layer
uint8 0
35
| neuron
uint16 0
20.5k
| rank
uint8 0
63
| activation
float32 -0
61.8
| position
uint8 0
15
| text
stringlengths 1
1.74k
| id0
uint16 0
50.3k
| id1
uint16 0
50.3k
| id2
uint16 0
50.3k
| id3
uint16 0
50.3k
| id4
uint16 0
50.3k
| id5
uint16 0
50.3k
| id6
uint16 0
50.3k
| id7
uint16 0
50.3k
| id8
uint16 0
50.3k
| id9
uint16 0
50.3k
| id10
uint16 0
50.3k
| id11
uint16 0
50.3k
| id12
uint16 0
50.3k
| id13
uint16 0
50.3k
| id14
uint16 0
50.3k
| id15
uint16 0
50.3k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
35 | 20,384 | 24 | 4.472656 | 14 |
ibid_.), osserva che nessuno fa ricorso
| 487 | 301 | 4,414 | 582 | 31,058 | 677 | 66 | 1,161 | 295 | 405 | 26,162 | 4,195 | 15,438 | 263 | 601 | 21,267 |
35 | 20,384 | 25 | 4.453125 | 4 |
Open–Faced Lamb
| 9,807 | 1,253 | 39 | 2,575 | 25,852 | 367 | 447 | 4,846 | 187 | 187 | 6,377 | 848 | 187 | 187 | 424 | 40 |
35 | 20,384 | 26 | 4.453125 | 7 |
ászorulóbb csop
| 7,766 | 91 | 263 | 335 | 1,954 | 4,482 | 29,180 | 412 | 430 | 75 | 2,284 | 3,974 | 83 | 615 | 44,009 | 7,564 |
35 | 20,384 | 27 | 4.445313 | 9 |
sådan i det, og han er en vir
| 18,679 | 21,329 | 891 | 843 | 13 | 9,040 | 15,761 | 2,827 | 546 | 2,432 | 18,790 | 304 | 21,205 | 13 | 10,751 | 6,727 |
35 | 20,384 | 28 | 4.441406 | 12 |
:347
msgid "Color method"
msgstr "Szí
| 27 | 23,568 | 187 | 10,619 | 346 | 6,573 | 1,332 | 3 | 187 | 10,653 | 346 | 46,840 | 1,950 | 10,602 | 1,954 | 69 |
35 | 20,384 | 29 | 4.4375 | 6 |
,
Green Bean and Lamb
| 13 | 187 | 187 | 18,942 | 38,102 | 285 | 25,852 | 2,951 | 88 | 13 | 187 | 187 | 46 | 10,441 | 324 | 4,595 |
35 | 20,384 | 30 | 4.4375 | 9 |
David S. Brown
Jack W. Hin
| 15,418 | 322 | 15 | 7,233 | 187 | 16,082 | 411 | 15 | 388 | 249 | 570 | 4,978 | 187 | 56 | 2,585 | 1,342 |
35 | 20,384 | 31 | 4.433594 | 9 |
us Hiddink of Anzhi Makh
| 316 | 388 | 2,016 | 750 | 273 | 743 | 91 | 5,801 | 353 | 18,980 | 607 | 76 | 7,080 | 253 | 18,069 | 323 |
35 | 20,384 | 32 | 4.394531 | 4 |
Green Bean and Lamb
| 187 | 18,942 | 38,102 | 285 | 25,852 | 2,951 | 88 | 187 | 187 | 3,594 | 2,591 | 25,852 | 44,840 | 49,643 | 342 | 30,149 |
35 | 20,384 | 33 | 4.390625 | 5 |
due a essi appa
| 1,955 | 247 | 3,265 | 74 | 622 | 66 | 279 | 80 | 13 | 299 | 1,161 | 4,274 | 67 | 4,692 | 2,963 | 74 |
35 | 20,384 | 34 | 4.386719 | 14 |
a Osetsku, ktoré kazia atmosfé
| 247 | 473 | 1,178 | 3,319 | 86 | 13 | 44,797 | 860 | 465 | 1,370 | 571 | 387 | 19,530 | 71 | 860 | 579 |
35 | 20,384 | 35 | 4.382813 | 11 |
ological community of Toronto, everyone knew each other. Fakh
| 1,975 | 3,114 | 273 | 13,533 | 13 | 4,130 | 3,260 | 1,016 | 643 | 15 | 401 | 18,980 | 610 | 434 | 22,077 | 8,058 |
35 | 20,384 | 36 | 4.382813 | 8 |
–430.
. Wendy Cuth
| 1,253 | 34,230 | 15 | 187 | 187 | 15 | 42,167 | 330 | 3,097 | 589 | 1,641 | 251 | 13 | 795 | 21,663 | 454 |
35 | 20,384 | 37 | 4.378906 | 13 |
:41
Monster Energy Yamaha MotoGP‘s Ma
| 27 | 3,156 | 187 | 9,304 | 2,971 | 11,669 | 27,117 | 19,369 | 353 | 4,881 | 12,295 | 8,924 | 84 | 7,057 | 332 | 781 |
35 | 20,384 | 38 | 4.363281 | 12 |
state” conspiracy. BigDog, whose real name is Zakh
| 1,375 | 668 | 13,445 | 15 | 7,967 | 47,074 | 13 | 3,692 | 1,524 | 1,416 | 310 | 1,503 | 18,980 | 343 | 15,493 | 3,163 |
35 | 20,384 | 39 | 4.359375 | 12 |
öltje, és sima vereséget szen
| 2,381 | 5,792 | 5,173 | 13 | 24,868 | 948 | 66 | 1,670 | 373 | 860 | 788 | 256 | 5,282 | 1,272 | 3,592 | 15 |
35 | 20,384 | 40 | 4.355469 | 13 |
the unit every 6 to 12 months is important.
Fakh
| 253 | 3,943 | 1,046 | 721 | 281 | 1,249 | 2,607 | 310 | 1,774 | 15 | 187 | 187 | 39 | 18,980 | 363 | 24,916 |
35 | 20,384 | 41 | 4.351563 | 12 |
n't-miss puddings include pear-and-ging
| 79 | 626 | 14 | 3,099 | 268 | 7,937 | 723 | 2,486 | 27,887 | 14 | 395 | 14 | 3,390 | 254 | 1,213 | 438 |
35 | 20,384 | 42 | 4.351563 | 11 |
Béla Bartók, Darius Milha
| 187 | 35 | 860 | 4,123 | 17,486 | 1,954 | 76 | 13 | 399 | 26,548 | 6,939 | 3,227 | 438 | 13 | 285 | 309 |
35 | 20,384 | 43 | 4.347656 | 7 |
ari, i quali fungono
| 1,792 | 13 | 891 | 4,426 | 74 | 794 | 19,835 | 80 | 4,204 | 1,307 | 5,391 | 4,054 | 23,611 | 15 | 473 | 376 |
35 | 20,384 | 44 | 4.347656 | 3 |
founders, Michael Rot
| 33,663 | 13 | 6,277 | 22,343 | 864 | 4,978 | 285 | 12,324 | 363 | 31,247 | 279 | 13 | 452 | 773 | 20,989 | 668 |
35 | 20,384 | 45 | 4.347656 | 3 |
founders, Michael Rot
| 33,663 | 13 | 6,277 | 22,343 | 864 | 4,978 | 285 | 12,324 | 363 | 31,247 | 279 | 313 | 15,617 | 273 | 7,967 | 15,454 |
35 | 20,384 | 46 | 4.34375 | 12 |
of harvard university for the year 1898 / by guy hins
| 273 | 4,230 | 12,299 | 9,835 | 323 | 253 | 807 | 42,122 | 1,227 | 407 | 5,599 | 288 | 968 | 22,604 | 15 | 1,359 |
35 | 20,384 | 47 | 4.34375 | 13 |
ber, the flamboyant Signor Adolfo Pire
| 589 | 13 | 253 | 892 | 1,369 | 899 | 386 | 8,714 | 263 | 2,006 | 311 | 4,786 | 367 | 603 | 25,658 | 15 |
35 | 20,384 | 48 | 4.339844 | 12 |
fatal to a finding of a de facto merger. See Lipp
| 15,444 | 281 | 247 | 4,560 | 273 | 247 | 372 | 32,924 | 24,362 | 15 | 2,594 | 418 | 5,265 | 561 | 362 | 15 |
35 | 20,384 | 49 | 4.339844 | 10 |
396 [30 P.2d 538]; Hins
| 38,024 | 544 | 1,229 | 367 | 15 | 19 | 69 | 43,139 | 2,194 | 388 | 968 | 21,733 | 362 | 15 | 27,353 | 13 |
35 | 20,384 | 50 | 4.335938 | 15 |
s
$799
13-inch brake kit with drop sp
| 84 | 187 | 187 | 5 | 24 | 1,525 | 187 | 187 | 1,012 | 14 | 12,099 | 23,634 | 6,119 | 342 | 5,926 | 653 |
35 | 20,384 | 51 | 4.332031 | 14 |
ato, and Pine Nuts (page 98) and Green Bean and Lamb
| 4,611 | 13 | 285 | 34,289 | 427 | 14,298 | 313 | 6,377 | 10,508 | 10 | 285 | 6,115 | 38,102 | 285 | 25,852 | 2,951 |
35 | 20,384 | 52 | 4.320313 | 14 |
eva alla schiatta dei Bacchiadi ma, divenuto am
| 19,020 | 21,267 | 256 | 4,635 | 28,233 | 21,540 | 41,561 | 4,635 | 11,282 | 6,429 | 13 | 2,017 | 257 | 14,345 | 717 | 7,961 |
35 | 20,384 | 53 | 4.316406 | 6 |
ure of chocolate – especially Ghir
| 459 | 273 | 14,354 | 1,108 | 3,340 | 18,861 | 343 | 472 | 13,890 | 14,354 | 2 | 2,726 | 271 | 7,001 | 5,356 | 36,766 |
35 | 20,384 | 54 | 4.316406 | 7 |
a poco fa e vorrei essere mol
| 66 | 42,592 | 4,195 | 299 | 18,285 | 31,586 | 35,129 | 14,008 | 936 | 21,477 | 4,595 | 15 | 11,090 | 33,463 | 419 | 391 |
35 | 20,384 | 55 | 4.3125 | 10 |
psychologist Mihály Csíkszentmih
| 35,085 | 353 | 6,356 | 1,757 | 314 | 36,701 | 1,950 | 661 | 49,738 | 78 | 6,356 | 1,757 | 314 | 74 | 8,631 | 2,685 |
35 | 20,384 | 56 | 4.304688 | 14 |
digging in the most productive places." Indeed, in _1969,_ Fakh
| 28,063 | 275 | 253 | 954 | 19,303 | 5,053 | 449 | 8,079 | 13 | 275 | 795 | 25,892 | 8,291 | 401 | 18,980 | 610 |
35 | 20,384 | 57 | 4.296875 | 4 |
knob-and-sp
| 47,133 | 14 | 395 | 14 | 1,033 | 3,508 | 15,820 | 13 | 47,133 | 277 | 12,863 | 13 | 47,133 | 39,694 | 13 | 285 |
35 | 20,384 | 58 | 4.292969 | 10 |
Al Malki and Moto3™ rider Ma
| 1,219 | 353 | 1,278 | 74 | 285 | 353 | 4,881 | 20 | 14,313 | 30,340 | 7,057 | 332 | 781 | 17,721 | 6,621 | 2,339 |
35 | 20,384 | 59 | 4.292969 | 14 |
loro dalla Commissione. Esse infatti partecipano ora
| 37,938 | 49,315 | 5,399 | 70 | 15 | 9,615 | 339 | 2,192 | 26,797 | 629 | 886 | 532 | 4,692 | 258 | 376 | 32,239 |
35 | 20,384 | 60 | 4.289063 | 15 |
teenaged girl in outsize overalls. She had a nose ring, sp
| 11,332 | 2,961 | 3,226 | 275 | 562 | 3,281 | 4,583 | 84 | 15 | 1,500 | 574 | 247 | 11,480 | 5,818 | 13 | 653 |
35 | 20,384 | 61 | 4.28125 | 6 |
i tre capitoli fungono
| 74 | 2,578 | 43,395 | 10,424 | 794 | 19,835 | 80 | 4,204 | 5,398 | 15,959 | 355 | 1,551 | 80 | 1,448 | 19,048 | 5,135 |
35 | 20,384 | 62 | 4.28125 | 11 |
ellmann (2014). 12 Ibid. 13 Pore
| 437 | 8,420 | 186 | 9 | 6,759 | 481 | 1,249 | 20,140 | 15 | 2,145 | 367 | 410 | 442 | 186 | 261 | 186 |
35 | 20,384 | 63 | 4.277344 | 6 |
business with consumer review website operator Ang
| 2,136 | 342 | 10,630 | 2,278 | 4,422 | 5,572 | 4,965 | 466 | 434 | 5,552 | 326 | 352 | 8,686 | 1,390 | 807 | 15 |
35 | 20,385 | 0 | 6.445313 | 10 |
ic orbit for the guiding system $$\begin{aligned}
| 280 | 12,801 | 323 | 253 | 26,766 | 985 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 50,274 | 61 | 1,968 | 92 |
35 | 20,385 | 1 | 6.398438 | 13 |
cond1\]), the line element is given by $$\begin{aligned}
| 1,038 | 18 | 9,014 | 253 | 1,386 | 3,284 | 310 | 1,677 | 407 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 50,270 |
35 | 20,385 | 2 | 6.339844 | 12 |
and using the Markov property, we infer $$\begin{aligned}
| 285 | 970 | 253 | 25,228 | 2,867 | 13 | 359 | 9,441 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 72 | 9 |
35 | 20,385 | 3 | 6.246094 | 12 |
_4),\end{aligned}$$ where $$\begin{aligned}
| 64 | 21 | 10,853 | 423 | 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 41 | 64 |
35 | 20,385 | 4 | 6.238281 | 14 |
, -17, -0.3, 27773 in descending order.
| 13 | 428 | 1,166 | 13 | 428 | 17 | 15 | 20 | 13 | 28,043 | 3,655 | 275 | 16,317 | 1,340 | 15 | 187 |
35 | 20,385 | 5 | 6.214844 | 15 |
, describe a time machine. Now consider the null trajectory $$\begin{aligned}
| 13 | 6,266 | 247 | 673 | 5,145 | 15 | 3,954 | 1,908 | 253 | 3,635 | 18,974 | 1,764 | 2,043 | 92 | 2,132 | 94 |
35 | 20,385 | 6 | 6.207031 | 12 |
}}$ is given by equation , and $$\begin{aligned}
| 4,018 | 310 | 1,677 | 407 | 5,150 | 575 | 13 | 285 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 1,258 |
35 | 20,385 | 7 | 6.167969 | 10 |
conv\_vnc\]. Define $$\begin{aligned}
| 13,118 | 2,582 | 87 | 9,068 | 4,207 | 25,388 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 6,165 | 1,126 | 7,597 |
35 | 20,385 | 8 | 6.113281 | 12 |
)=\chi$. The associated stochastic process is $$\begin{aligned}
| 7,182 | 4,635 | 1,352 | 380 | 2,330 | 19,191 | 1,232 | 310 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 1,968 |
35 | 20,385 | 9 | 6.109375 | 14 |
} = 0.$$ This equation has the parametric solution $$\begin{aligned}
| 748 | 426 | 470 | 4,700 | 831 | 5,150 | 556 | 253 | 36,833 | 2,900 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 |
35 | 20,385 | 10 | 6.101563 | 15 |
$x\notin{\mathcal{X}}_\zeta^*$, $$\begin{aligned}
| 370 | 89 | 61 | 31,469 | 464 | 1,588 | 92 | 57 | 26,136 | 7,597 | 49,538 | 1,764 | 2,043 | 92 | 2,132 | 94 |
35 | 20,385 | 11 | 6.097656 | 12 |
(\[CGL\]), we change the variables $$\begin{aligned}
| 3,891 | 36 | 5,990 | 9,014 | 359 | 1,818 | 253 | 4,903 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 1,968 |
35 | 20,385 | 12 | 6.09375 | 15 |
2) \Big\},\end{aligned}$$ where $$\begin{aligned}
| 19 | 10 | 393 | 5,178 | 61 | 5,548 | 423 | 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 |
35 | 20,385 | 13 | 6.074219 | 10 |
We introduce the auxiliary random variables $$\begin{aligned}
| 844 | 9,569 | 253 | 24,026 | 3,632 | 4,903 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 11,920 | 464 | 19,747 |
35 | 20,385 | 14 | 6.039063 | 13 |
array}
\right\}.$$ Moreover, put $$\begin{aligned}
| 3,728 | 94 | 187 | 61 | 918 | 39,077 | 5,076 | 13 | 1,691 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 7 |
35 | 20,385 | 15 | 6.035156 | 13 |
zeta$ is infinitesimally small. Let $$\begin{aligned}
| 7,597 | 5 | 310 | 47,041 | 303 | 595 | 1,355 | 15 | 1,281 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 |
35 | 20,385 | 16 | 6.027344 | 10 |
{aligned}$$ and we define $$\begin{aligned}
| 92 | 2,132 | 2,138 | 285 | 359 | 4,853 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 1,968 | 92 | 78 |
35 | 20,385 | 17 | 6.023438 | 12 |
\geq 1$, we recursively define $$\begin{aligned}
| 61 | 5,090 | 337 | 1,366 | 359 | 17,910 | 1,242 | 4,853 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 7 | 45 |
35 | 20,385 | 18 | 6.019531 | 14 |
x_o,y_o\}$ given by $$\begin{aligned}
| 89 | 64 | 80 | 13 | 90 | 64 | 80 | 10,952 | 1,677 | 407 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 |
35 | 20,385 | 19 | 6.011719 | 8 |
}$$ where we set $$\begin{aligned}
| 2,138 | 835 | 359 | 873 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 10,494 | 1,926 | 6,190 | 464 | 3,342 | 247 |
35 | 20,385 | 20 | 6.011719 | 8 |
}$$ where, defining $$\begin{aligned}
| 2,138 | 835 | 13 | 13,947 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 39 | 5,977 | 8,275 | 708 | 9 | 67 |
35 | 20,385 | 21 | 5.996094 | 10 |
_2(x),$$ where $$\begin{aligned}
| 64 | 19 | 9 | 89 | 16,489 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 2,733 | 64 | 19 |
35 | 20,385 | 22 | 5.972656 | 11 |
2,\end{aligned}$$ where $$\begin{aligned}
| 19 | 1,337 | 423 | 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 71 | 7 | 48,936 |
35 | 20,385 | 23 | 5.96875 | 13 |
end{aligned}$$ and the stationary solution is $$\begin{aligned}
| 423 | 92 | 2,132 | 2,138 | 285 | 253 | 17,429 | 2,900 | 310 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 |
35 | 20,385 | 24 | 5.96875 | 13 |
end{aligned}$$ and the stationary solution is $$\begin{aligned}
| 423 | 92 | 2,132 | 2,138 | 285 | 253 | 17,429 | 2,900 | 310 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 |
35 | 20,385 | 25 | 5.96875 | 13 |
end{aligned}$$ and the stationary solution is $$\begin{aligned}
| 423 | 92 | 2,132 | 2,138 | 285 | 253 | 17,429 | 2,900 | 310 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 |
35 | 20,385 | 26 | 5.964844 | 15 |
any $n \in {\mathbf{N}}$. Define $$\begin{aligned}
| 667 | 370 | 79 | 393 | 249 | 1,926 | 2,407 | 92 | 47 | 11,971 | 25,388 | 1,764 | 2,043 | 92 | 2,132 | 94 |
35 | 20,385 | 27 | 5.960938 | 14 |
S})^4 \},\end{aligned}$$ where $$\begin{aligned}
| 52 | 21,161 | 21 | 393 | 5,548 | 423 | 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 |
35 | 20,385 | 28 | 5.960938 | 10 |
},\end{aligned}$$ where $$\begin{aligned}
| 5,548 | 423 | 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 393 | 1,124 | 92 | 18 |
35 | 20,385 | 29 | 5.957031 | 14 |
j^2 = 0$. A change of coordinates $$\begin{aligned}
| 75 | 63 | 19 | 426 | 470 | 1,352 | 329 | 1,818 | 273 | 11,627 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 |
35 | 20,385 | 30 | 5.953125 | 11 |
split}\end{aligned}$$ where $$\begin{aligned}
| 9,148 | 889 | 423 | 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 2,009 | 416 |
35 | 20,385 | 31 | 5.949219 | 13 |
. Combining spherical symmetry with a generic impact angle $$\begin{aligned}
| 15 | 39,369 | 19,474 | 10,377 | 342 | 247 | 12,314 | 3,486 | 6,907 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 50 |
35 | 20,385 | 32 | 5.945313 | 6 |
the dynamics $$\begin{aligned}
| 253 | 8,062 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 69 | 58 | 4,932 | 18 | 1,337 | 2,265 | 24,661 | 85 |
35 | 20,385 | 33 | 5.941406 | 5 |
Define $$\begin{aligned}
| 36,906 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 50,274 | 464 | 2,690 | 92 | 7,047 | 7,294 | 79 | 1,926 | 2,690 |
35 | 20,385 | 34 | 5.941406 | 11 |
j)^2.$$ Here we put $$\begin{aligned}
| 75 | 4,800 | 19 | 4,700 | 3,856 | 359 | 1,691 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 7 | 89 | 578 |
35 | 20,385 | 35 | 5.929688 | 14 |
)$ for $i \in I$. We put $$\begin{aligned}
| 1,009 | 323 | 370 | 74 | 393 | 249 | 309 | 1,352 | 844 | 1,691 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 |
35 | 20,385 | 36 | 5.925781 | 15 |
}})$. By direct computation, from formula , there holds $$\begin{aligned}
| 39,049 | 2,896 | 1,480 | 13,782 | 13 | 432 | 7,212 | 575 | 13 | 627 | 6,556 | 1,764 | 2,043 | 92 | 2,132 | 94 |
35 | 20,385 | 37 | 5.925781 | 13 |
1,\ldots,L-1$, where $$\begin{aligned}
| 18 | 1,337 | 5,589 | 13 | 45 | 14 | 18 | 1,366 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 |
35 | 20,385 | 38 | 5.921875 | 8 |
{\theta}}$, where $$\begin{aligned}
| 464 | 3,124 | 12,460 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 5,664 | 464 | 3,124 | 4,689 | 1,156 |
35 | 20,385 | 39 | 5.917969 | 8 |
_4,$$ where $$\begin{aligned}
| 64 | 21 | 11,227 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 2,009 | 367 | 64 | 18 | 29,722 |
35 | 20,385 | 40 | 5.914063 | 11 |
hat\])]{}, and also we set $$\begin{aligned}
| 7,856 | 3,851 | 3,455 | 285 | 671 | 359 | 873 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 8,752 | 2,386 |
35 | 20,385 | 41 | 5.910156 | 7 |
case. Define $$\begin{aligned}
| 1,083 | 15 | 25,388 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 5,844 | 464 | 2,461 | 94 | 708 | 426 |
35 | 20,385 | 42 | 5.910156 | 9 |
counit satisfy the identities $$\begin{aligned}
| 2,258 | 262 | 10,517 | 253 | 22,925 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 50,274 | 464 | 4,519 | 1,603 | 73 |
35 | 20,385 | 43 | 5.898438 | 12 |
The critical set of $f$ is $$\begin{aligned}
| 510 | 4,619 | 873 | 273 | 370 | 71 | 5 | 310 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 2,690 |
35 | 20,385 | 44 | 5.894531 | 11 |
{array} \right),$$ where $$\begin{aligned}
| 92 | 3,728 | 94 | 393 | 918 | 16,489 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 3,582 | 61 |
35 | 20,385 | 45 | 5.894531 | 14 |
1}\{X_k=x\}.$$ Then, $$\begin{aligned}
| 18 | 47,202 | 57 | 64 | 76 | 30 | 89 | 39,077 | 2,635 | 13 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 |
35 | 20,385 | 46 | 5.894531 | 14 |
*]{} for $x$ under $s$ as $$\begin{aligned}
| 4,622 | 323 | 370 | 89 | 5 | 762 | 370 | 84 | 5 | 347 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 |
35 | 20,385 | 47 | 5.890625 | 15 |
standing]). Morgenstern’s copula reads $$\begin{aligned}
| 6,924 | 2,498 | 4,922 | 1,541 | 296 | 1,808 | 457 | 84 | 5,440 | 3,627 | 9,563 | 1,764 | 2,043 | 92 | 2,132 | 94 |
35 | 20,385 | 48 | 5.886719 | 11 |
2}},\end{aligned}$$ with $$\begin{aligned}
| 19 | 23,102 | 423 | 92 | 2,132 | 2,138 | 342 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 39 | 578 | 18 |
35 | 20,385 | 49 | 5.882813 | 8 |
{aligned}$$ where $$\begin{aligned}
| 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 7,597 | 64 | 17 | 9 | 85 |
35 | 20,385 | 50 | 5.882813 | 8 |
{aligned}$$ where $$\begin{aligned}
| 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 1,274 | 6,921 | 187 | 61 | 2,043 |
35 | 20,385 | 51 | 5.882813 | 8 |
{aligned}$$ where $$\begin{aligned}
| 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 464 | 38,013 | 92 | 70 | 599 | 1,163 |
35 | 20,385 | 52 | 5.882813 | 8 |
{aligned}$$ where $$\begin{aligned}
| 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 49 | 64 | 18 | 29,722 | 95 | 19 |
35 | 20,385 | 53 | 5.882813 | 8 |
{aligned}$$ where $$\begin{aligned}
| 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 1,968 | 92 | 324 | 615 | 82 |
35 | 20,385 | 54 | 5.871094 | 11 |
N),\end{aligned}$$ where $$\begin{aligned}
| 427 | 10,853 | 423 | 92 | 2,132 | 2,138 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 1,968 | 92 |
35 | 20,385 | 55 | 5.871094 | 14 |
^2$ over repeated trades with the same information $$\begin{aligned}
| 63 | 19 | 5 | 689 | 6,015 | 28,587 | 342 | 253 | 1,072 | 1,491 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 |
35 | 20,385 | 56 | 5.863281 | 13 |
, at $t_0$, we denote $$\begin{aligned}
| 13 | 387 | 370 | 85 | 64 | 17 | 1,366 | 359 | 9,173 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 393 |
35 | 20,385 | 57 | 5.859375 | 7 |
$ and define $$\begin{aligned}
| 5 | 285 | 4,853 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 5,977 | 1,906 | 9 | 89 | 4,010 | 260 | 2,253 |
35 | 20,385 | 58 | 5.859375 | 11 |
{w}}}} \xi$ where $$\begin{aligned}
| 92 | 88 | 10,187 | 393 | 2,981 | 5 | 835 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 61 | 2,981 | 426 |
35 | 20,385 | 59 | 5.859375 | 12 |
If $k<s$, compute $$\begin{aligned}
| 50,276 | 2,042 | 370 | 76 | 29 | 84 | 1,366 | 11,897 | 1,764 | 2,043 | 92 | 2,132 | 94 | 187 | 50,266 | 44 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.