Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
100K - 1M
Tags:
structure-prediction
License:
import os | |
import json | |
import datasets | |
from tqdm import tqdm | |
_CITATION = """ | |
@inproceedings{ding2021few, | |
title={Few-NERD: A Few-Shot Named Entity Recognition Dataset}, | |
author={Ding, Ning and Xu, Guangwei and Chen, Yulin, and Wang, Xiaobin and Han, Xu and Xie, | |
Pengjun and Zheng, Hai-Tao and Liu, Zhiyuan}, | |
booktitle={ACL-IJCNLP}, | |
year={2021} | |
} | |
""" | |
_DESCRIPTION = """ | |
Few-NERD is a large-scale, fine-grained manually annotated named entity recognition dataset, | |
which contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities | |
and 4,601,223 tokens. Three benchmark tasks are built, one is supervised: Few-NERD (SUP) and the | |
other two are few-shot: Few-NERD (INTRA) and Few-NERD (INTER). | |
""" | |
# the original data files (zip of .txt) can be downloaded from tsinghua cloud | |
_URLs = { | |
"supervised": "https://cloud.tsinghua.edu.cn/f/09265750ae6340429827/?dl=1", | |
"intra": "https://cloud.tsinghua.edu.cn/f/a0d3efdebddd4412b07c/?dl=1", | |
"inter": "https://cloud.tsinghua.edu.cn/f/165693d5e68b43558f9b/?dl=1", | |
} | |
# the label ids, for coarse(NER_TAGS_DICT) and fine(FINE_NER_TAGS_DICT) | |
NER_TAGS_DICT = { | |
"O": 0, | |
"art": 1, | |
"building": 2, | |
"event": 3, | |
"location": 4, | |
"organization": 5, | |
"other": 6, | |
"person": 7, | |
"product": 8, | |
} | |
FINE_NER_TAGS_DICT = { | |
"O": 0, | |
"art-broadcastprogram": 1, | |
"art-film": 2, | |
"art-music": 3, | |
"art-other": 4, | |
"art-painting": 5, | |
"art-writtenart": 6, | |
"building-airport": 7, | |
"building-hospital": 8, | |
"building-hotel": 9, | |
"building-library": 10, | |
"building-other": 11, | |
"building-restaurant": 12, | |
"building-sportsfacility": 13, | |
"building-theater": 14, | |
"event-attack/battle/war/militaryconflict": 15, | |
"event-disaster": 16, | |
"event-election": 17, | |
"event-other": 18, | |
"event-protest": 19, | |
"event-sportsevent": 20, | |
"location-GPE": 21, | |
"location-bodiesofwater": 22, | |
"location-island": 23, | |
"location-mountain": 24, | |
"location-other": 25, | |
"location-park": 26, | |
"location-road/railway/highway/transit": 27, | |
"organization-company": 28, | |
"organization-education": 29, | |
"organization-government/governmentagency": 30, | |
"organization-media/newspaper": 31, | |
"organization-other": 32, | |
"organization-politicalparty": 33, | |
"organization-religion": 34, | |
"organization-showorganization": 35, | |
"organization-sportsleague": 36, | |
"organization-sportsteam": 37, | |
"other-astronomything": 38, | |
"other-award": 39, | |
"other-biologything": 40, | |
"other-chemicalthing": 41, | |
"other-currency": 42, | |
"other-disease": 43, | |
"other-educationaldegree": 44, | |
"other-god": 45, | |
"other-language": 46, | |
"other-law": 47, | |
"other-livingthing": 48, | |
"other-medical": 49, | |
"person-actor": 50, | |
"person-artist/author": 51, | |
"person-athlete": 52, | |
"person-director": 53, | |
"person-other": 54, | |
"person-politician": 55, | |
"person-scholar": 56, | |
"person-soldier": 57, | |
"product-airplane": 58, | |
"product-car": 59, | |
"product-food": 60, | |
"product-game": 61, | |
"product-other": 62, | |
"product-ship": 63, | |
"product-software": 64, | |
"product-train": 65, | |
"product-weapon": 66, | |
} | |
class FewNERDConfig(datasets.BuilderConfig): | |
"""BuilderConfig for FewNERD""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for FewNERD. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(FewNERDConfig, self).__init__(**kwargs) | |
class FewNERD(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
FewNERDConfig(name="supervised", description="Fully supervised setting."), | |
FewNERDConfig( | |
name="inter", | |
description="Few-shot setting. Each file contains all 8 coarse " | |
"types but different fine-grained types.", | |
), | |
FewNERDConfig( | |
name="intra", description="Few-shot setting. Randomly split by coarse type." | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.features.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.features.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"art", | |
"building", | |
"event", | |
"location", | |
"organization", | |
"other", | |
"person", | |
"product", | |
] | |
) | |
), | |
"fine_ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"art-broadcastprogram", | |
"art-film", | |
"art-music", | |
"art-other", | |
"art-painting", | |
"art-writtenart", | |
"building-airport", | |
"building-hospital", | |
"building-hotel", | |
"building-library", | |
"building-other", | |
"building-restaurant", | |
"building-sportsfacility", | |
"building-theater", | |
"event-attack/battle/war/militaryconflict", | |
"event-disaster", | |
"event-election", | |
"event-other", | |
"event-protest", | |
"event-sportsevent", | |
"location-GPE", | |
"location-bodiesofwater", | |
"location-island", | |
"location-mountain", | |
"location-other", | |
"location-park", | |
"location-road/railway/highway/transit", | |
"organization-company", | |
"organization-education", | |
"organization-government/governmentagency", | |
"organization-media/newspaper", | |
"organization-other", | |
"organization-politicalparty", | |
"organization-religion", | |
"organization-showorganization", | |
"organization-sportsleague", | |
"organization-sportsteam", | |
"other-astronomything", | |
"other-award", | |
"other-biologything", | |
"other-chemicalthing", | |
"other-currency", | |
"other-disease", | |
"other-educationaldegree", | |
"other-god", | |
"other-language", | |
"other-law", | |
"other-livingthing", | |
"other-medical", | |
"person-actor", | |
"person-artist/author", | |
"person-athlete", | |
"person-director", | |
"person-other", | |
"person-politician", | |
"person-scholar", | |
"person-soldier", | |
"product-airplane", | |
"product-car", | |
"product-food", | |
"product-game", | |
"product-other", | |
"product-ship", | |
"product-software", | |
"product-train", | |
"product-weapon", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://ningding97.github.io/fewnerd/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
urls_to_download[self.config.name], | |
self.config.name, | |
"train.txt", | |
) | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
urls_to_download[self.config.name], self.config.name, "dev.txt" | |
) | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
urls_to_download[self.config.name], self.config.name, "test.txt" | |
) | |
}, | |
), | |
] | |
def _generate_examples(self, filepath=None): | |
# check file type | |
assert filepath[-4:] == ".txt" | |
num_lines = sum(1 for _ in open(filepath)) | |
id = 0 | |
with open(filepath, "r") as f: | |
tokens, ner_tags, fine_ner_tags = [], [], [] | |
for line in tqdm(f, total=num_lines): | |
line = line.strip().split() | |
if line: | |
assert len(line) == 2 | |
token, fine_ner_tag = line | |
ner_tag = fine_ner_tag.split("-")[0] | |
tokens.append(token) | |
ner_tags.append(NER_TAGS_DICT[ner_tag]) | |
fine_ner_tags.append(FINE_NER_TAGS_DICT[fine_ner_tag]) | |
elif tokens: | |
# organize a record to be written into json | |
record = { | |
"tokens": tokens, | |
"id": str(id), | |
"ner_tags": ner_tags, | |
"fine_ner_tags": fine_ner_tags, | |
} | |
tokens, ner_tags, fine_ner_tags = [], [], [] | |
id += 1 | |
yield record["id"], record | |
# take the last sentence | |
if tokens: | |
record = { | |
"tokens": tokens, | |
"id": str(id), | |
"ner_tags": ner_tags, | |
"fine_ner_tags": fine_ner_tags, | |
} | |
yield record["id"], record |