS': 19715, 'AFLT': 29, 'AGRO': 399716, 'AKRN': 17564, 'ALBK': 82616, 'ALNU': 81882, 'ALRS': 81820, 'AMEZ': 20702, 'APTK': 13855, 'AQUA': 35238, 'ARMD': 19676, 'ARSA': 19915, 'ASSB': 16452, 'AVAN': 82843, 'AVAZ': 39, 'AVAZP': 40, 'BANE': 81757, 'BANEP': 81758, 'BGDE': 175840, 'BISV': 35242, 'BISVP': 35243, 'BLNG': 21078, 'BRZL': 81901, 'BSPB': 20066, 'CBOM': 420694, 'CHEP': 20999, 'CHGZ': 81933, 'CHKZ': 21000, 'CHMF': 16136, 'CHMK': 21001, 'CHZN': 19960, 'CLSB': 16712, 'CLSBP': 16713, 'CNTL': 21002, 'CNTLP': 81575, 'DASB': 16825, 'DGBZ': 17919, 'DIOD': 35363, 'DIXY': 18564, 'DVEC': 19724, 'DZRD': 74744, 'DZRDP': 74745, 'ELTZ': 81934, 'ENRU': 16440, 'EPLN': 451471, 'ERCO': 81935, 'FEES': 20509, 'FESH': 20708, 'FORTP': 82164, 'GAZA': 81997, 'GAZAP': 81998, 'GAZC': 81398, 'GAZP': 16842, 'GAZS': 81399, 'GAZT': 82115, 'GCHE': 20125, 'GMKN': 795, 'GRAZ': 16610, 'GRNT': 449114, 'GTLC': 152876, 'GTPR': 175842, 'GTSS': 436120, 'HALS': 17698, 'HIMC': 81939, 'HIMCP': 81940, 'HYDR': 20266, 'IDJT': 388276, 'IDVP': 409486, 'IGST': 81885, 'IGST03': 81886, 'IGSTP': 81887, 'IRAO': 20516, 'IRGZ': 9, 'IRKT': 15547, 'ISKJ': 17137, 'JNOS': 15722, 'JNOSP': 15723, 'KAZT': 81941, 'KAZTP': 81942, 'KBSB': 19916, 'KBTK': 35285, 'KCHE': 20030, 'KCHEP': 20498, 'KGKC': 83261, 'KGKCP': 152350, 'KLSB': 16329, 'KMAZ': 15544, 'KMEZ': 22525, 'KMTZ': 81903, 'KOGK': 20710, 'KRKN': 81891, 'KRKNP': 81892, 'KRKO': 81905, 'KRKOP': 81906, 'KROT': 510, 'KROTP': 511, 'KRSB': 20912, 'KRSBP': 20913, 'KRSG': 15518, 'KSGR': 75094, 'KTSB': 16284, 'KTSBP': 16285, 'KUBE': 522, 'KUNF': 81943, 'KUZB': 83165, 'KZMS': 17359, 'KZOS': 81856, 'KZOSP': 81857, 'LIFE': 74584, 'LKOH': 8, 'LNTA': 385792, 'LNZL': 21004, 'LNZLP': 22094, 'LPSB': 16276, 'LSNG': 31, 'LSNGP': 542, 'LSRG': 19736, 'LVHK': 152517, 'MAGE': 74562, 'MAGEP': 74563, 'MAGN': 16782, 'MERF': 20947, 'MFGS': 30, 'MFGSP': 51, 'MFON': 152516, 'MGNT': 17086, 'MGNZ': 20892, 'MGTS': 12984, 'MGTSP': 12983, 'MGVM': 81829, 'MISB': 16330, 'MISBP': 16331, 'MNFD': 80390, 'MOBB': 82890, 'MOEX': 152798, 'MORI': 81944, 'MOTZ': 21116, 'MRKC': 20235, 'MRKK': 20412, 'MRKP': 20107, 'MRKS': 20346, 'MRKU': 20402, 'MRKV': 20286, 'MRKY': 20681, 'MRKZ': 20309, 'MRSB': 16359, 'MSNG': 6, 'MSRS': 16917, 'MSST': 152676, 'MSTT': 74549, 'MTLR': 21018, 'MTLRP': 80745, 'MTSS': 15523, 'MUGS': 81945, 'MUGSP': 81946, 'MVID': 19737, 'NAUK': 81992, 'NFAZ': 81287, 'NKHP': 450432, 'NKNC': 20100, 'NKNCP': 20101, 'NKSH': 81947, 'NLMK': 17046, 'NMTP': 19629, 'NNSB': 16615, 'NNSBP': 16616, 'NPOF': 81858, 'NSVZ': 81929, 'NVTK': 17370, 'ODVA': 20737, 'OFCB': 80728, 'OGKB': 18684, 'OMSH': 22891, 'OMZZP': 15844, 'OPIN': 20711, 'OSMP': 21006, 'OTCP': 407627, 'PAZA': 81896, 'PHOR': 81114, 'PHST': 19717, 'PIKK': 18654, 'PLSM': 81241, 'PLZL': 17123, 'PMSB': 16908, 'PMSBP': 16909, 'POLY': 175924, 'PRFN': 83121, 'PRIM': 17850, 'PRIN': 22806, 'PRMB': 80818, 'PRTK': 35247, 'PSBR': 152320, 'QIWI': 181610, 'RASP': 17713, 'RBCM': 74779, 'RDRB': 181755, 'RGSS': 181934, 'RKKE': 20321, 'RLMN': 152677, 'RLMNP': 388313, 'RNAV': 66644, 'RODNP': 66693, 'ROLO': 181316, 'ROSB': 16866, 'ROSN': 17273, 'ROST': 20637, 'RSTI': 20971, 'RSTIP': 20972, 'RTGZ': 152397, 'RTKM': 7, 'RTKMP': 15, 'RTSB': 16783, 'RTSBP': 16784, 'RUAL': 414279, 'RUALR': 74718, 'RUGR': 66893, 'RUSI': 81786, 'RUSP': 20712, 'RZSB': 16455, 'SAGO': 445, 'SAGOP': 70, 'SARE': 11, 'SAREP': 24, 'SBER': 3, 'SBERP': 23, 'SELG': 81360, 'SELGP': 82610, 'SELL': 21166, 'SIBG': 436091, 'SIBN': 2, 'SKYC': 83122, 'SNGS': 4, 'SNGSP': 13, 'STSB': 20087, 'STSBP': 20088, 'SVAV': 16080, 'SYNG': 19651, 'SZPR': 22401, 'TAER': 80593, 'TANL': 81914, 'TANLP': 81915, 'TASB': 16265, 'TASBP': 16266, 'TATN': 825, 'TATNP': 826, 'TGKA': 18382, 'TGKB': 17597, 'TGKBP': 18189, 'TGKD': 18310, 'TGKDP': 18391, 'TGKN': 18176, 'TGKO': 81899, 'TNSE': 420644, 'TORS': 16797, 'TORSP': 16798, 'TRCN': 74561, 'TRMK': 18441, 'TRNFP': 1012, 'TTLK': 18371, 'TUCH': 74746, 'TUZA': 20716, 'UCSS': 175781, 'UKUZ': 20717, 'UNAC': 22843, 'UNKL': 82493, 'UPRO': 18584, 'URFD': 75124, 'URKA': 19623, 'URKZ': 82611, 'USBN': 81953, 'UTAR': 15522, 'UTII': 81040, 'UTSY': 419504, 'UWGN': 414560, 'VDSB': 16352, 'VGSB': 16456, 'VGSBP': 16457, 'VJGZ': 81954, 'VJGZP': 81955, 'VLHZ': 17257, 'VRAO': 20958, 'VRAOP': 20959, 'VRSB': 16546, 'VRSBP': 16547, 'VSMO': 15965, 'VSYD': 83251, 'VSYDP': 83252, 'VTBR': 19043, 'VTGK': 19632, 'VTRS': 82886, 'VZRZ': 17068, 'VZRZP': 17067, 'WTCM': 19095, 'WTCMP': 19096, 'YAKG': 81917, 'YKEN': 81766, 'YKENP': 81769, 'YNDX': 388383, 'YRSB': 16342, 'YRSBP': 16343, 'ZHIV': 181674, 'ZILL': 81918, 'ZMZN': 556, 'ZMZNP': 603, 'ZVEZ': 82001} FINAM_URL = 'http://export.finam.ru/' market = 0 start_date = datetime.strptime(start, '%d.%m.%Y').date() start_date_rev = datetime.strptime(start, '%d.%m.%Y').strftime('%Y%m%d') end_date = datetime.strptime(end, '%d.%m.%Y').date() end_date_rev = datetime.strptime(end, '%d.%m.%Y').strftime('%Y%m%d') for ticker in tickers: params = urlencode([('market', market), ('em', tickers[ticker]), ( 'code', ticker), ('apply', 0), ('df', start_date.day), ('mf', start_date.month - 1), ('yf', start_date.year), ('from', start_date ), ('dt', end_date.day), ('mt', end_date.month - 1), ('yt', end_date.year), ('to', end_date), ('p', period), ('f', ticker + '_' + start_date_rev + '_' + end_date_rev), ('e', '.csv'), ('cn', ticker), ('dtf', 1), ('tmf', 1), ('MSOR', 0), ('mstime', 'on'), ('mstimever', 1), ('sep', 1), ('sep2', 1), ('datf', 1), ('at', 1)]) url = (FINAM_URL + ticker + '_' + start_date_rev + '_' + end_date_rev + '.csv?' + params) print('Стучимся на Финам по ссылке: ' + url) txt = urlopen(Request(url, headers={'User-Agent': 'Mozilla'})).readlines() local_file = open(f'{ticker}_{start}_{end}.txt', 'w') for line in txt: local_file.write(line.strip().decode('utf-8') + '\n') local_file.close() print('Готово. Проверьте файл quotes.txt в папке где лежит скрипт')
from urllib.parse import urlencode from urllib.request import urlopen, Request from datetime import datetime period = 7 start = '01.01.2021' end = '10.06.2021' periods = {'tick': 1, 'min': 2, '5min': 3, '10min': 4, '15min': 5, '30min': 6, 'hour': 7, 'daily': 8, 'week': 9, 'month': 10} tickers = {'ABRD': 82460, 'AESL': 181867, 'AFKS': 19715, 'AFLT': 29, 'AGRO': 399716, 'AKRN': 17564, 'ALBK': 82616, 'ALNU': 81882, 'ALRS': 81820, 'AMEZ': 20702, 'APTK': 13855, 'AQUA': 35238, 'ARMD': 19676, 'ARSA': 19915, 'ASSB': 16452, 'AVAN': 82843, 'AVAZ': 39, 'AVAZP': 40, 'BANE': 81757, 'BANEP': 81758, 'BGDE': 175840, 'BISV': 35242, 'BISVP': 35243, 'BLNG': 21078, 'BRZL': 81901, 'BSPB': 20066, 'CBOM': 420694, 'CHEP': 20999, 'CHGZ': 81933, 'CHKZ': 21000, 'CHMF': 16136, 'CHMK': 21001, 'CHZN': 19960, 'CLSB': 16712, 'CLSBP': 16713, 'CNTL': 21002, 'CNTLP': 81575, 'DASB': 16825, 'DGBZ': 17919, 'DIOD': 35363, 'DIXY': 18564, 'DVEC': 19724, 'DZRD': 74744, 'DZRDP': 74745, 'ELTZ': 81934, 'ENRU': 16440, 'EPLN': 451471, 'ERCO': 81935, 'FEES': 20509, 'FESH': 20708, 'FORTP': 82164, 'GAZA': 81997, 'GAZAP': 81998, 'GAZC': 81398, 'GAZP': 16842, 'GAZS': 81399, 'GAZT': 82115, 'GCHE': 20125, 'GMKN': 795, 'GRAZ': 16610, 'GRNT': 449114, 'GTLC': 152876, 'GTPR': 175842, 'GTSS': 436120, 'HALS': 17698, 'HIMC': 81939, 'HIMCP': 81940, 'HYDR': 20266, 'IDJT': 388276, 'IDVP': 409486, 'IGST': 81885, 'IGST03': 81886, 'IGSTP': 81887, 'IRAO': 20516, 'IRGZ': 9, 'IRKT': 15547, 'ISKJ': 17137, 'JNOS': 15722, 'JNOSP': 15723, 'KAZT': 81941, 'KAZTP': 81942, 'KBSB': 19916, 'KBTK': 35285, 'KCHE': 20030, 'KCHEP': 20498, 'KGKC': 83261, 'KGKCP': 152350, 'KLSB': 16329, 'KMAZ': 15544, 'KMEZ': 22525, 'KMTZ': 81903, 'KOGK': 20710, 'KRKN': 81891, 'KRKNP': 81892, 'KRKO': 81905, 'KRKOP': 81906, 'KROT': 510, 'KROTP': 511, 'KRSB': 20912, 'KRSBP': 20913, 'KRSG': 15518, 'KSGR': 75094, 'KTSB': 16284, 'KTSBP': 16285, 'KUBE': 522, 'KUNF': 81943, 'KUZB': 83165, 'KZMS': 17359, 'KZOS': 81856, 'KZOSP': 81857, 'LIFE': 74584, 'LKOH': 8, 'LNTA': 385792, 'LNZL': 21004, 'LNZLP': 22094, 'LPSB': 16276, 'LSNG': 31, 'LSNGP': 542, 'LSRG': 19736, 'LVHK': 152517, 'MAGE': 74562, 'MAGEP': 74563, 'MAGN': 16782, 'MERF': 20947, 'MFGS': 30, 'MFGSP': 51, 'MFON': 152516, 'MGNT': 17086, 'MGNZ': 20892, 'MGTS': 12984, 'MGTSP': 12983, 'MGVM': 81829, 'MISB': 16330, 'MISBP': 16331, 'MNFD': 80390, 'MOBB': 82890, 'MOEX': 152798, 'MORI': 81944, 'MOTZ': 21116, 'MRKC': 20235, 'MRKK': 20412, 'MRKP': 20107, 'MRKS': 20346, 'MRKU': 20402, 'MRKV': 20286, 'MRKY': 20681, 'MRKZ': 20309, 'MRSB': 16359, 'MSNG': 6, 'MSRS': 16917, 'MSST': 152676, 'MSTT': 74549, 'MTLR': 21018, 'MTLRP': 80745, 'MTSS': 15523, 'MUGS': 81945, 'MUGSP': 81946, 'MVID': 19737, 'NAUK': 81992, 'NFAZ': 81287, 'NKHP': 450432, 'NKNC': 20100, 'NKNCP': 20101, 'NKSH': 81947, 'NLMK': 17046, 'NMTP': 19629, 'NNSB': 16615, 'NNSBP': 16616, 'NPOF': 81858, 'NSVZ': 81929, 'NVTK': 17370, 'ODVA': 20737, 'OFCB': 80728, 'OGKB': 18684, 'OMSH': 22891, 'OMZZP': 15844, 'OPIN': 20711, 'OSMP': 21006, 'OTCP': 407627, 'PAZA': 81896, 'PHOR': 81114, 'PHST': 19717, 'PIKK': 18654, 'PLSM': 81241, 'PLZL': 17123, 'PMSB': 16908, 'PMSBP': 16909, 'POLY': 175924, 'PRFN': 83121, 'PRIM': 17850, 'PRIN': 22806, 'PRMB': 80818, 'PRTK': 35247, 'PSBR': 152320, 'QIWI': 181610, 'RASP': 17713, 'RBCM': 74779, 'RDRB': 181755, 'RGSS': 181934, 'RKKE': 20321, 'RLMN': 152677, 'RLMNP': 388313, 'RNAV': 66644, 'RODNP': 66693, 'ROLO': 181316, 'ROSB': 16866, 'ROSN': 17273, 'ROST': 20637, 'RSTI': 20971, 'RSTIP': 20972, 'RTGZ': 152397, 'RTKM': 7, 'RTKMP': 15, 'RTSB': 16783, 'RTSBP': 16784, 'RUAL': 414279, 'RUALR': 74718, 'RUGR': 66893, 'RUSI': 81786, 'RUSP': 20712, 'RZSB': 16455, 'SAGO': 445, 'SAGOP': 70, 'SARE': 11, 'SAREP': 24, 'SBER': 3, 'SBERP': 23, 'SELG': 81360, 'SELGP': 82610, 'SELL': 21166, 'SIBG': 436091, 'SIBN': 2, 'SKYC': 83122, 'SNGS': 4, 'SNGSP': 13, 'STSB': 20087, 'STSBP': 20088, 'SVAV': 16080, 'SYNG': 19651, 'SZPR': 22401, 'TAER': 80593, 'TANL': 81914, 'TANLP': 81915, 'TASB': 16265, 'TASBP': 16266, 'TATN': 825, 'TATNP': 826, 'TGKA': 18382, 'TGKB': 17597, 'TGKBP': 18189, 'TGKD': 18310, 'TGKDP': 18391, 'TGKN': 18176, 'TGKO': 81899, 'TNSE': 420644, 'TORS': 16797, 'TORSP': 16798, 'TRCN': 74561, 'TRMK': 18441, 'TRNFP': 1012, 'TTLK': 18371, 'TUCH': 74746, 'TUZA': 20716, 'UCSS': 175781, 'UKUZ': 20717, 'UNAC': 22843, 'UNKL': 82493, 'UPRO': 18584, 'URFD': 75124, 'URKA': 19623, 'URKZ': 82611, 'USBN': 81953, 'UTAR': 15522, 'UTII': 81040, 'UTSY': 419504, 'UWGN': 414560, 'VDSB': 16352, 'VGSB': 16456, 'VGSBP': 16457, 'VJGZ': 81954, 'VJGZP': 81955, 'VLHZ': 17257, 'VRAO': 20958, 'VRAOP': 20959, 'VRSB': 16546, 'VRSBP': 16547, 'VSMO': 15965, 'VSYD': 83251, 'VSYDP': 83252, 'VTBR': 19043, 'VTGK': 19632, 'VTRS': 82886, 'VZRZ': 17068, 'VZRZP': 17067, 'WTCM': 19095, 'WTCMP': 19096, 'YAKG': 81917, 'YKEN': 81766, 'YKENP': 81769, 'YNDX': 388383, 'YRSB': 16342, 'YRSBP': 16343, 'ZHIV': 181674, 'ZILL': 81918, 'ZMZN': 556, 'ZMZNP': 603, 'ZVEZ': 82001} FINAM_URL = 'http://export.finam.ru/' market = 0 start_date = datetime.strptime(start, '%d.%m.%Y').date() start_date_rev = datetime.strptime(start, '%d.%m.%Y').strftime('%Y%m%d') end_date = datetime.strptime(end, '%d.%m.%Y').date() end_date_rev = datetime.strptime(end, '%d.%m.%Y').strftime('%Y%m%d') for ticker in tickers: params = urlencode([('market', market), ('em', tickers[ticker]), ( 'code', ticker), ('apply', 0), ('df', start_date.day), ('mf', start_date.month - 1), ('yf', start_date.year), ('from', start_date ), ('dt', end_date.day), ('mt', end_date.month - 1), ('yt', end_date.year), ('to', end_date), ('p', period), ('f', ticker + '_' + start_date_rev + '_' + end_date_rev), ('e', '.csv'), ('cn', ticker), ('dtf', 1), ('tmf', 1), ('MSOR', 0), ('mstime', 'on'), ('mstimever', 1), ('sep', 1), ('sep2', 1), ('datf', 1), ('at', 1)]) url = (FINAM_URL + ticker + '_' + start_date_rev + '_' + end_date_rev + '.csv?' + params) print('Стучимся на Финам по ссылке: ' + url) txt = urlopen(Request(url, headers={'User-Agent': 'Mozilla'})).readlines() local_file = open(f'{ticker}_{start}_{end}.txt', 'w') for line in txt: local_file.write(line.strip().decode('utf-8') + '\n') local_file.close() print('Готово. Проверьте файл quotes.txt в папке где лежит скрипт')
from urllib.parse import urlencode from urllib.request import urlopen, Request from datetime import datetime #пользовательские переменные period=7 # задаём период. Выбор из: 'tick': 1, 'min': 2, '5min': 3, '10min': 4, '15min': 5, '30min': 6, 'hour': 7, 'daily': 8, 'week': 9, 'month': 10 start = "01.01.2021" #с какой даты начинать тянуть котировки end = "10.06.2021" #финальная дата, по которую тянуть котировки periods={'tick': 1, 'min': 2, '5min': 3, '10min': 4, '15min': 5, '30min': 6, 'hour': 7, 'daily': 8, 'week': 9, 'month': 10} #каждой акции Финам присвоил цифровой код: tickers={'ABRD':82460,'AESL':181867,'AFKS':19715,'AFLT':29,'AGRO':399716,'AKRN':17564,'ALBK':82616,'ALNU':81882,'ALRS':81820,'AMEZ':20702,'APTK':13855,'AQUA':35238,'ARMD':19676,'ARSA':19915,'ASSB':16452,'AVAN':82843,'AVAZ':39,'AVAZP':40,'BANE':81757,'BANEP':81758,'BGDE':175840,'BISV':35242,'BISVP':35243,'BLNG':21078,'BRZL':81901,'BSPB':20066,'CBOM':420694,'CHEP':20999,'CHGZ':81933,'CHKZ':21000,'CHMF':16136,'CHMK':21001,'CHZN':19960,'CLSB':16712,'CLSBP':16713,'CNTL':21002,'CNTLP':81575,'DASB':16825,'DGBZ':17919,'DIOD':35363,'DIXY':18564,'DVEC':19724,'DZRD':74744,'DZRDP':74745,'ELTZ':81934,'ENRU':16440,'EPLN':451471,'ERCO':81935,'FEES':20509,'FESH':20708,'FORTP':82164,'GAZA':81997,'GAZAP':81998,'GAZC':81398,'GAZP':16842,'GAZS':81399,'GAZT':82115,'GCHE':20125,'GMKN':795,'GRAZ':16610,'GRNT':449114,'GTLC':152876,'GTPR':175842,'GTSS':436120,'HALS':17698,'HIMC':81939,'HIMCP':81940,'HYDR':20266,'IDJT':388276,'IDVP':409486,'IGST':81885,'IGST03':81886,'IGSTP':81887,'IRAO':20516,'IRGZ':9,'IRKT':15547,'ISKJ':17137,'JNOS':15722,'JNOSP':15723,'KAZT':81941,'KAZTP':81942,'KBSB':19916,'KBTK':35285,'KCHE':20030,'KCHEP':20498,'KGKC':83261,'KGKCP':152350,'KLSB':16329,'KMAZ':15544,'KMEZ':22525,'KMTZ':81903,'KOGK':20710,'KRKN':81891,'KRKNP':81892,'KRKO':81905,'KRKOP':81906,'KROT':510,'KROTP':511,'KRSB':20912,'KRSBP':20913,'KRSG':15518,'KSGR':75094,'KTSB':16284,'KTSBP':16285,'KUBE':522,'KUNF':81943,'KUZB':83165,'KZMS':17359,'KZOS':81856,'KZOSP':81857,'LIFE':74584,'LKOH':8,'LNTA':385792,'LNZL':21004,'LNZLP':22094,'LPSB':16276,'LSNG':31,'LSNGP':542,'LSRG':19736,'LVHK':152517,'MAGE':74562,'MAGEP':74563,'MAGN':16782,'MERF':20947,'MFGS':30,'MFGSP':51,'MFON':152516,'MGNT':17086,'MGNZ':20892,'MGTS':12984,'MGTSP':12983,'MGVM':81829,'MISB':16330,'MISBP':16331,'MNFD':80390,'MOBB':82890,'MOEX':152798,'MORI':81944,'MOTZ':21116,'MRKC':20235,'MRKK':20412,'MRKP':20107,'MRKS':20346,'MRKU':20402,'MRKV':20286,'MRKY':20681,'MRKZ':20309,'MRSB':16359,'MSNG':6,'MSRS':16917,'MSST':152676,'MSTT':74549,'MTLR':21018,'MTLRP':80745,'MTSS':15523,'MUGS':81945,'MUGSP':81946,'MVID':19737,'NAUK':81992,'NFAZ':81287,'NKHP':450432,'NKNC':20100,'NKNCP':20101,'NKSH':81947,'NLMK':17046,'NMTP':19629,'NNSB':16615,'NNSBP':16616,'NPOF':81858,'NSVZ':81929,'NVTK':17370,'ODVA':20737,'OFCB':80728,'OGKB':18684,'OMSH':22891,'OMZZP':15844,'OPIN':20711,'OSMP':21006,'OTCP':407627,'PAZA':81896,'PHOR':81114,'PHST':19717,'PIKK':18654,'PLSM':81241,'PLZL':17123,'PMSB':16908,'PMSBP':16909,'POLY':175924,'PRFN':83121,'PRIM':17850,'PRIN':22806,'PRMB':80818,'PRTK':35247,'PSBR':152320,'QIWI':181610,'RASP':17713,'RBCM':74779,'RDRB':181755,'RGSS':181934,'RKKE':20321,'RLMN':152677,'RLMNP':388313,'RNAV':66644,'RODNP':66693,'ROLO':181316,'ROSB':16866,'ROSN':17273,'ROST':20637,'RSTI':20971,'RSTIP':20972,'RTGZ':152397,'RTKM':7,'RTKMP':15,'RTSB':16783,'RTSBP':16784,'RUAL':414279,'RUALR':74718,'RUGR':66893,'RUSI':81786,'RUSP':20712,'RZSB':16455,'SAGO':445,'SAGOP':70,'SARE':11,'SAREP':24,'SBER':3,'SBERP':23,'SELG':81360,'SELGP':82610,'SELL':21166,'SIBG':436091,'SIBN':2,'SKYC':83122,'SNGS':4,'SNGSP':13,'STSB':20087,'STSBP':20088,'SVAV':16080,'SYNG':19651,'SZPR':22401,'TAER':80593,'TANL':81914,'TANLP':81915, 'TASB':16265,'TASBP':16266,'TATN':825,'TATNP':826,'TGKA':18382,'TGKB':17597,'TGKBP':18189,'TGKD':18310,'TGKDP':18391,'TGKN':18176,'TGKO':81899,'TNSE':420644,'TORS':16797,'TORSP':16798,'TRCN':74561,'TRMK':18441,'TRNFP':1012,'TTLK':18371,'TUCH':74746,'TUZA':20716,'UCSS':175781,'UKUZ':20717,'UNAC':22843,'UNKL':82493,'UPRO':18584,'URFD':75124,'URKA':19623,'URKZ':82611,'USBN':81953,'UTAR':15522,'UTII':81040,'UTSY':419504,'UWGN':414560,'VDSB':16352,'VGSB':16456,'VGSBP':16457,'VJGZ':81954,'VJGZP':81955,'VLHZ':17257,'VRAO':20958,'VRAOP':20959,'VRSB':16546,'VRSBP':16547,'VSMO':15965,'VSYD':83251,'VSYDP':83252,'VTBR':19043,'VTGK':19632,'VTRS':82886,'VZRZ':17068,'VZRZP':17067,'WTCM':19095,'WTCMP':19096,'YAKG':81917,'YKEN':81766,'YKENP':81769,'YNDX':388383,'YRSB':16342,'YRSBP':16343,'ZHIV':181674,'ZILL':81918,'ZMZN':556,'ZMZNP':603,'ZVEZ':82001} FINAM_URL = "http://export.finam.ru/"# сервер, на который стучимся market = 0 #можно не задавать. Это рынок, на котором торгуется бумага. Для акций работает с любой цифрой. Другие рынки не проверял. #Делаем преобразования дат: start_date = datetime.strptime(start, "%d.%m.%Y").date() start_date_rev=datetime.strptime(start, '%d.%m.%Y').strftime('%Y%m%d') end_date = datetime.strptime(end, "%d.%m.%Y").date() end_date_rev=datetime.strptime(end, '%d.%m.%Y').strftime('%Y%m%d') for ticker in tickers: params = urlencode([ ('market', market), #на каком рынке торгуется бумага ('em', tickers[ticker]), #вытягиваем цифровой символ, который соответствует бумаге. ('code', ticker), #тикер нашей акции ('apply',0), #не нашёл что это значит. ('df', start_date.day), #Начальная дата, номер дня (1-31) ('mf', start_date.month - 1), #Начальная дата, номер месяца (0-11) ('yf', start_date.year), #Начальная дата, год ('from', start_date), #Начальная дата полностью ('dt', end_date.day), #Конечная дата, номер дня ('mt', end_date.month - 1), #Конечная дата, номер месяца ('yt', end_date.year), #Конечная дата, год ('to', end_date), #Конечная дата ('p', period), #Таймфрейм ('f', ticker+"_" + start_date_rev + "_" + end_date_rev), #Имя сформированного файла ('e', ".csv"), #Расширение сформированного файла ('cn', ticker), #ещё раз тикер акции ('dtf', 1), #В каком формате брать даты. Выбор из 5 возможных. См. страницу https://www.finam.ru/profile/moex-akcii/sberbank/export/ ('tmf', 1), #В каком формате брать время. Выбор из 4 возможных. ('MSOR', 0), #Время свечи (0 - open; 1 - close) ('mstime', "on"), #Московское время ('mstimever', 1), #Коррекция часового пояса ('sep', 1), #Разделитель полей (1 - запятая, 2 - точка, 3 - точка с запятой, 4 - табуляция, 5 - пробел) ('sep2', 1), #Разделитель разрядов ('datf', 1), #Формат записи в файл. Выбор из 6 возможных. ('at', 1)]) #Нужны ли заголовки столбцов url = FINAM_URL + ticker+"_" + start_date_rev + "_" + end_date_rev + ".csv?" + params #урл составлен! print("Стучимся на Финам по ссылке: "+url) ##!txt=urlopen(url).readlines() #здесь лежит огромный массив данных, прилетевший с Финама. txt=urlopen(Request(url, headers={'User-Agent': 'Mozilla'})).readlines() #здесь лежит огромный массив данных, прилетевший с Финама. local_file = open(f'{ticker}_{start}_{end}.txt', "w") #задаём файл, в который запишем котировки. for line in txt: #записываем свечи строку за строкой. local_file.write(line.strip().decode( "utf-8" )+'\n') local_file.close() print("Готово. Проверьте файл quotes.txt в папке где лежит скрипт")
[ 0, 1, 2, 3, 4 ]
2,172
285ca945696b32160175f15c4e89b3938f41ebf4
<mask token> def get_diabetes_data(target='progression'): """Get the SKLearn Diabetes regression dataset, formatted as a DataFrame Parameters ---------- target: String, default='progression' What to name the column in `df` that contains the target output values Returns ------- df: `pandas.DataFrame` The diabetes dataset, with friendly column names""" data = load_diabetes() df = pd.DataFrame(data=data.data, columns=[_.replace(' ', '_') for _ in data.feature_names]) df[target] = data.target return df <mask token>
<mask token> def get_diabetes_data(target='progression'): """Get the SKLearn Diabetes regression dataset, formatted as a DataFrame Parameters ---------- target: String, default='progression' What to name the column in `df` that contains the target output values Returns ------- df: `pandas.DataFrame` The diabetes dataset, with friendly column names""" data = load_diabetes() df = pd.DataFrame(data=data.data, columns=[_.replace(' ', '_') for _ in data.feature_names]) df[target] = data.target return df def get_toy_classification_data(target='target', n_samples=300, n_classes=2, shuffle=True, random_state=32, **kwargs): """Wrapper around `sklearn.datasets.make_classification` to produce a `pandas.DataFrame`""" x, y = make_classification(n_samples=n_samples, n_classes=n_classes, shuffle=shuffle, random_state=random_state, **kwargs) train_df = pd.DataFrame(data=x, columns=range(x.shape[1])) train_df[target] = y return train_df
<mask token> def get_breast_cancer_data(target='diagnosis'): """Get the Wisconsin Breast Cancer classification dataset, formatted as a DataFrame Parameters ---------- target: String, default='diagnosis' What to name the column in `df` that contains the target output values Returns ------- df: `pandas.DataFrame` The breast cancer dataset, with friendly column names""" data = load_breast_cancer() df = pd.DataFrame(data=data.data, columns=[_.replace(' ', '_') for _ in data.feature_names]) df[target] = data.target return df def get_diabetes_data(target='progression'): """Get the SKLearn Diabetes regression dataset, formatted as a DataFrame Parameters ---------- target: String, default='progression' What to name the column in `df` that contains the target output values Returns ------- df: `pandas.DataFrame` The diabetes dataset, with friendly column names""" data = load_diabetes() df = pd.DataFrame(data=data.data, columns=[_.replace(' ', '_') for _ in data.feature_names]) df[target] = data.target return df def get_toy_classification_data(target='target', n_samples=300, n_classes=2, shuffle=True, random_state=32, **kwargs): """Wrapper around `sklearn.datasets.make_classification` to produce a `pandas.DataFrame`""" x, y = make_classification(n_samples=n_samples, n_classes=n_classes, shuffle=shuffle, random_state=random_state, **kwargs) train_df = pd.DataFrame(data=x, columns=range(x.shape[1])) train_df[target] = y return train_df
<mask token> import pandas as pd from sklearn.datasets import load_breast_cancer, make_classification, load_diabetes def get_breast_cancer_data(target='diagnosis'): """Get the Wisconsin Breast Cancer classification dataset, formatted as a DataFrame Parameters ---------- target: String, default='diagnosis' What to name the column in `df` that contains the target output values Returns ------- df: `pandas.DataFrame` The breast cancer dataset, with friendly column names""" data = load_breast_cancer() df = pd.DataFrame(data=data.data, columns=[_.replace(' ', '_') for _ in data.feature_names]) df[target] = data.target return df def get_diabetes_data(target='progression'): """Get the SKLearn Diabetes regression dataset, formatted as a DataFrame Parameters ---------- target: String, default='progression' What to name the column in `df` that contains the target output values Returns ------- df: `pandas.DataFrame` The diabetes dataset, with friendly column names""" data = load_diabetes() df = pd.DataFrame(data=data.data, columns=[_.replace(' ', '_') for _ in data.feature_names]) df[target] = data.target return df def get_toy_classification_data(target='target', n_samples=300, n_classes=2, shuffle=True, random_state=32, **kwargs): """Wrapper around `sklearn.datasets.make_classification` to produce a `pandas.DataFrame`""" x, y = make_classification(n_samples=n_samples, n_classes=n_classes, shuffle=shuffle, random_state=random_state, **kwargs) train_df = pd.DataFrame(data=x, columns=range(x.shape[1])) train_df[target] = y return train_df
"""This module defines simple utilities for making toy datasets to be used in testing/examples""" ################################################## # Import Miscellaneous Assets ################################################## import pandas as pd ############################################### # Import Learning Assets ############################################### from sklearn.datasets import load_breast_cancer, make_classification, load_diabetes ################################################## # Dataset Utilities ################################################## def get_breast_cancer_data(target="diagnosis"): """Get the Wisconsin Breast Cancer classification dataset, formatted as a DataFrame Parameters ---------- target: String, default='diagnosis' What to name the column in `df` that contains the target output values Returns ------- df: `pandas.DataFrame` The breast cancer dataset, with friendly column names""" data = load_breast_cancer() df = pd.DataFrame(data=data.data, columns=[_.replace(" ", "_") for _ in data.feature_names]) df[target] = data.target return df def get_diabetes_data(target="progression"): """Get the SKLearn Diabetes regression dataset, formatted as a DataFrame Parameters ---------- target: String, default='progression' What to name the column in `df` that contains the target output values Returns ------- df: `pandas.DataFrame` The diabetes dataset, with friendly column names""" data = load_diabetes() df = pd.DataFrame(data=data.data, columns=[_.replace(" ", "_") for _ in data.feature_names]) df[target] = data.target return df def get_toy_classification_data( target="target", n_samples=300, n_classes=2, shuffle=True, random_state=32, **kwargs ): """Wrapper around `sklearn.datasets.make_classification` to produce a `pandas.DataFrame`""" x, y = make_classification( n_samples=n_samples, n_classes=n_classes, shuffle=shuffle, random_state=random_state, **kwargs ) train_df = pd.DataFrame(data=x, columns=range(x.shape[1])) train_df[target] = y return train_df
[ 1, 2, 3, 4, 5 ]
2,173
b9eeccbed63aa42afa09fe7ef782066f300255a1
<mask token>
<mask token> sense.set_pixels(prenume)
<mask token> sense = SenseHat() b = 0, 0, 204 w = 255, 255, 255 e = 0, 0, 0 y = 255, 255, 0 r = 255, 0, 0 prenume = [e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, b, e, y, y, e, r, e, b, e, b, y, e, y, r, e, b, b, b, y, e, y, r, e, b, e, b, y, e, y, r, e, b, e, b, y, y, e, r, e, e, e, e, e, e, e, e, e] sense.set_pixels(prenume)
from sense_hat import SenseHat import time sense = SenseHat() b = 0, 0, 204 w = 255, 255, 255 e = 0, 0, 0 y = 255, 255, 0 r = 255, 0, 0 prenume = [e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, b, e, y, y, e, r, e, b, e, b, y, e, y, r, e, b, b, b, y, e, y, r, e, b, e, b, y, e, y, r, e, b, e, b, y, y, e, r, e, e, e, e, e, e, e, e, e] sense.set_pixels(prenume)
from sense_hat import SenseHat import time sense = SenseHat() b = (0, 0, 204) #Blue w = (255, 255, 255) #White e = (0, 0, 0) #Empty y = (255, 255, 0) #Yellow r = (255, 0, 0) #red prenume = [ e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, b, e, y, y, e, r, e, b, e, b, y, e, y, r, e, b, b, b, y, e, y, r, e, b, e, b, y, e, y, r, e, b, e, b, y, y, e, r, e, e, e, e, e, e, e, e, e, ] sense.set_pixels(prenume)
[ 0, 1, 2, 3, 4 ]
2,174
609071fc3af1b526fbd4555ced2376f56ae0f3c3
<mask token> def Process(num, x, y, button_text, color): text_fmt1 = text_1.render(text[num], 1, Brack) screen.blit(text_fmt1, (x - 127, y)) pygame.draw.rect(screen, Brack, [x, y, 60, 25], 2) pygame.draw.rect(screen, color, [x + 2, y + 2, 57, 22], 0) button = text_2.render(button_text, 1, Brack) screen.blit(button, (x + 13, y + 3)) pygame.display.update() <mask token>
<mask token> pygame.init() <mask token> screen.fill(Brack) pygame.draw.rect(screen, White, [420, 134, 400, 500], 0) <mask token> screen.blit(text_fmt0, (545, 140)) pygame.display.update() def Process(num, x, y, button_text, color): text_fmt1 = text_1.render(text[num], 1, Brack) screen.blit(text_fmt1, (x - 127, y)) pygame.draw.rect(screen, Brack, [x, y, 60, 25], 2) pygame.draw.rect(screen, color, [x + 2, y + 2, 57, 22], 0) button = text_2.render(button_text, 1, Brack) screen.blit(button, (x + 13, y + 3)) pygame.display.update() def Station(num, x, y, a): pygame.draw.rect(screen, Brack, [x, y, 55, 28], 2) pygame.draw.rect(screen, Green, [x + 2, y + 2, 52, 25], 0) button = text_2.render(button_text1[num], 1, Brack) screen.blit(button, (x + 9, y + 4)) img = pygame.image.load('cgq.jpg') img = pygame.transform.smoothscale(img, (52, 50)) screen.blit(img, (x, y + 80)) button = text_1.render(Num[a], 1, Brack) screen.blit(button, (x + 20, 610)) pygame.display.update() if __name__ == '__main__': while True: time.sleep(1.5) pygame.draw.rect(screen, White, [506, 440, 85, 28], 0) pygame.draw.rect(screen, Brack, [597, 440, 65, 28], 2) pygame.draw.rect(screen, Green, [599, 442, 62, 25], 0) button1 = text_1.render('切 换', 1, Brack) screen.blit(button1, (611, 444)) button = text_1.render(button_text0, 1, Brack) screen.blit(button, (506, 444)) B = [[0, 647, 190, button_text[0], color[0]], [1, 647, 240, button_text[1], color[1]], [2, 647, 290, button_text[2], color[ 2]], [3, 647, 340, button_text[3], color[3]], [4, 647, 390, button_text[4], color[4]]] if button_text == ['开 始', '开 始', '开 始', '开 始', '开 始']: response2 = urllib.request.urlopen( 'http://localhost:5000/carrier/status') html2 = response2.read() text2 = json.loads(html2) a = text2['sensors'] b = text2['pos'] C = [[0, 452, 490, a[0]], [1, 522, 490, a[1]], [2, 592, 490, a[2]], [3, 662, 490, a[3]], [4, 732, 490, a[4]]] pygame.draw.rect(screen, White, [420, 525, 400, 50], 0) pygame.draw.rect(screen, White, [420, 615, 400, 30], 0) img = pygame.image.load('car.jpg') img = pygame.transform.smoothscale(img, (52, 50)) screen.blit(img, (B0[b], 525)) if button_text0 == '手动状态:': for t in range(5): if button_text[t] == '结 束': button_text[t] = '开 始' color[t] = Green elif button_text0 == '自动状态:': if button_text[0] == '结 束': response0 = urllib.request.urlopen(line[0]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[0] = '开 始' button_text[1] = '结 束' elif button_text[1] == '结 束': response0 = urllib.request.urlopen(line[1]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[1] = '开 始' button_text[2] = '结 束' elif button_text[2] == '结 束': response0 = urllib.request.urlopen(line[2]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[2] = '开 始' button_text[3] = '结 束' elif button_text[3] == '结 束': response0 = urllib.request.urlopen(line[3]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[3] = '开 始' button_text[4] = '结 束' elif button_text[4] == '结 束': response0 = urllib.request.urlopen(line[4]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[4] = '开 始' for i in B: Process(i[0], i[1], i[2], i[3], i[4]) for v in C: Station(v[0], v[1], v[2], v[3]) for event in pygame.event.get(): if event.type == KEYDOWN: if event.key == K_ESCAPE: exit() elif event.type == QUIT: exit() elif event.type == pygame.MOUSEBUTTONDOWN: pressed_array = pygame.mouse.get_pressed() pos = pygame.mouse.get_pos() for index in range(len(pressed_array)): if pressed_array[index]: if index == 0: if 597 <= pos[0] <= 662 and 440 <= pos[1] <= 468: if button_text0 == '自动状态:' and button_text == [ '开 始', '开 始', '开 始', '开 始', '开 始']: button_text0 = '手动状态:' color = [Green, Green, Green, Green, Green] elif button_text0 == '手动状态:' and button_text == [ '开 始', '开 始', '开 始', '开 始', '开 始']: button_text0 = '自动状态:' button_text[0] = '结 束' color = [Gray, Gray, Gray, Gray, Gray] for i in B: if i[1] <= pos[0] <= i[1] + 60 and i[2] <= pos[ 1] <= i[2] + 25: if button_text == ['开 始', '开 始', '开 始', '开 始', '开 始' ] and button_text0 == '手动状态:': color[i[0]] = Red button_text[i[0]] = '结 束' response1 = urllib.request.urlopen(line [i[0]]) html1 = response1.read() text1 = json.loads(html1) print(text1) for v in C: if v[1] <= pos[0] <= v[1] + 60 and v[2] <= pos[ 1] <= v[2] + 28: response3 = urllib.request.urlopen(line0 [v[0]]) html3 = response3.read() text3 = json.loads(html3) pygame.draw.rect(screen, White, [420, 525, 400, 50], 0) pygame.draw.rect(screen, White, [420, 615, 400, 30], 0) img = pygame.image.load('car.jpg') img = pygame.transform.smoothscale(img, (52, 50)) screen.blit(img, (B0[int(text3)], 525)) C = [[0, 452, 490, CGQ[v[0]][0]], [1, 522, 490, CGQ[v[0]][1]], [2, 592, 490, CGQ[v[0]][2]], [3, 662, 490, CGQ[v[0]][3]], [4, 732, 490, CGQ[v[ 0]][4]]] for f in C: Station(f[0], f[1], f[2], f[3]) pygame.display.update()
<mask token> pygame.init() Brack = [0, 0, 0] White = [255, 255, 255] Green = [0, 255, 0] Red = [255, 0, 0] Gray = [169, 169, 169] button_text = ['开 始', '开 始', '开 始', '开 始', '开 始'] line = ['http://localhost:5050/mixer/000', 'http://localhost:5050/mixer/100', 'http://localhost:5050/mixer/200', 'http://localhost:5050/mixer/300', 'http://localhost:5050/mixer/400'] line0 = ['http://localhost:5000/carrier/moveto/0', 'http://localhost:5000/carrier/moveto/1', 'http://localhost:5000/carrier/moveto/2', 'http://localhost:5000/carrier/moveto/3', 'http://localhost:5000/carrier/moveto/4'] CGQ = [[0, 1, 1, 1, 1], [1, 0, 1, 1, 1], [1, 1, 0, 1, 1], [1, 1, 1, 0, 1], [1, 1, 1, 1, 0]] color = [Green, Green, Green, Green, Green] button_text0 = '手动状态:' button_text1 = ['工位0', '工位1', '工位2', '工位3', '工位4'] Num = ['0', '1', '2', '3', '4'] B0 = [452, 522, 592, 662, 732] screen = pygame.display.set_mode((1240, 768), FULLSCREEN, 32) screen.fill(Brack) pygame.draw.rect(screen, White, [420, 134, 400, 500], 0) text = ['工 序 甲:', '工 序 乙:', '工 序 丙:', '工 序 丁:', '工 序 戊:'] text_0 = pygame.font.Font('/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc', 22) text_1 = pygame.font.Font('/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc', 18) text_2 = pygame.font.Font('/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc', 15) text_fmt0 = text_0.render('操 作 界 面', 2, Brack) screen.blit(text_fmt0, (545, 140)) pygame.display.update() def Process(num, x, y, button_text, color): text_fmt1 = text_1.render(text[num], 1, Brack) screen.blit(text_fmt1, (x - 127, y)) pygame.draw.rect(screen, Brack, [x, y, 60, 25], 2) pygame.draw.rect(screen, color, [x + 2, y + 2, 57, 22], 0) button = text_2.render(button_text, 1, Brack) screen.blit(button, (x + 13, y + 3)) pygame.display.update() def Station(num, x, y, a): pygame.draw.rect(screen, Brack, [x, y, 55, 28], 2) pygame.draw.rect(screen, Green, [x + 2, y + 2, 52, 25], 0) button = text_2.render(button_text1[num], 1, Brack) screen.blit(button, (x + 9, y + 4)) img = pygame.image.load('cgq.jpg') img = pygame.transform.smoothscale(img, (52, 50)) screen.blit(img, (x, y + 80)) button = text_1.render(Num[a], 1, Brack) screen.blit(button, (x + 20, 610)) pygame.display.update() if __name__ == '__main__': while True: time.sleep(1.5) pygame.draw.rect(screen, White, [506, 440, 85, 28], 0) pygame.draw.rect(screen, Brack, [597, 440, 65, 28], 2) pygame.draw.rect(screen, Green, [599, 442, 62, 25], 0) button1 = text_1.render('切 换', 1, Brack) screen.blit(button1, (611, 444)) button = text_1.render(button_text0, 1, Brack) screen.blit(button, (506, 444)) B = [[0, 647, 190, button_text[0], color[0]], [1, 647, 240, button_text[1], color[1]], [2, 647, 290, button_text[2], color[ 2]], [3, 647, 340, button_text[3], color[3]], [4, 647, 390, button_text[4], color[4]]] if button_text == ['开 始', '开 始', '开 始', '开 始', '开 始']: response2 = urllib.request.urlopen( 'http://localhost:5000/carrier/status') html2 = response2.read() text2 = json.loads(html2) a = text2['sensors'] b = text2['pos'] C = [[0, 452, 490, a[0]], [1, 522, 490, a[1]], [2, 592, 490, a[2]], [3, 662, 490, a[3]], [4, 732, 490, a[4]]] pygame.draw.rect(screen, White, [420, 525, 400, 50], 0) pygame.draw.rect(screen, White, [420, 615, 400, 30], 0) img = pygame.image.load('car.jpg') img = pygame.transform.smoothscale(img, (52, 50)) screen.blit(img, (B0[b], 525)) if button_text0 == '手动状态:': for t in range(5): if button_text[t] == '结 束': button_text[t] = '开 始' color[t] = Green elif button_text0 == '自动状态:': if button_text[0] == '结 束': response0 = urllib.request.urlopen(line[0]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[0] = '开 始' button_text[1] = '结 束' elif button_text[1] == '结 束': response0 = urllib.request.urlopen(line[1]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[1] = '开 始' button_text[2] = '结 束' elif button_text[2] == '结 束': response0 = urllib.request.urlopen(line[2]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[2] = '开 始' button_text[3] = '结 束' elif button_text[3] == '结 束': response0 = urllib.request.urlopen(line[3]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[3] = '开 始' button_text[4] = '结 束' elif button_text[4] == '结 束': response0 = urllib.request.urlopen(line[4]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[4] = '开 始' for i in B: Process(i[0], i[1], i[2], i[3], i[4]) for v in C: Station(v[0], v[1], v[2], v[3]) for event in pygame.event.get(): if event.type == KEYDOWN: if event.key == K_ESCAPE: exit() elif event.type == QUIT: exit() elif event.type == pygame.MOUSEBUTTONDOWN: pressed_array = pygame.mouse.get_pressed() pos = pygame.mouse.get_pos() for index in range(len(pressed_array)): if pressed_array[index]: if index == 0: if 597 <= pos[0] <= 662 and 440 <= pos[1] <= 468: if button_text0 == '自动状态:' and button_text == [ '开 始', '开 始', '开 始', '开 始', '开 始']: button_text0 = '手动状态:' color = [Green, Green, Green, Green, Green] elif button_text0 == '手动状态:' and button_text == [ '开 始', '开 始', '开 始', '开 始', '开 始']: button_text0 = '自动状态:' button_text[0] = '结 束' color = [Gray, Gray, Gray, Gray, Gray] for i in B: if i[1] <= pos[0] <= i[1] + 60 and i[2] <= pos[ 1] <= i[2] + 25: if button_text == ['开 始', '开 始', '开 始', '开 始', '开 始' ] and button_text0 == '手动状态:': color[i[0]] = Red button_text[i[0]] = '结 束' response1 = urllib.request.urlopen(line [i[0]]) html1 = response1.read() text1 = json.loads(html1) print(text1) for v in C: if v[1] <= pos[0] <= v[1] + 60 and v[2] <= pos[ 1] <= v[2] + 28: response3 = urllib.request.urlopen(line0 [v[0]]) html3 = response3.read() text3 = json.loads(html3) pygame.draw.rect(screen, White, [420, 525, 400, 50], 0) pygame.draw.rect(screen, White, [420, 615, 400, 30], 0) img = pygame.image.load('car.jpg') img = pygame.transform.smoothscale(img, (52, 50)) screen.blit(img, (B0[int(text3)], 525)) C = [[0, 452, 490, CGQ[v[0]][0]], [1, 522, 490, CGQ[v[0]][1]], [2, 592, 490, CGQ[v[0]][2]], [3, 662, 490, CGQ[v[0]][3]], [4, 732, 490, CGQ[v[ 0]][4]]] for f in C: Station(f[0], f[1], f[2], f[3]) pygame.display.update()
import time import json import pygame from pygame.locals import * import urllib.request from pygame.color import THECOLORS pygame.init() Brack = [0, 0, 0] White = [255, 255, 255] Green = [0, 255, 0] Red = [255, 0, 0] Gray = [169, 169, 169] button_text = ['开 始', '开 始', '开 始', '开 始', '开 始'] line = ['http://localhost:5050/mixer/000', 'http://localhost:5050/mixer/100', 'http://localhost:5050/mixer/200', 'http://localhost:5050/mixer/300', 'http://localhost:5050/mixer/400'] line0 = ['http://localhost:5000/carrier/moveto/0', 'http://localhost:5000/carrier/moveto/1', 'http://localhost:5000/carrier/moveto/2', 'http://localhost:5000/carrier/moveto/3', 'http://localhost:5000/carrier/moveto/4'] CGQ = [[0, 1, 1, 1, 1], [1, 0, 1, 1, 1], [1, 1, 0, 1, 1], [1, 1, 1, 0, 1], [1, 1, 1, 1, 0]] color = [Green, Green, Green, Green, Green] button_text0 = '手动状态:' button_text1 = ['工位0', '工位1', '工位2', '工位3', '工位4'] Num = ['0', '1', '2', '3', '4'] B0 = [452, 522, 592, 662, 732] screen = pygame.display.set_mode((1240, 768), FULLSCREEN, 32) screen.fill(Brack) pygame.draw.rect(screen, White, [420, 134, 400, 500], 0) text = ['工 序 甲:', '工 序 乙:', '工 序 丙:', '工 序 丁:', '工 序 戊:'] text_0 = pygame.font.Font('/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc', 22) text_1 = pygame.font.Font('/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc', 18) text_2 = pygame.font.Font('/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc', 15) text_fmt0 = text_0.render('操 作 界 面', 2, Brack) screen.blit(text_fmt0, (545, 140)) pygame.display.update() def Process(num, x, y, button_text, color): text_fmt1 = text_1.render(text[num], 1, Brack) screen.blit(text_fmt1, (x - 127, y)) pygame.draw.rect(screen, Brack, [x, y, 60, 25], 2) pygame.draw.rect(screen, color, [x + 2, y + 2, 57, 22], 0) button = text_2.render(button_text, 1, Brack) screen.blit(button, (x + 13, y + 3)) pygame.display.update() def Station(num, x, y, a): pygame.draw.rect(screen, Brack, [x, y, 55, 28], 2) pygame.draw.rect(screen, Green, [x + 2, y + 2, 52, 25], 0) button = text_2.render(button_text1[num], 1, Brack) screen.blit(button, (x + 9, y + 4)) img = pygame.image.load('cgq.jpg') img = pygame.transform.smoothscale(img, (52, 50)) screen.blit(img, (x, y + 80)) button = text_1.render(Num[a], 1, Brack) screen.blit(button, (x + 20, 610)) pygame.display.update() if __name__ == '__main__': while True: time.sleep(1.5) pygame.draw.rect(screen, White, [506, 440, 85, 28], 0) pygame.draw.rect(screen, Brack, [597, 440, 65, 28], 2) pygame.draw.rect(screen, Green, [599, 442, 62, 25], 0) button1 = text_1.render('切 换', 1, Brack) screen.blit(button1, (611, 444)) button = text_1.render(button_text0, 1, Brack) screen.blit(button, (506, 444)) B = [[0, 647, 190, button_text[0], color[0]], [1, 647, 240, button_text[1], color[1]], [2, 647, 290, button_text[2], color[ 2]], [3, 647, 340, button_text[3], color[3]], [4, 647, 390, button_text[4], color[4]]] if button_text == ['开 始', '开 始', '开 始', '开 始', '开 始']: response2 = urllib.request.urlopen( 'http://localhost:5000/carrier/status') html2 = response2.read() text2 = json.loads(html2) a = text2['sensors'] b = text2['pos'] C = [[0, 452, 490, a[0]], [1, 522, 490, a[1]], [2, 592, 490, a[2]], [3, 662, 490, a[3]], [4, 732, 490, a[4]]] pygame.draw.rect(screen, White, [420, 525, 400, 50], 0) pygame.draw.rect(screen, White, [420, 615, 400, 30], 0) img = pygame.image.load('car.jpg') img = pygame.transform.smoothscale(img, (52, 50)) screen.blit(img, (B0[b], 525)) if button_text0 == '手动状态:': for t in range(5): if button_text[t] == '结 束': button_text[t] = '开 始' color[t] = Green elif button_text0 == '自动状态:': if button_text[0] == '结 束': response0 = urllib.request.urlopen(line[0]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[0] = '开 始' button_text[1] = '结 束' elif button_text[1] == '结 束': response0 = urllib.request.urlopen(line[1]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[1] = '开 始' button_text[2] = '结 束' elif button_text[2] == '结 束': response0 = urllib.request.urlopen(line[2]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[2] = '开 始' button_text[3] = '结 束' elif button_text[3] == '结 束': response0 = urllib.request.urlopen(line[3]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[3] = '开 始' button_text[4] = '结 束' elif button_text[4] == '结 束': response0 = urllib.request.urlopen(line[4]) html0 = response0.read() text0 = json.loads(html0) print(text0) button_text[4] = '开 始' for i in B: Process(i[0], i[1], i[2], i[3], i[4]) for v in C: Station(v[0], v[1], v[2], v[3]) for event in pygame.event.get(): if event.type == KEYDOWN: if event.key == K_ESCAPE: exit() elif event.type == QUIT: exit() elif event.type == pygame.MOUSEBUTTONDOWN: pressed_array = pygame.mouse.get_pressed() pos = pygame.mouse.get_pos() for index in range(len(pressed_array)): if pressed_array[index]: if index == 0: if 597 <= pos[0] <= 662 and 440 <= pos[1] <= 468: if button_text0 == '自动状态:' and button_text == [ '开 始', '开 始', '开 始', '开 始', '开 始']: button_text0 = '手动状态:' color = [Green, Green, Green, Green, Green] elif button_text0 == '手动状态:' and button_text == [ '开 始', '开 始', '开 始', '开 始', '开 始']: button_text0 = '自动状态:' button_text[0] = '结 束' color = [Gray, Gray, Gray, Gray, Gray] for i in B: if i[1] <= pos[0] <= i[1] + 60 and i[2] <= pos[ 1] <= i[2] + 25: if button_text == ['开 始', '开 始', '开 始', '开 始', '开 始' ] and button_text0 == '手动状态:': color[i[0]] = Red button_text[i[0]] = '结 束' response1 = urllib.request.urlopen(line [i[0]]) html1 = response1.read() text1 = json.loads(html1) print(text1) for v in C: if v[1] <= pos[0] <= v[1] + 60 and v[2] <= pos[ 1] <= v[2] + 28: response3 = urllib.request.urlopen(line0 [v[0]]) html3 = response3.read() text3 = json.loads(html3) pygame.draw.rect(screen, White, [420, 525, 400, 50], 0) pygame.draw.rect(screen, White, [420, 615, 400, 30], 0) img = pygame.image.load('car.jpg') img = pygame.transform.smoothscale(img, (52, 50)) screen.blit(img, (B0[int(text3)], 525)) C = [[0, 452, 490, CGQ[v[0]][0]], [1, 522, 490, CGQ[v[0]][1]], [2, 592, 490, CGQ[v[0]][2]], [3, 662, 490, CGQ[v[0]][3]], [4, 732, 490, CGQ[v[ 0]][4]]] for f in C: Station(f[0], f[1], f[2], f[3]) pygame.display.update()
import time import json import pygame from pygame.locals import * import urllib.request from pygame.color import THECOLORS pygame.init() Brack=[0,0,0] White=[255,255,255] Green=[0,255,0] Red=[255,0,0] Gray=[169,169,169] button_text=["开 始","开 始","开 始","开 始","开 始"] line=['http://localhost:5050/mixer/000','http://localhost:5050/mixer/100','http://localhost:5050/mixer/200','http://localhost:5050/mixer/300','http://localhost:5050/mixer/400'] line0=['http://localhost:5000/carrier/moveto/0','http://localhost:5000/carrier/moveto/1','http://localhost:5000/carrier/moveto/2','http://localhost:5000/carrier/moveto/3','http://localhost:5000/carrier/moveto/4'] CGQ=[[0,1,1,1,1],[1,0,1,1,1],[1,1,0,1,1],[1,1,1,0,1],[1,1,1,1,0]] color=[Green,Green,Green,Green,Green] button_text0="手动状态:" button_text1=["工位0","工位1","工位2","工位3","工位4"] Num=['0','1','2','3','4'] B0=[452,522,592,662,732] screen = pygame.display.set_mode((1240,768),FULLSCREEN,32) screen.fill(Brack) pygame.draw.rect(screen,White,[420,134,400,500],0) text=["工 序 甲:","工 序 乙:","工 序 丙:","工 序 丁:","工 序 戊:"] text_0=pygame.font.Font("/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc",22) text_1=pygame.font.Font("/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc",18) text_2=pygame.font.Font("/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc",15) text_fmt0=text_0.render("操 作 界 面",2,Brack) screen.blit(text_fmt0,(545,140)) pygame.display.update() def Process(num,x,y,button_text,color): text_fmt1=text_1.render(text[num],1,Brack) screen.blit(text_fmt1,(x-127,y)) pygame.draw.rect(screen,Brack,[x,y,60,25],2) pygame.draw.rect(screen,color,[x+2,y+2,57,22],0) button=text_2.render(button_text,1,Brack) screen.blit(button,(x+13,y+3)) pygame.display.update() def Station(num,x,y,a): pygame.draw.rect(screen,Brack,[x,y,55,28],2) pygame.draw.rect(screen,Green,[x+2,y+2,52,25],0) button=text_2.render(button_text1[num],1,Brack) screen.blit(button,(x+9,y+4)) img=pygame.image.load('cgq.jpg') img=pygame.transform.smoothscale(img,(52,50)) screen.blit(img,(x,y+80)) button=text_1.render(Num[a],1,Brack) screen.blit(button,(x+20,610)) pygame.display.update() if __name__ == '__main__': while True: time.sleep(1.5) pygame.draw.rect(screen,White,[506,440,85,28],0) pygame.draw.rect(screen,Brack,[597,440,65,28],2) pygame.draw.rect(screen,Green,[599,442,62,25],0) button1=text_1.render("切 换",1,Brack) screen.blit(button1,(611,444)) button=text_1.render(button_text0,1,Brack) screen.blit(button,(506,444)) B=[[0,647,190,button_text[0],color[0]],[1,647,240,button_text[1],color[1]],[2,647,290,button_text[2],color[2]],[3,647,340,button_text[3],color[3]],[4,647,390,button_text[4],color[4]]] if button_text==["开 始","开 始","开 始","开 始","开 始"]: response2=urllib.request.urlopen('http://localhost:5000/carrier/status') html2=response2.read() text2=json.loads(html2) a=text2['sensors'] b=text2['pos'] C=[[0,452,490,a[0]],[1,522,490,a[1]],[2,592,490,a[2]],[3,662,490,a[3]],[4,732,490,a[4]]] pygame.draw.rect(screen,White,[420,525,400,50],0) pygame.draw.rect(screen,White,[420,615,400,30],0) img=pygame.image.load('car.jpg') img=pygame.transform.smoothscale(img,(52,50)) screen.blit(img,(B0[b],525)) if button_text0=="手动状态:": for t in range(5): if button_text[t]=="结 束": button_text[t]="开 始" color[t]=Green elif button_text0=="自动状态:": if button_text[0]=="结 束": response0=urllib.request.urlopen(line[0]) html0=response0.read() text0=json.loads(html0) print(text0) button_text[0]="开 始" button_text[1]="结 束" elif button_text[1]=="结 束": response0=urllib.request.urlopen(line[1]) html0=response0.read() text0=json.loads(html0) print(text0) button_text[1]="开 始" button_text[2]="结 束" elif button_text[2]=="结 束": response0=urllib.request.urlopen(line[2]) html0=response0.read() text0=json.loads(html0) print(text0) button_text[2]="开 始" button_text[3]="结 束" elif button_text[3]=="结 束": response0=urllib.request.urlopen(line[3]) html0=response0.read() text0=json.loads(html0) print(text0) button_text[3]="开 始" button_text[4]="结 束" elif button_text[4]=="结 束": response0=urllib.request.urlopen(line[4]) html0=response0.read() text0=json.loads(html0) print(text0) button_text[4]="开 始" for i in B: Process(i[0],i[1],i[2],i[3],i[4]) for v in C: Station(v[0],v[1],v[2],v[3]) for event in pygame.event.get(): if event.type == KEYDOWN: if event.key == K_ESCAPE: exit() elif event.type == QUIT: exit() elif event.type == pygame.MOUSEBUTTONDOWN: pressed_array = pygame.mouse.get_pressed() pos = pygame.mouse.get_pos() for index in range(len(pressed_array)): if pressed_array[index]: if index==0: if 597<=pos[0]<=662 and 440<=pos[1]<=468: if button_text0=="自动状态:" and button_text==["开 始","开 始","开 始","开 始","开 始"]: button_text0="手动状态:" color=[Green,Green,Green,Green,Green] elif button_text0=="手动状态:" and button_text==["开 始","开 始","开 始","开 始","开 始"]: button_text0="自动状态:" button_text[0]="结 束" color=[Gray,Gray,Gray,Gray,Gray] for i in B: if i[1]<=pos[0]<=i[1]+60 and i[2]<=pos[1]<=i[2]+25: if button_text==["开 始","开 始","开 始","开 始","开 始"] and button_text0=="手动状态:": color[i[0]]=Red button_text[i[0]]="结 束" response1=urllib.request.urlopen(line[i[0]]) html1=response1.read() text1=json.loads(html1) print(text1) for v in C: if v[1]<=pos[0]<=v[1]+60 and v[2]<=pos[1]<=v[2]+28: response3=urllib.request.urlopen(line0[v[0]]) html3=response3.read() text3=json.loads(html3) pygame.draw.rect(screen,White,[420,525,400,50],0) pygame.draw.rect(screen,White,[420,615,400,30],0) img=pygame.image.load('car.jpg') img=pygame.transform.smoothscale(img,(52,50)) screen.blit(img,(B0[int(text3)],525)) C=[[0,452,490,CGQ[v[0]][0]],[1,522,490,CGQ[v[0]][1]],[2,592,490,CGQ[v[0]][2]],[3,662,490,CGQ[v[0]][3]],[4,732,490,CGQ[v[0]][4]]] for f in C: Station(f[0],f[1],f[2],f[3]) pygame.display.update()
[ 1, 3, 4, 5, 6 ]
2,175
10723f703f40b5db2b7c9532cda520b2ae078546
<mask token> def lane_emden_int(dz=2.0 ** -14, n=3.0, w=0.0): """ Interface to FORTRAN90 Lane-Emden Integrator. Call: ndata, data = laneemden.lane_emden_int(dz, n, w) INPUT: dz: step in z, maye use 2**(-14) n: polytropic index (use 3.) w: rotation parameter(use 0. for non-rot) w = 2 Omega^2 / (4 pi G rho_c) OUTPUT: ndata: number of last point (starts with 0) data: output data in form [0:ndata,0:1] index 0: equidistant grid with step size dz starting at 0 index 1: 0: theta(z) 1: d theta(z) / dz """ _solver.lane(dz, n, w) out = _solver.laneout n = int(out.ndata) t = out.theta return n, t[0:n + 1, :] def lane_emden_step(x, y, dx, n, w): """ This allows a single call to the rk4 subroutine. It turns out to be *way* less efficient. Do not use. """ _solver.rk4(x, y[0], y[1], dx, n, w) out = _solver.rk4out return np.array([out.z0, out.z1]) <mask token>
<mask token> def test(): """ A simple test. """ n = 3.0 dz = 2.0 ** -14 _solver.lane(dz, n) out = _solver.laneout n = out.ndata t = out.theta return t, n def lane_emden_int(dz=2.0 ** -14, n=3.0, w=0.0): """ Interface to FORTRAN90 Lane-Emden Integrator. Call: ndata, data = laneemden.lane_emden_int(dz, n, w) INPUT: dz: step in z, maye use 2**(-14) n: polytropic index (use 3.) w: rotation parameter(use 0. for non-rot) w = 2 Omega^2 / (4 pi G rho_c) OUTPUT: ndata: number of last point (starts with 0) data: output data in form [0:ndata,0:1] index 0: equidistant grid with step size dz starting at 0 index 1: 0: theta(z) 1: d theta(z) / dz """ _solver.lane(dz, n, w) out = _solver.laneout n = int(out.ndata) t = out.theta return n, t[0:n + 1, :] def lane_emden_step(x, y, dx, n, w): """ This allows a single call to the rk4 subroutine. It turns out to be *way* less efficient. Do not use. """ _solver.rk4(x, y[0], y[1], dx, n, w) out = _solver.rk4out return np.array([out.z0, out.z1]) <mask token>
<mask token> def test(): """ A simple test. """ n = 3.0 dz = 2.0 ** -14 _solver.lane(dz, n) out = _solver.laneout n = out.ndata t = out.theta return t, n def lane_emden_int(dz=2.0 ** -14, n=3.0, w=0.0): """ Interface to FORTRAN90 Lane-Emden Integrator. Call: ndata, data = laneemden.lane_emden_int(dz, n, w) INPUT: dz: step in z, maye use 2**(-14) n: polytropic index (use 3.) w: rotation parameter(use 0. for non-rot) w = 2 Omega^2 / (4 pi G rho_c) OUTPUT: ndata: number of last point (starts with 0) data: output data in form [0:ndata,0:1] index 0: equidistant grid with step size dz starting at 0 index 1: 0: theta(z) 1: d theta(z) / dz """ _solver.lane(dz, n, w) out = _solver.laneout n = int(out.ndata) t = out.theta return n, t[0:n + 1, :] def lane_emden_step(x, y, dx, n, w): """ This allows a single call to the rk4 subroutine. It turns out to be *way* less efficient. Do not use. """ _solver.rk4(x, y[0], y[1], dx, n, w) out = _solver.rk4out return np.array([out.z0, out.z1]) if __name__ == '__main__': t, n = test() print(t, n)
<mask token> import numpy as np from . import _solver def test(): """ A simple test. """ n = 3.0 dz = 2.0 ** -14 _solver.lane(dz, n) out = _solver.laneout n = out.ndata t = out.theta return t, n def lane_emden_int(dz=2.0 ** -14, n=3.0, w=0.0): """ Interface to FORTRAN90 Lane-Emden Integrator. Call: ndata, data = laneemden.lane_emden_int(dz, n, w) INPUT: dz: step in z, maye use 2**(-14) n: polytropic index (use 3.) w: rotation parameter(use 0. for non-rot) w = 2 Omega^2 / (4 pi G rho_c) OUTPUT: ndata: number of last point (starts with 0) data: output data in form [0:ndata,0:1] index 0: equidistant grid with step size dz starting at 0 index 1: 0: theta(z) 1: d theta(z) / dz """ _solver.lane(dz, n, w) out = _solver.laneout n = int(out.ndata) t = out.theta return n, t[0:n + 1, :] def lane_emden_step(x, y, dx, n, w): """ This allows a single call to the rk4 subroutine. It turns out to be *way* less efficient. Do not use. """ _solver.rk4(x, y[0], y[1], dx, n, w) out = _solver.rk4out return np.array([out.z0, out.z1]) if __name__ == '__main__': t, n = test() print(t, n)
#! /bin/env python3 """ Lane Emden Python interface. Main routine: lane_emden_int(dz, n) """ import numpy as np from . import _solver def test(): """ A simple test. """ n = 3. dz = 2.**(-14) _solver.lane(dz,n) out = _solver.laneout n = out.ndata t = out.theta return t,n def lane_emden_int(dz = 2.**(-14), n = 3., w = 0.): """ Interface to FORTRAN90 Lane-Emden Integrator. Call: ndata, data = laneemden.lane_emden_int(dz, n, w) INPUT: dz: step in z, maye use 2**(-14) n: polytropic index (use 3.) w: rotation parameter(use 0. for non-rot) w = 2 Omega^2 / (4 pi G rho_c) OUTPUT: ndata: number of last point (starts with 0) data: output data in form [0:ndata,0:1] index 0: equidistant grid with step size dz starting at 0 index 1: 0: theta(z) 1: d theta(z) / dz """ _solver.lane(dz, n, w) out = _solver.laneout n = int(out.ndata) t = out.theta return n,t[0:n+1,:] def lane_emden_step(x,y,dx,n,w): """ This allows a single call to the rk4 subroutine. It turns out to be *way* less efficient. Do not use. """ _solver.rk4(x,y[0],y[1],dx,n,w) out = _solver.rk4out return np.array([out.z0,out.z1]) if __name__ == '__main__': t,n = test() print(t, n)
[ 2, 3, 4, 5, 6 ]
2,176
e4bfa0a55fe0dbb547bc5f65554ef96be654ec7a
<mask token> class SubscriptionHandler(object): <mask token> def __init__(self, resource): self.resource = resource self.subscription_to_resource = {} def handle_subscribe(self, request): if not request.xpath('//m:StreamingSubscriptionRequest', namespaces =NAMESPACES): return emails = request.xpath('//t:EmailAddress', namespaces=NAMESPACES) assert len(emails) == 1 assert emails[0].text == self.resource.principal_email subscription_id = get_random_string(10) self.subscription_to_resource[subscription_id] = self.resource return M.SubscribeResponse(M.ResponseMessages(M. SubscribeResponseMessage(M.ResponseCode('NoError'), M. SubscriptionId(subscription_id), ResponseClass='Success'))) def _generate_event(self, type): return getattr(T, type)(T.TimeStamp(now().isoformat()), T.ItemId(Id =get_random_string(), ChangeKey=get_random_string()), T. ParentFolderId(Id=get_random_string(), ChangeKey= get_random_string())) def handle_get_events(self, request): if not request.xpath('//m:GetStreamingEvents', namespaces=NAMESPACES): return sub_id = request.xpath('//t:SubscriptionId', namespaces=NAMESPACES)[0 ].text return M.GetStreamingEventsResponse(M.ResponseMessages(M. GetStreamingEventsResponseMessage(M.ResponseCode('NoError'), M. Notifications(M.Notification(T.SubscriptionId(sub_id), self. _generate_event('NewMailEvent'))), ResponseClass='Success'))) def handle_unsubscribe(self, request): if not request.xpath('//m:Unsubscribe', namespaces=NAMESPACES): return subscription_id = request.xpath('//m:SubscriptionId', namespaces= NAMESPACES)[0].text self.subscription_to_resource.pop(subscription_id) return M.UnsubscribeResponse(M.ResponseMessages(M. UnsubscribeResponseMessage(M.ResponseCode('NoError'), ResponseClass='Success'))) <mask token>
<mask token> class SubscriptionHandler(object): """ SoapSeller handler for the streaming requests. """ def __init__(self, resource): self.resource = resource self.subscription_to_resource = {} def handle_subscribe(self, request): if not request.xpath('//m:StreamingSubscriptionRequest', namespaces =NAMESPACES): return emails = request.xpath('//t:EmailAddress', namespaces=NAMESPACES) assert len(emails) == 1 assert emails[0].text == self.resource.principal_email subscription_id = get_random_string(10) self.subscription_to_resource[subscription_id] = self.resource return M.SubscribeResponse(M.ResponseMessages(M. SubscribeResponseMessage(M.ResponseCode('NoError'), M. SubscriptionId(subscription_id), ResponseClass='Success'))) def _generate_event(self, type): return getattr(T, type)(T.TimeStamp(now().isoformat()), T.ItemId(Id =get_random_string(), ChangeKey=get_random_string()), T. ParentFolderId(Id=get_random_string(), ChangeKey= get_random_string())) def handle_get_events(self, request): if not request.xpath('//m:GetStreamingEvents', namespaces=NAMESPACES): return sub_id = request.xpath('//t:SubscriptionId', namespaces=NAMESPACES)[0 ].text return M.GetStreamingEventsResponse(M.ResponseMessages(M. GetStreamingEventsResponseMessage(M.ResponseCode('NoError'), M. Notifications(M.Notification(T.SubscriptionId(sub_id), self. _generate_event('NewMailEvent'))), ResponseClass='Success'))) def handle_unsubscribe(self, request): if not request.xpath('//m:Unsubscribe', namespaces=NAMESPACES): return subscription_id = request.xpath('//m:SubscriptionId', namespaces= NAMESPACES)[0].text self.subscription_to_resource.pop(subscription_id) return M.UnsubscribeResponse(M.ResponseMessages(M. UnsubscribeResponseMessage(M.ResponseCode('NoError'), ResponseClass='Success'))) <mask token>
<mask token> class SubscriptionHandler(object): """ SoapSeller handler for the streaming requests. """ def __init__(self, resource): self.resource = resource self.subscription_to_resource = {} def handle_subscribe(self, request): if not request.xpath('//m:StreamingSubscriptionRequest', namespaces =NAMESPACES): return emails = request.xpath('//t:EmailAddress', namespaces=NAMESPACES) assert len(emails) == 1 assert emails[0].text == self.resource.principal_email subscription_id = get_random_string(10) self.subscription_to_resource[subscription_id] = self.resource return M.SubscribeResponse(M.ResponseMessages(M. SubscribeResponseMessage(M.ResponseCode('NoError'), M. SubscriptionId(subscription_id), ResponseClass='Success'))) def _generate_event(self, type): return getattr(T, type)(T.TimeStamp(now().isoformat()), T.ItemId(Id =get_random_string(), ChangeKey=get_random_string()), T. ParentFolderId(Id=get_random_string(), ChangeKey= get_random_string())) def handle_get_events(self, request): if not request.xpath('//m:GetStreamingEvents', namespaces=NAMESPACES): return sub_id = request.xpath('//t:SubscriptionId', namespaces=NAMESPACES)[0 ].text return M.GetStreamingEventsResponse(M.ResponseMessages(M. GetStreamingEventsResponseMessage(M.ResponseCode('NoError'), M. Notifications(M.Notification(T.SubscriptionId(sub_id), self. _generate_event('NewMailEvent'))), ResponseClass='Success'))) def handle_unsubscribe(self, request): if not request.xpath('//m:Unsubscribe', namespaces=NAMESPACES): return subscription_id = request.xpath('//m:SubscriptionId', namespaces= NAMESPACES)[0].text self.subscription_to_resource.pop(subscription_id) return M.UnsubscribeResponse(M.ResponseMessages(M. UnsubscribeResponseMessage(M.ResponseCode('NoError'), ResponseClass='Success'))) @pytest.mark.django_db def test_listener(settings, space_resource, exchange, monkeypatch): email = '%[email protected]' % get_random_string() ex_resource = ExchangeResource.objects.create(resource=space_resource, principal_email=email, exchange=exchange, sync_to_respa=True) assert ex_resource.reservations.count() == 0 delegate = SubscriptionHandler(ex_resource) SoapSeller.wire(settings, delegate) notification_listener = listener.NotificationListener() synced_resources = [] def sync_resource(resource): synced_resources.append(resource) notification_listener.stop() monkeypatch.setattr(listener, 'sync_from_exchange', sync_resource) notification_listener.start() assert ex_resource in synced_resources
import pytest from django.utils.crypto import get_random_string from django.utils.timezone import now from respa_exchange import listener from respa_exchange.ews.xml import M, NAMESPACES, T from respa_exchange.models import ExchangeResource from respa_exchange.tests.session import SoapSeller class SubscriptionHandler(object): """ SoapSeller handler for the streaming requests. """ def __init__(self, resource): self.resource = resource self.subscription_to_resource = {} def handle_subscribe(self, request): if not request.xpath('//m:StreamingSubscriptionRequest', namespaces =NAMESPACES): return emails = request.xpath('//t:EmailAddress', namespaces=NAMESPACES) assert len(emails) == 1 assert emails[0].text == self.resource.principal_email subscription_id = get_random_string(10) self.subscription_to_resource[subscription_id] = self.resource return M.SubscribeResponse(M.ResponseMessages(M. SubscribeResponseMessage(M.ResponseCode('NoError'), M. SubscriptionId(subscription_id), ResponseClass='Success'))) def _generate_event(self, type): return getattr(T, type)(T.TimeStamp(now().isoformat()), T.ItemId(Id =get_random_string(), ChangeKey=get_random_string()), T. ParentFolderId(Id=get_random_string(), ChangeKey= get_random_string())) def handle_get_events(self, request): if not request.xpath('//m:GetStreamingEvents', namespaces=NAMESPACES): return sub_id = request.xpath('//t:SubscriptionId', namespaces=NAMESPACES)[0 ].text return M.GetStreamingEventsResponse(M.ResponseMessages(M. GetStreamingEventsResponseMessage(M.ResponseCode('NoError'), M. Notifications(M.Notification(T.SubscriptionId(sub_id), self. _generate_event('NewMailEvent'))), ResponseClass='Success'))) def handle_unsubscribe(self, request): if not request.xpath('//m:Unsubscribe', namespaces=NAMESPACES): return subscription_id = request.xpath('//m:SubscriptionId', namespaces= NAMESPACES)[0].text self.subscription_to_resource.pop(subscription_id) return M.UnsubscribeResponse(M.ResponseMessages(M. UnsubscribeResponseMessage(M.ResponseCode('NoError'), ResponseClass='Success'))) @pytest.mark.django_db def test_listener(settings, space_resource, exchange, monkeypatch): email = '%[email protected]' % get_random_string() ex_resource = ExchangeResource.objects.create(resource=space_resource, principal_email=email, exchange=exchange, sync_to_respa=True) assert ex_resource.reservations.count() == 0 delegate = SubscriptionHandler(ex_resource) SoapSeller.wire(settings, delegate) notification_listener = listener.NotificationListener() synced_resources = [] def sync_resource(resource): synced_resources.append(resource) notification_listener.stop() monkeypatch.setattr(listener, 'sync_from_exchange', sync_resource) notification_listener.start() assert ex_resource in synced_resources
import pytest from django.utils.crypto import get_random_string from django.utils.timezone import now from respa_exchange import listener from respa_exchange.ews.xml import M, NAMESPACES, T from respa_exchange.models import ExchangeResource from respa_exchange.tests.session import SoapSeller class SubscriptionHandler(object): """ SoapSeller handler for the streaming requests. """ def __init__(self, resource): self.resource = resource self.subscription_to_resource = {} def handle_subscribe(self, request): if not request.xpath('//m:StreamingSubscriptionRequest', namespaces=NAMESPACES): # pragma: no cover return emails = request.xpath('//t:EmailAddress', namespaces=NAMESPACES) assert len(emails) == 1 assert emails[0].text == self.resource.principal_email subscription_id = get_random_string(10) self.subscription_to_resource[subscription_id] = self.resource return M.SubscribeResponse( M.ResponseMessages( M.SubscribeResponseMessage( M.ResponseCode('NoError'), M.SubscriptionId(subscription_id), ResponseClass='Success', ), ), ) def _generate_event(self, type): return getattr(T, type)( T.TimeStamp(now().isoformat()), T.ItemId( Id=get_random_string(), ChangeKey=get_random_string(), ), T.ParentFolderId( Id=get_random_string(), ChangeKey=get_random_string(), ), ) def handle_get_events(self, request): if not request.xpath('//m:GetStreamingEvents', namespaces=NAMESPACES): # pragma: no cover return sub_id = request.xpath('//t:SubscriptionId', namespaces=NAMESPACES)[0].text # This would be a long-polling operation, # but ain't nobody got time for that return M.GetStreamingEventsResponse( M.ResponseMessages( M.GetStreamingEventsResponseMessage( M.ResponseCode('NoError'), M.Notifications( M.Notification( T.SubscriptionId(sub_id), self._generate_event('NewMailEvent'), ), ), ResponseClass='Success', ), ), ) def handle_unsubscribe(self, request): if not request.xpath('//m:Unsubscribe', namespaces=NAMESPACES): # pragma: no cover return subscription_id = request.xpath('//m:SubscriptionId', namespaces=NAMESPACES)[0].text self.subscription_to_resource.pop(subscription_id) return M.UnsubscribeResponse( M.ResponseMessages( M.UnsubscribeResponseMessage( M.ResponseCode('NoError'), ResponseClass='Success', ), ), ) @pytest.mark.django_db def test_listener(settings, space_resource, exchange, monkeypatch): email = '%[email protected]' % get_random_string() ex_resource = ExchangeResource.objects.create( resource=space_resource, principal_email=email, exchange=exchange, sync_to_respa=True, ) assert ex_resource.reservations.count() == 0 delegate = SubscriptionHandler(ex_resource) SoapSeller.wire(settings, delegate) notification_listener = listener.NotificationListener() synced_resources = [] # Keep track of the resources we get sync-request events for def sync_resource(resource): # Our pretend sync handler synced_resources.append(resource) # Ask the listener to stop after we get a resource, # so this test actually ends someday: notification_listener.stop() monkeypatch.setattr(listener, 'sync_from_exchange', sync_resource) notification_listener.start() # ... so when `sync_resource` is called, this'll eventually happen: assert ex_resource in synced_resources
[ 6, 7, 8, 9, 10 ]
2,177
91cf6d08be2ad86c08de4dd48b2f35dedc55b4bb
<mask token> class FASTGIString(GIPlatformInterface): <mask token> def __init__(self, number, sender): """Initialise GI string. TODO: Need to implement the enable_relay and control which strings are dimmable. """ self.log = logging.getLogger('FASTGIString.0x' + str(number)) self.number = number self.send = sender <mask token> def on(self, brightness=255): """Turn on GI string.""" if brightness >= 255: brightness = 255 self.log.debug('Turning On GI String to brightness %s', brightness) self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string( brightness)))
<mask token> class FASTGIString(GIPlatformInterface): <mask token> def __init__(self, number, sender): """Initialise GI string. TODO: Need to implement the enable_relay and control which strings are dimmable. """ self.log = logging.getLogger('FASTGIString.0x' + str(number)) self.number = number self.send = sender def off(self): """Turn off GI string.""" self.log.debug('Turning Off GI String') self.send('GI:' + self.number + ',00') def on(self, brightness=255): """Turn on GI string.""" if brightness >= 255: brightness = 255 self.log.debug('Turning On GI String to brightness %s', brightness) self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string( brightness)))
<mask token> class FASTGIString(GIPlatformInterface): """A FAST GI string in a WPC machine.""" def __init__(self, number, sender): """Initialise GI string. TODO: Need to implement the enable_relay and control which strings are dimmable. """ self.log = logging.getLogger('FASTGIString.0x' + str(number)) self.number = number self.send = sender def off(self): """Turn off GI string.""" self.log.debug('Turning Off GI String') self.send('GI:' + self.number + ',00') def on(self, brightness=255): """Turn on GI string.""" if brightness >= 255: brightness = 255 self.log.debug('Turning On GI String to brightness %s', brightness) self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string( brightness)))
<mask token> import logging from mpf.core.utility_functions import Util from mpf.platforms.interfaces.gi_platform_interface import GIPlatformInterface class FASTGIString(GIPlatformInterface): """A FAST GI string in a WPC machine.""" def __init__(self, number, sender): """Initialise GI string. TODO: Need to implement the enable_relay and control which strings are dimmable. """ self.log = logging.getLogger('FASTGIString.0x' + str(number)) self.number = number self.send = sender def off(self): """Turn off GI string.""" self.log.debug('Turning Off GI String') self.send('GI:' + self.number + ',00') def on(self, brightness=255): """Turn on GI string.""" if brightness >= 255: brightness = 255 self.log.debug('Turning On GI String to brightness %s', brightness) self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string( brightness)))
"""GI on fast.""" import logging from mpf.core.utility_functions import Util from mpf.platforms.interfaces.gi_platform_interface import GIPlatformInterface class FASTGIString(GIPlatformInterface): """A FAST GI string in a WPC machine.""" def __init__(self, number, sender): """Initialise GI string. TODO: Need to implement the enable_relay and control which strings are dimmable. """ self.log = logging.getLogger('FASTGIString.0x' + str(number)) self.number = number self.send = sender def off(self): """Turn off GI string.""" self.log.debug("Turning Off GI String") self.send('GI:' + self.number + ',00') def on(self, brightness=255): """Turn on GI string.""" if brightness >= 255: brightness = 255 self.log.debug("Turning On GI String to brightness %s", brightness) # self.send('GI:' + self.number + ',' + Util.int_to_hex_string(brightness)) self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string(brightness)))
[ 3, 4, 5, 6, 7 ]
2,178
93ec15a37bd5f022e8f6e226e3bf0e91cc0457c6
class Node: <mask token> class Solution(object): def postorder(self, root): """ :type root: Node :rtype: List[int] """ if not root: return [] if not root.children: return [root.val] result = [] for child in root.children: result += self.postorder(child) result += [root.val] return result <mask token>
class Node: def __init__(self, val, children): self.val = val self.children = children class Solution(object): def postorder(self, root): """ :type root: Node :rtype: List[int] """ if not root: return [] if not root.children: return [root.val] result = [] for child in root.children: result += self.postorder(child) result += [root.val] return result <mask token>
class Node: def __init__(self, val, children): self.val = val self.children = children class Solution(object): def postorder(self, root): """ :type root: Node :rtype: List[int] """ if not root: return [] if not root.children: return [root.val] result = [] for child in root.children: result += self.postorder(child) result += [root.val] return result <mask token> print(result)
class Node: def __init__(self, val, children): self.val = val self.children = children class Solution(object): def postorder(self, root): """ :type root: Node :rtype: List[int] """ if not root: return [] if not root.children: return [root.val] result = [] for child in root.children: result += self.postorder(child) result += [root.val] return result n5 = Node(5, None) n6 = Node(6, None) n3 = Node(2, None) n4 = Node(4, None) n2 = Node(3, [n5, n6]) n1 = Node(1, [n2, n3, n4]) s = Solution() result = s.postorder(n1) print(result)
# Definition for a Node. class Node: def __init__(self, val, children): self.val = val self.children = children class Solution(object): def postorder(self, root): """ :type root: Node :rtype: List[int] """ if not root: return([]) if not root.children: return([root.val]) result = [] for child in root.children: result += self.postorder(child) result += [root.val] return(result) n5 = Node(5,None) n6 = Node(6,None) n3 = Node(2,None) n4 = Node(4,None) n2 = Node(3,[n5,n6]) n1 = Node(1,[n2,n3,n4]) s = Solution() result = s.postorder(n1) print(result)
[ 3, 4, 5, 6, 7 ]
2,179
d4683d055ca70f31b050f0d84cb93c030feb4593
<mask token> def twitter_authenticate(): return <mask token> def get_tweets(): return
<mask token> def twitter_authenticate(): return <mask token> def remove_dupes(): return def get_tweets(): return
<mask token> def twitter_authenticate(): return def identify_dupes(): return def remove_dupes(): return def get_tweets(): return
import twitter def twitter_authenticate(): return def identify_dupes(): return def remove_dupes(): return def get_tweets(): return
import twitter def twitter_authenticate(): return; def identify_dupes(): return; def remove_dupes(): return; def get_tweets(): return;
[ 2, 3, 4, 5, 6 ]
2,180
445bb8ad8dadd207a3546f4623de583fc47a2910
<mask token>
<mask token> random.shuffle(listaAlunos) print('A ordem de apresentação será ', listaAlunos)
<mask token> aluno1 = input('Primeiro aluno: ') aluno2 = input('Segundo aluno: ') aluno3 = input('Terceiro aluno: ') aluno4 = input('Quarto aluno: ') listaAlunos = [aluno1, aluno2, aluno3, aluno4] random.shuffle(listaAlunos) print('A ordem de apresentação será ', listaAlunos)
import random aluno1 = input('Primeiro aluno: ') aluno2 = input('Segundo aluno: ') aluno3 = input('Terceiro aluno: ') aluno4 = input('Quarto aluno: ') listaAlunos = [aluno1, aluno2, aluno3, aluno4] random.shuffle(listaAlunos) print('A ordem de apresentação será ', listaAlunos)
# Exercício Python 20: O mesmo professor do desafio 19 quer sortear a ordem de apresentação de trabalhos dos alunos. Faça um programa que leia o nome dos quatro alunos e mostre a ordem sorteada. import random aluno1 = input('Primeiro aluno: ') aluno2 = input('Segundo aluno: ') aluno3 = input('Terceiro aluno: ') aluno4 = input('Quarto aluno: ') listaAlunos = [aluno1, aluno2, aluno3, aluno4] # o shuffle embaralha os dados da lista random.shuffle(listaAlunos) print('A ordem de apresentação será ', listaAlunos)
[ 0, 1, 2, 3, 4 ]
2,181
74be250df785590ecf45e048b0d6189e2b445889
<mask token>
print('HELLO3')
print("HELLO3")
null
null
[ 0, 1, 2 ]
2,182
351963bee76ecaa9fa5c8d659f6d7c6ca9b22531
<mask token>
<mask token> urlpatterns = [path('signup/', views.signup, name='signup'), path('home', views.home, name='home'), path('collab/', views.collab, name='collab')]
from django.urls import path from django.conf.urls.i18n import urlpatterns from . import views urlpatterns = [path('signup/', views.signup, name='signup'), path('home', views.home, name='home'), path('collab/', views.collab, name='collab')]
from django.urls import path from django.conf.urls.i18n import urlpatterns from . import views urlpatterns = [ path('signup/', views.signup, name='signup'), path('home', views.home, name='home'), path('collab/', views.collab, name='collab'), ]
null
[ 0, 1, 2, 3 ]
2,183
a05c94ae0ee41cfef5687f741e07a54ae793e40d
<mask token> def sql2df(query, session, chunksize=100000): """ Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу """ db = pd.read_sql(query, session, chunksize=chunksize) data = pd.DataFrame() for x in tqdm(db): data = pd.concat([data, x]) return data def check_config(): """ .twbcfg.ini to root path """ path = os.path.expanduser('~') config_path = os.path.join(path, '.twbcfg.ini') log_path = os.path.join(path, 'tmp', 'teradata_logs') if not os.path.exists(config_path): if not os.path.exists(log_path): os.mkdir(log_path) config = ( f"CheckpointDirectory='{log_path}' \n LogDirectory='{log_path}' " ) with open(config_path, 'w') as f: f.write(config) <mask token> def py2td(x): """Функция вставляет пропуски и корректирует тип данных под ТД""" x_type = type(x) if x_type == float: if x % 1 == 0: return int(x) else: return x elif x == 'null': return None else: return x <mask token>
<mask token> def get_session(db, usr, pwd): """Функция устанавливает соединение с ТД и возвращает сессию""" if platform.system() == 'Windows': driver = 'Teradata' else: driver = 'Teradata Database ODBC Driver 16.20' udaExec = teradata.UdaExec(appName='DataLoad', version='0.1', logConsole=False) session = udaExec.connect(method='odbc', system=db, username=usr, password=pwd, driver=driver, charset='UTF8', autoCommit='True', USEREGIONALSETTINGS='N', transactionMode='TERADATA') return session def sql2df(query, session, chunksize=100000): """ Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу """ db = pd.read_sql(query, session, chunksize=chunksize) data = pd.DataFrame() for x in tqdm(db): data = pd.concat([data, x]) return data def check_config(): """ .twbcfg.ini to root path """ path = os.path.expanduser('~') config_path = os.path.join(path, '.twbcfg.ini') log_path = os.path.join(path, 'tmp', 'teradata_logs') if not os.path.exists(config_path): if not os.path.exists(log_path): os.mkdir(log_path) config = ( f"CheckpointDirectory='{log_path}' \n LogDirectory='{log_path}' " ) with open(config_path, 'w') as f: f.write(config) <mask token> def py2td(x): """Функция вставляет пропуски и корректирует тип данных под ТД""" x_type = type(x) if x_type == float: if x % 1 == 0: return int(x) else: return x elif x == 'null': return None else: return x <mask token>
<mask token> def get_session(db, usr, pwd): """Функция устанавливает соединение с ТД и возвращает сессию""" if platform.system() == 'Windows': driver = 'Teradata' else: driver = 'Teradata Database ODBC Driver 16.20' udaExec = teradata.UdaExec(appName='DataLoad', version='0.1', logConsole=False) session = udaExec.connect(method='odbc', system=db, username=usr, password=pwd, driver=driver, charset='UTF8', autoCommit='True', USEREGIONALSETTINGS='N', transactionMode='TERADATA') return session def sql2df(query, session, chunksize=100000): """ Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу """ db = pd.read_sql(query, session, chunksize=chunksize) data = pd.DataFrame() for x in tqdm(db): data = pd.concat([data, x]) return data def check_config(): """ .twbcfg.ini to root path """ path = os.path.expanduser('~') config_path = os.path.join(path, '.twbcfg.ini') log_path = os.path.join(path, 'tmp', 'teradata_logs') if not os.path.exists(config_path): if not os.path.exists(log_path): os.mkdir(log_path) config = ( f"CheckpointDirectory='{log_path}' \n LogDirectory='{log_path}' " ) with open(config_path, 'w') as f: f.write(config) def td_download(query='', bd='tdsb15.cgs.sbrf.ru', username='', password='', fast=False, return_df=False, csv=True, chunksize=100000): """ Функция возвращает данные из ТД: путь к csv или датафрейм. fast=True - использовать утилиты ТД, False - ODBC; return_df - вернуть датафрейм; csv - записать данные в файл при fast=False; chunksize - размер бача для ODBC; query должен содержать where, чтобы выгрузить название столбцов из БД """ local_seed = str(random.randint(0, 1000000)) query = query.replace('\n', ' ') if not fast: session = get_session(bd, username, password) frame = sql2df(query, session, chunksize=chunksize) session.close() if return_df: return frame else: path_to_file = os.path.join(os.getcwd(), 'data', 'input_' + local_seed) if csv: filename = path_to_file + '.csv' frame.to_csv(filename, sep=';', index=False, encoding='utf8') return filename else: dump(frame, path_to_file) return path_to_file else: check_config() query = query.replace("'", "''") path_to_folder = os.path.join(os.getcwd(), 'data', 'input_' + local_seed) if os.path.exists(path_to_folder): shutil.rmtree(path_to_folder) os.mkdir(path_to_folder) else: os.mkdir(path_to_folder) path_to_file = os.path.join(path_to_folder, 'dataset.csv') open(path_to_file, 'w').close() txt = ( """SourceTdpId = '%s' ,SourceUserName = '%s' ,SourceUserPassword = '%s' ,DDLPrivateLogName = 'ddlprivate.log' ,ExportPrivateLogName = 'exportprivate.log' ,TargetErrorList = ['3807'] ,TargetFileName = '%s' ,TargetFormat = 'delimited' ,TargetTextDelimiter = ';' ,TargetOpenMode = 'write' ,SelectStmt = '%s' """ % (bd, username, password, path_to_file, query)) qtxt = """USING CHAR SET UTF-8 DEFINE JOB qstart2 ( APPLY TO OPERATOR ($FILE_WRITER) SELECT * FROM OPERATOR($EXPORT); );""" with open(path_to_folder + '/qstart2.txt', 'w+') as f: f.write(qtxt) with open(path_to_folder + '/jobvars.txt', 'w+') as f: f.write(txt) p = subprocess.run(shlex.split( f'tbuild -f {path_to_folder}/tdd.txt -v {path_to_folder}/jobvars.txt -j tdd_{str(local_seed)}' ), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) query = query.replace('\n', ' ').replace("''", "'") query = query.lower() query_list = query.split('where') if len(query_list) == 2: columns_query = ' where 1=0 and '.join(query_list) session = get_session(bd, username, password) columns_names = pd.read_sql(columns_query, session).columns.tolist( ) session.close() else: print("Coudn't load columns names") columns_names = None if not return_df: if columns_names: with open(path_to_folder + '/columns_names.txt', 'w') as f: f.write('\n'.join(columns_names)) return path_to_file else: if columns_names: frame = pd.read_csv(path_to_file, names=columns_names, delimiter=';') else: frame = pd.read_csv(path_to_file, header=None, delimiter=';') return frame def py2td(x): """Функция вставляет пропуски и корректирует тип данных под ТД""" x_type = type(x) if x_type == float: if x % 1 == 0: return int(x) else: return x elif x == 'null': return None else: return x def td_import(username='', password='', bd='tdsb15.cgs.sbrf.ru', tbl_name= '', schema='SBX_RETAIL_MP_PFM', loadframe=True, df=None, path_to_file= None, fast=False, batch_size=12000, max_sessions=6, buffersize=524288): """ Функция записывате данные в ТД через утилиты или ODBC """ table = schema + '.' + tbl_name if not fast: if not loadframe: df = pd.read_csv(path_to_file, sep=';', encoding='utf8', index= False) n_iters = len(df) // batch_size + (len(df) % batch_size > 0) df_dict = df.to_dict('records') session = get_session(bd, username, password) for i in tqdm(range(n_iters), total=n_iters): session.executemany( f"INSERT INTO {table} VALUES ({','.join(list('?' * df.shape[1]))})" , [list(row.values()) for row in df_dict[i * batch_size:i * batch_size + batch_size]], batch=True) session.close() else: check_config() local_seed = str(random.randint(0, 1000000)) path_to_folder = os.path.join(os.getcwd(), 'data', 'output_' + local_seed) if os.path.exists(path_to_folder): shutil.rmtree(path_to_folder) else: os.mkdir(path_to_folder) if loadframe: converted = df.replace(np.NaN, '').astype(str) path_to_file = path_to_folder + '/tmp.csv' converted.to_csv(path_to_file, index=False, header=False, sep= ';', encoding='utf8') converted_len = converted.apply(lambda x: x.str.encode('utf-8') .apply(len)).max().to_dict() else: converted_len = pd.read_csv(path_to_file, sep=';', dtype='str', header=None, encoding='utf8', low_memory=False, nrows=100000) columns_query = f'select * from {table} where 1=0' session = get_session(bd, username, password) columns_names = pd.read_sql(columns_query, session).columns.tolist( ) session.close() shutil.copy(path_to_file, path_to_folder + '/tmp.csv') converted_len.columns = columns_names converted_len = converted_len.apply(lambda x: x.str.encode( 'utf-8').apply(len)).max().to_dict() td_temp_table = table + '_tmp_' + local_seed session = get_session(bd, username, password) session.execute( f'create multiset table {td_temp_table} as {table} with no data no primary index' ) session.close() txt = f"""USING CHARACTER SET UTF8 DEFINE JOB teradata_upload Description 'Fastload script' ( DEFINE OPERATOR Load_operator TYPE LOAD SCHEMA * ATTRIBUTES ( VARCHAR TdPid='{bd}', VARCHAR UserName='{username}', VARCHAR UserPassWord='{password}', VARCHAR TargetTable='{td_temp_table}', VARCHAR LogTable='{schema}.usr_tpt_log', VARCHAR DateForm='AnsiDate', INTEGER MaxSessions={max_sessions} ); DEFINE SCHEMA Define_Employee_Schema ( {','.join(f'{key} VARCHAR({max(1, value * 2)})' for key, value in converted_len.items())} ); DEFINE OPERATOR Producer_File_Detail TYPE DATACONNECTOR PRODUCER SCHEMA Define_Employee_Schema ATTRIBUTES ( VARCHAR DirectoryPath='{path_to_folder}/' , VARCHAR FileName='tmp.csv' , VARCHAR TextDelimiter=';' , VARCHAR QuotedData = 'Optional' , VARCHAR OpenQuoteMark = '"' , VARCHAR CloseQuoteMark = '"' , VARCHAR Format='Delimited' , VARCHAR OpenMode='Read' , VARCHAR INDICATORMODE='N' , INTEGER BUFFERSIZE = {buffersize} ); APPLY ( 'INSERT INTO {td_temp_table}({','.join(f'{key}' for key, value in converted_len.items())}) VALUES (:{',:'.join(f'{key}' for key, value in converted_len.items())});' ) TO OPERATOR(Load_operator) SELECT * FROM OPERATOR (Producer_File_Detail); );""" with open(path_to_folder + '/load_code.tpt', 'w+') as f: f.write(txt) p = subprocess.Popen(shlex.split( f'tbuild -f {path_to_folder}/load_code.tpt -L {path_to_folder}')) p.wait() print('Merging in Teradata... \r', end='', flush=True) session = get_session(bd, username, password) session.execute(f'insert into {table} sel * from {td_temp_table}') session.close() print('Cleaning... \r', end='', flush=True) session = get_session(bd, username, password) session.execute(f'drop table {td_temp_table}') session.close() shutil.rmtree(path_to_folder) print('Done!')
import os import numpy as np import pandas as pd import random import platform import subprocess import shlex import teradata from joblib import dump import shutil from tqdm import tqdm def get_session(db, usr, pwd): """Функция устанавливает соединение с ТД и возвращает сессию""" if platform.system() == 'Windows': driver = 'Teradata' else: driver = 'Teradata Database ODBC Driver 16.20' udaExec = teradata.UdaExec(appName='DataLoad', version='0.1', logConsole=False) session = udaExec.connect(method='odbc', system=db, username=usr, password=pwd, driver=driver, charset='UTF8', autoCommit='True', USEREGIONALSETTINGS='N', transactionMode='TERADATA') return session def sql2df(query, session, chunksize=100000): """ Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу """ db = pd.read_sql(query, session, chunksize=chunksize) data = pd.DataFrame() for x in tqdm(db): data = pd.concat([data, x]) return data def check_config(): """ .twbcfg.ini to root path """ path = os.path.expanduser('~') config_path = os.path.join(path, '.twbcfg.ini') log_path = os.path.join(path, 'tmp', 'teradata_logs') if not os.path.exists(config_path): if not os.path.exists(log_path): os.mkdir(log_path) config = ( f"CheckpointDirectory='{log_path}' \n LogDirectory='{log_path}' " ) with open(config_path, 'w') as f: f.write(config) def td_download(query='', bd='tdsb15.cgs.sbrf.ru', username='', password='', fast=False, return_df=False, csv=True, chunksize=100000): """ Функция возвращает данные из ТД: путь к csv или датафрейм. fast=True - использовать утилиты ТД, False - ODBC; return_df - вернуть датафрейм; csv - записать данные в файл при fast=False; chunksize - размер бача для ODBC; query должен содержать where, чтобы выгрузить название столбцов из БД """ local_seed = str(random.randint(0, 1000000)) query = query.replace('\n', ' ') if not fast: session = get_session(bd, username, password) frame = sql2df(query, session, chunksize=chunksize) session.close() if return_df: return frame else: path_to_file = os.path.join(os.getcwd(), 'data', 'input_' + local_seed) if csv: filename = path_to_file + '.csv' frame.to_csv(filename, sep=';', index=False, encoding='utf8') return filename else: dump(frame, path_to_file) return path_to_file else: check_config() query = query.replace("'", "''") path_to_folder = os.path.join(os.getcwd(), 'data', 'input_' + local_seed) if os.path.exists(path_to_folder): shutil.rmtree(path_to_folder) os.mkdir(path_to_folder) else: os.mkdir(path_to_folder) path_to_file = os.path.join(path_to_folder, 'dataset.csv') open(path_to_file, 'w').close() txt = ( """SourceTdpId = '%s' ,SourceUserName = '%s' ,SourceUserPassword = '%s' ,DDLPrivateLogName = 'ddlprivate.log' ,ExportPrivateLogName = 'exportprivate.log' ,TargetErrorList = ['3807'] ,TargetFileName = '%s' ,TargetFormat = 'delimited' ,TargetTextDelimiter = ';' ,TargetOpenMode = 'write' ,SelectStmt = '%s' """ % (bd, username, password, path_to_file, query)) qtxt = """USING CHAR SET UTF-8 DEFINE JOB qstart2 ( APPLY TO OPERATOR ($FILE_WRITER) SELECT * FROM OPERATOR($EXPORT); );""" with open(path_to_folder + '/qstart2.txt', 'w+') as f: f.write(qtxt) with open(path_to_folder + '/jobvars.txt', 'w+') as f: f.write(txt) p = subprocess.run(shlex.split( f'tbuild -f {path_to_folder}/tdd.txt -v {path_to_folder}/jobvars.txt -j tdd_{str(local_seed)}' ), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) query = query.replace('\n', ' ').replace("''", "'") query = query.lower() query_list = query.split('where') if len(query_list) == 2: columns_query = ' where 1=0 and '.join(query_list) session = get_session(bd, username, password) columns_names = pd.read_sql(columns_query, session).columns.tolist( ) session.close() else: print("Coudn't load columns names") columns_names = None if not return_df: if columns_names: with open(path_to_folder + '/columns_names.txt', 'w') as f: f.write('\n'.join(columns_names)) return path_to_file else: if columns_names: frame = pd.read_csv(path_to_file, names=columns_names, delimiter=';') else: frame = pd.read_csv(path_to_file, header=None, delimiter=';') return frame def py2td(x): """Функция вставляет пропуски и корректирует тип данных под ТД""" x_type = type(x) if x_type == float: if x % 1 == 0: return int(x) else: return x elif x == 'null': return None else: return x def td_import(username='', password='', bd='tdsb15.cgs.sbrf.ru', tbl_name= '', schema='SBX_RETAIL_MP_PFM', loadframe=True, df=None, path_to_file= None, fast=False, batch_size=12000, max_sessions=6, buffersize=524288): """ Функция записывате данные в ТД через утилиты или ODBC """ table = schema + '.' + tbl_name if not fast: if not loadframe: df = pd.read_csv(path_to_file, sep=';', encoding='utf8', index= False) n_iters = len(df) // batch_size + (len(df) % batch_size > 0) df_dict = df.to_dict('records') session = get_session(bd, username, password) for i in tqdm(range(n_iters), total=n_iters): session.executemany( f"INSERT INTO {table} VALUES ({','.join(list('?' * df.shape[1]))})" , [list(row.values()) for row in df_dict[i * batch_size:i * batch_size + batch_size]], batch=True) session.close() else: check_config() local_seed = str(random.randint(0, 1000000)) path_to_folder = os.path.join(os.getcwd(), 'data', 'output_' + local_seed) if os.path.exists(path_to_folder): shutil.rmtree(path_to_folder) else: os.mkdir(path_to_folder) if loadframe: converted = df.replace(np.NaN, '').astype(str) path_to_file = path_to_folder + '/tmp.csv' converted.to_csv(path_to_file, index=False, header=False, sep= ';', encoding='utf8') converted_len = converted.apply(lambda x: x.str.encode('utf-8') .apply(len)).max().to_dict() else: converted_len = pd.read_csv(path_to_file, sep=';', dtype='str', header=None, encoding='utf8', low_memory=False, nrows=100000) columns_query = f'select * from {table} where 1=0' session = get_session(bd, username, password) columns_names = pd.read_sql(columns_query, session).columns.tolist( ) session.close() shutil.copy(path_to_file, path_to_folder + '/tmp.csv') converted_len.columns = columns_names converted_len = converted_len.apply(lambda x: x.str.encode( 'utf-8').apply(len)).max().to_dict() td_temp_table = table + '_tmp_' + local_seed session = get_session(bd, username, password) session.execute( f'create multiset table {td_temp_table} as {table} with no data no primary index' ) session.close() txt = f"""USING CHARACTER SET UTF8 DEFINE JOB teradata_upload Description 'Fastload script' ( DEFINE OPERATOR Load_operator TYPE LOAD SCHEMA * ATTRIBUTES ( VARCHAR TdPid='{bd}', VARCHAR UserName='{username}', VARCHAR UserPassWord='{password}', VARCHAR TargetTable='{td_temp_table}', VARCHAR LogTable='{schema}.usr_tpt_log', VARCHAR DateForm='AnsiDate', INTEGER MaxSessions={max_sessions} ); DEFINE SCHEMA Define_Employee_Schema ( {','.join(f'{key} VARCHAR({max(1, value * 2)})' for key, value in converted_len.items())} ); DEFINE OPERATOR Producer_File_Detail TYPE DATACONNECTOR PRODUCER SCHEMA Define_Employee_Schema ATTRIBUTES ( VARCHAR DirectoryPath='{path_to_folder}/' , VARCHAR FileName='tmp.csv' , VARCHAR TextDelimiter=';' , VARCHAR QuotedData = 'Optional' , VARCHAR OpenQuoteMark = '"' , VARCHAR CloseQuoteMark = '"' , VARCHAR Format='Delimited' , VARCHAR OpenMode='Read' , VARCHAR INDICATORMODE='N' , INTEGER BUFFERSIZE = {buffersize} ); APPLY ( 'INSERT INTO {td_temp_table}({','.join(f'{key}' for key, value in converted_len.items())}) VALUES (:{',:'.join(f'{key}' for key, value in converted_len.items())});' ) TO OPERATOR(Load_operator) SELECT * FROM OPERATOR (Producer_File_Detail); );""" with open(path_to_folder + '/load_code.tpt', 'w+') as f: f.write(txt) p = subprocess.Popen(shlex.split( f'tbuild -f {path_to_folder}/load_code.tpt -L {path_to_folder}')) p.wait() print('Merging in Teradata... \r', end='', flush=True) session = get_session(bd, username, password) session.execute(f'insert into {table} sel * from {td_temp_table}') session.close() print('Cleaning... \r', end='', flush=True) session = get_session(bd, username, password) session.execute(f'drop table {td_temp_table}') session.close() shutil.rmtree(path_to_folder) print('Done!')
import os import numpy as np import pandas as pd import random import platform import subprocess import shlex import teradata from joblib import dump import shutil from tqdm import tqdm def get_session(db, usr, pwd): """Функция устанавливает соединение с ТД и возвращает сессию""" if platform.system() == 'Windows': driver = 'Teradata' else: driver = 'Teradata Database ODBC Driver 16.20' udaExec = teradata.UdaExec(appName='DataLoad', version='0.1', logConsole=False) session = udaExec.connect(method='odbc', system=db, # Сервер ТД из файла username=usr, # Логин TD password=pwd, # Пароль TD driver = driver, charset='UTF8', autoCommit='True', USEREGIONALSETTINGS='N', transactionMode = 'TERADATA' ) return session def sql2df(query, session, chunksize=100000): """ Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу """ db = pd.read_sql(query, session, chunksize=chunksize) data = pd.DataFrame() for x in tqdm(db): data = pd.concat([data, x]) return data def check_config(): """ .twbcfg.ini to root path """ path = os.path.expanduser("~") config_path = os.path.join(path, ".twbcfg.ini") log_path = os.path.join(path, "tmp", "teradata_logs") if not os.path.exists(config_path): if not os.path.exists(log_path): os.mkdir(log_path) config = f'''CheckpointDirectory='{log_path}' LogDirectory='{log_path}' ''' with open(config_path, 'w') as f: f.write(config) def td_download(query="", bd="tdsb15.cgs.sbrf.ru", username="", password="", fast=False, return_df=False, csv=True, chunksize=100000): """ Функция возвращает данные из ТД: путь к csv или датафрейм. fast=True - использовать утилиты ТД, False - ODBC; return_df - вернуть датафрейм; csv - записать данные в файл при fast=False; chunksize - размер бача для ODBC; query должен содержать where, чтобы выгрузить название столбцов из БД """ local_seed = str(random.randint(0, 1000000)) query = query.replace("\n", " ") if not fast: # Teradata python package session = get_session(bd, username, password) frame = sql2df(query, session, chunksize=chunksize) session.close() if return_df: return frame else: path_to_file = os.path.join(os.getcwd(), 'data', 'input_' + local_seed) if csv: filename = path_to_file + ".csv" frame.to_csv(filename, sep=';', index=False, encoding="utf8") return filename else: dump(frame, path_to_file) return path_to_file else: # FastLoad check_config() query = query.replace("'", "''") # prepair query for FastLoad path_to_folder = os.path.join(os.getcwd(), 'data', 'input_' + local_seed) if os.path.exists(path_to_folder): shutil.rmtree(path_to_folder) os.mkdir(path_to_folder) else: os.mkdir(path_to_folder) path_to_file = os.path.join(path_to_folder, 'dataset.csv') open(path_to_file, 'w').close() # Create utility files txt = '''SourceTdpId = '%s' ,SourceUserName = '%s' ,SourceUserPassword = '%s' ,DDLPrivateLogName = 'ddlprivate.log' ,ExportPrivateLogName = 'exportprivate.log' ,TargetErrorList = ['3807'] ,TargetFileName = '%s' ,TargetFormat = 'delimited' ,TargetTextDelimiter = ';' ,TargetOpenMode = 'write' ,SelectStmt = '%s' ''' % (bd, username, password, path_to_file, query) qtxt = '''USING CHAR SET UTF-8 DEFINE JOB qstart2 ( APPLY TO OPERATOR ($FILE_WRITER) SELECT * FROM OPERATOR($EXPORT); );''' with open(path_to_folder + '/qstart2.txt', 'w+') as f: f.write(qtxt) with open(path_to_folder + '/jobvars.txt', 'w+') as f: f.write(txt) # run FastLoad # p = subprocess.Popen( # shlex.split(f"tbuild -f {path_to_folder}/qstart2.txt -v {path_to_folder}/jobvars.txt -j qstart2") # ) # p.wait() p = subprocess.run( shlex.split(f"tbuild -f {path_to_folder}/tdd.txt -v {path_to_folder}/jobvars.txt -j tdd_{str(local_seed)}"), stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) # columns names query = query.replace("\n", " ").replace("''","'") query = query.lower() query_list = query.split("where") if len(query_list) == 2: columns_query = " where 1=0 and ".join(query_list) session = get_session(bd, username, password) columns_names = pd.read_sql(columns_query, session).columns.tolist() session.close() else: print("Coudn't load columns names") columns_names = None if not return_df: if columns_names: with open(path_to_folder + '/columns_names.txt', 'w') as f: f.write("\n".join(columns_names)) return path_to_file else: if columns_names: frame = pd.read_csv(path_to_file, names=columns_names, delimiter=';') else: frame = pd.read_csv(path_to_file, header=None, delimiter=';') return frame def py2td(x): """Функция вставляет пропуски и корректирует тип данных под ТД""" x_type = type(x) if x_type == float: if x % 1 == 0: return int(x) else: return x elif x == 'null': return None else: return x def td_import( username="", password="", bd="tdsb15.cgs.sbrf.ru", tbl_name="", schema="SBX_RETAIL_MP_PFM", loadframe=True, df=None, path_to_file=None, fast=False, batch_size=12000, max_sessions=6, buffersize=524288, ): """ Функция записывате данные в ТД через утилиты или ODBC """ table = schema + "." + tbl_name if not fast: if not loadframe: df = pd.read_csv(path_to_file, sep=';', encoding='utf8', index=False) # insert n_iters = len(df) // batch_size + (len(df) % batch_size > 0) df_dict = df.to_dict('records') session = get_session(bd, username, password) for i in tqdm(range(n_iters), total=n_iters): session.executemany( f"INSERT INTO {table} VALUES ({','.join(list('?' * df.shape[1]))})", [list(row.values()) for row in df_dict[i * batch_size:i * batch_size + batch_size]], batch=True ) session.close() else: check_config() local_seed = str(random.randint(0, 1000000)) path_to_folder = os.path.join(os.getcwd(), "data", "output_" + local_seed) if os.path.exists(path_to_folder): shutil.rmtree(path_to_folder) else: os.mkdir(path_to_folder) if loadframe: converted = df.replace(np.NaN, '').astype(str) path_to_file = path_to_folder + '/tmp.csv' converted.to_csv(path_to_file, index=False, header=False, sep=";", encoding="utf8") converted_len = converted.apply(lambda x: x.str.encode('utf-8').apply(len)).max().to_dict() else: converted_len = pd.read_csv(path_to_file, sep=';', dtype="str", header=None, encoding="utf8", low_memory=False, nrows=100000) columns_query = f"select * from {table} where 1=0" session = get_session(bd, username, password) columns_names = pd.read_sql(columns_query, session).columns.tolist() session.close() shutil.copy(path_to_file, path_to_folder + "/tmp.csv") # cp file for correct working Change to move& converted_len.columns = columns_names converted_len = converted_len.apply(lambda x: x.str.encode('utf-8').apply(len)).max().to_dict() # create empty tmp table td_temp_table = table + "_tmp_" + local_seed # change schema session = get_session(bd, username, password) session.execute( f"create multiset table {td_temp_table} as {table} with no data no primary index" ) session.close() # Create utility file txt = f"""USING CHARACTER SET UTF8 DEFINE JOB teradata_upload Description 'Fastload script' ( DEFINE OPERATOR Load_operator TYPE LOAD SCHEMA * ATTRIBUTES ( VARCHAR TdPid='{bd}', VARCHAR UserName='{username}', VARCHAR UserPassWord='{password}', VARCHAR TargetTable='{td_temp_table}', VARCHAR LogTable='{schema}.usr_tpt_log', VARCHAR DateForm='AnsiDate', INTEGER MaxSessions={max_sessions} ); DEFINE SCHEMA Define_Employee_Schema ( {','.join(f'{key} VARCHAR({max(1, value*2)})' for key, value in converted_len.items())} ); DEFINE OPERATOR Producer_File_Detail TYPE DATACONNECTOR PRODUCER SCHEMA Define_Employee_Schema ATTRIBUTES ( VARCHAR DirectoryPath='{path_to_folder}/' , VARCHAR FileName='tmp.csv' , VARCHAR TextDelimiter=';' , VARCHAR QuotedData = 'Optional' , VARCHAR OpenQuoteMark = '"' , VARCHAR CloseQuoteMark = '"' , VARCHAR Format='Delimited' , VARCHAR OpenMode='Read' , VARCHAR INDICATORMODE='N' , INTEGER BUFFERSIZE = {buffersize} ); APPLY ( 'INSERT INTO {td_temp_table}({','.join( f'{key}' for key, value in converted_len.items())}) VALUES (:{',:'.join( f'{key}' for key, value in converted_len.items())});' ) TO OPERATOR(Load_operator) SELECT * FROM OPERATOR (Producer_File_Detail); );""" with open(path_to_folder + '/load_code.tpt', 'w+') as f: f.write(txt) # Start TPT load p = subprocess.Popen( shlex.split(f"tbuild -f {path_to_folder}/load_code.tpt -L {path_to_folder}") ) p.wait() # Merge print("Merging in Teradata... \r", end='', flush=True) session = get_session(bd, username, password) session.execute(f"insert into {table} sel * from {td_temp_table}") session.close() # Drop temporary table print("Cleaning... \r", end='', flush=True) session = get_session(bd, username, password) session.execute(f"drop table {td_temp_table}") session.close() # Cleanup shutil.rmtree(path_to_folder) print("Done!")
[ 3, 4, 6, 7, 8 ]
2,184
30b07e57737ac29643769c4773591199b2ba8656
<mask token> def groupby_count(df, groupby_column, count_column): new_df = pd.DataFrame(df.groupby(groupby_column)[count_column].count()) new_df.columns = ['count'] new_df[groupby_column] = new_df.index.get_level_values(0) new_df.reset_index(drop=True, inplace=True) return new_df <mask token> def process_num(num): return float(re.sub('[^\\w\\s.]', '', num)) <mask token>
<mask token> def groupby_count(df, groupby_column, count_column): new_df = pd.DataFrame(df.groupby(groupby_column)[count_column].count()) new_df.columns = ['count'] new_df[groupby_column] = new_df.index.get_level_values(0) new_df.reset_index(drop=True, inplace=True) return new_df <mask token> def process_num(num): return float(re.sub('[^\\w\\s.]', '', num)) <mask token> for table in tables: rows = table.find_all('tr') for row in rows: cells = row.find_all('td') if len(cells) > 1: Franchise = cells[1] film.append(Franchise.text.strip()) Gross = cells[6] gross.append(process_num(Gross.text.strip())) first = cells[7] year.append(int(first.text)) <mask token> clean_TMDB_movies.dropna(inplace=True) <mask token> movies_discretized['percent_profit'] <mask token> movies_discretized.drop(columns=['day', 'release_date'], inplace=True) <mask token> for movie in movies_discretized['production_companies']: if 'Universal' in movie: production_company.append('Universal') elif 'Sony' in movie: production_company.append('Sony') elif 'Fox' in movie: production_company.append('Fox') elif 'DreamWorks' in movie: production_company.append('DW') elif 'MGM' in movie: production_company.append('MGM') elif 'Paramount' in movie: production_company.append('Paramount') elif 'Disney' in movie: production_company.append('Disney') elif 'Warner Bros' in movie: production_company.append('WB') else: production_company.append('None') <mask token> movies_discretized_count_df.drop(['counts', 'production_company_count'], axis=1, inplace=True) <mask token> movies_discretized_count_df_week.drop(['counts', 'week_count'], axis=1, inplace=True) <mask token> clean_IMDb.dropna(inplace=True) <mask token> IMDb_movies_genre.sort_values(['count'], ascending=[False], inplace=True) <mask token> print(revenue_covid) <mask token> print(AMC_revenue.head()) plt.plot(AMC_revenue.Year, AMC_revenue.Money, 'o') plt.title('AMC revenue over 15 years') plt.xlabel('Year') plt.ylabel('Revenue') plt.show()
<mask token> def groupby_count(df, groupby_column, count_column): new_df = pd.DataFrame(df.groupby(groupby_column)[count_column].count()) new_df.columns = ['count'] new_df[groupby_column] = new_df.index.get_level_values(0) new_df.reset_index(drop=True, inplace=True) return new_df url = 'https://en.wikipedia.org/wiki/Film_series' html = urlopen(url) soup = BeautifulSoup(html, 'html.parser') tables = soup.find_all('table') def process_num(num): return float(re.sub('[^\\w\\s.]', '', num)) num1 = float(re.sub('[^\\w\\s.]', '', '1,156.30')) gross = [] year = [] film = [] for table in tables: rows = table.find_all('tr') for row in rows: cells = row.find_all('td') if len(cells) > 1: Franchise = cells[1] film.append(Franchise.text.strip()) Gross = cells[6] gross.append(process_num(Gross.text.strip())) first = cells[7] year.append(int(first.text)) movie_df = pd.DataFrame({'Gross': gross, 'first': year, 'Franchise': film}) movies_TMDB_kaggle = pd.read_csv( 'C:/Users/lewis/OneDrive/Documents/MovieData/tmdb_5000_movies.csv', encoding='ISO-8859-1') clean_TMDB_movies = movies_TMDB_kaggle.drop(columns=['homepage', 'id', 'overview', 'status', 'tagline', 'original_title']) clean_TMDB_movies.dropna(inplace=True) clean_TMDB_movies = clean_TMDB_movies[clean_TMDB_movies['budget'] != 0] clean_TMDB_movies = clean_TMDB_movies[clean_TMDB_movies['revenue'] != 0] clean_TMDB_movies['profit'] = clean_TMDB_movies['revenue'] - clean_TMDB_movies[ 'budget'] clean_TMDB_movies['percent_profit'] = clean_TMDB_movies['profit' ] / clean_TMDB_movies['budget'] * 100 clean_TMDB_movies['release_date'] = pd.to_datetime(clean_TMDB_movies[ 'release_date']) clean_TMDB_movies['month'], clean_TMDB_movies['day'] = clean_TMDB_movies[ 'release_date'].dt.month, clean_TMDB_movies['release_date'].dt.day cat = list(range(1, 13)) clean_TMDB_movies['month'] = pd.Categorical(clean_TMDB_movies['month'], ordered=True, categories=cat) categories = ['very_low', 'low', 'high', 'very_high'] movies_discretized = clean_TMDB_movies movies_discretized['budget'] = pd.cut(movies_discretized['budget'], [0, 13000000, 30000000, 62192550, 400000000], labels=categories) movies_discretized['revenue'] = pd.cut(movies_discretized['revenue'], [0, 21458200, 62954020, 187976900, 2887965000], labels=categories) categories_profit = ['negative', 'low', 'high', 'very_high'] movies_discretized['profit'] = pd.cut(movies_discretized['profit'], [- 165710100, 0, 29314900, 140784100, 2560965000], labels=categories_profit) movies_discretized['vote_average'] = pd.cut(movies_discretized[ 'vote_average'], [0, 6, 6.5, 7, 8.5], labels=categories) movies_discretized['vote_count'] = pd.cut(movies_discretized['vote_count'], [0, 440, 1151, 2522, 14000], labels=categories) movies_discretized['percent_profit'] = pd.cut(movies_discretized[ 'percent_profit'], [-100, 0, 108, 436, 6528], labels=categories_profit) movies_discretized['percent_profit'] categories_weeks = ['week_1', 'week_2', 'week_3', 'week_4'] movies_discretized['week'] = pd.cut(movies_discretized['day'], [0, 8, 15, 22, 32], labels=categories_weeks) movies_discretized.drop(columns=['day', 'release_date'], inplace=True) production_company = [] for movie in movies_discretized['production_companies']: if 'Universal' in movie: production_company.append('Universal') elif 'Sony' in movie: production_company.append('Sony') elif 'Fox' in movie: production_company.append('Fox') elif 'DreamWorks' in movie: production_company.append('DW') elif 'MGM' in movie: production_company.append('MGM') elif 'Paramount' in movie: production_company.append('Paramount') elif 'Disney' in movie: production_company.append('Disney') elif 'Warner Bros' in movie: production_company.append('WB') else: production_company.append('None') movies_discretized['main_production'] = production_company movies_discretized_count = movies_discretized.groupby(['main_production', 'percent_profit'])['main_production'].count() movies_discretized_count_df = pd.DataFrame(movies_discretized_count) movies_discretized_count_df.columns = ['counts'] movies_discretized_count_df['production_company' ] = movies_discretized_count_df.index.get_level_values(0) movies_discretized_count_df['percent_profit_category' ] = movies_discretized_count_df.index.get_level_values(1) movies_discretized_count_df = movies_discretized_count_df.reset_index(drop=True ) production_company_discretized_count_df = movies_discretized_count_df.groupby([ 'production_company'])['counts'].sum() movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company'] movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'DW'], 82) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Disney'], 116) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Fox'], 298) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'MGM'], 87) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'None'], 1782) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Paramount'], 235) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Sony'], 42) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Universal'], 282) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'WB'], 269) movies_discretized_count_df['percent'] = movies_discretized_count_df['counts' ] / movies_discretized_count_df['production_company_count'] * 100 movies_discretized_count_df.drop(['counts', 'production_company_count'], axis=1, inplace=True) movies_discretized_count_week = movies_discretized.groupby(['week', 'percent_profit'])['week'].count() movies_discretized_count_df_week = pd.DataFrame(movies_discretized_count_week) movies_discretized_count_df_week.columns = ['counts'] movies_discretized_count_df_week['week' ] = movies_discretized_count_df_week.index.get_level_values(0) movies_discretized_count_df_week['percent_profit_category' ] = movies_discretized_count_df_week.index.get_level_values(1) movies_discretized_count_df_week = (movies_discretized_count_df_week. reset_index(drop=True)) sum_discretized_count_df_week = movies_discretized_count_df_week.groupby([ 'week'])['counts'].sum() movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week'] movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].replace(['week_1'], 783) movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].replace(['week_2'], 817) movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].replace(['week_3'], 782) movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].replace(['week_4'], 811) movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].astype(np.int64) movies_discretized_count_df_week['percent'] = movies_discretized_count_df_week[ 'counts'] / movies_discretized_count_df_week['week_count'] * 100 movies_discretized_count_df_week.drop(['counts', 'week_count'], axis=1, inplace=True) movies_IMDb = pd.read_csv( 'C:/Users/lewis/OneDrive/Documents/MovieData/IMDb_movies.csv') clean_IMDb = movies_IMDb.drop(columns=['imdb_title_id', 'original_title', 'description', 'reviews_from_users', 'reviews_from_critics']) clean_IMDb.dropna(inplace=True) IMDb_movies_genre = groupby_count(clean_IMDb, 'genre', 'genre') IMDb_movies_genre.sort_values(['count'], ascending=[False], inplace=True) revenue_covid = pd.read_csv( 'C:/Users/lewis/OneDrive/Documents/MovieData/revenue_covid_impact.csv') print(revenue_covid) AMC_revenue = pd.read_csv('C:/Users/lewis/OneDrive/Documents/MovieData/AMC.csv' ) print(AMC_revenue.head()) plt.plot(AMC_revenue.Year, AMC_revenue.Money, 'o') plt.title('AMC revenue over 15 years') plt.xlabel('Year') plt.ylabel('Revenue') plt.show()
<mask token> import csv import pandas as pd import re import statistics import matplotlib.pyplot as plt import numpy as np from bs4 import BeautifulSoup from urllib.request import urlopen def groupby_count(df, groupby_column, count_column): new_df = pd.DataFrame(df.groupby(groupby_column)[count_column].count()) new_df.columns = ['count'] new_df[groupby_column] = new_df.index.get_level_values(0) new_df.reset_index(drop=True, inplace=True) return new_df url = 'https://en.wikipedia.org/wiki/Film_series' html = urlopen(url) soup = BeautifulSoup(html, 'html.parser') tables = soup.find_all('table') def process_num(num): return float(re.sub('[^\\w\\s.]', '', num)) num1 = float(re.sub('[^\\w\\s.]', '', '1,156.30')) gross = [] year = [] film = [] for table in tables: rows = table.find_all('tr') for row in rows: cells = row.find_all('td') if len(cells) > 1: Franchise = cells[1] film.append(Franchise.text.strip()) Gross = cells[6] gross.append(process_num(Gross.text.strip())) first = cells[7] year.append(int(first.text)) movie_df = pd.DataFrame({'Gross': gross, 'first': year, 'Franchise': film}) movies_TMDB_kaggle = pd.read_csv( 'C:/Users/lewis/OneDrive/Documents/MovieData/tmdb_5000_movies.csv', encoding='ISO-8859-1') clean_TMDB_movies = movies_TMDB_kaggle.drop(columns=['homepage', 'id', 'overview', 'status', 'tagline', 'original_title']) clean_TMDB_movies.dropna(inplace=True) clean_TMDB_movies = clean_TMDB_movies[clean_TMDB_movies['budget'] != 0] clean_TMDB_movies = clean_TMDB_movies[clean_TMDB_movies['revenue'] != 0] clean_TMDB_movies['profit'] = clean_TMDB_movies['revenue'] - clean_TMDB_movies[ 'budget'] clean_TMDB_movies['percent_profit'] = clean_TMDB_movies['profit' ] / clean_TMDB_movies['budget'] * 100 clean_TMDB_movies['release_date'] = pd.to_datetime(clean_TMDB_movies[ 'release_date']) clean_TMDB_movies['month'], clean_TMDB_movies['day'] = clean_TMDB_movies[ 'release_date'].dt.month, clean_TMDB_movies['release_date'].dt.day cat = list(range(1, 13)) clean_TMDB_movies['month'] = pd.Categorical(clean_TMDB_movies['month'], ordered=True, categories=cat) categories = ['very_low', 'low', 'high', 'very_high'] movies_discretized = clean_TMDB_movies movies_discretized['budget'] = pd.cut(movies_discretized['budget'], [0, 13000000, 30000000, 62192550, 400000000], labels=categories) movies_discretized['revenue'] = pd.cut(movies_discretized['revenue'], [0, 21458200, 62954020, 187976900, 2887965000], labels=categories) categories_profit = ['negative', 'low', 'high', 'very_high'] movies_discretized['profit'] = pd.cut(movies_discretized['profit'], [- 165710100, 0, 29314900, 140784100, 2560965000], labels=categories_profit) movies_discretized['vote_average'] = pd.cut(movies_discretized[ 'vote_average'], [0, 6, 6.5, 7, 8.5], labels=categories) movies_discretized['vote_count'] = pd.cut(movies_discretized['vote_count'], [0, 440, 1151, 2522, 14000], labels=categories) movies_discretized['percent_profit'] = pd.cut(movies_discretized[ 'percent_profit'], [-100, 0, 108, 436, 6528], labels=categories_profit) movies_discretized['percent_profit'] categories_weeks = ['week_1', 'week_2', 'week_3', 'week_4'] movies_discretized['week'] = pd.cut(movies_discretized['day'], [0, 8, 15, 22, 32], labels=categories_weeks) movies_discretized.drop(columns=['day', 'release_date'], inplace=True) production_company = [] for movie in movies_discretized['production_companies']: if 'Universal' in movie: production_company.append('Universal') elif 'Sony' in movie: production_company.append('Sony') elif 'Fox' in movie: production_company.append('Fox') elif 'DreamWorks' in movie: production_company.append('DW') elif 'MGM' in movie: production_company.append('MGM') elif 'Paramount' in movie: production_company.append('Paramount') elif 'Disney' in movie: production_company.append('Disney') elif 'Warner Bros' in movie: production_company.append('WB') else: production_company.append('None') movies_discretized['main_production'] = production_company movies_discretized_count = movies_discretized.groupby(['main_production', 'percent_profit'])['main_production'].count() movies_discretized_count_df = pd.DataFrame(movies_discretized_count) movies_discretized_count_df.columns = ['counts'] movies_discretized_count_df['production_company' ] = movies_discretized_count_df.index.get_level_values(0) movies_discretized_count_df['percent_profit_category' ] = movies_discretized_count_df.index.get_level_values(1) movies_discretized_count_df = movies_discretized_count_df.reset_index(drop=True ) production_company_discretized_count_df = movies_discretized_count_df.groupby([ 'production_company'])['counts'].sum() movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company'] movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'DW'], 82) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Disney'], 116) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Fox'], 298) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'MGM'], 87) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'None'], 1782) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Paramount'], 235) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Sony'], 42) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'Universal'], 282) movies_discretized_count_df['production_company_count' ] = movies_discretized_count_df['production_company_count'].replace([ 'WB'], 269) movies_discretized_count_df['percent'] = movies_discretized_count_df['counts' ] / movies_discretized_count_df['production_company_count'] * 100 movies_discretized_count_df.drop(['counts', 'production_company_count'], axis=1, inplace=True) movies_discretized_count_week = movies_discretized.groupby(['week', 'percent_profit'])['week'].count() movies_discretized_count_df_week = pd.DataFrame(movies_discretized_count_week) movies_discretized_count_df_week.columns = ['counts'] movies_discretized_count_df_week['week' ] = movies_discretized_count_df_week.index.get_level_values(0) movies_discretized_count_df_week['percent_profit_category' ] = movies_discretized_count_df_week.index.get_level_values(1) movies_discretized_count_df_week = (movies_discretized_count_df_week. reset_index(drop=True)) sum_discretized_count_df_week = movies_discretized_count_df_week.groupby([ 'week'])['counts'].sum() movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week'] movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].replace(['week_1'], 783) movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].replace(['week_2'], 817) movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].replace(['week_3'], 782) movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].replace(['week_4'], 811) movies_discretized_count_df_week['week_count' ] = movies_discretized_count_df_week['week_count'].astype(np.int64) movies_discretized_count_df_week['percent'] = movies_discretized_count_df_week[ 'counts'] / movies_discretized_count_df_week['week_count'] * 100 movies_discretized_count_df_week.drop(['counts', 'week_count'], axis=1, inplace=True) movies_IMDb = pd.read_csv( 'C:/Users/lewis/OneDrive/Documents/MovieData/IMDb_movies.csv') clean_IMDb = movies_IMDb.drop(columns=['imdb_title_id', 'original_title', 'description', 'reviews_from_users', 'reviews_from_critics']) clean_IMDb.dropna(inplace=True) IMDb_movies_genre = groupby_count(clean_IMDb, 'genre', 'genre') IMDb_movies_genre.sort_values(['count'], ascending=[False], inplace=True) revenue_covid = pd.read_csv( 'C:/Users/lewis/OneDrive/Documents/MovieData/revenue_covid_impact.csv') print(revenue_covid) AMC_revenue = pd.read_csv('C:/Users/lewis/OneDrive/Documents/MovieData/AMC.csv' ) print(AMC_revenue.head()) plt.plot(AMC_revenue.Year, AMC_revenue.Money, 'o') plt.title('AMC revenue over 15 years') plt.xlabel('Year') plt.ylabel('Revenue') plt.show()
# -*- coding: utf-8 -*- """ Created on Thu Sep 9 18:52:17 2021 @author: lewis """ import csv import pandas as pd import re import statistics import matplotlib.pyplot as plt import numpy as np from bs4 import BeautifulSoup from urllib.request import urlopen #Creating a function that groups by, counts, creates a new column from the index, drops the index and changes the column names def groupby_count(df, groupby_column, count_column): new_df = pd.DataFrame(df.groupby(groupby_column)[count_column].count()) new_df.columns = ['count'] new_df[groupby_column] = new_df.index.get_level_values(0) new_df.reset_index(drop = True, inplace = True) return(new_df) url = 'https://en.wikipedia.org/wiki/Film_series' html = urlopen(url) soup = BeautifulSoup(html, 'html.parser') tables = soup.find_all('table') #Create a function to process the string into an integer by using re.sub() def process_num(num): return float(re.sub(r'[^\w\s.]','',num)) #test function num1 = float(re.sub(r'[^\w\s.]','','1,156.30')) #print(num1) #Create array to hold the data extracted gross=[] year=[] film=[] for table in tables: rows = table.find_all('tr') for row in rows: cells = row.find_all('td') if len(cells) > 1: Franchise = cells[1] film.append(Franchise.text.strip()) Gross = cells[6] gross.append(process_num(Gross.text.strip())) first = cells[7] year.append(int(first.text)) # put the data in the pandas dataframe movie_df= pd.DataFrame({'Gross': gross, 'first': year, 'Franchise': film }) #print(movie_df) #print(movie_df.dtypes) #movies_df_count = movie_df.groupby(["Franchise", "first"])["first"].count() #print(movies_df_count) #WIKI_df=movie_df.groupby(["first"])["first"].count() #print(WIKI_df) #WIKI_df.plot(kind='bar',x='first',y='count') #plt.title("Most Movies Release count by Year(Top 68 on WIKI)",fontsize=20) #TMDB Kaggle Data movies_TMDB_kaggle= pd.read_csv(r'C:/Users/lewis/OneDrive/Documents/MovieData/tmdb_5000_movies.csv', encoding= 'ISO-8859-1') #print(len(movies_TMDB_kaggle)) #result 4803 and 20 columns #print(movies_TMDB_kaggle.isnull().sum()) #tagline and homepage has the most NaN, unnecessary columns #Clean the dataframe, removed any unnecessary columns clean_TMDB_movies= movies_TMDB_kaggle.drop(columns=['homepage', 'id', 'overview', 'status', 'tagline', 'original_title']) #print(clean_TMDB_movies) #result 4803 rows and 14 columns #print(clean_TMDB_movies.isnull().sum()) # NaNs in the release_date and runtime column clean_TMDB_movies.dropna(inplace= True) #print(clean_TMDB_movies.isnull().sum()) #Removing any movie that has a budget of 0 clean_TMDB_movies = clean_TMDB_movies[clean_TMDB_movies['budget'] != 0] #Removing any movie with a revenue of 0 clean_TMDB_movies = clean_TMDB_movies[clean_TMDB_movies['revenue'] != 0] #review the profit for each movie therefore a profit column was created clean_TMDB_movies['profit'] = clean_TMDB_movies['revenue'] - clean_TMDB_movies['budget'] #Creating a percent profit column in order to compare profits. clean_TMDB_movies['percent_profit'] = clean_TMDB_movies['profit']/clean_TMDB_movies['budget']*100 #print the top five #print(clean_TMDB_movies.head()) #checking the data types #print(clean_TMDB_movies.dtypes) #change release_date to the date/time and separate it by month, day, and year clean_TMDB_movies['release_date'] = pd.to_datetime(clean_TMDB_movies['release_date']) clean_TMDB_movies['month'], clean_TMDB_movies['day'] = clean_TMDB_movies['release_date'].dt.month, clean_TMDB_movies['release_date'].dt.day #After new columns were added it is time to concat. cat = list(range(1,13)) #Changing the month data type from int to ordered category clean_TMDB_movies['month'] = pd.Categorical(clean_TMDB_movies['month'], ordered = True, categories = cat) #confirmation #print(clean_TMDB_movies.month.dtype) #print(len(clean_TMDB_movies)) #print(clean_TMDB_movies.describe()) #print(clean_TMDB_movies.revenue.describe()) #print(clean_TMDB_movies.profit.describe()) #print(clean_TMDB_movies.vote_count.describe()) #print(clean_TMDB_movies.percent_profit.describe()) #discretize the budget column categories = ["very_low", "low", "high", "very_high"] #saving the clean_TMDB df as a discretized df movies_discretized = clean_TMDB_movies #creating a budget cutoff using pandas cut function movies_discretized["budget"] = pd.cut(movies_discretized["budget"], [0, 13000000, 30000000, 62192550, 400000000], labels = categories) #repeat the step for revenue #print(movies_discretized.revenue.describe()) movies_discretized["revenue"] = pd.cut(movies_discretized["revenue"], [0, 21458200, 62954020, 187976900, 2887965000], labels = categories) #profit categories_profit = ["negative", "low", "high", "very_high"] movies_discretized["profit"] = pd.cut(movies_discretized["profit"], [-165710100 , 0, 29314900, 140784100, 2560965000], labels = categories_profit) #print(movies_discretized["profit"].head()) #Vote_average-very_low: vote averages less than 6, low are between 6 to 6.5, high between 6.5 and 7 and very_high 7 and 8.5 movies_discretized["vote_average"] = pd.cut(movies_discretized["vote_average"], [0, 6, 6.5, 7, 8.5], labels = categories) #print(movies_discretized["vote_average"].head()) #Vote_count movies_discretized["vote_count"] = pd.cut(movies_discretized["vote_count"], [0, 440, 1151, 2522, 14000], labels = categories) #print(movies_discretized["vote_count"].head()) #percent_profit movies_discretized["percent_profit"] = pd.cut(movies_discretized["percent_profit"], [-100, 0, 108, 436, 6528], labels = categories_profit) movies_discretized["percent_profit"] #Categorizing days into weeks #print(movies_discretized.day.describe()) categories_weeks = ["week_1", "week_2", "week_3", "week_4"] movies_discretized["week"] = pd.cut(movies_discretized["day"], [0, 8, 15, 22, 32], labels = categories_weeks) #print(movies_discretized["week"].head()) #day and release_date are no longer needed columns movies_discretized.drop(columns=['day', 'release_date'], inplace = True) #print(movies_discretized.head()) #Do major production companies have an impact the profit margin? production_company = [] for movie in movies_discretized['production_companies']: if "Universal" in movie: production_company.append("Universal") elif "Sony" in movie: production_company.append("Sony") elif "Fox" in movie: production_company.append("Fox") elif "DreamWorks" in movie: production_company.append("DW") elif "MGM" in movie: production_company.append("MGM") elif "Paramount" in movie: production_company.append("Paramount") elif "Disney" in movie: production_company.append("Disney") elif "Warner Bros" in movie: production_company.append("WB") else: production_company.append("None") movies_discretized["main_production"] = production_company #print(movies_discretized["main_production"].head()) movies_discretized_count = movies_discretized.groupby(["main_production", "percent_profit"])["main_production"].count() movies_discretized_count_df= pd.DataFrame(movies_discretized_count) #print(movies_discretized_count_df) #change the last column to count instead of main production movies_discretized_count_df.columns = ["counts"] #print(movies_discretized_count_df.head()) #total count for the number of percent_profit counts for each main production. movies_discretized_count_df["production_company"]=movies_discretized_count_df.index.get_level_values(0) movies_discretized_count_df["percent_profit_category"] = movies_discretized_count_df.index.get_level_values(1) #print(movies_discretized_count_df) #drop the indexes to create another column with the sum of the counts of each production movies_discretized_count_df = movies_discretized_count_df.reset_index(drop = True) #The sum of each production company category. production_company_discretized_count_df = movies_discretized_count_df.groupby(["production_company"])["counts"].sum() #print(production_company_discretized_count_df) #column with the overall counts for each production, construct a new column called production company count that replicates the production company, and then use the replace function to replace the 1s and 2s with the total count movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company"] #Now replacing the income level with the total count for each income level movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company_count"].replace(["DW"], 82) movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company_count"].replace(["Disney"], 116) movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company_count"].replace(["Fox"], 298) movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company_count"].replace(["MGM"], 87) movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company_count"].replace(["None"], 1782) movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company_count"].replace(["Paramount"], 235) movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company_count"].replace(["Sony"], 42) movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company_count"].replace(["Universal"], 282) movies_discretized_count_df["production_company_count"] = movies_discretized_count_df["production_company_count"].replace(["WB"], 269) #print(movies_discretized_count_df) #percentage movies_discretized_count_df["percent"] = movies_discretized_count_df["counts"]/movies_discretized_count_df["production_company_count"] *100 #print(movies_discretized_count_df.head()) #dropping production_company_count and count column no longer needed movies_discretized_count_df.drop(["counts", "production_company_count"], axis = 1, inplace = True ) #graphing question 1 using Matplot lib #graph = movies_discretized_count_df.pivot("production_company", "percent_profit_category","percent").plot(kind="bar", color= ['blue', 'green', 'purple', 'red'], title='Profit Margin amongst Production Companies') #change the x and y axis for graph #plt.ylabel("Percent Profit") #plt.xlabel("Production") #plt.xticks(rotation = 0) #position the legends underneath the graph; Now the graph looks beautiful #plt.legend( loc = "lower center", bbox_to_anchor = (.5, -.4), ncol = 4, title = "Percent Profit Category") #plt.show() #Question 2: Is it true that the month in which a film is released has an impact on its profit margin? movies_discretized_count_week = movies_discretized.groupby(["week", "percent_profit"])["week"].count() movies_discretized_count_df_week = pd.DataFrame(movies_discretized_count_week) #Checking the dataframe #print(movies_discretized_count_df_week) #changing column that is labeled week to count movies_discretized_count_df_week.columns = ["counts"] #total count for the number of % profit for each week movies_discretized_count_df_week["week"]=movies_discretized_count_df_week.index.get_level_values(0) movies_discretized_count_df_week["percent_profit_category"] = movies_discretized_count_df_week.index.get_level_values(1) #print(movies_discretized_count_df_week) movies_discretized_count_df_week = movies_discretized_count_df_week.reset_index(drop = True) #drop the index #what is the sum of each production sum_discretized_count_df_week = movies_discretized_count_df_week.groupby(["week"])["counts"].sum() #print(sum_discretized_count_df_week) #the sums are centered around 700-800s movies_discretized_count_df_week["week_count"] = movies_discretized_count_df_week["week"] #Now replacing the income level with the total count for each income level movies_discretized_count_df_week["week_count"] = movies_discretized_count_df_week["week_count"].replace(["week_1"], 783) movies_discretized_count_df_week["week_count"] = movies_discretized_count_df_week["week_count"].replace(["week_2"], 817) movies_discretized_count_df_week["week_count"] = movies_discretized_count_df_week["week_count"].replace(["week_3"], 782) movies_discretized_count_df_week["week_count"] = movies_discretized_count_df_week["week_count"].replace(["week_4"], 811) #print(movies_discretized_count_df_week.head()) #received an error Object with dtype category cannot perform the numpy op true_divide movies_discretized_count_df_week["week_count"]= movies_discretized_count_df_week["week_count"].astype(np.int64) #convert into percentage; counts/week_count * 100 movies_discretized_count_df_week["percent"] = movies_discretized_count_df_week["counts"]/movies_discretized_count_df_week["week_count"] *100 #print(movies_discretized_count_df_week.head()) #dropping the week_count and count column since the percent column is there those columns are no longer needed movies_discretized_count_df_week.drop(["counts", "week_count"], axis = 1, inplace = True ) #Time to create a visual #graph_question_2 = movies_discretized_count_df_week.pivot("week", "percent_profit_category", "percent").plot(kind="bar", color = ["blue", "green", "purple", "red"], title = "Impact of Percent Profit by Week") #plt.ylabel("Percent") #plt.xlabel("Week") #plt.xticks(rotation = 0) #plt.legend( loc = "lower center", bbox_to_anchor = (.5, -.4), ncol = 4, title = "Percent Profit") #plt.show() #IMDb Kaggle Data movies_IMDb= pd.read_csv(r'C:/Users/lewis/OneDrive/Documents/MovieData/IMDb_movies.csv') clean_IMDb= movies_IMDb.drop(columns=['imdb_title_id','original_title','description', 'reviews_from_users', 'reviews_from_critics']) #print(clean_IMDb) #85,855 rows and 17 columns #print(clean_IMDb.isnull().sum()) clean_IMDb.dropna(inplace = True) #drop all the NaNs #print(clean_IMDb.isnull().sum()) #no more NaNs #print(len(clean_IMDb)) #6635 #print(clean_IMDb.dtypes) # QUESTION 3: How does budget impact vote average? #plt.plot(clean_IMDb.budget, clean_IMDb.avg_vote, 'o') #plt.title('How does Budget Impact Vote Average?') #plt.xlabel('Budget') #plt.ylabel('Vote Average') #plt.show() #print(clean_IMDb['budget'].head()) #print the top five #print(clean_IMDb.head()) #Using the groupby_count function that takes the following arguments (df, groupby_column, count_column) IMDb_movies_genre = groupby_count(clean_IMDb, 'genre', 'genre') #Sorting the df, so the bar graph will be in descending order IMDb_movies_genre.sort_values(['count'], ascending=[False], inplace = True) #Statista movie theatre revenue and prediction to 2025 post COVID saving to a pd dataframe revenue_covid= pd.read_csv(r'C:/Users/lewis/OneDrive/Documents/MovieData/revenue_covid_impact.csv') print(revenue_covid) AMC_revenue= pd.read_csv(r'C:/Users/lewis/OneDrive/Documents/MovieData/AMC.csv') #print(AMC_revenue) #print(AMC_revenue.info()) print(AMC_revenue.head()) #During 2020, AMC Theatres reported annual revenues of 1.24 billion U.S. dollars, a dramatic decrease from previous years as a consequence of the COVID-19 pandemic. plt.plot(AMC_revenue.Year, AMC_revenue.Money, 'o') plt.title('AMC revenue over 15 years') plt.xlabel('Year') plt.ylabel('Revenue') plt.show() #Global box office revenue coronavirus impact 2020-2025 #revenue_covid.plot(x="Year", y=["Originalforecast", "Marchrevision", "Julyrevision"], kind="bar") #plt.show()
[ 2, 3, 4, 5, 6 ]
2,185
fb64003c1acbddcbe952a17edcbf293a54ef28ae
<mask token> class InowasFlopyCalculationAdapter: <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def __init__(self, version, data, uuid): self._mf_data = data.get('mf') self._mt_data = data.get('mt') self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get('write_input'): self.write_input_model(self._mf) if self._mf_data.get('run_model'): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get('write_input'): self.write_input_model(self._mt) if self._mt_data.get('run_model'): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data['packages']: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content <mask token> @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() <mask token> def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() <mask token> def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response <mask token>
<mask token> class InowasFlopyCalculationAdapter: <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def __init__(self, version, data, uuid): self._mf_data = data.get('mf') self._mt_data = data.get('mt') self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get('write_input'): self.write_input_model(self._mf) if self._mf_data.get('run_model'): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get('write_input'): self.write_input_model(self._mt) if self._mt_data.get('run_model'): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data['packages']: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content <mask token> @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() @staticmethod def run_model(model): print('Run the %s model' % model) print(model.namefile) print(model.exe_name) success, report = model.run_model(report=True, silent=True) return ' \n'.join(str(e) for e in report + [success]) def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() def create_package(self, name, content): if name == 'mf': self._mf = MfAdapter(content).get_package() if name == 'dis': DisAdapter(content).get_package(self._mf) if name == 'bas' or name == 'bas6': BasAdapter(content).get_package(self._mf) if name == 'lpf': LpfAdapter(content).get_package(self._mf) if name == 'upw': UpwAdapter(content).get_package(self._mf) if name == 'pcg': PcgAdapter(content).get_package(self._mf) if name == 'nwt': NwtAdapter(content).get_package(self._mf) if name == 'oc': OcAdapter(content).get_package(self._mf) if name == 'riv': RivAdapter(content).get_package(self._mf) if name == 'wel': WelAdapter(content).get_package(self._mf) if name == 'rch': RchAdapter(content).get_package(self._mf) if name == 'chd': ChdAdapter(content).get_package(self._mf) if name == 'ghb': GhbAdapter(content).get_package(self._mf) if name == 'lmt': LmtAdapter(content).get_package(self._mf) if name == 'mt': self._mt = MtAdapter(content).get_package(self._mf) if name == 'adv': AdvAdapter(content).get_package(self._mt) if name == 'btn': BtnAdapter(content).get_package(self._mt) if name == 'dsp': DspAdapter(content).get_package(self._mt) if name == 'gcg': GcgAdapter(content).get_package(self._mt) if name == 'lkt': LktAdapter(content).get_package(self._mt) if name == 'phc': PhcAdapter(content).get_package(self._mt) if name == 'rct': RctAdapter(content).get_package(self._mt) if name == 'sft': SftAdapter(content).get_package(self._mt) if name == 'ssm': SsmAdapter(content).get_package(self._mt) if name == 'tob': TobAdapter(content).get_package(self._mt) if name == 'uzt': UztAdapter(content).get_package(self._mt) def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response <mask token>
<mask token> class InowasFlopyCalculationAdapter: <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def __init__(self, version, data, uuid): self._mf_data = data.get('mf') self._mt_data = data.get('mt') self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get('write_input'): self.write_input_model(self._mf) if self._mf_data.get('run_model'): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get('write_input'): self.write_input_model(self._mt) if self._mt_data.get('run_model'): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data['packages']: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content def create_model(self, package_order, package_content): for package in package_order: if package in package_content: print('Create Flopy Package: %s' % package) self.create_package(package, package_content[package]) @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() @staticmethod def run_model(model): print('Run the %s model' % model) print(model.namefile) print(model.exe_name) success, report = model.run_model(report=True, silent=True) return ' \n'.join(str(e) for e in report + [success]) def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() def create_package(self, name, content): if name == 'mf': self._mf = MfAdapter(content).get_package() if name == 'dis': DisAdapter(content).get_package(self._mf) if name == 'bas' or name == 'bas6': BasAdapter(content).get_package(self._mf) if name == 'lpf': LpfAdapter(content).get_package(self._mf) if name == 'upw': UpwAdapter(content).get_package(self._mf) if name == 'pcg': PcgAdapter(content).get_package(self._mf) if name == 'nwt': NwtAdapter(content).get_package(self._mf) if name == 'oc': OcAdapter(content).get_package(self._mf) if name == 'riv': RivAdapter(content).get_package(self._mf) if name == 'wel': WelAdapter(content).get_package(self._mf) if name == 'rch': RchAdapter(content).get_package(self._mf) if name == 'chd': ChdAdapter(content).get_package(self._mf) if name == 'ghb': GhbAdapter(content).get_package(self._mf) if name == 'lmt': LmtAdapter(content).get_package(self._mf) if name == 'mt': self._mt = MtAdapter(content).get_package(self._mf) if name == 'adv': AdvAdapter(content).get_package(self._mt) if name == 'btn': BtnAdapter(content).get_package(self._mt) if name == 'dsp': DspAdapter(content).get_package(self._mt) if name == 'gcg': GcgAdapter(content).get_package(self._mt) if name == 'lkt': LktAdapter(content).get_package(self._mt) if name == 'phc': PhcAdapter(content).get_package(self._mt) if name == 'rct': RctAdapter(content).get_package(self._mt) if name == 'sft': SftAdapter(content).get_package(self._mt) if name == 'ssm': SsmAdapter(content).get_package(self._mt) if name == 'tob': TobAdapter(content).get_package(self._mt) if name == 'uzt': UztAdapter(content).get_package(self._mt) def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response <mask token>
<mask token> from .BasAdapter import BasAdapter from .ChdAdapter import ChdAdapter from .DisAdapter import DisAdapter from .GhbAdapter import GhbAdapter from .LpfAdapter import LpfAdapter from .MfAdapter import MfAdapter from .NwtAdapter import NwtAdapter from .OcAdapter import OcAdapter from .PcgAdapter import PcgAdapter from .RchAdapter import RchAdapter from .RivAdapter import RivAdapter from .ReadBudget import ReadBudget from .ReadDrawdown import ReadDrawdown from .ReadHead import ReadHead from .UpwAdapter import UpwAdapter from .WelAdapter import WelAdapter from .LmtAdapter import LmtAdapter from .MtAdapter import MtAdapter from .AdvAdapter import AdvAdapter from .BtnAdapter import BtnAdapter from .DspAdapter import DspAdapter from .GcgAdapter import GcgAdapter from .LktAdapter import LktAdapter from .PhcAdapter import PhcAdapter from .RctAdapter import RctAdapter from .SftAdapter import SftAdapter from .SsmAdapter import SsmAdapter from .TobAdapter import TobAdapter from .UztAdapter import UztAdapter class InowasFlopyCalculationAdapter: """The Flopy Class""" _version = None _uuid = None _mf = None _mt = None _report = '' mf_package_order = ['mf', 'dis', 'bas', 'bas6', 'riv', 'wel', 'rch', 'chd', 'ghb', 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6'] mt_package_order = ['mt', 'btn', 'adv', 'dsp', 'gcg', 'ssm', 'lkt', 'phc', 'rct', 'sft', 'tob', 'uzt'] def __init__(self, version, data, uuid): self._mf_data = data.get('mf') self._mt_data = data.get('mt') self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get('write_input'): self.write_input_model(self._mf) if self._mf_data.get('run_model'): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get('write_input'): self.write_input_model(self._mt) if self._mt_data.get('run_model'): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data['packages']: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content def create_model(self, package_order, package_content): for package in package_order: if package in package_content: print('Create Flopy Package: %s' % package) self.create_package(package, package_content[package]) @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() @staticmethod def run_model(model): print('Run the %s model' % model) print(model.namefile) print(model.exe_name) success, report = model.run_model(report=True, silent=True) return ' \n'.join(str(e) for e in report + [success]) def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() def create_package(self, name, content): if name == 'mf': self._mf = MfAdapter(content).get_package() if name == 'dis': DisAdapter(content).get_package(self._mf) if name == 'bas' or name == 'bas6': BasAdapter(content).get_package(self._mf) if name == 'lpf': LpfAdapter(content).get_package(self._mf) if name == 'upw': UpwAdapter(content).get_package(self._mf) if name == 'pcg': PcgAdapter(content).get_package(self._mf) if name == 'nwt': NwtAdapter(content).get_package(self._mf) if name == 'oc': OcAdapter(content).get_package(self._mf) if name == 'riv': RivAdapter(content).get_package(self._mf) if name == 'wel': WelAdapter(content).get_package(self._mf) if name == 'rch': RchAdapter(content).get_package(self._mf) if name == 'chd': ChdAdapter(content).get_package(self._mf) if name == 'ghb': GhbAdapter(content).get_package(self._mf) if name == 'lmt': LmtAdapter(content).get_package(self._mf) if name == 'mt': self._mt = MtAdapter(content).get_package(self._mf) if name == 'adv': AdvAdapter(content).get_package(self._mt) if name == 'btn': BtnAdapter(content).get_package(self._mt) if name == 'dsp': DspAdapter(content).get_package(self._mt) if name == 'gcg': GcgAdapter(content).get_package(self._mt) if name == 'lkt': LktAdapter(content).get_package(self._mt) if name == 'phc': PhcAdapter(content).get_package(self._mt) if name == 'rct': RctAdapter(content).get_package(self._mt) if name == 'sft': SftAdapter(content).get_package(self._mt) if name == 'ssm': SsmAdapter(content).get_package(self._mt) if name == 'tob': TobAdapter(content).get_package(self._mt) if name == 'uzt': UztAdapter(content).get_package(self._mt) def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response def response_message(self): return self._report
""" This module is an intermediate layer between flopy version 3.2 and the inowas-modflow-configuration format. Author: Ralf Junghanns EMail: [email protected] """ from .BasAdapter import BasAdapter from .ChdAdapter import ChdAdapter from .DisAdapter import DisAdapter from .GhbAdapter import GhbAdapter from .LpfAdapter import LpfAdapter from .MfAdapter import MfAdapter from .NwtAdapter import NwtAdapter from .OcAdapter import OcAdapter from .PcgAdapter import PcgAdapter from .RchAdapter import RchAdapter from .RivAdapter import RivAdapter from .ReadBudget import ReadBudget from .ReadDrawdown import ReadDrawdown from .ReadHead import ReadHead from .UpwAdapter import UpwAdapter from .WelAdapter import WelAdapter from .LmtAdapter import LmtAdapter from .MtAdapter import MtAdapter from .AdvAdapter import AdvAdapter from .BtnAdapter import BtnAdapter from .DspAdapter import DspAdapter from .GcgAdapter import GcgAdapter from .LktAdapter import LktAdapter from .PhcAdapter import PhcAdapter from .RctAdapter import RctAdapter from .SftAdapter import SftAdapter from .SsmAdapter import SsmAdapter from .TobAdapter import TobAdapter from .UztAdapter import UztAdapter class InowasFlopyCalculationAdapter: """The Flopy Class""" _version = None _uuid = None _mf = None _mt = None _report = '' mf_package_order = [ 'mf', 'dis', 'bas', 'bas6', 'riv', 'wel', 'rch', 'chd', 'ghb', 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6' ] mt_package_order = [ "mt", "btn", "adv", "dsp", "gcg", "ssm", "lkt", "phc", "rct", "sft", "tob", "uzt" ] def __init__(self, version, data, uuid): self._mf_data = data.get("mf") self._mt_data = data.get("mt") self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get("write_input"): self.write_input_model(self._mf) if self._mf_data.get("run_model"): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get("write_input"): self.write_input_model(self._mt) if self._mt_data.get("run_model"): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data["packages"]: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content def create_model(self, package_order, package_content): for package in package_order: if package in package_content: print('Create Flopy Package: %s' % package) self.create_package(package, package_content[package]) @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() @staticmethod def run_model(model): print('Run the %s model' % model) print(model.namefile) print(model.exe_name) success, report = model.run_model(report=True, silent=True) return ' \n'.join(str(e) for e in report + [success]) def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() def create_package(self, name, content): # Modlfow packages if name == 'mf': self._mf = MfAdapter(content).get_package() if name == 'dis': DisAdapter(content).get_package(self._mf) if name == 'bas' or name == 'bas6': BasAdapter(content).get_package(self._mf) if name == 'lpf': LpfAdapter(content).get_package(self._mf) if name == 'upw': UpwAdapter(content).get_package(self._mf) if name == 'pcg': PcgAdapter(content).get_package(self._mf) if name == 'nwt': NwtAdapter(content).get_package(self._mf) if name == 'oc': OcAdapter(content).get_package(self._mf) if name == 'riv': RivAdapter(content).get_package(self._mf) if name == 'wel': WelAdapter(content).get_package(self._mf) if name == 'rch': RchAdapter(content).get_package(self._mf) if name == 'chd': ChdAdapter(content).get_package(self._mf) if name == 'ghb': GhbAdapter(content).get_package(self._mf) if name == 'lmt': LmtAdapter(content).get_package(self._mf) # MT3D packages if name == 'mt': self._mt = MtAdapter(content).get_package(self._mf) if name == 'adv': AdvAdapter(content).get_package(self._mt) if name == 'btn': BtnAdapter(content).get_package(self._mt) if name == 'dsp': DspAdapter(content).get_package(self._mt) if name == 'gcg': GcgAdapter(content).get_package(self._mt) if name == 'lkt': LktAdapter(content).get_package(self._mt) if name == 'phc': PhcAdapter(content).get_package(self._mt) if name == 'rct': RctAdapter(content).get_package(self._mt) if name == 'sft': SftAdapter(content).get_package(self._mt) if name == 'ssm': SsmAdapter(content).get_package(self._mt) if name == 'tob': TobAdapter(content).get_package(self._mt) if name == 'uzt': UztAdapter(content).get_package(self._mt) def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response def response_message(self): return self._report
[ 6, 8, 9, 13, 14 ]
2,186
4cc138016cb1f82e12c76c185be19188d3e38bf9
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('api', '0006_order_date')] operations = [migrations.RemoveField(model_name='order', name='product' ), migrations.AddField(model_name='order', name='product', field= models.ManyToManyField(to='api.Product')), migrations.AlterField( model_name='order', name='status', field=models.TextField(default= 'неплачено', max_length=50))]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('api', '0006_order_date')] operations = [migrations.RemoveField(model_name='order', name='product' ), migrations.AddField(model_name='order', name='product', field= models.ManyToManyField(to='api.Product')), migrations.AlterField( model_name='order', name='status', field=models.TextField(default= 'неплачено', max_length=50))]
# Generated by Django 3.0.5 on 2020-04-25 12:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0006_order_date'), ] operations = [ migrations.RemoveField( model_name='order', name='product', ), migrations.AddField( model_name='order', name='product', field=models.ManyToManyField(to='api.Product'), ), migrations.AlterField( model_name='order', name='status', field=models.TextField(default='неплачено', max_length=50), ), ]
[ 0, 1, 2, 3, 4 ]
2,187
77b7a0ae115aa063512ea7d6e91811470a4cf9d0
str = 'Hello world' print ("字符串长度 : %d" %(len(str))) print("字符串的长度 444:",len(str)) print (str) print (str[0]) print (str[1:5]) print (str[:len(str)]) print (str[1:]*3) print (str[1:]*5) print ('字符串拼接') print ("Hello" + "world") #print ("python : str.join Test") str1 = "-" print (str1.join(str)) list = [1,2,3,4] for a in str : print ("当前字母:",a) n = 0 for s in list : print ("list[%d] :%d" %(n++,s));
null
null
null
null
[ 0 ]
2,188
cdb07241e08f8ac85a427c5b2bc3effca3917c85
<mask token> def main(): print('Output') <mask token>
<mask token> def main(): print('Output') <mask token> if __name__ == '__main__': main() <mask token> print('Run time: {}'.format(end - start))
<mask token> def main(): print('Output') start = time.time() if __name__ == '__main__': main() end = time.time() print('Run time: {}'.format(end - start))
<mask token> import time def main(): print('Output') start = time.time() if __name__ == '__main__': main() end = time.time() print('Run time: {}'.format(end - start))
# -*- coding: utf-8 -*- """ Project Euler - Problem XX ... """ # Imports import time # Global variables # Lamda functions # Functions # Main functions def main(): print('Output') # Execute code start = time.time() if __name__ == "__main__": main() end = time.time() print('Run time: {}'.format(end - start))
[ 1, 2, 3, 4, 5 ]
2,189
b1b478965ad939a98478b19b4a94f3250167e25a
<mask token> def show_examples(images_base, labels_base, index_list, output_path): results = [] for index in tqdm(index_list): img = cv2.imread(os.path.join(images_base, index + '.jpg')) lab = np.array(Image.open(os.path.join(labels_base, index + '.png') ).convert('P')) results += np.unique(lab).tolist() return list(set(results)) def get_info(label_dir): label_path = glob('%s/*' % label_dir) total_area = [] total_number = [] for label_name in tqdm(label_path): lab = np.array(Image.open(label_name).convert('P')) masks = [(lab == v) for v in range(21)] zz = np.mean(masks, axis=(1, 2)) total_area.append(zz.copy()) zz[zz > 0] = 1 total_number.append(zz) print(np.sum(total_number, axis=0)) print(np.sum(total_area, axis=0)) <mask token>
<mask token> def get_index(path): """ get the length of index for voc2012 dataset. path: the index of train,val or test path """ with open(path, 'r') as f: zz = f.readlines() return [index.split('\n')[0] for index in zz] def show_examples(images_base, labels_base, index_list, output_path): results = [] for index in tqdm(index_list): img = cv2.imread(os.path.join(images_base, index + '.jpg')) lab = np.array(Image.open(os.path.join(labels_base, index + '.png') ).convert('P')) results += np.unique(lab).tolist() return list(set(results)) def get_info(label_dir): label_path = glob('%s/*' % label_dir) total_area = [] total_number = [] for label_name in tqdm(label_path): lab = np.array(Image.open(label_name).convert('P')) masks = [(lab == v) for v in range(21)] zz = np.mean(masks, axis=(1, 2)) total_area.append(zz.copy()) zz[zz > 0] = 1 total_number.append(zz) print(np.sum(total_number, axis=0)) print(np.sum(total_area, axis=0)) <mask token>
<mask token> np.set_printoptions(precision=3, suppress=True) def get_index(path): """ get the length of index for voc2012 dataset. path: the index of train,val or test path """ with open(path, 'r') as f: zz = f.readlines() return [index.split('\n')[0] for index in zz] def show_examples(images_base, labels_base, index_list, output_path): results = [] for index in tqdm(index_list): img = cv2.imread(os.path.join(images_base, index + '.jpg')) lab = np.array(Image.open(os.path.join(labels_base, index + '.png') ).convert('P')) results += np.unique(lab).tolist() return list(set(results)) def get_info(label_dir): label_path = glob('%s/*' % label_dir) total_area = [] total_number = [] for label_name in tqdm(label_path): lab = np.array(Image.open(label_name).convert('P')) masks = [(lab == v) for v in range(21)] zz = np.mean(masks, axis=(1, 2)) total_area.append(zz.copy()) zz[zz > 0] = 1 total_number.append(zz) print(np.sum(total_number, axis=0)) print(np.sum(total_area, axis=0)) if __name__ == '__main__': import shutil output_dir = 'visual_results' if os.path.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir) index_dir = '/data/VOCdevkit/VOC2012/ImageSets/Segmentation' imge_dir = '/data/VOCdevkit/VOC2012/JPEGImages' label_dir = '/data/VOCdevkit/VOC2012/SegmentationClass' print('train_index:', len(get_index(os.path.join(index_dir, 'train.txt')))) print('val_index:', len(get_index(os.path.join(index_dir, 'val.txt')))) print('test_index:', len(get_index(os.path.join(index_dir, 'test.txt')))) train_results = show_examples(imge_dir, label_dir, get_index(os.path. join(index_dir, 'train.txt')), output_dir) train_results.sort() print('train label:', len(train_results), train_results) get_info(label_dir) <mask token>
from glob import glob from PIL import Image import numpy as np from tqdm import tqdm import cv2 import os import matplotlib.pyplot as plt np.set_printoptions(precision=3, suppress=True) def get_index(path): """ get the length of index for voc2012 dataset. path: the index of train,val or test path """ with open(path, 'r') as f: zz = f.readlines() return [index.split('\n')[0] for index in zz] def show_examples(images_base, labels_base, index_list, output_path): results = [] for index in tqdm(index_list): img = cv2.imread(os.path.join(images_base, index + '.jpg')) lab = np.array(Image.open(os.path.join(labels_base, index + '.png') ).convert('P')) results += np.unique(lab).tolist() return list(set(results)) def get_info(label_dir): label_path = glob('%s/*' % label_dir) total_area = [] total_number = [] for label_name in tqdm(label_path): lab = np.array(Image.open(label_name).convert('P')) masks = [(lab == v) for v in range(21)] zz = np.mean(masks, axis=(1, 2)) total_area.append(zz.copy()) zz[zz > 0] = 1 total_number.append(zz) print(np.sum(total_number, axis=0)) print(np.sum(total_area, axis=0)) if __name__ == '__main__': import shutil output_dir = 'visual_results' if os.path.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir) index_dir = '/data/VOCdevkit/VOC2012/ImageSets/Segmentation' imge_dir = '/data/VOCdevkit/VOC2012/JPEGImages' label_dir = '/data/VOCdevkit/VOC2012/SegmentationClass' print('train_index:', len(get_index(os.path.join(index_dir, 'train.txt')))) print('val_index:', len(get_index(os.path.join(index_dir, 'val.txt')))) print('test_index:', len(get_index(os.path.join(index_dir, 'test.txt')))) train_results = show_examples(imge_dir, label_dir, get_index(os.path. join(index_dir, 'train.txt')), output_dir) train_results.sort() print('train label:', len(train_results), train_results) get_info(label_dir) <mask token>
from glob import glob from PIL import Image import numpy as np from tqdm import tqdm import cv2 import os import matplotlib.pyplot as plt np.set_printoptions(precision=3, suppress=True) def get_index(path): """ get the length of index for voc2012 dataset. path: the index of train,val or test path """ with open(path,'r') as f: zz = f.readlines() return [index.split("\n")[0] for index in zz] def show_examples(images_base, labels_base, index_list, output_path): results= [] for index in tqdm(index_list): img = cv2.imread(os.path.join(images_base, index+".jpg")) # lab = cv2.imread(os.path.join(labels_base, index+".png"), 0) lab = np.array(Image.open(os.path.join(labels_base, index+".png")).convert('P')) results+= np.unique(lab).tolist() # # plt.figure(figsize=(4,2)) # plt.subplot(121) # plt.imshow(img) # plt.title("images") # plt.subplot(122) # plt.imshow(lab) # plt.title('label') # plt.tight_layout() # plt.savefig("%s/visual_%s.png"%(output_path, index), dpi=300) # plt.show() return list(set(results)) def get_info(label_dir): label_path = glob("%s/*" % label_dir) total_area = [] total_number = [] for label_name in tqdm(label_path): lab = np.array(Image.open(label_name).convert('P')) # print(lab.shape) masks = [(lab == v) for v in range(21)] # get each class area of images zz = np.mean(masks, axis =(1, 2)) total_area.append(zz.copy()) # get exist class of images zz[zz > 0] = 1 total_number.append(zz) print(np.sum(total_number, axis=0)) print(np.sum(total_area, axis=0)) if __name__=="__main__": import shutil output_dir = "visual_results" if os.path.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir) index_dir = '/data/VOCdevkit/VOC2012/ImageSets/Segmentation' imge_dir = "/data/VOCdevkit/VOC2012/JPEGImages" label_dir = "/data/VOCdevkit/VOC2012/SegmentationClass" print("train_index:", len(get_index( os.path.join(index_dir, "train.txt") ) ) ) # 1464 print("val_index:", len( get_index( os.path.join(index_dir, "val.txt") ) ) ) # 1449 print("test_index:", len( get_index( os.path.join(index_dir, "test.txt") ) ) ) #1456 train_results= show_examples(imge_dir, label_dir, get_index(os.path.join(index_dir, "train.txt")), output_dir) train_results.sort() print("train label:", len(train_results), train_results) get_info(label_dir) """ train label: 20 [0, 14, 19, 33, 37, 38, 52, 57, 72, 75, 89, 94, 108, 112, 113, 128, 132, 147, 150, 220] number of each class: [2903. 178. 144. 208. 150. 183. 152. 255. 250. 271. 135. 157. 249. 147. 157. 888. 167. 120. 183. 167. 157.] are of each class: [2019.413 21.703 8.608 23.93 16.14 19.298 49.044 40.491 68.606 27.83 28.275 33.941 51.712 27.909 30.196 139.84 16.282 22.923 39.572 44.975 22.053] """
[ 2, 3, 4, 5, 6 ]
2,190
11a31d3276201105ca7485fa4e4eb711012accd5
<mask token>
<mask token> for onestore in chikenList: filename = onestore + '.csv' myframe = pd.read_csv(filename, index_col=0, encoding=myencoding) newframe = pd.concat([newframe, myframe], axis=0, ignore_index=True) print(newframe.info()) <mask token> newframe.to_csv(totalfile, encoding=myencoding) print(totalfile + '파일이 저장됨')
<mask token> myencoding = 'utf-8' chikenList = ['pelicana', 'nene', 'cheogajip', 'goobne'] newframe = DataFrame() for onestore in chikenList: filename = onestore + '.csv' myframe = pd.read_csv(filename, index_col=0, encoding=myencoding) newframe = pd.concat([newframe, myframe], axis=0, ignore_index=True) print(newframe.info()) totalfile = 'allstore.csv' newframe.to_csv(totalfile, encoding=myencoding) print(totalfile + '파일이 저장됨')
import pandas as pd from pandas import DataFrame myencoding = 'utf-8' chikenList = ['pelicana', 'nene', 'cheogajip', 'goobne'] newframe = DataFrame() for onestore in chikenList: filename = onestore + '.csv' myframe = pd.read_csv(filename, index_col=0, encoding=myencoding) newframe = pd.concat([newframe, myframe], axis=0, ignore_index=True) print(newframe.info()) totalfile = 'allstore.csv' newframe.to_csv(totalfile, encoding=myencoding) print(totalfile + '파일이 저장됨')
import pandas as pd from pandas import DataFrame myencoding = 'utf-8' chikenList = ['pelicana', 'nene', 'cheogajip', 'goobne'] # chikenList = ['pelicana'] newframe = DataFrame() for onestore in chikenList: filename = onestore + '.csv' myframe = pd.read_csv(filename, index_col=0, encoding=myencoding) # print(myframe.head()) # print('-'*30) newframe = pd.concat([newframe, myframe], axis=0, ignore_index=True) print(newframe.info()) totalfile = 'allstore.csv' newframe.to_csv(totalfile, encoding=myencoding) print(totalfile + '파일이 저장됨')
[ 0, 1, 2, 3, 4 ]
2,191
78037d936ee5f9b31bf00263885fbec225a4f8f2
<mask token>
<mask token> if n % 10 == 1 and (n < 11 or n > 20): print(n, 'korova') elif n % 10 > 1 and n % 10 < 5 and (n < 11 or n > 20): print(n, 'korovy') else: print(n, 'korov')
n = int(input()) if n % 10 == 1 and (n < 11 or n > 20): print(n, 'korova') elif n % 10 > 1 and n % 10 < 5 and (n < 11 or n > 20): print(n, 'korovy') else: print(n, 'korov')
n = int(input()) if n % 10 == 1 and (n < 11 or n > 20): print(n, "korova") elif n % 10 > 1 and n % 10 < 5 and (n < 11 or n > 20): print(n, "korovy") else: print(n, "korov")
null
[ 0, 1, 2, 3 ]
2,192
a0cce8d48f929dd63ba809a1e9bf02b172e8bc1b
<mask token>
<mask token> class Carafe(object): <mask token>
<mask token> class Carafe(object): def __init__(self): self.level = CarafeLevel() self.temp = CarafeTemp()
from barista.sensor import CarafeLevel, CarafeTemp class Carafe(object): def __init__(self): self.level = CarafeLevel() self.temp = CarafeTemp()
from barista.sensor import CarafeLevel, CarafeTemp class Carafe(object): def __init__(self): self.level = CarafeLevel() self.temp = CarafeTemp() # TODO add callback for when the temperature or level are too low.
[ 0, 1, 2, 3, 4 ]
2,193
f0444676d28be27ad2f0f7cdaa58a96b7facc546
# -*- coding: utf-8 -*- from optparse import make_option from django.core.management.base import BaseCommand, LabelCommand, CommandError from open_coesione import utils import sys import logging import csv import os class Command(LabelCommand): """ Task to extract data related to a sample of all projects. The sample of projects can be extracted through: head -n 1 progetti_YYYYMMDD.csv > progetti_sample.csv tail -n +2 progetti_YYYYMMDD.csv | shuf -n 10 | sort >> progetti_sample.csv """ args = "<filename>" help = "Produces a csv file of rows related to projects' sample." label = 'filename' option_list = BaseCommand.option_list + ( make_option('--sample', dest='proj_sample_file', default='progetti_sample.csv', help='Select projects sample csv file'), make_option('--data-root', dest='data_root', default='dati/dataset_latest/', help='Data root path, where csv files are to be found'), make_option('--type', dest='type', default='loc', help='Type of related data: loc|rec|pay'), make_option('--encoding', dest='encoding', default='latin1', help='set character encoding of input (and output) csv files') ) proj_sample_file = '' sorted_csv_file = '' data_root = '' encoding = '' logger = logging.getLogger('csvimport') proj_reader = None csv.register_dialect('opencoesione', delimiter=';', quoting=csv.QUOTE_ALL) def handle(self, *labels, **options): if len(labels) is not 1: raise CommandError('Enter just one %s.' % self.label) self.data_root = options['data_root'] self.sorted_csv_file = os.path.join(self.data_root, labels[0]) self.proj_sample_file = os.path.join(self.data_root, options['proj_sample_file']) self.encoding = options['encoding'] # open sample progetto csv reader try: self.proj_reader = utils.UnicodeDictReader( open(self.proj_sample_file, 'r'), dialect='opencoesione', encoding=self.encoding ) except IOError: self.logger.error("It was impossible to open file %s" % self.proj_sample_file) exit(1) except csv.Error, e: self.logger.error("CSV error while reading %s: %s" % (self.proj_sample_file, e.message)) exit(1) verbosity = options['verbosity'] if verbosity == '0': self.logger.setLevel(logging.ERROR) elif verbosity == '1': self.logger.setLevel(logging.WARNING) elif verbosity == '2': self.logger.setLevel(logging.INFO) elif verbosity == '3': self.logger.setLevel(logging.DEBUG) if options['type'] == 'loc': # to produce the full, sorted localizzazioni file # head -n 1 localizzazioni_20120630.csv > localizzazioni_sorted.csv # tail -n +2 localizzazioni_20120630.csv | sort >> localizzazioni_sorted.csv headers = [ "COD_LOCALE_PROGETTO", "COD_REGIONE","DEN_REGIONE", "COD_PROVINCIA","DEN_PROVINCIA", "COD_COMUNE","DEN_COMUNE", "INDIRIZZO_PROG","CAP_PROG", "DPS_TERRITORIO_PROG","DPS_FLAG_CAP_PROG" ] elif options['type'] == 'rec': # to produce the full, sorted soggetti file # head -n 1 soggetti_20120630.csv > soggetti_sorted.csv # tail -n +2 soggetti_20120630.csv | sort >> soggetti_sorted.csv headers = [ "COD_LOCALE_PROGETTO", "SOGG_COD_RUOLO","SOGG_DESCR_RUOLO","SOGG_PROGR_RUOLO", "DPS_CODICE_FISCALE_SOGG","DPS_DENOMINAZIONE_SOGG", "COD_FORMA_GIURIDICA_SOGG","DESCR_FORMA_GIURIDICA_SOGG", "COD_COMUNE_SEDE_SOGG","INDIRIZZO_SOGG","CAP_SOGG", "COD_ATECO_SOGG", "DESCRIZIONE_ATECO_SOGG" ] elif options['type'] == 'pay': headers = [ "COD_LOCALE_PROGETTO", "DATA_AGGIORNAMENTO", "TOT_PAGAMENTI" ] else: raise CommandError("Wrong type %s. Select between loc and rec." % options['type']) # open sorted csv file from where to extract record related to progetti_sample csv_file = os.path.join(self.data_root, labels[0]) self.logger.info("Inizio ricerca in %s" % csv_file) try: reader = utils.UnicodeDictReader( open(csv_file, 'r'), dialect='opencoesione', encoding=self.encoding) except IOError: self.logger.error("It was impossible to open file %s" % csv_file) exit(1) except csv.Error, e: self.logger.error("CSV error while reading %s: %s" % (csv_file, e.message)) # loop over progetto_sample and advance in localizzazioni, to fetch related records # this is of O(n), and reduces drastically the extraction time writer = None for proj_row in self.proj_reader: proj_codice_locale = proj_row['COD_LOCALE_PROGETTO'] loc = reader.next() if writer is None: writer = utils.UnicodeDictWriter(sys.stdout, headers, dialect='opencoesione', encoding=self.encoding) while loc['COD_LOCALE_PROGETTO'] < proj_codice_locale: loc = reader.next() writer.writerow(loc) loc = reader.next() while loc['COD_LOCALE_PROGETTO'] == proj_codice_locale: writer.writerow(loc) loc = reader.next()
null
null
null
null
[ 0 ]
2,194
b218f5e401510f844006cb6079737b54aa86827b
<mask token> def main(): graphics = BreakoutGraphics() lives = NUM_LIVES graphics.window.add(graphics.scoreboard, 0, graphics.window_height) while True: pause(FRAME_RATE) if graphics.ball_fall_down(): lives -= 1 if lives > 0: graphics.reset_ball() else: graphics.game_over() break if graphics.you_win(): break vx = graphics.getx() vy = graphics.gety() graphics.ball.move(vx, vy) graphics.boundary() graphics.collision() <mask token>
<mask token> def main(): graphics = BreakoutGraphics() lives = NUM_LIVES graphics.window.add(graphics.scoreboard, 0, graphics.window_height) while True: pause(FRAME_RATE) if graphics.ball_fall_down(): lives -= 1 if lives > 0: graphics.reset_ball() else: graphics.game_over() break if graphics.you_win(): break vx = graphics.getx() vy = graphics.gety() graphics.ball.move(vx, vy) graphics.boundary() graphics.collision() if __name__ == '__main__': main()
<mask token> FRAME_RATE = 1000 / 120 NUM_LIVES = 3 def main(): graphics = BreakoutGraphics() lives = NUM_LIVES graphics.window.add(graphics.scoreboard, 0, graphics.window_height) while True: pause(FRAME_RATE) if graphics.ball_fall_down(): lives -= 1 if lives > 0: graphics.reset_ball() else: graphics.game_over() break if graphics.you_win(): break vx = graphics.getx() vy = graphics.gety() graphics.ball.move(vx, vy) graphics.boundary() graphics.collision() if __name__ == '__main__': main()
<mask token> from campy.gui.events.timer import pause from breakoutgraphics import BreakoutGraphics FRAME_RATE = 1000 / 120 NUM_LIVES = 3 def main(): graphics = BreakoutGraphics() lives = NUM_LIVES graphics.window.add(graphics.scoreboard, 0, graphics.window_height) while True: pause(FRAME_RATE) if graphics.ball_fall_down(): lives -= 1 if lives > 0: graphics.reset_ball() else: graphics.game_over() break if graphics.you_win(): break vx = graphics.getx() vy = graphics.gety() graphics.ball.move(vx, vy) graphics.boundary() graphics.collision() if __name__ == '__main__': main()
""" stanCode Breakout Project Adapted from Eric Roberts's Breakout by Sonja Johnson-Yu, Kylie Jue, Nick Bowman, and Jerry Liao YOUR DESCRIPTION HERE """ from campy.gui.events.timer import pause from breakoutgraphics import BreakoutGraphics FRAME_RATE = 1000 / 120 # 120 frames per second. NUM_LIVES = 3 def main(): graphics = BreakoutGraphics() lives = NUM_LIVES # 生命 graphics.window.add(graphics.scoreboard, 0, graphics.window_height) # 計分板 # Add animation loop here! while True: pause(FRAME_RATE) if graphics.ball_fall_down(): lives -= 1 if lives > 0: graphics.reset_ball() else: graphics.game_over() break if graphics.you_win(): break vx = graphics.getx() vy = graphics.gety() graphics.ball.move(vx, vy) graphics.boundary() graphics.collision() if __name__ == '__main__': main()
[ 1, 2, 3, 4, 5 ]
2,195
53c874fbe14031c323f83db58f17990f4e60bc58
<mask token> class BilanComptes(object): <mask token> <mask token> @staticmethod def creation_lignes(subedition, subgeneraux, consolidation): """ génération des lignes de données du bilan :param subedition: paramètres d'édition :param subgeneraux: paramètres généraux :param consolidation: classe de consolidation des données des bilans :return: lignes de données du bilan """ lignes = [] for code_client, client in sorted(consolidation.clients.items()): numbers = {} for id_compte, compte in client['comptes'].items(): numbers[id_compte] = compte['num_compte'] for id_compte, num_compte in sorted(numbers.items(), key=lambda x: x[1]): compte = client['comptes'][id_compte] if compte['subs'] > 0: ligne = [subedition.annee_fin_general, subedition. mois_fin_general, code_client, client['sap'], client['abrev'], client['nom'], client['type'], client['nature'], id_compte, num_compte, compte[ 'intitule'], compte['type'], compte['t3'], Outils. format_2_dec(compte['s-mat']), Outils.format_2_dec( compte['s-mot'])] for categorie in subgeneraux.codes_d3(): ligne.append(Outils.format_2_dec(compte['s-' + categorie + 't'])) ligne += [Outils.format_2_dec(compte['subs'])] lignes.append(ligne) return lignes
<mask token> class BilanComptes(object): <mask token> @staticmethod def bilan(dossier_destination, subedition, subgeneraux, lignes): """ création du bilan :param dossier_destination: Une instance de la classe dossier.DossierDestination :param subedition: paramètres d'édition :param subgeneraux: paramètres généraux :param lignes: lignes de données du bilan """ nom = 'bilan-subsides-comptes_' + str(subedition.annee_fin_general ) + '_' + Outils.mois_string(subedition.mois_fin_general) + '.csv' with dossier_destination.writer(nom) as fichier_writer: ligne = ['année', 'mois', 'code client', 'code client sap', 'abrév. labo', 'nom labo', 'type client', 'nature client', 'id-compte', 'numéro compte', 'intitulé compte', 'code type compte', 'code type subside', 'Subsides MAj', 'Subsides MOj'] for categorie in subgeneraux.codes_d3(): ligne.append('Subsides ' + categorie + 'j') ligne += ['total Subsides'] fichier_writer.writerow(ligne) for ligne in lignes: fichier_writer.writerow(ligne) @staticmethod def creation_lignes(subedition, subgeneraux, consolidation): """ génération des lignes de données du bilan :param subedition: paramètres d'édition :param subgeneraux: paramètres généraux :param consolidation: classe de consolidation des données des bilans :return: lignes de données du bilan """ lignes = [] for code_client, client in sorted(consolidation.clients.items()): numbers = {} for id_compte, compte in client['comptes'].items(): numbers[id_compte] = compte['num_compte'] for id_compte, num_compte in sorted(numbers.items(), key=lambda x: x[1]): compte = client['comptes'][id_compte] if compte['subs'] > 0: ligne = [subedition.annee_fin_general, subedition. mois_fin_general, code_client, client['sap'], client['abrev'], client['nom'], client['type'], client['nature'], id_compte, num_compte, compte[ 'intitule'], compte['type'], compte['t3'], Outils. format_2_dec(compte['s-mat']), Outils.format_2_dec( compte['s-mot'])] for categorie in subgeneraux.codes_d3(): ligne.append(Outils.format_2_dec(compte['s-' + categorie + 't'])) ligne += [Outils.format_2_dec(compte['subs'])] lignes.append(ligne) return lignes
<mask token> class BilanComptes(object): """ Classe pour la création du bilan des comptes """ @staticmethod def bilan(dossier_destination, subedition, subgeneraux, lignes): """ création du bilan :param dossier_destination: Une instance de la classe dossier.DossierDestination :param subedition: paramètres d'édition :param subgeneraux: paramètres généraux :param lignes: lignes de données du bilan """ nom = 'bilan-subsides-comptes_' + str(subedition.annee_fin_general ) + '_' + Outils.mois_string(subedition.mois_fin_general) + '.csv' with dossier_destination.writer(nom) as fichier_writer: ligne = ['année', 'mois', 'code client', 'code client sap', 'abrév. labo', 'nom labo', 'type client', 'nature client', 'id-compte', 'numéro compte', 'intitulé compte', 'code type compte', 'code type subside', 'Subsides MAj', 'Subsides MOj'] for categorie in subgeneraux.codes_d3(): ligne.append('Subsides ' + categorie + 'j') ligne += ['total Subsides'] fichier_writer.writerow(ligne) for ligne in lignes: fichier_writer.writerow(ligne) @staticmethod def creation_lignes(subedition, subgeneraux, consolidation): """ génération des lignes de données du bilan :param subedition: paramètres d'édition :param subgeneraux: paramètres généraux :param consolidation: classe de consolidation des données des bilans :return: lignes de données du bilan """ lignes = [] for code_client, client in sorted(consolidation.clients.items()): numbers = {} for id_compte, compte in client['comptes'].items(): numbers[id_compte] = compte['num_compte'] for id_compte, num_compte in sorted(numbers.items(), key=lambda x: x[1]): compte = client['comptes'][id_compte] if compte['subs'] > 0: ligne = [subedition.annee_fin_general, subedition. mois_fin_general, code_client, client['sap'], client['abrev'], client['nom'], client['type'], client['nature'], id_compte, num_compte, compte[ 'intitule'], compte['type'], compte['t3'], Outils. format_2_dec(compte['s-mat']), Outils.format_2_dec( compte['s-mot'])] for categorie in subgeneraux.codes_d3(): ligne.append(Outils.format_2_dec(compte['s-' + categorie + 't'])) ligne += [Outils.format_2_dec(compte['subs'])] lignes.append(ligne) return lignes
from outils import Outils class BilanComptes(object): """ Classe pour la création du bilan des comptes """ @staticmethod def bilan(dossier_destination, subedition, subgeneraux, lignes): """ création du bilan :param dossier_destination: Une instance de la classe dossier.DossierDestination :param subedition: paramètres d'édition :param subgeneraux: paramètres généraux :param lignes: lignes de données du bilan """ nom = 'bilan-subsides-comptes_' + str(subedition.annee_fin_general ) + '_' + Outils.mois_string(subedition.mois_fin_general) + '.csv' with dossier_destination.writer(nom) as fichier_writer: ligne = ['année', 'mois', 'code client', 'code client sap', 'abrév. labo', 'nom labo', 'type client', 'nature client', 'id-compte', 'numéro compte', 'intitulé compte', 'code type compte', 'code type subside', 'Subsides MAj', 'Subsides MOj'] for categorie in subgeneraux.codes_d3(): ligne.append('Subsides ' + categorie + 'j') ligne += ['total Subsides'] fichier_writer.writerow(ligne) for ligne in lignes: fichier_writer.writerow(ligne) @staticmethod def creation_lignes(subedition, subgeneraux, consolidation): """ génération des lignes de données du bilan :param subedition: paramètres d'édition :param subgeneraux: paramètres généraux :param consolidation: classe de consolidation des données des bilans :return: lignes de données du bilan """ lignes = [] for code_client, client in sorted(consolidation.clients.items()): numbers = {} for id_compte, compte in client['comptes'].items(): numbers[id_compte] = compte['num_compte'] for id_compte, num_compte in sorted(numbers.items(), key=lambda x: x[1]): compte = client['comptes'][id_compte] if compte['subs'] > 0: ligne = [subedition.annee_fin_general, subedition. mois_fin_general, code_client, client['sap'], client['abrev'], client['nom'], client['type'], client['nature'], id_compte, num_compte, compte[ 'intitule'], compte['type'], compte['t3'], Outils. format_2_dec(compte['s-mat']), Outils.format_2_dec( compte['s-mot'])] for categorie in subgeneraux.codes_d3(): ligne.append(Outils.format_2_dec(compte['s-' + categorie + 't'])) ligne += [Outils.format_2_dec(compte['subs'])] lignes.append(ligne) return lignes
from outils import Outils class BilanComptes(object): """ Classe pour la création du bilan des comptes """ @staticmethod def bilan(dossier_destination, subedition, subgeneraux, lignes): """ création du bilan :param dossier_destination: Une instance de la classe dossier.DossierDestination :param subedition: paramètres d'édition :param subgeneraux: paramètres généraux :param lignes: lignes de données du bilan """ nom = "bilan-subsides-comptes_" + str(subedition.annee_fin_general) + "_" + \ Outils.mois_string(subedition.mois_fin_general) + ".csv" with dossier_destination.writer(nom) as fichier_writer: ligne = ["année", "mois", "code client", "code client sap", "abrév. labo", "nom labo", "type client", "nature client", "id-compte", "numéro compte", "intitulé compte", "code type compte", "code type subside", "Subsides MAj", "Subsides MOj"] for categorie in subgeneraux.codes_d3(): ligne.append("Subsides " + categorie + "j") ligne += ["total Subsides"] fichier_writer.writerow(ligne) for ligne in lignes: fichier_writer.writerow(ligne) @staticmethod def creation_lignes(subedition, subgeneraux, consolidation): """ génération des lignes de données du bilan :param subedition: paramètres d'édition :param subgeneraux: paramètres généraux :param consolidation: classe de consolidation des données des bilans :return: lignes de données du bilan """ lignes = [] for code_client, client in sorted(consolidation.clients.items()): numbers = {} for id_compte, compte in client['comptes'].items(): numbers[id_compte] = compte['num_compte'] for id_compte, num_compte in sorted(numbers.items(), key=lambda x: x[1]): compte = client['comptes'][id_compte] if compte['subs'] > 0: ligne = [subedition.annee_fin_general, subedition.mois_fin_general, code_client, client['sap'], client['abrev'], client['nom'], client['type'], client['nature'], id_compte, num_compte, compte['intitule'], compte['type'], compte['t3'], Outils.format_2_dec(compte['s-mat']), Outils.format_2_dec(compte['s-mot'])] for categorie in subgeneraux.codes_d3(): ligne.append(Outils.format_2_dec(compte['s-' + categorie + 't'])) ligne += [Outils.format_2_dec(compte['subs'])] lignes.append(ligne) return lignes
[ 2, 3, 4, 5, 6 ]
2,196
9e3f4484542c2629d636fcb4166584ba52bebe21
<mask token>
<mask token> if __name__ == '__main__': carpeta = Carpeta(settings.folder_sat) sentinela = SentinelSat(carpeta) sentinela.start_Monitoring()
from LibTools.filesystem import Carpeta from slaves import SentinelSat import settings if __name__ == '__main__': carpeta = Carpeta(settings.folder_sat) sentinela = SentinelSat(carpeta) sentinela.start_Monitoring()
# -*- coding: utf-8 -*- from LibTools.filesystem import Carpeta from slaves import SentinelSat import settings if __name__ == '__main__': carpeta = Carpeta(settings.folder_sat) sentinela = SentinelSat(carpeta) sentinela.start_Monitoring()
null
[ 0, 1, 2, 3 ]
2,197
1d0730e8fd120e1c4bc5b89cbd766234e1fa3bca
<mask token> def cal_factor_alpha_return(factor_name, beg_date, end_date, cal_period): group_number = 8 year_trade_days = 242 min_stock_number = 100 out_path = 'E:\\3_Data\\5_stock_data\\3_alpha_model\\' alpha_remove_extreme_value = True alpha_standard = True alpha_industry_neutral = True alpha_barra_style_neutral = True price = Stock().get_factor_h5('PriceCloseAdjust', None, 'alpha_dfc') alpha_val = Stock().get_factor_h5(factor_name, None, 'alpha_dfc') industry = Stock().get_factor_h5('industry_citic1', None, 'primary_mfc') industry = industry.applymap(lambda x: x.decode('utf-8')) [alpha_val, industry] = FactorPreProcess().make_same_index_columns([ alpha_val, industry]) if alpha_barra_style_neutral: size = Stock().get_factor_h5('NORMAL_CNE5_SIZE', None, 'barra_risk_dfc' ) beta = Stock().get_factor_h5('NORMAL_CNE5_BETA', None, 'barra_risk_dfc' ) nolin_size = Stock().get_factor_h5('NORMAL_CNE5_NON_LINEAR_SIZE', None, 'barra_risk_dfc') momentum = Stock().get_factor_h5('NORMAL_CNE5_MOMENTUM', None, 'barra_risk_dfc') [size, beta, nolin_size] = FactorPreProcess().make_same_index_columns([ size, beta, nolin_size]) beg_date = max(beg_date, price.columns[0], alpha_val.columns[0], beta.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1], beta.columns[-1]) else: beg_date = max(beg_date, price.columns[0], alpha_val.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1]) date_series = Date().get_trade_date_series(beg_date, end_date, period= cal_period) date_series = list(set(date_series) & set(alpha_val.columns)) date_series.sort() if alpha_remove_extreme_value: alpha_val = FactorPreProcess().remove_extreme_value_mad(alpha_val) if alpha_standard: alpha_val = FactorPreProcess().standardization(alpha_val) alpha_return = pd.DataFrame([], index=date_series) alpha_exposure = pd.DataFrame([], index=date_series, columns=price.index) for i_date in range(len(date_series) - 2): cur_cal_date = date_series[i_date] next_cal_date = date_series[i_date + 1] buy_date = Date().get_trade_date_offset(cur_cal_date, 1) sell_date = Date().get_trade_date_offset(next_cal_date, 1) print(' Calculating Factor %s Alpha Return At %s' % (factor_name, cur_cal_date)) alpha_return.index.name = 'CalDate' alpha_return.ix[cur_cal_date, 'BuyDate'] = buy_date alpha_return.ix[cur_cal_date, 'SellDate'] = sell_date alpha_date = alpha_val[cur_cal_date] buy_price = price[buy_date] sell_price = price[sell_date] pct_date = sell_price / buy_price - 1.0 if alpha_industry_neutral: try: industry_date = industry[cur_cal_date] industry_dummy = pd.get_dummies(industry_date) except: continue if len(pd.concat([alpha_date, industry_date], axis=1).dropna() ) < min_stock_number: continue else: params, factor_res = factor_neutral(factor_series= alpha_date, neutral_frame=industry_dummy) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad( alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) if alpha_barra_style_neutral: try: size_date = size[cur_cal_date] beta_date = beta[cur_cal_date] nolin_size_date = nolin_size[cur_cal_date] momentum_date = momentum[cur_cal_date] except: continue if len(pd.concat([alpha_date, size_date], axis=1).dropna() ) < min_stock_number: continue else: barra_risk_exposure = pd.concat([beta_date, size_date, nolin_size_date, momentum_date], axis=1) barra_risk_exposure.columns = ['beta', 'size', 'nolin_size', 'momentum'] params, factor_res = factor_neutral(factor_series= alpha_date, neutral_frame=barra_risk_exposure) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad( alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) alpha_exposure.ix[cur_cal_date, :] = alpha_date res = pd.concat([alpha_date, pct_date], axis=1) res.columns = ['alpha_val', 'period_pct'] res = res.dropna() res = res.sort_values(by=['alpha_val'], ascending=False) labels = [('group_' + str(i)) for i in list(range(1, group_number + 1)) ] res['group'] = pd.cut(res['alpha_val'], bins=group_number, labels= labels) period_return = (res['alpha_val'] * res['period_pct']).mean() alpha_return.ix[cur_cal_date, 'FactorReturn'] = period_return information_correlation = res['alpha_val'].corr(res['period_pct']) alpha_return.ix[cur_cal_date, 'IC'] = information_correlation group_pct = res.groupby(by=['group'])['period_pct'].mean() for i_label in range(len(labels)): alpha_return.ix[cur_cal_date, labels[i_label]] = group_pct.values[ i_label] alpha_return = alpha_return.dropna(subset=['FactorReturn']) alpha_return['CumFactorReturn'] = alpha_return['FactorReturn'].cumsum() cum_labels = [('Cum_' + str(x)) for x in labels] alpha_return[cum_labels] = alpha_return[labels].cumsum() back_test_beg_date = Date().get_trade_date_offset(date_series[0], 1) back_test_end_date = Date().get_trade_date_offset(date_series[len( date_series) - 1], 1) back_test_days = Date().get_trade_date_diff(back_test_beg_date, back_test_end_date) backtest_year = back_test_days / year_trade_days alpha_return['year'] = alpha_return.index.map(lambda x: datetime. strptime(x, '%Y%m%d').year) year_factor_return = alpha_return.groupby(by=['year'])['FactorReturn'].sum( ) year_count = alpha_return.groupby(by=['year'])['FactorReturn'].count() year_ic_mean = alpha_return.groupby(by=['year'])['IC'].mean() year_ic_std = alpha_return.groupby(by=['year'])['IC'].std() year_gp_mean = alpha_return.groupby(by=['year'])[labels].mean() year_describe = pd.concat([year_factor_return, year_count, year_ic_mean, year_ic_std, year_gp_mean], axis=1) col = ['YearFactorReturn', 'Count', 'IC_mean', 'IC_std'] col.extend(labels) year_describe.columns = col year_describe['YearFactorReturn'] = year_describe['YearFactorReturn' ] / year_describe['Count'] * year_count year_describe['IC_IR'] = year_describe['IC_mean'] / year_describe['IC_std' ] * np.sqrt(50) year_describe.ix['Sum', 'YearFactorReturn'] = alpha_return[ 'CumFactorReturn'].values[-1] / backtest_year year_describe.ix['Sum', 'IC_IR'] = alpha_return['IC'].mean( ) / alpha_return['IC'].std() * np.sqrt(50) year_describe.ix['Sum', 'IC_mean'] = alpha_return['IC'].mean() year_describe.ix['Sum', 'IC_std'] = alpha_return['IC'].std() year_describe.ix['Sum', labels] = year_describe.ix[0:-1, labels].sum() year_describe.index = year_describe.index.map(str) for i in range(len(year_describe)): year = year_describe.index[i] corr_pd = pd.DataFrame(year_describe.ix[year, labels].values, index =labels, columns=['group_return']) corr_pd['group_number'] = list(range(1, group_number + 1)) year_describe.ix[year, 'Group_Corr'] = corr_pd.corr().ix[0, 1] alpha_exposure = alpha_exposure.astype(np.float) filename = os.path.join(out_path, 'alpha_exposure_neutral', factor_name + '_FactorExposureNeutral.csv') alpha_exposure.T.to_csv(filename) exposure_corr = pd.DataFrame([], index=alpha_exposure.index, columns=[ 'Exposure_Corr']) for i_date in range(1, len(alpha_exposure.index)): last_exposure_date = alpha_exposure.index[i_date - 1] cur_exposure_date = alpha_exposure.index[i_date] exposure_adjoin = alpha_exposure.ix[last_exposure_date: cur_exposure_date, :] exposure_adjoin = exposure_adjoin.T.dropna() exposure_corr.ix[cur_exposure_date, 'Exposure_Corr' ] = exposure_adjoin.corr().ix[0, 1] exposure_corr = exposure_corr.dropna() exposure_corr.ix['Mean', 'Exposure_Corr'] = exposure_corr['Exposure_Corr' ].mean() filename = os.path.join(out_path, 'alpha_exposure_stability', factor_name + '_FactorExposureCorr.csv') exposure_corr.to_csv(filename) filename = os.path.join(out_path, 'alpha_return', factor_name + '_FactorReturn.xlsx') sheet_name = 'FactorReturn' we = WriteExcel(filename) ws = we.add_worksheet(sheet_name) num_format_pd = pd.DataFrame([], columns=year_describe.columns, index=[ 'format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['Count', 'IC_IR']] = '0.00' we.write_pandas(year_describe, ws, begin_row_number=0, begin_col_number =1, num_format_pd=num_format_pd, color='blue', fillna=True) num_format_pd = pd.DataFrame([], columns=alpha_return.columns, index=[ 'format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['year']] = '0' we.write_pandas(alpha_return, ws, begin_row_number=0, begin_col_number= 2 + len(year_describe.columns), num_format_pd=num_format_pd, color= 'blue', fillna=True) we.close() <mask token>
<mask token> def factor_neutral(factor_series, neutral_frame): """ 中性化 """ concat_data = pd.concat([factor_series, neutral_frame], axis=1) concat_data = concat_data.dropna() factor_val = concat_data.ix[:, 0] neutral_val = concat_data.ix[:, 1:] model = sm.OLS(factor_val.values, neutral_val.values) regress = model.fit() params = regress.params params = pd.DataFrame(params, index=neutral_val.columns, columns=['param']) factor_res = factor_val - regress.predict(neutral_val) return params, factor_res def cal_factor_alpha_return(factor_name, beg_date, end_date, cal_period): group_number = 8 year_trade_days = 242 min_stock_number = 100 out_path = 'E:\\3_Data\\5_stock_data\\3_alpha_model\\' alpha_remove_extreme_value = True alpha_standard = True alpha_industry_neutral = True alpha_barra_style_neutral = True price = Stock().get_factor_h5('PriceCloseAdjust', None, 'alpha_dfc') alpha_val = Stock().get_factor_h5(factor_name, None, 'alpha_dfc') industry = Stock().get_factor_h5('industry_citic1', None, 'primary_mfc') industry = industry.applymap(lambda x: x.decode('utf-8')) [alpha_val, industry] = FactorPreProcess().make_same_index_columns([ alpha_val, industry]) if alpha_barra_style_neutral: size = Stock().get_factor_h5('NORMAL_CNE5_SIZE', None, 'barra_risk_dfc' ) beta = Stock().get_factor_h5('NORMAL_CNE5_BETA', None, 'barra_risk_dfc' ) nolin_size = Stock().get_factor_h5('NORMAL_CNE5_NON_LINEAR_SIZE', None, 'barra_risk_dfc') momentum = Stock().get_factor_h5('NORMAL_CNE5_MOMENTUM', None, 'barra_risk_dfc') [size, beta, nolin_size] = FactorPreProcess().make_same_index_columns([ size, beta, nolin_size]) beg_date = max(beg_date, price.columns[0], alpha_val.columns[0], beta.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1], beta.columns[-1]) else: beg_date = max(beg_date, price.columns[0], alpha_val.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1]) date_series = Date().get_trade_date_series(beg_date, end_date, period= cal_period) date_series = list(set(date_series) & set(alpha_val.columns)) date_series.sort() if alpha_remove_extreme_value: alpha_val = FactorPreProcess().remove_extreme_value_mad(alpha_val) if alpha_standard: alpha_val = FactorPreProcess().standardization(alpha_val) alpha_return = pd.DataFrame([], index=date_series) alpha_exposure = pd.DataFrame([], index=date_series, columns=price.index) for i_date in range(len(date_series) - 2): cur_cal_date = date_series[i_date] next_cal_date = date_series[i_date + 1] buy_date = Date().get_trade_date_offset(cur_cal_date, 1) sell_date = Date().get_trade_date_offset(next_cal_date, 1) print(' Calculating Factor %s Alpha Return At %s' % (factor_name, cur_cal_date)) alpha_return.index.name = 'CalDate' alpha_return.ix[cur_cal_date, 'BuyDate'] = buy_date alpha_return.ix[cur_cal_date, 'SellDate'] = sell_date alpha_date = alpha_val[cur_cal_date] buy_price = price[buy_date] sell_price = price[sell_date] pct_date = sell_price / buy_price - 1.0 if alpha_industry_neutral: try: industry_date = industry[cur_cal_date] industry_dummy = pd.get_dummies(industry_date) except: continue if len(pd.concat([alpha_date, industry_date], axis=1).dropna() ) < min_stock_number: continue else: params, factor_res = factor_neutral(factor_series= alpha_date, neutral_frame=industry_dummy) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad( alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) if alpha_barra_style_neutral: try: size_date = size[cur_cal_date] beta_date = beta[cur_cal_date] nolin_size_date = nolin_size[cur_cal_date] momentum_date = momentum[cur_cal_date] except: continue if len(pd.concat([alpha_date, size_date], axis=1).dropna() ) < min_stock_number: continue else: barra_risk_exposure = pd.concat([beta_date, size_date, nolin_size_date, momentum_date], axis=1) barra_risk_exposure.columns = ['beta', 'size', 'nolin_size', 'momentum'] params, factor_res = factor_neutral(factor_series= alpha_date, neutral_frame=barra_risk_exposure) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad( alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) alpha_exposure.ix[cur_cal_date, :] = alpha_date res = pd.concat([alpha_date, pct_date], axis=1) res.columns = ['alpha_val', 'period_pct'] res = res.dropna() res = res.sort_values(by=['alpha_val'], ascending=False) labels = [('group_' + str(i)) for i in list(range(1, group_number + 1)) ] res['group'] = pd.cut(res['alpha_val'], bins=group_number, labels= labels) period_return = (res['alpha_val'] * res['period_pct']).mean() alpha_return.ix[cur_cal_date, 'FactorReturn'] = period_return information_correlation = res['alpha_val'].corr(res['period_pct']) alpha_return.ix[cur_cal_date, 'IC'] = information_correlation group_pct = res.groupby(by=['group'])['period_pct'].mean() for i_label in range(len(labels)): alpha_return.ix[cur_cal_date, labels[i_label]] = group_pct.values[ i_label] alpha_return = alpha_return.dropna(subset=['FactorReturn']) alpha_return['CumFactorReturn'] = alpha_return['FactorReturn'].cumsum() cum_labels = [('Cum_' + str(x)) for x in labels] alpha_return[cum_labels] = alpha_return[labels].cumsum() back_test_beg_date = Date().get_trade_date_offset(date_series[0], 1) back_test_end_date = Date().get_trade_date_offset(date_series[len( date_series) - 1], 1) back_test_days = Date().get_trade_date_diff(back_test_beg_date, back_test_end_date) backtest_year = back_test_days / year_trade_days alpha_return['year'] = alpha_return.index.map(lambda x: datetime. strptime(x, '%Y%m%d').year) year_factor_return = alpha_return.groupby(by=['year'])['FactorReturn'].sum( ) year_count = alpha_return.groupby(by=['year'])['FactorReturn'].count() year_ic_mean = alpha_return.groupby(by=['year'])['IC'].mean() year_ic_std = alpha_return.groupby(by=['year'])['IC'].std() year_gp_mean = alpha_return.groupby(by=['year'])[labels].mean() year_describe = pd.concat([year_factor_return, year_count, year_ic_mean, year_ic_std, year_gp_mean], axis=1) col = ['YearFactorReturn', 'Count', 'IC_mean', 'IC_std'] col.extend(labels) year_describe.columns = col year_describe['YearFactorReturn'] = year_describe['YearFactorReturn' ] / year_describe['Count'] * year_count year_describe['IC_IR'] = year_describe['IC_mean'] / year_describe['IC_std' ] * np.sqrt(50) year_describe.ix['Sum', 'YearFactorReturn'] = alpha_return[ 'CumFactorReturn'].values[-1] / backtest_year year_describe.ix['Sum', 'IC_IR'] = alpha_return['IC'].mean( ) / alpha_return['IC'].std() * np.sqrt(50) year_describe.ix['Sum', 'IC_mean'] = alpha_return['IC'].mean() year_describe.ix['Sum', 'IC_std'] = alpha_return['IC'].std() year_describe.ix['Sum', labels] = year_describe.ix[0:-1, labels].sum() year_describe.index = year_describe.index.map(str) for i in range(len(year_describe)): year = year_describe.index[i] corr_pd = pd.DataFrame(year_describe.ix[year, labels].values, index =labels, columns=['group_return']) corr_pd['group_number'] = list(range(1, group_number + 1)) year_describe.ix[year, 'Group_Corr'] = corr_pd.corr().ix[0, 1] alpha_exposure = alpha_exposure.astype(np.float) filename = os.path.join(out_path, 'alpha_exposure_neutral', factor_name + '_FactorExposureNeutral.csv') alpha_exposure.T.to_csv(filename) exposure_corr = pd.DataFrame([], index=alpha_exposure.index, columns=[ 'Exposure_Corr']) for i_date in range(1, len(alpha_exposure.index)): last_exposure_date = alpha_exposure.index[i_date - 1] cur_exposure_date = alpha_exposure.index[i_date] exposure_adjoin = alpha_exposure.ix[last_exposure_date: cur_exposure_date, :] exposure_adjoin = exposure_adjoin.T.dropna() exposure_corr.ix[cur_exposure_date, 'Exposure_Corr' ] = exposure_adjoin.corr().ix[0, 1] exposure_corr = exposure_corr.dropna() exposure_corr.ix['Mean', 'Exposure_Corr'] = exposure_corr['Exposure_Corr' ].mean() filename = os.path.join(out_path, 'alpha_exposure_stability', factor_name + '_FactorExposureCorr.csv') exposure_corr.to_csv(filename) filename = os.path.join(out_path, 'alpha_return', factor_name + '_FactorReturn.xlsx') sheet_name = 'FactorReturn' we = WriteExcel(filename) ws = we.add_worksheet(sheet_name) num_format_pd = pd.DataFrame([], columns=year_describe.columns, index=[ 'format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['Count', 'IC_IR']] = '0.00' we.write_pandas(year_describe, ws, begin_row_number=0, begin_col_number =1, num_format_pd=num_format_pd, color='blue', fillna=True) num_format_pd = pd.DataFrame([], columns=alpha_return.columns, index=[ 'format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['year']] = '0' we.write_pandas(alpha_return, ws, begin_row_number=0, begin_col_number= 2 + len(year_describe.columns), num_format_pd=num_format_pd, color= 'blue', fillna=True) we.close() <mask token>
<mask token> def factor_neutral(factor_series, neutral_frame): """ 中性化 """ concat_data = pd.concat([factor_series, neutral_frame], axis=1) concat_data = concat_data.dropna() factor_val = concat_data.ix[:, 0] neutral_val = concat_data.ix[:, 1:] model = sm.OLS(factor_val.values, neutral_val.values) regress = model.fit() params = regress.params params = pd.DataFrame(params, index=neutral_val.columns, columns=['param']) factor_res = factor_val - regress.predict(neutral_val) return params, factor_res def cal_factor_alpha_return(factor_name, beg_date, end_date, cal_period): group_number = 8 year_trade_days = 242 min_stock_number = 100 out_path = 'E:\\3_Data\\5_stock_data\\3_alpha_model\\' alpha_remove_extreme_value = True alpha_standard = True alpha_industry_neutral = True alpha_barra_style_neutral = True price = Stock().get_factor_h5('PriceCloseAdjust', None, 'alpha_dfc') alpha_val = Stock().get_factor_h5(factor_name, None, 'alpha_dfc') industry = Stock().get_factor_h5('industry_citic1', None, 'primary_mfc') industry = industry.applymap(lambda x: x.decode('utf-8')) [alpha_val, industry] = FactorPreProcess().make_same_index_columns([ alpha_val, industry]) if alpha_barra_style_neutral: size = Stock().get_factor_h5('NORMAL_CNE5_SIZE', None, 'barra_risk_dfc' ) beta = Stock().get_factor_h5('NORMAL_CNE5_BETA', None, 'barra_risk_dfc' ) nolin_size = Stock().get_factor_h5('NORMAL_CNE5_NON_LINEAR_SIZE', None, 'barra_risk_dfc') momentum = Stock().get_factor_h5('NORMAL_CNE5_MOMENTUM', None, 'barra_risk_dfc') [size, beta, nolin_size] = FactorPreProcess().make_same_index_columns([ size, beta, nolin_size]) beg_date = max(beg_date, price.columns[0], alpha_val.columns[0], beta.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1], beta.columns[-1]) else: beg_date = max(beg_date, price.columns[0], alpha_val.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1]) date_series = Date().get_trade_date_series(beg_date, end_date, period= cal_period) date_series = list(set(date_series) & set(alpha_val.columns)) date_series.sort() if alpha_remove_extreme_value: alpha_val = FactorPreProcess().remove_extreme_value_mad(alpha_val) if alpha_standard: alpha_val = FactorPreProcess().standardization(alpha_val) alpha_return = pd.DataFrame([], index=date_series) alpha_exposure = pd.DataFrame([], index=date_series, columns=price.index) for i_date in range(len(date_series) - 2): cur_cal_date = date_series[i_date] next_cal_date = date_series[i_date + 1] buy_date = Date().get_trade_date_offset(cur_cal_date, 1) sell_date = Date().get_trade_date_offset(next_cal_date, 1) print(' Calculating Factor %s Alpha Return At %s' % (factor_name, cur_cal_date)) alpha_return.index.name = 'CalDate' alpha_return.ix[cur_cal_date, 'BuyDate'] = buy_date alpha_return.ix[cur_cal_date, 'SellDate'] = sell_date alpha_date = alpha_val[cur_cal_date] buy_price = price[buy_date] sell_price = price[sell_date] pct_date = sell_price / buy_price - 1.0 if alpha_industry_neutral: try: industry_date = industry[cur_cal_date] industry_dummy = pd.get_dummies(industry_date) except: continue if len(pd.concat([alpha_date, industry_date], axis=1).dropna() ) < min_stock_number: continue else: params, factor_res = factor_neutral(factor_series= alpha_date, neutral_frame=industry_dummy) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad( alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) if alpha_barra_style_neutral: try: size_date = size[cur_cal_date] beta_date = beta[cur_cal_date] nolin_size_date = nolin_size[cur_cal_date] momentum_date = momentum[cur_cal_date] except: continue if len(pd.concat([alpha_date, size_date], axis=1).dropna() ) < min_stock_number: continue else: barra_risk_exposure = pd.concat([beta_date, size_date, nolin_size_date, momentum_date], axis=1) barra_risk_exposure.columns = ['beta', 'size', 'nolin_size', 'momentum'] params, factor_res = factor_neutral(factor_series= alpha_date, neutral_frame=barra_risk_exposure) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad( alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) alpha_exposure.ix[cur_cal_date, :] = alpha_date res = pd.concat([alpha_date, pct_date], axis=1) res.columns = ['alpha_val', 'period_pct'] res = res.dropna() res = res.sort_values(by=['alpha_val'], ascending=False) labels = [('group_' + str(i)) for i in list(range(1, group_number + 1)) ] res['group'] = pd.cut(res['alpha_val'], bins=group_number, labels= labels) period_return = (res['alpha_val'] * res['period_pct']).mean() alpha_return.ix[cur_cal_date, 'FactorReturn'] = period_return information_correlation = res['alpha_val'].corr(res['period_pct']) alpha_return.ix[cur_cal_date, 'IC'] = information_correlation group_pct = res.groupby(by=['group'])['period_pct'].mean() for i_label in range(len(labels)): alpha_return.ix[cur_cal_date, labels[i_label]] = group_pct.values[ i_label] alpha_return = alpha_return.dropna(subset=['FactorReturn']) alpha_return['CumFactorReturn'] = alpha_return['FactorReturn'].cumsum() cum_labels = [('Cum_' + str(x)) for x in labels] alpha_return[cum_labels] = alpha_return[labels].cumsum() back_test_beg_date = Date().get_trade_date_offset(date_series[0], 1) back_test_end_date = Date().get_trade_date_offset(date_series[len( date_series) - 1], 1) back_test_days = Date().get_trade_date_diff(back_test_beg_date, back_test_end_date) backtest_year = back_test_days / year_trade_days alpha_return['year'] = alpha_return.index.map(lambda x: datetime. strptime(x, '%Y%m%d').year) year_factor_return = alpha_return.groupby(by=['year'])['FactorReturn'].sum( ) year_count = alpha_return.groupby(by=['year'])['FactorReturn'].count() year_ic_mean = alpha_return.groupby(by=['year'])['IC'].mean() year_ic_std = alpha_return.groupby(by=['year'])['IC'].std() year_gp_mean = alpha_return.groupby(by=['year'])[labels].mean() year_describe = pd.concat([year_factor_return, year_count, year_ic_mean, year_ic_std, year_gp_mean], axis=1) col = ['YearFactorReturn', 'Count', 'IC_mean', 'IC_std'] col.extend(labels) year_describe.columns = col year_describe['YearFactorReturn'] = year_describe['YearFactorReturn' ] / year_describe['Count'] * year_count year_describe['IC_IR'] = year_describe['IC_mean'] / year_describe['IC_std' ] * np.sqrt(50) year_describe.ix['Sum', 'YearFactorReturn'] = alpha_return[ 'CumFactorReturn'].values[-1] / backtest_year year_describe.ix['Sum', 'IC_IR'] = alpha_return['IC'].mean( ) / alpha_return['IC'].std() * np.sqrt(50) year_describe.ix['Sum', 'IC_mean'] = alpha_return['IC'].mean() year_describe.ix['Sum', 'IC_std'] = alpha_return['IC'].std() year_describe.ix['Sum', labels] = year_describe.ix[0:-1, labels].sum() year_describe.index = year_describe.index.map(str) for i in range(len(year_describe)): year = year_describe.index[i] corr_pd = pd.DataFrame(year_describe.ix[year, labels].values, index =labels, columns=['group_return']) corr_pd['group_number'] = list(range(1, group_number + 1)) year_describe.ix[year, 'Group_Corr'] = corr_pd.corr().ix[0, 1] alpha_exposure = alpha_exposure.astype(np.float) filename = os.path.join(out_path, 'alpha_exposure_neutral', factor_name + '_FactorExposureNeutral.csv') alpha_exposure.T.to_csv(filename) exposure_corr = pd.DataFrame([], index=alpha_exposure.index, columns=[ 'Exposure_Corr']) for i_date in range(1, len(alpha_exposure.index)): last_exposure_date = alpha_exposure.index[i_date - 1] cur_exposure_date = alpha_exposure.index[i_date] exposure_adjoin = alpha_exposure.ix[last_exposure_date: cur_exposure_date, :] exposure_adjoin = exposure_adjoin.T.dropna() exposure_corr.ix[cur_exposure_date, 'Exposure_Corr' ] = exposure_adjoin.corr().ix[0, 1] exposure_corr = exposure_corr.dropna() exposure_corr.ix['Mean', 'Exposure_Corr'] = exposure_corr['Exposure_Corr' ].mean() filename = os.path.join(out_path, 'alpha_exposure_stability', factor_name + '_FactorExposureCorr.csv') exposure_corr.to_csv(filename) filename = os.path.join(out_path, 'alpha_return', factor_name + '_FactorReturn.xlsx') sheet_name = 'FactorReturn' we = WriteExcel(filename) ws = we.add_worksheet(sheet_name) num_format_pd = pd.DataFrame([], columns=year_describe.columns, index=[ 'format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['Count', 'IC_IR']] = '0.00' we.write_pandas(year_describe, ws, begin_row_number=0, begin_col_number =1, num_format_pd=num_format_pd, color='blue', fillna=True) num_format_pd = pd.DataFrame([], columns=alpha_return.columns, index=[ 'format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['year']] = '0' we.write_pandas(alpha_return, ws, begin_row_number=0, begin_col_number= 2 + len(year_describe.columns), num_format_pd=num_format_pd, color= 'blue', fillna=True) we.close() if __name__ == '__main__': cal_period = 'W' beg_date = '20040101' end_date = datetime.today().strftime('%Y%m%d') path = 'E:\\3_Data\\5_stock_data\\3_alpha_model\\' file = 'MyAlpha.xlsx' data = pd.read_excel(os.path.join(path, file), encoding='gbk') data = data[data['计算因子收益率'] == '是'] data = data.reset_index(drop=True) for i in range(0, len(data)): factor_name = data.ix[i, '因子名'] print('#################### 开始计算因子收益率 %s 数据 ####################' % factor_name) cal_factor_alpha_return(factor_name, beg_date, end_date, cal_period) print('#################### 结束计算因子收益率 %s 数据 ####################' % factor_name)
import pandas as pd import numpy as np import os import matplotlib.pyplot as plt from datetime import datetime import statsmodels.api as sm from quant.stock.stock import Stock from quant.stock.date import Date from quant.utility_fun.factor_preprocess import FactorPreProcess from quant.utility_fun.write_excel import WriteExcel def factor_neutral(factor_series, neutral_frame): """ 中性化 """ concat_data = pd.concat([factor_series, neutral_frame], axis=1) concat_data = concat_data.dropna() factor_val = concat_data.ix[:, 0] neutral_val = concat_data.ix[:, 1:] model = sm.OLS(factor_val.values, neutral_val.values) regress = model.fit() params = regress.params params = pd.DataFrame(params, index=neutral_val.columns, columns=['param']) factor_res = factor_val - regress.predict(neutral_val) return params, factor_res def cal_factor_alpha_return(factor_name, beg_date, end_date, cal_period): group_number = 8 year_trade_days = 242 min_stock_number = 100 out_path = 'E:\\3_Data\\5_stock_data\\3_alpha_model\\' alpha_remove_extreme_value = True alpha_standard = True alpha_industry_neutral = True alpha_barra_style_neutral = True price = Stock().get_factor_h5('PriceCloseAdjust', None, 'alpha_dfc') alpha_val = Stock().get_factor_h5(factor_name, None, 'alpha_dfc') industry = Stock().get_factor_h5('industry_citic1', None, 'primary_mfc') industry = industry.applymap(lambda x: x.decode('utf-8')) [alpha_val, industry] = FactorPreProcess().make_same_index_columns([ alpha_val, industry]) if alpha_barra_style_neutral: size = Stock().get_factor_h5('NORMAL_CNE5_SIZE', None, 'barra_risk_dfc' ) beta = Stock().get_factor_h5('NORMAL_CNE5_BETA', None, 'barra_risk_dfc' ) nolin_size = Stock().get_factor_h5('NORMAL_CNE5_NON_LINEAR_SIZE', None, 'barra_risk_dfc') momentum = Stock().get_factor_h5('NORMAL_CNE5_MOMENTUM', None, 'barra_risk_dfc') [size, beta, nolin_size] = FactorPreProcess().make_same_index_columns([ size, beta, nolin_size]) beg_date = max(beg_date, price.columns[0], alpha_val.columns[0], beta.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1], beta.columns[-1]) else: beg_date = max(beg_date, price.columns[0], alpha_val.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1]) date_series = Date().get_trade_date_series(beg_date, end_date, period= cal_period) date_series = list(set(date_series) & set(alpha_val.columns)) date_series.sort() if alpha_remove_extreme_value: alpha_val = FactorPreProcess().remove_extreme_value_mad(alpha_val) if alpha_standard: alpha_val = FactorPreProcess().standardization(alpha_val) alpha_return = pd.DataFrame([], index=date_series) alpha_exposure = pd.DataFrame([], index=date_series, columns=price.index) for i_date in range(len(date_series) - 2): cur_cal_date = date_series[i_date] next_cal_date = date_series[i_date + 1] buy_date = Date().get_trade_date_offset(cur_cal_date, 1) sell_date = Date().get_trade_date_offset(next_cal_date, 1) print(' Calculating Factor %s Alpha Return At %s' % (factor_name, cur_cal_date)) alpha_return.index.name = 'CalDate' alpha_return.ix[cur_cal_date, 'BuyDate'] = buy_date alpha_return.ix[cur_cal_date, 'SellDate'] = sell_date alpha_date = alpha_val[cur_cal_date] buy_price = price[buy_date] sell_price = price[sell_date] pct_date = sell_price / buy_price - 1.0 if alpha_industry_neutral: try: industry_date = industry[cur_cal_date] industry_dummy = pd.get_dummies(industry_date) except: continue if len(pd.concat([alpha_date, industry_date], axis=1).dropna() ) < min_stock_number: continue else: params, factor_res = factor_neutral(factor_series= alpha_date, neutral_frame=industry_dummy) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad( alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) if alpha_barra_style_neutral: try: size_date = size[cur_cal_date] beta_date = beta[cur_cal_date] nolin_size_date = nolin_size[cur_cal_date] momentum_date = momentum[cur_cal_date] except: continue if len(pd.concat([alpha_date, size_date], axis=1).dropna() ) < min_stock_number: continue else: barra_risk_exposure = pd.concat([beta_date, size_date, nolin_size_date, momentum_date], axis=1) barra_risk_exposure.columns = ['beta', 'size', 'nolin_size', 'momentum'] params, factor_res = factor_neutral(factor_series= alpha_date, neutral_frame=barra_risk_exposure) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad( alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) alpha_exposure.ix[cur_cal_date, :] = alpha_date res = pd.concat([alpha_date, pct_date], axis=1) res.columns = ['alpha_val', 'period_pct'] res = res.dropna() res = res.sort_values(by=['alpha_val'], ascending=False) labels = [('group_' + str(i)) for i in list(range(1, group_number + 1)) ] res['group'] = pd.cut(res['alpha_val'], bins=group_number, labels= labels) period_return = (res['alpha_val'] * res['period_pct']).mean() alpha_return.ix[cur_cal_date, 'FactorReturn'] = period_return information_correlation = res['alpha_val'].corr(res['period_pct']) alpha_return.ix[cur_cal_date, 'IC'] = information_correlation group_pct = res.groupby(by=['group'])['period_pct'].mean() for i_label in range(len(labels)): alpha_return.ix[cur_cal_date, labels[i_label]] = group_pct.values[ i_label] alpha_return = alpha_return.dropna(subset=['FactorReturn']) alpha_return['CumFactorReturn'] = alpha_return['FactorReturn'].cumsum() cum_labels = [('Cum_' + str(x)) for x in labels] alpha_return[cum_labels] = alpha_return[labels].cumsum() back_test_beg_date = Date().get_trade_date_offset(date_series[0], 1) back_test_end_date = Date().get_trade_date_offset(date_series[len( date_series) - 1], 1) back_test_days = Date().get_trade_date_diff(back_test_beg_date, back_test_end_date) backtest_year = back_test_days / year_trade_days alpha_return['year'] = alpha_return.index.map(lambda x: datetime. strptime(x, '%Y%m%d').year) year_factor_return = alpha_return.groupby(by=['year'])['FactorReturn'].sum( ) year_count = alpha_return.groupby(by=['year'])['FactorReturn'].count() year_ic_mean = alpha_return.groupby(by=['year'])['IC'].mean() year_ic_std = alpha_return.groupby(by=['year'])['IC'].std() year_gp_mean = alpha_return.groupby(by=['year'])[labels].mean() year_describe = pd.concat([year_factor_return, year_count, year_ic_mean, year_ic_std, year_gp_mean], axis=1) col = ['YearFactorReturn', 'Count', 'IC_mean', 'IC_std'] col.extend(labels) year_describe.columns = col year_describe['YearFactorReturn'] = year_describe['YearFactorReturn' ] / year_describe['Count'] * year_count year_describe['IC_IR'] = year_describe['IC_mean'] / year_describe['IC_std' ] * np.sqrt(50) year_describe.ix['Sum', 'YearFactorReturn'] = alpha_return[ 'CumFactorReturn'].values[-1] / backtest_year year_describe.ix['Sum', 'IC_IR'] = alpha_return['IC'].mean( ) / alpha_return['IC'].std() * np.sqrt(50) year_describe.ix['Sum', 'IC_mean'] = alpha_return['IC'].mean() year_describe.ix['Sum', 'IC_std'] = alpha_return['IC'].std() year_describe.ix['Sum', labels] = year_describe.ix[0:-1, labels].sum() year_describe.index = year_describe.index.map(str) for i in range(len(year_describe)): year = year_describe.index[i] corr_pd = pd.DataFrame(year_describe.ix[year, labels].values, index =labels, columns=['group_return']) corr_pd['group_number'] = list(range(1, group_number + 1)) year_describe.ix[year, 'Group_Corr'] = corr_pd.corr().ix[0, 1] alpha_exposure = alpha_exposure.astype(np.float) filename = os.path.join(out_path, 'alpha_exposure_neutral', factor_name + '_FactorExposureNeutral.csv') alpha_exposure.T.to_csv(filename) exposure_corr = pd.DataFrame([], index=alpha_exposure.index, columns=[ 'Exposure_Corr']) for i_date in range(1, len(alpha_exposure.index)): last_exposure_date = alpha_exposure.index[i_date - 1] cur_exposure_date = alpha_exposure.index[i_date] exposure_adjoin = alpha_exposure.ix[last_exposure_date: cur_exposure_date, :] exposure_adjoin = exposure_adjoin.T.dropna() exposure_corr.ix[cur_exposure_date, 'Exposure_Corr' ] = exposure_adjoin.corr().ix[0, 1] exposure_corr = exposure_corr.dropna() exposure_corr.ix['Mean', 'Exposure_Corr'] = exposure_corr['Exposure_Corr' ].mean() filename = os.path.join(out_path, 'alpha_exposure_stability', factor_name + '_FactorExposureCorr.csv') exposure_corr.to_csv(filename) filename = os.path.join(out_path, 'alpha_return', factor_name + '_FactorReturn.xlsx') sheet_name = 'FactorReturn' we = WriteExcel(filename) ws = we.add_worksheet(sheet_name) num_format_pd = pd.DataFrame([], columns=year_describe.columns, index=[ 'format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['Count', 'IC_IR']] = '0.00' we.write_pandas(year_describe, ws, begin_row_number=0, begin_col_number =1, num_format_pd=num_format_pd, color='blue', fillna=True) num_format_pd = pd.DataFrame([], columns=alpha_return.columns, index=[ 'format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['year']] = '0' we.write_pandas(alpha_return, ws, begin_row_number=0, begin_col_number= 2 + len(year_describe.columns), num_format_pd=num_format_pd, color= 'blue', fillna=True) we.close() if __name__ == '__main__': cal_period = 'W' beg_date = '20040101' end_date = datetime.today().strftime('%Y%m%d') path = 'E:\\3_Data\\5_stock_data\\3_alpha_model\\' file = 'MyAlpha.xlsx' data = pd.read_excel(os.path.join(path, file), encoding='gbk') data = data[data['计算因子收益率'] == '是'] data = data.reset_index(drop=True) for i in range(0, len(data)): factor_name = data.ix[i, '因子名'] print('#################### 开始计算因子收益率 %s 数据 ####################' % factor_name) cal_factor_alpha_return(factor_name, beg_date, end_date, cal_period) print('#################### 结束计算因子收益率 %s 数据 ####################' % factor_name)
import pandas as pd import numpy as np import os import matplotlib.pyplot as plt from datetime import datetime import statsmodels.api as sm from quant.stock.stock import Stock from quant.stock.date import Date from quant.utility_fun.factor_preprocess import FactorPreProcess from quant.utility_fun.write_excel import WriteExcel def factor_neutral(factor_series, neutral_frame): """ 中性化 """ concat_data = pd.concat([factor_series, neutral_frame], axis=1) concat_data = concat_data.dropna() factor_val = concat_data.ix[:, 0] neutral_val = concat_data.ix[:, 1:] model = sm.OLS(factor_val.values, neutral_val.values) regress = model.fit() params = regress.params params = pd.DataFrame(params, index=neutral_val.columns, columns=['param']) factor_res = factor_val - regress.predict(neutral_val) return params, factor_res def cal_factor_alpha_return(factor_name, beg_date, end_date, cal_period): # param ############################################################################################################### ############################################################################################################### group_number = 8 year_trade_days = 242 min_stock_number = 100 out_path = 'E:\\3_Data\\5_stock_data\\3_alpha_model\\' alpha_remove_extreme_value = True # alpha 因子 取极值 alpha_standard = True # alpha 因子 标准化 alpha_industry_neutral = True # alpha 因子 行业中性 alpha_barra_style_neutral = True # alpha 因子 风格中性 # read data ############################################################################################################### ############################################################################################################### price = Stock().get_factor_h5("PriceCloseAdjust", None, "alpha_dfc") alpha_val = Stock().get_factor_h5(factor_name, None, "alpha_dfc") industry = Stock().get_factor_h5("industry_citic1", None, "primary_mfc") industry = industry.applymap(lambda x: x.decode('utf-8')) [alpha_val, industry] = FactorPreProcess().make_same_index_columns([alpha_val, industry]) if alpha_barra_style_neutral: size = Stock().get_factor_h5("NORMAL_CNE5_SIZE", None, 'barra_risk_dfc') beta = Stock().get_factor_h5("NORMAL_CNE5_BETA", None, 'barra_risk_dfc') nolin_size = Stock().get_factor_h5("NORMAL_CNE5_NON_LINEAR_SIZE", None, 'barra_risk_dfc') momentum = Stock().get_factor_h5("NORMAL_CNE5_MOMENTUM", None, 'barra_risk_dfc') [size, beta, nolin_size] = FactorPreProcess().make_same_index_columns([size, beta, nolin_size]) beg_date = max(beg_date, price.columns[0], alpha_val.columns[0], beta.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1], beta.columns[-1]) else: beg_date = max(beg_date, price.columns[0], alpha_val.columns[0]) end_date = min(end_date, price.columns[-1], alpha_val.columns[-1]) date_series = Date().get_trade_date_series(beg_date, end_date, period=cal_period) date_series = list(set(date_series) & set(alpha_val.columns)) date_series.sort() # pre process data ############################################################################################################### ############################################################################################################### if alpha_remove_extreme_value: alpha_val = FactorPreProcess().remove_extreme_value_mad(alpha_val) if alpha_standard: alpha_val = FactorPreProcess().standardization(alpha_val) # cal everyday ############################################################################################################### ############################################################################################################### alpha_return = pd.DataFrame([], index=date_series) alpha_exposure = pd.DataFrame([], index=date_series, columns=price.index) for i_date in range(len(date_series) - 2): cur_cal_date = date_series[i_date] next_cal_date = date_series[i_date + 1] buy_date = Date().get_trade_date_offset(cur_cal_date, 1) sell_date = Date().get_trade_date_offset(next_cal_date, 1) print(" Calculating Factor %s Alpha Return At %s" % (factor_name, cur_cal_date)) alpha_return.index.name = 'CalDate' alpha_return.ix[cur_cal_date, "BuyDate"] = buy_date alpha_return.ix[cur_cal_date, "SellDate"] = sell_date alpha_date = alpha_val[cur_cal_date] buy_price = price[buy_date] sell_price = price[sell_date] pct_date = sell_price / buy_price - 1.0 if alpha_industry_neutral: try: industry_date = industry[cur_cal_date] industry_dummy = pd.get_dummies(industry_date) except: continue if len(pd.concat([alpha_date, industry_date], axis=1).dropna()) < min_stock_number: continue else: params, factor_res = factor_neutral(factor_series=alpha_date, neutral_frame=industry_dummy) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad(alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) if alpha_barra_style_neutral: try: size_date = size[cur_cal_date] beta_date = beta[cur_cal_date] nolin_size_date = nolin_size[cur_cal_date] momentum_date = momentum[cur_cal_date] except: continue if len(pd.concat([alpha_date, size_date], axis=1).dropna()) < min_stock_number: continue else: barra_risk_exposure = pd.concat([beta_date, size_date, nolin_size_date, momentum_date], axis=1) barra_risk_exposure.columns = ['beta', 'size', 'nolin_size', 'momentum'] params, factor_res = factor_neutral(factor_series=alpha_date, neutral_frame=barra_risk_exposure) alpha_date = factor_res alpha_date = FactorPreProcess().remove_extreme_value_mad(alpha_date) alpha_date = FactorPreProcess().standardization(alpha_date) alpha_exposure.ix[cur_cal_date, :] = alpha_date res = pd.concat([alpha_date, pct_date], axis=1) res.columns = ['alpha_val', 'period_pct'] res = res.dropna() res = res.sort_values(by=['alpha_val'], ascending=False) labels = ["group_" + str(i) for i in list(range(1, group_number + 1))] res['group'] = pd.cut(res['alpha_val'], bins=group_number, labels=labels) period_return = (res['alpha_val'] * res['period_pct']).mean() alpha_return.ix[cur_cal_date, "FactorReturn"] = period_return information_correlation = res['alpha_val'].corr(res['period_pct']) alpha_return.ix[cur_cal_date, "IC"] = information_correlation group_pct = res.groupby(by=['group'])['period_pct'].mean() for i_label in range(len(labels)): alpha_return.ix[cur_cal_date, labels[i_label]] = group_pct.values[i_label] alpha_return = alpha_return.dropna(subset=['FactorReturn']) alpha_return["CumFactorReturn"] = alpha_return['FactorReturn'].cumsum() cum_labels = ["Cum_" + str(x) for x in labels] alpha_return[cum_labels] = alpha_return[labels].cumsum() # plot ############################################################################################################### ############################################################################################################### # plt_col = [] # plt_col.append("CumFactorReturn") # plt_col.extend(cum_labels) # alpha_return[plt_col].plot() # plt.title(factor_name) # plt.show() # describe annual ############################################################################################################### ############################################################################################################### back_test_beg_date = Date().get_trade_date_offset(date_series[0], 1) back_test_end_date = Date().get_trade_date_offset(date_series[len(date_series) - 1], 1) back_test_days = Date().get_trade_date_diff(back_test_beg_date, back_test_end_date) backtest_year = back_test_days / year_trade_days alpha_return['year'] = alpha_return.index.map(lambda x: datetime.strptime(x, "%Y%m%d").year) year_factor_return = alpha_return.groupby(by=['year'])['FactorReturn'].sum() year_count = alpha_return.groupby(by=['year'])['FactorReturn'].count() year_ic_mean = alpha_return.groupby(by=['year'])['IC'].mean() year_ic_std = alpha_return.groupby(by=['year'])['IC'].std() year_gp_mean = alpha_return.groupby(by=['year'])[labels].mean() year_describe = pd.concat([year_factor_return, year_count, year_ic_mean, year_ic_std, year_gp_mean], axis=1) col = ['YearFactorReturn', 'Count', 'IC_mean', 'IC_std'] col.extend(labels) year_describe.columns = col year_describe['YearFactorReturn'] = year_describe['YearFactorReturn'] / year_describe['Count'] * year_count year_describe['IC_IR'] = year_describe['IC_mean'] / year_describe['IC_std'] * np.sqrt(50) year_describe.ix['Sum', 'YearFactorReturn'] = alpha_return["CumFactorReturn"].values[-1] / backtest_year year_describe.ix['Sum', 'IC_IR'] = alpha_return["IC"].mean() / alpha_return["IC"].std() * np.sqrt(50) year_describe.ix['Sum', 'IC_mean'] = alpha_return["IC"].mean() year_describe.ix['Sum', 'IC_std'] = alpha_return["IC"].std() year_describe.ix['Sum', labels] = year_describe.ix[0:-1, labels].sum() year_describe.index = year_describe.index.map(str) for i in range(len(year_describe)): year = year_describe.index[i] corr_pd = pd.DataFrame(year_describe.ix[year, labels].values, index=labels, columns=['group_return']) corr_pd['group_number'] = (list(range(1, group_number+1))) year_describe.ix[year, 'Group_Corr'] = corr_pd.corr().ix[0, 1] # save data ############################################################################################################### ############################################################################################################### # alpha_exposure_neutral ############################################################################################################### alpha_exposure = alpha_exposure.astype(np.float) filename = os.path.join(out_path, 'alpha_exposure_neutral', factor_name + "_FactorExposureNeutral.csv") alpha_exposure.T.to_csv(filename) # exposure_corr ############################################################################################################### exposure_corr = pd.DataFrame([], index=alpha_exposure.index, columns=['Exposure_Corr']) for i_date in range(1, len(alpha_exposure.index)): last_exposure_date = alpha_exposure.index[i_date-1] cur_exposure_date = alpha_exposure.index[i_date] exposure_adjoin = alpha_exposure.ix[last_exposure_date:cur_exposure_date, :] exposure_adjoin = exposure_adjoin.T.dropna() exposure_corr.ix[cur_exposure_date, 'Exposure_Corr'] = exposure_adjoin.corr().ix[0, 1] exposure_corr = exposure_corr.dropna() exposure_corr.ix['Mean', 'Exposure_Corr'] = exposure_corr['Exposure_Corr'].mean() filename = os.path.join(out_path, 'alpha_exposure_stability', factor_name + "_FactorExposureCorr.csv") exposure_corr.to_csv(filename) # Factor Return ############################################################################################################### filename = os.path.join(out_path, 'alpha_return', factor_name + "_FactorReturn.xlsx") sheet_name = "FactorReturn" we = WriteExcel(filename) ws = we.add_worksheet(sheet_name) num_format_pd = pd.DataFrame([], columns=year_describe.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['Count', 'IC_IR']] = '0.00' we.write_pandas(year_describe, ws, begin_row_number=0, begin_col_number=1, num_format_pd=num_format_pd, color="blue", fillna=True) num_format_pd = pd.DataFrame([], columns=alpha_return.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' num_format_pd.ix['format', ['year']] = '0' we.write_pandas(alpha_return, ws, begin_row_number=0, begin_col_number=2+len(year_describe.columns), num_format_pd=num_format_pd, color="blue", fillna=True) we.close() ############################################################################################################### if __name__ == '__main__': cal_period = "W" beg_date = "20040101" end_date = datetime.today().strftime("%Y%m%d") path = "E:\\3_Data\\5_stock_data\\3_alpha_model\\" file = "MyAlpha.xlsx" data = pd.read_excel(os.path.join(path, file), encoding='gbk') data = data[data['计算因子收益率'] == "是"] data = data.reset_index(drop=True) for i in range(0, len(data)): factor_name = data.ix[i, "因子名"] print("#################### 开始计算因子收益率 %s 数据 ####################" % factor_name) cal_factor_alpha_return(factor_name, beg_date, end_date, cal_period) print("#################### 结束计算因子收益率 %s 数据 ####################" % factor_name)
[ 1, 2, 3, 4, 5 ]
2,198
3c88e13e8796c5f39180a9a514f0528a074460a6
<mask token> class LRU_Cache(object): def __init__(self, capacity): self.size = capacity self.jar = OrderedDict() pass def get(self, key): if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' <mask token> def test_2(): """testing to see if the least used object gets removed""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') def test_3(): """entering null key to be set, should not work""" our_cache = LRU_Cache(5) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) def test_4(): """0 capacity test case""" our_cache = LRU_Cache(0) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) <mask token>
<mask token> class LRU_Cache(object): def __init__(self, capacity): self.size = capacity self.jar = OrderedDict() pass def get(self, key): if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' def test_1(): """Basically testing to see if the cache can store and recall info""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1') def test_2(): """testing to see if the least used object gets removed""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') def test_3(): """entering null key to be set, should not work""" our_cache = LRU_Cache(5) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) def test_4(): """0 capacity test case""" our_cache = LRU_Cache(0) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) <mask token>
<mask token> class LRU_Cache(object): def __init__(self, capacity): self.size = capacity self.jar = OrderedDict() pass def get(self, key): if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' def test_1(): """Basically testing to see if the cache can store and recall info""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1') def test_2(): """testing to see if the least used object gets removed""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') def test_3(): """entering null key to be set, should not work""" our_cache = LRU_Cache(5) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) def test_4(): """0 capacity test case""" our_cache = LRU_Cache(0) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) if __name__ == '__main__': test_1() test_2() test_3() test_4()
from collections import OrderedDict class LRU_Cache(object): def __init__(self, capacity): self.size = capacity self.jar = OrderedDict() pass def get(self, key): if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' def test_1(): """Basically testing to see if the cache can store and recall info""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1') def test_2(): """testing to see if the least used object gets removed""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') def test_3(): """entering null key to be set, should not work""" our_cache = LRU_Cache(5) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) def test_4(): """0 capacity test case""" our_cache = LRU_Cache(0) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) if __name__ == '__main__': test_1() test_2() test_3() test_4()
from collections import OrderedDict class LRU_Cache(object): def __init__(self, capacity): # Initialize class variables self.size = capacity self.jar = OrderedDict() pass def get(self, key): # Retrieve item from provided key. Return -1 if nonexistent. if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): # Set the value if the key is not present in the cache. If the cache is at capacity remove the oldest item. if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' def test_1(): '''Basically testing to see if the cache can store and recall info''' our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1') def test_2(): '''testing to see if the least used object gets removed''' our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') def test_3(): '''entering null key to be set, should not work''' our_cache = LRU_Cache(5) [our_cache.set(None, 1) for _ in range(5)] print(f'Current Cache state: {our_cache} expected result is for it to be empty') def test_4(): '''0 capacity test case''' our_cache = LRU_Cache(0) [our_cache.set(None, 1) for _ in range(5)] print(f'Current Cache state: {our_cache} expected result is for it to be empty') if __name__ == "__main__": test_1() test_2() test_3() test_4()
[ 8, 9, 10, 11, 12 ]
2,199
e12c397ca1ae91ce314cda5fe2cd8e0ec4cfa861
<mask token> class PrivateFile2(models.Model): <mask token> <mask token>
<mask token> class PrivateFile(models.Model): <mask token> <mask token> class PrivateFile2(models.Model): title = models.CharField('Title', max_length=200) file = models.FileField('File')
<mask token> class PrivateFile(models.Model): title = models.CharField('Title', max_length=200) file = PrivateFileField('File') class PrivateFile2(models.Model): title = models.CharField('Title', max_length=200) file = models.FileField('File')
from django.db import models from private_storage.fields import PrivateFileField class PrivateFile(models.Model): title = models.CharField('Title', max_length=200) file = PrivateFileField('File') class PrivateFile2(models.Model): title = models.CharField('Title', max_length=200) file = models.FileField('File')
from django.db import models from private_storage.fields import PrivateFileField class PrivateFile(models.Model): title = models.CharField("Title", max_length=200) file = PrivateFileField("File") class PrivateFile2(models.Model): title = models.CharField("Title", max_length=200) file = models.FileField("File")
[ 1, 3, 4, 5, 6 ]