layer
uint8
0
35
neuron
uint16
0
20.5k
rank
uint8
0
63
activation
float32
-0
61.8
position
uint8
0
15
text
stringlengths
1
1.74k
id0
uint16
0
50.3k
id1
uint16
0
50.3k
id2
uint16
0
50.3k
id3
uint16
0
50.3k
id4
uint16
0
50.3k
id5
uint16
0
50.3k
id6
uint16
0
50.3k
id7
uint16
0
50.3k
id8
uint16
0
50.3k
id9
uint16
0
50.3k
id10
uint16
0
50.3k
id11
uint16
0
50.3k
id12
uint16
0
50.3k
id13
uint16
0
50.3k
id14
uint16
0
50.3k
id15
uint16
0
50.3k
35
20,384
24
4.472656
14
ibid_.), osserva che nessuno fa ricorso
487
301
4,414
582
31,058
677
66
1,161
295
405
26,162
4,195
15,438
263
601
21,267
35
20,384
25
4.453125
4
Open–Faced Lamb
9,807
1,253
39
2,575
25,852
367
447
4,846
187
187
6,377
848
187
187
424
40
35
20,384
26
4.453125
7
ászorulóbb csop
7,766
91
263
335
1,954
4,482
29,180
412
430
75
2,284
3,974
83
615
44,009
7,564
35
20,384
27
4.445313
9
sådan i det, og han er en vir
18,679
21,329
891
843
13
9,040
15,761
2,827
546
2,432
18,790
304
21,205
13
10,751
6,727
35
20,384
28
4.441406
12
:347 msgid "Color method" msgstr "Szí
27
23,568
187
10,619
346
6,573
1,332
3
187
10,653
346
46,840
1,950
10,602
1,954
69
35
20,384
29
4.4375
6
, Green Bean and Lamb
13
187
187
18,942
38,102
285
25,852
2,951
88
13
187
187
46
10,441
324
4,595
35
20,384
30
4.4375
9
David S. Brown Jack W. Hin
15,418
322
15
7,233
187
16,082
411
15
388
249
570
4,978
187
56
2,585
1,342
35
20,384
31
4.433594
9
us Hiddink of Anzhi Makh
316
388
2,016
750
273
743
91
5,801
353
18,980
607
76
7,080
253
18,069
323
35
20,384
32
4.394531
4
Green Bean and Lamb
187
18,942
38,102
285
25,852
2,951
88
187
187
3,594
2,591
25,852
44,840
49,643
342
30,149
35
20,384
33
4.390625
5
due a essi appa
1,955
247
3,265
74
622
66
279
80
13
299
1,161
4,274
67
4,692
2,963
74
35
20,384
34
4.386719
14
a Osetsku, ktoré kazia atmosfé
247
473
1,178
3,319
86
13
44,797
860
465
1,370
571
387
19,530
71
860
579
35
20,384
35
4.382813
11
ological community of Toronto, everyone knew each other. Fakh
1,975
3,114
273
13,533
13
4,130
3,260
1,016
643
15
401
18,980
610
434
22,077
8,058
35
20,384
36
4.382813
8
–430. . Wendy Cuth
1,253
34,230
15
187
187
15
42,167
330
3,097
589
1,641
251
13
795
21,663
454
35
20,384
37
4.378906
13
:41 Monster Energy Yamaha MotoGP‘s Ma
27
3,156
187
9,304
2,971
11,669
27,117
19,369
353
4,881
12,295
8,924
84
7,057
332
781
35
20,384
38
4.363281
12
state” conspiracy. BigDog, whose real name is Zakh
1,375
668
13,445
15
7,967
47,074
13
3,692
1,524
1,416
310
1,503
18,980
343
15,493
3,163
35
20,384
39
4.359375
12
öltje, és sima vereséget szen
2,381
5,792
5,173
13
24,868
948
66
1,670
373
860
788
256
5,282
1,272
3,592
15
35
20,384
40
4.355469
13
the unit every 6 to 12 months is important. Fakh
253
3,943
1,046
721
281
1,249
2,607
310
1,774
15
187
187
39
18,980
363
24,916
35
20,384
41
4.351563
12
n't-miss puddings include pear-and-ging
79
626
14
3,099
268
7,937
723
2,486
27,887
14
395
14
3,390
254
1,213
438
35
20,384
42
4.351563
11
Béla Bartók, Darius Milha
187
35
860
4,123
17,486
1,954
76
13
399
26,548
6,939
3,227
438
13
285
309
35
20,384
43
4.347656
7
ari, i quali fungono
1,792
13
891
4,426
74
794
19,835
80
4,204
1,307
5,391
4,054
23,611
15
473
376
35
20,384
44
4.347656
3
founders, Michael Rot
33,663
13
6,277
22,343
864
4,978
285
12,324
363
31,247
279
13
452
773
20,989
668
35
20,384
45
4.347656
3
founders, Michael Rot
33,663
13
6,277
22,343
864
4,978
285
12,324
363
31,247
279
313
15,617
273
7,967
15,454
35
20,384
46
4.34375
12
of harvard university for the year 1898 / by guy hins
273
4,230
12,299
9,835
323
253
807
42,122
1,227
407
5,599
288
968
22,604
15
1,359
35
20,384
47
4.34375
13
ber, the flamboyant Signor Adolfo Pire
589
13
253
892
1,369
899
386
8,714
263
2,006
311
4,786
367
603
25,658
15
35
20,384
48
4.339844
12
fatal to a finding of a de facto merger. See Lipp
15,444
281
247
4,560
273
247
372
32,924
24,362
15
2,594
418
5,265
561
362
15
35
20,384
49
4.339844
10
396 [30 P.2d 538]; Hins
38,024
544
1,229
367
15
19
69
43,139
2,194
388
968
21,733
362
15
27,353
13
35
20,384
50
4.335938
15
s $799 13-inch brake kit with drop sp
84
187
187
5
24
1,525
187
187
1,012
14
12,099
23,634
6,119
342
5,926
653
35
20,384
51
4.332031
14
ato, and Pine Nuts (page 98) and Green Bean and Lamb
4,611
13
285
34,289
427
14,298
313
6,377
10,508
10
285
6,115
38,102
285
25,852
2,951
35
20,384
52
4.320313
14
eva alla schiatta dei Bacchiadi ma, divenuto am
19,020
21,267
256
4,635
28,233
21,540
41,561
4,635
11,282
6,429
13
2,017
257
14,345
717
7,961
35
20,384
53
4.316406
6
ure of chocolate – especially Ghir
459
273
14,354
1,108
3,340
18,861
343
472
13,890
14,354
2
2,726
271
7,001
5,356
36,766
35
20,384
54
4.316406
7
a poco fa e vorrei essere mol
66
42,592
4,195
299
18,285
31,586
35,129
14,008
936
21,477
4,595
15
11,090
33,463
419
391
35
20,384
55
4.3125
10
psychologist Mihály Csíkszentmih
35,085
353
6,356
1,757
314
36,701
1,950
661
49,738
78
6,356
1,757
314
74
8,631
2,685
35
20,384
56
4.304688
14
digging in the most productive places." Indeed, in _1969,_ Fakh
28,063
275
253
954
19,303
5,053
449
8,079
13
275
795
25,892
8,291
401
18,980
610
35
20,384
57
4.296875
4
knob-and-sp
47,133
14
395
14
1,033
3,508
15,820
13
47,133
277
12,863
13
47,133
39,694
13
285
35
20,384
58
4.292969
10
Al Malki and Moto3™ rider Ma
1,219
353
1,278
74
285
353
4,881
20
14,313
30,340
7,057
332
781
17,721
6,621
2,339
35
20,384
59
4.292969
14
loro dalla Commissione. Esse infatti partecipano ora
37,938
49,315
5,399
70
15
9,615
339
2,192
26,797
629
886
532
4,692
258
376
32,239
35
20,384
60
4.289063
15
teenaged girl in outsize overalls. She had a nose ring, sp
11,332
2,961
3,226
275
562
3,281
4,583
84
15
1,500
574
247
11,480
5,818
13
653
35
20,384
61
4.28125
6
i tre capitoli fungono
74
2,578
43,395
10,424
794
19,835
80
4,204
5,398
15,959
355
1,551
80
1,448
19,048
5,135
35
20,384
62
4.28125
11
ellmann (2014). 12 Ibid. 13 Pore
437
8,420
186
9
6,759
481
1,249
20,140
15
2,145
367
410
442
186
261
186
35
20,384
63
4.277344
6
business with consumer review website operator Ang
2,136
342
10,630
2,278
4,422
5,572
4,965
466
434
5,552
326
352
8,686
1,390
807
15
35
20,385
0
6.445313
10
ic orbit for the guiding system $$\begin{aligned}
280
12,801
323
253
26,766
985
1,764
2,043
92
2,132
94
187
50,274
61
1,968
92
35
20,385
1
6.398438
13
cond1\]), the line element is given by $$\begin{aligned}
1,038
18
9,014
253
1,386
3,284
310
1,677
407
1,764
2,043
92
2,132
94
187
50,270
35
20,385
2
6.339844
12
and using the Markov property, we infer $$\begin{aligned}
285
970
253
25,228
2,867
13
359
9,441
1,764
2,043
92
2,132
94
187
72
9
35
20,385
3
6.246094
12
_4),\end{aligned}$$ where $$\begin{aligned}
64
21
10,853
423
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
41
64
35
20,385
4
6.238281
14
, -17, -0.3, 27773 in descending order.
13
428
1,166
13
428
17
15
20
13
28,043
3,655
275
16,317
1,340
15
187
35
20,385
5
6.214844
15
, describe a time machine. Now consider the null trajectory $$\begin{aligned}
13
6,266
247
673
5,145
15
3,954
1,908
253
3,635
18,974
1,764
2,043
92
2,132
94
35
20,385
6
6.207031
12
}}$ is given by equation , and $$\begin{aligned}
4,018
310
1,677
407
5,150
575
13
285
1,764
2,043
92
2,132
94
187
61
1,258
35
20,385
7
6.167969
10
conv\_vnc\]. Define $$\begin{aligned}
13,118
2,582
87
9,068
4,207
25,388
1,764
2,043
92
2,132
94
187
61
6,165
1,126
7,597
35
20,385
8
6.113281
12
)=\chi$. The associated stochastic process is $$\begin{aligned}
7,182
4,635
1,352
380
2,330
19,191
1,232
310
1,764
2,043
92
2,132
94
187
61
1,968
35
20,385
9
6.109375
14
} = 0.$$ This equation has the parametric solution $$\begin{aligned}
748
426
470
4,700
831
5,150
556
253
36,833
2,900
1,764
2,043
92
2,132
94
187
35
20,385
10
6.101563
15
$x\notin{\mathcal{X}}_\zeta^*$, $$\begin{aligned}
370
89
61
31,469
464
1,588
92
57
26,136
7,597
49,538
1,764
2,043
92
2,132
94
35
20,385
11
6.097656
12
(\[CGL\]), we change the variables $$\begin{aligned}
3,891
36
5,990
9,014
359
1,818
253
4,903
1,764
2,043
92
2,132
94
187
61
1,968
35
20,385
12
6.09375
15
2) \Big\},\end{aligned}$$ where $$\begin{aligned}
19
10
393
5,178
61
5,548
423
92
2,132
2,138
835
1,764
2,043
92
2,132
94
35
20,385
13
6.074219
10
We introduce the auxiliary random variables $$\begin{aligned}
844
9,569
253
24,026
3,632
4,903
1,764
2,043
92
2,132
94
187
61
11,920
464
19,747
35
20,385
14
6.039063
13
array} \right\}.$$ Moreover, put $$\begin{aligned}
3,728
94
187
61
918
39,077
5,076
13
1,691
1,764
2,043
92
2,132
94
187
7
35
20,385
15
6.035156
13
zeta$ is infinitesimally small. Let $$\begin{aligned}
7,597
5
310
47,041
303
595
1,355
15
1,281
1,764
2,043
92
2,132
94
187
61
35
20,385
16
6.027344
10
{aligned}$$ and we define $$\begin{aligned}
92
2,132
2,138
285
359
4,853
1,764
2,043
92
2,132
94
187
61
1,968
92
78
35
20,385
17
6.023438
12
\geq 1$, we recursively define $$\begin{aligned}
61
5,090
337
1,366
359
17,910
1,242
4,853
1,764
2,043
92
2,132
94
187
7
45
35
20,385
18
6.019531
14
x_o,y_o\}$ given by $$\begin{aligned}
89
64
80
13
90
64
80
10,952
1,677
407
1,764
2,043
92
2,132
94
187
35
20,385
19
6.011719
8
}$$ where we set $$\begin{aligned}
2,138
835
359
873
1,764
2,043
92
2,132
94
187
10,494
1,926
6,190
464
3,342
247
35
20,385
20
6.011719
8
}$$ where, defining $$\begin{aligned}
2,138
835
13
13,947
1,764
2,043
92
2,132
94
187
39
5,977
8,275
708
9
67
35
20,385
21
5.996094
10
_2(x),$$ where $$\begin{aligned}
64
19
9
89
16,489
835
1,764
2,043
92
2,132
94
187
61
2,733
64
19
35
20,385
22
5.972656
11
2,\end{aligned}$$ where $$\begin{aligned}
19
1,337
423
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
71
7
48,936
35
20,385
23
5.96875
13
end{aligned}$$ and the stationary solution is $$\begin{aligned}
423
92
2,132
2,138
285
253
17,429
2,900
310
1,764
2,043
92
2,132
94
187
61
35
20,385
24
5.96875
13
end{aligned}$$ and the stationary solution is $$\begin{aligned}
423
92
2,132
2,138
285
253
17,429
2,900
310
1,764
2,043
92
2,132
94
187
61
35
20,385
25
5.96875
13
end{aligned}$$ and the stationary solution is $$\begin{aligned}
423
92
2,132
2,138
285
253
17,429
2,900
310
1,764
2,043
92
2,132
94
187
61
35
20,385
26
5.964844
15
any $n \in {\mathbf{N}}$. Define $$\begin{aligned}
667
370
79
393
249
1,926
2,407
92
47
11,971
25,388
1,764
2,043
92
2,132
94
35
20,385
27
5.960938
14
S})^4 \},\end{aligned}$$ where $$\begin{aligned}
52
21,161
21
393
5,548
423
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
35
20,385
28
5.960938
10
},\end{aligned}$$ where $$\begin{aligned}
5,548
423
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
393
1,124
92
18
35
20,385
29
5.957031
14
j^2 = 0$. A change of coordinates $$\begin{aligned}
75
63
19
426
470
1,352
329
1,818
273
11,627
1,764
2,043
92
2,132
94
187
35
20,385
30
5.953125
11
split}\end{aligned}$$ where $$\begin{aligned}
9,148
889
423
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
61
2,009
416
35
20,385
31
5.949219
13
. Combining spherical symmetry with a generic impact angle $$\begin{aligned}
15
39,369
19,474
10,377
342
247
12,314
3,486
6,907
1,764
2,043
92
2,132
94
187
50
35
20,385
32
5.945313
6
the dynamics $$\begin{aligned}
253
8,062
1,764
2,043
92
2,132
94
187
69
58
4,932
18
1,337
2,265
24,661
85
35
20,385
33
5.941406
5
Define $$\begin{aligned}
36,906
1,764
2,043
92
2,132
94
187
50,274
464
2,690
92
7,047
7,294
79
1,926
2,690
35
20,385
34
5.941406
11
j)^2.$$ Here we put $$\begin{aligned}
75
4,800
19
4,700
3,856
359
1,691
1,764
2,043
92
2,132
94
187
7
89
578
35
20,385
35
5.929688
14
)$ for $i \in I$. We put $$\begin{aligned}
1,009
323
370
74
393
249
309
1,352
844
1,691
1,764
2,043
92
2,132
94
187
35
20,385
36
5.925781
15
}})$. By direct computation, from formula , there holds $$\begin{aligned}
39,049
2,896
1,480
13,782
13
432
7,212
575
13
627
6,556
1,764
2,043
92
2,132
94
35
20,385
37
5.925781
13
1,\ldots,L-1$, where $$\begin{aligned}
18
1,337
5,589
13
45
14
18
1,366
835
1,764
2,043
92
2,132
94
187
61
35
20,385
38
5.921875
8
{\theta}}$, where $$\begin{aligned}
464
3,124
12,460
835
1,764
2,043
92
2,132
94
187
61
5,664
464
3,124
4,689
1,156
35
20,385
39
5.917969
8
_4,$$ where $$\begin{aligned}
64
21
11,227
835
1,764
2,043
92
2,132
94
187
61
2,009
367
64
18
29,722
35
20,385
40
5.914063
11
hat\])]{}, and also we set $$\begin{aligned}
7,856
3,851
3,455
285
671
359
873
1,764
2,043
92
2,132
94
187
61
8,752
2,386
35
20,385
41
5.910156
7
case. Define $$\begin{aligned}
1,083
15
25,388
1,764
2,043
92
2,132
94
187
61
5,844
464
2,461
94
708
426
35
20,385
42
5.910156
9
counit satisfy the identities $$\begin{aligned}
2,258
262
10,517
253
22,925
1,764
2,043
92
2,132
94
187
50,274
464
4,519
1,603
73
35
20,385
43
5.898438
12
The critical set of $f$ is $$\begin{aligned}
510
4,619
873
273
370
71
5
310
1,764
2,043
92
2,132
94
187
61
2,690
35
20,385
44
5.894531
11
{array} \right),$$ where $$\begin{aligned}
92
3,728
94
393
918
16,489
835
1,764
2,043
92
2,132
94
187
61
3,582
61
35
20,385
45
5.894531
14
1}\{X_k=x\}.$$ Then, $$\begin{aligned}
18
47,202
57
64
76
30
89
39,077
2,635
13
1,764
2,043
92
2,132
94
187
35
20,385
46
5.894531
14
*]{} for $x$ under $s$ as $$\begin{aligned}
4,622
323
370
89
5
762
370
84
5
347
1,764
2,043
92
2,132
94
187
35
20,385
47
5.890625
15
standing]). Morgenstern’s copula reads $$\begin{aligned}
6,924
2,498
4,922
1,541
296
1,808
457
84
5,440
3,627
9,563
1,764
2,043
92
2,132
94
35
20,385
48
5.886719
11
2}},\end{aligned}$$ with $$\begin{aligned}
19
23,102
423
92
2,132
2,138
342
1,764
2,043
92
2,132
94
187
39
578
18
35
20,385
49
5.882813
8
{aligned}$$ where $$\begin{aligned}
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
61
7,597
64
17
9
85
35
20,385
50
5.882813
8
{aligned}$$ where $$\begin{aligned}
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
61
1,274
6,921
187
61
2,043
35
20,385
51
5.882813
8
{aligned}$$ where $$\begin{aligned}
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
464
38,013
92
70
599
1,163
35
20,385
52
5.882813
8
{aligned}$$ where $$\begin{aligned}
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
49
64
18
29,722
95
19
35
20,385
53
5.882813
8
{aligned}$$ where $$\begin{aligned}
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
61
1,968
92
324
615
82
35
20,385
54
5.871094
11
N),\end{aligned}$$ where $$\begin{aligned}
427
10,853
423
92
2,132
2,138
835
1,764
2,043
92
2,132
94
187
61
1,968
92
35
20,385
55
5.871094
14
^2$ over repeated trades with the same information $$\begin{aligned}
63
19
5
689
6,015
28,587
342
253
1,072
1,491
1,764
2,043
92
2,132
94
187
35
20,385
56
5.863281
13
, at $t_0$, we denote $$\begin{aligned}
13
387
370
85
64
17
1,366
359
9,173
1,764
2,043
92
2,132
94
187
393
35
20,385
57
5.859375
7
$ and define $$\begin{aligned}
5
285
4,853
1,764
2,043
92
2,132
94
187
5,977
1,906
9
89
4,010
260
2,253
35
20,385
58
5.859375
11
{w}}}} \xi$ where $$\begin{aligned}
92
88
10,187
393
2,981
5
835
1,764
2,043
92
2,132
94
187
61
2,981
426
35
20,385
59
5.859375
12
If $k<s$, compute $$\begin{aligned}
50,276
2,042
370
76
29
84
1,366
11,897
1,764
2,043
92
2,132
94
187
50,266
44