license: mit | |
task_categories: | |
- token-classification | |
language: | |
- he | |
tags: | |
- privacy | |
- token-classification | |
- security | |
- text-masking | |
- hebrew | |
- pii-detection | |
- ner | |
pretty_name: GolemGuard | |
size_categories: | |
- 100K<n<1M | |
# GolemGuard: Hebrew Privacy Information Detection Corpus | |
GolemGuard is a comprehensive Hebrew language dataset specifically designed for training and evaluating models for Personal Identifiable Information (PII) detection and masking. The dataset contains ~600MB of synthetic text data representing various document types and communication formats commonly found in Israeli professional and administrative contexts. | |
## Source Data | |
### Initial Data Collection and Normalization | |
The dataset combines synthetic data generated from multiple authoritative sources: | |
1. Names: | |
- Israeli government open data portal (data.gov.il) for first names | |
- Hebrew Wikipedia category for family names | |
- Faker library | |
- Additional curated sources | |
2. Addresses: | |
- Israeli government datasets for cities | |
- Israeli government street names datasets | |
3. Synthetic Identifiers: | |
- ID numbers: Generated following Israeli ID number format and checksum rules | |
- Bank accounts: Generated following Israeli bank account number formats | |
- Postal codes: Based on valid Israeli postal code ranges | |
- Credit cards: Generated following valid card number algorithms | |
- Email addresses: Constructed using collected names and top Israeli email providers | |
### Entity Types: | |
| PII Entity Type | Description | Count | | |
|----------------|-------------|-------| | |
| FIRST_NAME | First names | 131,192 | | |
| LAST_NAME | Last names | 115,020 | | |
| ID_NUM | Israeli ID numbers | 77,902 | | |
| PHONE_NUM | Phone numbers (both mobile and landlines) | 142,795 | | |
| DATE | Dates | 77,042 | | |
| STREET | Street addresses | 105,381 | | |
| CITY | City names | 105,874 | | |
| EMAIL | Email addresses | 90,080 | | |
| POSTAL_CODE | Israeli postal codes (Mikud) | 93,748 | | |
| BANK_ACCOUNT_NUM | Bank account numbers | 31,046 | | |
| CC_NUM | Credit card numbers | 1,751 | | |
| CC_PROVIDER | Credit card providers | 1,679 | | |
### Template Diversity | |
The dataset includes 2,607 unique document templates. Here are the top document types by instance count: | |
| Template Type | Instance Count | | |
|--------------|----------------| | |
| meeting_summary | 21,983 | | |
| appointment_confirmation | 4,420 | | |
| job_application_confirmation | 3,611 | | |
| job_application | 3,306 | | |
| medical_appointment_confirmation | 2,359 | | |
| loan_application_received | 1,988 | | |
| job_application_received | 1,832 | | |
| bank_account_update | 1,609 | | |
| appointment_reminder | 1,567 | | |
| medical_appointment_reminder | 1,335 | | |
### Dataset Size | |
- Total Size: ~600MB | |
- Number of Examples: 115,453 | |
- Format: JSONL | |
### Data Splits | |
| Split | Number of Instances | | |
|-------|-------------------| | |
| Training | 97,453 | | |
| Test | 18,000 | | |
| **Total** | **115,453** | | |
## Languages | |
- Hebrew (he) | |
- Locale: Israel (IL) | |
## Supported Tasks | |
- Token Classification | |
- Named Entity Recognition (NER) | |
- PII Detection | |
- Text Masking | |
- Privacy-Preserving Text Processing | |
## Dataset Structure | |
### Data Instances | |
Each instance in the dataset contains: | |
```json | |
{ | |
"id": "String", // Unique identifier | |
"source_text": "String", // Original text with PII | |
"masked_text": "String", // Text with PII entities masked | |
"locale": "String", // Always "IL" | |
"language": "String", // Always "he" | |
"split": "String", // "train" or "test" | |
"privacy_mask": [ // List of PII entities with positions | |
{ | |
"label": "String", // Entity type | |
"start": "Integer", // Start position | |
"end": "Integer", // End position | |
"value": "String", // Original value | |
"label_index": "Integer" // Index for multiple entities of same type | |
} | |
], | |
"span_labels": "List", // Entity spans in [start, end, label] format | |
"tokens": "List", // Tokenized text | |
"token_classes": "List", // Token-level BIO tags | |
"input_ids": "List", // Model input token IDs | |
"attention_mask": "List", // Attention mask for padding | |
"offset_mapping": "List", // Character offsets for tokens | |
"template_type": "String" // Document type/template | |
} | |
``` | |
### Sample | |
```json | |
{"id": "entry_000256", "source_text": "ืืฉืชืชืฃ: ืืืื ืฉื ืืื\nืชืืจืื ืืืื: 28.08.97\nืืชืืืช: ืกืืจืื ืืื 158, ืงืจืืืช ืื, 2676389\nืืืืืื: [email protected]\nืืืคืื: +972-58-2892208\n\nืกืืืื ืืคืืืฉื: ืืคืืืฉื ืื ื ืืื ื ืืฉืืืืช ืฉืืคืืจ ืืชืงืฉืืจืช ืืคื ืืืืช ืืื ืืฆืืืชืื. ืืืืื ืืืฆืข ืกืื ืืืช ืืืืฉืจื ื ืืกืคืช ืืฉืืืข ืืื.", "masked_text": "ืืฉืชืชืฃ: [FIRST_NAME_1] [LAST_NAME_1]\nืชืืจืื ืืืื: [DATE_1]\nืืชืืืช: [STREET_1], [CITY_1], [POSTAL_CODE_1]\nืืืืืื: [EMAIL_1]\nืืืคืื: [PHONE_NUM_1]\n\nืกืืืื ืืคืืืฉื: ืืคืืืฉื ืื ื ืืื ื ืืฉืืืืช ืฉืืคืืจ ืืชืงืฉืืจืช ืืคื ืืืืช ืืื ืืฆืืืชืื. ืืืืื ืืืฆืข ืกืื ืืืช ืืืืฉืจื ื ืืกืคืช ืืฉืืืข ืืื.", "locale": "IL", "language": "he", "split": "train", "privacy_mask": [{"label": "FIRST_NAME", "start": 7, "end": 11, "value": "ืืืื", "label_index": 1}, {"label": "LAST_NAME", "start": 12, "end": 18, "value": "ืฉื ืืื", "label_index": 1}, {"label": "DATE", "start": 31, "end": 39, "value": "28.08.97", "label_index": 1}, {"label": "STREET", "start": 47, "end": 60, "value": "ืกืืจืื ืืื 158", "label_index": 1}, {"label": "CITY", "start": 62, "end": 70, "value": "ืงืจืืืช ืื", "label_index": 1}, {"label": "POSTAL_CODE", "start": 72, "end": 79, "value": "2676389", "label_index": 1}, {"label": "EMAIL", "start": 88, "end": 111, "value": "[email protected]", "label_index": 1}, {"label": "PHONE_NUM", "start": 119, "end": 134, "value": "+972-58-2892208", "label_index": 1}], "span_labels": [[7, 11, "FIRST_NAME"], [12, 18, "LAST_NAME"], [31, 39, "DATE"], [47, 60, "STREET"], [62, 70, "CITY"], [72, 79, "POSTAL_CODE"], [88, 111, "EMAIL"], [119, 134, "PHONE_NUM"]], "tokens": ["<s>", "โื", "ืฉืชืชืฃ", ":", "โืื", "ืื", "โืฉื", "โืืื", "โ", "ืชืืจืื", "โ", "ืืืื", ":", "โ28.", "08.", "97", "โืืชืืืช", ":", "โ", "ืกืืจ", "ืื", "โืืื", "โ158", ",", "โืงืจื", "ืืช", "โ", "ืื", ",", "โ26", "76", "389", "โืืืืืื", ":", "โsa", "git", "ben", "dor", "760", "@", "live", ".", "com", "โืืืคืื", ":", "โ+", "97", "2-", "58", "-28", "92", "208", "โ", "ืกืืืื", "โืืค", "ืืืฉื", ":", "โืืค", "ืืืฉื", "โืื", "โ", "ื ื", "ืื ื", "โ", "ืืฉืืืืช", "โ", "ืฉืืคืืจ", "โืืชืงืฉืืจืช", "โืืคื ืืื", "ืช", "โืืื", "โืืฆืืืช", "ืื", ".", "โื", "ืื", "ืื", "โืืืฆืข", "โ", "ืกืื ืืืช", "โื", "ืืืฉืจื", "โื ืืกืคืช", "โืืฉืืืข", "โืืื", ".", "</s>"], "token_classes": ["O", "O", "O", "O", "B-FIRST_NAME", "I-FIRST_NAME", "B-LAST_NAME", "I-LAST_NAME", "O", "O", "O", "O", "O", "B-DATE", "I-DATE", "I-DATE", "O", "O", "B-STREET", "I-STREET", "I-STREET", "I-STREET", "I-STREET", "O", "B-CITY", "I-CITY", "I-CITY", "I-CITY", "O", "B-POSTAL_CODE", "I-POSTAL_CODE", "I-POSTAL_CODE", "O", "O", "B-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "O", "O", "B-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O"], "input_ids": [0, 874, 177834, 12, 18133, 22849, 16804, 19767, 6, 174081, 6, 119583, 12, 12511, 17331, 14773, 86185, 12, 6, 214797, 18340, 67512, 78373, 4, 46050, 2754, 6, 448, 4, 1381, 11835, 119861, 194921, 12, 57, 15769, 776, 1846, 110216, 981, 24056, 5, 277, 167153, 12, 997, 14773, 18504, 10057, 48590, 12231, 154782, 6, 186708, 18338, 58366, 12, 65412, 58366, 8248, 6, 16747, 15703, 6, 148055, 6, 154997, 185983, 214547, 609, 7501, 192819, 448, 5, 364, 15662, 21295, 107543, 6, 199930, 657, 226909, 122485, 132299, 54641, 5, 2], "attention_mask": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "offset_mapping": [[0, 0], [0, 1], [1, 5], [5, 6], [7, 9], [9, 11], [12, 14], [15, 18], [19, 20], [19, 24], [25, 26], [25, 29], [29, 30], [31, 34], [34, 37], [37, 39], [40, 45], [45, 46], [47, 48], [47, 50], [50, 52], [53, 56], [57, 60], [60, 61], [62, 65], [65, 67], [68, 69], [68, 70], [70, 71], [72, 74], [74, 76], [76, 79], [80, 86], [86, 87], [88, 90], [90, 93], [93, 96], [96, 99], [99, 102], [102, 103], [103, 107], [107, 108], [108, 111], [112, 117], [117, 118], [119, 120], [120, 122], [122, 124], [124, 126], [126, 129], [129, 131], [131, 134], [136, 137], [136, 141], [142, 144], [144, 148], [148, 149], [150, 152], [152, 156], [157, 159], [160, 161], [160, 162], [162, 165], [166, 167], [166, 172], [173, 174], [173, 178], [179, 186], [187, 193], [193, 194], [195, 198], [199, 204], [204, 206], [206, 207], [208, 209], [209, 211], [211, 213], [214, 218], [219, 220], [219, 225], [226, 227], [227, 232], [233, 238], [239, 244], [245, 248], [248, 249], [0, 0]], "template_type": "meeting_summary"} | |
``` | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
The dataset aims to improve privacy protection in Hebrew text processing by enabling better PII detection and masking. This has important applications in: | |
| Application Area | Description | | |
|-----------------|-------------| | |
| Regulatory Compliance | Support for GDPR and PPLA requirements | | |
| Document Processing | Privacy-preserving text analysis and storage | | |
| Information Security | Automated PII detection and protection | | |
| Data Loss Prevention | Real-time PII identification and masking | | |
### Discussion of Biases | |
1. Geographic Bias | |
- Dataset focuses on Israeli context and formats | |
2. Name Distribution | |
- While effort was made to include diverse names, distribution may not perfectly match population demographics | |
## Additional Information | |
### Dataset Curators | |
Dataset was generated by [Liran Baba](https://huggingface.co/CordwainerSmith). | |
### Model Training | |
Dataset was generated for training the [GolemPII-xlm-roberta-v1][model-link] model by Liran Baba (CordwainerSmith), model, demonstrating its effectiveness for PII detection and masking tasks in Hebrew text. | |
[model-link]: https://huggingface.co/CordwainerSmith/GolemPII-xlm-roberta-v1 | |
### Recommended Uses | |
| Use Case | Description | | |
|----------|-------------| | |
| Privacy Protection | Identifying and masking PII in Hebrew documents | | |
| Compliance Checking | Automated PII detection for regulatory compliance | | |
| Data Sanitization | Cleaning sensitive information from text data | | |
| Information Security | Supporting data loss prevention systems | | |
### Quick Start | |
```python | |
from datasets import load_dataset | |
# Load dataset | |
dataset = load_dataset("GolemGuard") | |
# Example usage | |
sample = dataset['train'][0] | |
print(f"Original text: {sample['source_text']}") | |
print(f"Masked text: {sample['masked_text']}") | |
``` | |
### Versioning | |
This is the initial release of the dataset. Future versions may include: | |
- Additional template types | |
- Expanded entity coverage | |
- Enhanced demographic representation | |
- Additional language variants | |
## License | |
The GolemGuard dataset is released under MIT License with the following additional terms: | |
``` | |
MIT License | |
Copyright (c) 2024 Liran Baba | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this dataset and associated documentation files (the "Dataset"), to deal | |
in the Dataset without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Dataset, and to permit persons to whom the Dataset is | |
furnished to do so, subject to the following conditions: | |
1. The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Dataset. | |
2. Any academic or professional work that uses this Dataset must include an | |
appropriate citation as specified below. | |
THE DATASET IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE DATASET OR THE USE OR OTHER DEALINGS IN THE | |
DATASET. | |
``` | |
### How to Cite | |
If you use this dataset in your research, project, or application, please include the following citation: | |
For informal usage (e.g., blog posts, documentation): | |
``` | |
GolemGuard Dataset by Liran Baba (https://huggingface.co/datasets/CordwainerSmith/GolemGuard) | |
``` | |
For academic or professional publications: | |
``` | |
Baba, L. (2024). GolemGuard: A Professional Hebrew PII Detection Dataset. | |
Retrieved from https://huggingface.co/datasets/CordwainerSmith/GolemGuard | |
Related model: GolemPII-xlm-roberta-v1 (https://huggingface.co/CordwainerSmith/GolemPII-xlm-roberta-v1) | |
``` | |
### Usage Examples | |
When referencing in your code: | |
```python | |
""" | |
This code uses the GolemGuard dataset by Liran Baba | |
(https://huggingface.co/datasets/CordwainerSmith/GolemGuard) | |
""" | |
from datasets import load_dataset | |
dataset = load_dataset("GolemGuard") | |
``` | |
When referencing in your model card: | |
```yaml | |
dataset_info: | |
- name: GolemGuard | |
author: Liran Baba | |
url: https://huggingface.co/datasets/CordwainerSmith/GolemGuard | |
year: 2024 | |
``` |