index
int64
0
10k
blob_id
stringlengths
40
40
step-1
stringlengths
13
984k
step-2
stringlengths
6
1.23M
step-3
stringlengths
15
1.34M
step-4
stringlengths
30
1.34M
step-5
stringlengths
64
1.2M
step-ids
listlengths
1
5
2,200
5055743c9ed8c92bcfab5379162f28315409ff91
<mask token>
<mask token> pull_links(artist) <mask token> os.remove('./links.json') shutil.rmtree('./songs') <mask token> for song in sentimentScores: print(song + ': ') print(sentimentScores[song])
<mask token> artist = sys.argv[1].title() pull_links(artist) lyrics = scrape_lyrics('links.json') os.remove('./links.json') shutil.rmtree('./songs') sentimentScores = getSentimentScores(lyrics) for song in sentimentScores: print(song + ': ') print(sentimentScores[song])
from pull_links import pull_links from scrape_lyrics import scrape_lyrics from vader_sentiment import getSentimentScores import sys import os import shutil artist = sys.argv[1].title() pull_links(artist) lyrics = scrape_lyrics('links.json') os.remove('./links.json') shutil.rmtree('./songs') sentimentScores = getSentimentScores(lyrics) for song in sentimentScores: print(song + ': ') print(sentimentScores[song])
from pull_links import pull_links from scrape_lyrics import scrape_lyrics from vader_sentiment import getSentimentScores import sys import os import shutil # Get user input for artist -> capitalize it artist = sys.argv[1].title() pull_links(artist) # Dictionary w/ song name as key and lyrics as value lyrics = scrape_lyrics('links.json') os.remove('./links.json') shutil.rmtree('./songs') # Dictionary w/ song name as key and sentiment data as value sentimentScores = getSentimentScores(lyrics) # Print out sentimentScores for song in sentimentScores: print(song + ': ') print(sentimentScores[song])
[ 0, 1, 2, 3, 4 ]
2,201
8cd290dc1e682222c97172a0f23e5b93c54838a7
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('leasing', '0037_make_lease_basis_of_rent_archivable')] operations = [migrations.AddField(model_name='invoicepayment', name= 'filing_code', field=models.CharField(blank=True, max_length=35, null=True, verbose_name='Name'))]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('leasing', '0037_make_lease_basis_of_rent_archivable')] operations = [migrations.AddField(model_name='invoicepayment', name= 'filing_code', field=models.CharField(blank=True, max_length=35, null=True, verbose_name='Name'))]
# Generated by Django 2.1.3 on 2019-01-02 12:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('leasing', '0037_make_lease_basis_of_rent_archivable'), ] operations = [ migrations.AddField( model_name='invoicepayment', name='filing_code', field=models.CharField(blank=True, max_length=35, null=True, verbose_name='Name'), ), ]
[ 0, 1, 2, 3, 4 ]
2,202
6175ce6534d44d703df6cdef94fc2b1285e25f49
<mask token> class testAbRectangularGridBuilder(unittest.TestCase): def getMockHiResAlphaMtxAndCstCellDet(self, posCellCentroids=None): class _mockClass: def __init__(self, posCellCentroids): self.posCellCentroids = posCellCentroids self.cell = None def getAlphaSubMatrix(self, cell): sm = _mockClass(self.posCellCentroids) sm.cell = cell return sm def _positive(self, cell): cntrs = self.posCellCentroids if cell is None or cntrs is None: return False else: for c in cntrs: if cell.contains(gm.Point([c[0], c[1]])): return True return False def onLand(self): cell = self.cell return self._positive(cell) def isCoastalCell(self, cell, boundary=None, surface=-1): return self._positive(cell) return _mockClass(posCellCentroids) def testGetSeaGridSerial(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy landCntrs = [[100.25, 45.25], [105.25, 47.25]] coastCntrs = [[100.75, 45.25], [105.25, 47.25]] gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=1, minXYIsCentroid=False) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet(landCntrs) cstClDet = self.getMockHiResAlphaMtxAndCstCellDet(coastCntrs) grd = gb.buildGrid(hiResMtx, cstClDet) self.assertFalse(grd.wrapAroundDateline) self.assertEqual(1, grd.nParWorker) cells = grd.cells self.assertEqual(nx * ny - 3, len(cells)) <mask token> def testGetNeighborsSerial(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=1) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(1, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) def testGetNeighborsParallel(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(4, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) def testGetNeighborsWrapAroundGlobalParallel(self): minx = -179.0 miny = -89.0 dx = 2 dy = 2 nx = 180 ny = 90 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertTrue(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[65] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[89] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[200] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[nx * ny - 22] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(182, ncls[5].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) cell = cells[nx * ny - 1] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(182, ncls[3].boundary.coords[1][0]) self.assertEqual(182, ncls[4].boundary.coords[1][0]) <mask token>
<mask token> class testAbRectangularGridBuilder(unittest.TestCase): def getMockHiResAlphaMtxAndCstCellDet(self, posCellCentroids=None): class _mockClass: def __init__(self, posCellCentroids): self.posCellCentroids = posCellCentroids self.cell = None def getAlphaSubMatrix(self, cell): sm = _mockClass(self.posCellCentroids) sm.cell = cell return sm def _positive(self, cell): cntrs = self.posCellCentroids if cell is None or cntrs is None: return False else: for c in cntrs: if cell.contains(gm.Point([c[0], c[1]])): return True return False def onLand(self): cell = self.cell return self._positive(cell) def isCoastalCell(self, cell, boundary=None, surface=-1): return self._positive(cell) return _mockClass(posCellCentroids) def testGetSeaGridSerial(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy landCntrs = [[100.25, 45.25], [105.25, 47.25]] coastCntrs = [[100.75, 45.25], [105.25, 47.25]] gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=1, minXYIsCentroid=False) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet(landCntrs) cstClDet = self.getMockHiResAlphaMtxAndCstCellDet(coastCntrs) grd = gb.buildGrid(hiResMtx, cstClDet) self.assertFalse(grd.wrapAroundDateline) self.assertEqual(1, grd.nParWorker) cells = grd.cells self.assertEqual(nx * ny - 3, len(cells)) def testGetSeaGridParallel(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy landCntrs = [[100.25, 45.25], [105.25, 47.25]] coastCntrs = [[100.75, 45.25], [105.25, 47.25]] gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4, minXYIsCentroid=False) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet(landCntrs) cstClDet = self.getMockHiResAlphaMtxAndCstCellDet(coastCntrs) grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(4, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells self.assertEqual(nx * ny - 3, len(cells)) def testGetNeighborsSerial(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=1) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(1, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) def testGetNeighborsParallel(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(4, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) def testGetNeighborsWrapAroundGlobalParallel(self): minx = -179.0 miny = -89.0 dx = 2 dy = 2 nx = 180 ny = 90 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertTrue(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[65] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[89] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[200] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[nx * ny - 22] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(182, ncls[5].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) cell = cells[nx * ny - 1] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(182, ncls[3].boundary.coords[1][0]) self.assertEqual(182, ncls[4].boundary.coords[1][0]) <mask token>
<mask token> class testAbRectangularGridBuilder(unittest.TestCase): def getMockHiResAlphaMtxAndCstCellDet(self, posCellCentroids=None): class _mockClass: def __init__(self, posCellCentroids): self.posCellCentroids = posCellCentroids self.cell = None def getAlphaSubMatrix(self, cell): sm = _mockClass(self.posCellCentroids) sm.cell = cell return sm def _positive(self, cell): cntrs = self.posCellCentroids if cell is None or cntrs is None: return False else: for c in cntrs: if cell.contains(gm.Point([c[0], c[1]])): return True return False def onLand(self): cell = self.cell return self._positive(cell) def isCoastalCell(self, cell, boundary=None, surface=-1): return self._positive(cell) return _mockClass(posCellCentroids) def testGetSeaGridSerial(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy landCntrs = [[100.25, 45.25], [105.25, 47.25]] coastCntrs = [[100.75, 45.25], [105.25, 47.25]] gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=1, minXYIsCentroid=False) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet(landCntrs) cstClDet = self.getMockHiResAlphaMtxAndCstCellDet(coastCntrs) grd = gb.buildGrid(hiResMtx, cstClDet) self.assertFalse(grd.wrapAroundDateline) self.assertEqual(1, grd.nParWorker) cells = grd.cells self.assertEqual(nx * ny - 3, len(cells)) def testGetSeaGridParallel(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy landCntrs = [[100.25, 45.25], [105.25, 47.25]] coastCntrs = [[100.75, 45.25], [105.25, 47.25]] gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4, minXYIsCentroid=False) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet(landCntrs) cstClDet = self.getMockHiResAlphaMtxAndCstCellDet(coastCntrs) grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(4, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells self.assertEqual(nx * ny - 3, len(cells)) def testGetNeighborsSerial(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=1) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(1, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) def testGetNeighborsParallel(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(4, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) def testGetNeighborsWrapAroundGlobalParallel(self): minx = -179.0 miny = -89.0 dx = 2 dy = 2 nx = 180 ny = 90 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertTrue(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[65] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[89] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[200] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[nx * ny - 22] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(182, ncls[5].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) cell = cells[nx * ny - 1] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(182, ncls[3].boundary.coords[1][0]) self.assertEqual(182, ncls[4].boundary.coords[1][0]) if __name__ == '__main__': unittest.main()
import unittest import shapely.geometry as gm from alphaBetaLab.abRectangularGridBuilder import abRectangularGridBuilder class testAbRectangularGridBuilder(unittest.TestCase): def getMockHiResAlphaMtxAndCstCellDet(self, posCellCentroids=None): class _mockClass: def __init__(self, posCellCentroids): self.posCellCentroids = posCellCentroids self.cell = None def getAlphaSubMatrix(self, cell): sm = _mockClass(self.posCellCentroids) sm.cell = cell return sm def _positive(self, cell): cntrs = self.posCellCentroids if cell is None or cntrs is None: return False else: for c in cntrs: if cell.contains(gm.Point([c[0], c[1]])): return True return False def onLand(self): cell = self.cell return self._positive(cell) def isCoastalCell(self, cell, boundary=None, surface=-1): return self._positive(cell) return _mockClass(posCellCentroids) def testGetSeaGridSerial(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy landCntrs = [[100.25, 45.25], [105.25, 47.25]] coastCntrs = [[100.75, 45.25], [105.25, 47.25]] gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=1, minXYIsCentroid=False) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet(landCntrs) cstClDet = self.getMockHiResAlphaMtxAndCstCellDet(coastCntrs) grd = gb.buildGrid(hiResMtx, cstClDet) self.assertFalse(grd.wrapAroundDateline) self.assertEqual(1, grd.nParWorker) cells = grd.cells self.assertEqual(nx * ny - 3, len(cells)) def testGetSeaGridParallel(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy landCntrs = [[100.25, 45.25], [105.25, 47.25]] coastCntrs = [[100.75, 45.25], [105.25, 47.25]] gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4, minXYIsCentroid=False) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet(landCntrs) cstClDet = self.getMockHiResAlphaMtxAndCstCellDet(coastCntrs) grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(4, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells self.assertEqual(nx * ny - 3, len(cells)) def testGetNeighborsSerial(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=1) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(1, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) def testGetNeighborsParallel(self): minx = 100.0 miny = 45.0 dx = 0.5 dy = 1.0 nx = 30 ny = 10 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(4, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) def testGetNeighborsWrapAroundGlobalParallel(self): minx = -179.0 miny = -89.0 dx = 2 dy = 2 nx = 180 ny = 90 maxx = minx + nx * dx maxy = miny + ny * dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertTrue(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[65] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[89] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[200] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) cell = cells[nx * ny - 22] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(182, ncls[5].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) cell = cells[nx * ny - 1] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue(cell.distance(nc) < 1e-09) self.assertEqual(182, ncls[3].boundary.coords[1][0]) self.assertEqual(182, ncls[4].boundary.coords[1][0]) if __name__ == '__main__': unittest.main()
import unittest import shapely.geometry as gm from alphaBetaLab.abRectangularGridBuilder import abRectangularGridBuilder class testAbRectangularGridBuilder(unittest.TestCase): def getMockHiResAlphaMtxAndCstCellDet(self, posCellCentroids = None): class _mockClass: def __init__(self, posCellCentroids): self.posCellCentroids = posCellCentroids self.cell = None def getAlphaSubMatrix(self, cell): sm = _mockClass(self.posCellCentroids) sm.cell = cell return sm def _positive(self, cell): cntrs = self.posCellCentroids if cell is None or cntrs is None: return False else: for c in cntrs: if cell.contains(gm.Point([c[0], c[1]])): return True return False def onLand(self): cell = self.cell return self._positive(cell) def isCoastalCell(self, cell, boundary = None, surface = -1): return self._positive(cell) return _mockClass(posCellCentroids) def testGetSeaGridSerial(self): minx = 100. miny = 45. dx = .5 dy = 1. nx = 30 ny = 10 maxx = minx + nx*dx maxy = miny + ny*dy landCntrs = [[100.25, 45.25], [105.25, 47.25]] coastCntrs = [[100.75, 45.25], [105.25, 47.25]] gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=1, minXYIsCentroid=False) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet(landCntrs) cstClDet = self.getMockHiResAlphaMtxAndCstCellDet(coastCntrs) grd = gb.buildGrid(hiResMtx, cstClDet) self.assertFalse(grd.wrapAroundDateline) self.assertEqual(1, grd.nParWorker) cells = grd.cells self.assertEqual(nx*ny - 3, len(cells)) def testGetSeaGridParallel(self): minx = 100. miny = 45. dx = .5 dy = 1. nx = 30 ny = 10 maxx = minx + nx*dx maxy = miny + ny*dy landCntrs = [[100.25, 45.25], [105.25, 47.25]] coastCntrs = [[100.75, 45.25], [105.25, 47.25]] gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker=4, minXYIsCentroid=False) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet(landCntrs) cstClDet = self.getMockHiResAlphaMtxAndCstCellDet(coastCntrs) grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(4, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells self.assertEqual(nx*ny - 3, len(cells)) def testGetNeighborsSerial(self): minx = 100. miny = 45. dx = .5 dy = 1. nx = 30 ny = 10 maxx = minx + nx*dx maxy = miny + ny*dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker = 1) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(1, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) def testGetNeighborsParallel(self): minx = 100. miny = 45. dx = .5 dy = 1. nx = 30 ny = 10 maxx = minx + nx*dx maxy = miny + ny*dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker = 4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertEqual(4, grd.nParWorker) self.assertFalse(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(3, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) cell = cells[100] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) def testGetNeighborsWrapAroundGlobalParallel(self): minx = -179. miny = -89. dx = 2 dy = 2 nx = 180 ny = 90 maxx = minx + nx*dx maxy = miny + ny*dy gb = abRectangularGridBuilder(minx, miny, dx, dy, nx, ny, nParWorker = 4) hiResMtx = self.getMockHiResAlphaMtxAndCstCellDet() cstClDet = self.getMockHiResAlphaMtxAndCstCellDet() grd = gb.buildGrid(hiResMtx, cstClDet) self.assertTrue(grd.wrapAroundDateline) cells = grd.cells cell = cells[0] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[45] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[65] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) self.assertEqual(-182, ncls[5].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) self.assertEqual(-182, ncls[6].boundary.coords[0][0]) cell = cells[89] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) self.assertEqual(-182, ncls[3].boundary.coords[0][0]) self.assertEqual(-182, ncls[4].boundary.coords[0][0]) cell = cells[200] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) cell = cells[nx*ny-22] ncls = grd.getNeighbors(cell) self.assertEqual(8, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) self.assertEqual(182, ncls[5].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) self.assertEqual(182, ncls[6].boundary.coords[1][0]) cell = cells[nx*ny-1] ncls = grd.getNeighbors(cell) self.assertEqual(5, len(ncls)) for nc in ncls: self.assertTrue( cell.distance(nc) < .000000001 ) self.assertEqual(182, ncls[3].boundary.coords[1][0]) self.assertEqual(182, ncls[4].boundary.coords[1][0]) if __name__ == '__main__': unittest.main()
[ 6, 7, 8, 9, 10 ]
2,203
37b23dc520abc7cbb6798f41063696916065626f
<mask token>
<mask token> print(lista) <mask token> print(listasemana[0]) <mask token> print(listasemana[-1]) <mask token> print(listasemana[0, 3]) <mask token> print(conjunto) <mask token> print(lista1palabras, lista2palabras) <mask token> print(lista1palabras[1, 2, 4, 5], lista2palabras) <mask token> print(lista2palabras[0, 1, 4, 5], lista1palabras) <mask token> print(lista1palabras, lista2palabras[0, 3])
lista = [] print(lista) listasemana = ['Lunes', 'Martes', 'Miercoles', 'Jueves', 'Viernes'] print(listasemana[0]) listasemana = ['Lunes', 'Martes', 'Miercoles', 'Jueves', 'Viernes'] print(listasemana[-1]) listasemana = ['Lunes', 'Martes', 'Miercoles', 'Jueves', 'Viernes'] print(listasemana[0, 3]) listaa = [1, 2, 3, 4, 'hola', 2, 2] conjunto = set(listaa) listaa = listaa(conjunto) print(conjunto) lista1palabras = ['Sofia', 'Karla', 'Verinica', 'Lina', 'Natalia', 'Estefania'] lista2palabras = ['Enrique', 'Erica', 'Sofia', 'Lina', 'Carlos', 'Pablo'] print(lista1palabras, lista2palabras) lista1palabras = ['Sofia', 'Karla', 'Verinica', 'Lina', 'Natalia', 'Estefania'] lista2palabras = ['Enrique', 'Erica', 'Sofia', 'Lina', 'Carlos', 'Pablo'] print(lista1palabras[1, 2, 4, 5], lista2palabras) lista1palabras = ['Sofia', 'Karla', 'Verinica', 'Lina', 'Natalia', 'Estefania'] lista2palabras = ['Enrique', 'Erica', 'Sofia', 'Lina', 'Carlos', 'Pablo'] print(lista2palabras[0, 1, 4, 5], lista1palabras) lista1palabras = ['Sofia', 'Karla', 'Verinica', 'Lina', 'Natalia', 'Estefania'] lista2palabras = ['Enrique', 'Erica', 'Sofia', 'Lina', 'Carlos', 'Pablo'] print(lista1palabras, lista2palabras[0, 3])
#listas lista=[] print(lista) #lista semana listasemana=["Lunes","Martes","Miercoles","Jueves","Viernes"] print(listasemana[0]) #lista semana listasemana=["Lunes","Martes","Miercoles","Jueves","Viernes"] print(listasemana[-1]) #lista semana listasemana=["Lunes","Martes","Miercoles","Jueves","Viernes"] print(listasemana[0,3]) #quitar los elementos repetidos de una lista listaa=[1,2,3,4,"hola",2,2] conjunto=set(listaa) listaa=listaa(conjunto) print(conjunto) #listas palabras de 2 listas lista1palabras=["Sofia","Karla","Verinica","Lina","Natalia","Estefania"] lista2palabras=["Enrique","Erica","Sofia","Lina","Carlos","Pablo"] print(lista1palabras,lista2palabras) #listas de palabras que aparecen en la primera lista lista1palabras=["Sofia","Karla","Verinica","Lina","Natalia","Estefania"] lista2palabras=["Enrique","Erica","Sofia","Lina","Carlos","Pablo"] print(lista1palabras[1,2,4,5],lista2palabras) #listas de palabras que aparecen en la segunda lista lista1palabras=["Sofia","Karla","Verinica","Lina","Natalia","Estefania"] lista2palabras=["Enrique","Erica","Sofia","Lina","Carlos","Pablo"] print(lista2palabras[0,1,4,5],lista1palabras) #listas palabras repetidas en ambas listas lista1palabras=["Sofia","Karla","Verinica","Lina","Natalia","Estefania"] lista2palabras=["Enrique","Erica","Sofia","Lina","Carlos","Pablo"] print(lista1palabras,lista2palabras[0,3])
null
[ 0, 1, 2, 3 ]
2,204
32c18bd578bbf91c76604f063421a65a4f7a8b63
<mask token>
<mask token> class BruteForce(Mono): <mask token> def _count_inconsistencies(self): if self.num_cores == 1: for ni in self.nonmatch_indices: self.index2count[ni] = 0 for mi in self.match_indices: match_features = self.features[mi] count = 0 for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: count += 1 self.index2count[ni] += 1 self.index2count[mi] = count else: nmatch = len(self.match_indices) threads2incons_count = pymp.shared.dict() with pymp.Parallel(self.num_cores) as p: local_index2incons_count = {} for index in p.range(nmatch): mi = self.match_indices[index] match_features = self.features[mi] count = 0 for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: count += 1 if ni in local_index2incons_count: local_index2incons_count[ni] += 1 else: local_index2incons_count[ni] = 1 if count > 0: local_index2incons_count[mi] = count threads2incons_count[p.thread_num] = local_index2incons_count for _, local_index2incons_count in threads2incons_count.items(): for index, count in local_index2incons_count.items(): if index in self.index2count: self.index2count[index] += count else: self.index2count[index] = count return self.index2count def _get_inconsistency_indices(self): if self.num_cores == 1: for mi in self.match_indices: match_features = self.features[mi] incons_indices = [] for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: incons_indices.append(ni) if len(incons_indices) > 0: self.index2incons[mi] = incons_indices for ni in incons_indices: if ni in self.index2incons: self.index2incons[ni].append(mi) else: self.index2incons[ni] = [mi] else: nmatch = len(self.match_indices) threads2incons = pymp.shared.dict() with pymp.Parallel(self.num_cores) as p: local_index2incons = {} for index in p.range(nmatch): mi = self.match_indices[index] match_features = self.features[mi] incons_indices = [] for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: incons_indices.append(ni) if len(incons_indices) > 0: local_index2incons[mi] = incons_indices threads2incons[p.thread_num] = local_index2incons for _, local_index2incons in threads2incons.items(): for mi, ni_indices in local_index2incons.items(): self.index2incons[mi] = ni_indices for ni in ni_indices: if ni in self.index2incons: self.index2incons[ni].append(mi) else: self.index2incons[ni] = [mi] return self.index2incons
<mask token> class BruteForce(Mono): def __init__(self, features, labels, params): super(BruteForce, self).__init__(features, labels, params) def _count_inconsistencies(self): if self.num_cores == 1: for ni in self.nonmatch_indices: self.index2count[ni] = 0 for mi in self.match_indices: match_features = self.features[mi] count = 0 for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: count += 1 self.index2count[ni] += 1 self.index2count[mi] = count else: nmatch = len(self.match_indices) threads2incons_count = pymp.shared.dict() with pymp.Parallel(self.num_cores) as p: local_index2incons_count = {} for index in p.range(nmatch): mi = self.match_indices[index] match_features = self.features[mi] count = 0 for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: count += 1 if ni in local_index2incons_count: local_index2incons_count[ni] += 1 else: local_index2incons_count[ni] = 1 if count > 0: local_index2incons_count[mi] = count threads2incons_count[p.thread_num] = local_index2incons_count for _, local_index2incons_count in threads2incons_count.items(): for index, count in local_index2incons_count.items(): if index in self.index2count: self.index2count[index] += count else: self.index2count[index] = count return self.index2count def _get_inconsistency_indices(self): if self.num_cores == 1: for mi in self.match_indices: match_features = self.features[mi] incons_indices = [] for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: incons_indices.append(ni) if len(incons_indices) > 0: self.index2incons[mi] = incons_indices for ni in incons_indices: if ni in self.index2incons: self.index2incons[ni].append(mi) else: self.index2incons[ni] = [mi] else: nmatch = len(self.match_indices) threads2incons = pymp.shared.dict() with pymp.Parallel(self.num_cores) as p: local_index2incons = {} for index in p.range(nmatch): mi = self.match_indices[index] match_features = self.features[mi] incons_indices = [] for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: incons_indices.append(ni) if len(incons_indices) > 0: local_index2incons[mi] = incons_indices threads2incons[p.thread_num] = local_index2incons for _, local_index2incons in threads2incons.items(): for mi, ni_indices in local_index2incons.items(): self.index2incons[mi] = ni_indices for ni in ni_indices: if ni in self.index2incons: self.index2incons[ni].append(mi) else: self.index2incons[ni] = [mi] return self.index2incons
<mask token> import pymp from v6.mono import Mono class BruteForce(Mono): def __init__(self, features, labels, params): super(BruteForce, self).__init__(features, labels, params) def _count_inconsistencies(self): if self.num_cores == 1: for ni in self.nonmatch_indices: self.index2count[ni] = 0 for mi in self.match_indices: match_features = self.features[mi] count = 0 for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: count += 1 self.index2count[ni] += 1 self.index2count[mi] = count else: nmatch = len(self.match_indices) threads2incons_count = pymp.shared.dict() with pymp.Parallel(self.num_cores) as p: local_index2incons_count = {} for index in p.range(nmatch): mi = self.match_indices[index] match_features = self.features[mi] count = 0 for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: count += 1 if ni in local_index2incons_count: local_index2incons_count[ni] += 1 else: local_index2incons_count[ni] = 1 if count > 0: local_index2incons_count[mi] = count threads2incons_count[p.thread_num] = local_index2incons_count for _, local_index2incons_count in threads2incons_count.items(): for index, count in local_index2incons_count.items(): if index in self.index2count: self.index2count[index] += count else: self.index2count[index] = count return self.index2count def _get_inconsistency_indices(self): if self.num_cores == 1: for mi in self.match_indices: match_features = self.features[mi] incons_indices = [] for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: incons_indices.append(ni) if len(incons_indices) > 0: self.index2incons[mi] = incons_indices for ni in incons_indices: if ni in self.index2incons: self.index2incons[ni].append(mi) else: self.index2incons[ni] = [mi] else: nmatch = len(self.match_indices) threads2incons = pymp.shared.dict() with pymp.Parallel(self.num_cores) as p: local_index2incons = {} for index in p.range(nmatch): mi = self.match_indices[index] match_features = self.features[mi] incons_indices = [] for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: incons_indices.append(ni) if len(incons_indices) > 0: local_index2incons[mi] = incons_indices threads2incons[p.thread_num] = local_index2incons for _, local_index2incons in threads2incons.items(): for mi, ni_indices in local_index2incons.items(): self.index2incons[mi] = ni_indices for ni in ni_indices: if ni in self.index2incons: self.index2incons[ni].append(mi) else: self.index2incons[ni] = [mi] return self.index2incons
''' Created on Mar 7, 2019 @author: hzhang0418 ''' import pymp from v6.mono import Mono class BruteForce(Mono): def __init__(self, features, labels, params): super(BruteForce, self).__init__(features, labels, params) def _count_inconsistencies(self): if self.num_cores==1: for ni in self.nonmatch_indices: self.index2count[ni] = 0 for mi in self.match_indices: match_features = self.features[mi] count = 0 for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: count += 1 self.index2count[ni] += 1 self.index2count[mi] = count else: nmatch = len(self.match_indices) threads2incons_count = pymp.shared.dict() with pymp.Parallel(self.num_cores) as p: local_index2incons_count = {} for index in p.range(nmatch): mi = self.match_indices[index] match_features = self.features[mi] count = 0 for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: count += 1 if ni in local_index2incons_count: local_index2incons_count[ni] += 1 else: local_index2incons_count[ni] = 1 if count>0: local_index2incons_count[mi] = count threads2incons_count[p.thread_num] = local_index2incons_count for _, local_index2incons_count in threads2incons_count.items(): for index, count in local_index2incons_count.items(): if index in self.index2count: self.index2count[index] += count else: self.index2count[index] = count return self.index2count def _get_inconsistency_indices(self): if self.num_cores==1: for mi in self.match_indices: match_features = self.features[mi] incons_indices = [] for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: incons_indices.append(ni) if len(incons_indices)>0: self.index2incons[mi] = incons_indices for ni in incons_indices: if ni in self.index2incons: self.index2incons[ni].append(mi) else: self.index2incons[ni] = [mi] else: nmatch = len(self.match_indices) threads2incons = pymp.shared.dict() with pymp.Parallel(self.num_cores) as p: local_index2incons = {} for index in p.range(nmatch): mi = self.match_indices[index] match_features = self.features[mi] incons_indices = [] for ni in self.nonmatch_indices: inconsistent = self.compare_features(match_features, self.features[ni], self.min_con_dim) if inconsistent == True: incons_indices.append(ni) if len(incons_indices)>0: local_index2incons[mi] = incons_indices threads2incons[p.thread_num] = local_index2incons for _, local_index2incons in threads2incons.items(): for mi, ni_indices in local_index2incons.items(): self.index2incons[mi] = ni_indices for ni in ni_indices: if ni in self.index2incons: self.index2incons[ni].append(mi) else: self.index2incons[ni] = [mi] return self.index2incons
[ 0, 3, 4, 5, 6 ]
2,205
736b84bbcf1d5954b491068be4060edeade2c1c5
<mask token>
print('Choose from the following options: ') <mask token> print(one, '\n', two, '\n', three, '\n', four, '\n', five) <mask token> if value == 1: modem_on = input('\nIs your modem on? (Enter Y or N): ') if modem_on == 'Y': router_on = input('\nIs your router on? (Enter Y or N): ') if router_on == 'Y': redlight = input( '\nDoes your router emit a red light? (Enter Y or N): ') if redlight == 'Y': print( 'Unplug your router and wait thirty seconds. Then plug your router into the nearest outlet to restart your router. If you still cannot connect to the internet, restart this program. Note, this program will now terminate. Goodbye!' ) else: comp_wifi_on = input( '\nAre both your computer and wifi on? (Enter Y or N): ') if comp_wifi_on == 'Y': print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) else: print( "If your computer is not on, please turn it on by pressing the power button. Also make sure your computer's wifi is on. If you still cannot connect to the internet, restart this program. Note, this program will now terminate. Goodbye!" ) else: print( 'Plug your router into the nearest outlet to turn on your router. If you still cannot connect to the Internet, restart this program. Note, this program will now terminate. Goodbye!' ) else: print( 'Plug your modem into the nearest outlet to turn on your modem. If you still cannot connect to the Internet, restart this program. Note, this program will now terminate. Goodbye!' ) if value == 2: cable_on = input('\nIs your cable box on? (Enter Y or N): ') if cable_on == 'Y': tv_on = input('\nIs your TV on? (Enter Y or N): ') if tv_on == 'Y': print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) else: print( 'Plug your TV into the nearest outlet and press the power button on your remote to turn on your TV. If you still do not recieve a cable signal, restart this program. Note, this program will now terminate. Goodbye!' ) else: print( 'Plug your cable box into the nearest outlet to turn on your cable box. If you still do not recieve a cable signal, please restart this program. Note, this program will now terminate. Goodbye!' ) if value == 3: phones_on = input('\nAre your phones on? (Enter Y or N): ') if phone_on == 'Y': landline_plugged = input( """ Is there a landline wire plugged into each phone or the wireless phone terminal? (Enter Y or N): """ ) if landline_plugged == 'Y': print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) else: print( 'Plug a landline wire into each phone or phone terminal. If you still cannot use your phones, please restart this program. Note, this program will now terminate. Goodbye!' ) else: print( 'Plug your phones into the nearest outlet to turn them on. If you are using wireless phones, please make sure you change them before attempting to use them. If you still cannot use your phones, please restart this program. Note, this program will now terminate. Goodbye!' ) if value == 4: late_payment = input( '\nWere you late on your last payment? (Enter Y or N): ') if late_payment == 'Y': print( 'If you were late on your last payment, you will be charged an additional 5% interest fee. Therefore, your bill may be more than usual. If you would like to contest your charge, please call 555-555-5555 for additional support with this matter. Thank you for your patience. Note, this program will now terminate. Goodbye!' ) else: print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) if value == 5: print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) if value < 1 or value > 5: print( 'You entered an invalid menu choice. It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' )
print('Choose from the following options: ') one = ' 1. My internet is not working.' two = '2. My cable is not working.' three = '3. My phones are not working.' four = '4. My bill is wrong.' five = '5. I want to upgrade my plan.' print(one, '\n', two, '\n', three, '\n', four, '\n', five) value = int(input('(Enter a value 1 - 5): ')) if value == 1: modem_on = input('\nIs your modem on? (Enter Y or N): ') if modem_on == 'Y': router_on = input('\nIs your router on? (Enter Y or N): ') if router_on == 'Y': redlight = input( '\nDoes your router emit a red light? (Enter Y or N): ') if redlight == 'Y': print( 'Unplug your router and wait thirty seconds. Then plug your router into the nearest outlet to restart your router. If you still cannot connect to the internet, restart this program. Note, this program will now terminate. Goodbye!' ) else: comp_wifi_on = input( '\nAre both your computer and wifi on? (Enter Y or N): ') if comp_wifi_on == 'Y': print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) else: print( "If your computer is not on, please turn it on by pressing the power button. Also make sure your computer's wifi is on. If you still cannot connect to the internet, restart this program. Note, this program will now terminate. Goodbye!" ) else: print( 'Plug your router into the nearest outlet to turn on your router. If you still cannot connect to the Internet, restart this program. Note, this program will now terminate. Goodbye!' ) else: print( 'Plug your modem into the nearest outlet to turn on your modem. If you still cannot connect to the Internet, restart this program. Note, this program will now terminate. Goodbye!' ) if value == 2: cable_on = input('\nIs your cable box on? (Enter Y or N): ') if cable_on == 'Y': tv_on = input('\nIs your TV on? (Enter Y or N): ') if tv_on == 'Y': print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) else: print( 'Plug your TV into the nearest outlet and press the power button on your remote to turn on your TV. If you still do not recieve a cable signal, restart this program. Note, this program will now terminate. Goodbye!' ) else: print( 'Plug your cable box into the nearest outlet to turn on your cable box. If you still do not recieve a cable signal, please restart this program. Note, this program will now terminate. Goodbye!' ) if value == 3: phones_on = input('\nAre your phones on? (Enter Y or N): ') if phone_on == 'Y': landline_plugged = input( """ Is there a landline wire plugged into each phone or the wireless phone terminal? (Enter Y or N): """ ) if landline_plugged == 'Y': print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) else: print( 'Plug a landline wire into each phone or phone terminal. If you still cannot use your phones, please restart this program. Note, this program will now terminate. Goodbye!' ) else: print( 'Plug your phones into the nearest outlet to turn them on. If you are using wireless phones, please make sure you change them before attempting to use them. If you still cannot use your phones, please restart this program. Note, this program will now terminate. Goodbye!' ) if value == 4: late_payment = input( '\nWere you late on your last payment? (Enter Y or N): ') if late_payment == 'Y': print( 'If you were late on your last payment, you will be charged an additional 5% interest fee. Therefore, your bill may be more than usual. If you would like to contest your charge, please call 555-555-5555 for additional support with this matter. Thank you for your patience. Note, this program will now terminate. Goodbye!' ) else: print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) if value == 5: print( 'It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' ) if value < 1 or value > 5: print( 'You entered an invalid menu choice. It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.' )
# "Time Warner Python" Salma Hashem netid: sh5640 #Design costumer service application by asking users series of questions, and based on the customers' answers to the questions, provide them with instructions. #Ask the user to choose from the following options print("Choose from the following options: ") #assign each menu option to a number one= " 1. My internet is not working." two= "2. My cable is not working." three= "3. My phones are not working." four= "4. My bill is wrong." five= "5. I want to upgrade my plan." #Print the options each on its own line and ask the user to input a number and convert into an integer print(one, "\n", two, "\n", three, "\n", four, "\n", five) value= int(input("(Enter a value 1 - 5): ")) #assign variables to user inputs using if else statements for scenario one and print output based on user inputs if value==1: modem_on=input("\nIs your modem on? (Enter Y or N): ") if modem_on=="Y": router_on=input("\nIs your router on? (Enter Y or N): ") if router_on=="Y": redlight= input("\nDoes your router emit a red light? (Enter Y or N): ") if redlight=="Y": print("Unplug your router and wait thirty seconds. Then plug your router into the nearest outlet to restart your router. If you still cannot connect to the internet, restart this program. Note, this program will now terminate. Goodbye!") else: comp_wifi_on=input("\nAre both your computer and wifi on? (Enter Y or N): ") if comp_wifi_on=="Y": print("It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.") else: print("If your computer is not on, please turn it on by pressing the power button. Also make sure your computer's wifi is on. If you still cannot connect to the internet, restart this program. Note, this program will now terminate. Goodbye!") else: print("Plug your router into the nearest outlet to turn on your router. If you still cannot connect to the Internet, restart this program. Note, this program will now terminate. Goodbye!") else: print("Plug your modem into the nearest outlet to turn on your modem. If you still cannot connect to the Internet, restart this program. Note, this program will now terminate. Goodbye!") #assign variables to user inputs using if statements for scenario two and print output based on user inputs if value==2: cable_on=input("\nIs your cable box on? (Enter Y or N): ") if cable_on=="Y": tv_on=input("\nIs your TV on? (Enter Y or N): ") if tv_on=="Y": print("It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.") else: print("Plug your TV into the nearest outlet and press the power button on your remote to turn on your TV. If you still do not recieve a cable signal, restart this program. Note, this program will now terminate. Goodbye!") else: print("Plug your cable box into the nearest outlet to turn on your cable box. If you still do not recieve a cable signal, please restart this program. Note, this program will now terminate. Goodbye!") #assign variables to user inputs using if statements for scenario three and print output based on user inputs if value==3: phones_on=input("\nAre your phones on? (Enter Y or N): ") if phone_on=="Y": landline_plugged=input("\nIs there a landline wire plugged into each phone or the wireless phone terminal? (Enter Y or N): ") if landline_plugged=="Y": print("It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.") else: print("Plug a landline wire into each phone or phone terminal. If you still cannot use your phones, please restart this program. Note, this program will now terminate. Goodbye!") else: print("Plug your phones into the nearest outlet to turn them on. If you are using wireless phones, please make sure you change them before attempting to use them. If you still cannot use your phones, please restart this program. Note, this program will now terminate. Goodbye!") #assign variables to user inputs using if statements for scenario four and print output based on user inputs if value==4: late_payment= input("\nWere you late on your last payment? (Enter Y or N): ") if late_payment=="Y": print("If you were late on your last payment, you will be charged an additional 5% interest fee. Therefore, your bill may be more than usual. If you would like to contest your charge, please call 555-555-5555 for additional support with this matter. Thank you for your patience. Note, this program will now terminate. Goodbye!") else: print("It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.") #scenario 5--evaluate input and print output based on user input if value==5: print("It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.") #create if statements to evaluate invalid user inputs if value<1 or value>5: print("You entered an invalid menu choice. It looks like you may need additional support. Please call 555-555-5555 for additional support with this matter. Thank you for your patience.")
null
[ 0, 1, 2, 3 ]
2,206
72e03e7199044f3ed1d562db622a7b884fa186b0
<mask token> @application.route('/') def hello_world(): return jsonify({'Hello': 'World'}) <mask token>
<mask token> load_dotenv(dotenv_path='./.env') <mask token> @application.route('/') def hello_world(): return jsonify({'Hello': 'World'}) @application.route('/jira-issue-transition', methods=['POST']) def jira_issue_transition_update(): if not helper.check_github_ip(src_ip=request.access_route[0]): raise NotAcceptable('Github IP whitelist check failed! IP: {}'. format(request.access_route[0])) response = None if (not request.json or not 'review' in request.json or not 'action' in request.json): raise NotAcceptable('Invalid JSON') if request.json['review']['state'] == 'changes_requested': response = jiraservice.issue_transition_update(issue_id=request. json['pull_request']['head']['ref'], new_transition_id=os. getenv('JIRA_TRANSITION_REJECT_ID')) elif request.json['review']['state'] == 'approved': response = jiraservice.issue_transition_update(issue_id=request. json['pull_request']['head']['ref'], new_transition_id=os. getenv('JIRA_TRANSITION_APPROVED_ID')) if request.json['review']['state'] == 'approved' or request.json['review'][ 'state'] == 'changes_requested': helper.save_pull_request_review(issue_id=request.json[ 'pull_request']['head']['ref'], pr_id=request.json[ 'pull_request']['number'], issue_owner_username=request.json[ 'pull_request']['user']['login'], reviewer_username=request. json['review']['user']['login'], action=request.json['review'][ 'state']) if response: return jsonify({'ack': 'OK'}) else: return jsonify({'ack': 'NOT OK'}) if __name__ == '__main__': application.run(debug=True)
<mask token> load_dotenv(dotenv_path='./.env') <mask token> application = FlaskAPI(__name__) jiraservice = jira() helper = helper() @application.route('/') def hello_world(): return jsonify({'Hello': 'World'}) @application.route('/jira-issue-transition', methods=['POST']) def jira_issue_transition_update(): if not helper.check_github_ip(src_ip=request.access_route[0]): raise NotAcceptable('Github IP whitelist check failed! IP: {}'. format(request.access_route[0])) response = None if (not request.json or not 'review' in request.json or not 'action' in request.json): raise NotAcceptable('Invalid JSON') if request.json['review']['state'] == 'changes_requested': response = jiraservice.issue_transition_update(issue_id=request. json['pull_request']['head']['ref'], new_transition_id=os. getenv('JIRA_TRANSITION_REJECT_ID')) elif request.json['review']['state'] == 'approved': response = jiraservice.issue_transition_update(issue_id=request. json['pull_request']['head']['ref'], new_transition_id=os. getenv('JIRA_TRANSITION_APPROVED_ID')) if request.json['review']['state'] == 'approved' or request.json['review'][ 'state'] == 'changes_requested': helper.save_pull_request_review(issue_id=request.json[ 'pull_request']['head']['ref'], pr_id=request.json[ 'pull_request']['number'], issue_owner_username=request.json[ 'pull_request']['user']['login'], reviewer_username=request. json['review']['user']['login'], action=request.json['review'][ 'state']) if response: return jsonify({'ack': 'OK'}) else: return jsonify({'ack': 'NOT OK'}) if __name__ == '__main__': application.run(debug=True)
import os from flask import request, jsonify from flask_api import FlaskAPI from flask_api.exceptions import NotAcceptable from dotenv import load_dotenv load_dotenv(dotenv_path='./.env') from src.service.jira import jira from src.service.helper import helper application = FlaskAPI(__name__) jiraservice = jira() helper = helper() @application.route('/') def hello_world(): return jsonify({'Hello': 'World'}) @application.route('/jira-issue-transition', methods=['POST']) def jira_issue_transition_update(): if not helper.check_github_ip(src_ip=request.access_route[0]): raise NotAcceptable('Github IP whitelist check failed! IP: {}'. format(request.access_route[0])) response = None if (not request.json or not 'review' in request.json or not 'action' in request.json): raise NotAcceptable('Invalid JSON') if request.json['review']['state'] == 'changes_requested': response = jiraservice.issue_transition_update(issue_id=request. json['pull_request']['head']['ref'], new_transition_id=os. getenv('JIRA_TRANSITION_REJECT_ID')) elif request.json['review']['state'] == 'approved': response = jiraservice.issue_transition_update(issue_id=request. json['pull_request']['head']['ref'], new_transition_id=os. getenv('JIRA_TRANSITION_APPROVED_ID')) if request.json['review']['state'] == 'approved' or request.json['review'][ 'state'] == 'changes_requested': helper.save_pull_request_review(issue_id=request.json[ 'pull_request']['head']['ref'], pr_id=request.json[ 'pull_request']['number'], issue_owner_username=request.json[ 'pull_request']['user']['login'], reviewer_username=request. json['review']['user']['login'], action=request.json['review'][ 'state']) if response: return jsonify({'ack': 'OK'}) else: return jsonify({'ack': 'NOT OK'}) if __name__ == '__main__': application.run(debug=True)
import os from flask import request, jsonify from flask_api import FlaskAPI from flask_api.exceptions import NotAcceptable from dotenv import load_dotenv load_dotenv(dotenv_path='./.env') from src.service.jira import jira from src.service.helper import helper application = FlaskAPI(__name__) jiraservice = jira() helper = helper() @application.route('/') def hello_world(): return jsonify({'Hello': 'World'}) @application.route('/jira-issue-transition', methods=['POST']) def jira_issue_transition_update(): if not helper.check_github_ip(src_ip=request.access_route[0]): raise NotAcceptable('Github IP whitelist check failed! IP: {}'.format(request.access_route[0])) response = None if not request.json or not 'review' in request.json or not 'action' in request.json: raise NotAcceptable('Invalid JSON') if request.json['review']['state'] == 'changes_requested': response = jiraservice.issue_transition_update(issue_id=request.json['pull_request']['head']['ref'], new_transition_id=os.getenv('JIRA_TRANSITION_REJECT_ID')) elif request.json['review']['state'] == 'approved': response = jiraservice.issue_transition_update(issue_id=request.json['pull_request']['head']['ref'], new_transition_id=os.getenv('JIRA_TRANSITION_APPROVED_ID')) if request.json['review']['state'] == 'approved' or request.json['review']['state'] == 'changes_requested': helper.save_pull_request_review(issue_id=request.json['pull_request']['head']['ref'], pr_id=request.json['pull_request']['number'], issue_owner_username=request.json['pull_request']['user']['login'], reviewer_username=request.json['review']['user']['login'], action=request.json['review']['state']) if response: return jsonify({'ack': 'OK'}) else: return jsonify({'ack': 'NOT OK'}) if __name__ == '__main__': application.run(debug=True)
[ 1, 3, 4, 5, 6 ]
2,207
2eecc852a6438db19e0ed55ba6cc6610d76c6ed0
<mask token>
<mask token> def create_app(config_name): app = Flask(__name__) app.config.from_object(Config) app.config.from_object(config_options[config_name]) app.config['SECRET_KEY'] = 'd686414d5eeb7d38df7e8c385b2c2c47' bootstrap.init_app(app) csrf.init_app(app) db.init_app(app) from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint, url_prefix='/authenticate') return app
<mask token> login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.loginview = 'auth.login' bootstrap = Bootstrap() csrf = CSRFProtect() db = SQLAlchemy() def create_app(config_name): app = Flask(__name__) app.config.from_object(Config) app.config.from_object(config_options[config_name]) app.config['SECRET_KEY'] = 'd686414d5eeb7d38df7e8c385b2c2c47' bootstrap.init_app(app) csrf.init_app(app) db.init_app(app) from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint, url_prefix='/authenticate') return app
from flask import Flask, render_template from config import Config from flask_bootstrap import Bootstrap from config import config_options from flask_login import LoginManager from flask_wtf.csrf import CSRFProtect from flask_sqlalchemy import SQLAlchemy login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.loginview = 'auth.login' bootstrap = Bootstrap() csrf = CSRFProtect() db = SQLAlchemy() def create_app(config_name): app = Flask(__name__) app.config.from_object(Config) app.config.from_object(config_options[config_name]) app.config['SECRET_KEY'] = 'd686414d5eeb7d38df7e8c385b2c2c47' bootstrap.init_app(app) csrf.init_app(app) db.init_app(app) from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint, url_prefix='/authenticate') return app
from flask import Flask, render_template from config import Config from flask_bootstrap import Bootstrap from config import config_options from flask_login import LoginManager from flask_wtf.csrf import CSRFProtect from flask_sqlalchemy import SQLAlchemy login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.loginview = 'auth.login' bootstrap = Bootstrap() csrf=CSRFProtect() db = SQLAlchemy() def create_app(config_name): app= Flask(__name__) #create app configs app.config.from_object(Config) app.config.from_object(config_options[config_name]) app.config['SECRET_KEY']='d686414d5eeb7d38df7e8c385b2c2c47' #initializing bootstrap.init_app(app) csrf.init_app(app) db.init_app(app) #registering from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint, url_prefix = '/authenticate') return app
[ 0, 1, 2, 3, 4 ]
2,208
1c085ea8f9b21ea7bef94ad4ecbb1771a57f697a
<mask token>
<mask token> @dataclass_with_properties class ExternalMap: external_id: str verified_using: List[IntegrityMethod] = field(default_factory=list) location_hint: Optional[str] = None defining_document: Optional[str] = None <mask token>
<mask token> @dataclass_with_properties class ExternalMap: external_id: str verified_using: List[IntegrityMethod] = field(default_factory=list) location_hint: Optional[str] = None defining_document: Optional[str] = None def __init__(self, external_id: str, verified_using: List[ IntegrityMethod]=None, location_hint: Optional[str]=None, defining_document: Optional[str]=None): verified_using = [] if verified_using is None else verified_using check_types_and_set_values(self, locals())
from dataclasses import field from beartype.typing import List, Optional from spdx_tools.common.typing.dataclass_with_properties import dataclass_with_properties from spdx_tools.common.typing.type_checks import check_types_and_set_values from spdx_tools.spdx3.model import IntegrityMethod @dataclass_with_properties class ExternalMap: external_id: str verified_using: List[IntegrityMethod] = field(default_factory=list) location_hint: Optional[str] = None defining_document: Optional[str] = None def __init__(self, external_id: str, verified_using: List[ IntegrityMethod]=None, location_hint: Optional[str]=None, defining_document: Optional[str]=None): verified_using = [] if verified_using is None else verified_using check_types_and_set_values(self, locals())
# SPDX-FileCopyrightText: 2023 spdx contributors # # SPDX-License-Identifier: Apache-2.0 from dataclasses import field from beartype.typing import List, Optional from spdx_tools.common.typing.dataclass_with_properties import dataclass_with_properties from spdx_tools.common.typing.type_checks import check_types_and_set_values from spdx_tools.spdx3.model import IntegrityMethod @dataclass_with_properties class ExternalMap: external_id: str # anyURI verified_using: List[IntegrityMethod] = field(default_factory=list) location_hint: Optional[str] = None # anyURI defining_document: Optional[str] = None def __init__( self, external_id: str, verified_using: List[IntegrityMethod] = None, location_hint: Optional[str] = None, defining_document: Optional[str] = None, ): verified_using = [] if verified_using is None else verified_using check_types_and_set_values(self, locals())
[ 0, 1, 2, 3, 4 ]
2,209
5aebebb7f22e094a1a897b3266ff07d59400b76c
<mask token> class ScheduleAdmin(admin.ModelAdmin): """model admin for schedules""" list_display = ('id', 'name', 'func', 'schedule_type', 'repeats', 'cluster', 'next_run', 'last_run', 'success') if not croniter: readonly_fields = 'cron', list_filter = 'next_run', 'schedule_type', 'cluster' search_fields = 'func', list_display_links = 'id', 'name' class QueueAdmin(admin.ModelAdmin): """queue admin for ORM broker""" list_display = 'id', 'key', 'task_id', 'name', 'func', 'lock' def save_model(self, request, obj, form, change): obj.save(using=Conf.ORM) def delete_model(self, request, obj): obj.delete(using=Conf.ORM) def get_queryset(self, request): return super(QueueAdmin, self).get_queryset(request).using(Conf.ORM) def has_add_permission(self, request): """Don't allow adds.""" return False list_filter = 'key', <mask token>
<mask token> class TaskAdmin(admin.ModelAdmin): """model admin for success tasks.""" list_display = 'name', 'func', 'started', 'stopped', 'time_taken', 'group' def has_add_permission(self, request): """Don't allow adds.""" return False def get_queryset(self, request): """Only show successes.""" qs = super(TaskAdmin, self).get_queryset(request) return qs.filter(success=True) search_fields = 'name', 'func', 'group' readonly_fields = [] list_filter = 'group', def get_readonly_fields(self, request, obj=None): """Set all fields readonly.""" return list(self.readonly_fields) + [field.name for field in obj. _meta.fields] <mask token> class FailAdmin(admin.ModelAdmin): """model admin for failed tasks.""" list_display = 'name', 'func', 'started', 'stopped', 'short_result' def has_add_permission(self, request): """Don't allow adds.""" return False actions = [retry_failed] search_fields = 'name', 'func' list_filter = 'group', readonly_fields = [] def get_readonly_fields(self, request, obj=None): """Set all fields readonly.""" return list(self.readonly_fields) + [field.name for field in obj. _meta.fields] class ScheduleAdmin(admin.ModelAdmin): """model admin for schedules""" list_display = ('id', 'name', 'func', 'schedule_type', 'repeats', 'cluster', 'next_run', 'last_run', 'success') if not croniter: readonly_fields = 'cron', list_filter = 'next_run', 'schedule_type', 'cluster' search_fields = 'func', list_display_links = 'id', 'name' class QueueAdmin(admin.ModelAdmin): """queue admin for ORM broker""" list_display = 'id', 'key', 'task_id', 'name', 'func', 'lock' def save_model(self, request, obj, form, change): obj.save(using=Conf.ORM) def delete_model(self, request, obj): obj.delete(using=Conf.ORM) def get_queryset(self, request): return super(QueueAdmin, self).get_queryset(request).using(Conf.ORM) def has_add_permission(self, request): """Don't allow adds.""" return False list_filter = 'key', <mask token>
<mask token> class TaskAdmin(admin.ModelAdmin): """model admin for success tasks.""" list_display = 'name', 'func', 'started', 'stopped', 'time_taken', 'group' def has_add_permission(self, request): """Don't allow adds.""" return False def get_queryset(self, request): """Only show successes.""" qs = super(TaskAdmin, self).get_queryset(request) return qs.filter(success=True) search_fields = 'name', 'func', 'group' readonly_fields = [] list_filter = 'group', def get_readonly_fields(self, request, obj=None): """Set all fields readonly.""" return list(self.readonly_fields) + [field.name for field in obj. _meta.fields] def retry_failed(FailAdmin, request, queryset): """Submit selected tasks back to the queue.""" for task in queryset: async_task(task.func, *(task.args or ()), hook=task.hook, **task. kwargs or {}) task.delete() <mask token> class FailAdmin(admin.ModelAdmin): """model admin for failed tasks.""" list_display = 'name', 'func', 'started', 'stopped', 'short_result' def has_add_permission(self, request): """Don't allow adds.""" return False actions = [retry_failed] search_fields = 'name', 'func' list_filter = 'group', readonly_fields = [] def get_readonly_fields(self, request, obj=None): """Set all fields readonly.""" return list(self.readonly_fields) + [field.name for field in obj. _meta.fields] class ScheduleAdmin(admin.ModelAdmin): """model admin for schedules""" list_display = ('id', 'name', 'func', 'schedule_type', 'repeats', 'cluster', 'next_run', 'last_run', 'success') if not croniter: readonly_fields = 'cron', list_filter = 'next_run', 'schedule_type', 'cluster' search_fields = 'func', list_display_links = 'id', 'name' class QueueAdmin(admin.ModelAdmin): """queue admin for ORM broker""" list_display = 'id', 'key', 'task_id', 'name', 'func', 'lock' def save_model(self, request, obj, form, change): obj.save(using=Conf.ORM) def delete_model(self, request, obj): obj.delete(using=Conf.ORM) def get_queryset(self, request): return super(QueueAdmin, self).get_queryset(request).using(Conf.ORM) def has_add_permission(self, request): """Don't allow adds.""" return False list_filter = 'key', <mask token>
<mask token> class TaskAdmin(admin.ModelAdmin): """model admin for success tasks.""" list_display = 'name', 'func', 'started', 'stopped', 'time_taken', 'group' def has_add_permission(self, request): """Don't allow adds.""" return False def get_queryset(self, request): """Only show successes.""" qs = super(TaskAdmin, self).get_queryset(request) return qs.filter(success=True) search_fields = 'name', 'func', 'group' readonly_fields = [] list_filter = 'group', def get_readonly_fields(self, request, obj=None): """Set all fields readonly.""" return list(self.readonly_fields) + [field.name for field in obj. _meta.fields] def retry_failed(FailAdmin, request, queryset): """Submit selected tasks back to the queue.""" for task in queryset: async_task(task.func, *(task.args or ()), hook=task.hook, **task. kwargs or {}) task.delete() <mask token> class FailAdmin(admin.ModelAdmin): """model admin for failed tasks.""" list_display = 'name', 'func', 'started', 'stopped', 'short_result' def has_add_permission(self, request): """Don't allow adds.""" return False actions = [retry_failed] search_fields = 'name', 'func' list_filter = 'group', readonly_fields = [] def get_readonly_fields(self, request, obj=None): """Set all fields readonly.""" return list(self.readonly_fields) + [field.name for field in obj. _meta.fields] class ScheduleAdmin(admin.ModelAdmin): """model admin for schedules""" list_display = ('id', 'name', 'func', 'schedule_type', 'repeats', 'cluster', 'next_run', 'last_run', 'success') if not croniter: readonly_fields = 'cron', list_filter = 'next_run', 'schedule_type', 'cluster' search_fields = 'func', list_display_links = 'id', 'name' class QueueAdmin(admin.ModelAdmin): """queue admin for ORM broker""" list_display = 'id', 'key', 'task_id', 'name', 'func', 'lock' def save_model(self, request, obj, form, change): obj.save(using=Conf.ORM) def delete_model(self, request, obj): obj.delete(using=Conf.ORM) def get_queryset(self, request): return super(QueueAdmin, self).get_queryset(request).using(Conf.ORM) def has_add_permission(self, request): """Don't allow adds.""" return False list_filter = 'key', admin.site.register(Schedule, ScheduleAdmin) admin.site.register(Success, TaskAdmin) admin.site.register(Failure, FailAdmin) if Conf.ORM or Conf.TESTING: admin.site.register(OrmQ, QueueAdmin)
"""Admin module for Django.""" from django.contrib import admin from django.utils.translation import gettext_lazy as _ from django_q.conf import Conf, croniter from django_q.models import Failure, OrmQ, Schedule, Success from django_q.tasks import async_task class TaskAdmin(admin.ModelAdmin): """model admin for success tasks.""" list_display = ("name", "func", "started", "stopped", "time_taken", "group") def has_add_permission(self, request): """Don't allow adds.""" return False def get_queryset(self, request): """Only show successes.""" qs = super(TaskAdmin, self).get_queryset(request) return qs.filter(success=True) search_fields = ("name", "func", "group") readonly_fields = [] list_filter = ("group",) def get_readonly_fields(self, request, obj=None): """Set all fields readonly.""" return list(self.readonly_fields) + [field.name for field in obj._meta.fields] def retry_failed(FailAdmin, request, queryset): """Submit selected tasks back to the queue.""" for task in queryset: async_task(task.func, *task.args or (), hook=task.hook, **task.kwargs or {}) task.delete() retry_failed.short_description = _("Resubmit selected tasks to queue") class FailAdmin(admin.ModelAdmin): """model admin for failed tasks.""" list_display = ("name", "func", "started", "stopped", "short_result") def has_add_permission(self, request): """Don't allow adds.""" return False actions = [retry_failed] search_fields = ("name", "func") list_filter = ("group",) readonly_fields = [] def get_readonly_fields(self, request, obj=None): """Set all fields readonly.""" return list(self.readonly_fields) + [field.name for field in obj._meta.fields] class ScheduleAdmin(admin.ModelAdmin): """model admin for schedules""" list_display = ( "id", "name", "func", "schedule_type", "repeats", "cluster", "next_run", "last_run", "success", ) # optional cron strings if not croniter: readonly_fields = ("cron",) list_filter = ("next_run", "schedule_type", "cluster") search_fields = ("func",) list_display_links = ("id", "name") class QueueAdmin(admin.ModelAdmin): """queue admin for ORM broker""" list_display = ("id", "key", "task_id", "name", "func", "lock") def save_model(self, request, obj, form, change): obj.save(using=Conf.ORM) def delete_model(self, request, obj): obj.delete(using=Conf.ORM) def get_queryset(self, request): return super(QueueAdmin, self).get_queryset(request).using(Conf.ORM) def has_add_permission(self, request): """Don't allow adds.""" return False list_filter = ("key",) admin.site.register(Schedule, ScheduleAdmin) admin.site.register(Success, TaskAdmin) admin.site.register(Failure, FailAdmin) if Conf.ORM or Conf.TESTING: admin.site.register(OrmQ, QueueAdmin)
[ 10, 21, 22, 23, 26 ]
2,210
d91bacfd4b45832a79189c0f1ec4f4cb3ef14851
<mask token>
<mask token> print(list(myquery)) <mask token> print(list(myquery))
<mask token> myclient = pymongo.MongoClient('mongodb://localhost:27017/') mydb = myclient['divya_db'] mycol = mydb['vani_data'] myquery = mycol.find().sort('age', -1) print(list(myquery)) myquery = mycol.find().sort('visits', 1) print(list(myquery))
import pymongo myclient = pymongo.MongoClient('mongodb://localhost:27017/') mydb = myclient['divya_db'] mycol = mydb['vani_data'] myquery = mycol.find().sort('age', -1) print(list(myquery)) myquery = mycol.find().sort('visits', 1) print(list(myquery))
# 14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order. import pymongo myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["divya_db"] mycol = mydb["vani_data"] # age column in decending order myquery = mycol.find().sort("age",-1) print(list(myquery)) # visits column in ascending order myquery = mycol.find().sort("visits",1) print(list(myquery))
[ 0, 1, 2, 3, 4 ]
2,211
6be2cc99d03596715d76cda41d63b8c91c829498
<mask token>
<mask token> class BmExam(db.Model): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token>
<mask token> class BmExam(db.Model): __tablename__ = 'bm_exam' id = db.Column(db.Integer, primary_key=True) status = db.Column(db.Integer, nullable=False, server_default=db. FetchedValue()) exam_id = db.Column(db.Integer, nullable=False) exam_name = db.Column(db.String(200), nullable=False, server_default=db .FetchedValue()) show_exam_name = db.Column(db.String(200), nullable=False, server_default=db.FetchedValue()) numbers = db.Column(db.Integer, nullable=False, server_default=db. FetchedValue()) x_rules = db.Column(db.String(1000), nullable=False, server_default=db. FetchedValue()) m_rules = db.Column(db.String(1000), nullable=False, server_default=db. FetchedValue()) rule_status = db.Column(db.Integer, nullable=False, server_default=db. FetchedValue()) start_time = db.Column(db.DateTime, nullable=False, server_default=db. FetchedValue()) end_time = db.Column(db.DateTime, nullable=False, server_default=db. FetchedValue()) beizhu = db.Column(db.String(2000), nullable=False, server_default=db. FetchedValue()) beizhu2 = db.Column(db.String(200), nullable=False, server_default=db. FetchedValue()) beizhu3 = db.Column(db.String(200), nullable=False, server_default=db. FetchedValue()) updated_time = db.Column(db.DateTime, nullable=False, server_default=db .FetchedValue()) created_time = db.Column(db.DateTime, nullable=False, server_default=db .FetchedValue())
from sqlalchemy import Column, DateTime, Integer, String from sqlalchemy.schema import FetchedValue from application import db class BmExam(db.Model): __tablename__ = 'bm_exam' id = db.Column(db.Integer, primary_key=True) status = db.Column(db.Integer, nullable=False, server_default=db. FetchedValue()) exam_id = db.Column(db.Integer, nullable=False) exam_name = db.Column(db.String(200), nullable=False, server_default=db .FetchedValue()) show_exam_name = db.Column(db.String(200), nullable=False, server_default=db.FetchedValue()) numbers = db.Column(db.Integer, nullable=False, server_default=db. FetchedValue()) x_rules = db.Column(db.String(1000), nullable=False, server_default=db. FetchedValue()) m_rules = db.Column(db.String(1000), nullable=False, server_default=db. FetchedValue()) rule_status = db.Column(db.Integer, nullable=False, server_default=db. FetchedValue()) start_time = db.Column(db.DateTime, nullable=False, server_default=db. FetchedValue()) end_time = db.Column(db.DateTime, nullable=False, server_default=db. FetchedValue()) beizhu = db.Column(db.String(2000), nullable=False, server_default=db. FetchedValue()) beizhu2 = db.Column(db.String(200), nullable=False, server_default=db. FetchedValue()) beizhu3 = db.Column(db.String(200), nullable=False, server_default=db. FetchedValue()) updated_time = db.Column(db.DateTime, nullable=False, server_default=db .FetchedValue()) created_time = db.Column(db.DateTime, nullable=False, server_default=db .FetchedValue())
# coding: utf-8 from sqlalchemy import Column, DateTime, Integer, String from sqlalchemy.schema import FetchedValue from application import db class BmExam(db.Model): __tablename__ = 'bm_exam' id = db.Column(db.Integer, primary_key=True) status = db.Column(db.Integer, nullable=False, server_default=db.FetchedValue()) exam_id = db.Column(db.Integer, nullable=False) exam_name = db.Column(db.String(200), nullable=False, server_default=db.FetchedValue()) show_exam_name = db.Column(db.String(200), nullable=False, server_default=db.FetchedValue()) numbers = db.Column(db.Integer, nullable=False, server_default=db.FetchedValue()) x_rules = db.Column(db.String(1000), nullable=False, server_default=db.FetchedValue()) m_rules = db.Column(db.String(1000), nullable=False, server_default=db.FetchedValue()) rule_status = db.Column(db.Integer, nullable=False, server_default=db.FetchedValue()) start_time = db.Column(db.DateTime, nullable=False, server_default=db.FetchedValue()) end_time = db.Column(db.DateTime, nullable=False, server_default=db.FetchedValue()) beizhu = db.Column(db.String(2000), nullable=False, server_default=db.FetchedValue()) beizhu2 = db.Column(db.String(200), nullable=False, server_default=db.FetchedValue()) beizhu3 = db.Column(db.String(200), nullable=False, server_default=db.FetchedValue()) updated_time = db.Column(db.DateTime, nullable=False, server_default=db.FetchedValue()) created_time = db.Column(db.DateTime, nullable=False, server_default=db.FetchedValue())
[ 0, 1, 2, 3, 4 ]
2,212
1450d3b8cc4cef1c5f802e4d84e2211b7467fe12
<mask token> def inventory(component, component_type): try: component_inventory = _inventory[component] except KeyError: raise ValueError('Illegal assembly component: {}'.format(component)) try: component_class = component_inventory[component_type] except KeyError: raise ValueError('{} type `{}` is not listed in the inventory'. format(component, component_type)) return component_class def from_config(config): try: config.items() except AttributeError: with open(str(config), 'r') as f: config = yaml.load(f, Loader=yaml.SafeLoader) return _from_config(config) <mask token>
<mask token> def inventory(component, component_type): try: component_inventory = _inventory[component] except KeyError: raise ValueError('Illegal assembly component: {}'.format(component)) try: component_class = component_inventory[component_type] except KeyError: raise ValueError('{} type `{}` is not listed in the inventory'. format(component, component_type)) return component_class def from_config(config): try: config.items() except AttributeError: with open(str(config), 'r') as f: config = yaml.load(f, Loader=yaml.SafeLoader) return _from_config(config) def _from_config(config): try: config.items() except: raise TypeError('Consfis must be a disctionary. Got {}'.format(type (config))) if not 'assembly' in config: raise KeyError("Config is missing mandatory key 'assembly'") if not 'type' in config['assembly']: raise KeyError("Assembly definition is missing mandatory key 'type'") constructor = inventory('assembly', config['assembly']['type']) assembly_params = config['assembly'].get('parameters', dict()) assembly_template = constructor(**assembly_params) readers_definitions = config.get('readers', list()) readers = dict() for reader_definition in readers_definitions: try: reader_type = reader_definition.pop('type') except KeyError: raise KeyError("Reader definition is missing mandatory key 'type'") try: reader_label = reader_definition.pop('label') except KeyError: raise KeyError("Reader definition is missing mandatory key 'label'" ) reader_parameters = reader_definition.get('parameters', dict()) reader_class = inventory('reader', reader_type) readers[reader_label] = reader_class(**reader_parameters) assembly_readers = config['assembly'].get('readers', dict()) for signal_name, reader_label in assembly_readers.items(): try: reader = readers[reader_label] except KeyError: raise KeyError("Undefined reader label '{}' in aseembly definition" .format(reader_label)) if signal_name == 'default': assembly_template.attach_reader(reader) else: assembly_template.attach_reader(reader, signal_name) networks_definitions = config.get('networks', list()) networks = dict() for network_definition in networks_definitions: try: network_type = network_definition.pop('type') except KeyError: raise KeyError("network definition is missing mandatory key 'type'" ) try: network_label = network_definition.pop('label') except KeyError: raise KeyError( "network definition is missing mandatory key 'label'") network_parameters = network_definition.get('parameters', dict()) network_class = inventory('network', network_type) networks[network_label] = network_class(**network_parameters) assembly_networks = config['assembly'].get('networks', dict()) for signal_name, network_label in assembly_networks.items(): try: network = networks[network_label] except KeyError: raise KeyError( "Undefined network label '{}' in aseembly definition". format(network_label)) if signal_name == 'default': assembly_template.attach_network(network) else: assembly_template.attach_network(network, signal_name) assembly = assembly_template() return assembly
<mask token> _inventory = dict(assembly=dict(Flatline=contructors.Flatline, Seasaw= contructors.Seesaw, Pulser=contructors.Pulser, SimpleActuator= contructors.SimpleActuator), reader=dict(PassThrough=readers. PassthroughReader, EveryNth=readers.EveryNthReader, OnChange=readers. OnChangeReader), network=dict(Ideal=networks.IdealNetwork, Normal= networks.NormalNetwork)) def inventory(component, component_type): try: component_inventory = _inventory[component] except KeyError: raise ValueError('Illegal assembly component: {}'.format(component)) try: component_class = component_inventory[component_type] except KeyError: raise ValueError('{} type `{}` is not listed in the inventory'. format(component, component_type)) return component_class def from_config(config): try: config.items() except AttributeError: with open(str(config), 'r') as f: config = yaml.load(f, Loader=yaml.SafeLoader) return _from_config(config) def _from_config(config): try: config.items() except: raise TypeError('Consfis must be a disctionary. Got {}'.format(type (config))) if not 'assembly' in config: raise KeyError("Config is missing mandatory key 'assembly'") if not 'type' in config['assembly']: raise KeyError("Assembly definition is missing mandatory key 'type'") constructor = inventory('assembly', config['assembly']['type']) assembly_params = config['assembly'].get('parameters', dict()) assembly_template = constructor(**assembly_params) readers_definitions = config.get('readers', list()) readers = dict() for reader_definition in readers_definitions: try: reader_type = reader_definition.pop('type') except KeyError: raise KeyError("Reader definition is missing mandatory key 'type'") try: reader_label = reader_definition.pop('label') except KeyError: raise KeyError("Reader definition is missing mandatory key 'label'" ) reader_parameters = reader_definition.get('parameters', dict()) reader_class = inventory('reader', reader_type) readers[reader_label] = reader_class(**reader_parameters) assembly_readers = config['assembly'].get('readers', dict()) for signal_name, reader_label in assembly_readers.items(): try: reader = readers[reader_label] except KeyError: raise KeyError("Undefined reader label '{}' in aseembly definition" .format(reader_label)) if signal_name == 'default': assembly_template.attach_reader(reader) else: assembly_template.attach_reader(reader, signal_name) networks_definitions = config.get('networks', list()) networks = dict() for network_definition in networks_definitions: try: network_type = network_definition.pop('type') except KeyError: raise KeyError("network definition is missing mandatory key 'type'" ) try: network_label = network_definition.pop('label') except KeyError: raise KeyError( "network definition is missing mandatory key 'label'") network_parameters = network_definition.get('parameters', dict()) network_class = inventory('network', network_type) networks[network_label] = network_class(**network_parameters) assembly_networks = config['assembly'].get('networks', dict()) for signal_name, network_label in assembly_networks.items(): try: network = networks[network_label] except KeyError: raise KeyError( "Undefined network label '{}' in aseembly definition". format(network_label)) if signal_name == 'default': assembly_template.attach_network(network) else: assembly_template.attach_network(network, signal_name) assembly = assembly_template() return assembly
import iotsim.readers as readers import iotsim.networks as networks import iotsim.constructors as contructors import yaml _inventory = dict(assembly=dict(Flatline=contructors.Flatline, Seasaw= contructors.Seesaw, Pulser=contructors.Pulser, SimpleActuator= contructors.SimpleActuator), reader=dict(PassThrough=readers. PassthroughReader, EveryNth=readers.EveryNthReader, OnChange=readers. OnChangeReader), network=dict(Ideal=networks.IdealNetwork, Normal= networks.NormalNetwork)) def inventory(component, component_type): try: component_inventory = _inventory[component] except KeyError: raise ValueError('Illegal assembly component: {}'.format(component)) try: component_class = component_inventory[component_type] except KeyError: raise ValueError('{} type `{}` is not listed in the inventory'. format(component, component_type)) return component_class def from_config(config): try: config.items() except AttributeError: with open(str(config), 'r') as f: config = yaml.load(f, Loader=yaml.SafeLoader) return _from_config(config) def _from_config(config): try: config.items() except: raise TypeError('Consfis must be a disctionary. Got {}'.format(type (config))) if not 'assembly' in config: raise KeyError("Config is missing mandatory key 'assembly'") if not 'type' in config['assembly']: raise KeyError("Assembly definition is missing mandatory key 'type'") constructor = inventory('assembly', config['assembly']['type']) assembly_params = config['assembly'].get('parameters', dict()) assembly_template = constructor(**assembly_params) readers_definitions = config.get('readers', list()) readers = dict() for reader_definition in readers_definitions: try: reader_type = reader_definition.pop('type') except KeyError: raise KeyError("Reader definition is missing mandatory key 'type'") try: reader_label = reader_definition.pop('label') except KeyError: raise KeyError("Reader definition is missing mandatory key 'label'" ) reader_parameters = reader_definition.get('parameters', dict()) reader_class = inventory('reader', reader_type) readers[reader_label] = reader_class(**reader_parameters) assembly_readers = config['assembly'].get('readers', dict()) for signal_name, reader_label in assembly_readers.items(): try: reader = readers[reader_label] except KeyError: raise KeyError("Undefined reader label '{}' in aseembly definition" .format(reader_label)) if signal_name == 'default': assembly_template.attach_reader(reader) else: assembly_template.attach_reader(reader, signal_name) networks_definitions = config.get('networks', list()) networks = dict() for network_definition in networks_definitions: try: network_type = network_definition.pop('type') except KeyError: raise KeyError("network definition is missing mandatory key 'type'" ) try: network_label = network_definition.pop('label') except KeyError: raise KeyError( "network definition is missing mandatory key 'label'") network_parameters = network_definition.get('parameters', dict()) network_class = inventory('network', network_type) networks[network_label] = network_class(**network_parameters) assembly_networks = config['assembly'].get('networks', dict()) for signal_name, network_label in assembly_networks.items(): try: network = networks[network_label] except KeyError: raise KeyError( "Undefined network label '{}' in aseembly definition". format(network_label)) if signal_name == 'default': assembly_template.attach_network(network) else: assembly_template.attach_network(network, signal_name) assembly = assembly_template() return assembly
import iotsim.readers as readers import iotsim.networks as networks import iotsim.constructors as contructors import yaml _inventory = dict( assembly=dict( Flatline=contructors.Flatline, Seasaw=contructors.Seesaw, Pulser=contructors.Pulser, SimpleActuator=contructors.SimpleActuator, ), reader=dict( PassThrough=readers.PassthroughReader, EveryNth=readers.EveryNthReader, OnChange=readers.OnChangeReader, ), network = dict( Ideal = networks.IdealNetwork, Normal = networks.NormalNetwork, ), ) def inventory(component, component_type): try: component_inventory = _inventory[component] except KeyError: raise ValueError("Illegal assembly component: {}".format(component)) try: component_class = component_inventory[component_type] except KeyError: raise ValueError("{} type `{}` is not listed in the inventory". format(component, component_type)) return component_class def from_config(config): try: config.items() except AttributeError: with open(str(config), 'r') as f: config = yaml.load(f, Loader=yaml.SafeLoader) return _from_config(config) def _from_config(config): try: config.items() except: raise TypeError("Consfis must be a disctionary. Got {}".format(type(config))) if not 'assembly' in config: raise KeyError("Config is missing mandatory key 'assembly'") if not 'type' in config['assembly']: raise KeyError("Assembly definition is missing mandatory key 'type'") constructor = inventory('assembly', config['assembly']['type']) assembly_params = config['assembly'].get('parameters', dict()) assembly_template = constructor(**assembly_params) readers_definitions = config.get('readers', list()) readers = dict() for reader_definition in readers_definitions: try: reader_type = reader_definition.pop('type') except KeyError: raise KeyError("Reader definition is missing mandatory key 'type'") try: reader_label = reader_definition.pop('label') except KeyError: raise KeyError("Reader definition is missing mandatory key 'label'") reader_parameters = reader_definition.get('parameters', dict()) reader_class = inventory('reader', reader_type) readers[reader_label] = reader_class(**reader_parameters) assembly_readers = config['assembly'].get('readers', dict()) for signal_name, reader_label in assembly_readers.items(): try: reader = readers[reader_label] except KeyError: raise KeyError("Undefined reader label '{}' in aseembly definition". format(reader_label)) if signal_name == 'default': assembly_template.attach_reader(reader) else: assembly_template.attach_reader(reader, signal_name) networks_definitions = config.get('networks', list()) networks = dict() for network_definition in networks_definitions: try: network_type = network_definition.pop('type') except KeyError: raise KeyError("network definition is missing mandatory key 'type'") try: network_label = network_definition.pop('label') except KeyError: raise KeyError("network definition is missing mandatory key 'label'") network_parameters = network_definition.get('parameters', dict()) network_class = inventory('network', network_type) networks[network_label] = network_class(**network_parameters) assembly_networks = config['assembly'].get('networks', dict()) for signal_name, network_label in assembly_networks.items(): try: network = networks[network_label] except KeyError: raise KeyError("Undefined network label '{}' in aseembly definition". format(network_label)) if signal_name == 'default': assembly_template.attach_network(network) else: assembly_template.attach_network(network, signal_name) assembly = assembly_template() return assembly
[ 2, 3, 4, 5, 6 ]
2,213
426396c981fe56230e39b81e156e7c6877e39055
<mask token> def make_Folders(names): for n in names: if not os.path.exists(n): os.makedirs(n) <mask token>
<mask token> def make_Folders(names): for n in names: if not os.path.exists(n): os.makedirs(n) make_Folders(timeslices)
<mask token> timeslices = [('0_' + str(x) + '_' + str(y)) for x in range(30, 100) for y in range(0, 6)] def make_Folders(names): for n in names: if not os.path.exists(n): os.makedirs(n) make_Folders(timeslices)
import os timeslices = [('0_' + str(x) + '_' + str(y)) for x in range(30, 100) for y in range(0, 6)] def make_Folders(names): for n in names: if not os.path.exists(n): os.makedirs(n) make_Folders(timeslices)
import os timeslices = ['0_' + str(x) + '_' + str(y) for x in range(30,100) for y in range(0,6)] #print timeslices def make_Folders(names): for n in names: if not os.path.exists(n): os.makedirs(n) make_Folders(timeslices)
[ 1, 2, 3, 4, 5 ]
2,214
82bfdb46e1da96e5db91d66c3a060d8bf7747d07
<mask token> class Submissions(Cog): <mask token> @command() async def current(self, ctx: Context) ->None: await ctx.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await ctx.send('No competition active') return writeup = drafts[0] msg = f'Current Competition: {writeup.title}\n' if writeup.prompt: msg += f'```\n{writeup.prompt}\n```\n' if writeup.sections: msg += f'There are currently {len(writeup.sections) - 1} entries\n' await ctx.send(msg) @Cog.listener() async def on_message(self, msg: Message) ->None: if msg.channel.type != ChannelType.private: return if not msg.attachments: return await msg.channel.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await msg.channel.send('No competition active') return writeup = drafts[0] author_id = msg.author.id url = msg.attachments[0].url section_id = writeup.get_section_index(author_id) if section_id == -1: text = f""" [{author_id}]: {url} INTRO ![{msg.author.name}'s Card Name Goes Here][{author_id}] TEXT """ writeup.sections.append(text) writeup.save() await msg.channel.send( f'Your submission for {writeup.title} has been recorded') else: text = writeup.sections[section_id].strip() lines = text.splitlines() if text.startswith(f'[{author_id}]: '): lines[0] = f'[{author_id}]: {url}' else: lines.insert(0, f'[{author_id}]: {url}') writeup.sections[section_id] = '\n' + '\n'.join(lines) + '\n' writeup.save() await msg.channel.send( f'Your submission for {writeup.title} has been updated') try: if not os.path.exists(os.path.join('site', 'images', writeup. imgdir)): os.mkdir(os.path.join('site', 'images', writeup.imgdir)) await fetch_tools.store_async(msg.attachments[0].url, os.path. join('site', 'images', writeup.imgdir, msg.attachments[0]. filename)) except Exception: print('Failed to download') repo.commit(f"{writeup.title}: {msg.author.name}'s submission") await fetch_tools.post_discord_webhook('685261389836845077', 'XohTy7E-3ilDYvHIhUsjB9rJf6YaUuHWzGOra1AmJ7XNbci-5C7omOypgcEjG_UHUZRy' , f'<@{author_id}> submitted {url}') <mask token>
<mask token> class Submissions(Cog): def __init__(self, bot: Bot) ->None: self.bot = bot @command() async def current(self, ctx: Context) ->None: await ctx.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await ctx.send('No competition active') return writeup = drafts[0] msg = f'Current Competition: {writeup.title}\n' if writeup.prompt: msg += f'```\n{writeup.prompt}\n```\n' if writeup.sections: msg += f'There are currently {len(writeup.sections) - 1} entries\n' await ctx.send(msg) @Cog.listener() async def on_message(self, msg: Message) ->None: if msg.channel.type != ChannelType.private: return if not msg.attachments: return await msg.channel.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await msg.channel.send('No competition active') return writeup = drafts[0] author_id = msg.author.id url = msg.attachments[0].url section_id = writeup.get_section_index(author_id) if section_id == -1: text = f""" [{author_id}]: {url} INTRO ![{msg.author.name}'s Card Name Goes Here][{author_id}] TEXT """ writeup.sections.append(text) writeup.save() await msg.channel.send( f'Your submission for {writeup.title} has been recorded') else: text = writeup.sections[section_id].strip() lines = text.splitlines() if text.startswith(f'[{author_id}]: '): lines[0] = f'[{author_id}]: {url}' else: lines.insert(0, f'[{author_id}]: {url}') writeup.sections[section_id] = '\n' + '\n'.join(lines) + '\n' writeup.save() await msg.channel.send( f'Your submission for {writeup.title} has been updated') try: if not os.path.exists(os.path.join('site', 'images', writeup. imgdir)): os.mkdir(os.path.join('site', 'images', writeup.imgdir)) await fetch_tools.store_async(msg.attachments[0].url, os.path. join('site', 'images', writeup.imgdir, msg.attachments[0]. filename)) except Exception: print('Failed to download') repo.commit(f"{writeup.title}: {msg.author.name}'s submission") await fetch_tools.post_discord_webhook('685261389836845077', 'XohTy7E-3ilDYvHIhUsjB9rJf6YaUuHWzGOra1AmJ7XNbci-5C7omOypgcEjG_UHUZRy' , f'<@{author_id}> submitted {url}') <mask token>
<mask token> class Submissions(Cog): def __init__(self, bot: Bot) ->None: self.bot = bot @command() async def current(self, ctx: Context) ->None: await ctx.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await ctx.send('No competition active') return writeup = drafts[0] msg = f'Current Competition: {writeup.title}\n' if writeup.prompt: msg += f'```\n{writeup.prompt}\n```\n' if writeup.sections: msg += f'There are currently {len(writeup.sections) - 1} entries\n' await ctx.send(msg) @Cog.listener() async def on_message(self, msg: Message) ->None: if msg.channel.type != ChannelType.private: return if not msg.attachments: return await msg.channel.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await msg.channel.send('No competition active') return writeup = drafts[0] author_id = msg.author.id url = msg.attachments[0].url section_id = writeup.get_section_index(author_id) if section_id == -1: text = f""" [{author_id}]: {url} INTRO ![{msg.author.name}'s Card Name Goes Here][{author_id}] TEXT """ writeup.sections.append(text) writeup.save() await msg.channel.send( f'Your submission for {writeup.title} has been recorded') else: text = writeup.sections[section_id].strip() lines = text.splitlines() if text.startswith(f'[{author_id}]: '): lines[0] = f'[{author_id}]: {url}' else: lines.insert(0, f'[{author_id}]: {url}') writeup.sections[section_id] = '\n' + '\n'.join(lines) + '\n' writeup.save() await msg.channel.send( f'Your submission for {writeup.title} has been updated') try: if not os.path.exists(os.path.join('site', 'images', writeup. imgdir)): os.mkdir(os.path.join('site', 'images', writeup.imgdir)) await fetch_tools.store_async(msg.attachments[0].url, os.path. join('site', 'images', writeup.imgdir, msg.attachments[0]. filename)) except Exception: print('Failed to download') repo.commit(f"{writeup.title}: {msg.author.name}'s submission") await fetch_tools.post_discord_webhook('685261389836845077', 'XohTy7E-3ilDYvHIhUsjB9rJf6YaUuHWzGOra1AmJ7XNbci-5C7omOypgcEjG_UHUZRy' , f'<@{author_id}> submitted {url}') def setup(bot: Bot) ->None: bot.add_cog(Submissions(bot))
from discord import Message, ChannelType from discord.ext.commands import Bot, Cog, command, Context from ccbot import repo from shared import fetch_tools import os class Submissions(Cog): def __init__(self, bot: Bot) ->None: self.bot = bot @command() async def current(self, ctx: Context) ->None: await ctx.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await ctx.send('No competition active') return writeup = drafts[0] msg = f'Current Competition: {writeup.title}\n' if writeup.prompt: msg += f'```\n{writeup.prompt}\n```\n' if writeup.sections: msg += f'There are currently {len(writeup.sections) - 1} entries\n' await ctx.send(msg) @Cog.listener() async def on_message(self, msg: Message) ->None: if msg.channel.type != ChannelType.private: return if not msg.attachments: return await msg.channel.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await msg.channel.send('No competition active') return writeup = drafts[0] author_id = msg.author.id url = msg.attachments[0].url section_id = writeup.get_section_index(author_id) if section_id == -1: text = f""" [{author_id}]: {url} INTRO ![{msg.author.name}'s Card Name Goes Here][{author_id}] TEXT """ writeup.sections.append(text) writeup.save() await msg.channel.send( f'Your submission for {writeup.title} has been recorded') else: text = writeup.sections[section_id].strip() lines = text.splitlines() if text.startswith(f'[{author_id}]: '): lines[0] = f'[{author_id}]: {url}' else: lines.insert(0, f'[{author_id}]: {url}') writeup.sections[section_id] = '\n' + '\n'.join(lines) + '\n' writeup.save() await msg.channel.send( f'Your submission for {writeup.title} has been updated') try: if not os.path.exists(os.path.join('site', 'images', writeup. imgdir)): os.mkdir(os.path.join('site', 'images', writeup.imgdir)) await fetch_tools.store_async(msg.attachments[0].url, os.path. join('site', 'images', writeup.imgdir, msg.attachments[0]. filename)) except Exception: print('Failed to download') repo.commit(f"{writeup.title}: {msg.author.name}'s submission") await fetch_tools.post_discord_webhook('685261389836845077', 'XohTy7E-3ilDYvHIhUsjB9rJf6YaUuHWzGOra1AmJ7XNbci-5C7omOypgcEjG_UHUZRy' , f'<@{author_id}> submitted {url}') def setup(bot: Bot) ->None: bot.add_cog(Submissions(bot))
from discord import Message, ChannelType from discord.ext.commands import Bot, Cog, command, Context from ccbot import repo from shared import fetch_tools import os class Submissions(Cog): def __init__(self, bot: Bot) -> None: self.bot = bot @command() async def current(self, ctx: Context) -> None: await ctx.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await ctx.send('No competition active') return writeup = drafts[0] msg = f'Current Competition: {writeup.title}\n' if writeup.prompt: msg += f'```\n{writeup.prompt}\n```\n' if writeup.sections: msg += f'There are currently {len(writeup.sections) - 1} entries\n' await ctx.send(msg) @Cog.listener() async def on_message(self, msg: Message) -> None: if msg.channel.type != ChannelType.private: return if not msg.attachments: return await msg.channel.trigger_typing() repo.init() drafts = repo.drafts() if not drafts: await msg.channel.send('No competition active') return writeup = drafts[0] author_id = msg.author.id url = msg.attachments[0].url section_id = writeup.get_section_index(author_id) if section_id == -1: text = f'\n\n[{author_id}]: {url}\n\nINTRO\n\n![{msg.author.name}\'s Card Name Goes Here][{author_id}]\n\nTEXT\n\n' writeup.sections.append(text) writeup.save() await msg.channel.send(f'Your submission for {writeup.title} has been recorded') else: text = writeup.sections[section_id].strip() lines = text.splitlines() if text.startswith(f'[{author_id}]: '): lines[0] = f'[{author_id}]: {url}' else: lines.insert(0, f'[{author_id}]: {url}') writeup.sections[section_id] = '\n' + '\n'.join(lines) + '\n' writeup.save() await msg.channel.send(f'Your submission for {writeup.title} has been updated') try: if not os.path.exists(os.path.join('site', 'images', writeup.imgdir)): os.mkdir(os.path.join('site', 'images', writeup.imgdir)) await fetch_tools.store_async(msg.attachments[0].url, os.path.join('site', 'images', writeup.imgdir, msg.attachments[0].filename)) except Exception: print('Failed to download') repo.commit(f'{writeup.title}: {msg.author.name}\'s submission') await fetch_tools.post_discord_webhook('685261389836845077', 'XohTy7E-3ilDYvHIhUsjB9rJf6YaUuHWzGOra1AmJ7XNbci-5C7omOypgcEjG_UHUZRy', f'<@{author_id}> submitted {url}') def setup(bot: Bot) -> None: bot.add_cog(Submissions(bot))
[ 1, 2, 3, 4, 5 ]
2,215
b4bcf9903f4a34c8b256c65cada29e952a436f74
<mask token> class Migration(SchemaMigration): def forwards(self, orm): db.add_column(u'main_videoad', 'compress', self.gf( 'django.db.models.fields.BooleanField')(default=False), keep_default=False) <mask token> <mask token> <mask token>
<mask token> class Migration(SchemaMigration): def forwards(self, orm): db.add_column(u'main_videoad', 'compress', self.gf( 'django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): db.delete_column(u'main_videoad', 'compress') <mask token> <mask token>
<mask token> class Migration(SchemaMigration): def forwards(self, orm): db.add_column(u'main_videoad', 'compress', self.gf( 'django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): db.delete_column(u'main_videoad', 'compress') models = {u'contenttypes.contenttype': {'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], { 'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ( 'django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'})}, u'main.days': {'Meta': {'object_name': 'Days'}, 'date': ( 'django.db.models.fields.DateField', [], {}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image_ad': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['main.ImageAd']", 'null': 'True', 'blank': 'True'}), 'show_text': ( 'django.db.models.fields.BooleanField', [], {}), 'show_video': ( 'django.db.models.fields.BooleanField', [], {}), 'start_time': ( 'django.db.models.fields.TimeField', [], {'default': 'datetime.time(8, 0)'}), 'stop_time': ( 'django.db.models.fields.TimeField', [], {'default': 'datetime.time(22, 0)'}), 'terminal': ( 'django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Terminal']"}), 'text_ad': ( 'django.db.models.fields.related.ManyToManyField', [], { 'symmetrical': 'False', 'to': u"orm['main.TextAd']", 'null': 'True', 'blank': 'True'}), 'text_count': ( 'django.db.models.fields.PositiveIntegerField', [], {'default': '0' }), 'video_ad': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['main.VideoAd']", 'null': 'True', 'blank': 'True'}), 'video_count': ( 'django.db.models.fields.PositiveIntegerField', [], {'default': '0' })}, u'main.imagead': {'Meta': {'object_name': 'ImageAd'}, 'datelist': ('main.fields.DateArrayField', [], {}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '255'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Partner']"}), 'prolongation': ( 'django.db.models.fields.TimeField', [], {}), 'terminals': ( 'django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['main.Terminal']", 'symmetrical': 'False'})}, u'main.immediatelyad': {'Meta': {'object_name': 'ImmediatelyAd'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), 'day': ( 'django.db.models.fields.related.ForeignKey', [], {'related_name': "u'immediatelies'", 'to': u"orm['main.Days']"}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], { }), 'time': ('django.db.models.fields.TimeField', [], {})}, u'main.oscommandlog': {'Meta': {'object_name': 'OsCommandLog'}, 'command': ('django.db.models.fields.TextField', [], {}), 'datetime': ('django.db.models.fields.DateTimeField', [], { 'auto_now': 'True', 'blank': 'True'}), 'errors': ( 'django.db.models.fields.TextField', [], {}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ouput': ('django.db.models.fields.TextField', [], {}), 'return_code': ('django.db.models.fields.CharField', [], { 'max_length': '255'})}, u'main.partner': {'Meta': {'object_name': 'Partner'}, 'account_number': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bank': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bik': ( 'django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'director': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'full_name': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'inn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'kpp': ( 'django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'ks': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'legal_address': ( 'django.db.models.fields.CharField', [], {'max_length': '400', 'null': 'True', 'blank': 'True'}), 'name': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'ogrn': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'partner_type': ( 'django.db.models.fields.PositiveIntegerField', [], {'default': '0' }), 'passport': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'phones': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'short_name': ( 'django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'})}, u'main.terminal': {'Meta': { 'object_name': 'Terminal'}, 'config': ( 'django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], { 'primary_key': 'True'}), 'text': ( 'django.db.models.fields.TextField', [], {})}, u'main.textad': { 'Meta': {'object_name': 'TextAd'}, 'datelist': ( 'main.fields.DateArrayField', [], {}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Partner']"}), 'terminals': ( 'django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['main.Terminal']", 'symmetrical': 'False'}), 'text': ( 'django.db.models.fields.TextField', [], {})}, u'main.videoad': { 'Meta': {'object_name': 'VideoAd'}, 'compress': ( 'django.db.models.fields.BooleanField', [], {'default': 'False'}), 'datelist': ('main.fields.DateArrayField', [], {}), 'file_video': ( 'filebrowser.fields.FileBrowseField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Partner']"}), 'prolongation': ( 'django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'terminals': ( 'django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['main.Terminal']", 'symmetrical': 'False'})}} complete_apps = ['main']
from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): db.add_column(u'main_videoad', 'compress', self.gf( 'django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): db.delete_column(u'main_videoad', 'compress') models = {u'contenttypes.contenttype': {'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], { 'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ( 'django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'})}, u'main.days': {'Meta': {'object_name': 'Days'}, 'date': ( 'django.db.models.fields.DateField', [], {}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image_ad': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['main.ImageAd']", 'null': 'True', 'blank': 'True'}), 'show_text': ( 'django.db.models.fields.BooleanField', [], {}), 'show_video': ( 'django.db.models.fields.BooleanField', [], {}), 'start_time': ( 'django.db.models.fields.TimeField', [], {'default': 'datetime.time(8, 0)'}), 'stop_time': ( 'django.db.models.fields.TimeField', [], {'default': 'datetime.time(22, 0)'}), 'terminal': ( 'django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Terminal']"}), 'text_ad': ( 'django.db.models.fields.related.ManyToManyField', [], { 'symmetrical': 'False', 'to': u"orm['main.TextAd']", 'null': 'True', 'blank': 'True'}), 'text_count': ( 'django.db.models.fields.PositiveIntegerField', [], {'default': '0' }), 'video_ad': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['main.VideoAd']", 'null': 'True', 'blank': 'True'}), 'video_count': ( 'django.db.models.fields.PositiveIntegerField', [], {'default': '0' })}, u'main.imagead': {'Meta': {'object_name': 'ImageAd'}, 'datelist': ('main.fields.DateArrayField', [], {}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '255'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Partner']"}), 'prolongation': ( 'django.db.models.fields.TimeField', [], {}), 'terminals': ( 'django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['main.Terminal']", 'symmetrical': 'False'})}, u'main.immediatelyad': {'Meta': {'object_name': 'ImmediatelyAd'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), 'day': ( 'django.db.models.fields.related.ForeignKey', [], {'related_name': "u'immediatelies'", 'to': u"orm['main.Days']"}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], { }), 'time': ('django.db.models.fields.TimeField', [], {})}, u'main.oscommandlog': {'Meta': {'object_name': 'OsCommandLog'}, 'command': ('django.db.models.fields.TextField', [], {}), 'datetime': ('django.db.models.fields.DateTimeField', [], { 'auto_now': 'True', 'blank': 'True'}), 'errors': ( 'django.db.models.fields.TextField', [], {}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ouput': ('django.db.models.fields.TextField', [], {}), 'return_code': ('django.db.models.fields.CharField', [], { 'max_length': '255'})}, u'main.partner': {'Meta': {'object_name': 'Partner'}, 'account_number': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bank': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bik': ( 'django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'director': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'full_name': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'inn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'kpp': ( 'django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'ks': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'legal_address': ( 'django.db.models.fields.CharField', [], {'max_length': '400', 'null': 'True', 'blank': 'True'}), 'name': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'ogrn': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'partner_type': ( 'django.db.models.fields.PositiveIntegerField', [], {'default': '0' }), 'passport': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'phones': ( 'django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'short_name': ( 'django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'})}, u'main.terminal': {'Meta': { 'object_name': 'Terminal'}, 'config': ( 'django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], { 'primary_key': 'True'}), 'text': ( 'django.db.models.fields.TextField', [], {})}, u'main.textad': { 'Meta': {'object_name': 'TextAd'}, 'datelist': ( 'main.fields.DateArrayField', [], {}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Partner']"}), 'terminals': ( 'django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['main.Terminal']", 'symmetrical': 'False'}), 'text': ( 'django.db.models.fields.TextField', [], {})}, u'main.videoad': { 'Meta': {'object_name': 'VideoAd'}, 'compress': ( 'django.db.models.fields.BooleanField', [], {'default': 'False'}), 'datelist': ('main.fields.DateArrayField', [], {}), 'file_video': ( 'filebrowser.fields.FileBrowseField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ( 'django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Partner']"}), 'prolongation': ( 'django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'terminals': ( 'django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['main.Terminal']", 'symmetrical': 'False'})}} complete_apps = ['main']
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'VideoAd.compress' db.add_column(u'main_videoad', 'compress', self.gf('django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): # Deleting field 'VideoAd.compress' db.delete_column(u'main_videoad', 'compress') models = { u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'main.days': { 'Meta': {'object_name': 'Days'}, 'date': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image_ad': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['main.ImageAd']", 'null': 'True', 'blank': 'True'}), 'show_text': ('django.db.models.fields.BooleanField', [], {}), 'show_video': ('django.db.models.fields.BooleanField', [], {}), 'start_time': ('django.db.models.fields.TimeField', [], {'default': 'datetime.time(8, 0)'}), 'stop_time': ('django.db.models.fields.TimeField', [], {'default': 'datetime.time(22, 0)'}), 'terminal': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Terminal']"}), 'text_ad': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['main.TextAd']", 'null': 'True', 'blank': 'True'}), 'text_count': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'video_ad': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['main.VideoAd']", 'null': 'True', 'blank': 'True'}), 'video_count': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, u'main.imagead': { 'Meta': {'object_name': 'ImageAd'}, 'datelist': ('main.fields.DateArrayField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '255'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Partner']"}), 'prolongation': ('django.db.models.fields.TimeField', [], {}), 'terminals': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['main.Terminal']", 'symmetrical': 'False'}) }, u'main.immediatelyad': { 'Meta': {'object_name': 'ImmediatelyAd'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), 'day': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'immediatelies'", 'to': u"orm['main.Days']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'time': ('django.db.models.fields.TimeField', [], {}) }, u'main.oscommandlog': { 'Meta': {'object_name': 'OsCommandLog'}, 'command': ('django.db.models.fields.TextField', [], {}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'errors': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ouput': ('django.db.models.fields.TextField', [], {}), 'return_code': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'main.partner': { 'Meta': {'object_name': 'Partner'}, 'account_number': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bank': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bik': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'director': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'full_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'inn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'kpp': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'ks': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'legal_address': ('django.db.models.fields.CharField', [], {'max_length': '400', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'ogrn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'partner_type': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'passport': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'phones': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}) }, u'main.terminal': { 'Meta': {'object_name': 'Terminal'}, 'config': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'text': ('django.db.models.fields.TextField', [], {}) }, u'main.textad': { 'Meta': {'object_name': 'TextAd'}, 'datelist': ('main.fields.DateArrayField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Partner']"}), 'terminals': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['main.Terminal']", 'symmetrical': 'False'}), 'text': ('django.db.models.fields.TextField', [], {}) }, u'main.videoad': { 'Meta': {'object_name': 'VideoAd'}, 'compress': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'datelist': ('main.fields.DateArrayField', [], {}), 'file_video': ('filebrowser.fields.FileBrowseField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['main.Partner']"}), 'prolongation': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'terminals': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['main.Terminal']", 'symmetrical': 'False'}) } } complete_apps = ['main']
[ 2, 3, 4, 5, 6 ]
2,216
200deda300e39b07e0e558277a340b7ad01c7dee
<mask token>
class State: <mask token> <mask token>
class State: def __init__(self, id): self.id = id <mask token>
class State: def __init__(self, id): self.id = id def NotinClosed(problem, node): NotVisited = 1 for tuple in problem.closed: if node.state.id == tuple[0].id and node.depth >= tuple[1]: NotVisited = 0 return NotVisited
class State: def __init__(self, id): self.id = id def NotinClosed(problem, node): #restituisce 1 se lo stato non è stato già visitato (al netto di controlli sulla depth) è quindi bisogna aggiungerlo NotVisited = 1 for tuple in problem.closed: if node.state.id == tuple[0].id and node.depth >= tuple[1]: NotVisited = 0 #presente nei visited ma selected_node ha maggiore/uguale depth return NotVisited
[ 0, 1, 2, 3, 4 ]
2,217
237a647e7bf0b1c12abd78b1ef6e293e73232a6c
from kivy.app import App from kivy.lang import Builder from kivy.uix.screenmanager import ScreenManager, Screen import subprocess import socket from kivy.uix.button import Button from kivy.uix.button import Label from kivy.uix.boxlayout import BoxLayout Builder.load_string(""" <MenuScreen>: BoxLayout: orientation: "vertical" <SettingsScreen>: BoxLayout: orientation: "vertical" Button: text: 'Scan For Networks' on_release: root.manager.current = 'networks' root.scan() Button: text: 'Back to menu' on_release: root.manager.transition.direction = 'right' root.manager.current = 'menu' <NetworksScreen>: BoxLayout: orientation: "vertical" """) ssids = [] s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Declare both screens class MenuScreen(Screen): def __init__(self, **kwargs): super(Screen, self).__init__(**kwargs) vLayout2 = BoxLayout(orientation='vertical') self.add_widget(vLayout2) settings_button = Button(text='Settings') vLayout2.add_widget(settings_button) settings_button.bind(on_press=self.forwardFunction) test_button = Button(text='Test') vLayout2.add_widget(test_button) test_button.bind(on_press=self.forwardFunction2) quit_button = Button(text='Quit') vLayout2.add_widget(quit_button) quit_button.bind(on_press=self.closeButton) def closeButton(self, placeholder): s.close() App.get_running_app().stop() def forwardFunction(self, next_screen): sm.transition.direction = 'left' sm.current = 'settings' def forwardFunction2(self, next_screen): sm.transition.direction = 'left' sm.current = 'testing' class TestScreen(Screen): def __init__(self, **kwargs): super(Screen, self).__init__(**kwargs) vLayout3 = BoxLayout(orientation='vertical') self.add_widget(vLayout3) test_button = Button(text='Send Message',pos = (100,25), size=(100, 25), size_hint=(.15, None)) self.add_widget(test_button) test_button.bind(on_press=self.sendData) back_button = Button(text='Back to Menu', size=(100, 25), size_hint=(.15, None)) vLayout3.add_widget(back_button) back_button.bind(on_press=self.backFunction) def sendData(self, placeholder): data = 'Test Worked' try: s.send(data.encode('utf-8')) except socket.error: print("An error has occurred... closing connection to server") finally: s.shutdown(socket.SHUT_RDWR) s.close() def backFunction(self, next_screen): sm.transition.direction = 'right' sm.current = 'menu' class NetworksScreen(Screen): #def settings_release(self): def __init__(self, **kwargs): super(Screen, self).__init__(**kwargs) def backFunction(self, next_screen): sm.transition.direction = 'right' sm.current = 'settings' def connectWifi(self, placeholder): #s = socket.socket() # Create a socket object host = socket.gethostname() # Get local machine name port = 12345 # Reserve a port for your service. try: s.connect((host, port)) print(s.recv(1024)) except socket.error: print("An error has occurred... closing connection to server") finally: #s.shutdown(socket.SHUT_RDWR) #s.close() def printButtons(self): y = 0 s2 = self.manager.get_screen('settings') vLayout = BoxLayout(orientation='vertical') self.add_widget(vLayout) while y < len(ssids) - 1: button = Button(text=ssids[y]) button.bind(on_press=self.connectWifi) vLayout.add_widget(button) y += 1 back_button = Button(text='Back to Settings') vLayout.add_widget(back_button) back_button.bind(on_press=self.backFunction) class SettingsScreen(Screen): def scan(self): results = subprocess.check_output(["netsh", "wlan", "show", "network"]) results = results.decode("ascii") # needed in python 3 results = results.replace("\r", "") ls = results.split("\n") ls = ls[4:] x = 0 y = 0 while x < len(ls): if x % 5 == 0: ssids.append(ls[x]) x += 1 while y < len(ssids)-1: y += 1 s2 = self.manager.get_screen('networks') s2.printButtons() # Create the screen manager sm = ScreenManager() sm.add_widget(MenuScreen(name='menu')) sm.add_widget(SettingsScreen(name='settings')) sm.add_widget(TestScreen(name='testing')) sm.add_widget(NetworksScreen(name='networks')) class TestApp(App): def build(self): return sm if __name__ == '__main__': TestApp().run()
null
null
null
null
[ 0 ]
2,218
78178ec8474a3deb876ab7d3950cd427d7a795d5
<mask token>
<mask token> if year % 4 == 0 and year % 100 != 0 or year % 400 == 0: print('{0}是润年'.format(year)) else: print('{0}不是润年'.format(year))
year = int(input('请输入一个年份:')) <mask token> if year % 4 == 0 and year % 100 != 0 or year % 400 == 0: print('{0}是润年'.format(year)) else: print('{0}不是润年'.format(year))
#-*- coding:UTF-8 -*- year = int(input('请输入一个年份:')) """ if(year % 4) == 0: if(year % 100) == 0: if(year % 400) == 0: print('{0}是润年'.format(year)) else: print('{0}不是润年'.format(year)) else: print('{0}是润年'.format(year)) else: print('{0}不是润年'.format(year)) """ if(year%4)==0 and (year%100)!=0 or (year%400)==0: print('{0}是润年'.format(year)) else: print('{0}不是润年'.format(year))
null
[ 0, 1, 2, 3 ]
2,219
d8482da6b9983d990da980c3a5edab0c49a28229
<mask token>
<mask token> def jumlah(x, y): hasil = x + y return hasil <mask token>
<mask token> def jumlah(x, y): hasil = x + y return hasil print('hasil dari', x, '+', y, '=', jumlah(x, y)) <mask token> print(k)
x = int(input('masukkan')) y = int(input('masukkan')) def jumlah(x, y): hasil = x + y return hasil print('hasil dari', x, '+', y, '=', jumlah(x, y)) k = jumlah(2, 4) + 1 print(k)
null
[ 0, 1, 2, 3 ]
2,220
23150f359db97e1e0ce3f12a173cd7015ad22cd4
version https://git-lfs.github.com/spec/v1 oid sha256:839b1a9cc0c676f388ebfe8d8f2e89ad7c39a6f0aa50fa76b2236703bf1a8264 size 62
null
null
null
null
[ 0 ]
2,221
a2eabf4dae931d82e4e9eda87d79031711faf1aa
<mask token> def mouseMoved(): redraw()
<mask token> def setup(): global table table = loadTable('flights.csv', 'header') size(width, height) noLoop() noStroke() <mask token> def mouseMoved(): redraw()
<mask token> def setup(): global table table = loadTable('flights.csv', 'header') size(width, height) noLoop() noStroke() def draw(): global table background(255, 255, 255) for row in table.rows(): from_x = map(row.getFloat('from_long'), -180, 180, 0, width) from_y = map(row.getFloat('from_lat'), -90, 90, height / 2, 0) to_x = map(row.getFloat('to_long'), -180, 180, 0, width) to_y = map(row.getFloat('to_lat'), -90, 90, height, height / 2) r = 3 if dist(from_x, from_y, mouseX, mouseY) < 15: fill(255, 0, 0, 20) else: fill(0, 0, 255, 5) ellipse(from_x, from_y, r, r) ellipse(to_x, to_y, r, r) def mouseMoved(): redraw()
table = None width = 1000 height = 1000 def setup(): global table table = loadTable('flights.csv', 'header') size(width, height) noLoop() noStroke() def draw(): global table background(255, 255, 255) for row in table.rows(): from_x = map(row.getFloat('from_long'), -180, 180, 0, width) from_y = map(row.getFloat('from_lat'), -90, 90, height / 2, 0) to_x = map(row.getFloat('to_long'), -180, 180, 0, width) to_y = map(row.getFloat('to_lat'), -90, 90, height, height / 2) r = 3 if dist(from_x, from_y, mouseX, mouseY) < 15: fill(255, 0, 0, 20) else: fill(0, 0, 255, 5) ellipse(from_x, from_y, r, r) ellipse(to_x, to_y, r, r) def mouseMoved(): redraw()
table = None width = 1000 height = 1000 def setup(): global table table = loadTable("flights.csv", "header") size(width, height) noLoop() noStroke() def draw(): global table background(255, 255, 255) for row in table.rows(): from_x = map(row.getFloat('from_long'), -180, 180, 0, width) from_y = map(row.getFloat('from_lat'), -90, 90, height/2, 0) to_x = map(row.getFloat('to_long'), -180, 180, 0, width) to_y = map(row.getFloat('to_lat'), -90, 90, height, height/2) r = 3 if dist(from_x, from_y, mouseX, mouseY) < 15: fill(255, 0, 0, 20) else: fill(0, 0, 255, 5) ellipse(from_x, from_y, r, r) ellipse(to_x, to_y, r, r) def mouseMoved(): redraw()
[ 1, 2, 3, 4, 5 ]
2,222
65ef3b2ed5eef3d9d9e682ca18cf84457e929df2
<mask token>
<mask token> def hmac_sha1_token(): timestamp = str(time.time()) hmac_pass = hmac.new(b'some very secret string', timestamp.encode( 'utf-8'), hashlib.sha1).hexdigest() token = '%s:%s' % (timestamp, hmac_pass) return token
import hashlib import hmac import time def hmac_sha1_token(): timestamp = str(time.time()) hmac_pass = hmac.new(b'some very secret string', timestamp.encode( 'utf-8'), hashlib.sha1).hexdigest() token = '%s:%s' % (timestamp, hmac_pass) return token
null
null
[ 0, 1, 2 ]
2,223
e48a6a84268a0fe64e90714bd32712665934fc39
<mask token>
<mask token> with open('ratings.csv') as in_file: csvreader = csv.reader(in_file) with open('ratings_train.csv', 'w') as train_out: with open('ratings_test.csv', 'w') as test_out: for row in csvreader: if not skipped_header: skipped_header = True continue elif int(row[0]) <= 146541: train_out.write(','.join(row[:-1])) train_out.write('\n') else: test_out.write(','.join(row[:-1])) test_out.write('\n')
<mask token> skipped_header = False with open('ratings.csv') as in_file: csvreader = csv.reader(in_file) with open('ratings_train.csv', 'w') as train_out: with open('ratings_test.csv', 'w') as test_out: for row in csvreader: if not skipped_header: skipped_header = True continue elif int(row[0]) <= 146541: train_out.write(','.join(row[:-1])) train_out.write('\n') else: test_out.write(','.join(row[:-1])) test_out.write('\n')
import csv skipped_header = False with open('ratings.csv') as in_file: csvreader = csv.reader(in_file) with open('ratings_train.csv', 'w') as train_out: with open('ratings_test.csv', 'w') as test_out: for row in csvreader: if not skipped_header: skipped_header = True continue elif int(row[0]) <= 146541: train_out.write(','.join(row[:-1])) train_out.write('\n') else: test_out.write(','.join(row[:-1])) test_out.write('\n')
import csv #ratings.csv must be in the same directory skipped_header = False with open("ratings.csv") as in_file: csvreader = csv.reader(in_file) #read each row of ratings.csv (userId,movieId,rating,timestamp) with open("ratings_train.csv", 'w') as train_out: with open("ratings_test.csv", 'w') as test_out: for row in csvreader: if not skipped_header: skipped_header = True continue elif int(row[0]) <= 146541: train_out.write(",".join(row[:-1])) train_out.write("\n") else: #rest of the data (16000 of them) test_out.write(",".join(row[:-1])) test_out.write("\n")
[ 0, 1, 2, 3, 4 ]
2,224
454d210c1b1a41e4a645ef7ccb24f80ee20a451c
<mask token> class Cart(models.Model): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def get_total(self): total = self.item.price * self.quantity f_total = format(total, '0.2f') return f_total class Order(models.Model): orderitems = models.ManyToManyField(Cart) user = models.ForeignKey(MainUser, on_delete=models.CASCADE) ordered = models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) payment_id = models.CharField(max_length=300, blank=True, null=True) orderid = models.CharField(max_length=300, blank=True, null=True)
<mask token> class Cart(models.Model): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def __str__(self): return f'{self.item}x{self.quantity}' def get_total(self): total = self.item.price * self.quantity f_total = format(total, '0.2f') return f_total class Order(models.Model): orderitems = models.ManyToManyField(Cart) user = models.ForeignKey(MainUser, on_delete=models.CASCADE) ordered = models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) payment_id = models.CharField(max_length=300, blank=True, null=True) orderid = models.CharField(max_length=300, blank=True, null=True)
<mask token> class Cart(models.Model): user = models.ForeignKey(MainUser, on_delete=models.CASCADE) item = models.ForeignKey(Product, on_delete=models.CASCADE) quantity = models.PositiveIntegerField(default=1) parchased = models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def __str__(self): return f'{self.item}x{self.quantity}' def get_total(self): total = self.item.price * self.quantity f_total = format(total, '0.2f') return f_total class Order(models.Model): orderitems = models.ManyToManyField(Cart) user = models.ForeignKey(MainUser, on_delete=models.CASCADE) ordered = models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) payment_id = models.CharField(max_length=300, blank=True, null=True) orderid = models.CharField(max_length=300, blank=True, null=True)
from django.db import models from home.models import MainUser from product.models import Product class Cart(models.Model): user = models.ForeignKey(MainUser, on_delete=models.CASCADE) item = models.ForeignKey(Product, on_delete=models.CASCADE) quantity = models.PositiveIntegerField(default=1) parchased = models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def __str__(self): return f'{self.item}x{self.quantity}' def get_total(self): total = self.item.price * self.quantity f_total = format(total, '0.2f') return f_total class Order(models.Model): orderitems = models.ManyToManyField(Cart) user = models.ForeignKey(MainUser, on_delete=models.CASCADE) ordered = models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) payment_id = models.CharField(max_length=300, blank=True, null=True) orderid = models.CharField(max_length=300, blank=True, null=True)
from django.db import models from home.models import MainUser from product.models import Product # Create your models here. class Cart(models.Model): user = models.ForeignKey(MainUser,on_delete=models.CASCADE) item = models.ForeignKey(Product, on_delete=models.CASCADE) quantity = models.PositiveIntegerField(default=1) parchased=models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def __str__(self): return f'{self.item}x{self.quantity}' def get_total(self): total=self.item.price *self.quantity f_total=format(total,'0.2f') return f_total class Order(models.Model): orderitems = models.ManyToManyField(Cart) user=models.ForeignKey(MainUser,on_delete=models.CASCADE) ordered=models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) payment_id=models.CharField(max_length=300,blank=True,null=True) orderid=models.CharField(max_length=300,blank=True,null=True)
[ 4, 5, 6, 7, 8 ]
2,225
7ef0bb3e8cbba4a29249a09cf7bc91e053411361
<mask token> class MaoyanSpider(object): def __init__(self): self.url = 'https://maoyan.com/board/4?offset={}' def get_html(self, url): headers = {'User-Agent': random.choice(ua_list)} req = request.Request(url=url, headers=headers) res = request.urlopen(req) html = res.read().decode() return html <mask token> <mask token> <mask token> def get_comment(self, two_link): two_html = self.get_html(two_link) with open('test.html', 'w') as f: f.write(two_html) re_bds = '<div class="comment-content">(.*?)</div>' comment_list = self.re_func(re_bds, two_html) return comment_list def save_image(self, two_link, name): two_html = self.get_html(two_link) re_bds = ( '<div class="img.*?"><img class="default-img" data-src="(.*?)" alt=""></div>' ) link_list = self.re_func(re_bds, two_html) print(link_list) directory = '/home/tarena/images/' + name + '/' if not os.path.exists(directory): os.makedirs(directory) for link in link_list: headers = {'User-Agent': random.choice(ua_list)} req = request.Request(url=link, headers=headers) res = request.urlopen(req) html = res.read() filename = directory + link.split('@')[0][-10:] with open(filename, 'wb') as f: f.write(html) time.sleep(random.randint(1, 3)) def run(self): for offset in range(0, 21, 10): url = self.url.format(offset) self.parse_html(url) time.sleep(random.randint(1, 2)) <mask token>
<mask token> class MaoyanSpider(object): def __init__(self): self.url = 'https://maoyan.com/board/4?offset={}' def get_html(self, url): headers = {'User-Agent': random.choice(ua_list)} req = request.Request(url=url, headers=headers) res = request.urlopen(req) html = res.read().decode() return html def re_func(self, re_bds, html): pattern = re.compile(re_bds, re.S) r_list = pattern.findall(html) return r_list def parse_html(self, one_url): one_html = self.get_html(one_url) re_bds = ( '<div class="movie-item-info">.*?href="(.*?)".*?title="(.*?)".*?<p class="star">(.*?)</p>.*?class="releasetime">(.*?)</p>' ) r_list = self.re_func(re_bds, one_html) self.save_html(r_list) def save_html(self, r_list): item = {} for r in r_list: item['name'] = r[1].strip() item['star'] = r[2].strip()[3:] item['time'] = r[3].strip()[5:15] two_link = 'https://maoyan.com' + r[0] item['comment'] = self.get_comment(two_link) print(item) self.save_image(two_link, item['name']) def get_comment(self, two_link): two_html = self.get_html(two_link) with open('test.html', 'w') as f: f.write(two_html) re_bds = '<div class="comment-content">(.*?)</div>' comment_list = self.re_func(re_bds, two_html) return comment_list def save_image(self, two_link, name): two_html = self.get_html(two_link) re_bds = ( '<div class="img.*?"><img class="default-img" data-src="(.*?)" alt=""></div>' ) link_list = self.re_func(re_bds, two_html) print(link_list) directory = '/home/tarena/images/' + name + '/' if not os.path.exists(directory): os.makedirs(directory) for link in link_list: headers = {'User-Agent': random.choice(ua_list)} req = request.Request(url=link, headers=headers) res = request.urlopen(req) html = res.read() filename = directory + link.split('@')[0][-10:] with open(filename, 'wb') as f: f.write(html) time.sleep(random.randint(1, 3)) def run(self): for offset in range(0, 21, 10): url = self.url.format(offset) self.parse_html(url) time.sleep(random.randint(1, 2)) <mask token>
<mask token> class MaoyanSpider(object): def __init__(self): self.url = 'https://maoyan.com/board/4?offset={}' def get_html(self, url): headers = {'User-Agent': random.choice(ua_list)} req = request.Request(url=url, headers=headers) res = request.urlopen(req) html = res.read().decode() return html def re_func(self, re_bds, html): pattern = re.compile(re_bds, re.S) r_list = pattern.findall(html) return r_list def parse_html(self, one_url): one_html = self.get_html(one_url) re_bds = ( '<div class="movie-item-info">.*?href="(.*?)".*?title="(.*?)".*?<p class="star">(.*?)</p>.*?class="releasetime">(.*?)</p>' ) r_list = self.re_func(re_bds, one_html) self.save_html(r_list) def save_html(self, r_list): item = {} for r in r_list: item['name'] = r[1].strip() item['star'] = r[2].strip()[3:] item['time'] = r[3].strip()[5:15] two_link = 'https://maoyan.com' + r[0] item['comment'] = self.get_comment(two_link) print(item) self.save_image(two_link, item['name']) def get_comment(self, two_link): two_html = self.get_html(two_link) with open('test.html', 'w') as f: f.write(two_html) re_bds = '<div class="comment-content">(.*?)</div>' comment_list = self.re_func(re_bds, two_html) return comment_list def save_image(self, two_link, name): two_html = self.get_html(two_link) re_bds = ( '<div class="img.*?"><img class="default-img" data-src="(.*?)" alt=""></div>' ) link_list = self.re_func(re_bds, two_html) print(link_list) directory = '/home/tarena/images/' + name + '/' if not os.path.exists(directory): os.makedirs(directory) for link in link_list: headers = {'User-Agent': random.choice(ua_list)} req = request.Request(url=link, headers=headers) res = request.urlopen(req) html = res.read() filename = directory + link.split('@')[0][-10:] with open(filename, 'wb') as f: f.write(html) time.sleep(random.randint(1, 3)) def run(self): for offset in range(0, 21, 10): url = self.url.format(offset) self.parse_html(url) time.sleep(random.randint(1, 2)) if __name__ == '__main__': spider = MaoyanSpider() spider.run()
from urllib import request import time import random from useragents import ua_list import re import os class MaoyanSpider(object): def __init__(self): self.url = 'https://maoyan.com/board/4?offset={}' def get_html(self, url): headers = {'User-Agent': random.choice(ua_list)} req = request.Request(url=url, headers=headers) res = request.urlopen(req) html = res.read().decode() return html def re_func(self, re_bds, html): pattern = re.compile(re_bds, re.S) r_list = pattern.findall(html) return r_list def parse_html(self, one_url): one_html = self.get_html(one_url) re_bds = ( '<div class="movie-item-info">.*?href="(.*?)".*?title="(.*?)".*?<p class="star">(.*?)</p>.*?class="releasetime">(.*?)</p>' ) r_list = self.re_func(re_bds, one_html) self.save_html(r_list) def save_html(self, r_list): item = {} for r in r_list: item['name'] = r[1].strip() item['star'] = r[2].strip()[3:] item['time'] = r[3].strip()[5:15] two_link = 'https://maoyan.com' + r[0] item['comment'] = self.get_comment(two_link) print(item) self.save_image(two_link, item['name']) def get_comment(self, two_link): two_html = self.get_html(two_link) with open('test.html', 'w') as f: f.write(two_html) re_bds = '<div class="comment-content">(.*?)</div>' comment_list = self.re_func(re_bds, two_html) return comment_list def save_image(self, two_link, name): two_html = self.get_html(two_link) re_bds = ( '<div class="img.*?"><img class="default-img" data-src="(.*?)" alt=""></div>' ) link_list = self.re_func(re_bds, two_html) print(link_list) directory = '/home/tarena/images/' + name + '/' if not os.path.exists(directory): os.makedirs(directory) for link in link_list: headers = {'User-Agent': random.choice(ua_list)} req = request.Request(url=link, headers=headers) res = request.urlopen(req) html = res.read() filename = directory + link.split('@')[0][-10:] with open(filename, 'wb') as f: f.write(html) time.sleep(random.randint(1, 3)) def run(self): for offset in range(0, 21, 10): url = self.url.format(offset) self.parse_html(url) time.sleep(random.randint(1, 2)) if __name__ == '__main__': spider = MaoyanSpider() spider.run()
from urllib import request import time import random from useragents import ua_list import re import os class MaoyanSpider(object): def __init__(self): self.url = 'https://maoyan.com/board/4?offset={}' # 请求功能函数 - html def get_html(self,url): headers = { 'User-Agent':random.choice(ua_list) } req = request.Request(url=url,headers=headers) res = request.urlopen(req) html = res.read().decode() return html # 解析功能函数 def re_func(self,re_bds,html): pattern = re.compile(re_bds,re.S) r_list = pattern.findall(html) return r_list # 解析一级页面 def parse_html(self,one_url): one_html = self.get_html(one_url) re_bds = '<div class="movie-item-info">.*?href="(.*?)".*?title="(.*?)".*?<p class="star">(.*?)</p>.*?class="releasetime">(.*?)</p>' # r_list: [('/films/1203','name','star','time'),()] r_list = self.re_func(re_bds,one_html) self.save_html(r_list) def save_html(self,r_list): item = {} # r: ('/films/1203','name','star','time') for r in r_list: item['name'] = r[1].strip() item['star'] = r[2].strip()[3:] item['time'] = r[3].strip()[5:15] two_link = 'https://maoyan.com' + r[0] item['comment'] = self.get_comment(two_link) print(item) self.save_image(two_link,item['name']) # 获取评论的函数 def get_comment(self,two_link): two_html = self.get_html(two_link) with open('test.html','w') as f: f.write(two_html) re_bds = '<div class="comment-content">(.*?)</div>' comment_list = self.re_func(re_bds,two_html) return comment_list # 保存图片函数 def save_image(self,two_link,name): two_html = self.get_html(two_link) re_bds = '<div class="img.*?"><img class="default-img" data-src="(.*?)" alt=""></div>' # link_list: ['src1','src2','src3'] link_list = self.re_func(re_bds,two_html) print(link_list) # 创建对应文件夹 directory = '/home/tarena/images/' + name + '/' if not os.path.exists(directory): os.makedirs(directory) for link in link_list: headers = {'User-Agent':random.choice(ua_list)} req = request.Request(url=link,headers=headers) res = request.urlopen(req) html = res.read() filename = directory + \ link.split('@')[0][-10:] with open(filename,'wb') as f: f.write(html) time.sleep(random.randint(1,3)) def run(self): for offset in range(0,21,10): url = self.url.format(offset) self.parse_html(url) time.sleep(random.randint(1,2)) if __name__ == '__main__': spider = MaoyanSpider() spider.run()
[ 6, 9, 10, 11, 12 ]
2,226
96cfee85194c9c30b3d74bbddc2a31b6933eb032
<mask token>
<mask token> def isCousin(root, a, b): if check(root, a, b) == False: return False q = [] q.insert(0, root) tmp = set() while len(q): l = len(q) for i in range(l): n = q.pop() tmp.add(n.data) if n.left: q.insert(0, n.left) if n.right: q.insert(0, n.right) if a in tmp and b in tmp: return True tmp.clear() return False
def check(root, a, b): if root: if (root.left == a and root.right == b or root.left == b and root. right == a): return False return check(root.left, a, b) and check(root.right, a, b) return True def isCousin(root, a, b): if check(root, a, b) == False: return False q = [] q.insert(0, root) tmp = set() while len(q): l = len(q) for i in range(l): n = q.pop() tmp.add(n.data) if n.left: q.insert(0, n.left) if n.right: q.insert(0, n.right) if a in tmp and b in tmp: return True tmp.clear() return False
def check(root, a, b): if root: if (root.left == a and root.right == b) or (root.left ==b and root.right==a): return False return check(root.left, a, b) and check(root.right, a, b) return True def isCousin(root, a, b): # Your code here if check(root, a, b)==False: return False q=[] q.insert(0, root) tmp=set() while(len(q)): l = len(q) for i in range(l): n = q.pop() tmp.add(n.data) if n.left: q.insert(0, n.left) if n.right: q.insert(0, n.right) if a in tmp and b in tmp: return True tmp.clear() return False
null
[ 0, 1, 2, 3 ]
2,227
f2a508ae99697d6ba320b158a1000379b975d568
<mask token>
<mask token> for i in word: if 'a' <= i and i <= 'z' or 'A' <= i and i <= 'Z': letter += 1 if '0' <= i and i <= '9': digit += 1 print("""LETTERS {0} DIGITS {1}""".format(letter, digit))
word = input() letter, digit = 0, 0 for i in word: if 'a' <= i and i <= 'z' or 'A' <= i and i <= 'Z': letter += 1 if '0' <= i and i <= '9': digit += 1 print("""LETTERS {0} DIGITS {1}""".format(letter, digit))
word=input() letter,digit=0,0 for i in word: if('a'<=i and i<='z') or ('A'<=i and i<='Z'): letter+=1 if '0'<=i and i<='9': digit+=1 print("LETTERS {0} \n DIGITS {1}".format(letter,digit))
null
[ 0, 1, 2, 3 ]
2,228
2a65287588fe1337ba1a6f7c2e15e0505611d739
<mask token>
<mask token> def a(): lines = 0 words = 0 letters = 0 for line in open(f'{text}.txt', 'r'): lines += 1 letters += len(line.strip('.,:-()!?;)"\'\n}')) words += len(line.split()) return f'Lines = {lines}, words = {words}, letters = {letters}' <mask token>
<mask token> def a(): lines = 0 words = 0 letters = 0 for line in open(f'{text}.txt', 'r'): lines += 1 letters += len(line.strip('.,:-()!?;)"\'\n}')) words += len(line.split()) return f'Lines = {lines}, words = {words}, letters = {letters}' print(a())
text = input('Ввести имя файла: ') def a(): lines = 0 words = 0 letters = 0 for line in open(f'{text}.txt', 'r'): lines += 1 letters += len(line.strip('.,:-()!?;)"\'\n}')) words += len(line.split()) return f'Lines = {lines}, words = {words}, letters = {letters}' print(a())
null
[ 0, 1, 2, 3 ]
2,229
c93bd042340a6e1d0124d8f6176bdf17ab56e405
<mask token>
<mask token> def euler_29(max_a, max_b): gen = (a ** b for a, b in itertools.product(range(2, max_a + 1), range( 2, max_b + 1))) return len(set(gen)) <mask token>
<mask token> def euler_29(max_a, max_b): gen = (a ** b for a, b in itertools.product(range(2, max_a + 1), range( 2, max_b + 1))) return len(set(gen)) if __name__ == '__main__': print(euler_29(100, 100))
<mask token> import itertools def euler_29(max_a, max_b): gen = (a ** b for a, b in itertools.product(range(2, max_a + 1), range( 2, max_b + 1))) return len(set(gen)) if __name__ == '__main__': print(euler_29(100, 100))
#!/usr/bin/env python """ Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, 35=243 42=16, 43=64, 44=256, 45=1024 52=25, 53=125, 54=625, 55=3125 If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms: 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100? """ import itertools def euler_29(max_a, max_b): gen = (a ** b for a, b in itertools.product(range(2, max_a + 1), range(2, max_b + 1))) return len(set(gen)) if __name__ == "__main__": print(euler_29(100, 100))
[ 0, 1, 2, 3, 4 ]
2,230
bfd31d0b80511721ee5117daced04eaf63679fd8
<mask token> def get_clusters(link, dn, inds, th=0.7): clst = fcluster(link, criterion='distance', t=th) return pandas.Series(index=inds, data=clst).iloc[dn['leaves']] def draw_significant_groups(groups, dn_ax, color='white'): for group in groups: rect = patches.Rectangle((group[0][0], group[1][0]), group[0][1] - group[0][0], group[1][1] - group[1][0], linewidth=1, edgecolor= color, facecolor='none') dn_ax.add_patch(rect) def draw_legume_group(group, ax): y_values = ax.get_ylim() x_values = ax.get_xlim() rect = patches.Rectangle((0, 0), x_values[1], group[0], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) rect = patches.Rectangle((0, group[1]), x_values[1], y_values[0] - group[1], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) def get_groups(clst, clust_above=MIN_CLUST): groups = [] v = -1 for i in range(len(clst)): if clst[i] == v: continue if v == -1: groups.append([i]) v = clst[i] continue if i - groups[-1][0] >= clust_above: groups[-1].append(i) groups.append([i]) else: groups[-1][0] = i v = clst[i] groups = groups[:-1] return groups <mask token>
<mask token> def get_clusters(link, dn, inds, th=0.7): clst = fcluster(link, criterion='distance', t=th) return pandas.Series(index=inds, data=clst).iloc[dn['leaves']] def draw_significant_groups(groups, dn_ax, color='white'): for group in groups: rect = patches.Rectangle((group[0][0], group[1][0]), group[0][1] - group[0][0], group[1][1] - group[1][0], linewidth=1, edgecolor= color, facecolor='none') dn_ax.add_patch(rect) def draw_legume_group(group, ax): y_values = ax.get_ylim() x_values = ax.get_xlim() rect = patches.Rectangle((0, 0), x_values[1], group[0], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) rect = patches.Rectangle((0, group[1]), x_values[1], y_values[0] - group[1], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) def get_groups(clst, clust_above=MIN_CLUST): groups = [] v = -1 for i in range(len(clst)): if clst[i] == v: continue if v == -1: groups.append([i]) v = clst[i] continue if i - groups[-1][0] >= clust_above: groups[-1].append(i) groups.append([i]) else: groups[-1][0] = i v = clst[i] groups = groups[:-1] return groups if __name__ == '__main__': os.makedirs(out_path, exist_ok=True) df_info = pandas.read_csv(os.path.join(base_path, 'library_contents.csv'), index_col=0, low_memory=False) df_info = df_info[df_info.is_allergens & (df_info['num_copy'] == 1)] inds = df_info.index l_base = len(inds) meta_df = pandas.read_csv(os.path.join(base_path, 'cohort.csv'), index_col=0, low_memory=False) meta_df = meta_df[(meta_df.timepoint == 1) & (meta_df.num_passed >= MIN_OLIS)] fold_df = pandas.read_csv(os.path.join(base_path, 'fold_data.csv'), index_col=[0, 1], low_memory=False).loc[meta_df.index].unstack() fold_df.columns = fold_df.columns.get_level_values(1) fold_df = fold_df[fold_df.columns.intersection(inds)] if THROW_BAD_OLIS: drop = fold_df.columns[(fold_df == -1).sum() > 0] fold_df = fold_df[fold_df.columns.difference(drop)].fillna(1) inds = df_info.index.difference(drop) df_info = df_info.loc[inds] fold_df = fold_df[fold_df.columns[(fold_df > 1).sum() > MIN_APPEAR * len(fold_df)]] fold_df = numpy.log(fold_df.fillna(1)) df_info = df_info.loc[fold_df.columns] th = CLUST_TH corr = fold_df.corr('spearman') link = linkage(squareform(1 - corr), method='average') dn = dendrogram(link, no_plot=True) clst = get_clusters(link, dn, corr.columns, th) groups = get_groups(clst) corr1 = fold_df.T.corr('spearman') link1 = linkage(squareform(1 - corr1), method='average') dn1 = dendrogram(link1, no_plot=True) clst1 = get_clusters(link1, dn1, corr1.columns, th) groups1 = get_groups(clst1) fig = plt.figure(figsize=[9.2, 12]) gs = GridSpec(1, 3, width_ratios=[0.2, 3, 1]) bar_ax = fig.add_subplot(gs[0]) dendogram_ax = fig.add_subplot(gs[1]) sns.heatmap(fold_df.iloc[dn1['leaves'], dn['leaves']], cmap=sns. color_palette('flare', as_cmap=True), ax=dendogram_ax, yticklabels= False, xticklabels=False, cbar_ax=bar_ax) dendogram_ax.set_xlabel('oligos') dendogram_ax.set_ylabel('samples') mt = 'normalized mt_1342' bar_axis1 = fig.add_subplot(gs[2], sharey=dendogram_ax) meta_df['yob'] = (meta_df['yob'] - 1944) / 60 use_columns = ['gender', 'yob'] sample_extra_info = pandas.merge(meta_df[use_columns], meta_df[mt], left_index=True, right_index=True, how='left') sample_extra_info[mt] = ((sample_extra_info[mt] - sample_extra_info[mt] .min()) / (sample_extra_info[mt].max() - sample_extra_info[mt].min()) ).astype(float) sample_extra_info.rename(columns={mt: 'norm mt_1342'}, inplace=True) mt = 'norm mt_1342' sample_extra_info = sample_extra_info.iloc[dn1['leaves']] sns.heatmap(data=sample_extra_info, xticklabels=sample_extra_info. columns, yticklabels=False, ax=bar_axis1, cmap=sns.color_palette( 'viridis', as_cmap=True)) fold_df = fold_df.iloc[dn1['leaves'], dn['leaves']].copy() significant_groups = [] for oligo_subgroup in groups: sample_group_means = sorted(enumerate([fold_df.iloc[range(* sample_group), range(*oligo_subgroup)].mean().mean() for sample_group in groups1]), key=lambda x: -x[1]) if sample_group_means[0][1] > 2 * sample_group_means[1][1]: significant_groups.append([oligo_subgroup, groups1[ sample_group_means[0][0]]]) draw_significant_groups(significant_groups, dendogram_ax) mt_scores = pandas.Series([mannwhitneyu(sample_extra_info.iloc[range(* sample_group)][mt].dropna(), sample_extra_info.iloc[list(range(0, sample_group[0])) + list(range(sample_group[1], len( sample_extra_info)))][mt].dropna())[1] for oligos_group, sample_group in significant_groups]) mt_group = significant_groups[mt_scores.idxmin()] mt_pval = mt_scores.min() draw_significant_groups([mt_group], dendogram_ax, color='blue') draw_legume_group(mt_group[1], bar_axis1) plt.suptitle( """For group marked in blue the %s level of samples in group vs those not in group """ % mt + 'got MW p-value of %g' % mt_pval) plt.savefig(os.path.join(out_path, 'legumes.png')) res = {} inds = sample_extra_info[mt].dropna().index for i in range(*mt_group[0]): col = fold_df.columns[i] res[col] = spearmanr(sample_extra_info.loc[inds][mt], fold_df.loc[ inds, col].values) res = pandas.DataFrame(res, index=['stat', 'pval']).T.sort_values('pval') res['Bonf'] = res['pval'] * len(res) FDR = multipletests(res.pval.values.tolist(), method='fdr_by') res['FDR_BY'] = FDR[0] res['FDR_BY_qval'] = FDR[1] FDR = multipletests(res.pval.values.tolist(), method='fdr_bh') res['FDR_BH'] = FDR[0] res['FDR_BH_qval'] = FDR[1] res['allergens_common_name'] = df_info.loc[res.index].allergens_common_name print('Of %d oligos in the blue group %d pass FDR (BY) vs %s' % (len( res), len(res[res.FDR_BY]), mt)) res.to_csv(os.path.join(out_path, 'mt_1342.csv'))
<mask token> MIN_OLIS = 200 THROW_BAD_OLIS = True MIN_APPEAR = 0.02 CLUST_TH = 0.7 MIN_CLUST = 10 def get_clusters(link, dn, inds, th=0.7): clst = fcluster(link, criterion='distance', t=th) return pandas.Series(index=inds, data=clst).iloc[dn['leaves']] def draw_significant_groups(groups, dn_ax, color='white'): for group in groups: rect = patches.Rectangle((group[0][0], group[1][0]), group[0][1] - group[0][0], group[1][1] - group[1][0], linewidth=1, edgecolor= color, facecolor='none') dn_ax.add_patch(rect) def draw_legume_group(group, ax): y_values = ax.get_ylim() x_values = ax.get_xlim() rect = patches.Rectangle((0, 0), x_values[1], group[0], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) rect = patches.Rectangle((0, group[1]), x_values[1], y_values[0] - group[1], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) def get_groups(clst, clust_above=MIN_CLUST): groups = [] v = -1 for i in range(len(clst)): if clst[i] == v: continue if v == -1: groups.append([i]) v = clst[i] continue if i - groups[-1][0] >= clust_above: groups[-1].append(i) groups.append([i]) else: groups[-1][0] = i v = clst[i] groups = groups[:-1] return groups if __name__ == '__main__': os.makedirs(out_path, exist_ok=True) df_info = pandas.read_csv(os.path.join(base_path, 'library_contents.csv'), index_col=0, low_memory=False) df_info = df_info[df_info.is_allergens & (df_info['num_copy'] == 1)] inds = df_info.index l_base = len(inds) meta_df = pandas.read_csv(os.path.join(base_path, 'cohort.csv'), index_col=0, low_memory=False) meta_df = meta_df[(meta_df.timepoint == 1) & (meta_df.num_passed >= MIN_OLIS)] fold_df = pandas.read_csv(os.path.join(base_path, 'fold_data.csv'), index_col=[0, 1], low_memory=False).loc[meta_df.index].unstack() fold_df.columns = fold_df.columns.get_level_values(1) fold_df = fold_df[fold_df.columns.intersection(inds)] if THROW_BAD_OLIS: drop = fold_df.columns[(fold_df == -1).sum() > 0] fold_df = fold_df[fold_df.columns.difference(drop)].fillna(1) inds = df_info.index.difference(drop) df_info = df_info.loc[inds] fold_df = fold_df[fold_df.columns[(fold_df > 1).sum() > MIN_APPEAR * len(fold_df)]] fold_df = numpy.log(fold_df.fillna(1)) df_info = df_info.loc[fold_df.columns] th = CLUST_TH corr = fold_df.corr('spearman') link = linkage(squareform(1 - corr), method='average') dn = dendrogram(link, no_plot=True) clst = get_clusters(link, dn, corr.columns, th) groups = get_groups(clst) corr1 = fold_df.T.corr('spearman') link1 = linkage(squareform(1 - corr1), method='average') dn1 = dendrogram(link1, no_plot=True) clst1 = get_clusters(link1, dn1, corr1.columns, th) groups1 = get_groups(clst1) fig = plt.figure(figsize=[9.2, 12]) gs = GridSpec(1, 3, width_ratios=[0.2, 3, 1]) bar_ax = fig.add_subplot(gs[0]) dendogram_ax = fig.add_subplot(gs[1]) sns.heatmap(fold_df.iloc[dn1['leaves'], dn['leaves']], cmap=sns. color_palette('flare', as_cmap=True), ax=dendogram_ax, yticklabels= False, xticklabels=False, cbar_ax=bar_ax) dendogram_ax.set_xlabel('oligos') dendogram_ax.set_ylabel('samples') mt = 'normalized mt_1342' bar_axis1 = fig.add_subplot(gs[2], sharey=dendogram_ax) meta_df['yob'] = (meta_df['yob'] - 1944) / 60 use_columns = ['gender', 'yob'] sample_extra_info = pandas.merge(meta_df[use_columns], meta_df[mt], left_index=True, right_index=True, how='left') sample_extra_info[mt] = ((sample_extra_info[mt] - sample_extra_info[mt] .min()) / (sample_extra_info[mt].max() - sample_extra_info[mt].min()) ).astype(float) sample_extra_info.rename(columns={mt: 'norm mt_1342'}, inplace=True) mt = 'norm mt_1342' sample_extra_info = sample_extra_info.iloc[dn1['leaves']] sns.heatmap(data=sample_extra_info, xticklabels=sample_extra_info. columns, yticklabels=False, ax=bar_axis1, cmap=sns.color_palette( 'viridis', as_cmap=True)) fold_df = fold_df.iloc[dn1['leaves'], dn['leaves']].copy() significant_groups = [] for oligo_subgroup in groups: sample_group_means = sorted(enumerate([fold_df.iloc[range(* sample_group), range(*oligo_subgroup)].mean().mean() for sample_group in groups1]), key=lambda x: -x[1]) if sample_group_means[0][1] > 2 * sample_group_means[1][1]: significant_groups.append([oligo_subgroup, groups1[ sample_group_means[0][0]]]) draw_significant_groups(significant_groups, dendogram_ax) mt_scores = pandas.Series([mannwhitneyu(sample_extra_info.iloc[range(* sample_group)][mt].dropna(), sample_extra_info.iloc[list(range(0, sample_group[0])) + list(range(sample_group[1], len( sample_extra_info)))][mt].dropna())[1] for oligos_group, sample_group in significant_groups]) mt_group = significant_groups[mt_scores.idxmin()] mt_pval = mt_scores.min() draw_significant_groups([mt_group], dendogram_ax, color='blue') draw_legume_group(mt_group[1], bar_axis1) plt.suptitle( """For group marked in blue the %s level of samples in group vs those not in group """ % mt + 'got MW p-value of %g' % mt_pval) plt.savefig(os.path.join(out_path, 'legumes.png')) res = {} inds = sample_extra_info[mt].dropna().index for i in range(*mt_group[0]): col = fold_df.columns[i] res[col] = spearmanr(sample_extra_info.loc[inds][mt], fold_df.loc[ inds, col].values) res = pandas.DataFrame(res, index=['stat', 'pval']).T.sort_values('pval') res['Bonf'] = res['pval'] * len(res) FDR = multipletests(res.pval.values.tolist(), method='fdr_by') res['FDR_BY'] = FDR[0] res['FDR_BY_qval'] = FDR[1] FDR = multipletests(res.pval.values.tolist(), method='fdr_bh') res['FDR_BH'] = FDR[0] res['FDR_BH_qval'] = FDR[1] res['allergens_common_name'] = df_info.loc[res.index].allergens_common_name print('Of %d oligos in the blue group %d pass FDR (BY) vs %s' % (len( res), len(res[res.FDR_BY]), mt)) res.to_csv(os.path.join(out_path, 'mt_1342.csv'))
from scipy.stats import mannwhitneyu import matplotlib.patches as patches import os import numpy import pandas from matplotlib.gridspec import GridSpec from scipy.cluster.hierarchy import fcluster, linkage, dendrogram from scipy.spatial.distance import squareform import seaborn as sns from scipy.stats import spearmanr from statsmodels.stats.multitest import multipletests import matplotlib.pyplot as plt from config import base_path, out_path MIN_OLIS = 200 THROW_BAD_OLIS = True MIN_APPEAR = 0.02 CLUST_TH = 0.7 MIN_CLUST = 10 def get_clusters(link, dn, inds, th=0.7): clst = fcluster(link, criterion='distance', t=th) return pandas.Series(index=inds, data=clst).iloc[dn['leaves']] def draw_significant_groups(groups, dn_ax, color='white'): for group in groups: rect = patches.Rectangle((group[0][0], group[1][0]), group[0][1] - group[0][0], group[1][1] - group[1][0], linewidth=1, edgecolor= color, facecolor='none') dn_ax.add_patch(rect) def draw_legume_group(group, ax): y_values = ax.get_ylim() x_values = ax.get_xlim() rect = patches.Rectangle((0, 0), x_values[1], group[0], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) rect = patches.Rectangle((0, group[1]), x_values[1], y_values[0] - group[1], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) def get_groups(clst, clust_above=MIN_CLUST): groups = [] v = -1 for i in range(len(clst)): if clst[i] == v: continue if v == -1: groups.append([i]) v = clst[i] continue if i - groups[-1][0] >= clust_above: groups[-1].append(i) groups.append([i]) else: groups[-1][0] = i v = clst[i] groups = groups[:-1] return groups if __name__ == '__main__': os.makedirs(out_path, exist_ok=True) df_info = pandas.read_csv(os.path.join(base_path, 'library_contents.csv'), index_col=0, low_memory=False) df_info = df_info[df_info.is_allergens & (df_info['num_copy'] == 1)] inds = df_info.index l_base = len(inds) meta_df = pandas.read_csv(os.path.join(base_path, 'cohort.csv'), index_col=0, low_memory=False) meta_df = meta_df[(meta_df.timepoint == 1) & (meta_df.num_passed >= MIN_OLIS)] fold_df = pandas.read_csv(os.path.join(base_path, 'fold_data.csv'), index_col=[0, 1], low_memory=False).loc[meta_df.index].unstack() fold_df.columns = fold_df.columns.get_level_values(1) fold_df = fold_df[fold_df.columns.intersection(inds)] if THROW_BAD_OLIS: drop = fold_df.columns[(fold_df == -1).sum() > 0] fold_df = fold_df[fold_df.columns.difference(drop)].fillna(1) inds = df_info.index.difference(drop) df_info = df_info.loc[inds] fold_df = fold_df[fold_df.columns[(fold_df > 1).sum() > MIN_APPEAR * len(fold_df)]] fold_df = numpy.log(fold_df.fillna(1)) df_info = df_info.loc[fold_df.columns] th = CLUST_TH corr = fold_df.corr('spearman') link = linkage(squareform(1 - corr), method='average') dn = dendrogram(link, no_plot=True) clst = get_clusters(link, dn, corr.columns, th) groups = get_groups(clst) corr1 = fold_df.T.corr('spearman') link1 = linkage(squareform(1 - corr1), method='average') dn1 = dendrogram(link1, no_plot=True) clst1 = get_clusters(link1, dn1, corr1.columns, th) groups1 = get_groups(clst1) fig = plt.figure(figsize=[9.2, 12]) gs = GridSpec(1, 3, width_ratios=[0.2, 3, 1]) bar_ax = fig.add_subplot(gs[0]) dendogram_ax = fig.add_subplot(gs[1]) sns.heatmap(fold_df.iloc[dn1['leaves'], dn['leaves']], cmap=sns. color_palette('flare', as_cmap=True), ax=dendogram_ax, yticklabels= False, xticklabels=False, cbar_ax=bar_ax) dendogram_ax.set_xlabel('oligos') dendogram_ax.set_ylabel('samples') mt = 'normalized mt_1342' bar_axis1 = fig.add_subplot(gs[2], sharey=dendogram_ax) meta_df['yob'] = (meta_df['yob'] - 1944) / 60 use_columns = ['gender', 'yob'] sample_extra_info = pandas.merge(meta_df[use_columns], meta_df[mt], left_index=True, right_index=True, how='left') sample_extra_info[mt] = ((sample_extra_info[mt] - sample_extra_info[mt] .min()) / (sample_extra_info[mt].max() - sample_extra_info[mt].min()) ).astype(float) sample_extra_info.rename(columns={mt: 'norm mt_1342'}, inplace=True) mt = 'norm mt_1342' sample_extra_info = sample_extra_info.iloc[dn1['leaves']] sns.heatmap(data=sample_extra_info, xticklabels=sample_extra_info. columns, yticklabels=False, ax=bar_axis1, cmap=sns.color_palette( 'viridis', as_cmap=True)) fold_df = fold_df.iloc[dn1['leaves'], dn['leaves']].copy() significant_groups = [] for oligo_subgroup in groups: sample_group_means = sorted(enumerate([fold_df.iloc[range(* sample_group), range(*oligo_subgroup)].mean().mean() for sample_group in groups1]), key=lambda x: -x[1]) if sample_group_means[0][1] > 2 * sample_group_means[1][1]: significant_groups.append([oligo_subgroup, groups1[ sample_group_means[0][0]]]) draw_significant_groups(significant_groups, dendogram_ax) mt_scores = pandas.Series([mannwhitneyu(sample_extra_info.iloc[range(* sample_group)][mt].dropna(), sample_extra_info.iloc[list(range(0, sample_group[0])) + list(range(sample_group[1], len( sample_extra_info)))][mt].dropna())[1] for oligos_group, sample_group in significant_groups]) mt_group = significant_groups[mt_scores.idxmin()] mt_pval = mt_scores.min() draw_significant_groups([mt_group], dendogram_ax, color='blue') draw_legume_group(mt_group[1], bar_axis1) plt.suptitle( """For group marked in blue the %s level of samples in group vs those not in group """ % mt + 'got MW p-value of %g' % mt_pval) plt.savefig(os.path.join(out_path, 'legumes.png')) res = {} inds = sample_extra_info[mt].dropna().index for i in range(*mt_group[0]): col = fold_df.columns[i] res[col] = spearmanr(sample_extra_info.loc[inds][mt], fold_df.loc[ inds, col].values) res = pandas.DataFrame(res, index=['stat', 'pval']).T.sort_values('pval') res['Bonf'] = res['pval'] * len(res) FDR = multipletests(res.pval.values.tolist(), method='fdr_by') res['FDR_BY'] = FDR[0] res['FDR_BY_qval'] = FDR[1] FDR = multipletests(res.pval.values.tolist(), method='fdr_bh') res['FDR_BH'] = FDR[0] res['FDR_BH_qval'] = FDR[1] res['allergens_common_name'] = df_info.loc[res.index].allergens_common_name print('Of %d oligos in the blue group %d pass FDR (BY) vs %s' % (len( res), len(res[res.FDR_BY]), mt)) res.to_csv(os.path.join(out_path, 'mt_1342.csv'))
from scipy.stats import mannwhitneyu import matplotlib.patches as patches import os import numpy import pandas from matplotlib.gridspec import GridSpec from scipy.cluster.hierarchy import fcluster, linkage, dendrogram from scipy.spatial.distance import squareform import seaborn as sns from scipy.stats import spearmanr from statsmodels.stats.multitest import multipletests import matplotlib.pyplot as plt from config import base_path, out_path MIN_OLIS = 200 THROW_BAD_OLIS = True MIN_APPEAR = 0.02 CLUST_TH = 0.7 MIN_CLUST = 10 def get_clusters(link, dn, inds, th=0.7): clst = fcluster(link, criterion='distance', t=th) return pandas.Series(index=inds, data=clst).iloc[dn['leaves']] def draw_significant_groups(groups, dn_ax, color='white'): # Draw boxes around clusters for group in groups: rect = patches.Rectangle((group[0][0], group[1][0]), group[0][1] - group[0][0], group[1][1] - group[1][0], linewidth=1, edgecolor=color, facecolor='none') dn_ax.add_patch(rect) def draw_legume_group(group, ax): y_values = ax.get_ylim() x_values = ax.get_xlim() rect = patches.Rectangle((0, 0), x_values[1], group[0], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) rect = patches.Rectangle((0, group[1]), x_values[1], y_values[0] - group[1], linewidth=1, edgecolor='white', facecolor='white', alpha=0.6) ax.add_patch(rect) def get_groups(clst, clust_above=MIN_CLUST): groups = [] v = -1 for i in range(len(clst)): if clst[i] == v: continue if v == -1: groups.append([i]) v = clst[i] continue if (i - groups[-1][0]) >= clust_above: groups[-1].append(i) groups.append([i]) else: groups[-1][0] = i v = clst[i] groups = groups[:-1] return groups if __name__ == "__main__": os.makedirs(out_path, exist_ok=True) df_info = pandas.read_csv(os.path.join(base_path, "library_contents.csv"), index_col=0, low_memory=False) df_info = df_info[df_info.is_allergens & (df_info['num_copy'] == 1)] inds = df_info.index l_base = len(inds) meta_df = pandas.read_csv(os.path.join(base_path, "cohort.csv"), index_col=0, low_memory=False) meta_df = meta_df[(meta_df.timepoint == 1) & (meta_df.num_passed >= MIN_OLIS)] fold_df = pandas.read_csv(os.path.join(base_path, "fold_data.csv"), index_col=[0, 1], low_memory=False).loc[meta_df.index].unstack() fold_df.columns = fold_df.columns.get_level_values(1) fold_df = fold_df[fold_df.columns.intersection(inds)] if THROW_BAD_OLIS: drop = fold_df.columns[(fold_df == -1).sum() > 0] fold_df = fold_df[fold_df.columns.difference(drop)].fillna(1) inds = df_info.index.difference(drop) df_info = df_info.loc[inds] fold_df = fold_df[fold_df.columns[(fold_df > 1).sum() > (MIN_APPEAR * len(fold_df))]] fold_df = numpy.log(fold_df.fillna(1)) df_info = df_info.loc[fold_df.columns] th = CLUST_TH # Oligos level correlations corr = fold_df.corr('spearman') link = linkage(squareform(1 - corr), method='average') dn = dendrogram(link, no_plot=True) clst = get_clusters(link, dn, corr.columns, th) groups = get_groups(clst) # Samples level correlations corr1 = fold_df.T.corr('spearman') link1 = linkage(squareform(1 - corr1), method='average') dn1 = dendrogram(link1, no_plot=True) clst1 = get_clusters(link1, dn1, corr1.columns, th) groups1 = get_groups(clst1) # Define figure fig = plt.figure(figsize=[9.2, 12]) gs = GridSpec(1, 3, width_ratios=[0.2, 3, 1]) # Plot heatmap bar_ax = fig.add_subplot(gs[0]) dendogram_ax = fig.add_subplot(gs[1]) sns.heatmap(fold_df.iloc[dn1['leaves'], dn['leaves']], cmap=sns.color_palette('flare', as_cmap=True), ax=dendogram_ax, yticklabels=False, xticklabels=False, cbar_ax=bar_ax) dendogram_ax.set_xlabel("oligos") dendogram_ax.set_ylabel("samples") # Plot sample level bars mt = 'normalized mt_1342' bar_axis1 = fig.add_subplot(gs[2], sharey=dendogram_ax) meta_df['yob'] = (meta_df['yob'] - 1944) / 60 use_columns = ['gender', 'yob'] sample_extra_info = pandas.merge(meta_df[use_columns], meta_df[mt], left_index=True, right_index=True, how='left') sample_extra_info[mt] = ((sample_extra_info[mt] - sample_extra_info[mt].min()) / (sample_extra_info[mt].max() - sample_extra_info[mt].min())).astype(float) sample_extra_info.rename(columns={mt: 'norm mt_1342'}, inplace=True) mt = 'norm mt_1342' sample_extra_info = sample_extra_info.iloc[dn1['leaves']] sns.heatmap(data=sample_extra_info, xticklabels=sample_extra_info.columns, yticklabels=False, ax=bar_axis1, cmap=sns.color_palette("viridis", as_cmap=True)) # Compute significant shared groups fold_df = fold_df.iloc[dn1['leaves'], dn['leaves']].copy() significant_groups = [] for oligo_subgroup in groups: sample_group_means = sorted(enumerate( [fold_df.iloc[range(*sample_group), range(*oligo_subgroup)].mean().mean() for sample_group in groups1]), key=lambda x: -x[1]) if sample_group_means[0][1] > 2 * sample_group_means[1][1]: significant_groups.append([oligo_subgroup, groups1[sample_group_means[0][0]]]) draw_significant_groups(significant_groups, dendogram_ax) mt_scores = pandas.Series([mannwhitneyu(sample_extra_info.iloc[range(*sample_group)][mt].dropna(), sample_extra_info.iloc[list(range(0, sample_group[0])) + list(range(sample_group[1], len(sample_extra_info)))] [mt].dropna())[1] for oligos_group, sample_group in significant_groups]) mt_group = significant_groups[mt_scores.idxmin()] mt_pval = mt_scores.min() draw_significant_groups([mt_group], dendogram_ax, color='blue') draw_legume_group(mt_group[1], bar_axis1) plt.suptitle('For group marked in blue the %s level\nof samples in group vs those not in group\n' % mt + 'got MW p-value of %g' % mt_pval) plt.savefig(os.path.join(out_path, "legumes.png")) res = {} inds = sample_extra_info[mt].dropna().index for i in range(*mt_group[0]): col = fold_df.columns[i] res[col] = spearmanr(sample_extra_info.loc[inds][mt], fold_df.loc[inds, col].values) res = pandas.DataFrame(res, index=['stat', 'pval']).T.sort_values('pval') res["Bonf"] = res['pval'] * len(res) FDR = multipletests(res.pval.values.tolist(), method='fdr_by') res["FDR_BY"] = FDR[0] res['FDR_BY_qval'] = FDR[1] FDR = multipletests(res.pval.values.tolist(), method='fdr_bh') res["FDR_BH"] = FDR[0] res['FDR_BH_qval'] = FDR[1] res['allergens_common_name'] = df_info.loc[res.index].allergens_common_name print("Of %d oligos in the blue group %d pass FDR (BY) vs %s" % (len(res), len(res[res.FDR_BY]), mt)) res.to_csv(os.path.join(out_path, "mt_1342.csv"))
[ 4, 5, 6, 7, 8 ]
2,231
e2b439974b66e45a899605bc7234850783c3dfb0
<mask token> class AffiliatedStoreManager(models.Manager): <mask token> <mask token> <mask token> class AffiliatedStore(models.Model): class Meta: db_table = 'affiliated_store' objects = AffiliatedStoreManager() title = models.CharField(max_length=255) server_url = models.CharField(max_length=2083, validators=[ RegexValidator(regex='^(https|http)://.*$', code='invalid url', message='server_url must be a url')]) icon = models.ForeignKey(Image, related_name='+', null=True, blank=True) is_enabled = models.BooleanField(default=True) def __repr__(self): return 'AffiliatedStore(id={0!s}, title="{1!s}")'.format(self.id, self.title) def __str__(self): return repr(self)
<mask token> class AffiliatedStoreManager(models.Manager): def get_queryset(self): return super().get_queryset().select_related('icon').select_related( 'icon__image_type') <mask token> <mask token> class AffiliatedStore(models.Model): class Meta: db_table = 'affiliated_store' objects = AffiliatedStoreManager() title = models.CharField(max_length=255) server_url = models.CharField(max_length=2083, validators=[ RegexValidator(regex='^(https|http)://.*$', code='invalid url', message='server_url must be a url')]) icon = models.ForeignKey(Image, related_name='+', null=True, blank=True) is_enabled = models.BooleanField(default=True) def __repr__(self): return 'AffiliatedStore(id={0!s}, title="{1!s}")'.format(self.id, self.title) def __str__(self): return repr(self)
<mask token> class AffiliatedStoreManager(models.Manager): def get_queryset(self): return super().get_queryset().select_related('icon').select_related( 'icon__image_type') <mask token> def find_by_id(self, id): return self.get(id=id) class AffiliatedStore(models.Model): class Meta: db_table = 'affiliated_store' objects = AffiliatedStoreManager() title = models.CharField(max_length=255) server_url = models.CharField(max_length=2083, validators=[ RegexValidator(regex='^(https|http)://.*$', code='invalid url', message='server_url must be a url')]) icon = models.ForeignKey(Image, related_name='+', null=True, blank=True) is_enabled = models.BooleanField(default=True) def __repr__(self): return 'AffiliatedStore(id={0!s}, title="{1!s}")'.format(self.id, self.title) def __str__(self): return repr(self)
from django.core.validators import RegexValidator from django.db import models from .image import Image class AffiliatedStoreManager(models.Manager): def get_queryset(self): return super().get_queryset().select_related('icon').select_related( 'icon__image_type') def find_all(self): return self.all() def find_by_id(self, id): return self.get(id=id) class AffiliatedStore(models.Model): class Meta: db_table = 'affiliated_store' objects = AffiliatedStoreManager() title = models.CharField(max_length=255) server_url = models.CharField(max_length=2083, validators=[ RegexValidator(regex='^(https|http)://.*$', code='invalid url', message='server_url must be a url')]) icon = models.ForeignKey(Image, related_name='+', null=True, blank=True) is_enabled = models.BooleanField(default=True) def __repr__(self): return 'AffiliatedStore(id={0!s}, title="{1!s}")'.format(self.id, self.title) def __str__(self): return repr(self)
from django.core.validators import RegexValidator from django.db import models from .image import Image class AffiliatedStoreManager(models.Manager): def get_queryset(self): return super().get_queryset() \ .select_related('icon') \ .select_related('icon__image_type') def find_all(self): return self.all() def find_by_id(self, id): return self.get(id=id) class AffiliatedStore(models.Model): class Meta: db_table = 'affiliated_store' objects = AffiliatedStoreManager() title = models.CharField(max_length=255) server_url = models.CharField(max_length=2083, validators=[RegexValidator(regex='^(https|http)://.*$', code='invalid url', message='server_url must be a url')]) icon = models.ForeignKey(Image, related_name='+', null=True, blank=True) is_enabled = models.BooleanField(default=True) def __repr__(self): return 'AffiliatedStore(id={0!s}, title="{1!s}")'.format(self.id, self.title) def __str__(self): return repr(self)
[ 5, 6, 7, 9, 10 ]
2,232
f35569e2d8d26f43d4b2395b5088902c6cd3b826
<mask token> class PW(QWidget): <mask token> <mask token> def ButtonNoAction(self): table = 'patient_' + str(self.pid) send_answer(self.question[self.index]['qid'], 'Нет', table) if self.index < self.maxim - 1: self.Pat = PW(self.index + 1, self.question, self.pid) self.Pat.show() self.close()
<mask token> class PW(QWidget): def __init__(self, index, question, pid): super().__init__() self.question = question self.pid = pid self.maxim = len(self.question) self.index = index self.Pat = None print(self.maxim) self.setWindowTitle('Вопрос №' + str(question[self.index]['qid'])) self.setFixedSize(QSize(300, 400)) questionLayout = QHBoxLayout() answerLayout = QHBoxLayout() pageLayout = QVBoxLayout() self.questionLabel = QLabel(question[self.index]['question']) self.questionLabel.setAlignment(Qt.AlignCenter) buttonYes = QPushButton('Да') buttonNo = QPushButton('Нет') questionLayout.addWidget(self.questionLabel) answerLayout.addWidget(buttonYes) answerLayout.addWidget(buttonNo) pageLayout.addLayout(questionLayout) pageLayout.addLayout(answerLayout) self.setLayout(pageLayout) buttonYes.clicked.connect(self.ButtonYesAction) buttonNo.clicked.connect(self.ButtonNoAction) <mask token> def ButtonNoAction(self): table = 'patient_' + str(self.pid) send_answer(self.question[self.index]['qid'], 'Нет', table) if self.index < self.maxim - 1: self.Pat = PW(self.index + 1, self.question, self.pid) self.Pat.show() self.close()
<mask token> class PW(QWidget): def __init__(self, index, question, pid): super().__init__() self.question = question self.pid = pid self.maxim = len(self.question) self.index = index self.Pat = None print(self.maxim) self.setWindowTitle('Вопрос №' + str(question[self.index]['qid'])) self.setFixedSize(QSize(300, 400)) questionLayout = QHBoxLayout() answerLayout = QHBoxLayout() pageLayout = QVBoxLayout() self.questionLabel = QLabel(question[self.index]['question']) self.questionLabel.setAlignment(Qt.AlignCenter) buttonYes = QPushButton('Да') buttonNo = QPushButton('Нет') questionLayout.addWidget(self.questionLabel) answerLayout.addWidget(buttonYes) answerLayout.addWidget(buttonNo) pageLayout.addLayout(questionLayout) pageLayout.addLayout(answerLayout) self.setLayout(pageLayout) buttonYes.clicked.connect(self.ButtonYesAction) buttonNo.clicked.connect(self.ButtonNoAction) def ButtonYesAction(self): table = 'patient_' + str(self.pid) send_answer(self.question[self.index]['qid'], 'Да', table) if self.index < self.maxim - 1: self.Pat = PW(self.index + 1, self.question, self.pid) self.Pat.show() self.close() def ButtonNoAction(self): table = 'patient_' + str(self.pid) send_answer(self.question[self.index]['qid'], 'Нет', table) if self.index < self.maxim - 1: self.Pat = PW(self.index + 1, self.question, self.pid) self.Pat.show() self.close()
from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5.QtSql import * from DatabaseHandler import send_answer class PW(QWidget): def __init__(self, index, question, pid): super().__init__() self.question = question self.pid = pid self.maxim = len(self.question) self.index = index self.Pat = None print(self.maxim) self.setWindowTitle('Вопрос №' + str(question[self.index]['qid'])) self.setFixedSize(QSize(300, 400)) questionLayout = QHBoxLayout() answerLayout = QHBoxLayout() pageLayout = QVBoxLayout() self.questionLabel = QLabel(question[self.index]['question']) self.questionLabel.setAlignment(Qt.AlignCenter) buttonYes = QPushButton('Да') buttonNo = QPushButton('Нет') questionLayout.addWidget(self.questionLabel) answerLayout.addWidget(buttonYes) answerLayout.addWidget(buttonNo) pageLayout.addLayout(questionLayout) pageLayout.addLayout(answerLayout) self.setLayout(pageLayout) buttonYes.clicked.connect(self.ButtonYesAction) buttonNo.clicked.connect(self.ButtonNoAction) def ButtonYesAction(self): table = 'patient_' + str(self.pid) send_answer(self.question[self.index]['qid'], 'Да', table) if self.index < self.maxim - 1: self.Pat = PW(self.index + 1, self.question, self.pid) self.Pat.show() self.close() def ButtonNoAction(self): table = 'patient_' + str(self.pid) send_answer(self.question[self.index]['qid'], 'Нет', table) if self.index < self.maxim - 1: self.Pat = PW(self.index + 1, self.question, self.pid) self.Pat.show() self.close()
from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5.QtSql import * from DatabaseHandler import send_answer class PW(QWidget): def __init__(self, index, question, pid): super().__init__() self.question = question self.pid = pid self.maxim = len(self.question) self.index = index self.Pat = None print(self.maxim) self.setWindowTitle("Вопрос №" + str(question[self.index]['qid'])) self.setFixedSize(QSize(300, 400)) questionLayout = QHBoxLayout() answerLayout = QHBoxLayout() pageLayout = QVBoxLayout() self.questionLabel = QLabel(question[self.index]['question']) self.questionLabel.setAlignment(Qt.AlignCenter) buttonYes = QPushButton("Да") buttonNo = QPushButton("Нет") questionLayout.addWidget(self.questionLabel) answerLayout.addWidget(buttonYes) answerLayout.addWidget(buttonNo) pageLayout.addLayout(questionLayout) pageLayout.addLayout(answerLayout) self.setLayout(pageLayout) buttonYes.clicked.connect(self.ButtonYesAction) buttonNo.clicked.connect(self.ButtonNoAction) def ButtonYesAction(self): table = "patient_" + str(self.pid) send_answer(self.question[self.index]['qid'], 'Да', table) if (self.index<self.maxim-1): self.Pat = PW(self.index + 1, self.question, self.pid) self.Pat.show() self.close() def ButtonNoAction(self): table = "patient_" + str(self.pid) send_answer(self.question[self.index]['qid'], 'Нет', table) if (self.index<self.maxim-1): self.Pat = PW(self.index + 1, self.question, self.pid) self.Pat.show() self.close()
[ 2, 3, 4, 5, 6 ]
2,233
2185d332f7cd4cbf17d6b72a19297d156c2182a1
<mask token> class RwidSpider(scrapy.Spider): <mask token> <mask token> <mask token> def parse(self, response): data = {'username': 'user', 'password': 'user12345'} return scrapy.FormRequest(url='http://0.0.0.0:9999/login', formdata =data, callback=self.after_login) <mask token> def parse_detail(self, response): yield {'title': response.css('title::text').get()}
<mask token> class RwidSpider(scrapy.Spider): <mask token> <mask token> <mask token> def parse(self, response): data = {'username': 'user', 'password': 'user12345'} return scrapy.FormRequest(url='http://0.0.0.0:9999/login', formdata =data, callback=self.after_login) def after_login(self, response): """ Ada 2 Task disini : 1. Ambil semua data barang yang ada dihalaman hasil -> akan menuju detail (parsing detail) 2. Ambil semua link next -> akan balik ke self.after_login :param response: :return: """ detail_products: List[Selector] = response.css('.card .card-title a') for detail in detail_products: href = detail.attrib.get('href') yield response.follow(href, callback=self.parse_detail) yield {'title': response.css('title::text').get()} def parse_detail(self, response): yield {'title': response.css('title::text').get()}
<mask token> class RwidSpider(scrapy.Spider): name = 'rwid' allowed_domains = ['0.0.0.0'] start_urls = ['http://0.0.0.0:9999/'] def parse(self, response): data = {'username': 'user', 'password': 'user12345'} return scrapy.FormRequest(url='http://0.0.0.0:9999/login', formdata =data, callback=self.after_login) def after_login(self, response): """ Ada 2 Task disini : 1. Ambil semua data barang yang ada dihalaman hasil -> akan menuju detail (parsing detail) 2. Ambil semua link next -> akan balik ke self.after_login :param response: :return: """ detail_products: List[Selector] = response.css('.card .card-title a') for detail in detail_products: href = detail.attrib.get('href') yield response.follow(href, callback=self.parse_detail) yield {'title': response.css('title::text').get()} def parse_detail(self, response): yield {'title': response.css('title::text').get()}
from typing import List import scrapy from cssselect import Selector class RwidSpider(scrapy.Spider): name = 'rwid' allowed_domains = ['0.0.0.0'] start_urls = ['http://0.0.0.0:9999/'] def parse(self, response): data = {'username': 'user', 'password': 'user12345'} return scrapy.FormRequest(url='http://0.0.0.0:9999/login', formdata =data, callback=self.after_login) def after_login(self, response): """ Ada 2 Task disini : 1. Ambil semua data barang yang ada dihalaman hasil -> akan menuju detail (parsing detail) 2. Ambil semua link next -> akan balik ke self.after_login :param response: :return: """ detail_products: List[Selector] = response.css('.card .card-title a') for detail in detail_products: href = detail.attrib.get('href') yield response.follow(href, callback=self.parse_detail) yield {'title': response.css('title::text').get()} def parse_detail(self, response): yield {'title': response.css('title::text').get()}
from typing import List import scrapy from cssselect import Selector class RwidSpider(scrapy.Spider): name = 'rwid' allowed_domains = ['0.0.0.0'] # REQUEST LOGIN DARI URLS start_urls = ['http://0.0.0.0:9999/'] # LOGIN DISINI def parse(self, response): # apa bedanya yield & return # yield {"title": response.css("title::text").get()} # cek di inspect element perlu login tidak? data = { "username": "user", "password": "user12345" } # cek di FormRequest butuhnya apa aja return scrapy.FormRequest( url="http://0.0.0.0:9999/login", formdata=data, callback=self.after_login # untuk mengektraksi data ) def after_login(self, response): """ Ada 2 Task disini : 1. Ambil semua data barang yang ada dihalaman hasil -> akan menuju detail (parsing detail) 2. Ambil semua link next -> akan balik ke self.after_login :param response: :return: """ # get detail product detail_products: List[Selector] = response.css(".card .card-title a") for detail in detail_products: href = detail.attrib.get("href") # untuk mendapatkan urls yield response.follow(href, callback=self.parse_detail) # masukkan urls ini ke antrian scrapy yield {"title": response.css("title::text").get()} def parse_detail(self, response): yield {"title": response.css("title::text").get()}
[ 3, 4, 5, 6, 7 ]
2,234
87e5a615157db59d1eac4967c321829c878d00a5
<mask token>
<mask token> def product_sum_helper(array, depth): sum = 0 for ele in array: if type(ele) is int: sum += ele else: sum += product_sum_helper(ele, depth + 1) return depth * sum
<mask token> def product_sum(array): sum = 0 depth = 1 sum += product_sum_helper(array, depth) return sum def product_sum_helper(array, depth): sum = 0 for ele in array: if type(ele) is int: sum += ele else: sum += product_sum_helper(ele, depth + 1) return depth * sum
""" - input: is a 'special' array (heavily nested array) - output: return the product sum - notes: - special array is a non-empty array that contains either integers or other 'special' arrays - product sum of a special array is the sum of its elements, where 'special' arrays inside are summed themselves and then multipled by their level of depth - logic: - need two variables the sum and the depth; the depth will be passed on from function call to function call - we iterate through the 'special' array - check if it is a type int - add to the sum - else the element we are currently on is a 'special' array - add to the sum the return value of recursively calling the function passing in the element and the current depth + 1 - return sum """ def product_sum(array): sum = 0 depth = 1 sum += product_sum_helper(array, depth) return sum def product_sum_helper(array, depth): sum = 0 for ele in array: if type(ele) is int: sum += ele else: sum += product_sum_helper(ele, depth + 1) return depth * sum # Time Complexity: O(n), where n is the number of nodes in the element # Space Complexity: O(d), where d is the greatest depth of the 'special' arrays in the array
null
[ 0, 1, 2, 3 ]
2,235
c6170678b523a105312d8ce316853859657d3c94
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('user_details', '0003_auto_20180226_1816')] operations = [migrations.AlterField(model_name='token', name= 'expiry_date', field=models.DateTimeField(default=datetime.datetime (2018, 2, 28, 13, 14, 15, 831612, tzinfo=utc))), migrations. AlterField(model_name='token', name='user_id', field=models. ForeignKey(on_delete=django.db.models.deletion.CASCADE, to= 'user_details.User'))]
from __future__ import unicode_literals import datetime from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [('user_details', '0003_auto_20180226_1816')] operations = [migrations.AlterField(model_name='token', name= 'expiry_date', field=models.DateTimeField(default=datetime.datetime (2018, 2, 28, 13, 14, 15, 831612, tzinfo=utc))), migrations. AlterField(model_name='token', name='user_id', field=models. ForeignKey(on_delete=django.db.models.deletion.CASCADE, to= 'user_details.User'))]
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-02-26 13:14 from __future__ import unicode_literals import datetime from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('user_details', '0003_auto_20180226_1816'), ] operations = [ migrations.AlterField( model_name='token', name='expiry_date', field=models.DateTimeField(default=datetime.datetime(2018, 2, 28, 13, 14, 15, 831612, tzinfo=utc)), ), migrations.AlterField( model_name='token', name='user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='user_details.User'), ), ]
[ 0, 1, 2, 3, 4 ]
2,236
ab38371ee3941e214344497b7e56786908a9b3d1
<mask token>
<mask token> admin.site.register(Sport) admin.site.register(Action)
from django.contrib import admin from .models import Sport from .models import Action admin.site.register(Sport) admin.site.register(Action)
null
null
[ 0, 1, 2 ]
2,237
e67f27eec53901f27ba5a7ee7e2a20bbb1e8f7f9
<mask token> class IBehaviourBase(Client): <mask token> <mask token> <mask token>
<mask token> class IBehaviourBase(Client): <mask token> def __init__(self, email, password, kwargs): """"abstract class being parent of every user implemented behaviour; it handles logging in and tasks on behaviour loader side""" self.kwargs = kwargs Client.__init__(self, email=email, password=password) self.Run() def Run(self): print('behaviour base abstract method invoked error')
<mask token> class IBehaviourBase(Client): BreakFlag = False def __init__(self, email, password, kwargs): """"abstract class being parent of every user implemented behaviour; it handles logging in and tasks on behaviour loader side""" self.kwargs = kwargs Client.__init__(self, email=email, password=password) self.Run() def Run(self): print('behaviour base abstract method invoked error')
from fbchat import Client class IBehaviourBase(Client): BreakFlag = False def __init__(self, email, password, kwargs): """"abstract class being parent of every user implemented behaviour; it handles logging in and tasks on behaviour loader side""" self.kwargs = kwargs Client.__init__(self, email=email, password=password) self.Run() def Run(self): print('behaviour base abstract method invoked error')
from fbchat import Client class IBehaviourBase(Client): BreakFlag = False def __init__(self,email,password, kwargs): """"abstract class being parent of every user implemented behaviour; it handles logging in and tasks on behaviour loader side""" self.kwargs=kwargs Client.__init__(self, email=email, password=password) self.Run() def Run(self): print("behaviour base abstract method invoked error") ## todo add exception here
[ 1, 3, 4, 5, 6 ]
2,238
7026f4549019c25cb736af556fe46fd360fba46f
<mask token>
<mask token> def DIXMAAN(type): def DIXMAAN_(n): name = 'DIXMAAN%c function (CUTE)' % type alpha, beta, gamma, sigma, k1, k2, k3, k4 = table_DIXMAAN[type] m = n // 3 sm = lambda i: alpha * xi(i) ** 2 * (i / n) ** k1 sm2 = lambda i: beta * xi(i) ** 2 * (xi(i + 1) + xi(i + 1) ** 2) * (i / n) ** k2 sm3 = lambda i: gamma * xi(i) ** 2 * xi(i + m) ** 4 * (i / n) ** k3 sm4 = lambda i: sigma * xi(i) * xi(i + 2 * m) * (i / n) ** k4 f_1 = lambda : sum([sm2(i) for i in range(1, n)]) f_2 = lambda : sum([sm3(i) for i in range(1, 2 * m + 1)]) f_3 = lambda : sum([sm4(i) for i in range(1, m + 1)]) f = lambda : 1 + f_1() + f_2() + f_3() x0 = np.ones((n, 1)) * 2.0 return create_test_function(name, n, sm, x0, first=f, range_func= default_range_1) DIXMAAN_.__name__ += type return DIXMAAN_
<mask token> table_DIXMAAN = dict() table_DIXMAAN['A'] = 1, 0, 0.125, 0.125, 0, 0, 0, 0 table_DIXMAAN['B'] = 1, 0.0625, 0.0625, 0.0625, 0, 0, 0, 1 table_DIXMAAN['C'] = 1, 0.125, 0.125, 0.125, 0, 0, 0, 0 table_DIXMAAN['D'] = 1, 0.26, 0.26, 0.26, 0, 0, 0, 0 table_DIXMAAN['E'] = 1, 0, 0.125, 0.125, 1, 0, 0, 1 table_DIXMAAN['F'] = 1, 0.0625, 0.0625, 0.0625, 1, 0, 0, 1 table_DIXMAAN['G'] = 1, 0.125, 0.125, 0.125, 1, 0, 0, 1 table_DIXMAAN['H'] = 1, 0.26, 0.26, 0.26, 1, 0, 0, 1 table_DIXMAAN['I'] = 1, 0, 0.125, 0.125, 2, 0, 0, 2 table_DIXMAAN['J'] = 1, 0.0625, 0.0625, 0.0625, 2, 0, 0, 2 table_DIXMAAN['K'] = 1, 0.125, 0.125, 0.125, 2, 0, 0, 2 table_DIXMAAN['L'] = 1, 0.26, 0.26, 0.26, 2, 0, 0, 2 def DIXMAAN(type): def DIXMAAN_(n): name = 'DIXMAAN%c function (CUTE)' % type alpha, beta, gamma, sigma, k1, k2, k3, k4 = table_DIXMAAN[type] m = n // 3 sm = lambda i: alpha * xi(i) ** 2 * (i / n) ** k1 sm2 = lambda i: beta * xi(i) ** 2 * (xi(i + 1) + xi(i + 1) ** 2) * (i / n) ** k2 sm3 = lambda i: gamma * xi(i) ** 2 * xi(i + m) ** 4 * (i / n) ** k3 sm4 = lambda i: sigma * xi(i) * xi(i + 2 * m) * (i / n) ** k4 f_1 = lambda : sum([sm2(i) for i in range(1, n)]) f_2 = lambda : sum([sm3(i) for i in range(1, 2 * m + 1)]) f_3 = lambda : sum([sm4(i) for i in range(1, m + 1)]) f = lambda : 1 + f_1() + f_2() + f_3() x0 = np.ones((n, 1)) * 2.0 return create_test_function(name, n, sm, x0, first=f, range_func= default_range_1) DIXMAAN_.__name__ += type return DIXMAAN_
from .test_function import * from .support_funcs import * table_DIXMAAN = dict() table_DIXMAAN['A'] = 1, 0, 0.125, 0.125, 0, 0, 0, 0 table_DIXMAAN['B'] = 1, 0.0625, 0.0625, 0.0625, 0, 0, 0, 1 table_DIXMAAN['C'] = 1, 0.125, 0.125, 0.125, 0, 0, 0, 0 table_DIXMAAN['D'] = 1, 0.26, 0.26, 0.26, 0, 0, 0, 0 table_DIXMAAN['E'] = 1, 0, 0.125, 0.125, 1, 0, 0, 1 table_DIXMAAN['F'] = 1, 0.0625, 0.0625, 0.0625, 1, 0, 0, 1 table_DIXMAAN['G'] = 1, 0.125, 0.125, 0.125, 1, 0, 0, 1 table_DIXMAAN['H'] = 1, 0.26, 0.26, 0.26, 1, 0, 0, 1 table_DIXMAAN['I'] = 1, 0, 0.125, 0.125, 2, 0, 0, 2 table_DIXMAAN['J'] = 1, 0.0625, 0.0625, 0.0625, 2, 0, 0, 2 table_DIXMAAN['K'] = 1, 0.125, 0.125, 0.125, 2, 0, 0, 2 table_DIXMAAN['L'] = 1, 0.26, 0.26, 0.26, 2, 0, 0, 2 def DIXMAAN(type): def DIXMAAN_(n): name = 'DIXMAAN%c function (CUTE)' % type alpha, beta, gamma, sigma, k1, k2, k3, k4 = table_DIXMAAN[type] m = n // 3 sm = lambda i: alpha * xi(i) ** 2 * (i / n) ** k1 sm2 = lambda i: beta * xi(i) ** 2 * (xi(i + 1) + xi(i + 1) ** 2) * (i / n) ** k2 sm3 = lambda i: gamma * xi(i) ** 2 * xi(i + m) ** 4 * (i / n) ** k3 sm4 = lambda i: sigma * xi(i) * xi(i + 2 * m) * (i / n) ** k4 f_1 = lambda : sum([sm2(i) for i in range(1, n)]) f_2 = lambda : sum([sm3(i) for i in range(1, 2 * m + 1)]) f_3 = lambda : sum([sm4(i) for i in range(1, m + 1)]) f = lambda : 1 + f_1() + f_2() + f_3() x0 = np.ones((n, 1)) * 2.0 return create_test_function(name, n, sm, x0, first=f, range_func= default_range_1) DIXMAAN_.__name__ += type return DIXMAAN_
from .test_function import * from .support_funcs import * table_DIXMAAN = dict() table_DIXMAAN['A'] = (1, 0, 0.125, 0.125, 0, 0, 0, 0) table_DIXMAAN['B'] = (1, 0.0625, 0.0625, 0.0625, 0, 0, 0, 1) table_DIXMAAN['C'] = (1, 0.125, 0.125, 0.125, 0, 0, 0, 0) table_DIXMAAN['D'] = (1, 0.26, 0.26, 0.26, 0, 0, 0, 0) table_DIXMAAN['E'] = (1, 0, 0.125, 0.125, 1, 0, 0, 1) table_DIXMAAN['F'] = (1, 0.0625, 0.0625, 0.0625, 1, 0, 0, 1) table_DIXMAAN['G'] = (1, 0.125, 0.125, 0.125, 1, 0, 0, 1) table_DIXMAAN['H'] = (1, 0.26, 0.26, 0.26, 1, 0, 0, 1) table_DIXMAAN['I'] = (1, 0, 0.125, 0.125, 2, 0, 0, 2) table_DIXMAAN['J'] = (1, 0.0625, 0.0625, 0.0625, 2, 0, 0, 2) table_DIXMAAN['K'] = (1, 0.125, 0.125, 0.125, 2, 0, 0, 2) table_DIXMAAN['L'] = (1, 0.26, 0.26, 0.26, 2, 0, 0, 2) def DIXMAAN(type): def DIXMAAN_(n): name = "DIXMAAN%c function (CUTE)" % type alpha, beta, gamma, sigma, k1, k2, k3, k4 = table_DIXMAAN[type] m = n // 3 sm = lambda i: alpha * xi(i) ** 2 *(i / n) ** k1 sm2 = lambda i: beta * xi(i) ** 2 * (xi(i+1) + xi(i+1)**2) * (i / n) ** k2 sm3 = lambda i: gamma * xi(i)**2 * xi(i+m) ** 4 * (i / n) ** k3 sm4 = lambda i: sigma * xi(i) * xi(i+2*m) * (i / n) ** k4 f_1 = lambda: sum([sm2(i) for i in range(1, n)]) f_2 = lambda: sum([sm3(i) for i in range(1, 2 * m + 1)]) f_3 = lambda: sum([sm4(i) for i in range(1, m + 1)]) f = lambda: 1 + f_1() + f_2() + f_3() x0 = np.ones((n, 1)) * 2.0 return create_test_function(name, n, sm, x0, first=f, range_func=default_range_1) DIXMAAN_.__name__ += type return DIXMAAN_
[ 0, 1, 2, 3, 4 ]
2,239
e3c9487f3221ca89b9014b2e6470ca9d4dbc925a
<mask token> class section: def __init__(self, i0, j0, subImg, Params): self.Params = Params self.subParams = {} self.subParams['wLen'] = [6.3e-07, 5.3e-07, 4.3e-07] self.subParams['subSize'] = subImg.shape self.subParams['bigSize'] = [np.int(Params['size'] / Params[ 'numFiles'])] * 2 self.S = np.empty([self.subParams['bigSize'][0], self.subParams[ 'bigSize'][1], 3], dtype=np.complex64) self.P = np.empty([self.subParams['subSize'][0], self.subParams[ 'subSize'][1], 3], dtype=np.complex64) self.meanFFT = np.zeros([self.subParams['subSize'][0], self. subParams['subSize'][1], 3], dtype=np.complex64) self.meanNum = 0 self.subParams['fRApprox'] = np.empty([3], dtype=int) self.subParams['coords'] = np.empty([3, 16, 16, 2]) self.subParams['isBF'] = np.empty([3, 16, 16]) for i in range(0, 3): self.S[:, :, i] = self.initS0(subImg[:, :, i], self.subParams[ 'bigSize']) self.subParams['fRApprox'][i] = self.fRad(Params['fResolution'], Params['NA'], self.subParams['wLen'][i]) print(Params['NA'], self.subParams['wLen'][i], Params['mag'], Params['ps'], Params['smallSize']) self.P[:, :, i] = self.initP0(self.subParams['subSize'], self. subParams['fRApprox'][i]) self.subParams['coords'][i, :, :, :], self.subParams['isBF'][i, :, :] = self.initCoords(i0, j0, self.subParams['wLen'][i], self.subParams['fRApprox'][i]) self.bayer = np.empty([Params['divisor'], Params['divisor'], 3]) self.invBayer = np.empty([Params['divisor'], Params['divisor'], 3]) for i in range(3): self.bayer[:, :, i], self.invBayer[:, :, i] = h.genBayer([ Params['divisor'], Params['divisor']], i) def initS0(self, img, size): """ Initialises the FT of the high res image by linear interpolation of a low res image """ I0 = cv.resize(img, (size[1], size[0]), interpolation=cv.INTER_LINEAR) amplitude = np.sqrt(I0) FI0 = fft2(ifftshift(amplitude)) FI0 = fftshift(FI0) S = np.array(FI0, dtype=np.complex64) return S <mask token> <mask token> def initCoords(self, i, j, wLen, Rad): """ Returns 2D array where LED coords relate to fourier centre positions """ segmentPos = [i, j] n = self.Params['numFiles'] w = self.subParams['subSize'][0] c = w / (2 * n) centre = (segmentPos[0] * 2 * c + c - w) * self.Params['ps'][0 ] / self.Params['mag'] self.Params['centre'] = centre coords = np.empty((self.Params['LEDNum'][0], self.Params['LEDNum'][ 1], 2), dtype=np.int32) isBF = np.zeros((self.Params['LEDNum'][0], self.Params['LEDNum'][1] ), dtype=np.int32) numImgs = int(len(self.Params['images']) ** 0.5) for i, img in enumerate(self.Params['images']): LED = meth.getLED(img) LEDPixelPos = self.getLEDPos(LED[0], LED[1], centre, wLen) coords[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1 ] = LEDPixelPos if (LEDPixelPos[0] - w / 2) ** 2 + (LEDPixelPos[1] - w / 2 ) ** 2 < Rad: isBF[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1] = 1 return coords, isBF def getLEDPos(self, nx, ny, centre, wLen): """ Determines the location of the centre of the fourier pattern in pixels """ ax = np.arctan((centre - nx * self.Params['LEDSpace']) / self. Params['distance']) ay = np.arctan((centre - ny * self.Params['LEDSpace']) / self. Params['distance']) dx = ax / (wLen * self.Params['fResolution'][0]) dy = ay / (wLen * self.Params['fResolution'][1]) pos = [int(dx + self.subParams['subSize'][0] / 2), int(dy + self. subParams['subSize'][0] / 2)] return pos class splitImage: def __init__(self, dir, imgName, numSplits, splitSize): self.LEDPos = meth.getLED(imgName) self.subImg = np.empty([numSplits, numSplits], dtype=subImage) for i in range(numSplits): for j in range(numSplits): self.subImg[i, j] = subImage(dir, splitSize, imgName, self. LEDPos, i, j) class subImage: def __init__(self, dir, splitSize, imgName, LEDPos, i, j): img = meth.readImage(dir, imgName) self.image = img[i * splitSize:(i + 1) * splitSize, j * splitSize:( j + 1) * splitSize] self.imgPos = [i, j] self.LEDPos = LEDPos <mask token>
<mask token> class section: def __init__(self, i0, j0, subImg, Params): self.Params = Params self.subParams = {} self.subParams['wLen'] = [6.3e-07, 5.3e-07, 4.3e-07] self.subParams['subSize'] = subImg.shape self.subParams['bigSize'] = [np.int(Params['size'] / Params[ 'numFiles'])] * 2 self.S = np.empty([self.subParams['bigSize'][0], self.subParams[ 'bigSize'][1], 3], dtype=np.complex64) self.P = np.empty([self.subParams['subSize'][0], self.subParams[ 'subSize'][1], 3], dtype=np.complex64) self.meanFFT = np.zeros([self.subParams['subSize'][0], self. subParams['subSize'][1], 3], dtype=np.complex64) self.meanNum = 0 self.subParams['fRApprox'] = np.empty([3], dtype=int) self.subParams['coords'] = np.empty([3, 16, 16, 2]) self.subParams['isBF'] = np.empty([3, 16, 16]) for i in range(0, 3): self.S[:, :, i] = self.initS0(subImg[:, :, i], self.subParams[ 'bigSize']) self.subParams['fRApprox'][i] = self.fRad(Params['fResolution'], Params['NA'], self.subParams['wLen'][i]) print(Params['NA'], self.subParams['wLen'][i], Params['mag'], Params['ps'], Params['smallSize']) self.P[:, :, i] = self.initP0(self.subParams['subSize'], self. subParams['fRApprox'][i]) self.subParams['coords'][i, :, :, :], self.subParams['isBF'][i, :, :] = self.initCoords(i0, j0, self.subParams['wLen'][i], self.subParams['fRApprox'][i]) self.bayer = np.empty([Params['divisor'], Params['divisor'], 3]) self.invBayer = np.empty([Params['divisor'], Params['divisor'], 3]) for i in range(3): self.bayer[:, :, i], self.invBayer[:, :, i] = h.genBayer([ Params['divisor'], Params['divisor']], i) def initS0(self, img, size): """ Initialises the FT of the high res image by linear interpolation of a low res image """ I0 = cv.resize(img, (size[1], size[0]), interpolation=cv.INTER_LINEAR) amplitude = np.sqrt(I0) FI0 = fft2(ifftshift(amplitude)) FI0 = fftshift(FI0) S = np.array(FI0, dtype=np.complex64) return S def initP0(self, size, radius): """ Initialises the pupil function as a real circular step function of value 1 """ return h.circle(size, radius)[:, :, 0] def fRad(self, fDu, NA, wLen): """ Determines the approximate radius in F-space in pixels of the pupil function """ x = 2 * np.pi * NA / (wLen * fDu[0]) y = 2 * np.pi * NA / (wLen * fDu[1]) avr = np.int32(np.average([x, y])) return avr def initCoords(self, i, j, wLen, Rad): """ Returns 2D array where LED coords relate to fourier centre positions """ segmentPos = [i, j] n = self.Params['numFiles'] w = self.subParams['subSize'][0] c = w / (2 * n) centre = (segmentPos[0] * 2 * c + c - w) * self.Params['ps'][0 ] / self.Params['mag'] self.Params['centre'] = centre coords = np.empty((self.Params['LEDNum'][0], self.Params['LEDNum'][ 1], 2), dtype=np.int32) isBF = np.zeros((self.Params['LEDNum'][0], self.Params['LEDNum'][1] ), dtype=np.int32) numImgs = int(len(self.Params['images']) ** 0.5) for i, img in enumerate(self.Params['images']): LED = meth.getLED(img) LEDPixelPos = self.getLEDPos(LED[0], LED[1], centre, wLen) coords[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1 ] = LEDPixelPos if (LEDPixelPos[0] - w / 2) ** 2 + (LEDPixelPos[1] - w / 2 ) ** 2 < Rad: isBF[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1] = 1 return coords, isBF def getLEDPos(self, nx, ny, centre, wLen): """ Determines the location of the centre of the fourier pattern in pixels """ ax = np.arctan((centre - nx * self.Params['LEDSpace']) / self. Params['distance']) ay = np.arctan((centre - ny * self.Params['LEDSpace']) / self. Params['distance']) dx = ax / (wLen * self.Params['fResolution'][0]) dy = ay / (wLen * self.Params['fResolution'][1]) pos = [int(dx + self.subParams['subSize'][0] / 2), int(dy + self. subParams['subSize'][0] / 2)] return pos class splitImage: def __init__(self, dir, imgName, numSplits, splitSize): self.LEDPos = meth.getLED(imgName) self.subImg = np.empty([numSplits, numSplits], dtype=subImage) for i in range(numSplits): for j in range(numSplits): self.subImg[i, j] = subImage(dir, splitSize, imgName, self. LEDPos, i, j) class subImage: def __init__(self, dir, splitSize, imgName, LEDPos, i, j): img = meth.readImage(dir, imgName) self.image = img[i * splitSize:(i + 1) * splitSize, j * splitSize:( j + 1) * splitSize] self.imgPos = [i, j] self.LEDPos = LEDPos <mask token>
<mask token> class fullSys: <mask token> <mask token> def getDivisor(self, img, splitSize): imgSize = img.shape[0] while True: if imgSize % splitSize == 0: divisor = splitSize break splitSize += 1 numFiles = int(imgSize / divisor) return numFiles, divisor <mask token> <mask token> class section: def __init__(self, i0, j0, subImg, Params): self.Params = Params self.subParams = {} self.subParams['wLen'] = [6.3e-07, 5.3e-07, 4.3e-07] self.subParams['subSize'] = subImg.shape self.subParams['bigSize'] = [np.int(Params['size'] / Params[ 'numFiles'])] * 2 self.S = np.empty([self.subParams['bigSize'][0], self.subParams[ 'bigSize'][1], 3], dtype=np.complex64) self.P = np.empty([self.subParams['subSize'][0], self.subParams[ 'subSize'][1], 3], dtype=np.complex64) self.meanFFT = np.zeros([self.subParams['subSize'][0], self. subParams['subSize'][1], 3], dtype=np.complex64) self.meanNum = 0 self.subParams['fRApprox'] = np.empty([3], dtype=int) self.subParams['coords'] = np.empty([3, 16, 16, 2]) self.subParams['isBF'] = np.empty([3, 16, 16]) for i in range(0, 3): self.S[:, :, i] = self.initS0(subImg[:, :, i], self.subParams[ 'bigSize']) self.subParams['fRApprox'][i] = self.fRad(Params['fResolution'], Params['NA'], self.subParams['wLen'][i]) print(Params['NA'], self.subParams['wLen'][i], Params['mag'], Params['ps'], Params['smallSize']) self.P[:, :, i] = self.initP0(self.subParams['subSize'], self. subParams['fRApprox'][i]) self.subParams['coords'][i, :, :, :], self.subParams['isBF'][i, :, :] = self.initCoords(i0, j0, self.subParams['wLen'][i], self.subParams['fRApprox'][i]) self.bayer = np.empty([Params['divisor'], Params['divisor'], 3]) self.invBayer = np.empty([Params['divisor'], Params['divisor'], 3]) for i in range(3): self.bayer[:, :, i], self.invBayer[:, :, i] = h.genBayer([ Params['divisor'], Params['divisor']], i) def initS0(self, img, size): """ Initialises the FT of the high res image by linear interpolation of a low res image """ I0 = cv.resize(img, (size[1], size[0]), interpolation=cv.INTER_LINEAR) amplitude = np.sqrt(I0) FI0 = fft2(ifftshift(amplitude)) FI0 = fftshift(FI0) S = np.array(FI0, dtype=np.complex64) return S def initP0(self, size, radius): """ Initialises the pupil function as a real circular step function of value 1 """ return h.circle(size, radius)[:, :, 0] def fRad(self, fDu, NA, wLen): """ Determines the approximate radius in F-space in pixels of the pupil function """ x = 2 * np.pi * NA / (wLen * fDu[0]) y = 2 * np.pi * NA / (wLen * fDu[1]) avr = np.int32(np.average([x, y])) return avr def initCoords(self, i, j, wLen, Rad): """ Returns 2D array where LED coords relate to fourier centre positions """ segmentPos = [i, j] n = self.Params['numFiles'] w = self.subParams['subSize'][0] c = w / (2 * n) centre = (segmentPos[0] * 2 * c + c - w) * self.Params['ps'][0 ] / self.Params['mag'] self.Params['centre'] = centre coords = np.empty((self.Params['LEDNum'][0], self.Params['LEDNum'][ 1], 2), dtype=np.int32) isBF = np.zeros((self.Params['LEDNum'][0], self.Params['LEDNum'][1] ), dtype=np.int32) numImgs = int(len(self.Params['images']) ** 0.5) for i, img in enumerate(self.Params['images']): LED = meth.getLED(img) LEDPixelPos = self.getLEDPos(LED[0], LED[1], centre, wLen) coords[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1 ] = LEDPixelPos if (LEDPixelPos[0] - w / 2) ** 2 + (LEDPixelPos[1] - w / 2 ) ** 2 < Rad: isBF[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1] = 1 return coords, isBF def getLEDPos(self, nx, ny, centre, wLen): """ Determines the location of the centre of the fourier pattern in pixels """ ax = np.arctan((centre - nx * self.Params['LEDSpace']) / self. Params['distance']) ay = np.arctan((centre - ny * self.Params['LEDSpace']) / self. Params['distance']) dx = ax / (wLen * self.Params['fResolution'][0]) dy = ay / (wLen * self.Params['fResolution'][1]) pos = [int(dx + self.subParams['subSize'][0] / 2), int(dy + self. subParams['subSize'][0] / 2)] return pos class splitImage: def __init__(self, dir, imgName, numSplits, splitSize): self.LEDPos = meth.getLED(imgName) self.subImg = np.empty([numSplits, numSplits], dtype=subImage) for i in range(numSplits): for j in range(numSplits): self.subImg[i, j] = subImage(dir, splitSize, imgName, self. LEDPos, i, j) class subImage: def __init__(self, dir, splitSize, imgName, LEDPos, i, j): img = meth.readImage(dir, imgName) self.image = img[i * splitSize:(i + 1) * splitSize, j * splitSize:( j + 1) * splitSize] self.imgPos = [i, j] self.LEDPos = LEDPos <mask token>
<mask token> class fullSys: def __init__(self, dir, file, size, line): csv_reader = pandas.read_csv(file, index_col='Objective') self.Params = {} self.Params['mag'] = csv_reader['Magnification'][line] self.Params['NA'] = csv_reader['NA'][line] self.Params['ps'] = [csv_reader['Pixel Size x'][line], csv_reader[ 'Pixel Size y'][line]] self.Params['distance'] = csv_reader['Screen Distance'][line] self.Params['LEDSpace'] = csv_reader['LED Spacing'][line] self.Params['LEDNum'] = [csv_reader['Num LED x'][line], csv_reader[ 'Num LED x'][line]] self.Params['dir'] = dir self.Params['images'] = os.listdir(dir) self.Params['numImgs'] = len(self.Params['images']) self.Params['smallSize'] = meth.readImage(dir, self.Params['images' ][0], colour=1, getsize=True) self.Params['fResolution'] = self.fRes(self.Params['mag'], self. Params['smallSize'], self.Params['ps']) print('fullSys') splitSize, self.Params['lc'] = self.getSS() img = meth.readImage(self.Params['dir'], self.Params['images'][0]) print('fullSys2') numFiles, divisor = self.getDivisor(img, splitSize) print('fullSys2') self.Params['numFiles'] = numFiles self.Params['divisor'] = divisor self.Params['size'] = self.getSize(size, numFiles) self.subObjs = np.empty([numFiles, numFiles], dtype=section) print('fullSys1') for i in range(numFiles): for j in range(numFiles): subImg = img[i * divisor:(i + 1) * divisor, j * divisor:(j + 1) * divisor] self.subObjs[i, j] = section(i, j, subImg, self.Params) h.progbar(i, numFiles, 'Initializing') def getSS(self): """ Determines the required subsection size based on Cittert Zernike theorem """ rho = 0.0003 lc = 0.61 * R * 530 / rho size = lc * slef.Params['mag'] / self.Params['ps'] return size, lc def getDivisor(self, img, splitSize): imgSize = img.shape[0] while True: if imgSize % splitSize == 0: divisor = splitSize break splitSize += 1 numFiles = int(imgSize / divisor) return numFiles, divisor <mask token> <mask token> class section: def __init__(self, i0, j0, subImg, Params): self.Params = Params self.subParams = {} self.subParams['wLen'] = [6.3e-07, 5.3e-07, 4.3e-07] self.subParams['subSize'] = subImg.shape self.subParams['bigSize'] = [np.int(Params['size'] / Params[ 'numFiles'])] * 2 self.S = np.empty([self.subParams['bigSize'][0], self.subParams[ 'bigSize'][1], 3], dtype=np.complex64) self.P = np.empty([self.subParams['subSize'][0], self.subParams[ 'subSize'][1], 3], dtype=np.complex64) self.meanFFT = np.zeros([self.subParams['subSize'][0], self. subParams['subSize'][1], 3], dtype=np.complex64) self.meanNum = 0 self.subParams['fRApprox'] = np.empty([3], dtype=int) self.subParams['coords'] = np.empty([3, 16, 16, 2]) self.subParams['isBF'] = np.empty([3, 16, 16]) for i in range(0, 3): self.S[:, :, i] = self.initS0(subImg[:, :, i], self.subParams[ 'bigSize']) self.subParams['fRApprox'][i] = self.fRad(Params['fResolution'], Params['NA'], self.subParams['wLen'][i]) print(Params['NA'], self.subParams['wLen'][i], Params['mag'], Params['ps'], Params['smallSize']) self.P[:, :, i] = self.initP0(self.subParams['subSize'], self. subParams['fRApprox'][i]) self.subParams['coords'][i, :, :, :], self.subParams['isBF'][i, :, :] = self.initCoords(i0, j0, self.subParams['wLen'][i], self.subParams['fRApprox'][i]) self.bayer = np.empty([Params['divisor'], Params['divisor'], 3]) self.invBayer = np.empty([Params['divisor'], Params['divisor'], 3]) for i in range(3): self.bayer[:, :, i], self.invBayer[:, :, i] = h.genBayer([ Params['divisor'], Params['divisor']], i) def initS0(self, img, size): """ Initialises the FT of the high res image by linear interpolation of a low res image """ I0 = cv.resize(img, (size[1], size[0]), interpolation=cv.INTER_LINEAR) amplitude = np.sqrt(I0) FI0 = fft2(ifftshift(amplitude)) FI0 = fftshift(FI0) S = np.array(FI0, dtype=np.complex64) return S def initP0(self, size, radius): """ Initialises the pupil function as a real circular step function of value 1 """ return h.circle(size, radius)[:, :, 0] def fRad(self, fDu, NA, wLen): """ Determines the approximate radius in F-space in pixels of the pupil function """ x = 2 * np.pi * NA / (wLen * fDu[0]) y = 2 * np.pi * NA / (wLen * fDu[1]) avr = np.int32(np.average([x, y])) return avr def initCoords(self, i, j, wLen, Rad): """ Returns 2D array where LED coords relate to fourier centre positions """ segmentPos = [i, j] n = self.Params['numFiles'] w = self.subParams['subSize'][0] c = w / (2 * n) centre = (segmentPos[0] * 2 * c + c - w) * self.Params['ps'][0 ] / self.Params['mag'] self.Params['centre'] = centre coords = np.empty((self.Params['LEDNum'][0], self.Params['LEDNum'][ 1], 2), dtype=np.int32) isBF = np.zeros((self.Params['LEDNum'][0], self.Params['LEDNum'][1] ), dtype=np.int32) numImgs = int(len(self.Params['images']) ** 0.5) for i, img in enumerate(self.Params['images']): LED = meth.getLED(img) LEDPixelPos = self.getLEDPos(LED[0], LED[1], centre, wLen) coords[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1 ] = LEDPixelPos if (LEDPixelPos[0] - w / 2) ** 2 + (LEDPixelPos[1] - w / 2 ) ** 2 < Rad: isBF[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1] = 1 return coords, isBF def getLEDPos(self, nx, ny, centre, wLen): """ Determines the location of the centre of the fourier pattern in pixels """ ax = np.arctan((centre - nx * self.Params['LEDSpace']) / self. Params['distance']) ay = np.arctan((centre - ny * self.Params['LEDSpace']) / self. Params['distance']) dx = ax / (wLen * self.Params['fResolution'][0]) dy = ay / (wLen * self.Params['fResolution'][1]) pos = [int(dx + self.subParams['subSize'][0] / 2), int(dy + self. subParams['subSize'][0] / 2)] return pos class splitImage: def __init__(self, dir, imgName, numSplits, splitSize): self.LEDPos = meth.getLED(imgName) self.subImg = np.empty([numSplits, numSplits], dtype=subImage) for i in range(numSplits): for j in range(numSplits): self.subImg[i, j] = subImage(dir, splitSize, imgName, self. LEDPos, i, j) class subImage: def __init__(self, dir, splitSize, imgName, LEDPos, i, j): img = meth.readImage(dir, imgName) self.image = img[i * splitSize:(i + 1) * splitSize, j * splitSize:( j + 1) * splitSize] self.imgPos = [i, j] self.LEDPos = LEDPos <mask token>
import numpy as np import cv2 as cv import methods as meth from numpy.fft import fft2, fftshift, ifft2, ifftshift import pandas import os import noGPU as h import matplotlib.pyplot as plt class fullSys(): def __init__(self, dir, file, size, line): csv_reader = pandas.read_csv(file, index_col='Objective') self.Params = {} self.Params['mag'] = csv_reader['Magnification'][line] self.Params['NA'] = csv_reader['NA'][line] self.Params['ps'] = [csv_reader['Pixel Size x'][line], csv_reader['Pixel Size y'][line]] self.Params['distance'] = csv_reader['Screen Distance'][line] self.Params['LEDSpace'] = csv_reader['LED Spacing'][line] self.Params['LEDNum'] = [csv_reader['Num LED x'][line], csv_reader['Num LED x'][line]] self.Params['dir'] = dir self.Params['images'] = os.listdir(dir) self.Params['numImgs'] = len(self.Params['images']) self.Params['smallSize'] = meth.readImage(dir, self.Params['images'][0], colour=1, getsize=True) self.Params['fResolution'] = self.fRes(self.Params['mag'], self.Params['smallSize'], self.Params['ps']) print("fullSys") ## Instantiate sub Objects ## splitSize, self.Params['lc'] = self.getSS() img = meth.readImage(self.Params['dir'], self.Params['images'][0]) print("fullSys2") numFiles, divisor = self.getDivisor(img, splitSize) print("fullSys2") self.Params['numFiles'] = numFiles self.Params['divisor'] = divisor self.Params['size'] = self.getSize(size, numFiles) self.subObjs = np.empty([numFiles, numFiles], dtype=section) print("fullSys1") for i in range(numFiles): for j in range(numFiles): subImg = img[i * divisor:(i + 1) * divisor, j * divisor:(j + 1) * divisor] self.subObjs[i, j] = section(i, j, subImg, self.Params) h.progbar(i, numFiles, 'Initializing') def getSS(self): """ Determines the required subsection size based on Cittert Zernike theorem """ rho = 300e-6 # LED size lc = 0.61*R*530/rho size = lc*slef.Params['mag'] / self.Params['ps'] return size, lc def getDivisor(self, img, splitSize): imgSize = img.shape[0] while True: if imgSize % splitSize == 0: divisor = splitSize break splitSize += 1 numFiles = int(imgSize / divisor) return numFiles, divisor def getSize(self, size, numSplits): while True: if size[0] % numSplits == 0: break size[0] += 1 return size[0] def fRes(self, mag, size, ps): """ Determines the change in spatial frequency across one pixel in F-space """ x = 2 * np.pi * mag / (size[0] * ps[0]) y = 2 * np.pi * mag / (size[1] * ps[1]) return [x, y] class section(): def __init__(self, i0, j0, subImg, Params): self.Params = Params self.subParams = {} self.subParams['wLen'] = [630e-9, 530e-9, 430e-9] self.subParams['subSize'] = subImg.shape self.subParams['bigSize'] = [np.int(Params['size'] / Params['numFiles'])] * 2 self.S = np.empty([self.subParams['bigSize'][0], self.subParams['bigSize'][1], 3], dtype=np.complex64) self.P = np.empty([self.subParams['subSize'][0], self.subParams['subSize'][1], 3], dtype=np.complex64) self.meanFFT = np.zeros([self.subParams['subSize'][0], self.subParams['subSize'][1], 3], dtype=np.complex64) self.meanNum = 0 self.subParams['fRApprox'] = np.empty([3], dtype=int) self.subParams['coords'] = np.empty([3, 16, 16, 2]) self.subParams['isBF'] = np.empty([3, 16, 16]) for i in range(0, 3): self.S[:, :, i] = self.initS0(subImg[:, :, i], self.subParams['bigSize']) self.subParams['fRApprox'][i] = self.fRad(Params['fResolution'], Params['NA'], self.subParams['wLen'][i]) print(Params['NA'], self.subParams['wLen'][i], Params['mag'], Params['ps'], Params['smallSize']) self.P[:, :, i] = self.initP0(self.subParams['subSize'], self.subParams['fRApprox'][i]) self.subParams['coords'][i, :, :, :], self.subParams['isBF'][i, :, :] =\ self.initCoords(i0, j0, self.subParams['wLen'][i], self.subParams['fRApprox'][i]) self.bayer = np.empty([Params['divisor'], Params['divisor'], 3]) self.invBayer = np.empty([Params['divisor'], Params['divisor'], 3]) for i in range(3): self.bayer[:, :, i], self.invBayer[:, :, i] = h.genBayer([Params['divisor'], Params['divisor']], i) def initS0(self, img, size): """ Initialises the FT of the high res image by linear interpolation of a low res image """ I0 = cv.resize(img, (size[1], size[0]), interpolation=cv.INTER_LINEAR) # Bilinear interpolated upsampled image amplitude = np.sqrt(I0) FI0 = fft2(ifftshift(amplitude)) FI0 = fftshift(FI0) # FI0.shape[0] S = np.array(FI0, dtype=np.complex64) return S def initP0(self, size, radius): """ Initialises the pupil function as a real circular step function of value 1 """ return h.circle(size, radius)[:, :, 0] def fRad(self, fDu, NA, wLen): """ Determines the approximate radius in F-space in pixels of the pupil function """ x = 2 * np.pi * NA / (wLen * fDu[0]) y = 2 * np.pi * NA / (wLen * fDu[1]) avr = np.int32(np.average([x, y])) return avr def initCoords(self, i, j, wLen, Rad): """ Returns 2D array where LED coords relate to fourier centre positions """ segmentPos = [i, j] n = self.Params['numFiles'] w = self.subParams['subSize'][0] c = w / (2 * n) centre = (segmentPos[0] * 2 * c + c - w) * self.Params['ps'][0]/self.Params['mag'] self.Params['centre'] = centre coords = np.empty((self.Params['LEDNum'][0], self.Params['LEDNum'][1], 2), dtype=np.int32) isBF = np.zeros((self.Params['LEDNum'][0], self.Params['LEDNum'][1]), dtype=np.int32) numImgs = int(len(self.Params['images']) ** 0.5) for i, img in enumerate(self.Params['images']): LED = meth.getLED(img) LEDPixelPos = self.getLEDPos(LED[0], LED[1], centre, wLen) #print("LED:", LED, "LEDPixelPos:", LEDPixelPos) #print("LEDPos:", [LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1]) coords[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1] = LEDPixelPos if ((LEDPixelPos[0]-w/2)**2 + (LEDPixelPos[1]-w/2)**2 < Rad): isBF[LED[0] + int(numImgs / 2) - 1, LED[1] + int(numImgs / 2) - 1] = 1 return coords, isBF def getLEDPos(self, nx, ny, centre, wLen): """ Determines the location of the centre of the fourier pattern in pixels """ ax = np.arctan((centre - nx * self.Params['LEDSpace']) / self.Params['distance']) # Angle to x axis ay = np.arctan((centre - ny * self.Params['LEDSpace']) / self.Params['distance']) # Angle to y axis dx = ax / (wLen * self.Params['fResolution'][0]) dy = ay / (wLen * self.Params['fResolution'][1]) pos = [int(dx + self.subParams['subSize'][0] / 2), int(dy + self.subParams['subSize'][0] / 2)] return pos class splitImage(): def __init__(self, dir, imgName, numSplits, splitSize): self.LEDPos = meth.getLED(imgName) self.subImg = np.empty([numSplits, numSplits], dtype=subImage) for i in range(numSplits): for j in range(numSplits): self.subImg[i, j] = subImage(dir, splitSize, imgName, self.LEDPos, i, j) class subImage(): def __init__(self, dir, splitSize, imgName, LEDPos, i, j): img = meth.readImage(dir, imgName) self.image = img[i * splitSize:(i + 1) * splitSize, j * splitSize:(j + 1) * splitSize] self.imgPos = [i, j] self.LEDPos = LEDPos ######################################################################################################################## ''' class preProcess(objective): def __init__(self, dir, file, size, line, colour=1): """ Slices images into sections """ super().__init__(dir, file, size, line, colour=1) numFiles, devisor = self.getDevisor(150) self.genFiles(numFiles) self.split(devisor, numFiles) def genFiles(self, numFiles): path = os.path.join(os.getcwd(), 'temp') if os.path.isdir(path): shutil.rmtree(path) time.sleep(0.01) os.mkdir(path) for i in range(numFiles): for j in range(numFiles): folder = '%s_%s' % (str(i), str(j)) path1 = os.path.join(path, folder) os.mkdir(path1) def getDevisor(self, splitSize): imgName = self.images[0] img = self.readImage(self.dir, imgName) imgSize = img.shape[0] while True: if imgSize % splitSize == 0: devisor = splitSize break splitSize += 1 numFiles = int(imgSize / devisor) return numFiles, devisor def split(self, devisor, numFiles): path0 = os.path.join(os.getcwd(), 'temp') for i0, file in enumerate(self.images): LED = self.getLED(file) img = self.readImage(self.dir, file) for i in range(numFiles): for j in range(numFiles): folder = '%s_%s' % (str(i), str(j)) path1 = os.path.join(path0, folder) file = 'img_%s_%s_.jpg' % (str(LED[0]), str(LED[1])) path = os.path.join(path1, file) subImg = img[i * devisor:(i + 1) * devisor, j * devisor:(j + 1) * devisor] cv.imwrite(path, subImg) h.progbar(i0 * numFiles ** 2 + i * numFiles + j, len(self.images) * numFiles ** 2, 'Slicing Images') def initCoords(self, dir): """ Returns 2D array where LED coords relate to fourier centre positions """ dirName = os.path.basename(dir) segmentPos = self.getSegment(dirName) N = len(os.listdir(dir)) n = np.sqrt(N) w = self.smallSize[0] c = w / (2 * n) centre = (segmentPos[0] * 2 * c + c - w) * self.ps[0]/self.mag coords = np.empty((self.LEDNum[0], self.LEDNum[1], 2), dtype=np.int32) for i, img in enumerate(self.images): LED = self.getLED(img) LEDPixelPos = self.getLEDPos(LED[0], LED[1], centre) coords[LED[0], LED[1]] = LEDPixelPos return coords '''
[ 9, 11, 13, 15, 19 ]
2,240
5c7c90717f2e98c26675fec6390b4ea9797d6a4e
class TrieNode: def __init__(self): self.children = [None for i in range(26)] self.isEndOfWord = 0 class Trie: def __init__(self): self.root = self.getNode() def getNode(self): return TrieNode() def insert(self, key): root = self.root length = len(key) for level in range(length): index = ord(key[level])-ord('a') if root.children[index]==None: root.children[index] = self.getNode() root = root.children[index] root.isEndOfWord = 1 def search(self, key): root = self.root for level,c in enumerate(key): if root.children[ord(c)-ord('a')]==None: return False root = root.children[ord(c)-ord('a')] return root!=None and root.isEndOfWord==1 keys = ["the","a","there","anaswe","any", "by","their"] output = ["Not present in trie", "Present in tire"] # Trie object t = Trie() # Construct trie for key in keys: print 'inserting key, ', key t.insert(key) print("{} ---- {}".format("the",output[t.search("the")])) print("{} ---- {}".format("these",output[t.search("these")]))
null
null
null
null
[ 0 ]
2,241
e08fddefabf1b92aa97b939e05bb31d888df4e6a
<mask token> def get_comports_list(): ports = list(lp.comports(include_links=False)) for p in ports: print(p.device) return ports def read_while_LF(com, timeout_ms=500): read_data = '' delay_ms = 10 attempts = int(timeout_ms / delay_ms) for i in range(attempts): byte = com.read(size=1).decode('utf-8') time.sleep(0.01) read_data += byte if byte == '\n': break return read_data def read_write_gst(com, instruction): write_data = instruction.encode('utf-8') com.write(write_data) recieved = [] while 1: read_data = read_while_LF(com) if read_data == '': break recieved.append(read_data) return recieved <mask token>
<mask token> def get_comports_list(): ports = list(lp.comports(include_links=False)) for p in ports: print(p.device) return ports def read_while_LF(com, timeout_ms=500): read_data = '' delay_ms = 10 attempts = int(timeout_ms / delay_ms) for i in range(attempts): byte = com.read(size=1).decode('utf-8') time.sleep(0.01) read_data += byte if byte == '\n': break return read_data def read_write_gst(com, instruction): write_data = instruction.encode('utf-8') com.write(write_data) recieved = [] while 1: read_data = read_while_LF(com) if read_data == '': break recieved.append(read_data) return recieved <mask token> print(s) com.close()
<mask token> def get_comports_list(): ports = list(lp.comports(include_links=False)) for p in ports: print(p.device) return ports def read_while_LF(com, timeout_ms=500): read_data = '' delay_ms = 10 attempts = int(timeout_ms / delay_ms) for i in range(attempts): byte = com.read(size=1).decode('utf-8') time.sleep(0.01) read_data += byte if byte == '\n': break return read_data def read_write_gst(com, instruction): write_data = instruction.encode('utf-8') com.write(write_data) recieved = [] while 1: read_data = read_while_LF(com) if read_data == '': break recieved.append(read_data) return recieved com = serial.Serial('COM3', baudrate=115200, timeout=0.02) s = read_write_gst(com, 'fil_test:start\r') print(s) com.close()
<mask token> import serial import time import serial.tools.list_ports as lp def get_comports_list(): ports = list(lp.comports(include_links=False)) for p in ports: print(p.device) return ports def read_while_LF(com, timeout_ms=500): read_data = '' delay_ms = 10 attempts = int(timeout_ms / delay_ms) for i in range(attempts): byte = com.read(size=1).decode('utf-8') time.sleep(0.01) read_data += byte if byte == '\n': break return read_data def read_write_gst(com, instruction): write_data = instruction.encode('utf-8') com.write(write_data) recieved = [] while 1: read_data = read_while_LF(com) if read_data == '': break recieved.append(read_data) return recieved com = serial.Serial('COM3', baudrate=115200, timeout=0.02) s = read_write_gst(com, 'fil_test:start\r') print(s) com.close()
# -*- coding: utf-8 -*- """ Created on Sun Apr 19 12:28:39 2020 @author: Ксения """ import serial import time import serial.tools.list_ports as lp def get_comports_list(): ports=list(lp.comports(include_links=False)) for p in ports: print(p.device) return ports def read_while_LF(com, timeout_ms=500): read_data ="" delay_ms=10 attempts=int(timeout_ms/delay_ms) for i in range(attempts): byte=com.read(size = 1).decode('utf-8') time.sleep(0.01) read_data+=byte if byte == '\n': break return read_data def read_write_gst(com, instruction): write_data=instruction.encode('utf-8') com.write(write_data) recieved = [] while(1): read_data=read_while_LF(com) if(read_data == ""): break recieved.append(read_data) return recieved com = serial.Serial('COM3', baudrate=115200, timeout=0.02) s=read_write_gst(com, "fil_test:start\r") print(s) com.close()
[ 3, 4, 5, 6, 7 ]
2,242
e7239b4bc3db9bd427b9be888621f66e81b5edeb
<mask token>
<mask token> VERSION = 0, 2, 14 __version__ = '.'.join(map(str, VERSION)) __all__ = ['AzFileClient', 'AzFileSystem', 'BlobPathDecoder', 'TableStorage', 'TableStorageWrapper', 'export_decorator']
from azfs.az_file_client import AzFileClient, export_decorator from azfs.az_file_system import AzFileSystem from azfs.utils import BlobPathDecoder from .table_storage import TableStorage, TableStorageWrapper VERSION = 0, 2, 14 __version__ = '.'.join(map(str, VERSION)) __all__ = ['AzFileClient', 'AzFileSystem', 'BlobPathDecoder', 'TableStorage', 'TableStorageWrapper', 'export_decorator']
from azfs.az_file_client import ( AzFileClient, export_decorator ) from azfs.az_file_system import AzFileSystem from azfs.utils import BlobPathDecoder from .table_storage import ( TableStorage, TableStorageWrapper ) # comparable tuple VERSION = (0, 2, 14) # generate __version__ via VERSION tuple __version__ = ".".join(map(str, VERSION)) __all__ = [ "AzFileClient", "AzFileSystem", "BlobPathDecoder", "TableStorage", "TableStorageWrapper", "export_decorator" ]
null
[ 0, 1, 2, 3 ]
2,243
1ab69874a89311b22220dda541dfe03462a98a55
<mask token> def unescape(text): return text.replace('&#39;', "'").replace('&lt;', '<').replace('&gt;', '>') <mask token>
<mask token> def unescape(text): return text.replace('&#39;', "'").replace('&lt;', '<').replace('&gt;', '>') @client.event async def on_ready(): print(f'{client.user} has connected to Discord!') @client.event async def on_message(message): if message.content.startswith(translate_command): lang = message.content[len(translate_command):message.content.find(' ') ] ttt = message.content[len(translate_command) + len(lang) + 1:] s = ttt.find(id_start) while s != -1: e = ttt.find('>', s) ttt = ttt[:s] + client.get_user(int(ttt[s + len(id_start):e]) ).name + ttt[e:] s = ttt.find(id_start) body = {'q': ttt, 'langpair': lang + '|en' if len(lang) == 2 else lang[:2] + '|' + lang[2:], 'de': CONTACT_EMAIL} r = requests.get('https://api.mymemory.translated.net/get', params=body ) message_sent = await message.channel.send(unescape(r.json()[ 'responseData']['translatedText'])) def check(reaction, user): return user == message.author and str(reaction.emoji) == '❌' try: reaction, user = await client.wait_for('reaction_add', timeout= 600.0, check=check) except asyncio.TimeoutError: pass else: await message_sent.delete() client.run(TOKEN)
<mask token> TOKEN = 'TOKEN' CONTACT_EMAIL = None translate_command = '$t' id_start = '<@!' client = discord.Client() def unescape(text): return text.replace('&#39;', "'").replace('&lt;', '<').replace('&gt;', '>') @client.event async def on_ready(): print(f'{client.user} has connected to Discord!') @client.event async def on_message(message): if message.content.startswith(translate_command): lang = message.content[len(translate_command):message.content.find(' ') ] ttt = message.content[len(translate_command) + len(lang) + 1:] s = ttt.find(id_start) while s != -1: e = ttt.find('>', s) ttt = ttt[:s] + client.get_user(int(ttt[s + len(id_start):e]) ).name + ttt[e:] s = ttt.find(id_start) body = {'q': ttt, 'langpair': lang + '|en' if len(lang) == 2 else lang[:2] + '|' + lang[2:], 'de': CONTACT_EMAIL} r = requests.get('https://api.mymemory.translated.net/get', params=body ) message_sent = await message.channel.send(unescape(r.json()[ 'responseData']['translatedText'])) def check(reaction, user): return user == message.author and str(reaction.emoji) == '❌' try: reaction, user = await client.wait_for('reaction_add', timeout= 600.0, check=check) except asyncio.TimeoutError: pass else: await message_sent.delete() client.run(TOKEN)
import discord, requests from random import choice TOKEN = 'TOKEN' CONTACT_EMAIL = None translate_command = '$t' id_start = '<@!' client = discord.Client() def unescape(text): return text.replace('&#39;', "'").replace('&lt;', '<').replace('&gt;', '>') @client.event async def on_ready(): print(f'{client.user} has connected to Discord!') @client.event async def on_message(message): if message.content.startswith(translate_command): lang = message.content[len(translate_command):message.content.find(' ') ] ttt = message.content[len(translate_command) + len(lang) + 1:] s = ttt.find(id_start) while s != -1: e = ttt.find('>', s) ttt = ttt[:s] + client.get_user(int(ttt[s + len(id_start):e]) ).name + ttt[e:] s = ttt.find(id_start) body = {'q': ttt, 'langpair': lang + '|en' if len(lang) == 2 else lang[:2] + '|' + lang[2:], 'de': CONTACT_EMAIL} r = requests.get('https://api.mymemory.translated.net/get', params=body ) message_sent = await message.channel.send(unescape(r.json()[ 'responseData']['translatedText'])) def check(reaction, user): return user == message.author and str(reaction.emoji) == '❌' try: reaction, user = await client.wait_for('reaction_add', timeout= 600.0, check=check) except asyncio.TimeoutError: pass else: await message_sent.delete() client.run(TOKEN)
import discord, requests from random import choice TOKEN = 'TOKEN' CONTACT_EMAIL = None #'Contact email for getting 10000 words/day instead of 1000' translate_command = '$t' id_start = '<@!' client = discord.Client() def unescape(text): return text.replace('&#39;', '\'').replace('&lt;','<').replace('&gt;', '>') # to improve @client.event async def on_ready(): print(f'{client.user} has connected to Discord!') @client.event async def on_message(message): if message.content.startswith(translate_command): lang = message.content[len(translate_command):message.content.find(' ')] ttt = message.content[len(translate_command)+len(lang)+1:] s = ttt.find(id_start) while s != -1: e = ttt.find('>',s) ttt = ttt[:s]+client.get_user(int(ttt[s+len(id_start):e])).name+ttt[e:] s = ttt.find(id_start) body = { 'q': ttt, 'langpair': lang+'|en' if len(lang) == 2 else lang[:2]+'|'+lang[2:], 'de': CONTACT_EMAIL } r = requests.get('https://api.mymemory.translated.net/get', params=body) message_sent = await message.channel.send(unescape(r.json()['responseData']['translatedText'])) def check(reaction, user): return user == message.author and str(reaction.emoji) == '❌' try: reaction, user = await client.wait_for('reaction_add', timeout=600.0, check=check) except asyncio.TimeoutError: pass else: await message_sent.delete() client.run(TOKEN)
[ 1, 2, 3, 4, 5 ]
2,244
0188355f84054143bd4ff9da63f1128e9eb5b23b
<mask token> class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: res = self.db.get_single_user(id) return make_response(jsonify({'Response': res}), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) else: self.db.delete_user(id) return {'Message': 'User Deleted'} def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.update_user(id, resp) return make_response(jsonify({'Message': 'User Details Updated'}), 201)
<mask token> class UsersView(Resource): <mask token> def post(self): data = request.get_json() resp = Validations().validate_user_inputs(data) username = data['username'] user = self.db.register_users(username) if len(user) != 0: return make_response(jsonify({'Message': 'Username already exists'}), 202) elif resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.save(resp) return make_response(jsonify({'Message': 'User Registered. Please login'}), 201) <mask token> class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: res = self.db.get_single_user(id) return make_response(jsonify({'Response': res}), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) else: self.db.delete_user(id) return {'Message': 'User Deleted'} def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.update_user(id, resp) return make_response(jsonify({'Message': 'User Details Updated'}), 201)
<mask token> class UsersView(Resource): def __init__(self): self.db = UsersModel() def post(self): data = request.get_json() resp = Validations().validate_user_inputs(data) username = data['username'] user = self.db.register_users(username) if len(user) != 0: return make_response(jsonify({'Message': 'Username already exists'}), 202) elif resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.save(resp) return make_response(jsonify({'Message': 'User Registered. Please login'}), 201) <mask token> class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: res = self.db.get_single_user(id) return make_response(jsonify({'Response': res}), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) else: self.db.delete_user(id) return {'Message': 'User Deleted'} def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.update_user(id, resp) return make_response(jsonify({'Message': 'User Details Updated'}), 201)
<mask token> class UsersView(Resource): def __init__(self): self.db = UsersModel() def post(self): data = request.get_json() resp = Validations().validate_user_inputs(data) username = data['username'] user = self.db.register_users(username) if len(user) != 0: return make_response(jsonify({'Message': 'Username already exists'}), 202) elif resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.save(resp) return make_response(jsonify({'Message': 'User Registered. Please login'}), 201) def get(self): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: users = self.db.get_users() return make_response(jsonify({'Users': users, 'Message': 'All Users'}), 200) class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: res = self.db.get_single_user(id) return make_response(jsonify({'Response': res}), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) else: self.db.delete_user(id) return {'Message': 'User Deleted'} def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.update_user(id, resp) return make_response(jsonify({'Message': 'User Details Updated'}), 201)
from flask_restful import Resource from flask import jsonify, make_response, request from ..models.Users import UsersModel from ..models.Incidents import IncidentsModel from app.api.validations.validations import Validations class UsersView(Resource): def __init__(self): self.db = UsersModel() def post(self): data = request.get_json() resp = Validations().validate_user_inputs(data) username = data['username'] user = self.db.register_users(username) if len(user) != 0: return make_response(jsonify({ 'Message': 'Username already exists' }), 202) elif resp == str(resp): return make_response(jsonify({ "Message": resp }), 201) else: self.db.save(resp) return make_response(jsonify({ "Message": "User Registered. Please login" }), 201) def get(self): access_token = Validations().get_access_token() if not access_token: return jsonify({"Message": "Token needed. Please login"}) else: users = self.db.get_users() return make_response(jsonify({ "Users": users, "Message": "All Users" }), 200) class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({"Message": "Token needed. Please login"}) else: res = self.db.get_single_user(id) return make_response(jsonify({ 'Response': res }), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({"Message": "Token needed. Please login"}) elif not user: return jsonify({"Message": "User ID does not exist"}) else: self.db.delete_user(id) return { "Message": "User Deleted" } def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({"Message": "Token needed. Please login"}) elif not user: return jsonify({"Message": "User ID does not exist"}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({ "Message": resp }), 201) else: self.db.update_user(id, resp) return make_response(jsonify({ 'Message': 'User Details Updated' }), 201)
[ 8, 10, 11, 12, 14 ]
2,245
d499b4e189a0c3c6efa6a07871dbc6c2996a2dcb
<mask token>
<mask token> class TGAbstractRegistry(ABC): <mask token>
<mask token> class TGAbstractRegistry(ABC): def __init__(self): self.rule_engine = TGLoggingRuleEngineFactory().create() self.logger = logging.getLogger() self.event_distributor = TGEventDistributor(logging.getLogger()) self.handler_map_factory = TGHandlerMapFactory().create()
import logging from abc import ABC from thraxisgamespatterns.application.handler_map_factory import TGHandlerMapFactory from thraxisgamespatterns.eventhandling.event_distributor import TGEventDistributor from thraxisgamespatterns.factories.logging_rule_engine_factory import TGLoggingRuleEngineFactory class TGAbstractRegistry(ABC): def __init__(self): self.rule_engine = TGLoggingRuleEngineFactory().create() self.logger = logging.getLogger() self.event_distributor = TGEventDistributor(logging.getLogger()) self.handler_map_factory = TGHandlerMapFactory().create()
null
[ 0, 1, 2, 3 ]
2,246
36ab827b889adcd4d54296e7da432d3b39d5a2e6
from cobra.model.fabric import HIfPol from createMo import * DEFAULT_AUTO_NEGOTIATION = 'on' DEFAULT_SPEED = '10G' DEFAULT_LINK_DEBOUNCE_INTERVAL = 100 AUTO_NEGOTIATION_CHOICES = ['on', 'off'] SPEED_CHOICES = ['100M', '1G', '10G', '40G'] def input_key_args(msg='\nPlease Specify Link Level Policy:'): print msg return input_raw_input("Link Level Policy Name", required=True) def input_optional_args(): args = {} args['atuo_negotiation'] = input_options('Auto Negotiation', DEFAULT_AUTO_NEGOTIATION, AUTO_NEGOTIATION_CHOICES) args['speed'] = input_options('Speed', DEFAULT_SPEED, SPEED_CHOICES) args['link_debounce_interval'] = input_options('Link Debounce Interval (msec)', str(DEFAULT_LINK_DEBOUNCE_INTERVAL), '', num_accept=True) return args def create_link_level_policy(parent_mo, link_level_policy, **args): """Create Link Level Policy""" args = args['optional_args'] if 'optional_args' in args.keys() else args # Create mo if is_valid_key(args, 'atuo_negotiation'): if args['atuo_negotiation'] or args['atuo_negotiation'] == 'on': args['atuo_negotiation'] = 'on' elif not args['atuo_negotiation'] or args['atuo_negotiation'] == 'off': args['atuo_negotiation'] = 'off' fabric_hifpol = HIfPol(parent_mo, link_level_policy, autoNeg=get_value(args, 'atuo_negotiation', DEFAULT_AUTO_NEGOTIATION), speed=get_value(args, 'speed', DEFAULT_SPEED), linkDebounce=get_value(args, 'link_debounce_interval', DEFAULT_LINK_DEBOUNCE_INTERVAL), ) return fabric_hifpol class CreateLinkLevelPolicy(CreateMo): def __init__(self): self.description = 'Create Link Level Policy. The host interface policy. This specifies the layer 1 parameters of host facing ports. ' self.link_level_policy = None super(CreateLinkLevelPolicy, self).__init__() def set_cli_mode(self): super(CreateLinkLevelPolicy, self).set_cli_mode() self.parser_cli.add_argument('link_level_policy', help='The name of the interface policy. ') self.parser_cli.add_argument('-a', '--atuo_negotiation', default= DEFAULT_AUTO_NEGOTIATION, choices=AUTO_NEGOTIATION_CHOICES, help='The policy auto-negotiation. Auto-negotiation is an optional function of the IEEE 802.3u Fast Ethernet standard that enables devices to automatically exchange information over a link about speed and duplex abilities.') self.parser_cli.add_argument('-s', '--speed', default= DEFAULT_SPEED, choices=SPEED_CHOICES, help='The interface policy administrative port speed. The data transfer rate for the port should match the destination to which the port is linked. The administrative speed can be changed only for certain ports, and not all speeds are available on all systems. For more information, see the Hardware Installation Guide for your fabric interconnect.') self.parser_cli.add_argument('-l', '--link_debounce_interval', default= DEFAULT_LINK_DEBOUNCE_INTERVAL, help='The interface policy administrative port link debounce interval. Enables the debounce timer for physical interface ports and sets it for a specified amount of time in milliseconds. The debounce timer is disabled if you specify the time to 0 ms.') def read_key_args(self): self.link_level_policy = self.args.pop('link_level_policy') def wizard_mode_input_args(self): self.args['link_level_policy'] = input_key_args() if not self.delete: self.args['optional_args'] = input_optional_args() def delete_mo(self): self.check_if_mo_exist('uni/infra/hintfpol-', self.link_level_policy, HIfPol, description='Link Level Policy') super(CreateLinkLevelPolicy, self).delete_mo() def main_function(self): # Query to parent self.look_up_mo('uni/infra/', '') create_link_level_policy(self.mo, self.link_level_policy, optional_args=self.optional_args) if __name__ == '__main__': mo = CreateLinkLevelPolicy()
null
null
null
null
[ 0 ]
2,247
fac60a8967354e4f306b95fdb5c75d02dc2c1455
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('chat', '0005_user_image')] operations = [migrations.AlterField(model_name='user', name= 'first_name', field=models.CharField(max_length=255, verbose_name= 'Имя')), migrations.AlterField(model_name='user', name='last_name', field=models.CharField(max_length=255, verbose_name='Фамилия'))]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('chat', '0005_user_image')] operations = [migrations.AlterField(model_name='user', name= 'first_name', field=models.CharField(max_length=255, verbose_name= 'Имя')), migrations.AlterField(model_name='user', name='last_name', field=models.CharField(max_length=255, verbose_name='Фамилия'))]
# Generated by Django 3.2.6 on 2021-08-19 22:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('chat', '0005_user_image'), ] operations = [ migrations.AlterField( model_name='user', name='first_name', field=models.CharField(max_length=255, verbose_name='Имя'), ), migrations.AlterField( model_name='user', name='last_name', field=models.CharField(max_length=255, verbose_name='Фамилия'), ), ]
[ 0, 1, 2, 3, 4 ]
2,248
39d82267f966ca106ee384e540c31a3e5e433318
<mask token>
<mask token> def EuclidGCD(a, b): if b == 0: return a else: a = a % b return EuclidGCD(b, a) <mask token>
<mask token> def EuclidGCD(a, b): if b == 0: return a else: a = a % b return EuclidGCD(b, a) <mask token> print(EuclidGCD(in_[0], in_[1]))
<mask token> def EuclidGCD(a, b): if b == 0: return a else: a = a % b return EuclidGCD(b, a) in_ = [int(n) for n in input().split()] print(EuclidGCD(in_[0], in_[1]))
""" Task. Given two integers a and b, find their greatest common divisor. Input Format. The two integers a, b are given in the same line separated by space. Constraints. 1<=a,b<=2·109. Output Format. Output GCD(a, b). """ def EuclidGCD(a, b): if b == 0: return a else: a = a%b return EuclidGCD(b, a) in_ = [int(n) for n in input().split()] print(EuclidGCD(in_[0], in_[1]))
[ 0, 1, 2, 3, 4 ]
2,249
7d0b0cb19e22ff338104e0c2061da94ba04d4f16
from __future__ import division import numpy as np import scipy.stats from tms import read_and_transform __author__ = 'Diego' def estimate_vrpn_clock_drift(points): # clocks = [map(np.datetime64,(p.date,p.ref_date,p.point_date)) for p in points] clocks = [(p.date, p.ref_date, p.point_date) for p in points] real_date, uni_date, obj_date = map(np.array, zip(*clocks)) get_seconds = np.vectorize(lambda x: x.total_seconds()) uni_obj = get_seconds(uni_date - obj_date) good_sample = uni_obj == 0 good_real = real_date[good_sample] good_uni = uni_date[good_sample] assert good_uni.shape[0] > 0 good_drift = good_real - good_uni mode_drift = scipy.stats.mode(good_drift) return mode_drift[0][0] def add_time_drift_to_vrpn(point, drift): point.point_date = point.point_date + drift point.ref_date = point.ref_date + drift return point def fix_vrpn_time_drift(points): drift = estimate_vrpn_clock_drift(points) for p in points: add_time_drift_to_vrpn(p, drift) return drift def estimate_timing_errors(point, corrected=True): internal_error = abs((point.ref_date - point.point_date).total_seconds()) if corrected: uni_error = abs((point.date - point.ref_date).total_seconds()) obj_error = abs((point.date - point.point_date).total_seconds()) return uni_error + obj_error + internal_error else: return internal_error def __test(): import os test_dir = os.path.join(os.path.dirname(__file__), "data") test_file = os.path.join(test_dir, "TMS-758.csv") test_file = os.path.join(test_dir, "TMS-441.csv") # test_file = os.path.join(test_dir, "TMS-310.csv") points = read_and_transform.read_csv_file(test_file) fix_vrpn_time_drift(points) print points[0] errors = [estimate_timing_errors(p, True) for p in points] mean_error = np.mean(errors) print "mean error:\t", mean_error print "std error:\t", np.std(errors) max_error = np.max(errors) print "max error:\t", max_error print "above 10% max:\t", len(filter(lambda x: x > max_error / 10, errors)) if __name__ == "__main__": __test()
null
null
null
null
[ 0 ]
2,250
732478fd826e09cf304760dfcc30cd077f74d83e
import pandas as pd import numpy as np #import data df = pd.read_csv('../.gitignore/PPP_data_to_150k.csv') counties = pd.read_csv('../data/zip_code_database.csv') demographics = pd.read_csv('../data/counties.csv') #filter out all unanswered ethnicities df2 = df[~df.RaceEthnicity.str.contains("Unanswered")] #drop nonprofit column df2.drop('NonProfit', axis=1,inplace=True) #drop row with Nebraska Zip code df2.drop([71479],axis=0, inplace=True) #filter zip code database for Colorado, drop unnecessary columns co_counties = counties[counties['state']=='CO'] co_counties_1 = co_counties.drop(['decommissioned', 'acceptable_cities', 'unacceptable_cities','timezone','area_codes','world_region','country','irs_estimated_population_2015','primary_city','state'],axis=1) #merge counties onto dataframe df_with_counties = pd.merge(df2,co_counties_1, left_on='Zip', right_on='zip') #only include 2018 demographic data demographics_18 = demographics[demographics['YEAR']==2018] demographics_18 = demographics_18.iloc[:,:11] #drop NAN Jobs Retained values for scatter comparison of Jobs Retained to Loan Amount by ethnicity ethnicity_dfs_job_comparison = [x.dropna(subset=['JobsRetained']) for x in ethnicity_dfs] if __name__ == '__main__':
null
null
null
null
[ 0 ]
2,251
673d6bb02ec666dbdbecb5fd7fd5041da1941cf8
import mosquitto import json import time device_id = "868850013067326" # The callback for when the client receives a CONNACK response from the server. def on_connect(mosq, userdata, rc): print("Connected with result code "+str(rc)) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe('vneigbor/%s' % device_id) # The callback for when a PUBLISH message is received from the server. def on_message(mosq, userdata, message): print message.topic, message.payload client = mosquitto.Mosquitto("mosq-rec") client.on_connect = on_connect client.on_message = on_message client.connect("localhost", "18833") # Blocking call that processes network traffic, dispatches callbacks and # handles reconnecting. # Other loop*() functions are available that give a threaded interface and a # manual interface. client.loop_forever()
null
null
null
null
[ 0 ]
2,252
2a69aa0cd9d0e39ad82d6a354e956bdad0648797
<mask token>
<mask token> class ActivityConfig(AppConfig): <mask token>
<mask token> class ActivityConfig(AppConfig): name = 'apps.activity'
from django.apps import AppConfig class ActivityConfig(AppConfig): name = 'apps.activity'
null
[ 0, 1, 2, 3 ]
2,253
2ab3adb4d0ed7e6e48afb2a8dab8f9250d335723
class A(object): _a ='d' @staticmethod def func_1(): A._a = 'b' print A._a @classmethod def func_3(cls): print cls._a def func_2(self): # self._a = 'c' print self._a # print A._a # # class B(object): # @staticmethod # def func_1(): # A.___a = 'c' # print A.___a # print A.___a # B.func_1() print A._a # A.func_3() A.func_1() # A().func_2() A.func_1() A.func_3() # print A().a print A._a
null
null
null
null
[ 0 ]
2,254
6eb59f62a1623f308e0eda4e616be4177a421179
import sys import pysolr import requests import logging import json import datetime from urlparse import urlparse from django.conf import settings from django.utils.html import strip_tags from aggregator.utils import mercator_to_llbbox def get_date(layer): """ Returns a date for Solr. A date can be detected or from metadata. It can be a range or a simple date in isoformat. """ date = None type = 1 layer_dates = layer.get_layer_dates() if layer_dates: date = layer_dates[0][0] type = layer_dates[0][1] if date is None: date = layer.created.date() # layer date > 2300 is invalid for sure # TODO put this logic in date miner if date.year > 2300: date = None if type == 0: type = "Detected" if type == 1: type = "From Metadata" return get_solr_date(date), type def get_solr_date(pydate): """ Returns a date in a valid Solr format from a string. """ # check if date is valid and then set it to solr format YYYY-MM-DDThh:mm:ssZ try: if isinstance(pydate, datetime.datetime): solr_date = '%sZ' % pydate.isoformat()[0:19] return solr_date else: return None except Exception: return None class SolrHypermap(object): solr_url = settings.SOLR_URL solr = pysolr.Solr(solr_url, timeout=60) logger = logging.getLogger("hypermap") @staticmethod def get_domain(url): urlParts = urlparse(url) hostname = urlParts.hostname if hostname == "localhost": return "Harvard" # assumption return hostname @staticmethod def is_solr_up(): solr_url = settings.SOLR_URL solr_url_parts = solr_url.split('/') admin_url = '/'.join(solr_url_parts[:-1]) + '/admin/cores' params = {'action': 'STATUS', 'wt': 'json'} try: req = requests.get(admin_url, params=params) response = json.loads(req.text) status = response['status'] if status: response = True except requests.exceptions.RequestException: response = False return response @staticmethod def layer_to_solr(layer): category = None username = None try: # as a first thing we need to remove the existing index in case there is already one SolrHypermap.solr.delete(q='LayerId:%s' % layer.id) bbox = None if not layer.has_valid_bbox(): message = 'There are not valid coordinates for layer id: %s' % layer.id SolrHypermap.logger.error(message) else: bbox = [float(layer.bbox_x0), float(layer.bbox_y0), float(layer.bbox_x1), float(layer.bbox_y1)] for proj in layer.srs.values(): if proj['code'] in ('102113', '102100'): bbox = mercator_to_llbbox(bbox) minX = bbox[0] minY = bbox[1] maxX = bbox[2] maxY = bbox[3] # coords hack needed by solr if (minX < -180): minX = -180 if (maxX > 180): maxX = 180 if (minY < -90): minY = -90 if (maxY > 90): maxY = 90 wkt = "ENVELOPE({:f},{:f},{:f},{:f})".format(minX, maxX, maxY, minY) halfWidth = (maxX - minX) / 2.0 halfHeight = (maxY - minY) / 2.0 area = (halfWidth * 2) * (halfHeight * 2) domain = SolrHypermap.get_domain(layer.service.url) if hasattr(layer, 'layerwm'): category = layer.layerwm.category username = layer.layerwm.username abstract = layer.abstract if abstract: abstract = strip_tags(layer.abstract) else: abstract = '' if layer.service.type == "WM": originator = username else: originator = domain # now we add the index solr_record = { "LayerId": str(layer.id), "LayerName": layer.name, "LayerTitle": layer.title, "Originator": originator, "ServiceId": str(layer.service.id), "ServiceType": layer.service.type, "LayerCategory": category, "LayerUsername": username, "LayerUrl": layer.url, "LayerReliability": layer.reliability, "LayerRecentReliability": layer.recent_reliability, "LayerLastStatus": layer.last_status, "Is_Public": layer.is_public, "Availability": "Online", "Location": '{"layerInfoPage": "' + layer.get_absolute_url() + '"}', "Abstract": abstract, "SrsProjectionCode": layer.srs.values_list('code', flat=True), "DomainName": layer.service.get_domain } solr_date, type = get_date(layer) if solr_date is not None: solr_record['LayerDate'] = solr_date solr_record['LayerDateType'] = type if bbox is not None: solr_record['MinX'] = minX solr_record['MinY'] = minY solr_record['MaxX'] = maxX solr_record['MaxY'] = maxY solr_record['Area'] = area solr_record['bbox'] = wkt SolrHypermap.solr.add([solr_record]) SolrHypermap.logger.info("Solr record saved for layer with id: %s" % layer.id) return True, None except Exception: SolrHypermap.logger.error("Error saving solr record for layer with id: %s - %s" % (layer.id, sys.exc_info()[1])) return False, sys.exc_info()[1] @staticmethod def clear_solr(): """Clear all indexes in the solr core""" SolrHypermap.solr.delete(q='*:*') print 'Solr core cleared'
null
null
null
null
[ 0 ]
2,255
8180dac5d33334d7f16ab6bef41f1fe800879ca7
<mask token> class TheguardianSpider(scrapy.Spider): <mask token> <mask token> <mask token> <mask token> def article(self, response): brexit_news = BrexitNewsItem() title = response.xpath('string(//h1[@data-trackable="header"])' ).extract_first().strip() brexit_news['title'] = title text = '' for sel in response.xpath( '//div[contains(@class,"article__content-body")]//p'): line = sel.xpath('string(.)').extract_first() if line is not None: text += line + '\n\n' brexit_news['text'] = text brexit_news['url'] = response.url brexit_news['media'] = 'ft' brexit_news['date'] = response.xpath( '//time[contains(@class,"article-info__timestamp")]/@datetime' ).extract_first()[:10] yield brexit_news def parse(self, response): for sel in response.xpath( '//li[@class="search-results__list-item"]//a[@data-trackable="heading-link"]' ): article_url = parse.urljoin(response.url, sel.xpath('@href'). extract_first()) if check_url(article_url) and 'video' not in article_url: yield Request(article_url, self.article, cookies=self.cookies) next_page_url = parse.urljoin(response.url, response.xpath( '//a[@data-trackable="next-page"]/@href').extract_first()) if check_url(next_page_url): yield Request(next_page_url, self.parse, cookies=self.cookies)
<mask token> class TheguardianSpider(scrapy.Spider): name = 'ft' allowed_domains = ['www.ft.com'] start_urls = [ 'https://www.ft.com/search?q=brexit&dateTo=2016-06-24&dateFrom=2016-06-16&sort=date' ] cookies = {} def article(self, response): brexit_news = BrexitNewsItem() title = response.xpath('string(//h1[@data-trackable="header"])' ).extract_first().strip() brexit_news['title'] = title text = '' for sel in response.xpath( '//div[contains(@class,"article__content-body")]//p'): line = sel.xpath('string(.)').extract_first() if line is not None: text += line + '\n\n' brexit_news['text'] = text brexit_news['url'] = response.url brexit_news['media'] = 'ft' brexit_news['date'] = response.xpath( '//time[contains(@class,"article-info__timestamp")]/@datetime' ).extract_first()[:10] yield brexit_news def parse(self, response): for sel in response.xpath( '//li[@class="search-results__list-item"]//a[@data-trackable="heading-link"]' ): article_url = parse.urljoin(response.url, sel.xpath('@href'). extract_first()) if check_url(article_url) and 'video' not in article_url: yield Request(article_url, self.article, cookies=self.cookies) next_page_url = parse.urljoin(response.url, response.xpath( '//a[@data-trackable="next-page"]/@href').extract_first()) if check_url(next_page_url): yield Request(next_page_url, self.parse, cookies=self.cookies)
<mask token> def check_url(url): if url is not None: url = url.strip() if url != '' and url != 'None': return True return False class TheguardianSpider(scrapy.Spider): name = 'ft' allowed_domains = ['www.ft.com'] start_urls = [ 'https://www.ft.com/search?q=brexit&dateTo=2016-06-24&dateFrom=2016-06-16&sort=date' ] cookies = {} def article(self, response): brexit_news = BrexitNewsItem() title = response.xpath('string(//h1[@data-trackable="header"])' ).extract_first().strip() brexit_news['title'] = title text = '' for sel in response.xpath( '//div[contains(@class,"article__content-body")]//p'): line = sel.xpath('string(.)').extract_first() if line is not None: text += line + '\n\n' brexit_news['text'] = text brexit_news['url'] = response.url brexit_news['media'] = 'ft' brexit_news['date'] = response.xpath( '//time[contains(@class,"article-info__timestamp")]/@datetime' ).extract_first()[:10] yield brexit_news def parse(self, response): for sel in response.xpath( '//li[@class="search-results__list-item"]//a[@data-trackable="heading-link"]' ): article_url = parse.urljoin(response.url, sel.xpath('@href'). extract_first()) if check_url(article_url) and 'video' not in article_url: yield Request(article_url, self.article, cookies=self.cookies) next_page_url = parse.urljoin(response.url, response.xpath( '//a[@data-trackable="next-page"]/@href').extract_first()) if check_url(next_page_url): yield Request(next_page_url, self.parse, cookies=self.cookies)
import datetime from urllib import parse import scrapy from scrapy import Request from BrexitNews.items import BrexitNewsItem def check_url(url): if url is not None: url = url.strip() if url != '' and url != 'None': return True return False class TheguardianSpider(scrapy.Spider): name = 'ft' allowed_domains = ['www.ft.com'] start_urls = [ 'https://www.ft.com/search?q=brexit&dateTo=2016-06-24&dateFrom=2016-06-16&sort=date' ] cookies = {} def article(self, response): brexit_news = BrexitNewsItem() title = response.xpath('string(//h1[@data-trackable="header"])' ).extract_first().strip() brexit_news['title'] = title text = '' for sel in response.xpath( '//div[contains(@class,"article__content-body")]//p'): line = sel.xpath('string(.)').extract_first() if line is not None: text += line + '\n\n' brexit_news['text'] = text brexit_news['url'] = response.url brexit_news['media'] = 'ft' brexit_news['date'] = response.xpath( '//time[contains(@class,"article-info__timestamp")]/@datetime' ).extract_first()[:10] yield brexit_news def parse(self, response): for sel in response.xpath( '//li[@class="search-results__list-item"]//a[@data-trackable="heading-link"]' ): article_url = parse.urljoin(response.url, sel.xpath('@href'). extract_first()) if check_url(article_url) and 'video' not in article_url: yield Request(article_url, self.article, cookies=self.cookies) next_page_url = parse.urljoin(response.url, response.xpath( '//a[@data-trackable="next-page"]/@href').extract_first()) if check_url(next_page_url): yield Request(next_page_url, self.parse, cookies=self.cookies)
# -*- coding: utf-8 -*- import datetime from urllib import parse import scrapy from scrapy import Request from BrexitNews.items import BrexitNewsItem def check_url(url): if url is not None: url = url.strip() if url != '' and url != 'None': return True return False class TheguardianSpider(scrapy.Spider): name = 'ft' allowed_domains = ['www.ft.com'] start_urls = ['https://www.ft.com/search?q=brexit&dateTo=2016-06-24&dateFrom=2016-06-16&sort=date'] cookies = { } def article(self, response): brexit_news = BrexitNewsItem() title = response.xpath('string(//h1[@data-trackable="header"])').extract_first().strip() brexit_news['title'] = title text = '' for sel in response.xpath('//div[contains(@class,"article__content-body")]//p'): line = sel.xpath('string(.)').extract_first() if line is not None: text += line + '\n\n' brexit_news['text'] = text brexit_news['url'] = response.url brexit_news['media'] = 'ft' brexit_news['date'] = response.xpath('//time[contains(@class,"article-info__timestamp")]/@datetime').extract_first()[:10] # print(brexit_news) yield brexit_news def parse(self, response): for sel in response.xpath('//li[@class="search-results__list-item"]//a[@data-trackable="heading-link"]'): article_url = parse.urljoin(response.url, sel.xpath('@href').extract_first()) if check_url(article_url) and 'video' not in article_url: yield Request(article_url, self.article, cookies=self.cookies) # handle every page next_page_url = parse.urljoin(response.url, response.xpath('//a[@data-trackable="next-page"]/@href').extract_first()) if check_url(next_page_url): yield Request(next_page_url, self.parse, cookies=self.cookies)
[ 3, 4, 5, 6, 7 ]
2,256
6297256bce1954f041915a1ce0aa0546689850f3
<mask token>
<mask token> if len(numero) < 8: while len(numero) < 8: numero = '3' + numero numero = numero[:4] + '-' + numero[4:] print('Numero: ', numero) elif len(numero) > 8: print('Numero invalido')
numero = input('Digite um numero de telefone: ') numero = numero.replace('-', '') if len(numero) < 8: while len(numero) < 8: numero = '3' + numero numero = numero[:4] + '-' + numero[4:] print('Numero: ', numero) elif len(numero) > 8: print('Numero invalido')
# Feito por Kelvin Schneider #12 numero = input("Digite um numero de telefone: ") numero = numero.replace("-","") if (len(numero) < 8): while len(numero) < 8: numero = "3" + numero numero = numero[:4] + "-" + numero[4:] print("Numero: ", numero) elif (len(numero) > 8): print("Numero invalido")
null
[ 0, 1, 2, 3 ]
2,257
4e38ad17ad66ac71b0df3cbcaa33cb546e96ce9d
import pymel.core as PM import socket def getShadingGroupMembership(): ''' Get a dictionary of shading group set information {'shadingGroup': [assignmnet1, assignment2...]} ''' result = {} #sgs = PM.ls(sl= 1, et='shadingEngine') sgs = PM.listConnections(s= 1, t='shadingEngine') for sg in sgs: result[sg.name()] = sg.members(flatten=True) return result def remoteMaye(msg): global maya maya.send(msg) def vmtl_nameMap(name): whiteList = ['woman_Rig:surfaceShader1', 'lady_Rig:surfaceShader1', 'richman_rigging_master:richman_spot', 'oldman_Rig:surfaceShader1'] if name == 'oldman_Rig:VRayMtl2': name = 'richPeopleSuck:oldman_cloth_vmtl' if name == 'oldman_Rig:VRayMtl3': name = 'richPeopleSuck:oldman_skin_vmtl' if name == 'oldman_Rig:VRayMtl4': name = 'richPeopleSuck:oldman_glass_vmtl' if name == 'lady_Rig:VRayMtl2': name = 'richPeopleSuck:lady_cloth_vmtl' if name == 'lady_Rig:VRayMtl1': name = 'richPeopleSuck:lady_skin_vmtl' if name == 'woman_Rig:VRayMtl1': name = 'richPeopleSuck:woman_cloth_vmtl' if name == 'woman_Rig:VRayMtl2': name = 'richPeopleSuck:woman_skin_vmtl' if name == 'richman_rigging_master:VRayMtl2': name = 'richPeopleSuck:richman_cloth_vmtl' if name == 'richman_rigging_master:VRayMtl1': name = 'richPeopleSuck:richman_skin_vmtl' if name == 'richman_rigging_master:surfaceShader3': name = 'richPeopleSuck:maneye_black_surface' if name in whiteList: name = 'richPeopleSuck:maneye_white_surface' return name def doJob(port): host = "127.0.0.1" global maya maya = socket.socket(socket.AF_INET, socket.SOCK_STREAM) maya.connect( (host, port) ) mtlDict = getShadingGroupMembership() for meshList in mtlDict.keys(): vmtl = cmds.listConnections(meshList + '.surfaceShader', s= 1)[0] if mtlDict[meshList]: for mesh in mtlDict[meshList]: msg = '' target = '' if '.' in str(mesh): faceList = [] faceStr = str(mesh).split('.f')[1].replace('[', '').replace(']', '') if ',' in faceStr: faceList = faceStr.split(',') else: faceList = [faceStr] for face in faceList: target = str(mesh).split('.')[0] + '.f[' + face + ']' try: msg += 'cmds.select("' + target + '", r= 1)\n' msg += 'cmds.hyperShade(a= "' + vmtl_nameMap(vmtl) + '")\n' except: if len(target.split(':')) > 1: target_1 = ':'.join(target.split(':')[0:2]) + ']' target_2 = ':'.join([target.split(':')[0], target.split(':')[2]]) try: msg += 'cmds.select("' + target_1 + '", r= 1)\n' msg += 'cmds.hyperShade(a= "' + vmtl_nameMap(vmtl) + '")\n' except: print '+++++++++++++++++++++++++++++++++++++\n+++++++++++++++++++++++++++++++++++++' else: target = str(mesh) msg += 'cmds.select("' + target + '", r= 1)\n' msg += 'cmds.hyperShade(a= "' + vmtl_nameMap(vmtl) + '")\n' remoteMaye(msg) maya.close()
null
null
null
null
[ 0 ]
2,258
b186ae7a48afbb70edf3be0d9697deed4f31e542
<mask token>
<mask token> print(response.geturl()) <mask token> with open('bgdGW.html', 'w', encoding='utf-8') as fp: fp.write(html) print(response.geturl())
<mask token> response = urllib.request.urlopen('http://www.gengdan.cn/') print(response.geturl()) html = response.read().decode('UTF-8') with open('bgdGW.html', 'w', encoding='utf-8') as fp: fp.write(html) print(response.geturl())
<mask token> import urllib.request response = urllib.request.urlopen('http://www.gengdan.cn/') print(response.geturl()) html = response.read().decode('UTF-8') with open('bgdGW.html', 'w', encoding='utf-8') as fp: fp.write(html) print(response.geturl())
# -*- coding: utf-8 -*- """ ------------------------------------------------- # @Project :experiment9 # @File :text1 # @Date :2020/10/28 09:13 # @Author :施嘉伟 # @Email :[email protected] # @Software :PyCharm ------------------------------------------------- """ import urllib.request # 发出请求,得到响应 response=urllib.request.urlopen("http://www.gengdan.cn/") print(response.geturl()) html = response.read().decode("UTF-8") with open("bgdGW.html",'w',encoding="utf-8")as fp: fp.write(html) print(response.geturl())
[ 0, 1, 2, 3, 4 ]
2,259
63be96c0d1231f836bbec9ce93f06bda32775511
<mask token> def convert(lst: list) ->list(): """String Unicode to int""" l = list() for item in lst: l.append(ord(item)) return l <mask token> def write(filename: str, data: list, header: list): name = filename.split('.') filename = name[0] + '_out.' + name[1] f = open(filename, 'w') f.write('') f.close() s = '' with open(filename, 'w', encoding='ISO-8859-1') as file: for h in header: s += h for d in data: s += str(d) file.write(s) file.close()
<mask token> def readfile(filename: str) ->tuple: """read given pgm file""" col = 0 row = 0 lst = list() with open(filename, 'rb') as file: header = list() ls = list() header.append(file.readline().decode('utf-8')) while True: line = file.readline().decode('utf-8') if not line: break elif line[0] == '#': continue else: header.append(line) ss = str(line) l = re.findall('\\d+', ss) col = int(l[0]) row = int(l[1]) break header.append(file.readline().decode('utf-8')) n = col * row lst = list() for i in range(n): try: lst.append(ord(file.read(1))) except: pass file.close() return header, lst, [col, row] def convert(lst: list) ->list(): """String Unicode to int""" l = list() for item in lst: l.append(ord(item)) return l <mask token> def write(filename: str, data: list, header: list): name = filename.split('.') filename = name[0] + '_out.' + name[1] f = open(filename, 'w') f.write('') f.close() s = '' with open(filename, 'w', encoding='ISO-8859-1') as file: for h in header: s += h for d in data: s += str(d) file.write(s) file.close()
<mask token> def readfile(filename: str) ->tuple: """read given pgm file""" col = 0 row = 0 lst = list() with open(filename, 'rb') as file: header = list() ls = list() header.append(file.readline().decode('utf-8')) while True: line = file.readline().decode('utf-8') if not line: break elif line[0] == '#': continue else: header.append(line) ss = str(line) l = re.findall('\\d+', ss) col = int(l[0]) row = int(l[1]) break header.append(file.readline().decode('utf-8')) n = col * row lst = list() for i in range(n): try: lst.append(ord(file.read(1))) except: pass file.close() return header, lst, [col, row] def convert(lst: list) ->list(): """String Unicode to int""" l = list() for item in lst: l.append(ord(item)) return l def writeNumeric(filename: str, data: list, header: list, dimension: list): """write pgm file in numeric format (P2 as a header)""" name = filename.split('.') filename = name[0] + '_out.' + name[1] f = open(filename, 'w') f.write('') f.close() col = dimension[0] row = dimension[1] s = '' with open(filename, 'w', encoding='ISO-8859-1') as file: header[0] = 'P2\n' for h in header: s += h for i in range(row): for j in range(col): try: index = i * col + j s += str(data[index]) if j < col - 1: s += ' ' except: pass s += '\n' file.write(s) file.close() def write(filename: str, data: list, header: list): name = filename.split('.') filename = name[0] + '_out.' + name[1] f = open(filename, 'w') f.write('') f.close() s = '' with open(filename, 'w', encoding='ISO-8859-1') as file: for h in header: s += h for d in data: s += str(d) file.write(s) file.close()
import re import numpy as np def readfile(filename: str) ->tuple: """read given pgm file""" col = 0 row = 0 lst = list() with open(filename, 'rb') as file: header = list() ls = list() header.append(file.readline().decode('utf-8')) while True: line = file.readline().decode('utf-8') if not line: break elif line[0] == '#': continue else: header.append(line) ss = str(line) l = re.findall('\\d+', ss) col = int(l[0]) row = int(l[1]) break header.append(file.readline().decode('utf-8')) n = col * row lst = list() for i in range(n): try: lst.append(ord(file.read(1))) except: pass file.close() return header, lst, [col, row] def convert(lst: list) ->list(): """String Unicode to int""" l = list() for item in lst: l.append(ord(item)) return l def writeNumeric(filename: str, data: list, header: list, dimension: list): """write pgm file in numeric format (P2 as a header)""" name = filename.split('.') filename = name[0] + '_out.' + name[1] f = open(filename, 'w') f.write('') f.close() col = dimension[0] row = dimension[1] s = '' with open(filename, 'w', encoding='ISO-8859-1') as file: header[0] = 'P2\n' for h in header: s += h for i in range(row): for j in range(col): try: index = i * col + j s += str(data[index]) if j < col - 1: s += ' ' except: pass s += '\n' file.write(s) file.close() def write(filename: str, data: list, header: list): name = filename.split('.') filename = name[0] + '_out.' + name[1] f = open(filename, 'w') f.write('') f.close() s = '' with open(filename, 'w', encoding='ISO-8859-1') as file: for h in header: s += h for d in data: s += str(d) file.write(s) file.close()
import re import numpy as np # only read pgm file def readfile(filename:str)->tuple: '''read given pgm file''' col = 0 row = 0 lst = list() with open(filename, 'rb') as file: header = list() ls = list() # remove first line header.append((file.readline()).decode("utf-8")) while True: line = (file.readline()).decode("utf-8") if not line: break elif(line[0] == '#'): continue else: header.append(line) ss = str(line) l = re.findall(r'\d+', ss) col = int(l[0]) row = int(l[1]) break header.append((file.readline()).decode("utf-8")) n = col*row lst = list() for i in range(n): try: lst.append(ord(file.read(1))) except: pass file.close() return header, lst, [col, row] #convert list def convert(lst:list)->list(): '''String Unicode to int''' l = list() for item in lst: l.append(ord(item)) return l def writeNumeric(filename:str, data:list, header:list, dimension:list): '''write pgm file in numeric format (P2 as a header)''' # clear file if exists name = filename.split('.') filename = name[0]+'_out.'+name[1] f = open(filename, 'w') f.write('') f.close() col = dimension[0] row = dimension[1] s = '' # write new file with open(filename, 'w', encoding='ISO-8859-1') as file: header[0] = 'P2\n' for h in header: # decoding s += h for i in range(row): for j in range(col): try: index = i*col + j s += str(data[index]) if j < col -1: s += ' ' except: # print(i) # print(j) pass s += '\n' file.write(s) file.close() def write(filename:str, data:list, header:list): # clear file if exists name = filename.split('.') filename = name[0]+'_out.'+name[1] f = open(filename, 'w') f.write('') f.close() s = '' # write new file with open(filename, 'w', encoding='ISO-8859-1') as file: for h in header: # decoding s += h for d in data: s += str(d) file.write(s) file.close()
[ 2, 3, 4, 5, 6 ]
2,260
f960c95afe1f7a161e0144bb523bfaca117ae61e
<mask token>
try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup def find_packages(): return ['sqlpython'] <mask token> setup(name='sqlpython', version='1.7.3', description= 'Command-line interface to Oracle', long_description= "Customizable alternative to Oracle's SQL*PLUS command-line interface", author='Luca Canali', author_email='[email protected]', url= 'http://packages.python.org/sqlpython', packages=find_packages(), include_package_data=True, install_requires=['pyparsing', 'cmd2==0.6.3', 'gerald>=0.4.1.1', 'genshi==0.6'], extras_require={'oracle': [ 'cx_Oracle==6.1'], 'postgres': ['psycopg2']}, keywords= 'client oracle database', license='MIT', platforms=['any'], entry_points= """ [console_scripts] sqlpython = sqlpython.mysqlpy:run editplot_sqlpython = sqlpython.editplot.bash""" )
try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup def find_packages(): return ['sqlpython'] classifiers = ( """Development Status :: 4 - Beta Intended Audience :: Information Technology License :: OSI Approved :: MIT License Programming Language :: Python Programming Language :: SQL Topic :: Database :: Front-Ends Operating System :: OS Independent""" .splitlines()) setup(name='sqlpython', version='1.7.3', description= 'Command-line interface to Oracle', long_description= "Customizable alternative to Oracle's SQL*PLUS command-line interface", author='Luca Canali', author_email='[email protected]', url= 'http://packages.python.org/sqlpython', packages=find_packages(), include_package_data=True, install_requires=['pyparsing', 'cmd2==0.6.3', 'gerald>=0.4.1.1', 'genshi==0.6'], extras_require={'oracle': [ 'cx_Oracle==6.1'], 'postgres': ['psycopg2']}, keywords= 'client oracle database', license='MIT', platforms=['any'], entry_points= """ [console_scripts] sqlpython = sqlpython.mysqlpy:run editplot_sqlpython = sqlpython.editplot.bash""" )
try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup def find_packages(): return ['sqlpython'] classifiers = """Development Status :: 4 - Beta Intended Audience :: Information Technology License :: OSI Approved :: MIT License Programming Language :: Python Programming Language :: SQL Topic :: Database :: Front-Ends Operating System :: OS Independent""".splitlines() setup(name="sqlpython", version="1.7.3", description="Command-line interface to Oracle", long_description="Customizable alternative to Oracle's SQL*PLUS command-line interface", author="Luca Canali", author_email="[email protected]", url="http://packages.python.org/sqlpython", packages=find_packages(), include_package_data=True, install_requires=['pyparsing','cmd2==0.6.3','gerald>=0.4.1.1', 'genshi==0.6'], extras_require = { 'oracle': ['cx_Oracle==6.1'], 'postgres': ['psycopg2'], }, keywords = 'client oracle database', license = 'MIT', platforms = ['any'], entry_points = """ [console_scripts] sqlpython = sqlpython.mysqlpy:run editplot_sqlpython = sqlpython.editplot.bash""" )
null
[ 0, 1, 2, 3 ]
2,261
53e397068fcf88bbbce4dcc1bf1b441a2fbbee48
<mask token>
<mask token> print(max(d1.values())) print(min(d1.values()))
d1 = {(6): 10, (2): 20, (5): 30, (4): 40, (1): 50, (3): 60} print(max(d1.values())) print(min(d1.values()))
#Write a Python program to get the maximum and minimum value in a dictionary. d1={6: 10, 2: 20, 5: 30, 4: 40, 1: 50, 3: 60} print(max(d1.values())) print(min(d1.values()))
null
[ 0, 1, 2, 3 ]
2,262
8560c0068eff894e5aa1d0788bd9e5ad05c14997
<mask token> class ThermalSpectrum(Spectrum): <mask token> <mask token> <mask token> <mask token> @staticmethod def units_string(): return '1/erg/cm^3' def integrate(self, units=True, e_weight=0): """ Integrate the thermal spectrum from emin to emax. Returns the integral in units of [erg^e_weight/cm^-3] """ int = logsimps(lambda e: e ** e_weight * self(e, units=False), self .emin, self.emax, sed_config.PER_DECADE) return int * (u.erg ** (e_weight + 1) * self.units() if units else 1) class BlackBody(ThermalSpectrum): @staticmethod def compute_energy_density(kT): """ Comparing the formula for a blackbody spectrum with prefactor pref = 8pi/(hc)^3 to the fomrula for a general thermal spectrum: pref = 15*U/(pi*kT)^4, we find that for a blackbody spectrum, we have a thermal spectrum with U = (8*pi/(hc)^3)*(pi*kT)^4/15. """ h = u.planck c = u.speed_of_light pi = np.pi return 8 * pi / (h * c) ** 3 * ((pi * kT) ** 4 / 15) def __init__(self, kT=None, T=None): """ Implement a blackbody spectrum. The formula for the blackbody spectrum is n(E)=((8pi)/(hc)^3)*E^2/(exp(E/kT)-1) where * n(E) is the number of photons per unit energy per unit volume, * kT is the temperature of the photons This formula is on the top of page 208 in R&L """ if kT is not None: kT = kT elif T is not None: kT = u.boltzmann * T else: raise Exception('kT or k must be passed to BlackBody') energy_density = BlackBody.compute_energy_density(kT) super(BlackBody, self).__init__(energy_density=energy_density, kT=kT) class CMB(BlackBody): """ The CMB is a blackbody spectrum with temperature 2.725K. Note, the energy density for a CMB spectrum is 0.26 eV/cm^3: >>> cmb = CMB() >>> print u.repr(cmb.integrate(units=True,e_weight=1),'eV/cm^3','%.2f') 0.26 eV/cm^3 """ def __init__(self): super(CMB, self).__init__(T=2.725 * u.kelvin) <mask token>
<mask token> class ThermalSpectrum(Spectrum): <mask token> def __init__(self, energy_density, kT=None, T=None): """ A thermal spectrum has the sameself): spectral shape as the blackbody spectrum but has an arbitrarily normalizable energy density. The thermal spectrum is n(E) = 15*U/(pi*kT)^4*E^2/(exp(E/kT)-1) where * n(E) is the number of photons per unit energy per unit volume, * U is the total energy per unit volume. * kT is the temperature of the photons This formula is equation 33 from Sturner et al 1997 http://iopscience.iop.org/0004-637X/490/2/619/pdf/35841.pdf Input can be either 'kT' in energy units or 'T' in temperature units. For example, in XXX et al, the infrared photon field has temperature kT=3e-3 eV and energy density U=0.9 eV/cm^3 >>> infrared=ThermalSpectrum(kT=3e-3*u.eV, energy_density=0.9*u.eV/u.cm**3) To convince yourself that this code correctly normalized the spectrum, you can explicity integrate E*dN/dE = total energy per unit volume: >>> print u.repr(infrared.integrate(units=True,e_weight=1),'eV/cm^3','%.2f') 0.90 eV/cm^3 """ if kT is not None: kT = kT elif T is not None: kT = u.boltzmann * kwargs.pop('T') else: raise Exception('kT or k must be passed to ThermalSpectrum') self.kT = float(kT / u.erg) self.emin = 0.0001 * self.kT self.emax = 100.0 * self.kT self.pref = 15 * energy_density / (np.pi * kT) ** 4 self.pref = float(self.pref / (u.erg ** -3 * u.cm ** -3)) @staticmethod def occupation_number(x): """ This is equation 1.49 in R&L. """ return 1 / (np.exp(x) - 1) def _spectrum(self, energy): """ Return the energy density in units of [1/erg/cm^-3].""" return self.pref * energy ** 2 * self.occupation_number(energy / self.kT) @staticmethod def units_string(): return '1/erg/cm^3' def integrate(self, units=True, e_weight=0): """ Integrate the thermal spectrum from emin to emax. Returns the integral in units of [erg^e_weight/cm^-3] """ int = logsimps(lambda e: e ** e_weight * self(e, units=False), self .emin, self.emax, sed_config.PER_DECADE) return int * (u.erg ** (e_weight + 1) * self.units() if units else 1) class BlackBody(ThermalSpectrum): @staticmethod def compute_energy_density(kT): """ Comparing the formula for a blackbody spectrum with prefactor pref = 8pi/(hc)^3 to the fomrula for a general thermal spectrum: pref = 15*U/(pi*kT)^4, we find that for a blackbody spectrum, we have a thermal spectrum with U = (8*pi/(hc)^3)*(pi*kT)^4/15. """ h = u.planck c = u.speed_of_light pi = np.pi return 8 * pi / (h * c) ** 3 * ((pi * kT) ** 4 / 15) def __init__(self, kT=None, T=None): """ Implement a blackbody spectrum. The formula for the blackbody spectrum is n(E)=((8pi)/(hc)^3)*E^2/(exp(E/kT)-1) where * n(E) is the number of photons per unit energy per unit volume, * kT is the temperature of the photons This formula is on the top of page 208 in R&L """ if kT is not None: kT = kT elif T is not None: kT = u.boltzmann * T else: raise Exception('kT or k must be passed to BlackBody') energy_density = BlackBody.compute_energy_density(kT) super(BlackBody, self).__init__(energy_density=energy_density, kT=kT) class CMB(BlackBody): """ The CMB is a blackbody spectrum with temperature 2.725K. Note, the energy density for a CMB spectrum is 0.26 eV/cm^3: >>> cmb = CMB() >>> print u.repr(cmb.integrate(units=True,e_weight=1),'eV/cm^3','%.2f') 0.26 eV/cm^3 """ def __init__(self): super(CMB, self).__init__(T=2.725 * u.kelvin) <mask token>
<mask token> class ThermalSpectrum(Spectrum): vectorized = True def __init__(self, energy_density, kT=None, T=None): """ A thermal spectrum has the sameself): spectral shape as the blackbody spectrum but has an arbitrarily normalizable energy density. The thermal spectrum is n(E) = 15*U/(pi*kT)^4*E^2/(exp(E/kT)-1) where * n(E) is the number of photons per unit energy per unit volume, * U is the total energy per unit volume. * kT is the temperature of the photons This formula is equation 33 from Sturner et al 1997 http://iopscience.iop.org/0004-637X/490/2/619/pdf/35841.pdf Input can be either 'kT' in energy units or 'T' in temperature units. For example, in XXX et al, the infrared photon field has temperature kT=3e-3 eV and energy density U=0.9 eV/cm^3 >>> infrared=ThermalSpectrum(kT=3e-3*u.eV, energy_density=0.9*u.eV/u.cm**3) To convince yourself that this code correctly normalized the spectrum, you can explicity integrate E*dN/dE = total energy per unit volume: >>> print u.repr(infrared.integrate(units=True,e_weight=1),'eV/cm^3','%.2f') 0.90 eV/cm^3 """ if kT is not None: kT = kT elif T is not None: kT = u.boltzmann * kwargs.pop('T') else: raise Exception('kT or k must be passed to ThermalSpectrum') self.kT = float(kT / u.erg) self.emin = 0.0001 * self.kT self.emax = 100.0 * self.kT self.pref = 15 * energy_density / (np.pi * kT) ** 4 self.pref = float(self.pref / (u.erg ** -3 * u.cm ** -3)) @staticmethod def occupation_number(x): """ This is equation 1.49 in R&L. """ return 1 / (np.exp(x) - 1) def _spectrum(self, energy): """ Return the energy density in units of [1/erg/cm^-3].""" return self.pref * energy ** 2 * self.occupation_number(energy / self.kT) @staticmethod def units_string(): return '1/erg/cm^3' def integrate(self, units=True, e_weight=0): """ Integrate the thermal spectrum from emin to emax. Returns the integral in units of [erg^e_weight/cm^-3] """ int = logsimps(lambda e: e ** e_weight * self(e, units=False), self .emin, self.emax, sed_config.PER_DECADE) return int * (u.erg ** (e_weight + 1) * self.units() if units else 1) class BlackBody(ThermalSpectrum): @staticmethod def compute_energy_density(kT): """ Comparing the formula for a blackbody spectrum with prefactor pref = 8pi/(hc)^3 to the fomrula for a general thermal spectrum: pref = 15*U/(pi*kT)^4, we find that for a blackbody spectrum, we have a thermal spectrum with U = (8*pi/(hc)^3)*(pi*kT)^4/15. """ h = u.planck c = u.speed_of_light pi = np.pi return 8 * pi / (h * c) ** 3 * ((pi * kT) ** 4 / 15) def __init__(self, kT=None, T=None): """ Implement a blackbody spectrum. The formula for the blackbody spectrum is n(E)=((8pi)/(hc)^3)*E^2/(exp(E/kT)-1) where * n(E) is the number of photons per unit energy per unit volume, * kT is the temperature of the photons This formula is on the top of page 208 in R&L """ if kT is not None: kT = kT elif T is not None: kT = u.boltzmann * T else: raise Exception('kT or k must be passed to BlackBody') energy_density = BlackBody.compute_energy_density(kT) super(BlackBody, self).__init__(energy_density=energy_density, kT=kT) class CMB(BlackBody): """ The CMB is a blackbody spectrum with temperature 2.725K. Note, the energy density for a CMB spectrum is 0.26 eV/cm^3: >>> cmb = CMB() >>> print u.repr(cmb.integrate(units=True,e_weight=1),'eV/cm^3','%.2f') 0.26 eV/cm^3 """ def __init__(self): super(CMB, self).__init__(T=2.725 * u.kelvin) <mask token>
<mask token> class ThermalSpectrum(Spectrum): vectorized = True def __init__(self, energy_density, kT=None, T=None): """ A thermal spectrum has the sameself): spectral shape as the blackbody spectrum but has an arbitrarily normalizable energy density. The thermal spectrum is n(E) = 15*U/(pi*kT)^4*E^2/(exp(E/kT)-1) where * n(E) is the number of photons per unit energy per unit volume, * U is the total energy per unit volume. * kT is the temperature of the photons This formula is equation 33 from Sturner et al 1997 http://iopscience.iop.org/0004-637X/490/2/619/pdf/35841.pdf Input can be either 'kT' in energy units or 'T' in temperature units. For example, in XXX et al, the infrared photon field has temperature kT=3e-3 eV and energy density U=0.9 eV/cm^3 >>> infrared=ThermalSpectrum(kT=3e-3*u.eV, energy_density=0.9*u.eV/u.cm**3) To convince yourself that this code correctly normalized the spectrum, you can explicity integrate E*dN/dE = total energy per unit volume: >>> print u.repr(infrared.integrate(units=True,e_weight=1),'eV/cm^3','%.2f') 0.90 eV/cm^3 """ if kT is not None: kT = kT elif T is not None: kT = u.boltzmann * kwargs.pop('T') else: raise Exception('kT or k must be passed to ThermalSpectrum') self.kT = float(kT / u.erg) self.emin = 0.0001 * self.kT self.emax = 100.0 * self.kT self.pref = 15 * energy_density / (np.pi * kT) ** 4 self.pref = float(self.pref / (u.erg ** -3 * u.cm ** -3)) @staticmethod def occupation_number(x): """ This is equation 1.49 in R&L. """ return 1 / (np.exp(x) - 1) def _spectrum(self, energy): """ Return the energy density in units of [1/erg/cm^-3].""" return self.pref * energy ** 2 * self.occupation_number(energy / self.kT) @staticmethod def units_string(): return '1/erg/cm^3' def integrate(self, units=True, e_weight=0): """ Integrate the thermal spectrum from emin to emax. Returns the integral in units of [erg^e_weight/cm^-3] """ int = logsimps(lambda e: e ** e_weight * self(e, units=False), self .emin, self.emax, sed_config.PER_DECADE) return int * (u.erg ** (e_weight + 1) * self.units() if units else 1) class BlackBody(ThermalSpectrum): @staticmethod def compute_energy_density(kT): """ Comparing the formula for a blackbody spectrum with prefactor pref = 8pi/(hc)^3 to the fomrula for a general thermal spectrum: pref = 15*U/(pi*kT)^4, we find that for a blackbody spectrum, we have a thermal spectrum with U = (8*pi/(hc)^3)*(pi*kT)^4/15. """ h = u.planck c = u.speed_of_light pi = np.pi return 8 * pi / (h * c) ** 3 * ((pi * kT) ** 4 / 15) def __init__(self, kT=None, T=None): """ Implement a blackbody spectrum. The formula for the blackbody spectrum is n(E)=((8pi)/(hc)^3)*E^2/(exp(E/kT)-1) where * n(E) is the number of photons per unit energy per unit volume, * kT is the temperature of the photons This formula is on the top of page 208 in R&L """ if kT is not None: kT = kT elif T is not None: kT = u.boltzmann * T else: raise Exception('kT or k must be passed to BlackBody') energy_density = BlackBody.compute_energy_density(kT) super(BlackBody, self).__init__(energy_density=energy_density, kT=kT) class CMB(BlackBody): """ The CMB is a blackbody spectrum with temperature 2.725K. Note, the energy density for a CMB spectrum is 0.26 eV/cm^3: >>> cmb = CMB() >>> print u.repr(cmb.integrate(units=True,e_weight=1),'eV/cm^3','%.2f') 0.26 eV/cm^3 """ def __init__(self): super(CMB, self).__init__(T=2.725 * u.kelvin) if __name__ == '__main__': import doctest doctest.testmod()
""" sed_thermal.py Author: Joshua Lande <[email protected]> """ import numpy as np from scipy import integrate from . sed_integrate import logsimps from . sed_spectrum import Spectrum from . import sed_config from . import units as u class ThermalSpectrum(Spectrum): vectorized = True def __init__(self, energy_density, kT=None, T=None): """ A thermal spectrum has the sameself): spectral shape as the blackbody spectrum but has an arbitrarily normalizable energy density. The thermal spectrum is n(E) = 15*U/(pi*kT)^4*E^2/(exp(E/kT)-1) where * n(E) is the number of photons per unit energy per unit volume, * U is the total energy per unit volume. * kT is the temperature of the photons This formula is equation 33 from Sturner et al 1997 http://iopscience.iop.org/0004-637X/490/2/619/pdf/35841.pdf Input can be either 'kT' in energy units or 'T' in temperature units. For example, in XXX et al, the infrared photon field has temperature kT=3e-3 eV and energy density U=0.9 eV/cm^3 >>> infrared=ThermalSpectrum(kT=3e-3*u.eV, energy_density=0.9*u.eV/u.cm**3) To convince yourself that this code correctly normalized the spectrum, you can explicity integrate E*dN/dE = total energy per unit volume: >>> print u.repr(infrared.integrate(units=True,e_weight=1),'eV/cm^3','%.2f') 0.90 eV/cm^3 """ if kT is not None: kT = kT elif T is not None: kT = u.boltzmann*kwargs.pop('T') else: raise Exception("kT or k must be passed to ThermalSpectrum") self.kT = float(kT/u.erg) # function is essentially 0 outside of this energy range. self.emin=1e-4*self.kT self.emax=1e2*self.kT # equation 33 in Sturner et al 1997 # Note, prefactor*E^2/(exp(E/kT)-1) has units # of photons/energy/volume, so prefactor has units # of photons/energy^3/volume. self.pref = 15*energy_density/(np.pi*kT)**4 self.pref = float(self.pref/(u.erg**-3*u.cm**-3)) @staticmethod def occupation_number(x): """ This is equation 1.49 in R&L. """ return 1/(np.exp(x)-1) def _spectrum(self, energy): """ Return the energy density in units of [1/erg/cm^-3].""" return self.pref*energy**2*self.occupation_number(energy/self.kT) @staticmethod def units_string(): return '1/erg/cm^3' def integrate(self, units=True, e_weight=0): """ Integrate the thermal spectrum from emin to emax. Returns the integral in units of [erg^e_weight/cm^-3] """ int = logsimps(lambda e: e**e_weight*self(e, units=False), self.emin, self.emax, sed_config.PER_DECADE) return int*(u.erg**(e_weight+1)*self.units() if units else 1) class BlackBody(ThermalSpectrum): @staticmethod def compute_energy_density(kT): """ Comparing the formula for a blackbody spectrum with prefactor pref = 8pi/(hc)^3 to the fomrula for a general thermal spectrum: pref = 15*U/(pi*kT)^4, we find that for a blackbody spectrum, we have a thermal spectrum with U = (8*pi/(hc)^3)*(pi*kT)^4/15. """ h=u.planck c=u.speed_of_light pi=np.pi return (8*pi/(h*c)**3)*((pi*kT)**4/15) def __init__(self,kT=None,T=None): """ Implement a blackbody spectrum. The formula for the blackbody spectrum is n(E)=((8pi)/(hc)^3)*E^2/(exp(E/kT)-1) where * n(E) is the number of photons per unit energy per unit volume, * kT is the temperature of the photons This formula is on the top of page 208 in R&L """ if kT is not None: kT = kT elif T is not None: kT = u.boltzmann*T else: raise Exception("kT or k must be passed to BlackBody") energy_density=BlackBody.compute_energy_density(kT) super(BlackBody,self).__init__(energy_density=energy_density, kT=kT) class CMB(BlackBody): """ The CMB is a blackbody spectrum with temperature 2.725K. Note, the energy density for a CMB spectrum is 0.26 eV/cm^3: >>> cmb = CMB() >>> print u.repr(cmb.integrate(units=True,e_weight=1),'eV/cm^3','%.2f') 0.26 eV/cm^3 """ def __init__(self): super(CMB,self).__init__(T=2.725*u.kelvin) if __name__ == "__main__": import doctest doctest.testmod()
[ 9, 12, 13, 14, 16 ]
2,263
a49c00dab8d445ce0b08fd31a4a41d6c8976d662
<mask token> def colorPrint(color, str): print(color + str + '\x1b[0m') def main(): if sys.argv.__len__() < 2: print('Wrong usage, exit') return colorPrint(YELLOW, sys.argv[1]) <mask token>
<mask token> def colorPrint(color, str): print(color + str + '\x1b[0m') def main(): if sys.argv.__len__() < 2: print('Wrong usage, exit') return colorPrint(YELLOW, sys.argv[1]) if __name__ == '__main__': main()
<mask token> BLACK = '\x1b[30;0m' RED = '\x1b[31;0m' GREEN = '\x1b[32;0m' YELLOW = '\x1b[33;0m' BLUE = '\x1b[34;0m' PINK = '\x1b[35;0m' CBLUE = '\x1b[36;0m' WHITE = '\x1b[37;0m' def colorPrint(color, str): print(color + str + '\x1b[0m') def main(): if sys.argv.__len__() < 2: print('Wrong usage, exit') return colorPrint(YELLOW, sys.argv[1]) if __name__ == '__main__': main()
import sys BLACK = '\x1b[30;0m' RED = '\x1b[31;0m' GREEN = '\x1b[32;0m' YELLOW = '\x1b[33;0m' BLUE = '\x1b[34;0m' PINK = '\x1b[35;0m' CBLUE = '\x1b[36;0m' WHITE = '\x1b[37;0m' def colorPrint(color, str): print(color + str + '\x1b[0m') def main(): if sys.argv.__len__() < 2: print('Wrong usage, exit') return colorPrint(YELLOW, sys.argv[1]) if __name__ == '__main__': main()
#!/usr/bin/python import sys BLACK = '\033[30;0m' RED = '\033[31;0m' GREEN = '\033[32;0m' YELLOW = '\033[33;0m' BLUE = '\033[34;0m' PINK = '\033[35;0m' CBLUE = '\033[36;0m' WHITE = '\033[37;0m' def colorPrint(color, str): print(color + str + '\033[0m'); def main(): if sys.argv.__len__() < 2: print('Wrong usage, exit') return colorPrint(YELLOW, sys.argv[1]) if __name__ == '__main__': main()
[ 2, 3, 4, 5, 6 ]
2,264
2bce18354a53c49274f7dd017e1f65c9ff1327b9
<<<<<<< HEAD """Module docstring""" import os import numpy as np from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score ======= #!/usr/bin/python """Module docstring""" import os import numpy as np from pickle_data_2 import Data from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC ### classifier methods ### def linear_discriminant_analysis(data): """Linear Discriminant Analysis""" clf = LinearDiscriminantAnalysis() clf.name = "LDA" train_predict_and_results(data, clf) def nearest_neighbors_classifier(data): """K Nearest neighbors classification""" clf = KNeighborsClassifier(3, 'distance') clf.name = "KNN" train_predict_and_results(data, clf) def support_vector_machine(data): """Support Vector Machines""" clf = SVC() clf.name = "SVC" train_predict_and_results(data, clf) def gaussian_naive_bayes(data): """Naive Bayes""" clf = GaussianNB() clf.name = "GaussNB" train_predict_and_results(data, clf) def logistic_regression(data): """Logistic Regression """ clf = LogisticRegression() clf.name = "LoReg" train_predict_and_results(data, clf) def random_forest(data): """Random Forest""" clf = RandomForestClassifier() clf.name = "RNDForest" train_predict_and_results(data, clf) ### End of classifier methods ### >>>>>>> 05e11c3b88b3fb5313f29e74125ab6fdd8fffd84 def normalize(data): """Returns data with columns normalized input: numpy array output: numpy array """ # normalize data and return # https://stackoverflow.com/questions/29661574/normalize-numpy-array-columns-in-python return (data - data.min(axis=0)) / data.ptp(axis=0) <<<<<<< HEAD def load_data(): """Reads datafile and returns data as numpy array""" # https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.astype.html data = np.load("phase3-data/data_selected_1980_2010.npy").astype(float) return normalize(data) def load_target(column="label"): """Reads target labels and returns two columns: sum15 and label""" columns = {"sum15": 0, "label": 1} if column not in columns.keys(): raise ValueError("%s is not in target data" % column) filepath = os.path.join("phase3-data", "target_1980_2010.npy") target = np.load(filepath) # lets normalize, sum15 might need it target = normalize(target) # return correct column return target[:, columns[column]] def concat_data(data, target): '''Merge dataframe data with dataframe target and returns the final one ''' final_data = np.concatenate((data,target[:,None]), axis=1) return final_data ======= def load_ta_data(): """Reads datafile and returns data as numpy array""" # https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.astype.html data = np.load("data/data_selected_1980_2010.npy").astype(float) return normalize(data) def load_ta_target(): """Reads target labels and returns two columns: sum15 and label""" filepath = os.path.join("data", "target_1980_2010.npy") target = np.load(filepath) return target[:, 1] def load_own_data(): """Loads data corresponding to selected features by custom saola algorithm""" data = Data() features = data.read_selected_features() dataframe = data.get_dataframe_with(features) return normalize(dataframe.values) def load_own_target(): """Loads target column as stored in our data files""" data = Data() target = data.get_label_col() return target.values >>>>>>> 05e11c3b88b3fb5313f29e74125ab6fdd8fffd84 def split_samples(data): """Splits data into training samples and test samples input: numpy array returns tuple (training_samples, test_samples) both are numpy arrays """ training_samples = data[0:9497] test_samples = data[9497:11300] return training_samples, test_samples <<<<<<< HEAD def main(): """The main method""" feat_data = load_data() label_data = load_target() #final = concat_data(feat_data, label_data) #print final X_training, X_test = split_samples(feat_data) Y_training, Y_test = split_samples(label_data) #10- fold cross-validation #knn = KNeighborsClassifier(n_neighbors=3) lda = LinearDiscriminantAnalysis(n_components=3, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) #folds = cross_val_score(lda, X_training, Y_training, cv=10) #print folds #kf = KFold(n_splits=10) #print (kf.get_n_splits(X)) #for training_index, test_index in kf.split(X): # print("TRAIN:", training_index, "TEST:", test_index) # X_training, X_test = X[training_index], X[test_index] # Y_training, Y_test = Y[training_index], Y[test_index] #clf = LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, # solver='svd', store_covariance=False, tol=0.0001) lda.fit(X_training, Y_training) predictions = lda.predict(X_test) print predictions print accuracy_score(Y_test, predictions) ======= def prepare_data(): """Prepare data for classifier to use""" #data, label = load_ta_data(), load_ta_target() data, label = load_own_data(), load_own_target() tra_x, tst_x = split_samples(data) tra_y, tst_y = split_samples(label) return (tra_x, tst_x, tra_y, tst_y) def train_predict_and_results(data, clf): """Perform training, calculate predictions and show results""" tra_x, tst_x, tra_y, tst_y = data clf.fit(tra_x, tra_y) prd_y = clf.predict(tst_x) cnf = confusion_matrix(tst_y, prd_y) print ("Classifier: %s \tAccuracy score:%7.2f %%" "\tTN:%5d FP:%5d FN:%5d TP:%5d" % (clf.name, accuracy_score(tst_y, prd_y) * 100, cnf[0][0], cnf[0][1], cnf[1][0], cnf[1][1])) def main(): """The main method""" data = prepare_data() linear_discriminant_analysis(data) nearest_neighbors_classifier(data) support_vector_machine(data) gaussian_naive_bayes(data) logistic_regression(data) random_forest(data) >>>>>>> 05e11c3b88b3fb5313f29e74125ab6fdd8fffd84 if __name__ == "__main__": main()
null
null
null
null
[ 0 ]
2,265
da30cea4cfb1ffccabe708fe15e5a633b06d299f
<mask token> class Instruction(QWidget): <mask token> def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) <mask token>
<mask token> class Instruction(QWidget): def __init__(self): super().__init__() uic.loadUi('../ui/instruction.ui', self) self.OK_btn.clicked.connect(self.show_game) self.set_background_instruction() def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) <mask token>
<mask token> class Instruction(QWidget): def __init__(self): super().__init__() uic.loadUi('../ui/instruction.ui', self) self.OK_btn.clicked.connect(self.show_game) self.set_background_instruction() def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) def show_game(self): self.parent().show_game()
import sys from PyQt5 import uic from PyQt5.QtWidgets import QWidget from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap class Instruction(QWidget): def __init__(self): super().__init__() uic.loadUi('../ui/instruction.ui', self) self.OK_btn.clicked.connect(self.show_game) self.set_background_instruction() def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) def show_game(self): self.parent().show_game()
import sys from PyQt5 import uic from PyQt5.QtWidgets import QWidget from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap class Instruction(QWidget): def __init__(self): super().__init__() # Set UI file uic.loadUi('../ui/instruction.ui', self) # Connect handlers of buttons self.OK_btn.clicked.connect(self.show_game) self.set_background_instruction() # Set background of the windows def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) # Show window of the game def show_game(self): self.parent().show_game()
[ 2, 3, 4, 5, 6 ]
2,266
8980ac4db2657d3dbd2b70b33a4d13a077d4590e
<mask token> class InvalidUsage(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv @app.errorhandler(InvalidUsage) def handle_invalid_usage(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response <mask token> @app.route('/get_suggestion', methods=['GET', 'POST']) def get_suggestion(): if 'words' not in request.values.keys(): raise InvalidUsage('No words were specified for prediction.', status_code=400) text = request.values['words'] prediction = [] if len(text.split(' ')) > 1: prediction = autocomplete.split_predict(text, 10) else: prediction = autocomplete.predict_currword(text, 10) return jsonify(prediction) @app.route('/send_text', methods=['GET', 'POST']) def send_text(): if 'text' not in request.values.keys(): raise InvalidUsage('The text message was not found in the request.', status_code=400) if 'to' not in request.values.keys(): raise InvalidUsage('The to-number was not found in the request', status_code=400) text = request.values['text'] to_number = request.values['to'] account_sid = 'ACbbd2cff98bcbbad08f76b03701a0f2d9' auth_token = '7d786ff14c6b4572a6e8e78f8ad6aee5' client = Client(account_sid, auth_token) message = client.messages.create(from_='+12267992139', to=to_number, body=text) return jsonify({'to': to_number, 'message': message.body, 'error code': message.error_code})
<mask token> @app.route('/') def index(): return render_template('index.html') class InvalidUsage(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv @app.errorhandler(InvalidUsage) def handle_invalid_usage(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response @app.route('/convert_text_to_speech', methods=['POST']) def convert_text_to_speech(): if 'text_to_convert' not in request.values.keys(): raise InvalidUsage('No text included for conversion', status_code=400) tts = gTTS(text=request.values['text_to_convert'], lang='en') tts.save('converted_text.mp3') os.system('start converted_text.mp3') return send_file('converted_text.mp3', mimetype='audio/mpeg') @app.route('/get_suggestion', methods=['GET', 'POST']) def get_suggestion(): if 'words' not in request.values.keys(): raise InvalidUsage('No words were specified for prediction.', status_code=400) text = request.values['words'] prediction = [] if len(text.split(' ')) > 1: prediction = autocomplete.split_predict(text, 10) else: prediction = autocomplete.predict_currword(text, 10) return jsonify(prediction) @app.route('/send_text', methods=['GET', 'POST']) def send_text(): if 'text' not in request.values.keys(): raise InvalidUsage('The text message was not found in the request.', status_code=400) if 'to' not in request.values.keys(): raise InvalidUsage('The to-number was not found in the request', status_code=400) text = request.values['text'] to_number = request.values['to'] account_sid = 'ACbbd2cff98bcbbad08f76b03701a0f2d9' auth_token = '7d786ff14c6b4572a6e8e78f8ad6aee5' client = Client(account_sid, auth_token) message = client.messages.create(from_='+12267992139', to=to_number, body=text) return jsonify({'to': to_number, 'message': message.body, 'error code': message.error_code})
<mask token> autocomplete.load() <mask token> CORS(app) @app.route('/') def index(): return render_template('index.html') class InvalidUsage(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv @app.errorhandler(InvalidUsage) def handle_invalid_usage(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response @app.route('/convert_text_to_speech', methods=['POST']) def convert_text_to_speech(): if 'text_to_convert' not in request.values.keys(): raise InvalidUsage('No text included for conversion', status_code=400) tts = gTTS(text=request.values['text_to_convert'], lang='en') tts.save('converted_text.mp3') os.system('start converted_text.mp3') return send_file('converted_text.mp3', mimetype='audio/mpeg') @app.route('/get_suggestion', methods=['GET', 'POST']) def get_suggestion(): if 'words' not in request.values.keys(): raise InvalidUsage('No words were specified for prediction.', status_code=400) text = request.values['words'] prediction = [] if len(text.split(' ')) > 1: prediction = autocomplete.split_predict(text, 10) else: prediction = autocomplete.predict_currword(text, 10) return jsonify(prediction) @app.route('/send_text', methods=['GET', 'POST']) def send_text(): if 'text' not in request.values.keys(): raise InvalidUsage('The text message was not found in the request.', status_code=400) if 'to' not in request.values.keys(): raise InvalidUsage('The to-number was not found in the request', status_code=400) text = request.values['text'] to_number = request.values['to'] account_sid = 'ACbbd2cff98bcbbad08f76b03701a0f2d9' auth_token = '7d786ff14c6b4572a6e8e78f8ad6aee5' client = Client(account_sid, auth_token) message = client.messages.create(from_='+12267992139', to=to_number, body=text) return jsonify({'to': to_number, 'message': message.body, 'error code': message.error_code})
<mask token> autocomplete.load() app = Flask(__name__) CORS(app) @app.route('/') def index(): return render_template('index.html') class InvalidUsage(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv @app.errorhandler(InvalidUsage) def handle_invalid_usage(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response @app.route('/convert_text_to_speech', methods=['POST']) def convert_text_to_speech(): if 'text_to_convert' not in request.values.keys(): raise InvalidUsage('No text included for conversion', status_code=400) tts = gTTS(text=request.values['text_to_convert'], lang='en') tts.save('converted_text.mp3') os.system('start converted_text.mp3') return send_file('converted_text.mp3', mimetype='audio/mpeg') @app.route('/get_suggestion', methods=['GET', 'POST']) def get_suggestion(): if 'words' not in request.values.keys(): raise InvalidUsage('No words were specified for prediction.', status_code=400) text = request.values['words'] prediction = [] if len(text.split(' ')) > 1: prediction = autocomplete.split_predict(text, 10) else: prediction = autocomplete.predict_currword(text, 10) return jsonify(prediction) @app.route('/send_text', methods=['GET', 'POST']) def send_text(): if 'text' not in request.values.keys(): raise InvalidUsage('The text message was not found in the request.', status_code=400) if 'to' not in request.values.keys(): raise InvalidUsage('The to-number was not found in the request', status_code=400) text = request.values['text'] to_number = request.values['to'] account_sid = 'ACbbd2cff98bcbbad08f76b03701a0f2d9' auth_token = '7d786ff14c6b4572a6e8e78f8ad6aee5' client = Client(account_sid, auth_token) message = client.messages.create(from_='+12267992139', to=to_number, body=text) return jsonify({'to': to_number, 'message': message.body, 'error code': message.error_code})
from flask import Flask, jsonify, request, send_file, render_template from flask_cors import CORS from twilio.rest import Client import autocomplete from gtts import gTTS import os # Set up the model. autocomplete.load() app = Flask(__name__) CORS(app) # The application @app.route("/") def index(): return render_template("index.html") # Create a class for custom error messages (reference: http://flask.pocoo.org/docs/0.12/patterns/apierrors/). class InvalidUsage(Exception): status_code = 400 # Initialize the InvalidUsage exception. def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload # Convert the exception information into a dictionary. def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv # Register the custom exception with the error handler (reference: http://flask.pocoo.org/docs/0.12/patterns/apierrors/). @app.errorhandler(InvalidUsage) def handle_invalid_usage(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response # Converts English text to speech. @app.route('/convert_text_to_speech', methods=['POST']) def convert_text_to_speech(): # Check to see if the required parameters are present. if 'text_to_convert' not in request.values.keys(): raise InvalidUsage("No text included for conversion", status_code = 400) # Send the post request. tts = gTTS(text=request.values['text_to_convert'], lang='en') tts.save('converted_text.mp3') os.system('start converted_text.mp3') # Return the sound file. return send_file('converted_text.mp3', mimetype='audio/mpeg') # Get suggestions for words that the user typed in. @app.route('/get_suggestion', methods=['GET','POST']) def get_suggestion(): # Raise an exception if the required parameters are not specified. if "words" not in request.values.keys(): raise InvalidUsage("No words were specified for prediction.", status_code = 400) # Predict the next word. text = request.values['words'] prediction = []; if len(text.split(" ")) > 1: prediction = autocomplete.split_predict(text, 10) else: prediction = autocomplete.predict_currword(text, 10) return jsonify(prediction) # Adds text message support to allow Don to send text messages. @app.route('/send_text', methods=['GET', 'POST']) def send_text(): # Raise an exception if the required parameters are not specified. if "text" not in request.values.keys(): raise InvalidUsage("The text message was not found in the request.", status_code = 400) if "to" not in request.values.keys(): raise InvalidUsage("The to-number was not found in the request", status_code = 400) # Extract the required information from the request body. text = request.values['text'] to_number = request.values['to'] # Set up the account credentials - in a production project, this would be placed in a "secrets" file. account_sid = "ACbbd2cff98bcbbad08f76b03701a0f2d9" auth_token = "7d786ff14c6b4572a6e8e78f8ad6aee5" # Send the text message. client = Client(account_sid, auth_token) message = client.messages.create( from_="+12267992139", to=to_number, body=text) return jsonify({"to":to_number, "message":message.body, "error code":message.error_code})
[ 7, 9, 10, 11, 13 ]
2,267
eb5256543d6095668d6eeaf6cfdc9f744d7c73c5
<mask token> class Load(Command): <mask token> <mask token> <mask token> def find_groupname(self, g, s): tries = 0 while True: groups = s.groups() if g not in groups: return g if tries > 3: raise RuntimeError('%r is conflicting, try to pass a new one') i = 0 while True: g = '%s.%s' % (g, i) if g not in groups: break tries += 1
<mask token> class Load(Command): <mask token> <mask token> def run(self, procfile, pargs): args = pargs.args uri = None if len(args) == 2: group = args[0] uri = args[1] elif len(args) == 1: group = args[0] else: group = '.' if pargs.endpoint: uri = pargs.endpoint if not uri: uri = 'http://127.0.0.1:5000' if group == '.': group = procfile.get_groupname() s = Server(uri) group = self.find_groupname(group, s) concurrency = self.parse_concurrency(pargs) for name, cmd_str in procfile.processes(): cmd, args = procfile.parse_cmd(cmd_str) pname = '%s:%s' % (group, name) params = dict(args=args, env=procfile.env, numprocesses= concurrency.get(name, 1), redirect_output=['out', 'err'], cwd=os.path.abspath(procfile.root)) s.add_process(pname, cmd, **params) print('%r has been loaded in %s' % (group, uri)) def find_groupname(self, g, s): tries = 0 while True: groups = s.groups() if g not in groups: return g if tries > 3: raise RuntimeError('%r is conflicting, try to pass a new one') i = 0 while True: g = '%s.%s' % (g, i) if g not in groups: break tries += 1
<mask token> class Load(Command): """ Load a Procfile application to gafferd ====================================== This command allows you to load your Procfile application in gafferd. Command line ------------ $ gaffer load [name] [url] Arguments +++++++++ *name* is the name of the group of process recoreded in gafferd. By default it will be the name of your project folder.You can use ``.`` to specify the current folder. *uri* is the url to connect to a gaffer node. By default 'http://127.0.0.1:5000' Options +++++++ **--endpoint** Gaffer node URL to connect. """ name = 'load' def run(self, procfile, pargs): args = pargs.args uri = None if len(args) == 2: group = args[0] uri = args[1] elif len(args) == 1: group = args[0] else: group = '.' if pargs.endpoint: uri = pargs.endpoint if not uri: uri = 'http://127.0.0.1:5000' if group == '.': group = procfile.get_groupname() s = Server(uri) group = self.find_groupname(group, s) concurrency = self.parse_concurrency(pargs) for name, cmd_str in procfile.processes(): cmd, args = procfile.parse_cmd(cmd_str) pname = '%s:%s' % (group, name) params = dict(args=args, env=procfile.env, numprocesses= concurrency.get(name, 1), redirect_output=['out', 'err'], cwd=os.path.abspath(procfile.root)) s.add_process(pname, cmd, **params) print('%r has been loaded in %s' % (group, uri)) def find_groupname(self, g, s): tries = 0 while True: groups = s.groups() if g not in groups: return g if tries > 3: raise RuntimeError('%r is conflicting, try to pass a new one') i = 0 while True: g = '%s.%s' % (g, i) if g not in groups: break tries += 1
import os from .base import Command from ...httpclient import Server class Load(Command): """ Load a Procfile application to gafferd ====================================== This command allows you to load your Procfile application in gafferd. Command line ------------ $ gaffer load [name] [url] Arguments +++++++++ *name* is the name of the group of process recoreded in gafferd. By default it will be the name of your project folder.You can use ``.`` to specify the current folder. *uri* is the url to connect to a gaffer node. By default 'http://127.0.0.1:5000' Options +++++++ **--endpoint** Gaffer node URL to connect. """ name = 'load' def run(self, procfile, pargs): args = pargs.args uri = None if len(args) == 2: group = args[0] uri = args[1] elif len(args) == 1: group = args[0] else: group = '.' if pargs.endpoint: uri = pargs.endpoint if not uri: uri = 'http://127.0.0.1:5000' if group == '.': group = procfile.get_groupname() s = Server(uri) group = self.find_groupname(group, s) concurrency = self.parse_concurrency(pargs) for name, cmd_str in procfile.processes(): cmd, args = procfile.parse_cmd(cmd_str) pname = '%s:%s' % (group, name) params = dict(args=args, env=procfile.env, numprocesses= concurrency.get(name, 1), redirect_output=['out', 'err'], cwd=os.path.abspath(procfile.root)) s.add_process(pname, cmd, **params) print('%r has been loaded in %s' % (group, uri)) def find_groupname(self, g, s): tries = 0 while True: groups = s.groups() if g not in groups: return g if tries > 3: raise RuntimeError('%r is conflicting, try to pass a new one') i = 0 while True: g = '%s.%s' % (g, i) if g not in groups: break tries += 1
# -*- coding: utf-8 - # # This file is part of gaffer. See the NOTICE for more information. import os from .base import Command from ...httpclient import Server class Load(Command): """\ Load a Procfile application to gafferd ====================================== This command allows you to load your Procfile application in gafferd. Command line ------------ $ gaffer load [name] [url] Arguments +++++++++ *name* is the name of the group of process recoreded in gafferd. By default it will be the name of your project folder.You can use ``.`` to specify the current folder. *uri* is the url to connect to a gaffer node. By default 'http://127.0.0.1:5000' Options +++++++ **--endpoint** Gaffer node URL to connect. """ name = "load" def run(self, procfile, pargs): args = pargs.args # get args uri = None if len(args) == 2: group = args[0] uri = args[1] elif len(args) == 1: group = args[0] else: group = "." if pargs.endpoint: uri = pargs.endpoint if not uri: uri = "http://127.0.0.1:5000" # get the default groupname if group == ".": group = procfile.get_groupname() # create a server instance s = Server(uri) # finally manage group conflicts group = self.find_groupname(group, s) # parse the concurrency settings concurrency = self.parse_concurrency(pargs) # finally send the processes for name, cmd_str in procfile.processes(): cmd, args = procfile.parse_cmd(cmd_str) pname = "%s:%s" % (group, name) params = dict(args=args, env=procfile.env, numprocesses=concurrency.get(name, 1), redirect_output=['out', 'err'], cwd=os.path.abspath(procfile.root)) s.add_process(pname, cmd, **params) print("%r has been loaded in %s" % (group, uri)) def find_groupname(self, g, s): tries = 0 while True: groups = s.groups() if g not in groups: return g if tries > 3: raise RuntimeError("%r is conflicting, try to pass a new one") i = 0 while True: g = "%s.%s" % (g, i) if g not in groups: break tries += 1
[ 2, 3, 5, 6, 7 ]
2,268
dacd4334433eb323ce732c96f680fb7b9333721a
# -*- coding: utf-8 -*- import sys import xlrd import numpy as np import matplotlib.pyplot as plt if __name__ == "__main__": param = sys.argv print "Hello:" + param[0] # ファイルのオープン book = xlrd.open_workbook('sample.xls') # シートの選択 sheet = book.sheet_by_name(u"Sheet1") # sheet = book.sheet_by_index(0) plot_x = np.zeros(sheet.nrows-1, dtype=np.float64) plot_y = np.zeros(sheet.nrows-1, dtype=np.float64) for row in range(sheet.nrows): if row==0: plt.xlabel(sheet.cell(0,1).value) plt.ylabel(sheet.cell(0,2).value) pass elif row>=1: plot_x[row-1] = float(sheet.cell(row,1).value) plot_y[row-1] = float(sheet.cell(row,2).value) plt.xlim([0,100]) plt.ylim([0,50]) plt.plot(plot_x, plot_y,'o',color='r', label='test1') plt.title(u'排出量') plt.legend(loc='lower right') # 凡例表示 plt.show()
null
null
null
null
[ 0 ]
2,269
7599f13d1cabe73d876ff97722962f2fcf9a9940
<mask token> def test_sample_input(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" logger.info(traverse_map(map_template)) def test_sample_input_custom_slope(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" assert traverse_map(map_template, slope=[1, 1]) == 2 assert traverse_map(map_template, slope=[1, 3]) == 7 assert traverse_map(map_template, slope=[2, 1]) == 2 def test_big_input(): with open(os.path.join(local_path, 'input'), 'r') as f: found_trees = traverse_map(f.read()) assert found_trees == 237 def test_sample_input_with_multiple_slopes(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" tree_product = traverse_map_multiple_slopes(map_template, [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]]) assert tree_product == 336 def test_big_input_with_multiple_slopes(): with open(os.path.join(local_path, 'input'), 'r') as f: tree_product = traverse_map_multiple_slopes(f.read(), [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]]) assert tree_product == 2106818610
<mask token> def test_get_map_cell(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" assert get_map_cell(map_template.split('\n'), 1, 10) == '.' assert get_map_cell(map_template.split('\n'), 1, 10 + 11) == '.' def test_sample_input(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" logger.info(traverse_map(map_template)) def test_sample_input_custom_slope(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" assert traverse_map(map_template, slope=[1, 1]) == 2 assert traverse_map(map_template, slope=[1, 3]) == 7 assert traverse_map(map_template, slope=[2, 1]) == 2 def test_big_input(): with open(os.path.join(local_path, 'input'), 'r') as f: found_trees = traverse_map(f.read()) assert found_trees == 237 def test_sample_input_with_multiple_slopes(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" tree_product = traverse_map_multiple_slopes(map_template, [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]]) assert tree_product == 336 def test_big_input_with_multiple_slopes(): with open(os.path.join(local_path, 'input'), 'r') as f: tree_product = traverse_map_multiple_slopes(f.read(), [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]]) assert tree_product == 2106818610
<mask token> logger = logging.getLogger(__name__) local_path = os.path.abspath(os.path.dirname(__file__)) def test_get_map_cell(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" assert get_map_cell(map_template.split('\n'), 1, 10) == '.' assert get_map_cell(map_template.split('\n'), 1, 10 + 11) == '.' def test_sample_input(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" logger.info(traverse_map(map_template)) def test_sample_input_custom_slope(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" assert traverse_map(map_template, slope=[1, 1]) == 2 assert traverse_map(map_template, slope=[1, 3]) == 7 assert traverse_map(map_template, slope=[2, 1]) == 2 def test_big_input(): with open(os.path.join(local_path, 'input'), 'r') as f: found_trees = traverse_map(f.read()) assert found_trees == 237 def test_sample_input_with_multiple_slopes(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" tree_product = traverse_map_multiple_slopes(map_template, [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]]) assert tree_product == 336 def test_big_input_with_multiple_slopes(): with open(os.path.join(local_path, 'input'), 'r') as f: tree_product = traverse_map_multiple_slopes(f.read(), [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]]) assert tree_product == 2106818610
import logging import os.path from day03.code.main import traverse_map, get_map_cell, traverse_map_multiple_slopes logger = logging.getLogger(__name__) local_path = os.path.abspath(os.path.dirname(__file__)) def test_get_map_cell(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" assert get_map_cell(map_template.split('\n'), 1, 10) == '.' assert get_map_cell(map_template.split('\n'), 1, 10 + 11) == '.' def test_sample_input(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" logger.info(traverse_map(map_template)) def test_sample_input_custom_slope(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" assert traverse_map(map_template, slope=[1, 1]) == 2 assert traverse_map(map_template, slope=[1, 3]) == 7 assert traverse_map(map_template, slope=[2, 1]) == 2 def test_big_input(): with open(os.path.join(local_path, 'input'), 'r') as f: found_trees = traverse_map(f.read()) assert found_trees == 237 def test_sample_input_with_multiple_slopes(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" tree_product = traverse_map_multiple_slopes(map_template, [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]]) assert tree_product == 336 def test_big_input_with_multiple_slopes(): with open(os.path.join(local_path, 'input'), 'r') as f: tree_product = traverse_map_multiple_slopes(f.read(), [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]]) assert tree_product == 2106818610
import logging import os.path from day03.code.main import traverse_map, get_map_cell, traverse_map_multiple_slopes logger = logging.getLogger(__name__) local_path = os.path.abspath(os.path.dirname(__file__)) def test_get_map_cell(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" assert get_map_cell(map_template.split("\n"), 1, 10) == "." assert get_map_cell(map_template.split("\n"), 1, 10 + 11) == "." def test_sample_input(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" logger.info(traverse_map(map_template)) def test_sample_input_custom_slope(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" assert traverse_map(map_template, slope=[1, 1]) == 2 assert traverse_map(map_template, slope=[1, 3]) == 7 assert traverse_map(map_template, slope=[2, 1]) == 2 def test_big_input(): with open(os.path.join(local_path, "input"), "r") as f: found_trees = traverse_map(f.read()) assert found_trees == 237 def test_sample_input_with_multiple_slopes(): map_template = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" tree_product = traverse_map_multiple_slopes( map_template, [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]] ) assert tree_product == 336 def test_big_input_with_multiple_slopes(): with open(os.path.join(local_path, "input"), "r") as f: tree_product = traverse_map_multiple_slopes( f.read(), [[1, 1], [1, 3], [1, 5], [1, 7], [2, 1]] ) assert tree_product == 2106818610
[ 5, 6, 7, 8, 9 ]
2,270
ec9f27b4313f72ae6eb7e8280d47de226aeb6bb1
<mask token>
<mask token> def similarity_metric(embedding1: numpy.ndarray, embedding2: numpy.ndarray ) ->float: return numpy.nan_to_num(1 - cosine(embedding1, embedding2), 0)
import numpy from scipy.spatial.distance import cosine def similarity_metric(embedding1: numpy.ndarray, embedding2: numpy.ndarray ) ->float: return numpy.nan_to_num(1 - cosine(embedding1, embedding2), 0)
null
null
[ 0, 1, 2 ]
2,271
967c8348352c805b926643617b88b03a62df2d16
<mask token>
from access.ssh.session import Client from access.ssh.datachannel import DataChannel
null
null
null
[ 0, 1 ]
2,272
7c39b3927bc0702818c54875785b4657c20c441e
<mask token>
class Solution(object): <mask token>
class Solution(object): def longestPalindrome(self, s): """ :type s: str :rtype: str """ if len(s) == 0: return '' if len(s) == 1: return s start = -1 end = -2 for i in range(len(s)): side = 1 while i - side >= 0 and i + side < len(s) and s[i - side] == s[ i + side]: side += 1 if (side - 1) * 2 + 1 > end - start + 1: start = i - (side - 1) end = i + side out_string = s[start:end] start = -1 end = -2 for i in range(len(s) - 1): side = 0 while i - side >= 0 and i + 1 + side < len(s) and s[i - side] == s[ i + 1 + side]: side += 1 if side * 2 > end - start + 1: start = i - side + 1 end = i + 1 + side return out_string if len(out_string) > end - start else s[start:end]
# Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. class Solution(object): def longestPalindrome(self, s): """ :type s: str :rtype: str """ if len(s) == 0: return "" if len(s) == 1: return s start = -1 end = -2 for i in range(len(s)): side = 1 while i - side >= 0 and i + side < len(s) and s[i - side] == s[i + side]: side += 1 if (side - 1) * 2 + 1 > end - start + 1: start = i - (side - 1) end = i + side out_string = s[start:end] start = -1 end = -2 for i in range(len(s) - 1): side = 0 while i - side >= 0 and i + 1 + side < len(s) and s[i - side] == s[i + 1 + side]: side += 1 if side * 2 > end - start + 1: start = i - side + 1 end = i + 1 + side return out_string if len(out_string) > end - start else s[start:end]
null
[ 0, 1, 2, 3 ]
2,273
4605a3f88c73b43fa7611a10a400ad2d4d7c6dfc
<mask token>
__author__ = 'zhouhenglc' TIME_FORMAT = '%Y-%m-%d %H:%M:%S' ENCODING = 'utf-8' G_MULTI_MODE = [6] STATUS_ONLINE = 64 STATUS_OFFLINE = 128 TOKEN_BAD_FORMAT = 'token_bad_format' TOKEN_EXPIRED = 'token_expired' TOKEN_NOT_STORAGE = 'token_not_storage' TOKEN_REQUIRE_REFRESH = 'token_require_refresh' T_STATE_RIGHT = 'right' T_STATE_WRONG = 'wrong' T_STATE_SKIP = 'skip' T_STATES = [T_STATE_RIGHT, T_STATE_WRONG, T_STATE_SKIP] R_EXAM = 'exam' R_QUESTION = 'question' R_VC = 'virtual_currency' R_SE = 'security' E_AFTER_UPDATE = 'after_update' E_GEN_TOKEN = 'gen_token' E_PARSING_TOKEN = 'parsing_token' E_NEW_BILLING = 'new_billing' E_SE_FIREWALL = 'security_firewall' VB_FB = 'feedback_exam' VB_FB_NAME = '题库问题反馈得积分' VC_EC_EM = 'vc_exchange_exam_mem' VC_EC_EM_NAME = '积分换题库会员' SE_ACTION_NORMAL = 'normal' SE_ACTION_WARN = 'warn' SE_ACTION_EXIT = 'exit' DR_KEY_VC_GOODS = 'vc_goods' DR_KEY_ROUTES = 'routes' GOOD_TYPE_EXAM = 'exam'
# !/usr/bin/env python # coding: utf-8 __author__ = 'zhouhenglc' TIME_FORMAT = '%Y-%m-%d %H:%M:%S' ENCODING = 'utf-8' # exam mode # G_SELECT_MODE # 待废弃,逐步完善使用classes.objects.question_type # G_SELECT_MODE = ["无", "选择题", "名词解释", "简答题", "计算题", "论述题", "多选题", "判断题"] G_MULTI_MODE = [6, ] # 多选题型 多选题=6 # G_DEF_OPTIONS = [1, 6] # 自定义选项 单选题=1 多选题=6 # exam status STATUS_ONLINE = 64 STATUS_OFFLINE = 128 # token error TOKEN_BAD_FORMAT = 'token_bad_format' # login again TOKEN_EXPIRED = 'token_expired' # try refresh TOKEN_NOT_STORAGE = 'token_not_storage' # login again TOKEN_REQUIRE_REFRESH = 'token_require_refresh' # try refresh # training question state T_STATE_RIGHT = 'right' T_STATE_WRONG = 'wrong' T_STATE_SKIP = 'skip' T_STATES = [T_STATE_RIGHT, T_STATE_WRONG, T_STATE_SKIP] # resource constants R_EXAM = 'exam' R_QUESTION = 'question' R_VC = 'virtual_currency' R_SE = 'security' # resource event E_AFTER_UPDATE = 'after_update' E_GEN_TOKEN = 'gen_token' E_PARSING_TOKEN = 'parsing_token' E_NEW_BILLING = 'new_billing' E_SE_FIREWALL = 'security_firewall' # vc billing VB_FB = 'feedback_exam' VB_FB_NAME = '题库问题反馈得积分' VC_EC_EM = 'vc_exchange_exam_mem' VC_EC_EM_NAME = '积分换题库会员' # security handle action SE_ACTION_NORMAL = 'normal' SE_ACTION_WARN = 'warn' SE_ACTION_EXIT = 'exit' # DATA_REGISTRY keys DR_KEY_VC_GOODS = 'vc_goods' DR_KEY_ROUTES = 'routes' # goods type GOOD_TYPE_EXAM = 'exam'
null
null
[ 0, 1, 2 ]
2,274
3e48de2e3b12965de1b3b5cb6c3cf68c90ec6212
<mask token>
<mask token> for i in range(10): line = sys.stdin.readline() height = int(line) heights.append(height) heights.sort() heights.reverse() for i in range(3): print(heights[i])
<mask token> heights = [] for i in range(10): line = sys.stdin.readline() height = int(line) heights.append(height) heights.sort() heights.reverse() for i in range(3): print(heights[i])
import sys heights = [] for i in range(10): line = sys.stdin.readline() height = int(line) heights.append(height) heights.sort() heights.reverse() for i in range(3): print(heights[i])
null
[ 0, 1, 2, 3 ]
2,275
fbd5400823a8148adf358a2acc58fde146a25313
<mask token> def register_int_signal_handler(): def stop_thread_handler(signum, frame): log.info('Received signal {0}. Will stop all task threads'.format( signum)) for _ in range(len(THREAD_STOP_FLAGS)): THREAD_STOP_FLAGS[_] = True if platform.platform().startswith('Windows'): signal.signal(signal.CTRL_C_EVENT, stop_thread_handler) else: signal.signal(signal.SIGINT, stop_thread_handler) <mask token> def create_task_list(path_list): """ Walks path recursively, and create a task list :param path_list: a list of (path, rating) :return: a list of ImportTask objects """ current_video_id = Video.objects.all().aggregate(Max('video_id'))[ 'video_id__max'] if not current_video_id: current_video_id = 0 task_list = [] for path, rating in path_list: base_path = os.path.split(path)[0] if os.path.isfile(path): file_name = os.path.basename(path) if is_valid_video_file(path, file_name): video_id, current_video_id = next_video_id(current_video_id, path) task_list.append(ImportTask(video_id, base_path, path, rating)) continue for root, dirs, files in os.walk(path): for file_name in files: try: file_path = os.path.join(root, file_name) if os.path.isdir(file_path): continue if is_valid_video_file(file_path, file_name): video_id, current_video_id = next_video_id( current_video_id, file_path) task_list.append(ImportTask(video_id, base_path, file_path, rating)) except: log.error('#Error while proceeding: {0}'.format(file_name)) exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2, file=sys.stdout) return task_list def start_tasks(task_list): global task_queue for task in task_list: task_queue.put(task) if not THREAD_STOP_FLAGS: for _ in range(MAX_THREAD_NUM): THREAD_STOP_FLAGS.append(True) if not os.path.isdir(COVER_DIR): os.mkdir(COVER_DIR) if not os.path.isdir(THUMB_DIR): os.mkdir(THUMB_DIR) if not os.path.isdir(FLIP_DIR): os.mkdir(FLIP_DIR) for _ in range(MAX_THREAD_NUM): if THREAD_STOP_FLAGS[_]: t = Thread(target=import_worker, kwargs={'thread_index': _}) t.name = str(_) t.daemon = False t.start() task_queue.join() <mask token> class ImportTask(object): def __init__(self, video_id, base_path, path, rating=Video.P): """ Create an import task object. :param video_id: a pre-allocated video_id in number, so we don't need to lock db in multiple thread. :param base_path: path prefix that will be ignored when creating keywords from path. :param path: path of the file :param rating: rating of the video, highest by default. """ self.video_id = video_id self.base_path = base_path self.file_path = path self.rating = rating <mask token> def is_valid_video_file(file_path, file_name): if file_name.startswith('.') or not file_name.endswith('.mp4'): return False if os.path.getsize(file_path) == 0: log.info('Remove invalid video file: {0}'.format(file_path)) os.remove(file_path) return False return True def load_keyword_blacklist_from_file(): blacklist = set() keyword_file = 'keywords.blacklist' try: with open(keyword_file, 'r') as kfp: for line in kfp: line = line.strip('\n') if line: blacklist.add(line) log.info('Keywords blacklist: {0}'.format(blacklist)) except Exception as e: log.error('Error while processing {0}:{1}'.format(keyword_file, e)) return blacklist def get_keywords(prefix, file_path, blacklist): """ Get keywords from file path :param prefix: Prefix of the dir path, so we can ignore them :param file_path: full path of the video file :param blacklist: A set of words/symbols that should be ignored :return: a list of keywords """ file_path = str(file_path).replace(prefix, '') file_path = os.path.splitext(file_path)[0] file_path = str(file_path).lower() for bad_keyword in blacklist: file_path = file_path.replace(bad_keyword, ' ') file_path = re.sub('\\s+', ' ', file_path) keywords = file_path.split(' ') keywords = [k for k in keywords if k] return keywords class KeywordDictDataObj(object): def __init__(self): self.count = 0 self.files = set() <mask token> def gen_thumb(video_path, thumb_path): """ Generate thumb image for the given video, and grabs duration from output :return: (success, duration) """ if os.path.isfile(thumb_path): os.remove(thumb_path) global THUMB_SIZE cmd = ['ffmpeg', '-itsoffset', '-5', '-i', video_path, '-vframes', '1', '-f', 'apng', '-s', THUMB_SIZE, thumb_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) output = p.communicate()[1] duration = search_duration_from_text(output) if not duration: tlog = get_logger(current_thread().name) tlog.error('Failed to find duration for {0}'.format(video_path)) duration = 0 return p.returncode == 0, duration def gen_flips(video_path, video_id, duration, flip_path, flip_num): """ Generate flips for the given video :param video_path: path of the video :param video_id: id of the file :param duration: duration of video in seconds :param flip_path: path dir to put the flips :param flip_num: number of flips to generate :return: True on success, False otherwise """ if not G_GEN_IMAGE: return True duration = float(duration) flip_num = float(flip_num) interval = duration / flip_num if interval <= 0.0: tlog = get_logger(current_thread().name) tlog.error('Cannot generate flips. Duration: {0} FlipNum:{1}'. format(duration, flip_num)) return False fps = 'fps=1/' + str(interval) global THUMB_SIZE flip_path = os.path.join(flip_path, str(video_id)) for _ in range(FLIP_NUM + 3): flip_file = '{0}-{1}.png'.format(flip_path, _) if os.path.isfile(flip_file): os.remove(flip_file) flip_path_template = flip_path + '-%d.png' cmd = ['ffmpeg', '-i', video_path, '-vf', fps, '-s', THUMB_SIZE, flip_path_template] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 <mask token> def search_duration_from_text(text): regExp = re.compile('Duration: (\\d{2}):(\\d{2}):(\\d{2})') result = regExp.search(text, re.M | re.U) if result is not None: hour, min, sec = result.groups() duration = int(hour) * 3600 + int(min) * 60 + int(sec) return duration return None
<mask token> def register_int_signal_handler(): def stop_thread_handler(signum, frame): log.info('Received signal {0}. Will stop all task threads'.format( signum)) for _ in range(len(THREAD_STOP_FLAGS)): THREAD_STOP_FLAGS[_] = True if platform.platform().startswith('Windows'): signal.signal(signal.CTRL_C_EVENT, stop_thread_handler) else: signal.signal(signal.SIGINT, stop_thread_handler) def next_video_id(current, path): existing = Video.objects.filter(path=path) if existing: return existing[0].video_id, current current += 1 return current, current def create_task_list(path_list): """ Walks path recursively, and create a task list :param path_list: a list of (path, rating) :return: a list of ImportTask objects """ current_video_id = Video.objects.all().aggregate(Max('video_id'))[ 'video_id__max'] if not current_video_id: current_video_id = 0 task_list = [] for path, rating in path_list: base_path = os.path.split(path)[0] if os.path.isfile(path): file_name = os.path.basename(path) if is_valid_video_file(path, file_name): video_id, current_video_id = next_video_id(current_video_id, path) task_list.append(ImportTask(video_id, base_path, path, rating)) continue for root, dirs, files in os.walk(path): for file_name in files: try: file_path = os.path.join(root, file_name) if os.path.isdir(file_path): continue if is_valid_video_file(file_path, file_name): video_id, current_video_id = next_video_id( current_video_id, file_path) task_list.append(ImportTask(video_id, base_path, file_path, rating)) except: log.error('#Error while proceeding: {0}'.format(file_name)) exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2, file=sys.stdout) return task_list def start_tasks(task_list): global task_queue for task in task_list: task_queue.put(task) if not THREAD_STOP_FLAGS: for _ in range(MAX_THREAD_NUM): THREAD_STOP_FLAGS.append(True) if not os.path.isdir(COVER_DIR): os.mkdir(COVER_DIR) if not os.path.isdir(THUMB_DIR): os.mkdir(THUMB_DIR) if not os.path.isdir(FLIP_DIR): os.mkdir(FLIP_DIR) for _ in range(MAX_THREAD_NUM): if THREAD_STOP_FLAGS[_]: t = Thread(target=import_worker, kwargs={'thread_index': _}) t.name = str(_) t.daemon = False t.start() task_queue.join() <mask token> class ImportTask(object): def __init__(self, video_id, base_path, path, rating=Video.P): """ Create an import task object. :param video_id: a pre-allocated video_id in number, so we don't need to lock db in multiple thread. :param base_path: path prefix that will be ignored when creating keywords from path. :param path: path of the file :param rating: rating of the video, highest by default. """ self.video_id = video_id self.base_path = base_path self.file_path = path self.rating = rating <mask token> def is_valid_video_file(file_path, file_name): if file_name.startswith('.') or not file_name.endswith('.mp4'): return False if os.path.getsize(file_path) == 0: log.info('Remove invalid video file: {0}'.format(file_path)) os.remove(file_path) return False return True def load_keyword_blacklist_from_file(): blacklist = set() keyword_file = 'keywords.blacklist' try: with open(keyword_file, 'r') as kfp: for line in kfp: line = line.strip('\n') if line: blacklist.add(line) log.info('Keywords blacklist: {0}'.format(blacklist)) except Exception as e: log.error('Error while processing {0}:{1}'.format(keyword_file, e)) return blacklist def get_keywords(prefix, file_path, blacklist): """ Get keywords from file path :param prefix: Prefix of the dir path, so we can ignore them :param file_path: full path of the video file :param blacklist: A set of words/symbols that should be ignored :return: a list of keywords """ file_path = str(file_path).replace(prefix, '') file_path = os.path.splitext(file_path)[0] file_path = str(file_path).lower() for bad_keyword in blacklist: file_path = file_path.replace(bad_keyword, ' ') file_path = re.sub('\\s+', ' ', file_path) keywords = file_path.split(' ') keywords = [k for k in keywords if k] return keywords class KeywordDictDataObj(object): def __init__(self): self.count = 0 self.files = set() def get_thumb_path(fn): return './static/thumb/' + str(fn) + '.png' <mask token> def gen_thumb(video_path, thumb_path): """ Generate thumb image for the given video, and grabs duration from output :return: (success, duration) """ if os.path.isfile(thumb_path): os.remove(thumb_path) global THUMB_SIZE cmd = ['ffmpeg', '-itsoffset', '-5', '-i', video_path, '-vframes', '1', '-f', 'apng', '-s', THUMB_SIZE, thumb_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) output = p.communicate()[1] duration = search_duration_from_text(output) if not duration: tlog = get_logger(current_thread().name) tlog.error('Failed to find duration for {0}'.format(video_path)) duration = 0 return p.returncode == 0, duration def gen_flips(video_path, video_id, duration, flip_path, flip_num): """ Generate flips for the given video :param video_path: path of the video :param video_id: id of the file :param duration: duration of video in seconds :param flip_path: path dir to put the flips :param flip_num: number of flips to generate :return: True on success, False otherwise """ if not G_GEN_IMAGE: return True duration = float(duration) flip_num = float(flip_num) interval = duration / flip_num if interval <= 0.0: tlog = get_logger(current_thread().name) tlog.error('Cannot generate flips. Duration: {0} FlipNum:{1}'. format(duration, flip_num)) return False fps = 'fps=1/' + str(interval) global THUMB_SIZE flip_path = os.path.join(flip_path, str(video_id)) for _ in range(FLIP_NUM + 3): flip_file = '{0}-{1}.png'.format(flip_path, _) if os.path.isfile(flip_file): os.remove(flip_file) flip_path_template = flip_path + '-%d.png' cmd = ['ffmpeg', '-i', video_path, '-vf', fps, '-s', THUMB_SIZE, flip_path_template] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 def gen_cover(video_path, cover_path): if not G_GEN_IMAGE: return True if os.path.isfile(cover_path): os.remove(cover_path) cmd = ['ffmpeg', '-itsoffset', '-1', '-i', video_path, '-vframes', '1', '-f', 'apng', cover_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 <mask token> def search_duration_from_text(text): regExp = re.compile('Duration: (\\d{2}):(\\d{2}):(\\d{2})') result = regExp.search(text, re.M | re.U) if result is not None: hour, min, sec = result.groups() duration = int(hour) * 3600 + int(min) * 60 + int(sec) return duration return None
<mask token> def register_int_signal_handler(): def stop_thread_handler(signum, frame): log.info('Received signal {0}. Will stop all task threads'.format( signum)) for _ in range(len(THREAD_STOP_FLAGS)): THREAD_STOP_FLAGS[_] = True if platform.platform().startswith('Windows'): signal.signal(signal.CTRL_C_EVENT, stop_thread_handler) else: signal.signal(signal.SIGINT, stop_thread_handler) def next_video_id(current, path): existing = Video.objects.filter(path=path) if existing: return existing[0].video_id, current current += 1 return current, current def create_task_list(path_list): """ Walks path recursively, and create a task list :param path_list: a list of (path, rating) :return: a list of ImportTask objects """ current_video_id = Video.objects.all().aggregate(Max('video_id'))[ 'video_id__max'] if not current_video_id: current_video_id = 0 task_list = [] for path, rating in path_list: base_path = os.path.split(path)[0] if os.path.isfile(path): file_name = os.path.basename(path) if is_valid_video_file(path, file_name): video_id, current_video_id = next_video_id(current_video_id, path) task_list.append(ImportTask(video_id, base_path, path, rating)) continue for root, dirs, files in os.walk(path): for file_name in files: try: file_path = os.path.join(root, file_name) if os.path.isdir(file_path): continue if is_valid_video_file(file_path, file_name): video_id, current_video_id = next_video_id( current_video_id, file_path) task_list.append(ImportTask(video_id, base_path, file_path, rating)) except: log.error('#Error while proceeding: {0}'.format(file_name)) exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2, file=sys.stdout) return task_list def start_tasks(task_list): global task_queue for task in task_list: task_queue.put(task) if not THREAD_STOP_FLAGS: for _ in range(MAX_THREAD_NUM): THREAD_STOP_FLAGS.append(True) if not os.path.isdir(COVER_DIR): os.mkdir(COVER_DIR) if not os.path.isdir(THUMB_DIR): os.mkdir(THUMB_DIR) if not os.path.isdir(FLIP_DIR): os.mkdir(FLIP_DIR) for _ in range(MAX_THREAD_NUM): if THREAD_STOP_FLAGS[_]: t = Thread(target=import_worker, kwargs={'thread_index': _}) t.name = str(_) t.daemon = False t.start() task_queue.join() <mask token> class ImportTask(object): def __init__(self, video_id, base_path, path, rating=Video.P): """ Create an import task object. :param video_id: a pre-allocated video_id in number, so we don't need to lock db in multiple thread. :param base_path: path prefix that will be ignored when creating keywords from path. :param path: path of the file :param rating: rating of the video, highest by default. """ self.video_id = video_id self.base_path = base_path self.file_path = path self.rating = rating def import_worker(thread_index): """ Thread worker that deals with tasks. :return: """ THREAD_STOP_FLAGS[thread_index] = False while not (THREAD_STOP_FLAGS[thread_index] or task_queue.empty()): task = task_queue.get() do_import_video_task(task) task_queue.task_done() THREAD_STOP_FLAGS[thread_index] = True def do_import_video_task(task): video_id = task.video_id file_path = task.file_path rating = task.rating file_name = os.path.basename(file_path)[:-4] tlog = get_logger(current_thread().name) videos = Video.objects.filter(path=file_path) if videos: tlog.info('Existing video: {0}'.format(task.file_path)) return video = Video() video.video_id = video_id video.rating = rating thumb_path = get_thumb_path(video.video_id) cover_path = get_cover_path(video.video_id) if not gen_cover(task.file_path, cover_path): tlog.error('Failed to gen cover for {0}'.format(file_path)) return success, duration = gen_thumb(file_path, thumb_path) if success: if not gen_flips(file_path, video.video_id, duration, FLIP_DIR, FLIP_NUM): tlog.error('Failed to gen flips for {0}'.format(file_path)) else: tlog.error('Failed to gen thumb for {0}'.format(file_path)) video.title = file_name video.path = file_path video.duration = duration video.save() tlog.info('#Video: {0} [{1}] {2}'.format(video.title, video.duration, video.path)) def is_valid_video_file(file_path, file_name): if file_name.startswith('.') or not file_name.endswith('.mp4'): return False if os.path.getsize(file_path) == 0: log.info('Remove invalid video file: {0}'.format(file_path)) os.remove(file_path) return False return True def load_keyword_blacklist_from_file(): blacklist = set() keyword_file = 'keywords.blacklist' try: with open(keyword_file, 'r') as kfp: for line in kfp: line = line.strip('\n') if line: blacklist.add(line) log.info('Keywords blacklist: {0}'.format(blacklist)) except Exception as e: log.error('Error while processing {0}:{1}'.format(keyword_file, e)) return blacklist def get_keywords(prefix, file_path, blacklist): """ Get keywords from file path :param prefix: Prefix of the dir path, so we can ignore them :param file_path: full path of the video file :param blacklist: A set of words/symbols that should be ignored :return: a list of keywords """ file_path = str(file_path).replace(prefix, '') file_path = os.path.splitext(file_path)[0] file_path = str(file_path).lower() for bad_keyword in blacklist: file_path = file_path.replace(bad_keyword, ' ') file_path = re.sub('\\s+', ' ', file_path) keywords = file_path.split(' ') keywords = [k for k in keywords if k] return keywords class KeywordDictDataObj(object): def __init__(self): self.count = 0 self.files = set() def get_thumb_path(fn): return './static/thumb/' + str(fn) + '.png' <mask token> def gen_thumb(video_path, thumb_path): """ Generate thumb image for the given video, and grabs duration from output :return: (success, duration) """ if os.path.isfile(thumb_path): os.remove(thumb_path) global THUMB_SIZE cmd = ['ffmpeg', '-itsoffset', '-5', '-i', video_path, '-vframes', '1', '-f', 'apng', '-s', THUMB_SIZE, thumb_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) output = p.communicate()[1] duration = search_duration_from_text(output) if not duration: tlog = get_logger(current_thread().name) tlog.error('Failed to find duration for {0}'.format(video_path)) duration = 0 return p.returncode == 0, duration def gen_flips(video_path, video_id, duration, flip_path, flip_num): """ Generate flips for the given video :param video_path: path of the video :param video_id: id of the file :param duration: duration of video in seconds :param flip_path: path dir to put the flips :param flip_num: number of flips to generate :return: True on success, False otherwise """ if not G_GEN_IMAGE: return True duration = float(duration) flip_num = float(flip_num) interval = duration / flip_num if interval <= 0.0: tlog = get_logger(current_thread().name) tlog.error('Cannot generate flips. Duration: {0} FlipNum:{1}'. format(duration, flip_num)) return False fps = 'fps=1/' + str(interval) global THUMB_SIZE flip_path = os.path.join(flip_path, str(video_id)) for _ in range(FLIP_NUM + 3): flip_file = '{0}-{1}.png'.format(flip_path, _) if os.path.isfile(flip_file): os.remove(flip_file) flip_path_template = flip_path + '-%d.png' cmd = ['ffmpeg', '-i', video_path, '-vf', fps, '-s', THUMB_SIZE, flip_path_template] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 def gen_cover(video_path, cover_path): if not G_GEN_IMAGE: return True if os.path.isfile(cover_path): os.remove(cover_path) cmd = ['ffmpeg', '-itsoffset', '-1', '-i', video_path, '-vframes', '1', '-f', 'apng', cover_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 def convert_video_to_mp4(video_path, dest_path): tlog = get_logger(current_thread().name) if os.path.isfile(dest_path): tlog.info('#Already converted, skip: {0}'.format(dest_path)) return True tlog.info('#Converting: {0} => {1}\n', video_path, dest_path) cmd = ['ffmpeg', '-i', video_path, '-vcodec', 'h264', '-acodec', 'aac', dest_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 def search_duration_from_text(text): regExp = re.compile('Duration: (\\d{2}):(\\d{2}):(\\d{2})') result = regExp.search(text, re.M | re.U) if result is not None: hour, min, sec = result.groups() duration = int(hour) * 3600 + int(min) * 60 + int(sec) return duration return None
<mask token> def register_int_signal_handler(): def stop_thread_handler(signum, frame): log.info('Received signal {0}. Will stop all task threads'.format( signum)) for _ in range(len(THREAD_STOP_FLAGS)): THREAD_STOP_FLAGS[_] = True if platform.platform().startswith('Windows'): signal.signal(signal.CTRL_C_EVENT, stop_thread_handler) else: signal.signal(signal.SIGINT, stop_thread_handler) def next_video_id(current, path): existing = Video.objects.filter(path=path) if existing: return existing[0].video_id, current current += 1 return current, current def create_task_list(path_list): """ Walks path recursively, and create a task list :param path_list: a list of (path, rating) :return: a list of ImportTask objects """ current_video_id = Video.objects.all().aggregate(Max('video_id'))[ 'video_id__max'] if not current_video_id: current_video_id = 0 task_list = [] for path, rating in path_list: base_path = os.path.split(path)[0] if os.path.isfile(path): file_name = os.path.basename(path) if is_valid_video_file(path, file_name): video_id, current_video_id = next_video_id(current_video_id, path) task_list.append(ImportTask(video_id, base_path, path, rating)) continue for root, dirs, files in os.walk(path): for file_name in files: try: file_path = os.path.join(root, file_name) if os.path.isdir(file_path): continue if is_valid_video_file(file_path, file_name): video_id, current_video_id = next_video_id( current_video_id, file_path) task_list.append(ImportTask(video_id, base_path, file_path, rating)) except: log.error('#Error while proceeding: {0}'.format(file_name)) exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2, file=sys.stdout) return task_list def start_tasks(task_list): global task_queue for task in task_list: task_queue.put(task) if not THREAD_STOP_FLAGS: for _ in range(MAX_THREAD_NUM): THREAD_STOP_FLAGS.append(True) if not os.path.isdir(COVER_DIR): os.mkdir(COVER_DIR) if not os.path.isdir(THUMB_DIR): os.mkdir(THUMB_DIR) if not os.path.isdir(FLIP_DIR): os.mkdir(FLIP_DIR) for _ in range(MAX_THREAD_NUM): if THREAD_STOP_FLAGS[_]: t = Thread(target=import_worker, kwargs={'thread_index': _}) t.name = str(_) t.daemon = False t.start() task_queue.join() <mask token> class ImportTask(object): def __init__(self, video_id, base_path, path, rating=Video.P): """ Create an import task object. :param video_id: a pre-allocated video_id in number, so we don't need to lock db in multiple thread. :param base_path: path prefix that will be ignored when creating keywords from path. :param path: path of the file :param rating: rating of the video, highest by default. """ self.video_id = video_id self.base_path = base_path self.file_path = path self.rating = rating def import_worker(thread_index): """ Thread worker that deals with tasks. :return: """ THREAD_STOP_FLAGS[thread_index] = False while not (THREAD_STOP_FLAGS[thread_index] or task_queue.empty()): task = task_queue.get() do_import_video_task(task) task_queue.task_done() THREAD_STOP_FLAGS[thread_index] = True def do_import_video_task(task): video_id = task.video_id file_path = task.file_path rating = task.rating file_name = os.path.basename(file_path)[:-4] tlog = get_logger(current_thread().name) videos = Video.objects.filter(path=file_path) if videos: tlog.info('Existing video: {0}'.format(task.file_path)) return video = Video() video.video_id = video_id video.rating = rating thumb_path = get_thumb_path(video.video_id) cover_path = get_cover_path(video.video_id) if not gen_cover(task.file_path, cover_path): tlog.error('Failed to gen cover for {0}'.format(file_path)) return success, duration = gen_thumb(file_path, thumb_path) if success: if not gen_flips(file_path, video.video_id, duration, FLIP_DIR, FLIP_NUM): tlog.error('Failed to gen flips for {0}'.format(file_path)) else: tlog.error('Failed to gen thumb for {0}'.format(file_path)) video.title = file_name video.path = file_path video.duration = duration video.save() tlog.info('#Video: {0} [{1}] {2}'.format(video.title, video.duration, video.path)) def is_valid_video_file(file_path, file_name): if file_name.startswith('.') or not file_name.endswith('.mp4'): return False if os.path.getsize(file_path) == 0: log.info('Remove invalid video file: {0}'.format(file_path)) os.remove(file_path) return False return True def load_keyword_blacklist_from_file(): blacklist = set() keyword_file = 'keywords.blacklist' try: with open(keyword_file, 'r') as kfp: for line in kfp: line = line.strip('\n') if line: blacklist.add(line) log.info('Keywords blacklist: {0}'.format(blacklist)) except Exception as e: log.error('Error while processing {0}:{1}'.format(keyword_file, e)) return blacklist def get_keywords(prefix, file_path, blacklist): """ Get keywords from file path :param prefix: Prefix of the dir path, so we can ignore them :param file_path: full path of the video file :param blacklist: A set of words/symbols that should be ignored :return: a list of keywords """ file_path = str(file_path).replace(prefix, '') file_path = os.path.splitext(file_path)[0] file_path = str(file_path).lower() for bad_keyword in blacklist: file_path = file_path.replace(bad_keyword, ' ') file_path = re.sub('\\s+', ' ', file_path) keywords = file_path.split(' ') keywords = [k for k in keywords if k] return keywords class KeywordDictDataObj(object): def __init__(self): self.count = 0 self.files = set() def get_thumb_path(fn): return './static/thumb/' + str(fn) + '.png' def get_cover_path(fn): return './static/cover/' + str(fn) + '.png' def gen_thumb(video_path, thumb_path): """ Generate thumb image for the given video, and grabs duration from output :return: (success, duration) """ if os.path.isfile(thumb_path): os.remove(thumb_path) global THUMB_SIZE cmd = ['ffmpeg', '-itsoffset', '-5', '-i', video_path, '-vframes', '1', '-f', 'apng', '-s', THUMB_SIZE, thumb_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) output = p.communicate()[1] duration = search_duration_from_text(output) if not duration: tlog = get_logger(current_thread().name) tlog.error('Failed to find duration for {0}'.format(video_path)) duration = 0 return p.returncode == 0, duration def gen_flips(video_path, video_id, duration, flip_path, flip_num): """ Generate flips for the given video :param video_path: path of the video :param video_id: id of the file :param duration: duration of video in seconds :param flip_path: path dir to put the flips :param flip_num: number of flips to generate :return: True on success, False otherwise """ if not G_GEN_IMAGE: return True duration = float(duration) flip_num = float(flip_num) interval = duration / flip_num if interval <= 0.0: tlog = get_logger(current_thread().name) tlog.error('Cannot generate flips. Duration: {0} FlipNum:{1}'. format(duration, flip_num)) return False fps = 'fps=1/' + str(interval) global THUMB_SIZE flip_path = os.path.join(flip_path, str(video_id)) for _ in range(FLIP_NUM + 3): flip_file = '{0}-{1}.png'.format(flip_path, _) if os.path.isfile(flip_file): os.remove(flip_file) flip_path_template = flip_path + '-%d.png' cmd = ['ffmpeg', '-i', video_path, '-vf', fps, '-s', THUMB_SIZE, flip_path_template] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 def gen_cover(video_path, cover_path): if not G_GEN_IMAGE: return True if os.path.isfile(cover_path): os.remove(cover_path) cmd = ['ffmpeg', '-itsoffset', '-1', '-i', video_path, '-vframes', '1', '-f', 'apng', cover_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 def convert_video_to_mp4(video_path, dest_path): tlog = get_logger(current_thread().name) if os.path.isfile(dest_path): tlog.info('#Already converted, skip: {0}'.format(dest_path)) return True tlog.info('#Converting: {0} => {1}\n', video_path, dest_path) cmd = ['ffmpeg', '-i', video_path, '-vcodec', 'h264', '-acodec', 'aac', dest_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 def search_duration_from_text(text): regExp = re.compile('Duration: (\\d{2}):(\\d{2}):(\\d{2})') result = regExp.search(text, re.M | re.U) if result is not None: hour, min, sec = result.groups() duration = int(hour) * 3600 + int(min) * 60 + int(sec) return duration return None
# coding=utf8 # encoding: utf-8 import os import platform import re import signal import sys import traceback from subprocess import Popen, PIPE from threading import Thread, current_thread from Queue import Queue from util.log import get_logger, log from video.models import Video, KeywordVideoId from django.db.models import Max from collect_video import G_GEN_IMAGE MAX_THREAD_NUM = 4 THREAD_STOP_FLAGS = [] THUMB_DIR = './static/thumb' THUMB_SIZE = '180x135' COVER_DIR = './static/cover' FLIP_DIR = './static/flip' FLIP_NUM = 10 task_queue = Queue(maxsize=2000) def register_int_signal_handler(): def stop_thread_handler(signum, frame): log.info("Received signal {0}. Will stop all task threads".format(signum)) for _ in range(len(THREAD_STOP_FLAGS)): THREAD_STOP_FLAGS[_] = True if platform.platform().startswith('Windows'): signal.signal(signal.CTRL_C_EVENT, stop_thread_handler) else: signal.signal(signal.SIGINT, stop_thread_handler) def next_video_id(current, path): existing = Video.objects.filter(path=path) if existing: return existing[0].video_id, current current += 1 return current, current def create_task_list(path_list): """ Walks path recursively, and create a task list :param path_list: a list of (path, rating) :return: a list of ImportTask objects """ current_video_id = Video.objects.all().aggregate(Max('video_id'))['video_id__max'] if not current_video_id: current_video_id = 0 task_list = [] for (path, rating) in path_list: base_path = os.path.split(path)[0] if os.path.isfile(path): file_name = os.path.basename(path) if is_valid_video_file(path, file_name): video_id, current_video_id = next_video_id(current_video_id, path) task_list.append(ImportTask(video_id, base_path, path, rating)) continue for (root, dirs, files) in os.walk(path): for file_name in files: try: file_path = os.path.join(root, file_name) if os.path.isdir(file_path): continue if is_valid_video_file(file_path, file_name): video_id, current_video_id = next_video_id(current_video_id, file_path) task_list.append(ImportTask(video_id, base_path, file_path, rating)) except: log.error('#Error while proceeding: {0}'.format(file_name)) exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2, file=sys.stdout) return task_list def start_tasks(task_list): global task_queue for task in task_list: task_queue.put(task) if not THREAD_STOP_FLAGS: for _ in range(MAX_THREAD_NUM): THREAD_STOP_FLAGS.append(True) if not os.path.isdir(COVER_DIR): os.mkdir(COVER_DIR) if not os.path.isdir(THUMB_DIR): os.mkdir(THUMB_DIR) if not os.path.isdir(FLIP_DIR): os.mkdir(FLIP_DIR) for _ in range(MAX_THREAD_NUM): if THREAD_STOP_FLAGS[_]: t = Thread(target=import_worker, kwargs={'thread_index': _}) t.name = str(_) t.daemon = False t.start() task_queue.join() def add_keywords_to_db(task_list): blacklist = load_keyword_blacklist_from_file() for task in task_list: base_path = task.base_path file_path = task.file_path video_id = task.video_id keywords = get_keywords(base_path, file_path, blacklist) log.info('#Keywords:'.format(keywords)) for key in keywords: try: if KeywordVideoId.objects.filter(keyword=key, video_id=video_id): log.info("Existing keyword {0} for {1}".format(key, video_id)) continue keyword_record = KeywordVideoId() keyword_record.keyword = key keyword_record.video = Video.objects.get(video_id=video_id) keyword_record.save() log.info('#Added keyword:{0} for video_id: {1}'.format(key, video_id)) except Exception as e: log.error("Error while adding keyword {0} to video {1}: {2}".format(key, video_id, e)) class ImportTask(object): def __init__(self, video_id, base_path, path, rating=Video.P): """ Create an import task object. :param video_id: a pre-allocated video_id in number, so we don't need to lock db in multiple thread. :param base_path: path prefix that will be ignored when creating keywords from path. :param path: path of the file :param rating: rating of the video, highest by default. """ self.video_id = video_id self.base_path = base_path self.file_path = path self.rating = rating def import_worker(thread_index): """ Thread worker that deals with tasks. :return: """ THREAD_STOP_FLAGS[thread_index] = False while not (THREAD_STOP_FLAGS[thread_index] or task_queue.empty()): task = task_queue.get() do_import_video_task(task) task_queue.task_done() THREAD_STOP_FLAGS[thread_index] = True def do_import_video_task(task): video_id = task.video_id file_path = task.file_path rating = task.rating file_name = os.path.basename(file_path)[:-4] tlog = get_logger(current_thread().name) videos = Video.objects.filter(path=file_path) if videos: tlog.info("Existing video: {0}".format(task.file_path)) return video = Video() video.video_id = video_id video.rating = rating thumb_path = get_thumb_path(video.video_id) cover_path = get_cover_path(video.video_id) if not gen_cover(task.file_path, cover_path): tlog.error("Failed to gen cover for {0}".format(file_path)) return success, duration = gen_thumb(file_path, thumb_path) if success: if not gen_flips(file_path, video.video_id, duration, FLIP_DIR, FLIP_NUM): tlog.error("Failed to gen flips for {0}".format(file_path)) else: tlog.error("Failed to gen thumb for {0}".format(file_path)) video.title = file_name video.path = file_path video.duration = duration video.save() tlog.info('#Video: {0} [{1}] {2}'.format(video.title, video.duration, video.path)) def is_valid_video_file(file_path, file_name): # skip hidden files (possibly not valid video files) if file_name.startswith('.') or (not file_name.endswith('.mp4')): return False if os.path.getsize(file_path) == 0: log.info('Remove invalid video file: {0}'.format(file_path)) os.remove(file_path) return False return True def load_keyword_blacklist_from_file(): blacklist = set() keyword_file = 'keywords.blacklist' try: with open(keyword_file, 'r') as kfp: for line in kfp: line = line.strip('\n') if line: blacklist.add(line) log.info("Keywords blacklist: {0}".format(blacklist)) except Exception as e: log.error("Error while processing {0}:{1}".format(keyword_file, e)) return blacklist def get_keywords(prefix, file_path, blacklist): """ Get keywords from file path :param prefix: Prefix of the dir path, so we can ignore them :param file_path: full path of the video file :param blacklist: A set of words/symbols that should be ignored :return: a list of keywords """ file_path = str(file_path).replace(prefix, '') # remove base_dir from file_path file_path = os.path.splitext(file_path)[0] # Only keep the part without extension file_path = str(file_path).lower() for bad_keyword in blacklist: file_path = file_path.replace(bad_keyword, ' ') file_path = re.sub(r'\s+', ' ', file_path) # Replace multiple spaces to single one keywords = file_path.split(' ') keywords = [k for k in keywords if k] return keywords class KeywordDictDataObj(object): def __init__(self): self.count = 0 self.files = set() def get_thumb_path(fn): return './static/thumb/' + str(fn) + '.png' def get_cover_path(fn): return './static/cover/' + str(fn) + '.png' def gen_thumb(video_path, thumb_path): """ Generate thumb image for the given video, and grabs duration from output :return: (success, duration) """ if os.path.isfile(thumb_path): os.remove(thumb_path) global THUMB_SIZE cmd = ['ffmpeg', '-itsoffset', '-5', '-i', video_path, '-vframes', '1', '-f', 'apng', '-s', THUMB_SIZE, thumb_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) output = p.communicate()[1] duration = search_duration_from_text(output) if not duration: tlog = get_logger(current_thread().name) tlog.error("Failed to find duration for {0}".format(video_path)) duration = 0 return p.returncode == 0, duration def gen_flips(video_path, video_id, duration, flip_path, flip_num): """ Generate flips for the given video :param video_path: path of the video :param video_id: id of the file :param duration: duration of video in seconds :param flip_path: path dir to put the flips :param flip_num: number of flips to generate :return: True on success, False otherwise """ if not G_GEN_IMAGE: return True duration = float(duration) flip_num = float(flip_num) interval = duration / flip_num if interval <= 0.0: tlog = get_logger(current_thread().name) tlog.error("Cannot generate flips. Duration: {0} FlipNum:{1}".format(duration, flip_num)) return False fps = 'fps=1/' + str(interval) global THUMB_SIZE flip_path = os.path.join(flip_path, str(video_id)) for _ in range(FLIP_NUM+3): flip_file = "{0}-{1}.png".format(flip_path, _) if os.path.isfile(flip_file): os.remove(flip_file) flip_path_template = flip_path + '-%d.png' cmd = ['ffmpeg', '-i', video_path, '-vf', fps, '-s', THUMB_SIZE, flip_path_template] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 def gen_cover(video_path, cover_path): if not G_GEN_IMAGE: return True if os.path.isfile(cover_path): os.remove(cover_path) cmd = ['ffmpeg', '-itsoffset', '-1', '-i', video_path, '-vframes', '1', '-f', 'apng', cover_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 # Convert video to mp4 def convert_video_to_mp4(video_path, dest_path): tlog = get_logger(current_thread().name) if os.path.isfile(dest_path): tlog.info('#Already converted, skip: {0}'.format(dest_path)) return True tlog.info('#Converting: {0} => {1}\n', video_path, dest_path) cmd = ['ffmpeg', '-i', video_path, '-vcodec', 'h264', '-acodec', 'aac', dest_path] p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.communicate() return p.returncode == 0 # Search the duration from given text def search_duration_from_text(text): # Match pattern like Duration: 00:24:14.91, s regExp = re.compile(r'Duration: (\d{2}):(\d{2}):(\d{2})') result = regExp.search(text, re.M | re.U) if result is not None: (hour, min, sec) = result.groups() duration = int(hour) * 3600 + int(min) * 60 + int(sec) return duration return None
[ 13, 16, 19, 20, 24 ]
2,276
e735529eddd3a46ea335e593e5937558b50b142d
<mask token> def get_second_long(time_str=None): if time_str is None: return long(time.time()) time_array = time.strptime(time_str, '%Y-%m-%d %H:%M:%S') return long(time.mktime(time_array)) <mask token> def get_curtimestamp(): return int(time.time() * 1000) <mask token> def get_curdate_format(): return get_curtime_str().strftime('%Y-%m-%d') def get_curmonth_format(): return get_curtime_str().strftime('%Y-%m') <mask token> def get_curday_str(): return get_curtime_str().day def get_curdate_str(): return get_curtime_str().strftime('%Y%m%d') def get_curdatetime_str(): return get_curtime_str().strftime('%Y%m%d%H%M%S') <mask token>
<mask token> def get_second_long(time_str=None): if time_str is None: return long(time.time()) time_array = time.strptime(time_str, '%Y-%m-%d %H:%M:%S') return long(time.mktime(time_array)) <mask token> def get_curtimestamp(): return int(time.time() * 1000) def get_curdatetime_format(): return get_curtime_str().strftime('%Y-%m-%d %H:%M:%S') def get_curdate_format(): return get_curtime_str().strftime('%Y-%m-%d') def get_curmonth_format(): return get_curtime_str().strftime('%Y-%m') <mask token> def get_curday_str(): return get_curtime_str().day def get_curdate_str(): return get_curtime_str().strftime('%Y%m%d') def get_curdatetime_str(): return get_curtime_str().strftime('%Y%m%d%H%M%S') def get_curminuter_str(): return get_curtime_str().strftime('%Y%m%d%H%M')
<mask token> def get_second_long(time_str=None): if time_str is None: return long(time.time()) time_array = time.strptime(time_str, '%Y-%m-%d %H:%M:%S') return long(time.mktime(time_array)) <mask token> def get_curtimestamp(): return int(time.time() * 1000) def get_curdatetime_format(): return get_curtime_str().strftime('%Y-%m-%d %H:%M:%S') def get_curdate_format(): return get_curtime_str().strftime('%Y-%m-%d') def get_curmonth_format(): return get_curtime_str().strftime('%Y-%m') <mask token> def get_curminuter_str(): return get_curtime_str().minute def get_curday_str(): return get_curtime_str().day def get_curdate_str(): return get_curtime_str().strftime('%Y%m%d') def get_curdatetime_str(): return get_curtime_str().strftime('%Y%m%d%H%M%S') def get_curminuter_str(): return get_curtime_str().strftime('%Y%m%d%H%M')
<mask token> def get_second_long(time_str=None): if time_str is None: return long(time.time()) time_array = time.strptime(time_str, '%Y-%m-%d %H:%M:%S') return long(time.mktime(time_array)) <mask token> def get_curtimestamp(): return int(time.time() * 1000) def get_curdatetime_format(): return get_curtime_str().strftime('%Y-%m-%d %H:%M:%S') def get_curdate_format(): return get_curtime_str().strftime('%Y-%m-%d') def get_curmonth_format(): return get_curtime_str().strftime('%Y-%m') def get_curhour_str(): return get_curtime_str().hour def get_curminuter_str(): return get_curtime_str().minute def get_curday_str(): return get_curtime_str().day def get_curdate_str(): return get_curtime_str().strftime('%Y%m%d') def get_curdatetime_str(): return get_curtime_str().strftime('%Y%m%d%H%M%S') def get_curminuter_str(): return get_curtime_str().strftime('%Y%m%d%H%M')
# -*- coding: utf-8 -*- import time import datetime def get_second_long(time_str=None): if time_str is None: return long(time.time()) time_array = time.strptime(time_str, "%Y-%m-%d %H:%M:%S") return long(time.mktime(time_array)) def get_curtime_str(): return datetime.datetime.now() def get_curtimestamp(): return int(time.time() * 1000) def get_curdatetime_format(): return get_curtime_str().strftime("%Y-%m-%d %H:%M:%S") def get_curdate_format(): return get_curtime_str().strftime("%Y-%m-%d") def get_curmonth_format(): return get_curtime_str().strftime("%Y-%m") def get_curhour_str(): return get_curtime_str().hour def get_curminuter_str(): return get_curtime_str().minute def get_curday_str(): return get_curtime_str().day def get_curdate_str(): return get_curtime_str().strftime("%Y%m%d") def get_curdatetime_str(): return get_curtime_str().strftime("%Y%m%d%H%M%S") def get_curminuter_str(): return get_curtime_str().strftime("%Y%m%d%H%M")
[ 7, 9, 10, 11, 14 ]
2,277
7dc7c7598c9069e5fbb336bb97161ebb7c74366e
#!/usr/bin/env python from imgproc import * from time import sleep # open the webcam #camera = Camera(640, 480) camera = Camera(320, 240) #camera = Camera(160, 120) #while True: # grab an image from the camera frame = camera.grabImage() print frame[x,y] # open a view, setting the view to the size of the captured image #view = Viewer(frame.width, frame.height, "Basic image processing") # display the image on the screen #view.displayImage(frame) """ width, height = 320, 240 #HUD = Image.new() HUD = Image.open("HUDs/preview_320x240.png") for x in range(width): for y in range(height): red1, green1, blue1 = frame[x,y] red2, green2, blue2, alpha = HUD.getpixel((x,y)) if red2 != 0 and green2 != 0 and blue2 != 0: frame[x,y] = red2, green2, blue2 """
null
null
null
null
[ 0 ]
2,278
02b20c3f5941873dfd22a7fbedb825e66c613ace
Xeval[[1,2],:] # *** Spyder Python Console History Log *** Xeval[:,:] optfunc.P(Xeval[:,:]) optfunc.P(Xeval) optfunc.P(Xeval[[0,1,2,3,4],:]) optfunc.P(Xeval[[0,1,],:]) optfunc.P(Xeval[[0,1],:]) optfunc.P(Xeval[[0,1,2,3],:]) optfunc.P(Xeval[[0,1,2,3,4],:]) optfunc.P(Xeval[[0,1,2],:]) Xeval[[0,1,2,3,4],:] Xeval[[0,1,2,3],:] Xeval[[0,1,2],:] optfunc.gp_list[0] optfunc.gp_list[0](Xeval) optfunc.gp_list[0].preduct(Xeval) optfunc.gp_list[0].predict(Xeval) optfunc.gp_list[0].predict(Xeval[[0,1,2,3,4],:]) optfunc.gp_list[0].predict(Xeval[[0,1,2,3],:]) optfunc.gp_list[0].predict(Xeval[[0,1,2],:]) optfunc.P(Xeval[[0,1,2,3,4],:]) optfunc.ypred optfunc.P(Xeval[[0,1,2],:]) optfunc.ypred optfunc.P(Xeval[[0,1,2,3,4],:]) optfunc.MSE optfunc.sigma optfunc.P(Xeval[[0,1,2],:]) optfunc.sigma optfunc.gp_list[0].predict(Xeval[[0,1,2],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2,3],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,1],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,1,1],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[zeros(1,5)],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[np.zeros(1,5)],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[np.zeros(1,5),:],eval_MSE=True) np.zeros(1,5) np.zeros(5) optfunc.gp_list[0].predict(Xeval[np.zeros(15),:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[np.zeros(5),:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[np.zeros(5)],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0,0,0,0,0,0,0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],:],eval_MSE=True) Xeval[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],:] optfunc.gp_list[0].predict(Xeval[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2,3],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2],:],eval_MSE=True) Xeval[[0,1,2,3]] Xeval[[0,1,2]] Xeval[[0,1,2],:] optfunc.gp_list[0].predict(Xeval[[0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict([0.5,0.5],:],eval_MSE=True) optfunc.gp_list[0].predict([0.5,0.5],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.5]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.49]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.48]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.495]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.499]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.4999]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.49999]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.5]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.5001]],eval_MSE=True) for i in range(0,100) for i in range(0,100): y[i],s[i] = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = [] s = [] for i in range(0,100): y[i],s[i] = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) for i in range(0,100): optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) for i in range(0,100): a, b = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] y optfunc.gp_list[0] runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3') y = [] s = [] for i in range(0,100): a, b = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] y = [] s = [] for i in range(0,200): a, b = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] y = [] s = [] for i in range(0,200): a, b = optfunc.gp_list[0].predict([[1.,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3') y = [] s = [] for i in range(0,200): a, b = optfunc.gp_list[0].predict([[1.,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3') y = [] s = [] for i in range(0,200): a, b = optfunc.gp_list[0].predict([[1.,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3') ##---(Wed Mar 23 11:14:55 2016)--- runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3')
null
null
null
null
[ 0 ]
2,279
2ff398e38b49d95fdc8a36a08eeb5950aaea1bc9
<mask token> def on_connection_resumed(connection, return_code, session_present, **kwargs): print('Connection resumed. return_code: {} session_present: {}'.format( return_code, session_present)) <mask token>
<mask token> def on_connection_interrupted(connection, error, **kwargs): print('Connection interrupted. error: {}'.format(error)) def on_connection_resumed(connection, return_code, session_present, **kwargs): print('Connection resumed. return_code: {} session_present: {}'.format( return_code, session_present)) <mask token>
<mask token> def on_connection_interrupted(connection, error, **kwargs): print('Connection interrupted. error: {}'.format(error)) def on_connection_resumed(connection, return_code, session_present, **kwargs): print('Connection resumed. return_code: {} session_present: {}'.format( return_code, session_present)) if __name__ == '__main__': io.init_logging(log_level=io.LogLevel.Trace, file_name='stderr') cmdData = CommandLineUtils.parse_sample_input_pkcs12_connect() proxy_options = None if cmdData.input_proxy_host is not None and cmdData.input_proxy_port != 0: proxy_options = http.HttpProxyOptions(host_name=cmdData. input_proxy_host, port=cmdData.input_proxy_port) mqtt_connection = mqtt_connection_builder.mtls_with_pkcs12(endpoint= cmdData.input_endpoint, port=cmdData.input_port, pkcs12_filepath= cmdData.input_pkcs12_file, pkcs12_password=cmdData. input_pkcs12_password, on_connection_interrupted= on_connection_interrupted, on_connection_resumed= on_connection_resumed, client_id=cmdData.input_clientId, clean_session=False, keep_alive_secs=30, http_proxy_options= proxy_options) if not cmdData.input_is_ci: print( f"Connecting to {cmdData.input_endpoint} with client ID '{cmdData.input_clientId}'..." ) else: print('Connecting to endpoint with client ID') connect_future = mqtt_connection.connect() connect_future.result() print('Connected!') print('Disconnecting...') disconnect_future = mqtt_connection.disconnect() disconnect_future.result() print('Disconnected!')
from awscrt import http, io from awsiot import mqtt_connection_builder from utils.command_line_utils import CommandLineUtils def on_connection_interrupted(connection, error, **kwargs): print('Connection interrupted. error: {}'.format(error)) def on_connection_resumed(connection, return_code, session_present, **kwargs): print('Connection resumed. return_code: {} session_present: {}'.format( return_code, session_present)) if __name__ == '__main__': io.init_logging(log_level=io.LogLevel.Trace, file_name='stderr') cmdData = CommandLineUtils.parse_sample_input_pkcs12_connect() proxy_options = None if cmdData.input_proxy_host is not None and cmdData.input_proxy_port != 0: proxy_options = http.HttpProxyOptions(host_name=cmdData. input_proxy_host, port=cmdData.input_proxy_port) mqtt_connection = mqtt_connection_builder.mtls_with_pkcs12(endpoint= cmdData.input_endpoint, port=cmdData.input_port, pkcs12_filepath= cmdData.input_pkcs12_file, pkcs12_password=cmdData. input_pkcs12_password, on_connection_interrupted= on_connection_interrupted, on_connection_resumed= on_connection_resumed, client_id=cmdData.input_clientId, clean_session=False, keep_alive_secs=30, http_proxy_options= proxy_options) if not cmdData.input_is_ci: print( f"Connecting to {cmdData.input_endpoint} with client ID '{cmdData.input_clientId}'..." ) else: print('Connecting to endpoint with client ID') connect_future = mqtt_connection.connect() connect_future.result() print('Connected!') print('Disconnecting...') disconnect_future = mqtt_connection.disconnect() disconnect_future.result() print('Disconnected!')
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0. from awscrt import http, io from awsiot import mqtt_connection_builder from utils.command_line_utils import CommandLineUtils # This sample shows how to create a MQTT connection using a certificate file and key file. # This sample is intended to be used as a reference for making MQTT connections. # Callback when connection is accidentally lost. def on_connection_interrupted(connection, error, **kwargs): print("Connection interrupted. error: {}".format(error)) # Callback when an interrupted connection is re-established. def on_connection_resumed(connection, return_code, session_present, **kwargs): print("Connection resumed. return_code: {} session_present: {}".format(return_code, session_present)) if __name__ == '__main__': io.init_logging(log_level=io.LogLevel.Trace, file_name="stderr") # cmdData is the arguments/input from the command line placed into a single struct for # use in this sample. This handles all of the command line parsing, validating, etc. # See the Utils/CommandLineUtils for more information. cmdData = CommandLineUtils.parse_sample_input_pkcs12_connect() # Create the proxy options if the data is present in cmdData proxy_options = None if cmdData.input_proxy_host is not None and cmdData.input_proxy_port != 0: proxy_options = http.HttpProxyOptions( host_name=cmdData.input_proxy_host, port=cmdData.input_proxy_port) # Create a MQTT connection from the command line data mqtt_connection = mqtt_connection_builder.mtls_with_pkcs12( endpoint=cmdData.input_endpoint, port=cmdData.input_port, pkcs12_filepath=cmdData.input_pkcs12_file, pkcs12_password=cmdData.input_pkcs12_password, on_connection_interrupted=on_connection_interrupted, on_connection_resumed=on_connection_resumed, client_id=cmdData.input_clientId, clean_session=False, keep_alive_secs=30, http_proxy_options=proxy_options) if not cmdData.input_is_ci: print(f"Connecting to {cmdData.input_endpoint} with client ID '{cmdData.input_clientId}'...") else: print("Connecting to endpoint with client ID") connect_future = mqtt_connection.connect() # Future.result() waits until a result is available connect_future.result() print("Connected!") # Disconnect print("Disconnecting...") disconnect_future = mqtt_connection.disconnect() disconnect_future.result() print("Disconnected!")
[ 1, 2, 3, 4, 5 ]
2,280
4b44f4343da1677b5436ec2b153e573fda3c0cee
<mask token> def read_input_RS(): low = np.loadtxt('LowerArray.csv', delimiter=',', skiprows=1) lower_bound = np.ravel(low) upper_bound = np.ravel(np.transpose(np.loadtxt('UpperArray.csv', delimiter=',', skiprows=1))) return lower_bound, upper_bound, low[0, :].size <mask token> def independent_probability(): probability_assignment = np.loadtxt('ProbabilityAssignment.csv', delimiter=',', skiprows=1) return probability_assignment <mask token>
<mask token> def read_input_RS(): low = np.loadtxt('LowerArray.csv', delimiter=',', skiprows=1) lower_bound = np.ravel(low) upper_bound = np.ravel(np.transpose(np.loadtxt('UpperArray.csv', delimiter=',', skiprows=1))) return lower_bound, upper_bound, low[0, :].size def generate_combinations(lower, upper, n): lower_input = itt.combinations(lower, n) upper_input = np.array(list(itt.product(upper, repeat=n))) return lower_input, upper_input def independent_probability(): probability_assignment = np.loadtxt('ProbabilityAssignment.csv', delimiter=',', skiprows=1) return probability_assignment <mask token>
<mask token> def read_input_RS(): low = np.loadtxt('LowerArray.csv', delimiter=',', skiprows=1) lower_bound = np.ravel(low) upper_bound = np.ravel(np.transpose(np.loadtxt('UpperArray.csv', delimiter=',', skiprows=1))) return lower_bound, upper_bound, low[0, :].size def generate_combinations(lower, upper, n): lower_input = itt.combinations(lower, n) upper_input = np.array(list(itt.product(upper, repeat=n))) return lower_input, upper_input def independent_probability(): probability_assignment = np.loadtxt('ProbabilityAssignment.csv', delimiter=',', skiprows=1) return probability_assignment if __name__ == '__main__': a, b, r = read_input_RS() d, e = generate_combinations(a, b, r) print(b) print(e) np.savetxt('test.out', e, delimiter=',')
<mask token> import itertools as itt import numpy as np import matplotlib.pyplot as plt def read_input_RS(): low = np.loadtxt('LowerArray.csv', delimiter=',', skiprows=1) lower_bound = np.ravel(low) upper_bound = np.ravel(np.transpose(np.loadtxt('UpperArray.csv', delimiter=',', skiprows=1))) return lower_bound, upper_bound, low[0, :].size def generate_combinations(lower, upper, n): lower_input = itt.combinations(lower, n) upper_input = np.array(list(itt.product(upper, repeat=n))) return lower_input, upper_input def independent_probability(): probability_assignment = np.loadtxt('ProbabilityAssignment.csv', delimiter=',', skiprows=1) return probability_assignment if __name__ == '__main__': a, b, r = read_input_RS() d, e = generate_combinations(a, b, r) print(b) print(e) np.savetxt('test.out', e, delimiter=',')
# Code Rodrigo ''' This script, basically generates all he possible combinations to be analyzed according to the Dempster Shafer Theory. It requires to define beforehand, the combination of variables that lead to the higher and lower bound for a given combination of random sets, via the sensitivity analysis ''' import itertools as itt import numpy as np import matplotlib.pyplot as plt def read_input_RS (): low=np.loadtxt('LowerArray.csv', delimiter=',', skiprows=1) lower_bound = np.ravel(low) upper_bound = (np.ravel(np.transpose(np.loadtxt('UpperArray.csv', delimiter=',', skiprows=1)))) return lower_bound, upper_bound, low[0,:].size def generate_combinations (lower, upper, n): lower_input = itt.combinations(lower, n) upper_input = np.array(list(itt.product(upper, repeat=n))) return lower_input, upper_input, def independent_probability (): probability_assignment = (np.loadtxt('ProbabilityAssignment.csv', delimiter=',', skiprows=1)) return probability_assignment if __name__ == "__main__": a,b,r=read_input_RS () #c=a[0,:].size d,e=generate_combinations (a,b,r) print(b) print(e) np.savetxt('test.out', e, delimiter=',') #b=read_input_RS () #c=generate_combinations (a,b)
[ 2, 3, 4, 5, 6 ]
2,281
6ece524c82521b175cc7791e22c8249dd24dc714
import datetime import matplotlib.pyplot as plt import numpy as np import statsmodels.api as sm import xlrd from pandas import * from xlrd import xldate #since I messed up when first scraping the data, I have the dates and viewcounts in separate files #need to create a dictionary of 'author-title':[viewcount, date] viewcount_dict = {} #to get the viewcount workbook = xlrd.open_workbook('ted_info.xlsx') worksheet = workbook.sheet_by_name('Sheet1') num_rows = worksheet.nrows - 1 num_cells = worksheet.ncols - 1 curr_row = 0 while curr_row < num_rows: curr_row += 1 row = worksheet.row(curr_row) print 'Row:', curr_row author_name = worksheet.cell_value(curr_row, 0) talk_title = worksheet.cell_value(curr_row, 3) viewcount = worksheet.cell_value(curr_row, 5) if author_name + ":" + talk_title in viewcount_dict: print author_name + ":" + talk_title raise "error in datafile, there is a duplicate" viewcount_dict[author_name + ":" + talk_title] = [viewcount] #the following prints each cell value and cell type #curr_cell = -1 #while curr_cell < num_cells: #curr_cell += 1 # Cell Types: 0=Empty, 1=Text, 2=Number, 3=Date, 4=Boolean, 5=Error, 6=Blank #cell_type = worksheet.cell_type(curr_row, curr_cell) #cell_value = worksheet.cell_value(curr_row, curr_cell) #print ' ', cell_type, ':', cell_value #to get the year workbook = xlrd.open_workbook('ted_info_name_title_date.xlsx') worksheet = workbook.sheet_by_name('Sheet1') num_rows = worksheet.nrows - 1 num_cells = worksheet.ncols - 1 curr_row = 0 while curr_row < num_rows: curr_row += 1 row = worksheet.row(curr_row) author_name = worksheet.cell_value(curr_row, 0) talk_title = worksheet.cell_value(curr_row, 1) date = worksheet.cell_value(curr_row, 2) date_as_datetime = xldate.xldate_as_tuple(date, workbook.datemode) year, month, day, hour, minute, second = date_as_datetime print year try: viewcount_dict[author_name + ":" + talk_title].append(year) except: #author/title not in dictionary (because it was one of the weirdly formatted pages) print row continue print len(viewcount_dict) year_viewcount_dict = {} for year in range(2006,2016): #create a dictionary for each year due to the input of the violin plot year_viewcount_dict[year] = {} year_viewcount_dict["All"] = {} #also have one that includes all years for key, value in viewcount_dict.iteritems(): #print value try: year = value[1] except: continue #this means that it did not have a year, likely because that author/talk was not in the date file viewcount = value[0] year_viewcount_dict[year][len(year_viewcount_dict[value[1]])] = viewcount year_viewcount_dict["All"][len(year_viewcount_dict[value[1]])] = viewcount list_of_counts = [Series(year_viewcount_dict[year]) for year in ["All"] + range(2006,2016)] #turn into data type required for violinplot labels = ["All"] + [str(year) for year in range(2006, 2016)] #note that they started in June of 2006 and that this data only invludes up to april 2015 plt.rcParams['figure.subplot.bottom'] = 0.23 # keep labels visible fig = plt.figure() ax = fig.add_subplot(111) sm.graphics.violinplot(list_of_counts, ax=ax, labels=labels, plot_opts={'cutoff_val':5, 'cutoff_type':'abs', 'label_fontsize':'small'}) ax.set_xlabel("Year") ax.set_yscale("log") #set to log scale because the range of viewcounts ax.set_ylabel("Viewcount of talks (log scale)") #plt.show() plt.savefig('violinplot_viewcounts.png', bbox_inches='tight')
null
null
null
null
[ 0 ]
2,282
bf49893fee79b0c3e34340cf1633c1797ce1bf41
#MenuTitle: Check for open paths in selected glyphs """ Checks for open paths in selected glyphs (or all glyphs if no selection). Output appears in Macro Window (Option-Command-M). """ # FIXME: test with masters and instances -- may not work Font = Glyphs.font Doc = Glyphs.currentDocument selectedGlyphs = [ x.parent for x in Doc.selectedLayers() ] selectedNames = [ x.name for x in selectedGlyphs ] nopenpaths = 0 checkedGlyphs = [] print "Font: ", Font.familyName if not selectedGlyphs: selectedGlyphs = Font.glyphs selectedNames = "all glyphs." for glyph in selectedGlyphs: # assumption: glyph layer 0 without paths means glyph doesn't have any drawing in it, yet if glyph.layers[0].paths: checkedGlyphs.append(glyph.name) layers = glyph.layers for layer in layers: paths = layer.paths for path in paths: if not path.closed: print "OPEN PATH: %s (%s)" % (layer.parent.name, layer.parent.unicode), "[layer: %s]" % layer.name, path nopenpaths += 1 if not nopenpaths: print "No open paths in %d glyphs:" % len(checkedGlyphs), checkedGlyphs else: print "Total open paths: %d out of %d checked glyphs." % (nopenpaths, len(checkedGlyphs))
null
null
null
null
[ 0 ]
2,283
1fad591fde707c73bd52aa8518828c8b8be9cd32
<mask token> class Article: <mask token> title: str target: str g: float f: float parent: typing.Union[Article, Type(None)] heuristic: Callable[[str, str], float] def __init__(self, title: str, target: str, parent: typing.Union[ Article, Type(None)], heuristic: Callable[[str, str], float]): """ Initializes based on [urls/titles/nodes] """ self.title = title self.target = target self.heuristic = heuristic if parent: self.parent = parent self.g = parent.g + 1 else: self.parent = None self.g = 0 h = self.heuristic(title, target) self.f = self.g + h def get_children(self, cont: typing.Union[str, Type(None)]) ->List[str]: """ Return list of connected (children) article object using the wikipedia API functions. """ s = requests.Session() url = 'https://en.wikipedia.org/w/api.php' if cont is None: params = {'action': 'query', 'format': 'json', 'titles': self. title, 'prop': 'links', 'pllimit': 'max'} else: params = {'action': 'query', 'format': 'json', 'titles': self. title, 'prop': 'links', 'pllimit': 'max', 'plcontinue': cont} titles_so_far = [] r = s.get(url=url, params=params) data = r.json() pages = data['query']['pages'] for k, v in pages.items(): if 'links' not in v: return [] for l in v['links']: titles_so_far.append(l['title']) if 'batchcomplete' in data: return titles_so_far else: contHolder = data['continue']['plcontinue'] titles_so_far.extend(self.get_children(contHolder)) return titles_so_far def get_first_x(self, lst: List, x: int) ->List: lst_so_far = [] for i in range(x): lst_so_far.append(lst[i]) return lst_so_far <mask token> <mask token> def __eq__(self, other): return compare_titles(self.title, other.title) def __ne__(self, other): return not compare_titles(self.title, other.title) <mask token> <mask token> class PQ: """ MinHeap implementation of a priority queue for A* search. """ heap = [] def __init__(self): self.heap = [] def insert(self, to_insert: Article) ->None: """ Insert new element in Priority queue """ heapq.heappush(self.heap, to_insert) def pop(self) ->Article: """ pops minimum element from priority queue """ return heapq.heappop(self.heap) <mask token>
<mask token> class Article: <mask token> title: str target: str g: float f: float parent: typing.Union[Article, Type(None)] heuristic: Callable[[str, str], float] def __init__(self, title: str, target: str, parent: typing.Union[ Article, Type(None)], heuristic: Callable[[str, str], float]): """ Initializes based on [urls/titles/nodes] """ self.title = title self.target = target self.heuristic = heuristic if parent: self.parent = parent self.g = parent.g + 1 else: self.parent = None self.g = 0 h = self.heuristic(title, target) self.f = self.g + h def get_children(self, cont: typing.Union[str, Type(None)]) ->List[str]: """ Return list of connected (children) article object using the wikipedia API functions. """ s = requests.Session() url = 'https://en.wikipedia.org/w/api.php' if cont is None: params = {'action': 'query', 'format': 'json', 'titles': self. title, 'prop': 'links', 'pllimit': 'max'} else: params = {'action': 'query', 'format': 'json', 'titles': self. title, 'prop': 'links', 'pllimit': 'max', 'plcontinue': cont} titles_so_far = [] r = s.get(url=url, params=params) data = r.json() pages = data['query']['pages'] for k, v in pages.items(): if 'links' not in v: return [] for l in v['links']: titles_so_far.append(l['title']) if 'batchcomplete' in data: return titles_so_far else: contHolder = data['continue']['plcontinue'] titles_so_far.extend(self.get_children(contHolder)) return titles_so_far def get_first_x(self, lst: List, x: int) ->List: lst_so_far = [] for i in range(x): lst_so_far.append(lst[i]) return lst_so_far def __lt__(self, other): return self.f < other.f def __le__(self, other): return self.f <= other.f def __eq__(self, other): return compare_titles(self.title, other.title) def __ne__(self, other): return not compare_titles(self.title, other.title) <mask token> def __ge__(self, other): return self.f >= other.f class PQ: """ MinHeap implementation of a priority queue for A* search. """ heap = [] def __init__(self): self.heap = [] def insert(self, to_insert: Article) ->None: """ Insert new element in Priority queue """ heapq.heappush(self.heap, to_insert) def pop(self) ->Article: """ pops minimum element from priority queue """ return heapq.heappop(self.heap) <mask token>
<mask token> class Article: """ This is the article class that represents each Wikipedia article. Instance Variables: - title: str that represents the title of the article - target: the final target given by the user - g: - f: """ title: str target: str g: float f: float parent: typing.Union[Article, Type(None)] heuristic: Callable[[str, str], float] def __init__(self, title: str, target: str, parent: typing.Union[ Article, Type(None)], heuristic: Callable[[str, str], float]): """ Initializes based on [urls/titles/nodes] """ self.title = title self.target = target self.heuristic = heuristic if parent: self.parent = parent self.g = parent.g + 1 else: self.parent = None self.g = 0 h = self.heuristic(title, target) self.f = self.g + h def get_children(self, cont: typing.Union[str, Type(None)]) ->List[str]: """ Return list of connected (children) article object using the wikipedia API functions. """ s = requests.Session() url = 'https://en.wikipedia.org/w/api.php' if cont is None: params = {'action': 'query', 'format': 'json', 'titles': self. title, 'prop': 'links', 'pllimit': 'max'} else: params = {'action': 'query', 'format': 'json', 'titles': self. title, 'prop': 'links', 'pllimit': 'max', 'plcontinue': cont} titles_so_far = [] r = s.get(url=url, params=params) data = r.json() pages = data['query']['pages'] for k, v in pages.items(): if 'links' not in v: return [] for l in v['links']: titles_so_far.append(l['title']) if 'batchcomplete' in data: return titles_so_far else: contHolder = data['continue']['plcontinue'] titles_so_far.extend(self.get_children(contHolder)) return titles_so_far def get_first_x(self, lst: List, x: int) ->List: lst_so_far = [] for i in range(x): lst_so_far.append(lst[i]) return lst_so_far def __lt__(self, other): return self.f < other.f def __le__(self, other): return self.f <= other.f def __eq__(self, other): return compare_titles(self.title, other.title) def __ne__(self, other): return not compare_titles(self.title, other.title) def __gt__(self, other): return self.f > other.f def __ge__(self, other): return self.f >= other.f class PQ: """ MinHeap implementation of a priority queue for A* search. """ heap = [] def __init__(self): self.heap = [] def insert(self, to_insert: Article) ->None: """ Insert new element in Priority queue """ heapq.heappush(self.heap, to_insert) def pop(self) ->Article: """ pops minimum element from priority queue """ return heapq.heappop(self.heap) <mask token>
<mask token> def heuristic_2(a: str, b: str) ->float: """ Returns predicted cost (distance) from two titles a to b, through the cosine similarity of two generated term-document matrices of the article. The heuristic in this case is purely semantic. The HTML enriched query for the JSON is: https://en.wikipedia.org/w/api.php?action=query&titles=TITLE&prop=extracts&format=json&exintro=1 """ if get_intro(a) == '' or get_intro(b) == '': return 2 else: corpus = [get_intro(a), get_intro(b)] vect = TfidfVectorizer() mat = vect.fit_transform(corpus) return abs(1 - cosine_similarity(mat[0:1], mat)[0][1]) * 2 class Article: """ This is the article class that represents each Wikipedia article. Instance Variables: - title: str that represents the title of the article - target: the final target given by the user - g: - f: """ title: str target: str g: float f: float parent: typing.Union[Article, Type(None)] heuristic: Callable[[str, str], float] def __init__(self, title: str, target: str, parent: typing.Union[ Article, Type(None)], heuristic: Callable[[str, str], float]): """ Initializes based on [urls/titles/nodes] """ self.title = title self.target = target self.heuristic = heuristic if parent: self.parent = parent self.g = parent.g + 1 else: self.parent = None self.g = 0 h = self.heuristic(title, target) self.f = self.g + h def get_children(self, cont: typing.Union[str, Type(None)]) ->List[str]: """ Return list of connected (children) article object using the wikipedia API functions. """ s = requests.Session() url = 'https://en.wikipedia.org/w/api.php' if cont is None: params = {'action': 'query', 'format': 'json', 'titles': self. title, 'prop': 'links', 'pllimit': 'max'} else: params = {'action': 'query', 'format': 'json', 'titles': self. title, 'prop': 'links', 'pllimit': 'max', 'plcontinue': cont} titles_so_far = [] r = s.get(url=url, params=params) data = r.json() pages = data['query']['pages'] for k, v in pages.items(): if 'links' not in v: return [] for l in v['links']: titles_so_far.append(l['title']) if 'batchcomplete' in data: return titles_so_far else: contHolder = data['continue']['plcontinue'] titles_so_far.extend(self.get_children(contHolder)) return titles_so_far def get_first_x(self, lst: List, x: int) ->List: lst_so_far = [] for i in range(x): lst_so_far.append(lst[i]) return lst_so_far def __lt__(self, other): return self.f < other.f def __le__(self, other): return self.f <= other.f def __eq__(self, other): return compare_titles(self.title, other.title) def __ne__(self, other): return not compare_titles(self.title, other.title) def __gt__(self, other): return self.f > other.f def __ge__(self, other): return self.f >= other.f class PQ: """ MinHeap implementation of a priority queue for A* search. """ heap = [] def __init__(self): self.heap = [] def insert(self, to_insert: Article) ->None: """ Insert new element in Priority queue """ heapq.heappush(self.heap, to_insert) def pop(self) ->Article: """ pops minimum element from priority queue """ return heapq.heappop(self.heap) <mask token>
from __future__ import annotations import typing import requests import heapq from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer from bs4 import BeautifulSoup from wikiAPI import get_JSON, get_intro, compare_titles from typing import List, Type, Callable def heuristic_0(a: str, b: str) -> float: return 2 def heuristic_1(a: str, b: str) -> float: """ Returns predicted cost (distance) from two titles a to b, through the cosine similarity of two generated term-document matrices of the article. The heuristic in this case is purely semantic. The HTML enriched query for the JSON is: https://en.wikipedia.org/w/api.php?action=parse&page=TITLE&prop=text&formatversion=2&format=json """ query = "https://en.wikipedia.org/w/api.php?action=parse&page=TEMP&prop=text&formatversion=2&format=json" startTitle = (a.replace(" ", "%20")).replace("&", "%26") endTitle = (b.replace(" ", "%20")).replace("&", "%26") startURL = (query.replace("TEMP", startTitle)) endURL = (query.replace("TEMP", endTitle)) # text processing using SOUP initialSoup = BeautifulSoup(get_JSON(startURL)['parse']['text'], 'html.parser') finalSoup = BeautifulSoup(get_JSON(endURL)['parse']['text'], 'html.parser') # generate term-document matrices corpus = [initialSoup.get_text().replace('\n', ' '), finalSoup.get_text().replace('\n', ' ')] vect = TfidfVectorizer() mat = vect.fit_transform(corpus) # return cosine similarity return abs(1 - cosine_similarity(mat[0:1], mat)[0][1]) * 2 def heuristic_2(a: str, b: str) -> float: """ Returns predicted cost (distance) from two titles a to b, through the cosine similarity of two generated term-document matrices of the article. The heuristic in this case is purely semantic. The HTML enriched query for the JSON is: https://en.wikipedia.org/w/api.php?action=query&titles=TITLE&prop=extracts&format=json&exintro=1 """ # generate term-document matrices if get_intro(a) == "" or get_intro(b) == "": return 2 else: corpus = [get_intro(a), get_intro(b)] vect = TfidfVectorizer() mat = vect.fit_transform(corpus) # return cosine similarity return abs(1 - cosine_similarity(mat[0:1], mat)[0][1]) * 2 # def semantic_similarity(a: str, b: str) -> float: # web_model = WebBertSimilarity(device='cpu', batch_size=10) # return web_model.predict([(a, b)]) class Article: """ This is the article class that represents each Wikipedia article. Instance Variables: - title: str that represents the title of the article - target: the final target given by the user - g: - f: """ title: str target: str g: float f: float parent: typing.Union[Article, Type(None)] heuristic: Callable[[str, str], float] def __init__(self, title: str, target: str, parent: typing.Union[Article, Type(None)], heuristic: Callable[[str, str], float] ): """ Initializes based on [urls/titles/nodes] """ self.title = title self.target = target self.heuristic = heuristic if parent: self.parent = parent self.g = parent.g + 1 else: self.parent = None self.g = 0 h = self.heuristic(title, target) self.f = self.g + h def get_children(self, cont: typing.Union[str, Type(None)]) -> List[str]: """ Return list of connected (children) article object using the wikipedia API functions. """ s = requests.Session() url = "https://en.wikipedia.org/w/api.php" if cont is None: params = { "action": "query", "format": "json", "titles": self.title, "prop": "links", "pllimit": "max" } else: params = { "action": "query", "format": "json", "titles": self.title, "prop": "links", "pllimit": "max", "plcontinue": cont } titles_so_far = [] r = s.get(url=url, params=params) data = r.json() pages = data["query"]["pages"] for k, v in pages.items(): if "links" not in v: return [] for l in v["links"]: titles_so_far.append(l["title"]) if "batchcomplete" in data: return titles_so_far else: contHolder = data["continue"]["plcontinue"] titles_so_far.extend(self.get_children(contHolder)) return titles_so_far # return [Article(child, self.target, self.title) for child in titles_so_far] def get_first_x(self, lst: List, x: int) -> List: lst_so_far = [] for i in range(x): lst_so_far.append(lst[i]) return lst_so_far def __lt__(self, other): return self.f < other.f def __le__(self, other): return self.f <= other.f def __eq__(self, other): return compare_titles(self.title, other.title) def __ne__(self, other): return not compare_titles(self.title, other.title) def __gt__(self, other): return self.f > other.f def __ge__(self, other): return self.f >= other.f class PQ: """ MinHeap implementation of a priority queue for A* search. """ heap = [] def __init__(self): self.heap = [] def insert(self, to_insert: Article) -> None: """ Insert new element in Priority queue """ heapq.heappush(self.heap, to_insert) def pop(self) -> Article: """ pops minimum element from priority queue """ return heapq.heappop(self.heap) def a_star(source: str, target: str, heuristic: Callable[[str, str], float]) -> list: """ Returns path from source to target using A* search algorithm. """ visited: set = set((source)) cur: Article = Article(source, target, None, heuristic) queue = PQ() while not compare_titles(cur.title, target): nexts = cur.get_children(None) for next in nexts: if next not in visited: article = Article(next, target, cur, heuristic) queue.insert(article) visited.add(next) print(article.f, article.title) cur = queue.pop() print("CUR:", cur.f, cur.title) path = [cur.title] while path[0] != source: cur = cur.parent path.insert(0, cur.title) return path # print(a_star("Dog", "Aardwolf", heuristic_2))
[ 12, 15, 17, 18, 23 ]
2,284
a7d11f130e0d5d6c9b4ac7c5d3a804fb9f79b943
<mask token> def get(i): with open('晚安.txt', 'r', encoding='utf-8') as f: line = f.readlines()[i] return line <mask token> def main(): for i in range(3650): send(i) time.sleep(5) <mask token>
<mask token> def get(i): with open('晚安.txt', 'r', encoding='utf-8') as f: line = f.readlines()[i] return line def send(i): myfriend = bot.friends().search('微信好友昵称')[0] myfriend.send(get(i)) i += 1 def main(): for i in range(3650): send(i) time.sleep(5) if __name__ == '__main__': main()
<mask token> bot = Bot(cache_path='wxpy.pkl') def get(i): with open('晚安.txt', 'r', encoding='utf-8') as f: line = f.readlines()[i] return line def send(i): myfriend = bot.friends().search('微信好友昵称')[0] myfriend.send(get(i)) i += 1 def main(): for i in range(3650): send(i) time.sleep(5) if __name__ == '__main__': main()
import time from wxpy import * bot = Bot(cache_path='wxpy.pkl') def get(i): with open('晚安.txt', 'r', encoding='utf-8') as f: line = f.readlines()[i] return line def send(i): myfriend = bot.friends().search('微信好友昵称')[0] myfriend.send(get(i)) i += 1 def main(): for i in range(3650): send(i) time.sleep(5) if __name__ == '__main__': main()
null
[ 2, 4, 5, 6 ]
2,285
e49c5c6475a1210a9657d7bbd0490c8d20863718
<mask token> class GlibConan(ConanFile): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def build(self): args = ['--disable-static'] autotools = AutoToolsBuildEnvironment(self) autotools.configure(args=args, configure_dir= f'{self.name}-{self.version}') autotools.make() autotools.install()
<mask token> class GlibConan(ConanFile): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def source(self): tools.get( f'ftp://ftp.gnome.org/pub/gnome/sources/glib/1.2/glib-{self.version}.tar.gz' ) def build(self): args = ['--disable-static'] autotools = AutoToolsBuildEnvironment(self) autotools.configure(args=args, configure_dir= f'{self.name}-{self.version}') autotools.make() autotools.install()
<mask token> class GlibConan(ConanFile): name = 'glib' description = 'Common C routines used by Gtk+ and other libs' license = 'LGPL' settings = {'os': ['Linux'], 'arch': ['x86_64', 'armv8']} build_requires = 'generators/1.0.0', 'autotools/1.0.0' requires = 'glibc/[>=2.31]', 'sh/[>=]' def source(self): tools.get( f'ftp://ftp.gnome.org/pub/gnome/sources/glib/1.2/glib-{self.version}.tar.gz' ) def build(self): args = ['--disable-static'] autotools = AutoToolsBuildEnvironment(self) autotools.configure(args=args, configure_dir= f'{self.name}-{self.version}') autotools.make() autotools.install()
from conans import * class GlibConan(ConanFile): name = 'glib' description = 'Common C routines used by Gtk+ and other libs' license = 'LGPL' settings = {'os': ['Linux'], 'arch': ['x86_64', 'armv8']} build_requires = 'generators/1.0.0', 'autotools/1.0.0' requires = 'glibc/[>=2.31]', 'sh/[>=]' def source(self): tools.get( f'ftp://ftp.gnome.org/pub/gnome/sources/glib/1.2/glib-{self.version}.tar.gz' ) def build(self): args = ['--disable-static'] autotools = AutoToolsBuildEnvironment(self) autotools.configure(args=args, configure_dir= f'{self.name}-{self.version}') autotools.make() autotools.install()
from conans import * class GlibConan(ConanFile): name = "glib" description = "Common C routines used by Gtk+ and other libs" license = "LGPL" settings = {"os": ["Linux"], "arch": ["x86_64", "armv8"]} build_requires = ( "generators/1.0.0", "autotools/1.0.0", ) requires = ( "glibc/[>=2.31]", "sh/[>=]", ) def source(self): tools.get(f"ftp://ftp.gnome.org/pub/gnome/sources/glib/1.2/glib-{self.version}.tar.gz") def build(self): args = [ "--disable-static", ] autotools = AutoToolsBuildEnvironment(self) autotools.configure(args=args, configure_dir=f"{self.name}-{self.version}") autotools.make() autotools.install()
[ 2, 3, 4, 5, 6 ]
2,286
b041e9577af72d2bcee3dda0cc78fa12800d53bd
<mask token> class TestPanel(wx.Panel): def __init__(self, parent, log): self.log = log wx.Panel.__init__(self, parent, -1) b1 = wx.Button(self, -1, 'Create and Show a MiniFrame', (50, 50)) self.Bind(wx.EVT_BUTTON, self.OnButton1, b1) b2 = wx.Button(self, -1, 'Create and Show a MiniFrame With Effect', (50, 100)) self.Bind(wx.EVT_BUTTON, self.OnButton2, b2) self.list = wx.ListBox(self, choices=['wx.SHOW_EFFECT_NONE', 'wx.SHOW_EFFECT_ROLL_TO_LEFT', 'wx.SHOW_EFFECT_ROLL_TO_RIGHT', 'wx.SHOW_EFFECT_ROLL_TO_TOP', 'wx.SHOW_EFFECT_ROLL_TO_BOTTOM', 'wx.SHOW_EFFECT_SLIDE_TO_LEFT', 'wx.SHOW_EFFECT_SLIDE_TO_RIGHT', 'wx.SHOW_EFFECT_SLIDE_TO_TOP', 'wx.SHOW_EFFECT_SLIDE_TO_BOTTOM', 'wx.SHOW_EFFECT_BLEND', 'wx.SHOW_EFFECT_EXPAND'], pos=(50, 155), size=(220, 160), style=wx.LB_SINGLE) self.list.Select(0) tt = 'Timeout in milliseconds\n0 is system default' self.spin = wx.SpinCtrl(self, -1, tt, pos=(50, 130), style=wx. ALIGN_LEFT) self.spin.SetToolTip(wx.ToolTip(tt)) self.spin.SetRange(0, 5000) self.spin.SetValue(0) def OnButton1(self, evt): win = MyMiniFrame(self, -1, 'This is a wx.MiniFrame', size=(350, 200), style=wx.DEFAULT_FRAME_STYLE) win.Centre() win.Show(True) <mask token> class printLog: def __init__(self): pass def write(self, txt): print('%s' % txt) def WriteText(self, txt): print('%s' % txt) class TestFrame(wx.Frame): def __init__(self, parent, id=wx.ID_ANY, title=wx.EmptyString, pos=wx. DefaultPosition, size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE, name='frame'): wx.Frame.__init__(self, parent, id, title, pos, size, style, name) log = printLog() panel = TestPanel(self, log) self.Bind(wx.EVT_CLOSE, self.OnDestroy) try: self.SetIcon(wx.IconFromLocation(wx.IconLocation(sys.executable))) except Exception as exc: raise exc def OnDestroy(self, event): self.Destroy() class TestApp(wx.App): def OnInit(self): gMainWin = TestFrame(None) gMainWin.SetTitle('Extended Frame Demo') gMainWin.Show() return True <mask token>
<mask token> class MyMiniFrame(wx.MiniFrame): <mask token> <mask token> <mask token> <mask token> class TestPanel(wx.Panel): def __init__(self, parent, log): self.log = log wx.Panel.__init__(self, parent, -1) b1 = wx.Button(self, -1, 'Create and Show a MiniFrame', (50, 50)) self.Bind(wx.EVT_BUTTON, self.OnButton1, b1) b2 = wx.Button(self, -1, 'Create and Show a MiniFrame With Effect', (50, 100)) self.Bind(wx.EVT_BUTTON, self.OnButton2, b2) self.list = wx.ListBox(self, choices=['wx.SHOW_EFFECT_NONE', 'wx.SHOW_EFFECT_ROLL_TO_LEFT', 'wx.SHOW_EFFECT_ROLL_TO_RIGHT', 'wx.SHOW_EFFECT_ROLL_TO_TOP', 'wx.SHOW_EFFECT_ROLL_TO_BOTTOM', 'wx.SHOW_EFFECT_SLIDE_TO_LEFT', 'wx.SHOW_EFFECT_SLIDE_TO_RIGHT', 'wx.SHOW_EFFECT_SLIDE_TO_TOP', 'wx.SHOW_EFFECT_SLIDE_TO_BOTTOM', 'wx.SHOW_EFFECT_BLEND', 'wx.SHOW_EFFECT_EXPAND'], pos=(50, 155), size=(220, 160), style=wx.LB_SINGLE) self.list.Select(0) tt = 'Timeout in milliseconds\n0 is system default' self.spin = wx.SpinCtrl(self, -1, tt, pos=(50, 130), style=wx. ALIGN_LEFT) self.spin.SetToolTip(wx.ToolTip(tt)) self.spin.SetRange(0, 5000) self.spin.SetValue(0) def OnButton1(self, evt): win = MyMiniFrame(self, -1, 'This is a wx.MiniFrame', size=(350, 200), style=wx.DEFAULT_FRAME_STYLE) win.Centre() win.Show(True) def OnButton2(self, evt): win = MyMiniFrame(self, -1, 'This is a wx.MiniFrame', size=(350, 200), style=wx.DEFAULT_FRAME_STYLE) win.Centre() win.ShowWithEffect(effect=eval(self.list.GetString(self.list. GetSelection())), timeout=self.spin.GetValue()) class printLog: def __init__(self): pass def write(self, txt): print('%s' % txt) def WriteText(self, txt): print('%s' % txt) class TestFrame(wx.Frame): def __init__(self, parent, id=wx.ID_ANY, title=wx.EmptyString, pos=wx. DefaultPosition, size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE, name='frame'): wx.Frame.__init__(self, parent, id, title, pos, size, style, name) log = printLog() panel = TestPanel(self, log) self.Bind(wx.EVT_CLOSE, self.OnDestroy) try: self.SetIcon(wx.IconFromLocation(wx.IconLocation(sys.executable))) except Exception as exc: raise exc def OnDestroy(self, event): self.Destroy() class TestApp(wx.App): def OnInit(self): gMainWin = TestFrame(None) gMainWin.SetTitle('Extended Frame Demo') gMainWin.Show() return True <mask token>
<mask token> class MyMiniFrame(wx.MiniFrame): def __init__(self, parent, id, title, pos=wx.DefaultPosition, size=wx. DefaultSize, style=wx.DEFAULT_FRAME_STYLE, name='frame'): wx.MiniFrame.__init__(self, parent, id, title, pos, size, style, name) panel = wx.Panel(self, -1) button = wx.Button(panel, 1003, 'Close Me') button.SetPosition((15, 15)) button2 = wx.Button(panel, -1, 'ToggleWindowStyle(wx.STAY_ON_TOP)') button2.SetPosition((30, 50)) self.Bind(wx.EVT_BUTTON, self.OnCloseMe, button) self.Bind(wx.EVT_BUTTON, self.OnToggleWindowStyle, button2) self.Bind(wx.EVT_CLOSE, self.OnCloseWindow) def OnToggleWindowStyle(self, event): self.ToggleWindowStyle(wx.STAY_ON_TOP) <mask token> <mask token> class TestPanel(wx.Panel): def __init__(self, parent, log): self.log = log wx.Panel.__init__(self, parent, -1) b1 = wx.Button(self, -1, 'Create and Show a MiniFrame', (50, 50)) self.Bind(wx.EVT_BUTTON, self.OnButton1, b1) b2 = wx.Button(self, -1, 'Create and Show a MiniFrame With Effect', (50, 100)) self.Bind(wx.EVT_BUTTON, self.OnButton2, b2) self.list = wx.ListBox(self, choices=['wx.SHOW_EFFECT_NONE', 'wx.SHOW_EFFECT_ROLL_TO_LEFT', 'wx.SHOW_EFFECT_ROLL_TO_RIGHT', 'wx.SHOW_EFFECT_ROLL_TO_TOP', 'wx.SHOW_EFFECT_ROLL_TO_BOTTOM', 'wx.SHOW_EFFECT_SLIDE_TO_LEFT', 'wx.SHOW_EFFECT_SLIDE_TO_RIGHT', 'wx.SHOW_EFFECT_SLIDE_TO_TOP', 'wx.SHOW_EFFECT_SLIDE_TO_BOTTOM', 'wx.SHOW_EFFECT_BLEND', 'wx.SHOW_EFFECT_EXPAND'], pos=(50, 155), size=(220, 160), style=wx.LB_SINGLE) self.list.Select(0) tt = 'Timeout in milliseconds\n0 is system default' self.spin = wx.SpinCtrl(self, -1, tt, pos=(50, 130), style=wx. ALIGN_LEFT) self.spin.SetToolTip(wx.ToolTip(tt)) self.spin.SetRange(0, 5000) self.spin.SetValue(0) def OnButton1(self, evt): win = MyMiniFrame(self, -1, 'This is a wx.MiniFrame', size=(350, 200), style=wx.DEFAULT_FRAME_STYLE) win.Centre() win.Show(True) def OnButton2(self, evt): win = MyMiniFrame(self, -1, 'This is a wx.MiniFrame', size=(350, 200), style=wx.DEFAULT_FRAME_STYLE) win.Centre() win.ShowWithEffect(effect=eval(self.list.GetString(self.list. GetSelection())), timeout=self.spin.GetValue()) class printLog: def __init__(self): pass def write(self, txt): print('%s' % txt) def WriteText(self, txt): print('%s' % txt) class TestFrame(wx.Frame): def __init__(self, parent, id=wx.ID_ANY, title=wx.EmptyString, pos=wx. DefaultPosition, size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE, name='frame'): wx.Frame.__init__(self, parent, id, title, pos, size, style, name) log = printLog() panel = TestPanel(self, log) self.Bind(wx.EVT_CLOSE, self.OnDestroy) try: self.SetIcon(wx.IconFromLocation(wx.IconLocation(sys.executable))) except Exception as exc: raise exc def OnDestroy(self, event): self.Destroy() class TestApp(wx.App): def OnInit(self): gMainWin = TestFrame(None) gMainWin.SetTitle('Extended Frame Demo') gMainWin.Show() return True <mask token>
<mask token> try: gFileDir = os.path.dirname(os.path.abspath(__file__)) except: gFileDir = os.path.dirname(os.path.abspath(sys.argv[0])) <mask token> class MyMiniFrame(wx.MiniFrame): def __init__(self, parent, id, title, pos=wx.DefaultPosition, size=wx. DefaultSize, style=wx.DEFAULT_FRAME_STYLE, name='frame'): wx.MiniFrame.__init__(self, parent, id, title, pos, size, style, name) panel = wx.Panel(self, -1) button = wx.Button(panel, 1003, 'Close Me') button.SetPosition((15, 15)) button2 = wx.Button(panel, -1, 'ToggleWindowStyle(wx.STAY_ON_TOP)') button2.SetPosition((30, 50)) self.Bind(wx.EVT_BUTTON, self.OnCloseMe, button) self.Bind(wx.EVT_BUTTON, self.OnToggleWindowStyle, button2) self.Bind(wx.EVT_CLOSE, self.OnCloseWindow) def OnToggleWindowStyle(self, event): self.ToggleWindowStyle(wx.STAY_ON_TOP) def OnCloseMe(self, event): self.Close(True) def OnCloseWindow(self, event): self.Destroy() class TestPanel(wx.Panel): def __init__(self, parent, log): self.log = log wx.Panel.__init__(self, parent, -1) b1 = wx.Button(self, -1, 'Create and Show a MiniFrame', (50, 50)) self.Bind(wx.EVT_BUTTON, self.OnButton1, b1) b2 = wx.Button(self, -1, 'Create and Show a MiniFrame With Effect', (50, 100)) self.Bind(wx.EVT_BUTTON, self.OnButton2, b2) self.list = wx.ListBox(self, choices=['wx.SHOW_EFFECT_NONE', 'wx.SHOW_EFFECT_ROLL_TO_LEFT', 'wx.SHOW_EFFECT_ROLL_TO_RIGHT', 'wx.SHOW_EFFECT_ROLL_TO_TOP', 'wx.SHOW_EFFECT_ROLL_TO_BOTTOM', 'wx.SHOW_EFFECT_SLIDE_TO_LEFT', 'wx.SHOW_EFFECT_SLIDE_TO_RIGHT', 'wx.SHOW_EFFECT_SLIDE_TO_TOP', 'wx.SHOW_EFFECT_SLIDE_TO_BOTTOM', 'wx.SHOW_EFFECT_BLEND', 'wx.SHOW_EFFECT_EXPAND'], pos=(50, 155), size=(220, 160), style=wx.LB_SINGLE) self.list.Select(0) tt = 'Timeout in milliseconds\n0 is system default' self.spin = wx.SpinCtrl(self, -1, tt, pos=(50, 130), style=wx. ALIGN_LEFT) self.spin.SetToolTip(wx.ToolTip(tt)) self.spin.SetRange(0, 5000) self.spin.SetValue(0) def OnButton1(self, evt): win = MyMiniFrame(self, -1, 'This is a wx.MiniFrame', size=(350, 200), style=wx.DEFAULT_FRAME_STYLE) win.Centre() win.Show(True) def OnButton2(self, evt): win = MyMiniFrame(self, -1, 'This is a wx.MiniFrame', size=(350, 200), style=wx.DEFAULT_FRAME_STYLE) win.Centre() win.ShowWithEffect(effect=eval(self.list.GetString(self.list. GetSelection())), timeout=self.spin.GetValue()) class printLog: def __init__(self): pass def write(self, txt): print('%s' % txt) def WriteText(self, txt): print('%s' % txt) class TestFrame(wx.Frame): def __init__(self, parent, id=wx.ID_ANY, title=wx.EmptyString, pos=wx. DefaultPosition, size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE, name='frame'): wx.Frame.__init__(self, parent, id, title, pos, size, style, name) log = printLog() panel = TestPanel(self, log) self.Bind(wx.EVT_CLOSE, self.OnDestroy) try: self.SetIcon(wx.IconFromLocation(wx.IconLocation(sys.executable))) except Exception as exc: raise exc def OnDestroy(self, event): self.Destroy() class TestApp(wx.App): def OnInit(self): gMainWin = TestFrame(None) gMainWin.SetTitle('Extended Frame Demo') gMainWin.Show() return True if __name__ == '__main__': import sys print('Python %s.%s.%s %s' % sys.version_info[0:4]) print('wxPython %s' % wx.version()) gApp = TestApp(redirect=False, filename=None, useBestVisual=False, clearSigInt=True) gApp.MainLoop()
#!/usr/bin/env python # -*- coding: utf-8 -*- __doc__ = """\ A MiniFrame is a Frame with a small title bar. It is suitable for floating toolbars that must not take up too much screen area. In other respects, it's the same as a wx.Frame. """ __wxPyOnlineDocs__ = 'https://wxpython.org/Phoenix/docs/html/wx.MiniFrame.html' __wxPyDemoPanel__ = 'TestPanel' #-Imports----------------------------------------------------------------------- #--Python Imports. import os import sys #--wxPython Imports. import wx #-Globals----------------------------------------------------------------------- try: gFileDir = os.path.dirname(os.path.abspath(__file__)) except: gFileDir = os.path.dirname(os.path.abspath(sys.argv[0])) gBmpDir = gFileDir + os.sep + 'bitmaps' class MyMiniFrame(wx.MiniFrame): def __init__(self, parent, id, title, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE, name='frame'): wx.MiniFrame.__init__(self, parent, id, title, pos, size, style, name) panel = wx.Panel(self, -1) button = wx.Button(panel, 1003, "Close Me") button.SetPosition((15, 15)) button2 = wx.Button(panel, -1, "ToggleWindowStyle(wx.STAY_ON_TOP)") button2.SetPosition((30, 50)) self.Bind(wx.EVT_BUTTON, self.OnCloseMe, button) self.Bind(wx.EVT_BUTTON, self.OnToggleWindowStyle, button2) self.Bind(wx.EVT_CLOSE, self.OnCloseWindow) def OnToggleWindowStyle(self, event): self.ToggleWindowStyle(wx.STAY_ON_TOP) def OnCloseMe(self, event): self.Close(True) def OnCloseWindow(self, event): self.Destroy() #--------------------------------------------------------------------------- class TestPanel(wx.Panel): def __init__(self, parent, log): self.log = log wx.Panel.__init__(self, parent, -1) b1 = wx.Button(self, -1, "Create and Show a MiniFrame", (50, 50)) self.Bind(wx.EVT_BUTTON, self.OnButton1, b1) b2 = wx.Button(self, -1, "Create and Show a MiniFrame With Effect", (50, 100)) self.Bind(wx.EVT_BUTTON, self.OnButton2, b2) self.list = wx.ListBox(self, choices=['wx.SHOW_EFFECT_NONE', 'wx.SHOW_EFFECT_ROLL_TO_LEFT', 'wx.SHOW_EFFECT_ROLL_TO_RIGHT', 'wx.SHOW_EFFECT_ROLL_TO_TOP', 'wx.SHOW_EFFECT_ROLL_TO_BOTTOM', 'wx.SHOW_EFFECT_SLIDE_TO_LEFT', 'wx.SHOW_EFFECT_SLIDE_TO_RIGHT', 'wx.SHOW_EFFECT_SLIDE_TO_TOP', 'wx.SHOW_EFFECT_SLIDE_TO_BOTTOM', 'wx.SHOW_EFFECT_BLEND', 'wx.SHOW_EFFECT_EXPAND' # 'wx.SHOW_EFFECT_MAX' ], pos=(50, 155), size=(220, 160), style=wx.LB_SINGLE) self.list.Select(0) tt = "Timeout in milliseconds\n0 is system default" self.spin = wx.SpinCtrl(self, -1, tt, pos=(50, 130), style=wx.ALIGN_LEFT) self.spin.SetToolTip(wx.ToolTip(tt)) self.spin.SetRange(0, 5000) self.spin.SetValue(0) def OnButton1(self, evt): win = MyMiniFrame(self, -1, "This is a wx.MiniFrame", size=(350, 200), style=wx.DEFAULT_FRAME_STYLE) win.Centre() win.Show(True) def OnButton2(self, evt): win = MyMiniFrame(self, -1, "This is a wx.MiniFrame", size=(350, 200), style=wx.DEFAULT_FRAME_STYLE) win.Centre() win.ShowWithEffect(effect=eval(self.list.GetString(self.list.GetSelection())), timeout=self.spin.GetValue()) #- __main__ Demo --------------------------------------------------------------- class printLog: def __init__(self): pass def write(self, txt): print('%s' % txt) def WriteText(self, txt): print('%s' % txt) class TestFrame(wx.Frame): def __init__(self, parent, id=wx.ID_ANY, title=wx.EmptyString, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE, name='frame'): wx.Frame.__init__(self, parent, id, title, pos, size, style, name) log = printLog() panel = TestPanel(self, log) self.Bind(wx.EVT_CLOSE, self.OnDestroy) try: self.SetIcon(wx.IconFromLocation(wx.IconLocation(sys.executable))) except Exception as exc: raise exc def OnDestroy(self, event): self.Destroy() class TestApp(wx.App): def OnInit(self): gMainWin = TestFrame(None) gMainWin.SetTitle('Extended Frame Demo') gMainWin.Show() return True #--------------------------------------------------------------------------- if __name__ == '__main__': import sys print('Python %s.%s.%s %s' % sys.version_info[0:4]) print('wxPython %s' % wx.version()) gApp = TestApp(redirect=False, filename=None, useBestVisual=False, clearSigInt=True) gApp.MainLoop()
[ 12, 14, 16, 19, 22 ]
2,287
c336bb6cdadfb836ab68ebd5bbb210f63af3d084
<mask token> def ping_calculate_pong(expression, operator_index): """The function takes two arguments. Argument 1: an expression from which we will extract one subexpression. Argument 2: the index of the mathematical operator around which function takes the subexpression to extract. The function: 1. takes the expression and extract one subexpression around math operator (like 2 + 2) - ping; 2. calculates subexpression result using function math_operation(); 3. replaces in expression: subexpression to subexpression result - pong. """ if len(expression) < 3 or operator_index == len(expression ) - 1 or operator_index == 0: raise ValueError( f'{expression} - check this fragment, something wrong.') sub_expression = expression[operator_index - 1:operator_index + 2] sub_result = math_operation(sub_expression) expression[operator_index + 1] = sub_result del expression[operator_index - 1:operator_index + 1] def calculator_without_parentheses(expression): """The function: 1. prioritizes mathematical operations in expression without any parentheses; 2. transfers expression and indexes of math operators to the function ping_calculate_pong(); 3. returns result of calculations. """ j = 1 while len(expression) > j: if '**' in expression: ping_calculate_pong(expression, expression.index('**')) elif '*' in expression or '/' in expression: if '*' in expression and '/' in expression: if expression.index('*') < expression.index('/'): ping_calculate_pong(expression, expression.index('*')) else: ping_calculate_pong(expression, expression.index('/')) elif '/' not in expression: ping_calculate_pong(expression, expression.index('*')) elif '*' not in expression: ping_calculate_pong(expression, expression.index('/')) elif '+' in expression or '-' in expression: if '+' in expression and '-' in expression: if expression.index('+') < expression.index('-'): ping_calculate_pong(expression, expression.index('+')) else: ping_calculate_pong(expression, expression.index('-')) elif '-' not in expression: ping_calculate_pong(expression, expression.index('+')) elif '+' not in expression: ping_calculate_pong(expression, expression.index('-')) else: j += 1 return expression <mask token>
<mask token> def math_operation(expression): """Simple calculator for two numbers in expression like 3 + 3.""" if not str(expression[0]).isdigit() or not str(expression[2]).isdigit(): if not str(expression[0]).replace('.', '1').replace('-', '1').isdigit( ) or not str(expression[2]).replace('.', '1').replace('-', '1' ).isdigit(): raise ValueError( f'{expression} - check this fragment, something wrong.') if expression[2] == 0 and expression[1] == '/': raise ValueError(f'{expression} - division by zero.') operator = expression[1] if operator == '**': return expression[0] ** expression[2] elif operator == '*': return expression[0] * expression[2] elif operator == '/': return expression[0] / expression[2] elif operator == '+': return expression[0] + expression[2] elif operator == '-': return expression[0] - expression[2] def ping_calculate_pong(expression, operator_index): """The function takes two arguments. Argument 1: an expression from which we will extract one subexpression. Argument 2: the index of the mathematical operator around which function takes the subexpression to extract. The function: 1. takes the expression and extract one subexpression around math operator (like 2 + 2) - ping; 2. calculates subexpression result using function math_operation(); 3. replaces in expression: subexpression to subexpression result - pong. """ if len(expression) < 3 or operator_index == len(expression ) - 1 or operator_index == 0: raise ValueError( f'{expression} - check this fragment, something wrong.') sub_expression = expression[operator_index - 1:operator_index + 2] sub_result = math_operation(sub_expression) expression[operator_index + 1] = sub_result del expression[operator_index - 1:operator_index + 1] def calculator_without_parentheses(expression): """The function: 1. prioritizes mathematical operations in expression without any parentheses; 2. transfers expression and indexes of math operators to the function ping_calculate_pong(); 3. returns result of calculations. """ j = 1 while len(expression) > j: if '**' in expression: ping_calculate_pong(expression, expression.index('**')) elif '*' in expression or '/' in expression: if '*' in expression and '/' in expression: if expression.index('*') < expression.index('/'): ping_calculate_pong(expression, expression.index('*')) else: ping_calculate_pong(expression, expression.index('/')) elif '/' not in expression: ping_calculate_pong(expression, expression.index('*')) elif '*' not in expression: ping_calculate_pong(expression, expression.index('/')) elif '+' in expression or '-' in expression: if '+' in expression and '-' in expression: if expression.index('+') < expression.index('-'): ping_calculate_pong(expression, expression.index('+')) else: ping_calculate_pong(expression, expression.index('-')) elif '-' not in expression: ping_calculate_pong(expression, expression.index('+')) elif '+' not in expression: ping_calculate_pong(expression, expression.index('-')) else: j += 1 return expression <mask token>
<mask token> def math_operation(expression): """Simple calculator for two numbers in expression like 3 + 3.""" if not str(expression[0]).isdigit() or not str(expression[2]).isdigit(): if not str(expression[0]).replace('.', '1').replace('-', '1').isdigit( ) or not str(expression[2]).replace('.', '1').replace('-', '1' ).isdigit(): raise ValueError( f'{expression} - check this fragment, something wrong.') if expression[2] == 0 and expression[1] == '/': raise ValueError(f'{expression} - division by zero.') operator = expression[1] if operator == '**': return expression[0] ** expression[2] elif operator == '*': return expression[0] * expression[2] elif operator == '/': return expression[0] / expression[2] elif operator == '+': return expression[0] + expression[2] elif operator == '-': return expression[0] - expression[2] def ping_calculate_pong(expression, operator_index): """The function takes two arguments. Argument 1: an expression from which we will extract one subexpression. Argument 2: the index of the mathematical operator around which function takes the subexpression to extract. The function: 1. takes the expression and extract one subexpression around math operator (like 2 + 2) - ping; 2. calculates subexpression result using function math_operation(); 3. replaces in expression: subexpression to subexpression result - pong. """ if len(expression) < 3 or operator_index == len(expression ) - 1 or operator_index == 0: raise ValueError( f'{expression} - check this fragment, something wrong.') sub_expression = expression[operator_index - 1:operator_index + 2] sub_result = math_operation(sub_expression) expression[operator_index + 1] = sub_result del expression[operator_index - 1:operator_index + 1] def calculator_without_parentheses(expression): """The function: 1. prioritizes mathematical operations in expression without any parentheses; 2. transfers expression and indexes of math operators to the function ping_calculate_pong(); 3. returns result of calculations. """ j = 1 while len(expression) > j: if '**' in expression: ping_calculate_pong(expression, expression.index('**')) elif '*' in expression or '/' in expression: if '*' in expression and '/' in expression: if expression.index('*') < expression.index('/'): ping_calculate_pong(expression, expression.index('*')) else: ping_calculate_pong(expression, expression.index('/')) elif '/' not in expression: ping_calculate_pong(expression, expression.index('*')) elif '*' not in expression: ping_calculate_pong(expression, expression.index('/')) elif '+' in expression or '-' in expression: if '+' in expression and '-' in expression: if expression.index('+') < expression.index('-'): ping_calculate_pong(expression, expression.index('+')) else: ping_calculate_pong(expression, expression.index('-')) elif '-' not in expression: ping_calculate_pong(expression, expression.index('+')) elif '+' not in expression: ping_calculate_pong(expression, expression.index('-')) else: j += 1 return expression def clear_and_convert(string_math_expression): """This function takes string expression and converts it to list with int, float, and 'math signs'.""" cleared_expression = list(filter(lambda x: x != ' ', string_math_expression)) check_list = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '/', '(', ')', '.'] for element in cleared_expression: if element not in check_list: raise ValueError( f'Houston, we have a problem. Element "{element}" in expression is not correct.' ) num_exp = [] number = '' len_cleared_expression = len(cleared_expression) for i, element in enumerate(cleared_expression): if element.isdigit(): number += element if i == len_cleared_expression - 1 or not cleared_expression[i + 1 ].isdigit(): num_exp.append(int(number)) number = '' else: num_exp.append(element) while '.' in num_exp: i = num_exp.index('.') if i != 0 and i != len(num_exp) - 1 and isinstance(num_exp[i - 1], int ) and isinstance(num_exp[i + 1], int): float_number = float(str(num_exp[i - 1]) + num_exp[i] + str( num_exp[i + 1])) num_exp[i + 1] = float_number del num_exp[i - 1:i + 1] else: raise ValueError('Something wrong with ".".') neg_exp = [] excluded_index = None neg_check_list = ['+', '-', '*', '/', '('] len_num_exp = len(num_exp) for i, element in enumerate(num_exp): if element == '-': if i == len_num_exp - 1: raise ValueError('Something wrong with "-".') elif isinstance(num_exp[i + 1], int) and (i == 0 or num_exp[i - 1] in neg_check_list): n_number = int('-' + str(num_exp[i + 1])) neg_exp.append(n_number) excluded_index = i + 1 elif isinstance(num_exp[i + 1], float) and (i == 0 or num_exp[i - 1] in neg_check_list): n_number = float('-' + str(num_exp[i + 1])) neg_exp.append(n_number) excluded_index = i + 1 else: neg_exp.append(element) elif i != excluded_index: neg_exp.append(element) converted_expression = [] i = 0 len_neg_exp = len(neg_exp) while i < len_neg_exp: if (i == 0 or i == len_neg_exp - 1) and neg_exp[i] == '*': raise ValueError('Something wrong with "*".') elif neg_exp[i] == '*' and neg_exp[i + 1] == '*': converted_expression.append('**') i += 2 else: converted_expression.append(neg_exp[i]) i += 1 return converted_expression <mask token>
<mask token> def math_operation(expression): """Simple calculator for two numbers in expression like 3 + 3.""" if not str(expression[0]).isdigit() or not str(expression[2]).isdigit(): if not str(expression[0]).replace('.', '1').replace('-', '1').isdigit( ) or not str(expression[2]).replace('.', '1').replace('-', '1' ).isdigit(): raise ValueError( f'{expression} - check this fragment, something wrong.') if expression[2] == 0 and expression[1] == '/': raise ValueError(f'{expression} - division by zero.') operator = expression[1] if operator == '**': return expression[0] ** expression[2] elif operator == '*': return expression[0] * expression[2] elif operator == '/': return expression[0] / expression[2] elif operator == '+': return expression[0] + expression[2] elif operator == '-': return expression[0] - expression[2] def ping_calculate_pong(expression, operator_index): """The function takes two arguments. Argument 1: an expression from which we will extract one subexpression. Argument 2: the index of the mathematical operator around which function takes the subexpression to extract. The function: 1. takes the expression and extract one subexpression around math operator (like 2 + 2) - ping; 2. calculates subexpression result using function math_operation(); 3. replaces in expression: subexpression to subexpression result - pong. """ if len(expression) < 3 or operator_index == len(expression ) - 1 or operator_index == 0: raise ValueError( f'{expression} - check this fragment, something wrong.') sub_expression = expression[operator_index - 1:operator_index + 2] sub_result = math_operation(sub_expression) expression[operator_index + 1] = sub_result del expression[operator_index - 1:operator_index + 1] def calculator_without_parentheses(expression): """The function: 1. prioritizes mathematical operations in expression without any parentheses; 2. transfers expression and indexes of math operators to the function ping_calculate_pong(); 3. returns result of calculations. """ j = 1 while len(expression) > j: if '**' in expression: ping_calculate_pong(expression, expression.index('**')) elif '*' in expression or '/' in expression: if '*' in expression and '/' in expression: if expression.index('*') < expression.index('/'): ping_calculate_pong(expression, expression.index('*')) else: ping_calculate_pong(expression, expression.index('/')) elif '/' not in expression: ping_calculate_pong(expression, expression.index('*')) elif '*' not in expression: ping_calculate_pong(expression, expression.index('/')) elif '+' in expression or '-' in expression: if '+' in expression and '-' in expression: if expression.index('+') < expression.index('-'): ping_calculate_pong(expression, expression.index('+')) else: ping_calculate_pong(expression, expression.index('-')) elif '-' not in expression: ping_calculate_pong(expression, expression.index('+')) elif '+' not in expression: ping_calculate_pong(expression, expression.index('-')) else: j += 1 return expression def clear_and_convert(string_math_expression): """This function takes string expression and converts it to list with int, float, and 'math signs'.""" cleared_expression = list(filter(lambda x: x != ' ', string_math_expression)) check_list = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '/', '(', ')', '.'] for element in cleared_expression: if element not in check_list: raise ValueError( f'Houston, we have a problem. Element "{element}" in expression is not correct.' ) num_exp = [] number = '' len_cleared_expression = len(cleared_expression) for i, element in enumerate(cleared_expression): if element.isdigit(): number += element if i == len_cleared_expression - 1 or not cleared_expression[i + 1 ].isdigit(): num_exp.append(int(number)) number = '' else: num_exp.append(element) while '.' in num_exp: i = num_exp.index('.') if i != 0 and i != len(num_exp) - 1 and isinstance(num_exp[i - 1], int ) and isinstance(num_exp[i + 1], int): float_number = float(str(num_exp[i - 1]) + num_exp[i] + str( num_exp[i + 1])) num_exp[i + 1] = float_number del num_exp[i - 1:i + 1] else: raise ValueError('Something wrong with ".".') neg_exp = [] excluded_index = None neg_check_list = ['+', '-', '*', '/', '('] len_num_exp = len(num_exp) for i, element in enumerate(num_exp): if element == '-': if i == len_num_exp - 1: raise ValueError('Something wrong with "-".') elif isinstance(num_exp[i + 1], int) and (i == 0 or num_exp[i - 1] in neg_check_list): n_number = int('-' + str(num_exp[i + 1])) neg_exp.append(n_number) excluded_index = i + 1 elif isinstance(num_exp[i + 1], float) and (i == 0 or num_exp[i - 1] in neg_check_list): n_number = float('-' + str(num_exp[i + 1])) neg_exp.append(n_number) excluded_index = i + 1 else: neg_exp.append(element) elif i != excluded_index: neg_exp.append(element) converted_expression = [] i = 0 len_neg_exp = len(neg_exp) while i < len_neg_exp: if (i == 0 or i == len_neg_exp - 1) and neg_exp[i] == '*': raise ValueError('Something wrong with "*".') elif neg_exp[i] == '*' and neg_exp[i + 1] == '*': converted_expression.append('**') i += 2 else: converted_expression.append(neg_exp[i]) i += 1 return converted_expression def calculate_expression(str_math_expression): """This function: 1. uses clear_and_convert() to prepare the string math expression for further calculations; 2. finds all subexpressions inside parentheses (if there are such); 3. transfers subexpression to calculator_without_parentheses() for further calculations; 4. replaces subexpression with the result; 5. returns final result of all calculations. """ expression = clear_and_convert(str_math_expression) for element in expression.copy(): if ')' in expression: if '(' in expression: if expression.index(')') > expression.index('('): z = expression.index(')') a = z while expression[a] != '(': a -= 1 fragment = expression[a + 1:z] fr_result = calculator_without_parentheses(fragment) if len(fr_result) != 1: raise ValueError( f'{fr_result} - check this fragment, something wrong.' ) expression[z] = fr_result[0] del expression[a:z] else: raise ValueError('Something wrong with parentheses.') else: raise ValueError('Something wrong with parentheses.') else: expression = calculator_without_parentheses(expression) if len(expression) != 1: raise ValueError('Something wrong in your expression.') if len(expression) == 1: return str(round(expression[0], 5))
"""Calculator is built using "ping pong" algorithm, without eval() etc. Main final function: calculate_expression(). calculate_expression() uses two functions in utils.py: clear_and_convert() and calculator_without_parentheses(). calculator_without_parentheses() uses two remaining functions: math_operation() -> ping_calculate_pong() -> calculator_without_parentheses(). Allowed operations: +, -, *, /, **, use of parentheses. Spaces don't matter. Negative numbers should be written as: (-34), float numbers: 3.4 Expression example: ((-2.3) + 3 ** (2 - 2)) * 2.2 + (6/(3 + 3)* (-2)) ** 2 """ def math_operation(expression): """Simple calculator for two numbers in expression like 3 + 3.""" if not str(expression[0]).isdigit() or not str(expression[2]).isdigit(): # eliminates the error call for float and negative numbers if not str(expression[0]).replace('.', '1').replace('-', '1').isdigit() or \ not str(expression[2]).replace('.', '1').replace('-', '1').isdigit(): raise ValueError(f'{expression} - check this fragment, something wrong.') if expression[2] == 0 and expression[1] == '/': raise ValueError(f'{expression} - division by zero.') operator = expression[1] if operator == '**': return expression[0]**expression[2] elif operator == '*': return expression[0]*expression[2] elif operator == '/': return expression[0]/expression[2] elif operator == '+': return expression[0]+expression[2] elif operator == '-': return expression[0]-expression[2] def ping_calculate_pong(expression, operator_index): """The function takes two arguments. Argument 1: an expression from which we will extract one subexpression. Argument 2: the index of the mathematical operator around which function takes the subexpression to extract. The function: 1. takes the expression and extract one subexpression around math operator (like 2 + 2) - ping; 2. calculates subexpression result using function math_operation(); 3. replaces in expression: subexpression to subexpression result - pong. """ if len(expression) < 3 or operator_index == len(expression)-1 or operator_index == 0: raise ValueError(f'{expression} - check this fragment, something wrong.') sub_expression = expression[operator_index - 1:operator_index + 2] sub_result = math_operation(sub_expression) expression[operator_index+1] = sub_result del expression[operator_index-1:operator_index+1] def calculator_without_parentheses(expression): """The function: 1. prioritizes mathematical operations in expression without any parentheses; 2. transfers expression and indexes of math operators to the function ping_calculate_pong(); 3. returns result of calculations. """ j = 1 while len(expression) > j: if "**" in expression: ping_calculate_pong(expression, expression.index('**')) elif '*' in expression or '/' in expression: if '*' in expression and '/' in expression: if expression.index('*') < expression.index('/'): ping_calculate_pong(expression, expression.index('*')) else: ping_calculate_pong(expression, expression.index('/')) elif '/' not in expression: ping_calculate_pong(expression, expression.index('*')) elif '*' not in expression: ping_calculate_pong(expression, expression.index('/')) elif '+' in expression or '-' in expression: if '+' in expression and '-' in expression: if expression.index('+') < expression.index('-'): ping_calculate_pong(expression, expression.index('+')) else: ping_calculate_pong(expression, expression.index('-')) elif '-' not in expression: ping_calculate_pong(expression, expression.index('+')) elif '+' not in expression: ping_calculate_pong(expression, expression.index('-')) else: j += 1 # protection against a possible eternal loop when an incorrect expression is entered return expression def clear_and_convert(string_math_expression): """This function takes string expression and converts it to list with int, float, and 'math signs'.""" # clear the expression of spaces and convert it to the list cleared_expression = list(filter(lambda x: x != ' ', string_math_expression)) # check characters in the expression for correctness check_list = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '/', '(', ')', '.'] for element in cleared_expression: if element not in check_list: raise ValueError(f'Houston, we have a problem. Element "{element}" in expression is not correct.') # find multi-digit numbers and create new list num_exp with int num_exp = [] number = '' len_cleared_expression = len(cleared_expression) for i, element in enumerate(cleared_expression): if element.isdigit(): number += element if i == len_cleared_expression - 1 or not cleared_expression[i+1].isdigit(): num_exp.append(int(number)) number = '' else: num_exp.append(element) # find float numbers and update list num_exp while '.' in num_exp: i = num_exp.index('.') if (i != 0 and i != len(num_exp) - 1 and isinstance(num_exp[i-1], int) and isinstance(num_exp[i+1], int)): float_number = float(str(num_exp[i-1]) + num_exp[i] + str(num_exp[i+1])) num_exp[i+1] = float_number del num_exp[i-1:i+1] else: raise ValueError('Something wrong with ".".') # find negative numbers and create new list with negative numbers neg_exp = [] excluded_index = None neg_check_list = ['+', '-', '*', '/', '('] len_num_exp = len(num_exp) for i, element in enumerate(num_exp): if element == '-': if i == len_num_exp - 1: raise ValueError('Something wrong with "-".') elif isinstance(num_exp[i+1], int) and (i == 0 or num_exp[i-1] in neg_check_list): n_number = int('-' + str(num_exp[i+1])) neg_exp.append(n_number) excluded_index = i + 1 elif isinstance(num_exp[i+1], float) and (i == 0 or num_exp[i-1] in neg_check_list): n_number = float('-' + str(num_exp[i+1])) neg_exp.append(n_number) excluded_index = i + 1 else: neg_exp.append(element) elif i != excluded_index: neg_exp.append(element) # find exponent operator and create new list with final converted expression converted_expression = [] i = 0 len_neg_exp = len(neg_exp) while i < len_neg_exp: if (i == 0 or i == len_neg_exp - 1) and neg_exp[i] == '*': raise ValueError('Something wrong with "*".') elif neg_exp[i] == '*' and neg_exp[i+1] == '*': converted_expression.append('**') i += 2 else: converted_expression.append(neg_exp[i]) i += 1 return converted_expression def calculate_expression(str_math_expression): """This function: 1. uses clear_and_convert() to prepare the string math expression for further calculations; 2. finds all subexpressions inside parentheses (if there are such); 3. transfers subexpression to calculator_without_parentheses() for further calculations; 4. replaces subexpression with the result; 5. returns final result of all calculations. """ expression = clear_and_convert(str_math_expression) for element in expression.copy(): if ')' in expression: if '(' in expression: if expression.index(')') > expression.index('('): z = expression.index(')') a = z while expression[a] != '(': a -= 1 fragment = expression[a+1:z] fr_result = calculator_without_parentheses(fragment) if len(fr_result) != 1: # checking for an input error in a fragment of the expression like ((())) raise ValueError(f'{fr_result} - check this fragment, something wrong.') expression[z] = fr_result[0] del expression[a:z] else: raise ValueError('Something wrong with parentheses.') else: raise ValueError('Something wrong with parentheses.') else: expression = calculator_without_parentheses(expression) if len(expression) != 1: raise ValueError('Something wrong in your expression.') if len(expression) == 1: return str(round(expression[0], 5))
[ 2, 3, 4, 5, 6 ]
2,288
c08e6cee61e9f32a9f067a9554c74bb2ddbd7cf3
<mask token> def process_data(num11, den11, num21, den21): w11 = ctrl.tf(num11, den11) w21 = ctrl.tf(num21, den21) print('результат w11={} w21={}'.format(w11, w21)) TimeLine = [] for i in range(1, 3000): TimeLine.append(i / 1000) plt.figure(0, figsize=[7, 6]) [y11, x11] = ctrl.step(w11, TimeLine) [y21, x21] = ctrl.step(w21, TimeLine) plt.plot(x11, y11, 'r', label='Исходная') plt.plot(x21, y21, 'b', label='Увеличенная k и уменшенная Т') plt.title('Переходная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() [y11, x11] = ctrl.impulse(w11, TimeLine) [y21, x21] = ctrl.impulse(w21, TimeLine) plt.plot(x11, y11, 'r', label='Исходная') plt.plot(x21, y21, 'b', label='Увеличенная k и уменшенная Т') plt.title('Импульсная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() ctrl.mag, ctrl.phase, ctrl.omega = ctrl.bode(w11, w21, dB=False) plt.plot() plt.show() return w11, w21 <mask token>
<mask token> def process_data(num11, den11, num21, den21): w11 = ctrl.tf(num11, den11) w21 = ctrl.tf(num21, den21) print('результат w11={} w21={}'.format(w11, w21)) TimeLine = [] for i in range(1, 3000): TimeLine.append(i / 1000) plt.figure(0, figsize=[7, 6]) [y11, x11] = ctrl.step(w11, TimeLine) [y21, x21] = ctrl.step(w21, TimeLine) plt.plot(x11, y11, 'r', label='Исходная') plt.plot(x21, y21, 'b', label='Увеличенная k и уменшенная Т') plt.title('Переходная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() [y11, x11] = ctrl.impulse(w11, TimeLine) [y21, x21] = ctrl.impulse(w21, TimeLine) plt.plot(x11, y11, 'r', label='Исходная') plt.plot(x21, y21, 'b', label='Увеличенная k и уменшенная Т') plt.title('Импульсная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() ctrl.mag, ctrl.phase, ctrl.omega = ctrl.bode(w11, w21, dB=False) plt.plot() plt.show() return w11, w21 print('1 - безынерционное звено') print('2 - апериодическое звено') print('3 - интегрирующее звено') print('4 - идеальное дифференцирующее звено') print('5 - реально дифференцирующее звено') print('Введите номер функции, которую необходимо отобразить:') <mask token> if func_number == 1: process_data([4.0], [1.0], [2.0], [1.0]) elif func_number == 2: process_data([3.0], [2, 1.0], [1.5, 0.0], [4, 1.0]) elif func_number == 3: process_data([1.0], [1, 0.0], [1.0], [0.5, 0.0]) elif func_number == 4: process_data([5, 0.0], [1e-12, 1.0], [10, 0.0], [1e-12, 1.0]) elif func_number == 5: process_data([3.0], [1, 1.0], [1.5, 0.0], [2, 1.0])
<mask token> def process_data(num11, den11, num21, den21): w11 = ctrl.tf(num11, den11) w21 = ctrl.tf(num21, den21) print('результат w11={} w21={}'.format(w11, w21)) TimeLine = [] for i in range(1, 3000): TimeLine.append(i / 1000) plt.figure(0, figsize=[7, 6]) [y11, x11] = ctrl.step(w11, TimeLine) [y21, x21] = ctrl.step(w21, TimeLine) plt.plot(x11, y11, 'r', label='Исходная') plt.plot(x21, y21, 'b', label='Увеличенная k и уменшенная Т') plt.title('Переходная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() [y11, x11] = ctrl.impulse(w11, TimeLine) [y21, x21] = ctrl.impulse(w21, TimeLine) plt.plot(x11, y11, 'r', label='Исходная') plt.plot(x21, y21, 'b', label='Увеличенная k и уменшенная Т') plt.title('Импульсная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() ctrl.mag, ctrl.phase, ctrl.omega = ctrl.bode(w11, w21, dB=False) plt.plot() plt.show() return w11, w21 print('1 - безынерционное звено') print('2 - апериодическое звено') print('3 - интегрирующее звено') print('4 - идеальное дифференцирующее звено') print('5 - реально дифференцирующее звено') print('Введите номер функции, которую необходимо отобразить:') func_number = int(input()) if func_number == 1: process_data([4.0], [1.0], [2.0], [1.0]) elif func_number == 2: process_data([3.0], [2, 1.0], [1.5, 0.0], [4, 1.0]) elif func_number == 3: process_data([1.0], [1, 0.0], [1.0], [0.5, 0.0]) elif func_number == 4: process_data([5, 0.0], [1e-12, 1.0], [10, 0.0], [1e-12, 1.0]) elif func_number == 5: process_data([3.0], [1, 1.0], [1.5, 0.0], [2, 1.0])
import control.matlab as ctrl import matplotlib.pylab as plt def process_data(num11, den11, num21, den21): w11 = ctrl.tf(num11, den11) w21 = ctrl.tf(num21, den21) print('результат w11={} w21={}'.format(w11, w21)) TimeLine = [] for i in range(1, 3000): TimeLine.append(i / 1000) plt.figure(0, figsize=[7, 6]) [y11, x11] = ctrl.step(w11, TimeLine) [y21, x21] = ctrl.step(w21, TimeLine) plt.plot(x11, y11, 'r', label='Исходная') plt.plot(x21, y21, 'b', label='Увеличенная k и уменшенная Т') plt.title('Переходная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() [y11, x11] = ctrl.impulse(w11, TimeLine) [y21, x21] = ctrl.impulse(w21, TimeLine) plt.plot(x11, y11, 'r', label='Исходная') plt.plot(x21, y21, 'b', label='Увеличенная k и уменшенная Т') plt.title('Импульсная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() ctrl.mag, ctrl.phase, ctrl.omega = ctrl.bode(w11, w21, dB=False) plt.plot() plt.show() return w11, w21 print('1 - безынерционное звено') print('2 - апериодическое звено') print('3 - интегрирующее звено') print('4 - идеальное дифференцирующее звено') print('5 - реально дифференцирующее звено') print('Введите номер функции, которую необходимо отобразить:') func_number = int(input()) if func_number == 1: process_data([4.0], [1.0], [2.0], [1.0]) elif func_number == 2: process_data([3.0], [2, 1.0], [1.5, 0.0], [4, 1.0]) elif func_number == 3: process_data([1.0], [1, 0.0], [1.0], [0.5, 0.0]) elif func_number == 4: process_data([5, 0.0], [1e-12, 1.0], [10, 0.0], [1e-12, 1.0]) elif func_number == 5: process_data([3.0], [1, 1.0], [1.5, 0.0], [2, 1.0])
import control.matlab as ctrl import matplotlib.pylab as plt def process_data(num11, den11, num21, den21): w11 = ctrl.tf(num11, den11) w21 = ctrl.tf(num21, den21) print('результат w11={} w21={}'.format(w11, w21)) TimeLine = [] for i in range (1, 3000): TimeLine.append(i/1000) plt.figure(0, figsize = [7, 6]) [y11, x11] = ctrl.step(w11, TimeLine) [y21, x21] = ctrl.step(w21, TimeLine) plt.plot(x11, y11, "r", label='Исходная') plt.plot(x21, y21, "b", label='Увеличенная k и уменшенная Т') plt.title('Переходная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() [y11, x11] = ctrl.impulse(w11, TimeLine) [y21, x21] = ctrl.impulse(w21, TimeLine) plt.plot(x11, y11, "r", label='Исходная') plt.plot(x21, y21, "b", label='Увеличенная k и уменшенная Т') plt.title('Импульсная функция звена') plt.ylabel('Амплитуда') plt.xlabel('Время(с)') plt.grid(True) plt.show() ctrl.mag, ctrl.phase, ctrl.omega = ctrl.bode(w11, w21, dB=False) plt.plot() plt.show() return w11, w21 print('1 - безынерционное звено') print('2 - апериодическое звено') print('3 - интегрирующее звено') print('4 - идеальное дифференцирующее звено') print('5 - реально дифференцирующее звено') print('Введите номер функции, которую необходимо отобразить:') func_number = int(input()) if func_number == 1: process_data([4.], [ 1.], [2.], [ 1.]) elif func_number == 2: process_data([3.], [2, 1.], [1.5, 0.], [4, 1.]) elif func_number == 3: process_data([1.], [1, 0.], [1.], [0.5, 0.]) elif func_number == 4: process_data([5, 0.], [1e-12, 1.], [10, 0.], [1e-12, 1.]) elif func_number == 5: process_data([3.], [1, 1.], [1.5, 0.], [2, 1.])
[ 1, 2, 3, 4, 5 ]
2,289
d32f009f373249b7b602ac36f29982273a2ed192
<mask token> class AmplitudeLogger: <mask token> async def log_event(self, event): event = {'api_key': self.api_key, 'events': [event]} try: validate(instance=event, schema=self.api_schema) except ValidationError: log.error('Invalid payload', exc_info=True) return None async with aiohttp_client.post(API_URL, data=json.dumps(event) ) as resp: if resp.status != 200: log.warn('Failed to log event', exc_info=True) return resp
<mask token> class AmplitudeLogger: def __init__(self, api_key: str): self.api_key = api_key self.api_schema = json.loads(pkg_resources.read_text(resources, 'schema.json')) async def log_event(self, event): event = {'api_key': self.api_key, 'events': [event]} try: validate(instance=event, schema=self.api_schema) except ValidationError: log.error('Invalid payload', exc_info=True) return None async with aiohttp_client.post(API_URL, data=json.dumps(event) ) as resp: if resp.status != 200: log.warn('Failed to log event', exc_info=True) return resp
<mask token> log = logging.getLogger('amplitude-client') API_URL = 'https://api.amplitude.com/2/httpapi' class AmplitudeLogger: def __init__(self, api_key: str): self.api_key = api_key self.api_schema = json.loads(pkg_resources.read_text(resources, 'schema.json')) async def log_event(self, event): event = {'api_key': self.api_key, 'events': [event]} try: validate(instance=event, schema=self.api_schema) except ValidationError: log.error('Invalid payload', exc_info=True) return None async with aiohttp_client.post(API_URL, data=json.dumps(event) ) as resp: if resp.status != 200: log.warn('Failed to log event', exc_info=True) return resp
from . import resources from jsonschema import validate from jsonschema.exceptions import ValidationError import aiohttp_client import importlib.resources as pkg_resources import json import logging log = logging.getLogger('amplitude-client') API_URL = 'https://api.amplitude.com/2/httpapi' class AmplitudeLogger: def __init__(self, api_key: str): self.api_key = api_key self.api_schema = json.loads(pkg_resources.read_text(resources, 'schema.json')) async def log_event(self, event): event = {'api_key': self.api_key, 'events': [event]} try: validate(instance=event, schema=self.api_schema) except ValidationError: log.error('Invalid payload', exc_info=True) return None async with aiohttp_client.post(API_URL, data=json.dumps(event) ) as resp: if resp.status != 200: log.warn('Failed to log event', exc_info=True) return resp
from . import resources from jsonschema import validate from jsonschema.exceptions import ValidationError import aiohttp_client import importlib.resources as pkg_resources import json import logging log = logging.getLogger("amplitude-client") API_URL = "https://api.amplitude.com/2/httpapi" class AmplitudeLogger: def __init__(self, api_key: str): self.api_key = api_key self.api_schema = json.loads(pkg_resources.read_text(resources, "schema.json")) async def log_event(self, event): # Amplitude API requires (user_id OR device_id) AND event_type event = {"api_key": self.api_key, "events": [event]} try: validate(instance=event, schema=self.api_schema) except ValidationError: log.error("Invalid payload", exc_info=True) return None async with aiohttp_client.post(API_URL, data=json.dumps(event)) as resp: if resp.status != 200: log.warn("Failed to log event", exc_info=True) return resp
[ 1, 2, 3, 4, 5 ]
2,290
caa28bd64141c8d2f3212b5e4e77129d81d24c71
<mask token> @app.route('/', methods=['GET', 'POST']) def inicio(): nombre = 'jose' return render_template('inicio.html', nombre=nombre) <mask token>
<mask token> @app.route('/', methods=['GET', 'POST']) def inicio(): nombre = 'jose' return render_template('inicio.html', nombre=nombre) app.run(debug=True)
<mask token> app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def inicio(): nombre = 'jose' return render_template('inicio.html', nombre=nombre) app.run(debug=True)
from flask import Flask, render_template app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def inicio(): nombre = 'jose' return render_template('inicio.html', nombre=nombre) app.run(debug=True)
from flask import Flask, render_template app = Flask(__name__) @app.route('/',methods=["GET","POST"]) def inicio(): nombre = "jose" return render_template("inicio.html",nombre=nombre) app.run(debug=True)
[ 1, 2, 3, 4, 5 ]
2,291
a048396019aa7603a20535a3ce4bc9770509097d
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('excursions', '0003_auto_20210420_1608')] operations = [migrations.AlterField(model_name='exscursion', name= 'type', field=models.CharField(choices=[('group', 'Групповая'), ( 'individual', 'Индивидуальная')], default='group', max_length=10, verbose_name='Тип'))]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('excursions', '0003_auto_20210420_1608')] operations = [migrations.AlterField(model_name='exscursion', name= 'type', field=models.CharField(choices=[('group', 'Групповая'), ( 'individual', 'Индивидуальная')], default='group', max_length=10, verbose_name='Тип'))]
# Generated by Django 3.2 on 2021-04-20 13:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('excursions', '0003_auto_20210420_1608'), ] operations = [ migrations.AlterField( model_name='exscursion', name='type', field=models.CharField(choices=[('group', 'Групповая'), ('individual', 'Индивидуальная')], default='group', max_length=10, verbose_name='Тип'), ), ]
[ 0, 1, 2, 3, 4 ]
2,292
a745f72081e06ff3399f9d7f65a30d7eef594689
<mask token>
<mask token> if __name__ == '__main__': hostname = 'forecast.derivacloud.org' catalog_id = '5' model = Model.from_catalog(DerivaServer('https', hostname, credentials= get_credential(hostname)).connect_ermrest(catalog_id)) tabname = model.schemas['ETAS'].tables['Forecast'] print('Before Adding Column') for column in tabname.column_definitions: print(column.name, column.type.typename, column.nullok) """ Define a series of column names that reflect metadata we expect to extract from the ETAS directory names. These are initial names, defined by developers. ETAS modelers may want to rename these columns to be more meaningful to domain experts. For this first version, all fields are defined as free text. Redefinition of these values as controlled vocabularies are a future refinement. 1) Sim_Start_Time: Enumeration List e.g: "2019_07_16" not null 2) Catalog_Mag: Enumeration List e.g.: "ComCatM7p1" not null 3) Event_ID: Enumeration List e.g.: "ci39457511" not null 4) Post_Event_Date: Enumeration List e.g.: "7DaysAfter" maybe null 5) Rupture_Def: Enumeration List e.g. "ShakeMapSurfaces" "ShakeMapSurfaces-noSpont-full_td-scale1.14" not null """ tabname.create_column(Column.define('Sim_Start_Time', builtin_types. text, comment='Simulation Start Time')) tabname.create_column(Column.define('Catalog_Mag', builtin_types.text, comment='Catalog Name and Event Magnitude')) tabname.create_column(Column.define('Event_ID', builtin_types.text, comment='Earthquake Event ID')) tabname.create_column(Column.define('Post_Event_Date', builtin_types. text, comment='Days Forecast made after Mainshock')) tabname.create_column(Column.define('Rupture_Definition', builtin_types .text, comment='Type of Rupture used in ETAS forecast')) print('After Adding Column') etas_model = model.schemas['ETAS'] tabname = etas_model.tables['Forecast'] for column in tabname.column_definitions: print(column.name, column.type.typename, column.nullok) sys.exit(0)
<mask token> import os import sys from deriva.core import DerivaServer, ErmrestCatalog, get_credential from deriva.chisel import Model, Schema, Table, Column, Key, ForeignKey, builtin_types, tag if __name__ == '__main__': hostname = 'forecast.derivacloud.org' catalog_id = '5' model = Model.from_catalog(DerivaServer('https', hostname, credentials= get_credential(hostname)).connect_ermrest(catalog_id)) tabname = model.schemas['ETAS'].tables['Forecast'] print('Before Adding Column') for column in tabname.column_definitions: print(column.name, column.type.typename, column.nullok) """ Define a series of column names that reflect metadata we expect to extract from the ETAS directory names. These are initial names, defined by developers. ETAS modelers may want to rename these columns to be more meaningful to domain experts. For this first version, all fields are defined as free text. Redefinition of these values as controlled vocabularies are a future refinement. 1) Sim_Start_Time: Enumeration List e.g: "2019_07_16" not null 2) Catalog_Mag: Enumeration List e.g.: "ComCatM7p1" not null 3) Event_ID: Enumeration List e.g.: "ci39457511" not null 4) Post_Event_Date: Enumeration List e.g.: "7DaysAfter" maybe null 5) Rupture_Def: Enumeration List e.g. "ShakeMapSurfaces" "ShakeMapSurfaces-noSpont-full_td-scale1.14" not null """ tabname.create_column(Column.define('Sim_Start_Time', builtin_types. text, comment='Simulation Start Time')) tabname.create_column(Column.define('Catalog_Mag', builtin_types.text, comment='Catalog Name and Event Magnitude')) tabname.create_column(Column.define('Event_ID', builtin_types.text, comment='Earthquake Event ID')) tabname.create_column(Column.define('Post_Event_Date', builtin_types. text, comment='Days Forecast made after Mainshock')) tabname.create_column(Column.define('Rupture_Definition', builtin_types .text, comment='Type of Rupture used in ETAS forecast')) print('After Adding Column') etas_model = model.schemas['ETAS'] tabname = etas_model.tables['Forecast'] for column in tabname.column_definitions: print(column.name, column.type.typename, column.nullok) sys.exit(0)
#!/usr/bin/env python """add_columns.py: This script reads an SCEC ETAS forecast directory name and extracts key fields that are then added as attributes in the SCEC Deriva schema. This script is an example of how the ERD used by Deriva is extended as additional information or metadata is added to the asset descriptions in Deriva. This must be run after the create_model.py script has been run, because this modifies the ERD created by that script. The expectation is this is run once. If it is run a second time, we expect errors indicating the columns already exist. Philip Maechling 3 April 2021 """ import os import sys from deriva.core import DerivaServer, ErmrestCatalog, get_credential from deriva.chisel import Model, Schema, Table, Column, Key, ForeignKey, builtin_types, tag if __name__ == "__main__": # Connect to server and catalog ------------------------------------------------------------------# hostname = 'forecast.derivacloud.org' # this is a dev server for throw-away work (change to 'forecast.derivacloud.org) catalog_id = '5' # this was a throw-away catalog used to test this script (change to TBD) model = Model.from_catalog( DerivaServer('https', hostname, credentials=get_credential(hostname)).connect_ermrest(catalog_id) ) # # During testing, exit before any table modifications are done # tabname = model.schemas['ETAS'].tables["Forecast"] print("Before Adding Column") for column in tabname.column_definitions: print(column.name,column.type.typename,column.nullok) """ Define a series of column names that reflect metadata we expect to extract from the ETAS directory names. These are initial names, defined by developers. ETAS modelers may want to rename these columns to be more meaningful to domain experts. For this first version, all fields are defined as free text. Redefinition of these values as controlled vocabularies are a future refinement. 1) Sim_Start_Time: Enumeration List e.g: "2019_07_16" not null 2) Catalog_Mag: Enumeration List e.g.: "ComCatM7p1" not null 3) Event_ID: Enumeration List e.g.: "ci39457511" not null 4) Post_Event_Date: Enumeration List e.g.: "7DaysAfter" maybe null 5) Rupture_Def: Enumeration List e.g. "ShakeMapSurfaces" "ShakeMapSurfaces-noSpont-full_td-scale1.14" not null """ tabname.create_column(Column.define('Sim_Start_Time', builtin_types.text, comment="Simulation Start Time")) tabname.create_column(Column.define('Catalog_Mag', builtin_types.text, comment="Catalog Name and Event Magnitude")) tabname.create_column(Column.define('Event_ID', builtin_types.text, comment="Earthquake Event ID")) tabname.create_column(Column.define('Post_Event_Date', builtin_types.text, comment="Days Forecast made after Mainshock")) tabname.create_column(Column.define('Rupture_Definition', builtin_types.text, comment="Type of Rupture used in ETAS forecast")) # retrieve catalog model again to ensure we reflect latest structural changes # example shows this, but I'm not sure what it returns print("After Adding Column") etas_model = model.schemas['ETAS'] tabname = etas_model.tables["Forecast"] for column in tabname.column_definitions: print(column.name,column.type.typename,column.nullok) sys.exit(0)
null
[ 0, 1, 2, 3 ]
2,293
50ed1512b0e6ff8e01f5d4aa034406fa78850176
<mask token> class CifarResNeXt(nn.Module): <mask token> <mask token> <mask token> <mask token> <mask token>
<mask token> class ResNeXtBottleneck(nn.Module): <mask token> def __init__(self, in_channels, out_channels, stride, cardinality, widen_factor): """ Constructor Args: in_channels: input channel dimensionality out_channels: output channel dimensionality stride: conv stride. Replaces pooling layer. cardinality: num of convolution groups. widen_factor: factor to reduce the input dimensionality before convolution. """ super(ResNeXtBottleneck, self).__init__() D = cardinality * out_channels // widen_factor self.conv_reduce = nn.Conv2d(in_channels, D, kernel_size=1, stride= 1, padding=0, bias=False) self.bn_reduce = nn.BatchNorm2d(D) self.conv_conv = nn.Conv2d(D, D, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn = nn.BatchNorm2d(D) self.conv_expand = nn.Conv2d(D, out_channels, kernel_size=1, stride =1, padding=0, bias=False) self.bn_expand = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if in_channels != out_channels: self.shortcut.add_module('shortcut_conv', nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias =False)) self.shortcut.add_module('shortcut_bn', nn.BatchNorm2d( out_channels)) def forward(self, x): bottleneck = self.conv_reduce.forward(x) bottleneck = F.relu(self.bn_reduce.forward(bottleneck), inplace=True) bottleneck = self.conv_conv.forward(bottleneck) bottleneck = F.relu(self.bn.forward(bottleneck), inplace=True) bottleneck = self.conv_expand.forward(bottleneck) bottleneck = self.bn_expand.forward(bottleneck) residual = self.shortcut.forward(x) return F.relu(residual + bottleneck, inplace=True) class CifarResNeXt(nn.Module): """ ResNext optimized for the Cifar dataset, as specified in https://arxiv.org/pdf/1611.05431.pdf """ def __init__(self, cardinality, depth, num_classes, widen_factor=4, dropRate=0): """ Constructor Args: cardinality: number of convolution groups. depth: number of layers. num_classes: number of classes widen_factor: factor to adjust the channel dimensionality """ super(CifarResNeXt, self).__init__() self.cardinality = cardinality self.depth = depth self.block_depth = (self.depth - 2) // 9 self.widen_factor = widen_factor self.num_classes = num_classes self.output_size = 64 self.stages = [64, 64 * self.widen_factor, 128 * self.widen_factor, 256 * self.widen_factor] self.conv_1_3x3 = nn.Conv2d(3, 64, 3, 1, 1, bias=False) self.bn_1 = nn.BatchNorm2d(64) self.stage_1 = self.block('stage_1', self.stages[0], self.stages[1], 1) self.stage_2 = self.block('stage_2', self.stages[1], self.stages[2], 2) self.stage_3 = self.block('stage_3', self.stages[2], self.stages[3], 2) self.classifier = nn.Linear(1024, num_classes) self.stage_att = self.block('stage_att', self.stages[2], self. stages[3], 1) self.bn_att = nn.BatchNorm2d(self.stages[3]) self.att_conv = nn.Conv2d(self.stages[3], num_classes, kernel_size= 1, padding=0, bias=False) self.bn_att2 = nn.BatchNorm2d(num_classes) self.att_conv2 = nn.Conv2d(num_classes, num_classes, kernel_size=1, padding=0, bias=False) self.att_conv3 = nn.Conv2d(num_classes, 1, kernel_size=3, padding=1, bias=False) self.bn_att3 = nn.BatchNorm2d(1) self.att_gap = nn.AvgPool2d(16) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) init.kaiming_normal(self.classifier.weight) for key in self.state_dict(): if key.split('.')[-1] == 'weight': if 'conv' in key: init.kaiming_normal(self.state_dict()[key], mode='fan_out') if 'bn' in key: self.state_dict()[key][...] = 1 elif key.split('.')[-1] == 'bias': self.state_dict()[key][...] = 0 def block(self, name, in_channels, out_channels, pool_stride=2): """ Stack n bottleneck modules where n is inferred from the depth of the network. Args: name: string name of the current block. in_channels: number of input channels out_channels: number of output channels pool_stride: factor to reduce the spatial dimensionality in the first bottleneck of the block. Returns: a Module consisting of n sequential bottlenecks. """ block = nn.Sequential() for bottleneck in range(self.block_depth): name_ = '%s_bottleneck_%d' % (name, bottleneck) if bottleneck == 0: block.add_module(name_, ResNeXtBottleneck(in_channels, out_channels, pool_stride, self.cardinality, self. widen_factor)) else: block.add_module(name_, ResNeXtBottleneck(out_channels, out_channels, 1, self.cardinality, self.widen_factor)) return block def forward(self, x): x = self.conv_1_3x3.forward(x) x = F.relu(self.bn_1.forward(x), inplace=True) x = self.stage_1.forward(x) x = self.stage_2.forward(x) ax = self.stage_att(x) ax = self.relu(self.bn_att2(self.att_conv(ax))) bs, cs, ys, xs = ax.shape self.att = self.sigmoid(self.bn_att3(self.att_conv3(ax))) ax = self.att_conv2(ax) ax = self.att_gap(ax) ax = ax.view(ax.size(0), -1) rx = x * self.att rx = rx + x rx = self.stage_3.forward(rx) rx = F.avg_pool2d(rx, 8, 1) rx = rx.view(-1, 1024) rx = self.classifier(rx) return ax, rx, self.att <mask token>
<mask token> class ResNeXtBottleneck(nn.Module): """ RexNeXt bottleneck type C (https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua) """ def __init__(self, in_channels, out_channels, stride, cardinality, widen_factor): """ Constructor Args: in_channels: input channel dimensionality out_channels: output channel dimensionality stride: conv stride. Replaces pooling layer. cardinality: num of convolution groups. widen_factor: factor to reduce the input dimensionality before convolution. """ super(ResNeXtBottleneck, self).__init__() D = cardinality * out_channels // widen_factor self.conv_reduce = nn.Conv2d(in_channels, D, kernel_size=1, stride= 1, padding=0, bias=False) self.bn_reduce = nn.BatchNorm2d(D) self.conv_conv = nn.Conv2d(D, D, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn = nn.BatchNorm2d(D) self.conv_expand = nn.Conv2d(D, out_channels, kernel_size=1, stride =1, padding=0, bias=False) self.bn_expand = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if in_channels != out_channels: self.shortcut.add_module('shortcut_conv', nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias =False)) self.shortcut.add_module('shortcut_bn', nn.BatchNorm2d( out_channels)) def forward(self, x): bottleneck = self.conv_reduce.forward(x) bottleneck = F.relu(self.bn_reduce.forward(bottleneck), inplace=True) bottleneck = self.conv_conv.forward(bottleneck) bottleneck = F.relu(self.bn.forward(bottleneck), inplace=True) bottleneck = self.conv_expand.forward(bottleneck) bottleneck = self.bn_expand.forward(bottleneck) residual = self.shortcut.forward(x) return F.relu(residual + bottleneck, inplace=True) class CifarResNeXt(nn.Module): """ ResNext optimized for the Cifar dataset, as specified in https://arxiv.org/pdf/1611.05431.pdf """ def __init__(self, cardinality, depth, num_classes, widen_factor=4, dropRate=0): """ Constructor Args: cardinality: number of convolution groups. depth: number of layers. num_classes: number of classes widen_factor: factor to adjust the channel dimensionality """ super(CifarResNeXt, self).__init__() self.cardinality = cardinality self.depth = depth self.block_depth = (self.depth - 2) // 9 self.widen_factor = widen_factor self.num_classes = num_classes self.output_size = 64 self.stages = [64, 64 * self.widen_factor, 128 * self.widen_factor, 256 * self.widen_factor] self.conv_1_3x3 = nn.Conv2d(3, 64, 3, 1, 1, bias=False) self.bn_1 = nn.BatchNorm2d(64) self.stage_1 = self.block('stage_1', self.stages[0], self.stages[1], 1) self.stage_2 = self.block('stage_2', self.stages[1], self.stages[2], 2) self.stage_3 = self.block('stage_3', self.stages[2], self.stages[3], 2) self.classifier = nn.Linear(1024, num_classes) self.stage_att = self.block('stage_att', self.stages[2], self. stages[3], 1) self.bn_att = nn.BatchNorm2d(self.stages[3]) self.att_conv = nn.Conv2d(self.stages[3], num_classes, kernel_size= 1, padding=0, bias=False) self.bn_att2 = nn.BatchNorm2d(num_classes) self.att_conv2 = nn.Conv2d(num_classes, num_classes, kernel_size=1, padding=0, bias=False) self.att_conv3 = nn.Conv2d(num_classes, 1, kernel_size=3, padding=1, bias=False) self.bn_att3 = nn.BatchNorm2d(1) self.att_gap = nn.AvgPool2d(16) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) init.kaiming_normal(self.classifier.weight) for key in self.state_dict(): if key.split('.')[-1] == 'weight': if 'conv' in key: init.kaiming_normal(self.state_dict()[key], mode='fan_out') if 'bn' in key: self.state_dict()[key][...] = 1 elif key.split('.')[-1] == 'bias': self.state_dict()[key][...] = 0 def block(self, name, in_channels, out_channels, pool_stride=2): """ Stack n bottleneck modules where n is inferred from the depth of the network. Args: name: string name of the current block. in_channels: number of input channels out_channels: number of output channels pool_stride: factor to reduce the spatial dimensionality in the first bottleneck of the block. Returns: a Module consisting of n sequential bottlenecks. """ block = nn.Sequential() for bottleneck in range(self.block_depth): name_ = '%s_bottleneck_%d' % (name, bottleneck) if bottleneck == 0: block.add_module(name_, ResNeXtBottleneck(in_channels, out_channels, pool_stride, self.cardinality, self. widen_factor)) else: block.add_module(name_, ResNeXtBottleneck(out_channels, out_channels, 1, self.cardinality, self.widen_factor)) return block def forward(self, x): x = self.conv_1_3x3.forward(x) x = F.relu(self.bn_1.forward(x), inplace=True) x = self.stage_1.forward(x) x = self.stage_2.forward(x) ax = self.stage_att(x) ax = self.relu(self.bn_att2(self.att_conv(ax))) bs, cs, ys, xs = ax.shape self.att = self.sigmoid(self.bn_att3(self.att_conv3(ax))) ax = self.att_conv2(ax) ax = self.att_gap(ax) ax = ax.view(ax.size(0), -1) rx = x * self.att rx = rx + x rx = self.stage_3.forward(rx) rx = F.avg_pool2d(rx, 8, 1) rx = rx.view(-1, 1024) rx = self.classifier(rx) return ax, rx, self.att def resnext(**kwargs): """Constructs a ResNeXt. """ model = CifarResNeXt(**kwargs) return model
<mask token> __all__ = ['resnext'] class ResNeXtBottleneck(nn.Module): """ RexNeXt bottleneck type C (https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua) """ def __init__(self, in_channels, out_channels, stride, cardinality, widen_factor): """ Constructor Args: in_channels: input channel dimensionality out_channels: output channel dimensionality stride: conv stride. Replaces pooling layer. cardinality: num of convolution groups. widen_factor: factor to reduce the input dimensionality before convolution. """ super(ResNeXtBottleneck, self).__init__() D = cardinality * out_channels // widen_factor self.conv_reduce = nn.Conv2d(in_channels, D, kernel_size=1, stride= 1, padding=0, bias=False) self.bn_reduce = nn.BatchNorm2d(D) self.conv_conv = nn.Conv2d(D, D, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn = nn.BatchNorm2d(D) self.conv_expand = nn.Conv2d(D, out_channels, kernel_size=1, stride =1, padding=0, bias=False) self.bn_expand = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if in_channels != out_channels: self.shortcut.add_module('shortcut_conv', nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias =False)) self.shortcut.add_module('shortcut_bn', nn.BatchNorm2d( out_channels)) def forward(self, x): bottleneck = self.conv_reduce.forward(x) bottleneck = F.relu(self.bn_reduce.forward(bottleneck), inplace=True) bottleneck = self.conv_conv.forward(bottleneck) bottleneck = F.relu(self.bn.forward(bottleneck), inplace=True) bottleneck = self.conv_expand.forward(bottleneck) bottleneck = self.bn_expand.forward(bottleneck) residual = self.shortcut.forward(x) return F.relu(residual + bottleneck, inplace=True) class CifarResNeXt(nn.Module): """ ResNext optimized for the Cifar dataset, as specified in https://arxiv.org/pdf/1611.05431.pdf """ def __init__(self, cardinality, depth, num_classes, widen_factor=4, dropRate=0): """ Constructor Args: cardinality: number of convolution groups. depth: number of layers. num_classes: number of classes widen_factor: factor to adjust the channel dimensionality """ super(CifarResNeXt, self).__init__() self.cardinality = cardinality self.depth = depth self.block_depth = (self.depth - 2) // 9 self.widen_factor = widen_factor self.num_classes = num_classes self.output_size = 64 self.stages = [64, 64 * self.widen_factor, 128 * self.widen_factor, 256 * self.widen_factor] self.conv_1_3x3 = nn.Conv2d(3, 64, 3, 1, 1, bias=False) self.bn_1 = nn.BatchNorm2d(64) self.stage_1 = self.block('stage_1', self.stages[0], self.stages[1], 1) self.stage_2 = self.block('stage_2', self.stages[1], self.stages[2], 2) self.stage_3 = self.block('stage_3', self.stages[2], self.stages[3], 2) self.classifier = nn.Linear(1024, num_classes) self.stage_att = self.block('stage_att', self.stages[2], self. stages[3], 1) self.bn_att = nn.BatchNorm2d(self.stages[3]) self.att_conv = nn.Conv2d(self.stages[3], num_classes, kernel_size= 1, padding=0, bias=False) self.bn_att2 = nn.BatchNorm2d(num_classes) self.att_conv2 = nn.Conv2d(num_classes, num_classes, kernel_size=1, padding=0, bias=False) self.att_conv3 = nn.Conv2d(num_classes, 1, kernel_size=3, padding=1, bias=False) self.bn_att3 = nn.BatchNorm2d(1) self.att_gap = nn.AvgPool2d(16) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) init.kaiming_normal(self.classifier.weight) for key in self.state_dict(): if key.split('.')[-1] == 'weight': if 'conv' in key: init.kaiming_normal(self.state_dict()[key], mode='fan_out') if 'bn' in key: self.state_dict()[key][...] = 1 elif key.split('.')[-1] == 'bias': self.state_dict()[key][...] = 0 def block(self, name, in_channels, out_channels, pool_stride=2): """ Stack n bottleneck modules where n is inferred from the depth of the network. Args: name: string name of the current block. in_channels: number of input channels out_channels: number of output channels pool_stride: factor to reduce the spatial dimensionality in the first bottleneck of the block. Returns: a Module consisting of n sequential bottlenecks. """ block = nn.Sequential() for bottleneck in range(self.block_depth): name_ = '%s_bottleneck_%d' % (name, bottleneck) if bottleneck == 0: block.add_module(name_, ResNeXtBottleneck(in_channels, out_channels, pool_stride, self.cardinality, self. widen_factor)) else: block.add_module(name_, ResNeXtBottleneck(out_channels, out_channels, 1, self.cardinality, self.widen_factor)) return block def forward(self, x): x = self.conv_1_3x3.forward(x) x = F.relu(self.bn_1.forward(x), inplace=True) x = self.stage_1.forward(x) x = self.stage_2.forward(x) ax = self.stage_att(x) ax = self.relu(self.bn_att2(self.att_conv(ax))) bs, cs, ys, xs = ax.shape self.att = self.sigmoid(self.bn_att3(self.att_conv3(ax))) ax = self.att_conv2(ax) ax = self.att_gap(ax) ax = ax.view(ax.size(0), -1) rx = x * self.att rx = rx + x rx = self.stage_3.forward(rx) rx = F.avg_pool2d(rx, 8, 1) rx = rx.view(-1, 1024) rx = self.classifier(rx) return ax, rx, self.att def resnext(**kwargs): """Constructs a ResNeXt. """ model = CifarResNeXt(**kwargs) return model
""" Creates a ResNeXt Model as defined in: Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2016). Aggregated residual transformations for deep neural networks. arXiv preprint arXiv:1611.05431. import from https://github.com/prlz77/ResNeXt.pytorch/blob/master/models/model.py """ import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init __all__ = ['resnext'] class ResNeXtBottleneck(nn.Module): """ RexNeXt bottleneck type C (https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua) """ def __init__(self, in_channels, out_channels, stride, cardinality, widen_factor): """ Constructor Args: in_channels: input channel dimensionality out_channels: output channel dimensionality stride: conv stride. Replaces pooling layer. cardinality: num of convolution groups. widen_factor: factor to reduce the input dimensionality before convolution. """ super(ResNeXtBottleneck, self).__init__() D = cardinality * out_channels // widen_factor self.conv_reduce = nn.Conv2d(in_channels, D, kernel_size=1, stride=1, padding=0, bias=False) self.bn_reduce = nn.BatchNorm2d(D) self.conv_conv = nn.Conv2d(D, D, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn = nn.BatchNorm2d(D) self.conv_expand = nn.Conv2d(D, out_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn_expand = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if in_channels != out_channels: self.shortcut.add_module('shortcut_conv', nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False)) self.shortcut.add_module('shortcut_bn', nn.BatchNorm2d(out_channels)) def forward(self, x): bottleneck = self.conv_reduce.forward(x) bottleneck = F.relu(self.bn_reduce.forward(bottleneck), inplace=True) bottleneck = self.conv_conv.forward(bottleneck) bottleneck = F.relu(self.bn.forward(bottleneck), inplace=True) bottleneck = self.conv_expand.forward(bottleneck) bottleneck = self.bn_expand.forward(bottleneck) residual = self.shortcut.forward(x) return F.relu(residual + bottleneck, inplace=True) class CifarResNeXt(nn.Module): """ ResNext optimized for the Cifar dataset, as specified in https://arxiv.org/pdf/1611.05431.pdf """ def __init__(self, cardinality, depth, num_classes, widen_factor=4, dropRate=0): """ Constructor Args: cardinality: number of convolution groups. depth: number of layers. num_classes: number of classes widen_factor: factor to adjust the channel dimensionality """ super(CifarResNeXt, self).__init__() self.cardinality = cardinality self.depth = depth self.block_depth = (self.depth - 2) // 9 self.widen_factor = widen_factor self.num_classes = num_classes self.output_size = 64 self.stages = [64, 64 * self.widen_factor, 128 * self.widen_factor, 256 * self.widen_factor] self.conv_1_3x3 = nn.Conv2d(3, 64, 3, 1, 1, bias=False) self.bn_1 = nn.BatchNorm2d(64) self.stage_1 = self.block('stage_1', self.stages[0], self.stages[1], 1) self.stage_2 = self.block('stage_2', self.stages[1], self.stages[2], 2) self.stage_3 = self.block('stage_3', self.stages[2], self.stages[3], 2) self.classifier = nn.Linear(1024, num_classes) self.stage_att = self.block('stage_att', self.stages[2], self.stages[3], 1) self.bn_att = nn.BatchNorm2d(self.stages[3]) self.att_conv = nn.Conv2d(self.stages[3], num_classes, kernel_size=1, padding=0, bias=False) self.bn_att2 = nn.BatchNorm2d(num_classes) self.att_conv2 = nn.Conv2d(num_classes, num_classes, kernel_size=1, padding=0, bias=False) self.att_conv3 = nn.Conv2d(num_classes, 1, kernel_size=3, padding=1, bias=False) self.bn_att3 = nn.BatchNorm2d(1) self.att_gap = nn.AvgPool2d(16) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) init.kaiming_normal(self.classifier.weight) for key in self.state_dict(): if key.split('.')[-1] == 'weight': if 'conv' in key: init.kaiming_normal(self.state_dict()[key], mode='fan_out') if 'bn' in key: self.state_dict()[key][...] = 1 elif key.split('.')[-1] == 'bias': self.state_dict()[key][...] = 0 def block(self, name, in_channels, out_channels, pool_stride=2): """ Stack n bottleneck modules where n is inferred from the depth of the network. Args: name: string name of the current block. in_channels: number of input channels out_channels: number of output channels pool_stride: factor to reduce the spatial dimensionality in the first bottleneck of the block. Returns: a Module consisting of n sequential bottlenecks. """ block = nn.Sequential() for bottleneck in range(self.block_depth): name_ = '%s_bottleneck_%d' % (name, bottleneck) if bottleneck == 0: block.add_module(name_, ResNeXtBottleneck(in_channels, out_channels, pool_stride, self.cardinality, self.widen_factor)) else: block.add_module(name_, ResNeXtBottleneck(out_channels, out_channels, 1, self.cardinality, self.widen_factor)) return block def forward(self, x): x = self.conv_1_3x3.forward(x) x = F.relu(self.bn_1.forward(x), inplace=True) x = self.stage_1.forward(x) x = self.stage_2.forward(x) ax = self.stage_att(x) ax = self.relu(self.bn_att2(self.att_conv(ax))) bs, cs, ys, xs = ax.shape self.att = self.sigmoid(self.bn_att3(self.att_conv3(ax))) # self.att = self.att.view(bs, 1, ys, xs) ax = self.att_conv2(ax) ax = self.att_gap(ax) ax = ax.view(ax.size(0), -1) rx = x * self.att rx = rx + x rx = self.stage_3.forward(rx) rx = F.avg_pool2d(rx, 8, 1) rx = rx.view(-1, 1024) rx = self.classifier(rx) return ax, rx, self.att def resnext(**kwargs): """Constructs a ResNeXt. """ model = CifarResNeXt(**kwargs) return model # """ # resneXt for cifar with pytorch # Reference: # [1] S. Xie, G. Ross, P. Dollar, Z. Tu and K. He Aggregated residual transformations for deep neural networks. In CVPR, 2017 # """ # # import torch # import torch.nn as nn # import math # # # class Bottleneck(nn.Module): # expansion = 4 # # def __init__(self, inplanes, planes, cardinality, baseWidth, stride=1, downsample=None): # super(Bottleneck, self).__init__() # D = int(planes * (baseWidth / 64.)) # C = cardinality # self.conv1 = nn.Conv2d(inplanes, D * C, kernel_size=1, bias=False) # self.bn1 = nn.BatchNorm2d(D * C) # self.conv2 = nn.Conv2d(D * C, D * C, kernel_size=3, stride=stride, padding=1, groups=C, bias=False) # self.bn2 = nn.BatchNorm2d(D * C) # self.conv3 = nn.Conv2d(D * C, planes * 4, kernel_size=1, bias=False) # self.bn3 = nn.BatchNorm2d(planes * 4) # self.relu = nn.ReLU(inplace=True) # self.downsample = downsample # self.stride = stride # # def forward(self, x): # residual = x # # out = self.conv1(x) # out = self.bn1(out) # out = self.relu(out) # # out = self.conv2(out) # out = self.bn2(out) # out = self.relu(out) # # out = self.conv3(out) # out = self.bn3(out) # # if self.downsample is not None: # residual = self.downsample(x) # # if residual.size() != out.size(): # print(out.size(), residual.size()) # out += residual # out = self.relu(out) # # return out # # # class ResNeXt_Cifar(nn.Module): # # def __init__(self, block, layers, cardinality, baseWidth, num_classes=10): # super(ResNeXt_Cifar, self).__init__() # self.inplanes = 64 # self.cardinality = cardinality # self.baseWidth = baseWidth # self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) # self.bn1 = nn.BatchNorm2d(64) # self.relu = nn.ReLU(inplace=True) # self.layer1 = self._make_layer(block, 64, layers[0]) # self.layer2 = self._make_layer(block, 128, layers[1], stride=2) # self.layer3 = self._make_layer(block, 256, layers[2], stride=2) # self.avgpool = nn.AvgPool2d(8, stride=1) # self.fc = nn.Linear(256 * block.expansion, num_classes) # # for m in self.modules(): # if isinstance(m, nn.Conv2d): # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # m.weight.data.normal_(0, math.sqrt(2. / n)) # elif isinstance(m, nn.BatchNorm2d): # m.weight.data.fill_(1) # m.bias.data.zero_() # # def _make_layer(self, block, planes, blocks, stride=1): # downsample = None # if stride != 1 or self.inplanes != planes * block.expansion: # downsample = nn.Sequential( # nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), # nn.BatchNorm2d(planes * block.expansion) # ) # # layers = [] # layers.append(block(self.inplanes, planes, self.cardinality, self.baseWidth, stride, downsample)) # self.inplanes = planes * block.expansion # for _ in range(1, blocks): # layers.append(block(self.inplanes, planes, self.cardinality, self.baseWidth)) # # return nn.Sequential(*layers) # # def forward(self, x): # x = self.conv1(x) # x = self.bn1(x) # x = self.relu(x) # # x = self.layer1(x) # x = self.layer2(x) # x = self.layer3(x) # # x = self.avgpool(x) # x = x.view(x.size(0), -1) # x = self.fc(x) # # return x # # # def resneXt_cifar(depth, cardinality, baseWidth, **kwargs): # assert (depth - 2) % 9 == 0 # n = int((depth - 2) / 9) # model = ResNeXt_Cifar(Bottleneck, [n, n, n], cardinality, baseWidth, **kwargs) # return model # if __name__ == '__main__': # net = resneXt_cifar(29, 16, 64) # y = net(torch.randn(1, 3, 32, 32)) # print(net) # print(y.size())
[ 1, 8, 10, 11, 13 ]
2,294
32b961f3971819fdbbe1a30fd7cf1883353c1854
<mask token>
<mask token> for b in range(1, w + 1): print('*', end='') print('') for i in range(1, h - 1): print('*', end='') for j in range(1, w - 1): print(' ', end='') print('*', end='') print('') for b in range(1, w + 1): print('*', end='') print('')
w = int(input('Width ?')) h = int(input('Height ?')) for b in range(1, w + 1): print('*', end='') print('') for i in range(1, h - 1): print('*', end='') for j in range(1, w - 1): print(' ', end='') print('*', end='') print('') for b in range(1, w + 1): print('*', end='') print('')
w = int(input("Width ?")) h= int(input("Height ?")) for b in range(1,w+1): print ("*", end='') print("") for i in range(1,h-1): print ("*", end='') for j in range(1,w-1): print (" ", end='') print ("*", end='') print("") for b in range(1,w+1): print ("*", end='') print("")
null
[ 0, 1, 2, 3 ]
2,295
bac3f78b8eb9c4595bc9e8b85587819f92329729
#!/usr/bin/env python """ Calculate trigger efficiency error """ __author__ = "XIAO Suyu<[email protected]>" __copyright__ = "Copyright (c) XIAO Suyu" __created__ = "[2018-02-06 Tue 15:25]" import math n1 = 4212.0 n2 = 4237.0 N = 5000.0 eff = n1 / n2 err = math.sqrt(eff*(1-eff)/N) print 'trig_eff = %.4f +- %f' % (eff, err)
null
null
null
null
[ 0 ]
2,296
18391df9a3e52400fe4fc54d6381b9ce21e25f0b
<mask token> class Templating(templating.Templating): <mask token> <mask token> <mask token>
<mask token> class Templating(templating.Templating): """ Application-specific templating implementation. Overriding "args" methods makes it trivial to push extra, application-wide data to the templates without any assistance from the resource. """ def __init__(self, app_conf): renderer = make_renderer(app_conf) templating.Templating.__init__(self, renderer) <mask token>
<mask token> class Templating(templating.Templating): """ Application-specific templating implementation. Overriding "args" methods makes it trivial to push extra, application-wide data to the templates without any assistance from the resource. """ def __init__(self, app_conf): renderer = make_renderer(app_conf) templating.Templating.__init__(self, renderer) def make_renderer(app_conf): """ Create and return a restish.templating "renderer". """ import pkg_resources import os.path from restish.contrib.makorenderer import MakoRenderer return MakoRenderer(directories=[pkg_resources.resource_filename( 'example', 'templates'), pkg_resources.resource_filename('formish', 'templates/mako'), pkg_resources.resource_filename('adminish', 'templates')], module_directory=os.path.join(app_conf['cache_dir'], 'templates'), input_encoding='utf-8', output_encoding='utf-8', default_filters=['unicode', 'h'])
<mask token> from restish import templating class Templating(templating.Templating): """ Application-specific templating implementation. Overriding "args" methods makes it trivial to push extra, application-wide data to the templates without any assistance from the resource. """ def __init__(self, app_conf): renderer = make_renderer(app_conf) templating.Templating.__init__(self, renderer) def make_renderer(app_conf): """ Create and return a restish.templating "renderer". """ import pkg_resources import os.path from restish.contrib.makorenderer import MakoRenderer return MakoRenderer(directories=[pkg_resources.resource_filename( 'example', 'templates'), pkg_resources.resource_filename('formish', 'templates/mako'), pkg_resources.resource_filename('adminish', 'templates')], module_directory=os.path.join(app_conf['cache_dir'], 'templates'), input_encoding='utf-8', output_encoding='utf-8', default_filters=['unicode', 'h'])
""" Templating support library and renderer configuration. """ from restish import templating class Templating(templating.Templating): """ Application-specific templating implementation. Overriding "args" methods makes it trivial to push extra, application-wide data to the templates without any assistance from the resource. """ def __init__(self, app_conf): renderer = make_renderer(app_conf) templating.Templating.__init__(self, renderer) def make_renderer(app_conf): """ Create and return a restish.templating "renderer". """ # Uncomment for an example of Mako templating support. import pkg_resources import os.path from restish.contrib.makorenderer import MakoRenderer return MakoRenderer( directories=[ pkg_resources.resource_filename('example', 'templates'), pkg_resources.resource_filename('formish', 'templates/mako'), pkg_resources.resource_filename('adminish', 'templates'), ], module_directory=os.path.join(app_conf['cache_dir'], 'templates'), input_encoding='utf-8', output_encoding='utf-8', default_filters=['unicode', 'h'] )
[ 1, 3, 4, 5, 6 ]
2,297
f15bc62fad2c47fed2e9e5d269284ebe7487b789
<mask token> def _get_change_making_matrix(set_of_coins, r): matrix = [[(0) for _ in range(r + 1)] for _ in range(len(set_of_coins) + 1) ] for i in range(1, len(set_of_coins) + 1): matrix[i][0] = i return matrix def change_making(coins, target): """This function assumes that all coins are available infinitely. n is the number that we need to obtain with the fewest number of coins. coins is a list or tuple with the available denominations.""" matrix = _get_change_making_matrix(coins, target) for coin in range(1, len(coins) + 1): for sub_target in range(1, target + 1): if coins[coin - 1] == sub_target: matrix[coin][sub_target] = 1 + matrix[coin - 1][sub_target] elif coins[coin - 1] > sub_target: matrix[coin][sub_target] = matrix[coin - 1][sub_target] else: matrix[coin][sub_target] = matrix[coin - 1][sub_target ] + matrix[coin][sub_target - coins[coin - 1]] return matrix[-1][-1] <mask token>
<mask token> def _get_change_making_matrix(set_of_coins, r): matrix = [[(0) for _ in range(r + 1)] for _ in range(len(set_of_coins) + 1) ] for i in range(1, len(set_of_coins) + 1): matrix[i][0] = i return matrix def change_making(coins, target): """This function assumes that all coins are available infinitely. n is the number that we need to obtain with the fewest number of coins. coins is a list or tuple with the available denominations.""" matrix = _get_change_making_matrix(coins, target) for coin in range(1, len(coins) + 1): for sub_target in range(1, target + 1): if coins[coin - 1] == sub_target: matrix[coin][sub_target] = 1 + matrix[coin - 1][sub_target] elif coins[coin - 1] > sub_target: matrix[coin][sub_target] = matrix[coin - 1][sub_target] else: matrix[coin][sub_target] = matrix[coin - 1][sub_target ] + matrix[coin][sub_target - coins[coin - 1]] return matrix[-1][-1] <mask token> print(ways)
<mask token> def _get_change_making_matrix(set_of_coins, r): matrix = [[(0) for _ in range(r + 1)] for _ in range(len(set_of_coins) + 1) ] for i in range(1, len(set_of_coins) + 1): matrix[i][0] = i return matrix def change_making(coins, target): """This function assumes that all coins are available infinitely. n is the number that we need to obtain with the fewest number of coins. coins is a list or tuple with the available denominations.""" matrix = _get_change_making_matrix(coins, target) for coin in range(1, len(coins) + 1): for sub_target in range(1, target + 1): if coins[coin - 1] == sub_target: matrix[coin][sub_target] = 1 + matrix[coin - 1][sub_target] elif coins[coin - 1] > sub_target: matrix[coin][sub_target] = matrix[coin - 1][sub_target] else: matrix[coin][sub_target] = matrix[coin - 1][sub_target ] + matrix[coin][sub_target - coins[coin - 1]] return matrix[-1][-1] input1 = input() input2 = input() n, m = input1.strip().split(' ') n, m = [int(n), int(m)] c = list(map(int, input2.strip().split(' '))) ways = change_making(c, n) print(ways)
import sys def _get_change_making_matrix(set_of_coins, r): matrix = [[(0) for _ in range(r + 1)] for _ in range(len(set_of_coins) + 1) ] for i in range(1, len(set_of_coins) + 1): matrix[i][0] = i return matrix def change_making(coins, target): """This function assumes that all coins are available infinitely. n is the number that we need to obtain with the fewest number of coins. coins is a list or tuple with the available denominations.""" matrix = _get_change_making_matrix(coins, target) for coin in range(1, len(coins) + 1): for sub_target in range(1, target + 1): if coins[coin - 1] == sub_target: matrix[coin][sub_target] = 1 + matrix[coin - 1][sub_target] elif coins[coin - 1] > sub_target: matrix[coin][sub_target] = matrix[coin - 1][sub_target] else: matrix[coin][sub_target] = matrix[coin - 1][sub_target ] + matrix[coin][sub_target - coins[coin - 1]] return matrix[-1][-1] input1 = input() input2 = input() n, m = input1.strip().split(' ') n, m = [int(n), int(m)] c = list(map(int, input2.strip().split(' '))) ways = change_making(c, n) print(ways)
#!/bin/python3 import sys # import numpy as np def _get_change_making_matrix(set_of_coins, r): matrix = [[0 for _ in range(r + 1)] for _ in range(len(set_of_coins) + 1)] # matrix = np.array(matrix) for i in range(1,len(set_of_coins) + 1): matrix[i][0] = i return matrix def change_making(coins, target): """This function assumes that all coins are available infinitely. n is the number that we need to obtain with the fewest number of coins. coins is a list or tuple with the available denominations.""" matrix = _get_change_making_matrix(coins, target) for coin in range(1, len(coins) + 1): for sub_target in range(1, target + 1): # Just use the coin coins[c - 1]. if coins[coin - 1] == sub_target: matrix[coin][sub_target] = 1+matrix[coin-1][sub_target] # coins[c - 1] cannot be included. # We use the previous solution for making r, # excluding coins[c - 1]. elif coins[coin - 1] > sub_target: matrix[coin][sub_target] = matrix[coin - 1][sub_target] # We can use coins[c - 1]. # We need to decide which one of the following solutions is the best: # 1. Using the previous solution for making r (without using coins[c - 1]). # 2. Using the previous solution for making r - coins[c - 1] (without using coins[c - 1]) plus this 1 extra coin. else: matrix[coin][sub_target] = (matrix[coin - 1][sub_target]) + ( matrix[coin][sub_target - coins[coin - 1]]) return matrix[-1][-1] input1 = input() input2 = input() # input1 = "10 4" # input2 = "2 5 3 6" n, m = input1.strip().split(' ') n, m = [int(n), int(m)] c = list(map(int, input2.strip().split(' '))) # Print the number of ways of making change for 'n' units using coins having the values given by 'c' ways = change_making(c, n) print(ways)
[ 2, 3, 4, 5, 6 ]
2,298
2dcf0466c84c952c60dcfce86498f063f43726f3
#!/usr/bin/python import socket import threading import signal import sys class Proxy: #initialise server socket def __init__(self): self.serverSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.serverSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.serverSocket.bind(('', 1700)) self.serverSocket.listen(1) self.__clients = {} #proxy thread to handle requests def proxy_thread(self, conn, client_addr): request = conn.recv(1024) # get the request from browser line = request.split('\n')[0] # parse the first line url = line.split(' ')[1] mName = 'localhost' mPort = 12000 proxySocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) proxySocket.connect((mName,mPort)) proxySocket.send(url) #blacklist from proxy side response = proxySocket.recv(1024) if "blacklist" in response: conn.send('403: Forbidden') conn.close() return else: #get the host and port out the url path self.path = url[7:] i = self.path.find('/') host = self.path[:i] i = host.find(':') if i!=-1: port = int(host[i+1:]) host = host[:i] else: port = 80 try: # create a socket to connect to the web server webSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) webSocket.settimeout(5) webSocket.connect((host, port)) webSocket.sendall(request) # send request to webserver while 1: data = webSocket.recv(1024) # receive data from web server if (len(data) > 0): conn.send(data) # send to browser else: break webSocket.close() conn.close() except socket.error as error_msg: if webSocket: webSocket.close() if conn: conn.close() #listen for web client to send request def client(self): while True: (clientSocket, client_address) = self.serverSocket.accept() # Establish the connection p = threading.Thread(name=self._getClientName(client_address), target=self.proxy_thread, args=(clientSocket, client_address)) p.setDaemon(True) p.start() def _getClientName(self, cli_addr): return "Client" if __name__ == '__main__': proxy = Proxy() proxy.client()
null
null
null
null
[ 0 ]
2,299
1db866ca73bc264d474d5e5086c4a047d7e46546
<mask token>
<mask token> with Session() as ps: ps.app.runMenuItem(ps.app.stringIDToTypeID('toggleProofColors'))
<mask token> from photoshop import Session with Session() as ps: ps.app.runMenuItem(ps.app.stringIDToTypeID('toggleProofColors'))
"""Toggle the proof color. Like operating in the menu: **View** > **Proof Colors** (Ctrl + Y) """ # Import local modules from photoshop import Session with Session() as ps: ps.app.runMenuItem(ps.app.stringIDToTypeID("toggleProofColors"))
null
[ 0, 1, 2, 3 ]