input
stringlengths
2.65k
237k
output
stringclasses
1 value
import multiprocessing as mp from copy import copy import numpy as np import tkinter import pickle import os from itertools import accumulate from matplotlib import pyplot as plt, lines from casadi import Callback, nlpsol_out, nlpsol_n_out, Sparsity from ..misc.data import Data from ..misc.enums import PlotType, ControlType, InterpolationType from ..misc.mapping import Mapping from ..misc.utils import check_version class CustomPlot: def __init__( self, update_function, plot_type=PlotType.PLOT, axes_idx=None, legend=(), combine_to=None, color=None, ylim=None, bounds=None, ): """ Initializes the plot. :param update_function: Function to plot. :param plot_type: Type of plot. (PLOT = 0, INTEGRATED = 1 or STEP = 2) :param axes_idx: Index of the axis to be mapped. (integer) :param legend: Legend of the graphs. (?) :param combine_to: Plot in which to add the graph. ?? :param color: Color of the graphs. (?) """ self.function = update_function self.type = plot_type if axes_idx is None: self.phase_mappings = None # Will be set later elif isinstance(axes_idx, (tuple, list)): self.phase_mappings = Mapping(axes_idx) elif isinstance(axes_idx, Mapping): self.phase_mappings = axes_idx else: raise RuntimeError("phase_mapping must be a list or a Mapping") self.legend = legend self.combine_to = combine_to self.color = color self.ylim = ylim self.bounds = bounds class PlotOcp: def __init__(self, ocp, automatically_organize=True, adapt_graph_size_to_bounds=False): """Prepares the figure""" for i in range(1, ocp.nb_phases): if ocp.nlp[0]["nbQ"] != ocp.nlp[i]["nbQ"]: raise RuntimeError("Graphs with nbQ different at each phase is not implemented yet") self.ocp = ocp self.plot_options = { "general_options": {"use_tight_layout": False}, "non_integrated_plots": {"linestyle": "-.", "markersize": 3}, "integrated_plots": {"linestyle": "-", "markersize": 3, "linewidth": 1.1}, "bounds": {"color": "k", "linewidth": 0.4, "linestyle": "-"}, "grid": {"color": "k", "linestyle": "-", "linewidth": 0.15}, "vertical_lines": {"color": "k", "linestyle": "--", "linewidth": 1.2}, } self.ydata = [] self.ns = 0 self.t = [] self.t_integrated = [] if isinstance(self.ocp.initial_phase_time, (int, float)): self.tf = [self.ocp.initial_phase_time] else: self.tf = list(self.ocp.initial_phase_time) self.t_idx_to_optimize = [] for i, nlp in enumerate(self.ocp.nlp): if isinstance(nlp["tf"], self.ocp.CX): self.t_idx_to_optimize.append(i) self.__update_time_vector() self.axes = {} self.plots = [] self.plots_vertical_lines = [] self.plots_bounds = [] self.all_figures = [] self.automatically_organize = automatically_organize self._organize_windows(len(self.ocp.nlp[0]["var_states"]) + len(self.ocp.nlp[0]["var_controls"])) self.plot_func = {} self.variable_sizes = [] self.adapt_graph_size_to_bounds = adapt_graph_size_to_bounds self.__create_plots() horz = 0 vert = 1 if len(self.all_figures) < self.nb_vertical_windows * self.nb_horizontal_windows else 0 for i, fig in enumerate(self.all_figures): if self.automatically_organize: try: fig.canvas.manager.window.move( int(vert * self.width_step), int(self.top_margin + horz * self.height_step) ) vert += 1 if vert >= self.nb_vertical_windows: horz += 1 vert = 0 except AttributeError: pass fig.canvas.draw() if self.plot_options["general_options"]["use_tight_layout"]: fig.tight_layout() def __update_time_vector(self): """Sets x-axis array""" self.t = [] self.t_integrated = [] last_t = 0 for phase_idx, nlp in enumerate(self.ocp.nlp): nb_int_steps = nlp["nb_integration_steps"] dt_ns = self.tf[phase_idx] / nlp["ns"] time_phase_integrated = [] last_t_int = copy(last_t) for _ in range(nlp["ns"]): time_phase_integrated.append(np.linspace(last_t_int, last_t_int + dt_ns, nb_int_steps + 1)) last_t_int += dt_ns self.t_integrated.append(time_phase_integrated) self.ns += nlp["ns"] + 1 time_phase = np.linspace(last_t, last_t + self.tf[phase_idx], nlp["ns"] + 1) last_t += self.tf[phase_idx] self.t.append(time_phase) def __create_plots(self): """Actually plots""" variable_sizes = [] for i, nlp in enumerate(self.ocp.nlp): variable_sizes.append({}) if "plot" in nlp: for key in nlp["plot"]: if isinstance(nlp["plot"][key], tuple): nlp["plot"][key] = nlp["plot"][key][0] if nlp["plot"][key].phase_mappings is None: size = ( nlp["plot"][key] .function(np.zeros((nlp["nx"], 1)), np.zeros((nlp["nu"], 1)), np.zeros((nlp["np"], 1))) .shape[0] ) nlp["plot"][key].phase_mappings = Mapping(range(size)) else: size = len(nlp["plot"][key].phase_mappings.map_idx) if key not in variable_sizes[i]: variable_sizes[i][key] = size else: variable_sizes[i][key] = max(variable_sizes[i][key], size) self.variable_sizes = variable_sizes if not variable_sizes: # No graph was setup in problem_type return self.plot_func = {} for i, nlp in enumerate(self.ocp.nlp): for variable in self.variable_sizes[i]: nb = max(nlp["plot"][variable].phase_mappings.map_idx) + 1 nb_cols, nb_rows = PlotOcp._generate_windows_size(nb) if nlp["plot"][variable].combine_to: self.axes[variable] = self.axes[nlp["plot"][variable].combine_to] axes = self.axes[variable][1] elif i > 0 and variable in self.axes: axes = self.axes[variable][1] else: axes = self.__add_new_axis(variable, nb, nb_rows, nb_cols) self.axes[variable] = [nlp["plot"][variable], axes] t = self.t[i] if variable not in self.plot_func: self.plot_func[variable] = [None] * self.ocp.nb_phases self.plot_func[variable][i] = nlp["plot"][variable] mapping = self.plot_func[variable][i].phase_mappings.map_idx for ctr, k in enumerate(mapping): ax = axes[k] if k < len(self.plot_func[variable][i].legend): axes[k].set_title(self.plot_func[variable][i].legend[k]) ax.grid(**self.plot_options["grid"]) ax.set_xlim(0, self.t[-1][-1]) if nlp["plot"][variable].ylim: ax.set_ylim(nlp["plot"][variable].ylim) elif self.adapt_graph_size_to_bounds and nlp["plot"][variable].bounds: if nlp["plot"][variable].bounds.type != InterpolationType.CUSTOM: y_min = nlp["plot"][variable].bounds.min[ctr].min() y_max = nlp["plot"][variable].bounds.max[ctr].max() else: nlp["plot"][variable].bounds.check_and_adjust_dimensions(len(mapping), nlp["ns"]) y_min = min([nlp["plot"][variable].bounds.min.evaluate_at(j)[k] for j in range(nlp["ns"])]) y_max = max([nlp["plot"][variable].bounds.max.evaluate_at(j)[k] for j in range(nlp["ns"])]) y_range, _ = self.__compute_ylim(y_min, y_max, 1.25) ax.set_ylim(y_range) zero = np.zeros((t.shape[0], 1)) plot_type = self.plot_func[variable][i].type if plot_type == PlotType.PLOT: color = self.plot_func[variable][i].color if self.plot_func[variable][i].color else "tab:green" self.plots.append( [plot_type, i, ax.plot(t, zero, color=color, zorder=0, **self.plot_options["non_integrated_plots"])[0]] ) elif plot_type == PlotType.INTEGRATED: color = self.plot_func[variable][i].color if self.plot_func[variable][i].color else "tab:brown" plots_integrated = [] nb_int_steps = nlp["nb_integration_steps"] for cmp in range(nlp["ns"]): plots_integrated.append( ax.plot( self.t_integrated[i][cmp], np.zeros(nb_int_steps + 1), color=color, **self.plot_options["integrated_plots"], )[0] ) self.plots.append([plot_type, i, plots_integrated]) elif plot_type == PlotType.STEP: color = self.plot_func[variable][i].color if self.plot_func[variable][i].color else "tab:orange" self.plots.append([plot_type, i, ax.step(t, zero, where="post", color=color, zorder=0)[0]]) else: raise RuntimeError(f"{plot_type} is not implemented yet") for j, ax in enumerate(axes): intersections_time = self.find_phases_intersections() for time in intersections_time: self.plots_vertical_lines.append(ax.axvline(time, **self.plot_options["vertical_lines"])) if self.axes[variable][0].bounds: if self.axes[variable][0].bounds.type == InterpolationType.EACH_FRAME: ns = self.axes[variable][0].bounds.min.shape[1] - 1 else: ns = nlp["ns"] self.axes[variable][0].bounds.check_and_adjust_dimensions( nb_elements=len(mapping), nb_shooting=ns ) bounds_min = np.array( [self.axes[variable][0].bounds.min.evaluate_at(k)[j] for k in range(ns + 1)] ) bounds_max = np.array( [self.axes[variable][0].bounds.max.evaluate_at(k)[j] for k in range(ns + 1)] ) if bounds_min.shape[0] == nlp["ns"]: bounds_min = np.concatenate((bounds_min, [bounds_min[-1]])) bounds_max = np.concatenate((bounds_max, [bounds_max[-1]])) self.plots_bounds.append( [ax.step(self.t[i], bounds_min, where='post', **self.plot_options["bounds"]), i] ) self.plots_bounds.append( [ax.step(self.t[i], bounds_max, where='post', **self.plot_options["bounds"]), i] ) def __add_new_axis(self, variable, nb, nb_rows, nb_cols): """ Sets the axis of the plots. :param variable: Variable to plot (integer) :param nb: Number of the figure. ?? (integer) :param nb_rows: Number of rows of plots in subplots. (integer) :param nb_cols: Number of columns of plots in subplots. (integer) :return: axes: Axes of the plots. (instance of subplot class) """ if self.automatically_organize: self.all_figures.append(plt.figure(variable, figsize=(self.width_step / 100, self.height_step / 131))) else: self.all_figures.append(plt.figure(variable)) axes = self.all_figures[-1].subplots(nb_rows, nb_cols) if isinstance(axes, np.ndarray): axes = axes.flatten() else: axes = [axes] for i in range(nb, len(axes)): axes[i].remove() axes = axes[:nb] idx_center = nb_rows * nb_cols - int(nb_cols / 2) - 1 if idx_center >= len(axes): idx_center = len(axes) - 1 axes[idx_center].set_xlabel("time (s)") self.all_figures[-1].tight_layout() return axes def _organize_windows(self, nb_windows): """ Organizes esthetically the figure. :param nb_windows: Number of variables to plot. (integer) """ self.nb_vertical_windows, self.nb_horizontal_windows = PlotOcp._generate_windows_size(nb_windows) if self.automatically_organize: height = tkinter.Tk().winfo_screenheight() width = tkinter.Tk().winfo_screenwidth() self.top_margin = height / 15 self.height_step = (height - self.top_margin) / self.nb_horizontal_windows self.width_step = width / self.nb_vertical_windows else: self.top_margin = None self.height_step = None self.width_step = None def find_phases_intersections(self): """Finds the intersection between phases""" return list(accumulate(self.tf))[:-1] @staticmethod def show(): plt.show() def update_data(self, V): """Update of the variable V to plot (dependent axis)""" self.ydata = [] data_states, data_controls, data_param = Data.get_data( self.ocp, V, get_parameters=True, integrate=True, concatenate=False ) data_param_in_dyn = np.array([data_param[key] for key in data_param if key != "time"]).squeeze() for _ in self.ocp.nlp: if self.t_idx_to_optimize: for i_in_time, i_in_tf in enumerate(self.t_idx_to_optimize): self.tf[i_in_tf] = data_param["time"][i_in_time] self.__update_xdata() data_states_per_phase, data_controls_per_phase = Data.get_data(self.ocp, V, integrate=True, concatenate=False) for i, nlp in enumerate(self.ocp.nlp): step_size = nlp["nb_integration_steps"] + 1 nb_elements = nlp["ns"] * step_size + 1 state = np.ndarray((0, nb_elements)) for s in nlp["var_states"]: if isinstance(data_states_per_phase[s], (list, tuple)): state = np.concatenate((state, data_states_per_phase[s][i])) else: state = np.concatenate((state, data_states_per_phase[s])) control = np.ndarray((0, nlp["ns"] + 1)) for s in nlp["var_controls"]: if isinstance(data_controls_per_phase[s], (list, tuple)): control = np.concatenate((control, data_controls_per_phase[s][i])) else: control = np.concatenate((control, data_controls_per_phase[s])) if nlp["control_type"] == ControlType.CONSTANT: u_mod = 1 elif nlp["control_type"] == ControlType.LINEAR_CONTINUOUS: u_mod = 2 else: raise NotImplementedError(f"Plotting {nlp['control_type']} is not implemented yet") for key in self.variable_sizes[i]: if self.plot_func[key][i].type == PlotType.INTEGRATED: all_y = [] for idx, t in enumerate(self.t_integrated[i]): y_tp = np.empty((self.variable_sizes[i][key], len(t))) y_tp.fill(np.nan) y_tp[:, :] = self.plot_func[key][i].function( state[:, step_size * idx : step_size * (idx + 1)], control[:, idx : idx + u_mod], data_param_in_dyn, ) all_y.append(y_tp) for idx in range(len(self.plot_func[key][i].phase_mappings.map_idx)): y_tp = [] for y in all_y: y_tp.append(y[idx, :]) self.__append_to_ydata([y_tp]) else: y = np.empty((self.variable_sizes[i][key], len(self.t[i]))) y.fill(np.nan) y[:, :] = self.plot_func[key][i].function(state[:, ::step_size], control, data_param_in_dyn) self.__append_to_ydata(y) self.__update_axes() def __update_xdata(self): """Update of the time in plots (independent axis)""" self.__update_time_vector() for plot in self.plots: phase_idx = plot[1] if plot[0] == PlotType.INTEGRATED: for cmp, p in enumerate(plot[2]): p.set_xdata(self.t_integrated[phase_idx][cmp]) ax = plot[2][-1].axes else: plot[2].set_xdata(self.t[phase_idx]) ax = plot[2].axes ax.set_xlim(0, self.t[-1][-1]) if self.plots_bounds: for plot_bounds in self.plots_bounds: plot_bounds[0][0].set_xdata(self.t[plot_bounds[1]]) ax = plot_bounds[0][0].axes ax.set_xlim(0, self.t[-1][-1]) intersections_time = self.find_phases_intersections() n = len(intersections_time) if n > 0: for p in range(int(len(self.plots_vertical_lines) / n)): for i, time in enumerate(intersections_time): self.plots_vertical_lines[p * n + i].set_xdata([time, time]) def __append_to_ydata(self, data):
import asyncio import glob import gzip import hashlib import importlib.util import logging import os import re import signal import socket import ssl import sys import threading from email.utils import formatdate from http.cookies import SimpleCookie from logging.handlers import RotatingFileHandler from traceback import format_exc, print_exc from urllib.parse import urlparse, parse_qs import requests import yaml class CIDict(dict): def __init__(self, *args, **kwargs): if 'query' in kwargs: del kwargs['query'] if len(args) and type(args[0]) == dict: for key, value in args[0].items(): if len(key) > 2 and key[-2:] != '[]' and len(value) == 1: args[0][key] = value[0] super().__init__(*args, **kwargs) def __contains__(self, key): for k in self.keys(): if key.lower() == k.lower(): return True return False def __getitem__(self, key): for k, v in self.items(): if key.lower() == k.lower(): return v raise KeyError(key) def get(self, key, default=None): try: return self.__getitem__(key) except KeyError: return default class MiniFormatter(logging.Formatter): def __init__(self): super().__init__(fmt='[%(asctime)s] %(levelname)s: %(message)s%(peer)s', datefmt='%m-%d-%Y %I:%M:%S %p') def format(self, record): if not hasattr(record, 'peer'): record.peer = '' else: record.peer = ' [' + record.peer + ']' return super().format(record) class MiniFilter(logging.Handler): def __init__(self, min, max=None): super().__init__() self.min = min or logging.NOTSET self.max = max or logging.FATAL def filter(self, record): return self.min <= record.levelno <= self.max def emit(self, record): super().emit(record) __version__ = '0.2.0a1' log = logging.getLogger('minipyp') log.setLevel(logging.INFO) stream = logging.StreamHandler() stream.setFormatter(MiniFormatter()) log.addHandler(stream) def _default(obj: dict, key, default): if key not in obj: obj[key] = default def _except(error: str, extra: dict=None, fatal: bool=False): log.fatal(error, extra=extra) if fatal else log.error(error, extra=extra) raise Exception(error) def _translate(item, keep_keys: list, keep_values: list, parent: str=None): def fix(string: str): return string.lower().replace(' ', '_').replace('\'', '') if type(item) == dict: new = {} for key, value in item.items(): new_key = _translate(key, keep_keys, keep_values) if parent not in keep_keys: key = new_key if new_key not in keep_values: value = _translate(value, keep_keys, keep_values, parent=new_key) new[key] = value item = new elif type(item) in [list, tuple]: for i in range(len(item)): item[i] = _translate(item[i], keep_keys, keep_values) elif type(item) == str: item = fix(item) return item def _capitalize(string: str, reset: bool=False): if reset: string = string.lower() new = '' for i in range(len(string)): if i == 0: new += string[i].upper() elif string[i - 1] == '-': new += string[i].upper() return string class Handler: def handle(self, minipyp, request): _except('Handler for file ' + request.file + ' has no handle() method') class PyHandler(Handler): def handle(self, minipyp, request): cwd = os.getcwd() modules = sys.modules path = sys.path cwd_temp = os.path.dirname(request.file) os.chdir(cwd_temp) if cwd_temp not in sys.path: sys.path.append(cwd_temp) spec = importlib.util.spec_from_file_location('page', request.file) mod = importlib.util.module_from_spec(spec) spec.loader.exec_module(mod) result = mod.render(minipyp, request) os.chdir(cwd) sys.modules = modules sys.path = path if result is None: return b'' elif type(result) != bytes: charset = 'latin_1' if 'Content-Type' in request._response_headers: if 'charset=' in request._response_headers['Content-Type']: charset = request._response_headers['Content-Type'].split('charset=')[1] try: return str(result).encode(charset.replace('-', '_')) # will this cover all encodings? except UnicodeEncodeError: _except('Non-' + charset + ' value returned by handler, Content-Type does not contain correct encoding') return result class Request: """Information about the client's request.""" def __init__(self, minipyp, server, bare=None, full=None): self._status = None self._response_headers = {} self._response_cookies = [] self.bare = bool(bare) if full: # Full Request object proto = full[0].split() if len(proto) != 3: _except('Failed to parse initial request line', server.extra) self.method = proto[0] #: HTTP method (e.g. POST) self.protocol = proto[2] #: HTTP protocol version (e.g. HTTP/1.1) if self.protocol not in ['HTTP/1.0', 'HTTP/1.1']: _except('Invalid protocol `' + self.protocol + '`', server.extra) self.headers = CIDict() #: Request headers self.cookies = CIDict() try: for line in full[1:]: if line == '': break key, value = line.split(': ', 1) self.headers[key] = value if key.lower() == 'cookie': cookies = SimpleCookie() cookies.load(value) for key, morsel in cookies.items(): self.cookies[key] = morsel.value except: _except('Headers seem to be malformed', server.extra) uri = urlparse(proto[1]) self.scheme = uri.scheme or 'http' #: Transfer scheme (e.g. https) try: self.host = uri.netloc or self.headers['Host'] #: Hostname requested (e.g. localhost) except: _except('No host was provided in headers or request line', server.extra) self.path = uri.path #: Path requested (e.g. /path/to/file.txt) self.uri = uri.path + (('?' + uri.query) if len(uri.query) else '') #: Path requested, including query self.query_string = uri.query #: Querystring (e.g. A=1&B=2) self.query = CIDict(parse_qs(uri.query, True), query=True) #: Parsed querystring (i.e. GET params) if '' in full: self.body = '\n'.join(full[full.index('') + 1:]) #: Request body self.post = CIDict(parse_qs(self.body, True), query=True) #: Parsed request body (i.e. POST params) self.site = minipyp.get_site(self.host) #: Effective site config self.root = self.site['root'] if self.site else minipyp._config['root'] #: Document root self.file = os.path.join(self.root, *self.path.split('/')) #: File requested elif bare: # Barebones Request object (for error handling) self.protocol = 'HTTP/1.0' self.host = None self.file = None if len(bare): args = bare[0].split() if len(args) == 3: try: uri = urlparse(args[1]) if uri.netloc: self.host = uri.netloc self.path = uri.path else: self.path = uri.path except ValueError: pass if args[2] in ['HTTP/1.0', 'HTTP/1.1', 'HTTP/2.0']: self.protocol = args[2] self.headers = {} for line in bare[1:]: if line == '': break if ': ' in line: key, value = line.split(': ', 1) self.headers[_capitalize(key)] = value if not self.host and 'Host' in self.headers: self.host = self.headers['Host'] if self.host: self.site = minipyp.get_site(self.host) self.root = self.site['root'] if self.site else minipyp._config['root'] if self.path: self.file = os.path.join(self.root, *self.path.split('/')) def set_header(self, name: str, value: str): """ Set a header in the response, capitalized Like-This. :param name: header name, e.g. "X-My-Header" :param value: header value, e.g. "My Value" """ self._response_headers[_capitalize(name)] = value def set_status(self, status: str): """ Set the response status. :param status: full status string (e.g. "404 Not Found" """ self._status = status def set_cookie(self, name: str, value, **options): """ Set a cookie. :param name: the name of the cookie :param value: the cookie's value :param options: additional options, e.g. expires='Jan 1...', path='/' """ flags = '' for k, v in options.items(): flags += '; ' + k + '=' + v self._response_cookies.append(name + '=' + value + flags) def delete_cookie(self, name: str, **options): """ Delete a cookie. Supply the same domain, path, etc. used when creating the cookie. :param name: the name of the cookie :param options: the cookie's options """ if 'expires' in options: raise Exception('the expires option should not be supplied when deleting a cookie') self.set_cookie(name, '', expires='Sat, 17 Mar 2001 6:00:00 GMT', **options) class Server(asyncio.Protocol): def __init__(self, minipyp): self.minipyp = minipyp self._loop = asyncio.get_event_loop() self._transport = None self._keepalive = None self._timeout = minipyp._config['timeout'] self._timing = None self.peer = None self.extra = { 'peer': 'unknown peer' } def connection_made(self, transport): self.peer = transport.get_extra_info('peername') if type(self.peer) in (list, tuple): self.extra['peer'] = self.peer[0] + ':' + str(self.peer[1]) self._transport = transport self._keepalive = True if self._timeout: self._timing = self._loop.call_later(self._timeout, self.on_timeout) log.debug('Connected', extra=self.extra) def connection_lost(self, e): if e: log.warning('Connection lost: ' + str(e), extra=self.extra) def data_received(self, data): lines = data.decode('utf-8').split('\r\n') if len(lines): try: request = Request(self.minipyp, self, full=lines) log.info(request.method + ' ' + request.path, extra=self.extra) request.site = self.minipyp.get_site(request.host) path_opts = self.minipyp.get_path(request.path, request.site) proxy = None if path_opts['proxy']: proxy_p = urlparse(path_opts['proxy']) proxy = proxy_p.scheme + '://' + proxy_p.netloc request.uri = proxy_p.path + request.uri if proxy: log.info('Forwarding client to: ' + proxy + request.uri, extra=self.extra) if 'X-Forwarded-Host' not in request.headers: request.headers['X-Forwarded-Host'] = request.host try: r = requests.request(request.method, proxy + request.uri, stream=True, headers=request.headers, data=request.body) request.set_status(str(r.status_code) + ' ' + r.reason) request._response_headers = r.headers if r.headers.get('Transfer-Encoding', '') == 'chunked': i = 0 for chunk in r.iter_content(chunk_size=None): chunk = hex(len(chunk))[2:].encode('latin_1') + b'\r\n' + chunk + b'\r\n' if i == 0: self._respond(request, chunk) else: self._write(chunk) i += 1 self._write(b'0\r\n\r\n') else: self._respond(request, r.content) r.close() except: print_exc() self._give_error(request, 502, traceback=format_exc()) else: request.root = request.site['root'] if request.site else self.minipyp._config['root'] if request.protocol == 'HTTP/1.1': self._keepalive = request.headers.get('Connection', 'close') != 'close' else: self._keepalive = request.headers.get('Connection', '') == 'Keep-Alive' match = re.match(r'timeout=(\d+)', request.headers.get('Keep-Alive', '')) if match: timeout = int(match.group(1)) if timeout < self._timeout: self._timeout = timeout path = list(filter(None, request.path.split('?')[0].split('/'))) path = [''] + path file = None full_ospath = os.path.join(request.root, *path) options = self.minipyp.get_directory(full_ospath) for key, value in options['headers'].items(): request.set_header(key, value) if options['public']: for i in range(len(path)): ospath = full_ospath if i == 0 else os.path.join(request.root, *path) viewing_dir = i == 0 and os.path.isdir(ospath) if viewing_dir: matches = glob.glob(os.path.join(ospath, 'index.*')) if len(matches): file = matches[0] break if os.path.isfile(ospath): file = ospath break if not os.path.isdir(ospath): matches = glob.glob(ospath +
# Written by Dr <NAME>, Marda Science LLC # for the USGS Coastal Change Hazards Program # # MIT License # # Copyright (c) 2021, Marda Science LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE zSOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import tensorflow as tf import tensorflow.keras.backend as K # keras functions for early stopping and model weights saving from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint SEED = 42 np.random.seed(SEED) AUTO = tf.data.experimental.AUTOTUNE # used in tf.data.Dataset API tf.random.set_seed(SEED) print("Version: ", tf.__version__) print("Eager mode: ", tf.executing_eagerly()) ############################################################### ### MODEL ARCHITECTURES ############################################################### # ----------------------------------- def simple_resunet( input_shape, kernel=(2, 2), num_classes=1, activation="relu", use_batch_norm=True, dropout=0.1, dropout_change_per_layer=0.0, dropout_type="standard", use_dropout_on_upsampling=False, filters=8, num_layers=4, strides=(1, 1), ): """ Customisable UNet architecture (Ronneberger et al. 2015 https://arxiv.org/abs/1505.04597) input_shape: shape (x, y, num_channels) num_classes (int): 1 for binary segmentation activation (str): A keras.activations.Activation to use. ReLu by default. use_batch_norm (bool): Whether to use Batch Normalisation across the channel axis between convolutions dropout (float , 0. and 1.): dropout after the first convolutional block. 0. = no dropout dropout_change_per_layer (float , 0. and 1.): Factor to add to the Dropout after each convolutional block dropout_type (one of "spatial" or "standard"): Spatial is recommended by https://arxiv.org/pdf/1411.4280.pdf use_dropout_on_upsampling (bool): Whether to use dropout in the decoder part of the network filters (int): Convolutional filters in the initial convolutional block. Will be doubled every block num_layers (int): Number of total layers in the encoder not including the bottleneck layer """ # Build U-Net model inputs = tf.keras.layers.Input(input_shape) x = inputs # x = bottleneck_block(inputs, filters) down_layers = [] for l in range(num_layers): x = res_conv2d_block( inputs=x, filters=filters, use_batch_norm=use_batch_norm, dropout=dropout, dropout_type=dropout_type, activation=activation, strides=strides, # (1,1), ) down_layers.append(x) x = tf.keras.layers.MaxPooling2D(kernel)(x) dropout += dropout_change_per_layer filters = filters * 2 # double the number of filters with each layer x = conv2d_block( inputs=x, filters=filters, use_batch_norm=use_batch_norm, dropout=dropout, dropout_type=dropout_type, activation=activation, strides=strides, # (1,1), ) if not use_dropout_on_upsampling: dropout = 0.0 dropout_change_per_layer = 0.0 for conv in reversed(down_layers): filters //= 2 # decreasing number of filters with each layer dropout -= dropout_change_per_layer # x = upsample(filters, kernel, strides=(2,2), padding="same")(x)#(2, 2) x = tf.keras.layers.UpSampling2D(kernel)(x) x = tf.keras.layers.concatenate([x, conv]) x = res_conv2d_block( inputs=x, filters=filters, use_batch_norm=use_batch_norm, dropout=dropout, dropout_type=dropout_type, activation=activation, strides=strides, ) # (1,1)) # outputs = tf.keras.layers.Conv2D(num_classes, (1, 1), activation=output_activation)(x) # ## classify if num_classes == 1: outputs = tf.keras.layers.Conv2D( num_classes, (1, 1), padding="same", activation="sigmoid" )( x ) # else: outputs = tf.keras.layers.Conv2D( num_classes, (1, 1), padding="same", activation="softmax" )( x ) # (1, 1) model = tf.keras.models.Model(inputs=[inputs], outputs=[outputs]) return model # ----------------------------------- def simple_unet( input_shape, kernel=(2, 2), num_classes=1, activation="relu", use_batch_norm=True, dropout=0.1, dropout_change_per_layer=0.0, dropout_type="standard", use_dropout_on_upsampling=False, filters=8, num_layers=4, strides=(1, 1), ): """ Customisable UNet architecture (Ronneberger et al. 2015 https://arxiv.org/abs/1505.04597) input_shape: shape (x, y, num_channels) num_classes (int): 1 for binary segmentation activation (str): A keras.activations.Activation to use. ReLu by default. use_batch_norm (bool): Whether to use Batch Normalisation across the channel axis between convolutions dropout (float , 0. and 1.): dropout after the first convolutional block. 0. = no dropout dropout_change_per_layer (float , 0. and 1.): Factor to add to the Dropout after each convolutional block dropout_type (one of "spatial" or "standard"): Spatial is recommended by https://arxiv.org/pdf/1411.4280.pdf use_dropout_on_upsampling (bool): Whether to use dropout in the decoder part of the network filters (int): Convolutional filters in the initial convolutional block. Will be doubled every block num_layers (int): Number of total layers in the encoder not including the bottleneck layer """ # Build U-Net model inputs = tf.keras.layers.Input(input_shape) x = inputs down_layers = [] for l in range(num_layers): x = conv2d_block( inputs=x, filters=filters, use_batch_norm=use_batch_norm, dropout=dropout, dropout_type=dropout_type, activation=activation, strides=strides, # (1,1), ) down_layers.append(x) # if use_pooling: x = tf.keras.layers.MaxPooling2D(kernel)(x) dropout += dropout_change_per_layer filters = filters * 2 # double the number of filters with each layer x = conv2d_block( inputs=x, filters=filters, use_batch_norm=use_batch_norm, dropout=dropout, dropout_type=dropout_type, activation=activation, strides=strides, # (1,1), ) if not use_dropout_on_upsampling: dropout = 0.0 dropout_change_per_layer = 0.0 for conv in reversed(down_layers): filters //= 2 # decreasing number of filters with each layer dropout -= dropout_change_per_layer # x = upsample(filters, kernel, strides=(2,2), padding="same")(x)#(2, 2) x = tf.keras.layers.UpSampling2D(kernel)(x) x = tf.keras.layers.concatenate([x, conv]) x = conv2d_block( inputs=x, filters=filters, use_batch_norm=use_batch_norm, dropout=dropout, dropout_type=dropout_type, activation=activation, ) # outputs = tf.keras.layers.Conv2D(num_classes, (1, 1), activation=output_activation)(x) # ## classify if num_classes == 1: outputs = tf.keras.layers.Conv2D( num_classes, (1, 1), padding="same", activation="sigmoid" )(x) else: outputs = tf.keras.layers.Conv2D( num_classes, (1, 1), padding="same", activation="softmax" )(x) model = tf.keras.models.Model(inputs=[inputs], outputs=[outputs]) return model ##======================================================================== # ----------------------------------- def simple_satunet( input_shape, kernel=(2, 2), num_classes=1, activation="relu", use_batch_norm=True, dropout=0.1, dropout_change_per_layer=0.0, dropout_type="standard", use_dropout_on_upsampling=False, filters=8, num_layers=4, strides=(1, 1), ): """ Customisable UNet architecture (Ronneberger et al. 2015 https://arxiv.org/abs/1505.04597) input_shape: shape (x, y, num_channels) num_classes (int): 1 for binary segmentation activation (str): A keras.activations.Activation to use. ReLu by default. use_batch_norm (bool): Whether to use Batch Normalisation across the channel axis between convolutions dropout (float , 0. and 1.): dropout after the first convolutional block. 0. = no dropout dropout_change_per_layer (float , 0. and 1.): Factor to add to the Dropout after each convolutional block dropout_type (one of "spatial" or "standard"): Spatial is recommended by https://arxiv.org/pdf/1411.4280.pdf use_dropout_on_upsampling (bool): Whether to use dropout in the decoder part of the network filters (int): Convolutional filters in the initial convolutional block. Will be doubled every block num_layers (int): Number of total layers in the encoder not including the bottleneck layer """ upconv_filters = int(1.5 * filters) # Build U-Net model inputs = tf.keras.layers.Input(input_shape) x = inputs down_layers = [] for l in range(num_layers): x = conv2d_block( inputs=x, filters=filters, use_batch_norm=use_batch_norm, dropout=dropout, dropout_type=dropout_type, activation=activation, strides=strides, # (1,1), ) down_layers.append(x) x = tf.keras.layers.MaxPooling2D(kernel)(x) dropout += dropout_change_per_layer # filters = filters * 2 # double the number of filters with each layer x = conv2d_block( inputs=x, filters=filters, use_batch_norm=use_batch_norm, dropout=dropout, dropout_type=dropout_type, activation=activation, strides=strides, # (1,1), ) if not use_dropout_on_upsampling: dropout = 0.0 dropout_change_per_layer = 0.0 for conv in reversed(down_layers): filters //= 2 # decreasing number of filters with each layer dropout -= dropout_change_per_layer # x = upsample(filters, kernel, strides=(2,2), padding="same")(x)#(2, 2) x = tf.keras.layers.UpSampling2D(kernel)(x) x = tf.keras.layers.concatenate([x, conv]) x = conv2d_block( inputs=x, filters=upconv_filters, use_batch_norm=use_batch_norm, dropout=dropout, dropout_type=dropout_type, activation=activation, ) # outputs = tf.keras.layers.Conv2D(num_classes, (1, 1), activation=output_activation)(x) # ## classify if num_classes == 1: outputs = tf.keras.layers.Conv2D( num_classes, (1, 1), padding="same", activation="sigmoid" )(x) else: outputs = tf.keras.layers.Conv2D( num_classes, (1, 1), padding="same", activation="softmax" )(x) model = tf.keras.models.Model(inputs=[inputs], outputs=[outputs]) return model ##======================================================================== # ----------------------------------- def custom_resunet( sz, f, nclasses=1, kernel_size=(7, 7), strides=2, dropout=0.1, dropout_change_per_layer=0.0, dropout_type="standard", use_dropout_on_upsampling=False, ): """ res_unet(sz, f, nclasses=1) This function creates a custom residual U-Net model for image segmentation INPUTS: * `sz`: [tuple] size of input image * `f`: [int] number of filters in the convolutional block * flag: [string] if 'binary', the model will expect 2D masks and uses sigmoid. If 'multiclass', the model will expect 3D masks and uses softmax * nclasses [int]: number of classes dropout (float , 0. and 1.): dropout after the first convolutional block. 0. = no dropout dropout_change_per_layer (float , 0. and 1.): Factor to add to the Dropout after each convolutional block dropout_type (one of "spatial" or "standard"): Spatial is recommended by https://arxiv.org/pdf/1411.4280.pdf use_dropout_on_upsampling (bool): Whether to use dropout in the decoder part of the network filters (int): Convolutional filters in the
MOBILE_PREFIX = [ {'prefix': '1', 'en': 'USA', 'cn': '美国'}, {'prefix': '1', 'en': 'PuertoRico', 'cn': '波多黎各'}, {'prefix': '1', 'en': 'Canada', 'cn': '加拿大'}, {'prefix': '7', 'en': 'Russia', 'cn': '俄罗斯'}, {'prefix': '7', 'en': 'Kazeakhstan', 'cn': '哈萨克斯坦'}, {'prefix': '20', 'en': 'Egypt', 'cn': '埃及'}, {'prefix': '27', 'en': 'South Africa', 'cn': '南非'}, {'prefix': '30', 'en': 'Greece', 'cn': '希腊'}, {'prefix': '31', 'en': 'Netherlands', 'cn': '荷兰'}, {'prefix': '32', 'en': 'Belgium', 'cn': '比利时'}, {'prefix': '33', 'en': 'France', 'cn': '法国'}, {'prefix': '34', 'en': 'Spain', 'cn': '西班牙'}, {'prefix': '36', 'en': 'Hungary', 'cn': '匈牙利'}, {'prefix': '40', 'en': 'Romania', 'cn': '罗马尼亚'}, {'prefix': '41', 'en': 'Switzerland', 'cn': '瑞士'}, {'prefix': '43', 'en': 'Austria', 'cn': '奥地利'}, {'prefix': '44', 'en': 'United Kingdom', 'cn': '英国'}, {'prefix': '44', 'en': 'Jersey', 'cn': '泽西岛'}, {'prefix': '44', 'en': 'Isle of Man', 'cn': '马恩岛'}, {'prefix': '44', 'en': 'Guernsey', 'cn': '根西'}, {'prefix': '45', 'en': 'Denmark', 'cn': '丹麦'}, {'prefix': '46', 'en': 'Sweden', 'cn': '瑞典'}, {'prefix': '47', 'en': 'Norway', 'cn': '挪威'}, {'prefix': '48', 'en': 'Poland', 'cn': '波兰'}, {'prefix': '51', 'en': 'Peru', 'cn': '秘鲁'}, {'prefix': '52', 'en': 'Mexico', 'cn': '墨西哥'}, {'prefix': '53', 'en': 'Cuba', 'cn': '古巴'}, {'prefix': '54', 'en': 'Argentina', 'cn': '阿根廷'}, {'prefix': '55', 'en': 'Brazill', 'cn': '巴西'}, {'prefix': '56', 'en': 'Chile', 'cn': '智利'}, {'prefix': '57', 'en': 'Colombia', 'cn': '哥伦比亚'}, {'prefix': '58', 'en': 'Venezuela', 'cn': '委内瑞拉'}, {'prefix': '60', 'en': 'Malaysia', 'cn': '马来西亚'}, {'prefix': '61', 'en': 'Australia', 'cn': '澳大利亚'}, {'prefix': '62', 'en': 'Indonesia', 'cn': '印度尼西亚'}, {'prefix': '63', 'en': 'Philippines', 'cn': '菲律宾'}, {'prefix': '64', 'en': 'NewZealand', 'cn': '新西兰'}, {'prefix': '65', 'en': 'Singapore', 'cn': '新加坡'}, {'prefix': '66', 'en': 'Thailand', 'cn': '泰国'}, {'prefix': '81', 'en': 'Japan', 'cn': '日本'}, {'prefix': '82', 'en': 'Korea', 'cn': '韩国'}, {'prefix': '84', 'en': 'Vietnam', 'cn': '越南'}, {'prefix': '86', 'en': 'China', 'cn': '中国'}, {'prefix': '90', 'en': 'Turkey', 'cn': '土耳其'}, {'prefix': '91', 'en': 'Indea', 'cn': '印度'}, {'prefix': '92', 'en': 'Pakistan', 'cn': '巴基斯坦'}, {'prefix': '93', 'en': 'Italy', 'cn': '意大利'}, {'prefix': '93', 'en': 'Afghanistan', 'cn': '阿富汗'}, {'prefix': '94', 'en': 'SriLanka', 'cn': '斯里兰卡'}, {'prefix': '94', 'en': 'Germany', 'cn': '德国'}, {'prefix': '95', 'en': 'Myanmar', 'cn': '缅甸'}, {'prefix': '98', 'en': 'Iran', 'cn': '伊朗'}, {'prefix': '212', 'en': 'Morocco', 'cn': '摩洛哥'}, {'prefix': '213', 'en': 'Algera', 'cn': '阿尔格拉'}, {'prefix': '216', 'en': 'Tunisia', 'cn': '突尼斯'}, {'prefix': '218', 'en': 'Libya', 'cn': '利比亚'}, {'prefix': '220', 'en': 'Gambia', 'cn': '冈比亚'}, {'prefix': '221', 'en': 'Senegal', 'cn': '塞内加尔'}, {'prefix': '222', 'en': 'Mauritania', 'cn': '毛里塔尼亚'}, {'prefix': '223', 'en': 'Mali', 'cn': '马里'}, {'prefix': '224', 'en': 'Guinea', 'cn': '几内亚'}, {'prefix': '225', 'en': 'Cote divoire', 'cn': '科特迪沃'}, {'prefix': '226', 'en': 'Burkina Faso', 'cn': '布基纳法索'}, {'prefix': '227', 'en': 'Niger', 'cn': '尼日尔'}, {'prefix': '228', 'en': 'Togo', 'cn': '多哥'}, {'prefix': '229', 'en': 'Benin', 'cn': '贝宁'}, {'prefix': '230', 'en': 'Mauritius', 'cn': '毛里求斯'}, {'prefix': '231', 'en': 'Liberia', 'cn': '利比里亚'}, {'prefix': '232', 'en': 'Sierra Leone', 'cn': '塞拉利昂'}, {'prefix': '233', 'en': 'Ghana', 'cn': '加纳'}, {'prefix': '234', 'en': 'Nigeria', 'cn': '尼日利亚'}, {'prefix': '235', 'en': 'Chad', 'cn': '乍得'}, {'prefix': '236', 'en': 'Central African Republic', 'cn': '中非共和国'}, {'prefix': '237', 'en': 'Cameroon', 'cn': '喀麦隆'}, {'prefix': '238', 'en': 'Cape Verde', 'cn': '佛得角'}, {'prefix': '239', 'en': 'Sao Tome and Principe', 'cn': '圣多美和普林西比'}, {'prefix': '240', 'en': 'Guinea', 'cn': '几内亚'}, {'prefix': '241', 'en': 'Gabon', 'cn': '加蓬'}, {'prefix': '242', 'en': 'Republic of the Congo', 'cn': '刚果共和国'}, {'prefix': '243', 'en': 'Democratic Republic of the Congo', 'cn': '刚果民主共和国'}, {'prefix': '244', 'en': 'Angola', 'cn': '安哥拉'}, {'prefix': '247', 'en': 'Ascension', 'cn': '阿森松岛'}, {'prefix': '248', 'en': 'Seychelles', 'cn': '塞舌尔'}, {'prefix': '249', 'en': 'Sudan', 'cn': '苏丹'}, {'prefix': '250', 'en': 'Rwanda', 'cn': '卢旺达'}, {'prefix': '251', 'en': 'Ethiopia', 'cn': '埃塞俄比亚'}, {'prefix': '253', 'en': 'Djibouti', 'cn': '吉布提'}, {'prefix': '254', 'en': 'Kenya', 'cn': '肯尼亚'}, {'prefix': '255', 'en': 'Tanzania', 'cn': '坦桑尼亚'}, {'prefix': '256', 'en': 'Uganda', 'cn': '乌干达'}, {'prefix': '257', 'en': 'Burundi', 'cn': '布隆迪'}, {'prefix': '258', 'en': 'Mozambique', 'cn': '莫桑比克'}, {'prefix': '260', 'en': 'Zambia', 'cn': '赞比亚'}, {'prefix': '261', 'en': 'Madagascar', 'cn': '马达加斯加'}, {'prefix': '262', 'en': 'Reunion', 'cn': '留尼汪'}, {'prefix': '262', 'en': 'Mayotte', 'cn': '马约特'}, {'prefix': '263', 'en': 'Zimbabwe', 'cn': '津巴布韦'}, {'prefix': '264', 'en': 'Namibia', 'cn': '纳米比亚'}, {'prefix': '265', 'en': 'Malawi', 'cn': '马拉维'}, {'prefix': '266', 'en': 'Lesotho', 'cn': '莱索托'}, {'prefix': '267', 'en': 'Botwana', 'cn': '博茨瓦纳'}, {'prefix': '268', 'en': 'Swaziland', 'cn': '斯威士兰'}, {'prefix': '269', 'en': 'Comoros', 'cn': '科摩罗'}, {'prefix': '297', 'en': 'Aruba', 'cn': '阿鲁巴'}, {'prefix': '298', 'en': 'Faroe Islands', 'cn': '法罗群岛'}, {'prefix': '299', 'en': 'Greenland', 'cn': '格陵兰'}, {'prefix': '350', 'en': 'Gibraltar', 'cn': '直布罗陀'}, {'prefix': '351', 'en': 'Portugal', 'cn': '葡萄牙'}, {'prefix': '352', 'en': 'Luxembourg', 'cn': '卢森堡'}, {'prefix': '353', 'en': 'Ireland', 'cn': '爱尔兰'}, {'prefix': '354', 'en': 'Iceland', 'cn': '冰岛'}, {'prefix': '355', 'en': 'Albania', 'cn': '阿尔巴尼亚'}, {'prefix': '356', 'en': 'Malta', 'cn': '马耳他'}, {'prefix': '357', 'en': 'Cyprus', 'cn': '塞浦路斯'}, {'prefix': '358', 'en': 'Finland', 'cn': '芬兰'}, {'prefix': '359', 'en': 'Bulgaria', 'cn': '保加利亚'}, {'prefix': '370', 'en': 'Lithuania', 'cn': '立陶宛'}, {'prefix': '371', 'en': 'Latvia', 'cn': '拉脱维亚'}, {'prefix': '372', 'en': 'Estonia', 'cn': '爱沙尼亚'}, {'prefix': '373', 'en': 'Moldova', 'cn': '摩尔多瓦'}, {'prefix': '374', 'en': 'Armenia', 'cn': '亚美尼亚'}, {'prefix': '375', 'en': 'Belarus', 'cn': '白俄罗斯'}, {'prefix': '376', 'en': 'Andorra', 'cn': '安道尔'}, {'prefix': '377', 'en': 'Monaco', 'cn': '摩纳哥'}, {'prefix': '378', 'en': 'San Marino', 'cn': '圣马力诺'}, {'prefix': '380', 'en': 'Ukraine', 'cn': '乌克兰'}, {'prefix': '381', 'en': 'Serbia', 'cn': '塞尔维亚'}, {'prefix': '382', 'en': 'Montenegro', 'cn': '黑山'}, {'prefix': '383', 'en': 'Kosovo', 'cn': '科索沃'}, {'prefix': '385', 'en': 'Croatia', 'cn': '克罗地亚'}, {'prefix': '386', 'en': 'Slovenia', 'cn': '斯洛文尼亚'}, {'prefix': '387', 'en': 'Bosnia and Herzegovina', 'cn': '波斯尼亚和黑塞哥维那'}, {'prefix': '389', 'en': 'Macedonia', 'cn': '马其顿'}, {'prefix': '420', 'en': 'Czech Republic', 'cn': '捷克共和国'}, {'prefix': '421', 'en': 'Slovakia', 'cn': '斯洛伐克'}, {'prefix': '423', 'en': 'Liechtenstein', 'cn': '列支敦士登'}, {'prefix': '501', 'en': 'Belize', 'cn': '伯利兹'}, {'prefix': '502', 'en': 'Guatemala', 'cn': '危地马拉'}, {'prefix': '503', 'en': 'EISalvador', 'cn': '艾萨尔瓦多'}, {'prefix': '504', 'en': 'Honduras', 'cn': '洪都拉斯'}, {'prefix': '505', 'en': 'Nicaragua', 'cn': '尼加拉瓜'}, {'prefix': '506', 'en': 'Costa Rica', 'cn': '哥斯达黎加'}, {'prefix': '507', 'en': 'Panama', 'cn': '巴拿马'}, {'prefix': '509', 'en': 'Haiti', 'cn': '海地'}, {'prefix': '590', 'en': 'Guadeloupe', 'cn': '瓜德罗普'}, {'prefix': '591', 'en': 'Bolivia', 'cn': '玻利维亚'}, {'prefix': '592', 'en': 'Guyana', 'cn': '圭亚那'}, {'prefix': '593', 'en': 'Ecuador', 'cn': '厄瓜多尔'}, {'prefix': '594', 'en': 'French Guiana', 'cn': '法属圭亚那'}, {'prefix': '595', 'en': 'Paraguay', 'cn': '巴拉圭'}, {'prefix': '596', 'en': 'Martinique', 'cn': '马提尼克'}, {'prefix': '597', 'en': 'Suriname', 'cn': '苏里南'}, {'prefix': '598', 'en': 'Uruguay', 'cn': '乌拉圭'}, {'prefix': '599', 'en': 'Netherlands Antillse', 'cn': '荷属安的列斯'}, {'prefix': '670', 'en': 'Timor Leste', 'cn': '东帝汶'}, {'prefix': '673', 'en': 'Brunei', 'cn': '文莱'}, {'prefix': '675', 'en': 'Papua New Guinea', 'cn': '巴布亚新几内亚'}, {'prefix': '676', 'en': 'Tonga', 'cn': '汤加'}, {'prefix': '678', 'en': 'Vanuatu', 'cn': '瓦努阿图'}, {'prefix': '679', 'en': 'Fiji', 'cn': '斐济'}, {'prefix': '682', 'en': 'Cook Islands', 'cn': '库克群岛'}, {'prefix': '684', 'en': 'Samoa Eastern', 'cn': '萨摩亚东部'}, {'prefix': '685', 'en': 'Samoa Western', 'cn': '萨摩亚西部'}, {'prefix': '687', 'en': 'New Caledonia', 'cn': '新喀里多尼亚'}, {'prefix': '689', 'en': 'French Polynesia', 'cn': '法属波利尼西亚'}, {'prefix': '852', 'en': 'Hong Kong', 'cn': '香港'}, {'prefix': '853', 'en': 'Macao', 'cn': '澳门'}, {'prefix': '855', 'en': 'Cambodia', 'cn': '柬埔寨'}, {'prefix': '856', 'en': 'Laos', 'cn': '老挝'}, {'prefix': '880', 'en': 'Bangladesh', 'cn': '孟加拉国'}, {'prefix': '886', 'en': 'Taiwan', 'cn': '台湾'}, {'prefix': '960', 'en': 'Maldives', 'cn': '马尔代夫'}, {'prefix': '961', 'en': 'Lebanon', 'cn': '黎巴嫩'}, {'prefix': '962', 'en': 'Jordan', 'cn': '约旦'}, {'prefix': '963', 'en': 'Syria', 'cn': '叙利亚'}, {'prefix': '964', 'en': 'Iraq', 'cn': '伊拉克'}, {'prefix': '965', 'en': 'Kuwait', 'cn': '科威特'}, {'prefix': '966', 'en': 'Saudi Arabia', 'cn': '沙特阿拉伯'}, {'prefix': '967', 'en': 'Yemen', 'cn': '也门'}, {'prefix': '968', 'en': 'Oman', 'cn': '阿曼'}, {'prefix': '970', 'en': 'Palestinian', 'cn': '巴勒斯坦'}, {'prefix': '971', 'en': 'United Arab Emirates', 'cn': '阿拉伯联合酋长国'}, {'prefix': '972', 'en': 'Israel', 'cn': '以色列'}, {'prefix': '973', 'en': 'Bahrain', 'cn': '巴林'}, {'prefix': '974', 'en': 'Qotar', 'cn': '库塔'}, {'prefix': '975', 'en': 'Bhutan', 'cn': '不丹'}, {'prefix': '976', 'en': 'Mongolia', 'cn': '蒙古'}, {'prefix': '977', 'en': 'Nepal', 'cn': '尼泊尔'}, {'prefix': '992', 'en': 'Tajikistan', 'cn': '塔吉克斯坦'}, {'prefix': '993', 'en': 'Turkmenistan', 'cn': '土库曼斯坦'}, {'prefix': '994', 'en': 'Azerbaijan', 'cn': '阿塞拜疆'}, {'prefix': '995', 'en': 'Georgia', 'cn': '格鲁吉亚'}, {'prefix': '996', 'en': 'Kyrgyzstan', 'cn': '吉尔吉斯斯坦'}, {'prefix': '998', 'en': 'Uzbekistan', 'cn': '乌兹别克斯坦'}, {'prefix': '1242', 'en': 'Bahamas', 'cn': '巴哈马'}, {'prefix': '1246', 'en': 'Barbados', 'cn': '巴巴多斯'}, {'prefix': '1264', 'en': 'Anguilla', 'cn': '安圭拉'}, {'prefix': '1268', 'en': 'Antigua and Barbuda', 'cn': '安提瓜和巴布达'}, {'prefix': '1340', 'en': 'Virgin Islands', 'cn': '维尔京群岛'}, {'prefix': '1345', 'en': 'Cayman Islands', 'cn': '开曼群岛'}, {'prefix': '1441', 'en': 'Bermuda', 'cn': '百慕大'}, {'prefix': '1473', 'en': 'Grenada', 'cn': '格林纳达'}, {'prefix': '1649', 'en': 'Turks and Caicos Islands', 'cn': '特克斯和凯科斯群岛'}, {'prefix': '1664', 'en': 'Montserrat', 'cn': '蒙特塞拉特'}, {'prefix': '1671', 'en': 'Guam', 'cn': '关岛'},
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 # The implementation largely follows the design in PyTorch's `torch.distributions` # # Copyright (c) 2016- Facebook, Inc (<NAME>) # Copyright (c) 2014- Facebook, Inc (<NAME>) # Copyright (c) 2011-2014 Idiap Research Institute (<NAME>) # Copyright (c) 2012-2014 Deepmind Technologies (<NAME>) # Copyright (c) 2011-2012 NEC Laboratories America (<NAME>) # Copyright (c) 2011-2013 NYU (<NAME>) # Copyright (c) 2006-2010 NEC Laboratories America (<NAME>, <NAME>, <NAME>, <NAME>) # Copyright (c) 2006 Idiap Research Institute (<NAME>) # Copyright (c) 2001-2004 Idiap Research Institute (<NAME>, <NAME>, <NAME>) # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import warnings import numpy as np from jax import device_put, lax from jax.dtypes import canonicalize_dtype from jax.nn import softmax, softplus import jax.numpy as jnp import jax.random as random from jax.scipy.special import expit, gammaln, logsumexp, xlog1py, xlogy from numpyro.distributions import constraints from numpyro.distributions.distribution import Distribution from numpyro.distributions.util import ( binary_cross_entropy_with_logits, binomial, categorical, clamp_probs, get_dtype, lazy_property, multinomial, promote_shapes, sum_rightmost, validate_sample ) from numpyro.util import not_jax_tracer def _to_probs_bernoulli(logits): return 1 / (1 + jnp.exp(-logits)) def _to_logits_bernoulli(probs): ps_clamped = clamp_probs(probs) return jnp.log(ps_clamped) - jnp.log1p(-ps_clamped) def _to_probs_multinom(logits): return softmax(logits, axis=-1) def _to_logits_multinom(probs): minval = jnp.finfo(get_dtype(probs)).min return jnp.clip(jnp.log(probs), a_min=minval) class BernoulliProbs(Distribution): arg_constraints = {'probs': constraints.unit_interval} support = constraints.boolean has_enumerate_support = True is_discrete = True def __init__(self, probs, validate_args=None): self.probs = probs super(BernoulliProbs, self).__init__(batch_shape=jnp.shape(self.probs), validate_args=validate_args) def sample(self, key, sample_shape=()): return random.bernoulli(key, self.probs, shape=sample_shape + self.batch_shape) @validate_sample def log_prob(self, value): return xlogy(value, self.probs) + xlog1py(1 - value, -self.probs) @property def mean(self): return self.probs @property def variance(self): return self.probs * (1 - self.probs) def enumerate_support(self, expand=True): values = jnp.arange(2).reshape((-1,) + (1,) * len(self.batch_shape)) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values class BernoulliLogits(Distribution): arg_constraints = {'logits': constraints.real} support = constraints.boolean has_enumerate_support = True is_discrete = True def __init__(self, logits=None, validate_args=None): self.logits = logits super(BernoulliLogits, self).__init__(batch_shape=jnp.shape(self.logits), validate_args=validate_args) def sample(self, key, sample_shape=()): return random.bernoulli(key, self.probs, shape=sample_shape + self.batch_shape) @validate_sample def log_prob(self, value): return -binary_cross_entropy_with_logits(self.logits, value) @lazy_property def probs(self): return _to_probs_bernoulli(self.logits) @property def mean(self): return self.probs @property def variance(self): return self.probs * (1 - self.probs) def enumerate_support(self, expand=True): values = jnp.arange(2).reshape((-1,) + (1,) * len(self.batch_shape)) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values def Bernoulli(probs=None, logits=None, validate_args=None): if probs is not None: return BernoulliProbs(probs, validate_args=validate_args) elif logits is not None: return BernoulliLogits(logits, validate_args=validate_args) else: raise ValueError('One of `probs` or `logits` must be specified.') class BinomialProbs(Distribution): arg_constraints = {'probs': constraints.unit_interval, 'total_count': constraints.nonnegative_integer} has_enumerate_support = True is_discrete = True def __init__(self, probs, total_count=1, validate_args=None): self.probs, self.total_count = promote_shapes(probs, total_count) batch_shape = lax.broadcast_shapes(jnp.shape(probs), jnp.shape(total_count)) super(BinomialProbs, self).__init__(batch_shape=batch_shape, validate_args=validate_args) def sample(self, key, sample_shape=()): return binomial(key, self.probs, n=self.total_count, shape=sample_shape + self.batch_shape) @validate_sample def log_prob(self, value): log_factorial_n = gammaln(self.total_count + 1) log_factorial_k = gammaln(value + 1) log_factorial_nmk = gammaln(self.total_count - value + 1) return (log_factorial_n - log_factorial_k - log_factorial_nmk + xlogy(value, self.probs) + xlog1py(self.total_count - value, -self.probs)) @property def mean(self): return jnp.broadcast_to(self.total_count * self.probs, self.batch_shape) @property def variance(self): return jnp.broadcast_to(self.total_count * self.probs * (1 - self.probs), self.batch_shape) @property def support(self): return constraints.integer_interval(0, self.total_count) def enumerate_support(self, expand=True): if not_jax_tracer(self.total_count): total_count = np.amax(self.total_count) # NB: the error can't be raised if inhomogeneous issue happens when tracing if np.amin(self.total_count) != total_count: raise NotImplementedError("Inhomogeneous total count not supported" " by `enumerate_support`.") else: total_count = jnp.amax(self.total_count) values = jnp.arange(total_count + 1).reshape((-1,) + (1,) * len(self.batch_shape)) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values class BinomialLogits(Distribution): arg_constraints = {'logits': constraints.real, 'total_count': constraints.nonnegative_integer} has_enumerate_support = True is_discrete = True enumerate_support = BinomialProbs.enumerate_support def __init__(self, logits, total_count=1, validate_args=None): self.logits, self.total_count = promote_shapes(logits, total_count) batch_shape = lax.broadcast_shapes(jnp.shape(logits), jnp.shape(total_count)) super(BinomialLogits, self).__init__(batch_shape=batch_shape, validate_args=validate_args) def sample(self, key, sample_shape=()): return binomial(key, self.probs, n=self.total_count, shape=sample_shape + self.batch_shape) @validate_sample def log_prob(self, value): log_factorial_n = gammaln(self.total_count + 1) log_factorial_k = gammaln(value + 1) log_factorial_nmk = gammaln(self.total_count - value + 1) normalize_term = (self.total_count * jnp.clip(self.logits, 0) + xlog1py(self.total_count, jnp.exp(-jnp.abs(self.logits))) - log_factorial_n) return value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term @lazy_property def probs(self): return _to_probs_bernoulli(self.logits) @property def mean(self): return jnp.broadcast_to(self.total_count * self.probs, self.batch_shape) @property def variance(self): return jnp.broadcast_to(self.total_count * self.probs * (1 - self.probs), self.batch_shape) @property def support(self): return constraints.integer_interval(0, self.total_count) def Binomial(total_count=1, probs=None, logits=None, validate_args=None): if probs is not None: return BinomialProbs(probs, total_count, validate_args=validate_args) elif logits is not None: return BinomialLogits(logits, total_count, validate_args=validate_args) else: raise ValueError('One of `probs` or `logits` must be specified.') class CategoricalProbs(Distribution): arg_constraints = {'probs': constraints.simplex} has_enumerate_support = True is_discrete = True def __init__(self, probs, validate_args=None): if jnp.ndim(probs) < 1: raise ValueError("`probs` parameter must be at least one-dimensional.") self.probs = probs super(CategoricalProbs, self).__init__(batch_shape=jnp.shape(self.probs)[:-1], validate_args=validate_args) def sample(self, key, sample_shape=()): return categorical(key, self.probs, shape=sample_shape + self.batch_shape) @validate_sample def log_prob(self, value): batch_shape = lax.broadcast_shapes(jnp.shape(value), self.batch_shape) value = jnp.expand_dims(value, axis=-1) value = jnp.broadcast_to(value, batch_shape + (1,)) logits = _to_logits_multinom(self.probs) log_pmf = jnp.broadcast_to(logits, batch_shape + jnp.shape(logits)[-1:]) return jnp.take_along_axis(log_pmf, value, axis=-1)[..., 0] @property def mean(self): return jnp.full(self.batch_shape, jnp.nan, dtype=get_dtype(self.probs)) @property def variance(self): return jnp.full(self.batch_shape, jnp.nan, dtype=get_dtype(self.probs)) @property def support(self): return constraints.integer_interval(0, jnp.shape(self.probs)[-1] - 1) def enumerate_support(self, expand=True): values = jnp.arange(self.probs.shape[-1]).reshape((-1,) + (1,) * len(self.batch_shape)) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values class CategoricalLogits(Distribution): arg_constraints = {'logits': constraints.real_vector} has_enumerate_support = True is_discrete = True def __init__(self, logits, validate_args=None): if jnp.ndim(logits) < 1: raise ValueError("`logits` parameter must be at least one-dimensional.") self.logits = logits super(CategoricalLogits, self).__init__(batch_shape=jnp.shape(logits)[:-1], validate_args=validate_args) def sample(self, key, sample_shape=()): return random.categorical(key, self.logits, shape=sample_shape + self.batch_shape) @validate_sample def log_prob(self, value): batch_shape = lax.broadcast_shapes(jnp.shape(value), self.batch_shape) value = jnp.expand_dims(value, -1) value = jnp.broadcast_to(value, batch_shape + (1,)) log_pmf = self.logits - logsumexp(self.logits, axis=-1, keepdims=True) log_pmf = jnp.broadcast_to(log_pmf, batch_shape + jnp.shape(log_pmf)[-1:]) return jnp.take_along_axis(log_pmf, value, -1)[..., 0] @lazy_property def probs(self): return _to_probs_multinom(self.logits) @property def mean(self): return jnp.full(self.batch_shape, jnp.nan, dtype=get_dtype(self.logits)) @property def variance(self): return jnp.full(self.batch_shape, jnp.nan, dtype=get_dtype(self.logits)) @property def support(self): return constraints.integer_interval(0, jnp.shape(self.logits)[-1] - 1) def enumerate_support(self, expand=True): values = jnp.arange(self.logits.shape[-1]).reshape((-1,) + (1,) * len(self.batch_shape)) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values def Categorical(probs=None, logits=None, validate_args=None): if probs is not None: return CategoricalProbs(probs, validate_args=validate_args) elif logits is not None: return CategoricalLogits(logits, validate_args=validate_args) else: raise ValueError('One of `probs` or `logits` must be specified.') class Delta(Distribution): arg_constraints = {'v': constraints.real, 'log_density': constraints.real} support = constraints.real is_discrete = True def __init__(self, v=0., log_density=0., event_dim=0, validate_args=None, value=None): if value is not None: v = value warnings.warn("`value` argument has been deprecated in favor of `v` argument.", FutureWarning) if event_dim > jnp.ndim(v): raise ValueError('Expected event_dim <= v.dim(), actual {} vs {}' .format(event_dim, jnp.ndim(v))) batch_dim = jnp.ndim(v) - event_dim batch_shape = jnp.shape(v)[:batch_dim] event_shape = jnp.shape(v)[batch_dim:] self.v = lax.convert_element_type(v, canonicalize_dtype(jnp.float64)) # NB: following Pyro implementation, log_density should be broadcasted to batch_shape self.log_density = promote_shapes(log_density, shape=batch_shape)[0] super(Delta, self).__init__(batch_shape, event_shape, validate_args=validate_args) def sample(self, key, sample_shape=()): shape = sample_shape + self.batch_shape + self.event_shape return jnp.broadcast_to(device_put(self.v), shape) @validate_sample def log_prob(self, value): log_prob = jnp.log(value == self.v) log_prob = sum_rightmost(log_prob, len(self.event_shape)) return log_prob + self.log_density @property def mean(self): return self.v @property def variance(self): return jnp.zeros(self.batch_shape + self.event_shape) def tree_flatten(self): return (self.v, self.log_density), self.event_dim @classmethod def tree_unflatten(cls, aux_data, params): return cls(*params, event_dim=aux_data) class OrderedLogistic(CategoricalProbs): """ A categorical distribution with ordered outcomes. **References:** 1. *Stan Functions Reference, v2.20 section 12.6*, Stan Development Team :param numpy.ndarray predictor: prediction in real domain; typically this is output of a linear model. :param numpy.ndarray cutpoints: positions in real domain to separate categories. """ arg_constraints = {'predictor': constraints.real, 'cutpoints': constraints.ordered_vector} def __init__(self, predictor, cutpoints, validate_args=None): if jnp.ndim(predictor) == 0: predictor, = promote_shapes(predictor, shape=(1,)) else: predictor = predictor[..., None] predictor, self.cutpoints = promote_shapes(predictor, cutpoints) self.predictor = predictor[..., 0] cumulative_probs = expit(cutpoints - predictor) # add two boundary points 0 and 1 pad_width =
<gh_stars>0 import concurrent.futures from collections import defaultdict from dataclasses import dataclass from pathlib import Path from textwrap import indent from typing import Dict, Iterable, List, Mapping, Optional, Sequence, Set import pandas as pd import typer from more_itertools import chunked from pydantic.error_wrappers import ValidationError from cgr_gwas_qc import parsers, validators, yaml from cgr_gwas_qc.config import config_to_yaml from cgr_gwas_qc.exceptions import GwasQcValidationError, SampleSheetNullRowError from cgr_gwas_qc.models.config import Config, ReferenceFiles, UserFiles from cgr_gwas_qc.reporting import CASE_CONTROL_DTYPE, SEX_DTYPE app = typer.Typer(add_completion=False) @dataclass(frozen=True) class ProblemFile: Sample_ID: str reason: str file_type: Optional[str] = None filename: Optional[str] = None @app.command() def main( config_file: Path = typer.Option( "config.yml", help="Path to the configuration file.", exists=True, readable=True ), no_reference_check: bool = typer.Option( False, "--no-reference-files-check", help="Skip checks of reference files. " "Not suggested.", ), no_user_files_check: bool = typer.Option( False, "--no-user-files-check", help="Skip checks of user files. " "Not suggested." ), no_update_config: bool = typer.Option( False, "--no-update-config", help="Do not update the config file. " "Not suggested." ), threads: int = typer.Option( 4, "--threads", "-j", help="Number of theads to use when checking user files." ), cluster_group_size: int = typer.Option( 1000, help="The number of samples to group to gether when running in cluster mode." ), ): """Check all input files to make sure they are readable and complete. **Included Checks**. ``cgr pre-fight`` first checks the ``config.yml`` file makes sure all config settings are valid. It then reads the sample sheet (or LIMS manifest file) and checks that all columns defined in the config are present. These include ``workflow_params.subject_id_column``, ``workflow_params.expected_sex_column``, and ``workflow_params.case_control_column``. Next it checks all reference files (BPM, VCF, TBI) and makes sure that they exist, are readable, and complete. Finally, it will search for all IDAT and GTC files if ``user_files.idat_pattern`` and ``user_files.gtc_pattern`` are defined. Again, it makes sure all files exist, are readable, and are complete. **File Updates**. This step also updates the ``config.yml`` file with the ``num_samples`` (from the sample sheet) and the ``num_snps`` (from the BPM file). **Creates ``cgr_sample_sheet.csv``**. Finally, this step creates a normalized version of the sample sheet (or LIMs manifest). This include all of the columns in the sample sheet as well as the following added columns: - ``Group_By_Subject_ID``: a column with the subject ID to use for subject level qc. - ``expected_sex``: copies the expected sex column from the config. - ``case_control``: copies the case control column from the config. - ``is_internal_control``: a flag indicating if the sample is a CGR internal control (i.e., sVALID-001). - ``is_user_exclusion``: a flag indicating if the sample was marked to be excluded in the config. - ``is_missing_idats``: a flag indicating if the sample was missing an IDAT file. - ``is_missing_gtc``: a flag indicating if the sample was missing its GTC file. - ``is_sample_exclusion``: a flag indicating if the sample had missing IDAT or GTC files. - ``num_samples_per_subject``: The number of samples per subject. - ``replicate_ids``: A concatenated list of Sample_IDs from reach subject. - ``cluster_group``: Group names used when running on a cluster in the form of ``cgroup#``. You will almost always run:: $ cgr pre-flight --threads 4 """ config = check_config(config_file) ss = check_sample_sheet( config.sample_sheet, config.workflow_params.subject_id_column, config.workflow_params.expected_sex_column, config.workflow_params.case_control_column, ) if not no_reference_check: check_reference_files(config.reference_files) problem_samples = ( check_user_files(config.user_files, ss, threads) if not no_user_files_check else set() ) if config.Sample_IDs_to_remove: # Remove IDs flagged in the config problem_samples |= { ProblemFile(Sample_ID, "UserExclusion") for Sample_ID in config.Sample_IDs_to_remove } # Create a parsed version of the sample sheet with some custom columns typer.secho("Saving Updated Sample Sheet to (cgr_sample_sheet.csv)", fg=typer.colors.GREEN) update_sample_sheet( ss, config.workflow_params.subject_id_column, config.workflow_params.expected_sex_column, config.workflow_params.case_control_column, problem_samples, cluster_group_size, ).to_csv("cgr_sample_sheet.csv", index=False) # Update the config file with some dynamic settings if not no_update_config: # Update the config file with problem samples and re-calculate values typer.secho("Saving Updated Config to (config.yml)", fg=typer.colors.GREEN) update_config_file(config, ss) def check_config(filename: Path) -> Config: try: data = yaml.load(filename) config = Config.parse_obj(data) except Exception as err: if isinstance(err, OSError): msg = err.args[1] elif isinstance(err, ValidationError): msg = str(err.args[0][0].exc).replace("\n", " ") else: msg = err.args[0] typer.secho(f"Config ERROR: ({filename.as_posix()})\n\t{msg}\n", fg=typer.colors.RED) typer.secho("Exiting... Cannot continue without a valid config file.", fg=typer.colors.RED) raise SystemExit typer.secho(f"Config OK ({filename.as_posix()})", fg=typer.colors.GREEN) return config def check_reference_files(reference_files: ReferenceFiles): bpm_file = reference_files.illumina_manifest_file try: validators.bpm.validate(bpm_file) typer.secho(f"BPM OK ({bpm_file})", fg=typer.colors.GREEN) except Exception as err: msg = err.args[0] if len(err.args) == 1 else err.args[1] typer.secho(f"BPM ERROR: {msg} ({bpm_file})", fg=typer.colors.RED) vcf_file = reference_files.thousand_genome_vcf try: validators.bgzip.validate(vcf_file) typer.secho(f"VCF OK ({vcf_file})", fg=typer.colors.GREEN) except Exception as err: msg = err.args[0] if len(err.args) == 1 else err.args[1] typer.secho(f"VCF ERROR: {msg} ({vcf_file})", fg=typer.colors.RED) tbi_file = reference_files.thousand_genome_tbi try: validators.bgzip.validate(tbi_file) typer.secho(f"VCF.TBI OK ({tbi_file})", fg=typer.colors.GREEN) except Exception as err: msg = err.args[0] if len(err.args) == 1 else err.args[1] typer.secho(f"VCF.TBI ERROR: {msg} ({tbi_file})", fg=typer.colors.RED) def check_sample_sheet( filename: Path, subject_id_column: str, expected_sex_column: str, case_control_column: str ) -> pd.DataFrame: try: if parsers.sample_sheet.is_sample_manifest(filename): # User provided a CGR like manifest file validators.sample_sheet.validate_manifest( filename, subject_id_column, expected_sex_column, case_control_column ) df = parsers.sample_sheet.SampleManifest(filename).data else: # User provided a plain CSV file validators.sample_sheet.validate_sample_sheet( filename, subject_id_column, expected_sex_column, case_control_column ) df = pd.read_csv(filename) except SampleSheetNullRowError: typer.secho( f"Sample Sheet WARNING: Contains Empty Rows ({filename.as_posix()})", fg=typer.colors.YELLOW, ) except Exception as err: if isinstance(err, FileNotFoundError): msg = f"FileNotFound ({filename.as_posix()})" else: msg = err.args[1] typer.secho(f"Sample Sheet ERROR: {msg}", fg=typer.colors.RED) typer.secho("Exiting... Cannot continue without a valid sample sheet.", fg=typer.colors.RED) raise SystemExit typer.secho(f"Sample Sheet OK ({filename.as_posix()})", fg=typer.colors.GREEN) return df def _filter_list(problems: Iterable[ProblemFile], file_type: str) -> Dict[str, List[str]]: res = defaultdict(list) for problem in problems: if problem.filename and problem.file_type == file_type: res[problem.reason].append(problem.filename) return res def _pretty_print_paths(data: Mapping[str, Sequence[str]]) -> str: """For each exception output a list of files nicely.""" output = "" for k, v in data.items(): output += f" {k}:\n" files = "\n".join(sorted(v)) output += f"{indent(files, ' - ')}\n" return output def _pretty_print_user_problems(problems: Iterable[ProblemFile]): if idat_red := _filter_list(problems, "idat_red"): typer.secho( "IDAT RED ERROR: There was a problem with these files:\n{}".format( _pretty_print_paths(idat_red) ), fg=typer.colors.RED, ) else: typer.secho("IDAT RED Files OK.", fg=typer.colors.GREEN) if idat_green := _filter_list(problems, "idat_green"): typer.secho( "IDAT GREEN ERROR: There was a problem with these files:\n{}".format( _pretty_print_paths(idat_green) ), fg=typer.colors.RED, ) else: typer.secho("IDAT GREEN Files OK.", fg=typer.colors.GREEN) if gtc := _filter_list(problems, "gtc"): typer.secho( "GTC ERROR: There was a problem with these files:\n{}".format(_pretty_print_paths(gtc)), fg=typer.colors.RED, ) else: typer.secho("GTC Files OK.", fg=typer.colors.GREEN) def _check_idat(filename: str, color: str, sample_id: str) -> Optional[ProblemFile]: try: validators.idat.validate(Path(filename)) except FileNotFoundError: return ProblemFile(sample_id, "FileNotFound", f"idat_{color}", filename) except PermissionError: return ProblemFile(sample_id, "Permissions", f"idat_{color}", filename) except GwasQcValidationError as err: return ProblemFile(sample_id, err.args[0], f"idat_{color}", filename) return None # No problems def _check_gtc(filename: str, sample_id: str) -> Optional[ProblemFile]: try: validators.gtc.validate(Path(filename)) except FileNotFoundError: return ProblemFile(sample_id, "FileNotFound", "gtc", filename) except PermissionError: return ProblemFile(sample_id, "Permissions", "gtc", filename) except GwasQcValidationError as err: return ProblemFile(sample_id, err.args[0], "gtc", filename) return None # No problems def _check_user_files(user_files: UserFiles, record: Mapping) -> Set[Optional[ProblemFile]]: """Check IDAT and GTC files for a given sample.""" sample_id = record["Sample_ID"] problems = set() if user_files.idat_pattern: red_file = user_files.idat_pattern.red.format(**record) problems.add(_check_idat(red_file, "red", sample_id)) green_file = user_files.idat_pattern.green.format(**record) problems.add(_check_idat(green_file, "green", sample_id)) if user_files.gtc_pattern: gtc_file = user_files.gtc_pattern.format(**record) problems.add(_check_gtc(gtc_file, sample_id)) return problems def check_user_files(user_files: UserFiles, ss: pd.DataFrame, threads: int) -> Set[ProblemFile]: """Check user files (IDAT, GTC) using multiple threads. There can be tens of thousands of user files to process here. To speed things up a bit we use parallel processing. This function spins up ``threads`` processes and runs user files checks for each sample. Returns: Sample_IDs that had a problem with either their IDAT or GTC files. """ typer.secho("Checking user files for {:,} samples.".format(ss.shape[0])) with concurrent.futures.ProcessPoolExecutor(threads) as executer: futures = { executer.submit(_check_user_files, user_files, record.to_dict()) for _, record in ss.iterrows() } with typer.progressbar(length=len(futures), label="Progress:", show_pos=True) as bar: problem_user_files = set() for future in concurrent.futures.as_completed(futures): results = future.result() problem_user_files |= {problem for problem in results if problem} bar.update(1) _pretty_print_user_problems(problem_user_files) return problem_user_files def update_config_file(config: Config, ss: pd.DataFrame): try: if config.num_snps == 0: config.num_snps = parsers.illumina.BeadPoolManifest( config.reference_files.illumina_manifest_file ).num_loci except Exception: typer.secho( " - Problem parsing the illumina manifest file, could not update 'config.num_snp'.", fg=typer.colors.YELLOW, ) if config.num_samples == 0: config.num_samples = ss.shape[0] config_to_yaml(config) def _add_group_by_column(df: pd.DataFrame, subject_id_column: str = "Group_By"): """Select which column in the sample sheet to use for subject grouping. This function adds the column `Group_By_Subject_ID` to the sample sheet object. The sample sheet contains multiple columns with subject level information. The user defines which column to use in the config ``config.workflow_settings.subject_id_column``. Recently, Q1 2021, we started adding a
# validation work in March 9th # The general purpose of this script is to generate the result # published in cancer cell paper with ImmunoPepper # Link: (https://www.sciencedirect.com/science/article/pii/S1535610818303064) # validate 2019/03/07 import gzip import pickle import argparse import sys import os import numpy as np import pandas as pd from immunopepper.constant import NOT_EXIST from functools import reduce def find_diff_coord(imm_gene_coord_dict,cancercell_gene_coord_dict): def fuzzy_comp_str2str(query_coord,another_coord): return np.sum(np.array(query_coord)-np.array(another_coord)) == 0 def fuzzy_comp_str2list(query_coord,another_coord_list): if query_coord[2] == NOT_EXIST or len(another_coord_list) == 0: return ('',False) possible_match_id_list = np.where(np.array(another_coord_list)[:,0]==query_coord[0])[0] for possible_match_id in possible_match_id_list: coord_str_tuple = another_coord_list[possible_match_id] if coord_str_tuple[3] != NOT_EXIST: match = fuzzy_comp_str2str(query_coord,coord_str_tuple) if match: return (coord_str_tuple,True) return ('',False) unique_imm_coord_dict = {} for i,gene_name in enumerate(imm_gene_coord_dict): if i % 1000 == 0: print(i) imm_coord_set = imm_gene_coord_dict[gene_name] if gene_name not in cancercell_gene_coord_dict: cancercell_coord_set = {} else: cancercell_coord_set = cancercell_gene_coord_dict[gene_name] for coord,vertex_id in imm_coord_set: similar_result,found = fuzzy_comp_str2list(coord,cancercell_coord_set) if not found: gene_name_coord_str = gene_name+'_'+'_'.join([str(icoord) for icoord in coord])+'_'+vertex_id new_or_append_value_to_dict_key(unique_imm_coord_dict,gene_name,gene_name_coord_str) return unique_imm_coord_dict def get_cancercell_ref_junction_dict(cancercell_junction_file): gt_lines = open(cancercell_junction_file,'r').readlines() ref_junction_dict = {} # (gene_name,coord_str_tuple) |-> peptide cancercell_gene_coord_dict = {} # gene_name |-> coord_str_tuple i = 0 while i < len(gt_lines)-1: headline = gt_lines[i].strip() items = headline.split('_') gene_name = items[2] coord_str_tuple = tuple([int(coord)-1 if a%2 ==0 else int(coord) for a, coord in enumerate(items[-4:])]) # remove coord correction i += 1 peptide = gt_lines[i].strip() ref_junction_dict[(gene_name,coord_str_tuple)] = peptide new_or_append_value_to_dict_key(cancercell_gene_coord_dict,gene_name,coord_str_tuple) i += 1 return ref_junction_dict,cancercell_gene_coord_dict def get_cancercell_kmer_dict(cancercell_result_file): def get_kmer_list(_str, k): if len(_str) < k: return [_str] else: kmer_list = [_str[i:i + k] for i in range(0, max(0, len(_str) - k + 1))] return kmer_list cancercell_pep_lines = open(cancercell_result_file, 'r').readlines() i = 0 cancercell_kmer_dict = {} print("Parsing cancercell kmer result file. Need around 1 minute.") while i < len(cancercell_pep_lines): line = cancercell_pep_lines[i] gene_name = line.strip().split('_')[2] i += 1 pep = cancercell_pep_lines[i].strip() kmer_list = get_kmer_list(pep, 9) new_dict = {kmer: gene_name for kmer in kmer_list} cancercell_kmer_dict = merge_two_dicts(cancercell_kmer_dict, new_dict) i += 1 return cancercell_kmer_dict def get_immunopepper_meta_dict(meta_file): """ Why we have with_coord and without_coord? It's due to the current mismatch. Immunopepper peptide.fa only has gene_name+vertex_id while mat's peptide.fa has gene_name+vertex. To try to explain the difference of reference peptide output, we need build with_coord_dict. However, when we trace back the flag tuple of those additional kmer to explain them, we need without_coord dict. In summary, to generate reference comparison result, we need with_coord dict; for validating other samples and mutation types, we only need without_coord_dict """ meta_df = pd.read_csv(meta_file,sep='\t') meta_flag_dict_key_with_coord = {} # (geneName_fourCoords_vertexId) |-> flag_tuple meta_flag_dict_key_without_coord = {} imm_gene_coord_dict = {} # gene_name |->List[(coord_str_tuple,vertex_id)], since one gene_name can have multuple lines for i in range(len(meta_df)): gene_name = meta_df['gene_name'][i] stop_flag = int(meta_df['has_stop_codon'][i]) isolated_flag = int(meta_df['is_isolated'][i]) som_variant_comb_num = int(len(meta_df['variant_comb'][i].split(';')) > 1) exon_coord = meta_df['exons_coor'][i] coord_str_tuple = tuple([int(coord) if coord != NOT_EXIST else NOT_EXIST for coord in exon_coord.split(';')]) vertex_id = meta_df['vertex_idx'][i] key_with_coord = gene_name + '_' + '_'.join(exon_coord.split(';')) + '_' + vertex_id key_without_coord = gene_name+'_'+vertex_id.split(',')[0]+'_'+vertex_id.split(',')[1] start_v1 = coord_str_tuple[0] stop_v1 = coord_str_tuple[1] is_less_than3_flag = int((int(stop_v1) - int(start_v1)) < 3) flag_tuple = (stop_flag, isolated_flag, is_less_than3_flag,som_variant_comb_num) meta_flag_dict_key_with_coord = new_or_append_value_to_dict_key(meta_flag_dict_key_with_coord,key_with_coord,flag_tuple) meta_flag_dict_key_without_coord = new_or_append_value_to_dict_key(meta_flag_dict_key_without_coord,key_without_coord,flag_tuple) imm_gene_coord_dict = new_or_append_value_to_dict_key(imm_gene_coord_dict,gene_name,(coord_str_tuple, vertex_id)) return meta_flag_dict_key_with_coord, meta_flag_dict_key_without_coord, imm_gene_coord_dict def create_reference_cause_data(): """ Generate reference cause dictionary. It takes some time to generate so we will store those require dictionaries as pickle for subsequent use. Implement a comprehensive comparison between ImmunoPepper's reference_junction and CancerCell's reference_junction. We want to see how many outputs only exist in Immunopepper (denote as additional) and how many outputs only exist in CancerCell (denote as missing). """ # load and parse immunopepper result imm_ref_meta_file = '/cluster/work/grlab/projects/TCGA/immunopepper_rerun/TCGA-13-1489/ref_metadata.tsv.gz' ref_meta_flag_dict_with_coord, ref_meta_flag_dict_without_coord, imm_gene_coord_dict = get_immunopepper_meta_dict( imm_ref_meta_file) # load and parse cancercell result cancercell_junction_file ='/cluster/work/grlab/projects/TCGA/PanCanAtlas/peptides_neoantigen/' \ 'analysis_pancan/ccell_rerun_2018/output/peptides.clean/split/REFERENCE.cj.fa' ref_junction_dict, cancercell_gene_coord_dict = get_cancercell_ref_junction_dict(cancercell_junction_file) # get the additional kmer dict (only appear in immunopepper result) additional_imm_coord_dict = find_diff_coord(imm_gene_coord_dict, cancercell_gene_coord_dict) # remove isolated case and only keep coord_str_tuple for further use imm_gene_coord_dict_without_vid = { gene_name: [coord_vid[0] for coord_vid in filter((lambda x: x[0][2] != NOT_EXIST), coord_vid_tuple_list)] for gene_name, coord_vid_tuple_list in list(imm_gene_coord_dict.items())} # get the missing kmer dict (only appear in cancercell paper result) missing_cancercell_gene_coord_dict = { gene_name: list(filter((lambda x: x in imm_gene_coord_dict_without_vid[gene_name]), coord_tuple_list)) for gene_name, coord_tuple_list in list(cancercell_gene_coord_dict.items())} # we know some of the missing kmers are due to extrapolation # which means there are 3 identical coords and only one coord is different. # We mark as True for those cases that can be explained by this. unique_cancercell_gene_explain_dict = { gene_name: [3 in np.sum((np.array(coord_tuple) - np.array(imm_gene_coord_dict_without_vid[gene_name])) == 0, axis=1) for coord_tuple in coord_tuple_list] for gene_name, coord_tuple_list in list(missing_cancercell_gene_coord_dict.items())} missing_explain_num = np.sum([sum(item) for item in list(unique_cancercell_gene_explain_dict.values())]) # 65360/65360 # do a simple analysis of the result additional_junc_pair_num = np.sum([len(item) for item in list(additional_imm_coord_dict.values())]) # 1103270 missing_junc_pair_num = np.sum([len(item) for item in list(missing_cancercell_gene_coord_dict.values())]) # 65360 total_junc_pair_num = np.sum([len(item) for item in list(imm_gene_coord_dict.values())]) # 1622126 total_cancercell_junc_pair_num = np.sum([len(item) for item in list(cancercell_gene_coord_dict.values())]) # 525539 print("{} additional junc pair and {} miss junc pair in {} immuno total junc pairs" " and {} cancercell junc pairs. {} miss kmer are caused by extrapolation".format(additional_junc_pair_num, missing_junc_pair_num, total_junc_pair_num, total_cancercell_junc_pair_num, missing_explain_num)) # try to explain the additional output additional_flag_list = [] additional_gene_name_list = [] for gene_name, additional_junc_coord_list in list(additional_imm_coord_dict.items()): additional_flag_list.extend( [reduce((lambda x, y: np.logical_or(x, y)), ref_meta_flag_dict_with_coord[additional_junc_coord]) for additional_junc_coord in additional_junc_coord_list]) for additional_junc_coord in additional_junc_coord_list: items = additional_junc_coord.split('_') vertex_id = items[-1].split(',') gene_name = items[0] gene_name_str = '_'.join((gene_name, vertex_id[0], vertex_id[1])) additional_gene_name_list.append(gene_name_str) flag_explain_result = np.sum(np.array(additional_flag_list), axis=0) print("stop codon constributes to {}, isolated contributes to {}, short vertices contributes to {}".format( flag_explain_result[0], flag_explain_result[1], flag_explain_result[2])) # 826039, 199362, 3224 print("{} can not be explained by the three".format(sum(np.sum(np.array(additional_flag_list), axis=1) == 0))) # 204994 # load and parse reference junction kmer for further use # It can be used to explain some missing kmers. imm_ref_junction_file = '/cluster/work/grlab/projects/TCGA/immunopepper_rerun/TCGA-13-1489/ref_junction_kmer.txt' ref_kmer_dict = {line.split('\t')[0]:line.split('\t')[1] for line in open(imm_ref_junction_file,'r') if line.strip().split('\t')[-1] == 'True'} ref_kmer_set = set(ref_kmer_dict.keys()) with open('ref_cause_dict2.pkl', 'wb') as f: pickle.dump((ref_kmer_set, imm_gene_coord_dict, cancercell_gene_coord_dict, additional_imm_coord_dict, additional_gene_name_list, missing_cancercell_gene_coord_dict), f) def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument("--samples", help="the sample names(can be string or ), can specify more than one sample", required=False, default='TCGA-13-1489') parser.add_argument("--mutation_mode", help="specify the mutation mdoe", required=False, default='germline') if len(argv) < 2: parser.print_help() sys.exit(1) pargs = parser.parse_args(argv) return pargs def new_or_append_value_to_dict_key(_dict,key,value): if key in _dict: _dict[key].append(value) else: _dict[key] = [value] return _dict def merge_two_dicts(x, y): z = x.copy() # start with x's keys and values z.update(y) # modifies z with y's keys and values & returns None return z arg = parse_arguments(sys.argv[1:]) sample_name = arg.samples mutation_mode = arg.mutation_mode immunopepper_file = '/cluster/work/grlab/projects/TCGA/immunopepper_rerun/{}/{}_junction_kmer.txt'.format(sample_name,mutation_mode) cancercell_kmer_file = '/cluster/work/grlab/projects/TCGA/PanCanAtlas/peptides_neoantigen/analysis_pancan/' \ 'ccell_rerun_2018/output/peptides.clean/split/cj_kmers/{}.cj.{}.cj_kmers_9.fa'.format(sample_name,mutation_mode) mutation_meta_gz_file = '/cluster/work/grlab/projects/TCGA/immunopepper_rerun/{}/{}_metadata.tsv.gz'.format(sample_name,mutation_mode) if mutation_mode == 'somatic_and_germline': cancercell_kmer_file = '/cluster/work/grlab/projects/TCGA/PanCanAtlas/peptides_neoantigen/analysis_pancan/' \ 'ccell_rerun_2018/output/peptides.clean/split/cj_kmers/{}.cj.{}.cj_kmers_9.fa'.format( sample_name, 'germline_somatic') aux_germ_immunopepper_file = '/cluster/work/grlab/projects/TCGA/immunopepper_rerun/{}/{}_junction_kmer.txt'.format( sample_name, 'germline') aux_germ_immunopepper_dict = {line.split('\t')[0]:line.split('\t')[1] for line in open(aux_germ_immunopepper_file,'r') if line.strip().split('\t')[-1] == 'True'} aux_germ_meta_gz_file = '/cluster/work/grlab/projects/TCGA/immunopepper_rerun/{}/{}_metadata.tsv.gz'.format(sample_name,'germline') _, aux_mut_meta_flag_dict_without_coord, _ = get_immunopepper_meta_dict(aux_germ_meta_gz_file) else: # In Immunopepper's implementation, in the somatic_and_germline mode (in germline_somatic Immunopepper), # the reference peptide is the germline-applied while in Matthias', the reference peptide is just the reference. # Therefore, quite a lot of kmers are already included in 'germline_junction_kmer' and not included in # 'somatic_germline_junction_kmer'. In Matthias' output, those germline kmers are also included in 'germline_somatic_cj_kmers' # To compare the two, we need the auxillary dict generated from germline mode. aux_germ_immunopepper_dict = {} aux_mut_meta_flag_dict_without_coord = {} ######## # Part 0: load some auxillary function and data ######## if not os.path.exists('ref_cause_dict.pkl'): print("Reference cause dictionary does not exist. Begin generating and might take 20 minutes...\n") create_reference_cause_data() f = open('ref_cause_dict.pkl','rb') ref_kmer_set,imm_gene_coord_dict,cancercell_gene_coord_dict,additional_imm_coord_dict,additional_gene_name_list,missing_cancercell_gene_coord_dict = pickle.load(f) # get immunopepper junction metadata dict _,mut_meta_flag_dict_without_coord,_ = get_immunopepper_meta_dict(mutation_meta_gz_file) mut_meta_flag_dict_without_coord = merge_two_dicts(mut_meta_flag_dict_without_coord,aux_mut_meta_flag_dict_without_coord) # get cancercell kmer dict # kmer: -> gene_name cancercell_kmer_dict = get_cancercell_kmer_dict(cancercell_kmer_file) cancercell_kmer_set = set(cancercell_kmer_dict.keys()) # get immunopepper kmer dict, only focus on the cross junction part # kmer: -> gene_name immunopepper_dict = {line.split('\t')[0]:line.split('\t')[1] for line in open(immunopepper_file,'r') if line.strip().split('\t')[-1] == 'True'} immunopepper_dict = merge_two_dicts(immunopepper_dict,aux_germ_immunopepper_dict) ######## # Part 1: get kmer dict ######## # get all kmer returned by immunopepper immunopepper_kmer = set(immunopepper_dict.keys()) common_kmer_set = cancercell_kmer_set.intersection(immunopepper_kmer) additional_kmer_list = list(immunopepper_kmer.difference(cancercell_kmer_set)) missing_kmer_list = list(cancercell_kmer_set.difference(immunopepper_kmer)) num_common_kmer = len(common_kmer_set) num_additional_kmer = len(additional_kmer_list) num_missing_kmer = len(missing_kmer_list) s_summary = ">>>>>>>>Validation Start\n\nComparison overview. (additional kmer means imm subtracts mat, miss kmer means mat subtracts imm).\n" \ ">> {} common kmers, {} additional kmers and {} miss kmers".format(num_common_kmer,num_additional_kmer,num_missing_kmer) print(s_summary) ######## # Part 2: Explain missing kmer ######## # case 1: Mutations occur at the extrapolation part # so the whole peptide is kept alghough they are the same with ref peptide near the cross junction place # these missing kmers
OoOO000.join(timeout=0.1) ii1Ii11I.append(sum(OoOO000.result)) print ((sum(ii1Ii11I) / (timeit.default_timer() - i1I1iI1iIi111i)) / 1000 / 1000) * 8 del OoOO000 if 1 - 1: II111iiii OOooooO0Oo = Queue(6) OO = threading.Thread(target=I1I1I, args=(OOooooO0Oo, files)) iIiIIi1 = threading.Thread(target=O0O, args=(OOooooO0Oo, len(files))) i1I1iI1iIi111i = timeit.default_timer() OO.start() iIiIIi1.start() while OO.isAlive(): OO.join(timeout=0.1) while iIiIIi1.isAlive(): iIiIIi1.join(timeout=0.1) return (sum(ii1Ii11I) / (timeit.default_timer() - i1I1iI1iIi111i)) if 7 - 7: OOO0O - Oo0Ooo - oooO0oo0oOOOO + OOO0O if 26 - 26: II1Ii1iI1i class I11iiI1i1(threading.Thread): if 47 - 47: o0oOoO00o - II1Ii1iI1i.II111iiii + OoooooooOO.i11iIiiIii if 94 - 94: o0oOOo0O0Ooo * II1Ii1iI1i / Oo0Ooo / II1Ii1iI1i def __init__(self, url, start, size): self.url = url oO0 = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' O0OO0O = oO0 * (int(round(int(size) / 36.0))) self.data = ('content1=%s' % O0OO0O[0: int(size) - 9]).encode() del O0OO0O self.result = None self.starttime = start threading.Thread.__init__(self) if 81 - 81: oooO0oo0oOOOO.o0oOOo0O0Ooo % O0 / I1IiiI - oooO0oo0oOOOO def run(self): try: if ((timeit.default_timer() - self.starttime) <= 10 and not Oo.isSet()): O0OOo00oo0oOo = O0ooo0O0oo0(self.url, data=self.data) OoOo0o = urlopen(O0OOo00oo0oOo) OoOo0o.read(11) OoOo0o.close() self.result = len(self.data) else: self.result = 0 except IOError: self.result = 0 if 43 - 43: i11iIiiIii + Oo0Ooo * II111iiii * o0ooo * O0 if 64 - 64: ooO0oo0oO0 % iIii1I11I1II1 * oooO0oo0oOOOO def o0iI11I1II(url, sizes, quiet=False): if 40 - 40: iIii1I11I1II1 / OoOoOO00 % I1ii11iIi11i + II111iiii if 27 - 27: II111iiii * OoOoOO00 * iIii1I11I1II1 i1I1iI1iIi111i = timeit.default_timer() if 86 - 86: OoO0O00 * ooO0oo0oO0.o0oOoO00o def I1I1I(q, sizes): for iI in sizes: OoOO000 = I11iiI1i1(url, i1I1iI1iIi111i, iI) OoOO000.start() q.put(OoOO000, True) if not quiet and not Oo.isSet(): sys.stdout.write('.') sys.stdout.flush() if 90 - 90: o0ooo % II1Ii1iI1i - iIii1I11I1II1 - iIii1I11I1II1 / i11iIiiIii % I1ii11iIi11i ii1Ii11I = [] if 37 - 37: oooO0oo0oOOOO - I1IiiI.i111I * II1Ii1iI1i - o0oOoO00o def O0O(q, total_sizes): while len(ii1Ii11I) < total_sizes: OoOO000 = q.get(True) while OoOO000.isAlive(): OoOO000.join(timeout=0.1) ii1Ii11I.append(OoOO000.result) print ((sum(ii1Ii11I) / (timeit.default_timer() - i1I1iI1iIi111i)) / 1000 / 1000) * 8 del OoOO000 if 8 - 8: OoO0O00 - I1IiiI % II1Ii1iI1i * OoooooooOO - OoO0O00 * o0ooo OOooooO0Oo = Queue(6) OO = threading.Thread(target=I1I1I, args=(OOooooO0Oo, sizes)) iIiIIi1 = threading.Thread(target=O0O, args=(OOooooO0Oo, len(sizes))) i1I1iI1iIi111i = timeit.default_timer() OO.start() iIiIIi1.start() while OO.isAlive(): OO.join(timeout=0.1) while iIiIIi1.isAlive(): iIiIIi1.join(timeout=0.1) return (sum(ii1Ii11I) / (timeit.default_timer() - i1I1iI1iIi111i)) if 6 - 6: OoooooooOO if 17 - 17: I1IiiI % o0ooo def OOOoo(dom, tagName): O0oO = dom.getElementsByTagName(tagName)[0] if 73 - 73: I1ii11iIi11i * i11iIiiIii % oooO0oo0oOOOO.I1ii11iIi11i if 66 - 66: oooO0oo0oOOOO + oooO0oo0oOOOO + OOO0O / o0oOoO00o + ooO0oo0oO0 if 30 - 30: O0 if 44 - 44: oooO0oo0oOOOO / i111I / i111I if 87 - 87: Oo0Ooo.I1IiiI - II111iiii + O0 / Oo0Ooo / oooO0oo0oOOOO if 25 - 25: I1IiiI.I1IiiI - OoOoOO00 % OoOoOO00 - i11iIiiIii / o0ooo return dict(list(O0oO.attributes.items())) if 51 - 51: Oo0Ooo / OoOoOO00.ooO0oo0oO0 * o0oOOo0O0Ooo + OoO0O00 * I11iii11IIi if 73 - 73: OoO0O00 + OoooooooOO - O0 - II1Ii1iI1i - II111iiii def O0Oo0oOOoooOOOOo(): if 62 - 62: OOO0O if 74 - 74: o0oOoO00o + o0oOOo0O0Ooo if 71 - 71: Oo0Ooo % ooO0oo0oO0 if 98 - 98: i111I % i11iIiiIii % OOO0O + II1Ii1iI1i O0OOo00oo0oOo = O0ooo0O0oo0('https://www.speedtest.net/speedtest-config.php') O0OOO = Ii(O0OOo00oo0oOo) if O0OOO is False: Ii11iI1i('Could not retrieve speedtest.net configuration') sys.exit(1) OOoOO0o0o0 = [] while 1: OOoOO0o0o0.append(O0OOO.read(10240)) if len(OOoOO0o0o0[- 1]) == 0: break if int(O0OOO.code) != 200: return None O0OOO.close() try: try: ii1I1 = ET.fromstring(''.encode().join(OOoOO0o0o0)) OooooOOoo0 = { 'client': ii1I1.find('client').attrib, 'times': ii1I1.find('times').attrib, 'download': ii1I1.find('download').attrib, 'upload': ii1I1.find('upload').attrib} except Exception, iii: xbmc.log('Exception for ET: ' + str(iii), level=xbmc.LOGDEBUG) ii1I1 = DOM.parseString(''.join(OOoOO0o0o0)) OooooOOoo0 = { 'client': OOOoo(ii1I1, 'client'), 'times': OOOoo(ii1I1, 'times'), 'download': OOOoo(ii1I1, 'download'), 'upload': OOOoo(ii1I1, 'upload')} except SyntaxError: Ii11iI1i('Failed to parse speedtest.net configuration') sys.exit(1) del ii1I1 del OOoOO0o0o0 return OooooOOoo0 if 35 - 35: i111I % ooO0oo0oO0 - oooO0oo0oOOOO if 20 - 20: i1IIi - OOO0O def i1iI(client, all=False): if 94 - 94: iIii1I11I1II1 / Oo0Ooo % o0oOoO00o * o0oOoO00o * II111iiii if 29 - 29: OoO0O00 + OoOoOO00 / o0oOOo0O0Ooo / ooO0oo0oO0 * iIii1I11I1II1 if 62 - 62: ooO0oo0oO0 / oooO0oo0oOOOO - OoO0O00.i111I if 11 - 11: I1ii11iIi11i.OoO0O00 * I11iii11IIi * OoooooooOO + OOO0O IiII111i1i11 = [ 'https://www.speedtest.net/speedtest-servers-static.php', 'http://c.speedtest.net/speedtest-servers-static.php', ] i111iIi1i1II1 = {} for oooO in IiII111i1i11: try: O0OOo00oo0oOo = O0ooo0O0oo0(oooO) O0OOO = Ii(O0OOo00oo0oOo) if O0OOO is False: raise I1II1III11iii i1I1i111Ii = [] while 1: i1I1i111Ii.append(O0OOO.read(10240)) if len(i1I1i111Ii[- 1]) == 0: break if int(O0OOO.code) != 200: O0OOO.close() raise I1II1III11iii O0OOO.close() try: try: ii1I1 = ET.fromstring(''.encode().join(i1I1i111Ii)) ooo = ii1I1.getiterator('server') except Exception, iii: xbmc.log('Exception for ET: ' + str(iii), level=xbmc.LOGDEBUG) ii1I1 = DOM.parseString(''.join(i1I1i111Ii)) ooo = ii1I1.getElementsByTagName('server') except SyntaxError: raise I1II1III11iii for i1i1iI1iiiI in ooo: try: Ooo0oOooo0 = i1i1iI1iiiI.attrib except AttributeError: Ooo0oOooo0 = dict(list(i1i1iI1iiiI.attributes.items())) OOoOO0oo0ooO = iIIIIii1([float(client['lat']), float(client['lon'])], [float(Ooo0oOooo0.get('lat')), float(Ooo0oOooo0.get('lon'))]) Ooo0oOooo0['d'] = OOoOO0oo0ooO if OOoOO0oo0ooO not in i111iIi1i1II1: i111iIi1i1II1[OOoOO0oo0ooO] = [Ooo0oOooo0] else: i111iIi1i1II1[OOoOO0oo0ooO].append(Ooo0oOooo0) del ii1I1 del i1I1i111Ii del ooo except I1II1III11iii: continue if 61 - 61: OoOoOO00 - ooO0oo0oO0 - i1IIi if 25 - 25: O0 * i111I + I1ii11iIi11i.o0oOOo0O0Ooo.o0oOOo0O0Ooo if i111iIi1i1II1: break if 58 - 58: I1IiiI if not i111iIi1i1II1: Ii11iI1i('Failed to retrieve list of speedtest.net servers') sys.exit(1) if 53 - 53: i1IIi o0OOOoO0 = [] for OOoOO0oo0ooO in sorted(i111iIi1i1II1.keys()): for o0OoOo00o0o in i111iIi1i1II1[OOoOO0oo0ooO]: o0OOOoO0.append(o0OoOo00o0o) if len(o0OOOoO0) == 5 and not all: break else: continue break if 41 - 41: OOO0O % OoO0O00 - Oo0Ooo * o0ooo * Oo0Ooo del i111iIi1i1II1 return o0OOOoO0 if 69 - 69: ooO0oo0oO0 - OoooooooOO + o0oOOo0O0Ooo - i111I if 23 - 23: i11iIiiIii def II1iIi11(servers): if 12 - 12: II1Ii1iI1i + i11iIiiIii * iIii1I11I1II1 / I1ii11iIi11i.i111I if 5 - 5: i1IIi + I11iii11IIi / o0oOOo0O0Ooo.o0oOoO00o / i111I if 32 - 32: I1IiiI % iIii1I11I1II1 / i1IIi - I1IiiI if 7 - 7: o0ooo * OoO0O00 - OOO0O + ooO0oo0oO0 * I1IiiI % OoO0O00 iI1i111I1Ii = {} for i1i1iI1iiiI in servers: i11i1ii1I = [] oooO = '%s/latency.txt' % os.path.dirname(i1i1iI1iiiI['url']) o0OO0o0o00o = urlparse(oooO) for OOOO in range(0, 3): try: if o0OO0o0o00o[0] == 'https': oOo0 = HTTPSConnection(o0OO0o0o00o[1]) else: oOo0 = HTTPConnection(o0OO0o0o00o[1]) OOOoOO = {'User-Agent': o00ooooO0oO} i1I1iI1iIi111i = timeit.default_timer() oOo0.request("GET", o0OO0o0o00o[2], headers=OOOoOO) I11IIIi = oOo0.getresponse() iIIiiI1II1i11 = (timeit.default_timer() - i1I1iI1iIi111i) except (HTTPError, URLError, socket.error): i11i1ii1I.append(3600) continue o0o0 = I11IIIi.read(9) if int(I11IIIi.status) == 200 and o0o0 == 'test=test'.encode(): i11i1ii1I.append(iIIiiI1II1i11) else: i11i1ii1I.append(3600) oOo0.close() IIii1111 = round((sum(i11i1ii1I) / 6) * 1000, 3) iI1i111I1Ii[IIii1111] = i1i1iI1iiiI I1iI = sorted(iI1i111I1Ii.keys())[0] IIIIiIiIi1 = iI1i111I1Ii[I1iI] IIIIiIiIi1['latency'] = I1iI if 2 - 2: o0oOoO00o % iIii1I11I1II1 * iIii1I11I1II1.o0oOOo0O0Ooo / o0oOoO00o return IIIIiIiIi1 if 27 - 27: OoO0O00 + OOO0O - i1IIi if 69 - 69: I11iii11IIi - O0 % I1ii11iIi11i + i11iIiiIii.OoOoOO00 / OoO0O00 def OoOoo00Ooo00(signum, frame): if 57 - 57: o0ooo if 32 - 32: II1Ii1iI1i - Oo0Ooo % OoooooooOO.o0oOoO00o / I11iii11IIi + I1IiiI if 76 - 76: OOO0O if 73 - 73: O0 * o0oOoO00o + II1Ii1iI1i + OOO0O global Oo Oo.set() raise SystemExit('\nCancelling...') if 40 - 40: II111iiii.OoOoOO00 * o0ooo + ooO0oo0oO0 + ooO0oo0oO0 if 9 - 9: i111I % OoooooooOO.oooO0oo0oOOOO % i111I if 32 - 32: i11iIiiIii if 31 - 31: iIii1I11I1II1 / OoO0O00 / I1ii11iIi11i if 41 - 41: Oo0Ooo if 10 - 10: Oo0Ooo / Oo0Ooo / o0ooo.o0ooo def OOoo(list=False, mini=None, server=None, share=False, simple=False, src=None, timeout=10, units=('bit', 8), version=False): iIIiiiI = xbmcgui.DialogProgress() oo0 = [' ', ' ', ' '] iIIiiiI.create(Iii1ii1II11i + ' - Powered by SpeedTest.net', oo0[0], oo0[1], oo0[2]) iIIiiiI.update(0, oo0[0], oo0[1], oo0[2]) if 34 - 34: I1IiiI % o0oOoO00o + OOO0O * iIii1I11I1II1 if 33 - 33: I1IiiI / OOO0O * ooO0oo0oO0 / I1ii11iIi11i + Oo0Ooo / o0oOoO00o if 40 - 40: I1ii11iIi11i global Oo, oOoOo00oOo Oo = threading.Event() if 60 - 60: I1ii11iIi11i % OoOoOO00 * OoO0O00 % II111iiii if 70 - 70: OoO0O00 % oooO0oo0oOOOO + ooO0oo0oO0 / II1Ii1iI1i % O0 if 100 - 100: o0oOOo0O0Ooo + ooO0oo0oO0 * o0oOOo0O0Ooo oOOo0OOOo00O = ( 'Command line interface for testing internet bandwidth using ' 'speedtest.net.\n' '------------------------------------------------------------' '--------------\n' 'https://github.com/sivel/speedtest-cli') if 76 - 76: i11iIiiIii + o0oOOo0O0Ooo / I1ii11iIi11i - OoO0O00 - II1Ii1iI1i + I1ii11iIi11i if 51 - 51: iIii1I11I1II1.OOO0O + iIii1I11I1II1 if 95 - 95: I1IiiI if version: version() if 46 - 46: OoOoOO00 + OoO0O00
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """A tool to extract size information for chrome, executed by buildbot. When this is run, the current directory (cwd) should be the outer build directory (e.g., chrome-release/build/). For a list of command-line options, call this script with '--help'. """ import errno import glob import json import platform import optparse import os import re import stat import subprocess import sys import tempfile from slave import build_directory SRC_DIR = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..', '..', '..', '..', '..')) # Add Catapult to the path so we can import the chartjson-histogramset # conversion. sys.path.append(os.path.join(SRC_DIR, 'third_party', 'catapult', 'tracing')) from tracing.value import convert_chart_json class ResultsCollector(object): def __init__(self): self.results = {} def add_result(self, name, identifier, value, units): assert name not in self.results self.results[name] = { 'identifier': identifier, 'value': int(value), 'units': units } # Legacy printing, previously used for parsing the text logs. print 'RESULT %s: %s= %s %s' % (name, identifier, value, units) def get_size(filename): return os.stat(filename)[stat.ST_SIZE] def get_linux_stripped_size(filename): EU_STRIP_NAME = 'eu-strip' # Assumes |filename| is in out/Release # build/linux/bin/eu-strip' src_dir = os.path.dirname(os.path.dirname(os.path.dirname(filename))) eu_strip_path = os.path.join(src_dir, 'build', 'linux', 'bin', EU_STRIP_NAME) if (platform.architecture()[0] == '64bit' or not os.path.exists(eu_strip_path)): eu_strip_path = EU_STRIP_NAME with tempfile.NamedTemporaryFile() as stripped_file: strip_cmd = [eu_strip_path, '-o', stripped_file.name, filename] result = 0 result, _ = run_process(result, strip_cmd) if result != 0: return (result, 0) return (result, get_size(stripped_file.name)) def run_process(result, command): p = subprocess.Popen(command, stdout=subprocess.PIPE) stdout = p.communicate()[0] if p.returncode != 0: print 'ERROR from command "%s": %d' % (' '.join(command), p.returncode) if result == 0: result = p.returncode return result, stdout def main_mac(options, args, results_collector): """Print appropriate size information about built Mac targets. Returns the first non-zero exit status of any command it executes, or zero on success. """ build_dir = build_directory.GetBuildOutputDirectory(SRC_DIR) target_dir = os.path.join(build_dir, options.target) size_path = 'size' # If there's a hermetic download of Xcode, directly invoke 'size' from it. The # hermetic xcode binaries aren't a full Xcode install, so we can't modify # DEVELOPER_DIR. hermetic_size_path = os.path.join( SRC_DIR, 'build', 'mac_files', 'xcode_binaries', 'Contents', 'Developer', 'Toolchains', 'XcodeDefault.xctoolchain', 'usr', 'bin', 'size') if os.path.exists(hermetic_size_path): size_path = hermetic_size_path result = 0 # Work with either build type. base_names = ('Chromium', 'Google Chrome') for base_name in base_names: app_bundle = base_name + '.app' framework_name = base_name + ' Framework' framework_bundle = framework_name + '.framework' framework_dsym_bundle = framework_name + '.dSYM' framework_unstripped_name = framework_name + '.unstripped' chromium_app_dir = os.path.join(target_dir, app_bundle) chromium_executable = os.path.join(chromium_app_dir, 'Contents', 'MacOS', base_name) chromium_framework_dir = os.path.join(target_dir, framework_bundle) chromium_framework_executable = os.path.join(chromium_framework_dir, framework_name) chromium_framework_dsym_dir = os.path.join(target_dir, framework_dsym_bundle) chromium_framework_dsym = os.path.join(chromium_framework_dsym_dir, 'Contents', 'Resources', 'DWARF', framework_name) chromium_framework_unstripped = os.path.join(target_dir, framework_unstripped_name) if os.path.exists(chromium_executable): print_dict = { # Remove spaces in the names so any downstream processing is less # likely to choke. 'app_name' : re.sub(r'\s', '', base_name), 'app_bundle' : re.sub(r'\s', '', app_bundle), 'framework_name' : re.sub(r'\s', '', framework_name), 'framework_bundle' : re.sub(r'\s', '', framework_bundle), 'app_size' : get_size(chromium_executable), 'framework_size' : get_size(chromium_framework_executable), 'framework_dsym_name' : re.sub(r'\s', '', framework_name) + 'Dsym', 'framework_dsym_size' : get_size(chromium_framework_dsym), } # Collect the segment info out of the App result, stdout = run_process(result, [size_path, chromium_executable]) print_dict['app_text'], print_dict['app_data'], print_dict['app_objc'] = \ re.search(r'(\d+)\s+(\d+)\s+(\d+)', stdout).groups() # Collect the segment info out of the Framework result, stdout = run_process(result, [size_path, chromium_framework_executable]) print_dict['framework_text'], print_dict['framework_data'], \ print_dict['framework_objc'] = \ re.search(r'(\d+)\s+(\d+)\s+(\d+)', stdout).groups() # Collect the whole size of the App bundle on disk (include the framework) result, stdout = run_process(result, ['du', '-s', '-k', chromium_app_dir]) du_s = re.search(r'(\d+)', stdout).group(1) print_dict['app_bundle_size'] = (int(du_s) * 1024) results_collector.add_result( print_dict['app_name'], print_dict['app_name'], print_dict['app_size'], 'bytes') results_collector.add_result( '%s-__TEXT' % print_dict['app_name'], '__TEXT', print_dict['app_text'], 'bytes') results_collector.add_result( '%s-__DATA' % print_dict['app_name'], '__DATA', print_dict['app_data'], 'bytes') results_collector.add_result( '%s-__OBJC' % print_dict['app_name'], '__OBJC', print_dict['app_objc'], 'bytes') results_collector.add_result( print_dict['framework_name'], print_dict['framework_name'], print_dict['framework_size'], 'bytes') results_collector.add_result( '%s-__TEXT' % print_dict['framework_name'], '__TEXT', print_dict['framework_text'], 'bytes') results_collector.add_result( '%s-__DATA' % print_dict['framework_name'], '__DATA', print_dict['framework_data'], 'bytes') results_collector.add_result( '%s-__OBJC' % print_dict['framework_name'], '__OBJC', print_dict['framework_objc'], 'bytes') results_collector.add_result( print_dict['app_bundle'], print_dict['app_bundle'], print_dict['app_bundle_size'], 'bytes') results_collector.add_result( print_dict['framework_dsym_name'], print_dict['framework_dsym_name'], print_dict['framework_dsym_size'], 'bytes') # Found a match, don't check the other base_names. return result # If no base_names matched, fail script. return 66 def check_linux_binary(target_dir, binary_name, options, results_collector): """Collect appropriate size information about the built Linux binary given. Returns a tuple (result, sizes). result is the first non-zero exit status of any command it executes, or zero on success. sizes is a list of tuples (name, identifier, totals_identifier, value, units). The printed line looks like: name: identifier= value units When this same data is used for totals across all the binaries, then totals_identifier is the identifier to use, or '' to just use identifier. """ binary_file = os.path.join(target_dir, binary_name) if not os.path.exists(binary_file): # Don't print anything for missing files. return 0, [] result = 0 sizes = [] sizes.append((binary_name, binary_name, 'size', get_size(binary_file), 'bytes')) result, stripped_size = get_linux_stripped_size(binary_file) sizes.append((binary_name + '-stripped', 'stripped', 'stripped', stripped_size, 'bytes')) result, stdout = run_process(result, ['size', binary_file]) text, data, bss = re.search(r'(\d+)\s+(\d+)\s+(\d+)', stdout).groups() sizes += [ (binary_name + '-text', 'text', '', text, 'bytes'), (binary_name + '-data', 'data', '', data, 'bytes'), (binary_name + '-bss', 'bss', '', bss, 'bytes'), ] # Determine if the binary has the DT_TEXTREL marker. result, stdout = run_process(result, ['readelf', '-Wd', binary_file]) if re.search(r'\bTEXTREL\b', stdout) is None: # Nope, so the count is zero. count = 0 else: # There are some, so count them. result, stdout = run_process(result, ['eu-findtextrel', binary_file]) count = stdout.count('\n') sizes.append((binary_name + '-textrel', 'textrel', '', count, 'relocs')) return result, sizes def main_linux(options, args, results_collector): """Print appropriate size information about built Linux targets. Returns the first non-zero exit status of any command it executes, or zero on success. """ build_dir = build_directory.GetBuildOutputDirectory(SRC_DIR) target_dir = os.path.join(build_dir, options.target) binaries = [ 'chrome', 'nacl_helper', 'nacl_helper_bootstrap', 'libffmpegsumo.so', 'libgcflashplayer.so', 'libppGoogleNaClPluginChrome.so', ] result = 0 totals = {} for binary in binaries: this_result, this_sizes = check_linux_binary(target_dir, binary, options, results_collector) if result == 0: result = this_result for name, identifier, totals_id, value, units in this_sizes: results_collector.add_result(name, identifier, value, units) totals_id = totals_id or identifier, units totals[totals_id] = totals.get(totals_id, 0) + int(value) files = [ 'nacl_irt_x86_64.nexe', 'resources.pak', ] for filename in files: path = os.path.join(target_dir, filename) try: size = get_size(path) except OSError, e: if e.errno == errno.ENOENT: continue # Don't print anything for missing files. raise results_collector.add_result(filename, filename, size, 'bytes') totals['size', 'bytes'] += size # TODO(mcgrathr): This should all be refactored so the mac and win flavors # also deliver data structures rather than printing, and the logic for # the printing and the summing totals is shared across all three flavors. for (identifier, units), value in sorted(totals.iteritems()): results_collector.add_result( 'totals-%s' % identifier, identifier, value, units) return result def check_android_binaries(binaries, target_dir, options, results_collector, binaries_to_print=None): """Common method for printing size information for Android targets. Prints size information for each element of binaries in target_dir. If binaries_to_print is specified, the name of each binary from binaries is replaced with corresponding element of binaries_to_print in output. Returns the first non-zero exit status of any command it executes, or zero on success. """ result = 0 if not binaries_to_print: binaries_to_print = binaries for (binary, binary_to_print) in zip(binaries, binaries_to_print): this_result, this_sizes = check_linux_binary(target_dir, binary, options, results_collector) if result == 0: result = this_result for name, identifier, _, value, units in this_sizes: name = name.replace('/', '_').replace(binary, binary_to_print) identifier = identifier.replace(binary, binary_to_print) results_collector.add_result(name, identifier, value, units) return result def main_android(options, args, results_collector): """Print appropriate size information about built Android targets. Returns the first non-zero exit status of any command it executes, or zero on success. """ target_dir = os.path.join(build_directory.GetBuildOutputDirectory(SRC_DIR), options.target) binaries = [ 'chrome_public_apk/libs/armeabi-v7a/libchrome.so', 'lib/libchrome.so', 'libchrome.so', ] return check_android_binaries(binaries, target_dir, options, results_collector) def main_android_webview(options, args, results_collector): """Print appropriate size information about Android WebViewChromium targets. Returns the first non-zero exit status of any command it executes, or zero on success. """ target_dir = os.path.join(build_directory.GetBuildOutputDirectory(SRC_DIR), options.target) binaries = ['lib/libwebviewchromium.so', 'libwebviewchromium.so'] return check_android_binaries(binaries, target_dir, options, results_collector) def main_android_cronet(options, args, results_collector): """Print appropriate size information about Android Cronet targets. Returns the first non-zero exit status of any command it executes, or zero on success. """ target_dir = os.path.join(build_directory.GetBuildOutputDirectory(SRC_DIR), options.target) # Use version in binary file name, but not in printed output. binaries_with_paths = glob.glob(os.path.join(target_dir,'libcronet.*.so')) num_binaries = len(binaries_with_paths) assert num_binaries == 1, "Got %d binaries"
def set_Z_lims(self, lower=None, upper=None, extra_percent=0.0): if lower is None: lower = self.alt_limits[0] if upper is None: upper = self.alt_limits[1] lower -= (upper-lower)*extra_percent upper += (upper-lower)*extra_percent self.coordinate_system.set_plotZ(lower, upper) self.AltVsEw_axes.set_ylim([lower, upper]) self.NsVsAlt_axes.set_xlim([lower, upper]) # self.ancillary_axes.set_ylim( self.alt_limits ) def set_Zt_lims(self, lower=None, upper=None, extra_percent=0.0): if lower is None: lower = self.alt_limits[0] if upper is None: upper = self.alt_limits[1] lower -= (upper-lower)*extra_percent upper += (upper-lower)*extra_percent self.coordinate_system.set_plotZt(lower, upper) self.AltVsEw_axes.set_ylim([lower, upper]) self.NsVsAlt_axes.set_xlim([lower, upper]) # def set_X_lims(self, lower=None, upper=None, extra_percent=0.0): # print('set lims depreciated') # if lower is None: # lower = self.X_limits[0] # if upper is None: # upper = self.X_limits[1] # # lower -= (upper-lower)*extra_percent # upper += (upper-lower)*extra_percent # # self.coordinate_system.set_plotX(lower, upper) # # self.NsVsEw_axes.set_xlim( [lower, upper] ) # self.AltVsEw_axes.set_xlim( [lower, upper]) # # def set_Y_lims(self, lower=None, upper=None, extra_percent=0.0): # print('set lims depreciated') # if lower is None: # lower = self.Y_limits[0] # if upper is None: # upper = self.Y_limits[1] # # lower -= (upper-lower)*extra_percent # upper += (upper-lower)*extra_percent # # self.coordinate_system.set_plotY(lower, upper) # # self.NsVsAlt_axes.set_ylim( [lower, upper] ) # self.NsVsEw_axes.set_ylim( [lower, upper] ) def set_just_X_lims(self, lower=None, upper=None, extra_percent=0.0): if lower is None: lower = self.X_limits[0] if upper is None: upper = self.X_limits[1] lower -= (upper-lower)*extra_percent upper += (upper-lower)*extra_percent self.coordinate_system.set_plotX(lower, upper) if self.rebalance_XY: ### if this is true, then we want to scale X and Y axis so that teh aspect ratio 1...I think bbox = self.NsVsEw_axes.get_window_extent().transformed(self.fig.dpi_scale_trans.inverted()) self.window_width = bbox.width self.window_height = bbox.width self.coordinate_system.rebalance_Y(self.window_width, self.window_height) Ylims = self.coordinate_system.get_plotY() self.NsVsAlt_axes.set_ylim( Ylims ) self.NsVsEw_axes.set_ylim( Ylims ) self.NsVsEw_axes.set_xlim( [lower, upper] ) self.AltVsEw_axes.set_xlim( [lower, upper]) def set_just_Y_lims(self, lower=None, upper=None, extra_percent=0.0): if lower is None: lower = self.Y_limits[0] if upper is None: upper = self.Y_limits[1] lower -= (upper-lower)*extra_percent upper += (upper-lower)*extra_percent self.coordinate_system.set_plotY(lower, upper) if self.rebalance_XY: ### if this is true, then we want to scale X and Y axis so that teh aspect ratio 1...I think bbox = self.NsVsEw_axes.get_window_extent().transformed(self.fig.dpi_scale_trans.inverted()) self.window_width = bbox.width self.window_height = bbox.width self.coordinate_system.rebalance_X(self.window_width, self.window_height) Xlims = self.coordinate_system.get_plotX() self.NsVsEw_axes.set_xlim( Xlims ) self.AltVsEw_axes.set_xlim( Xlims) self.NsVsAlt_axes.set_ylim( [lower, upper] ) self.NsVsEw_axes.set_ylim( [lower, upper] ) def set_XY_lims(self, lowerX=None, upperX=None, lowerY=None, upperY=None,extra_percent=0.0): if lowerX is None: lowerX = self.X_limits[0] if upperX is None: upperX = self.X_limits[1] if lowerY is None: lowerY = self.Y_limits[0] if upperY is None: upperY = self.Y_limits[1] lowerX -= (upperX-lowerX)*extra_percent upperX += (upperX-lowerX)*extra_percent lowerY -= (upperY-lowerY)*extra_percent upperY += (upperY-lowerY)*extra_percent self.coordinate_system.set_plotX(lowerX, upperX) self.coordinate_system.set_plotY(lowerY, upperY) if self.rebalance_XY: ### if this is true, then we want to scale X and Y axis so that teh aspect ratio 1...I think bbox = self.NsVsEw_axes.get_window_extent().transformed(self.fig.dpi_scale_trans.inverted()) self.window_width = bbox.width self.window_height = bbox.width self.coordinate_system.rebalance_XY(self.window_width, self.window_height) lowerX, upperX = self.coordinate_system.get_plotX() lowerY, upperY = self.coordinate_system.get_plotY() self.NsVsEw_axes.set_xlim( [lowerX, upperX] ) self.AltVsEw_axes.set_xlim( [lowerX, upperX]) self.NsVsAlt_axes.set_ylim( [lowerY, upperY] ) self.NsVsEw_axes.set_ylim( [lowerY, upperY] ) def replot_data(self): ### quick hacks ### self.AltVsT_axes.cla() self.AltVsEw_axes.cla() self.NsVsEw_axes.cla() self.NsVsAlt_axes.cla() self.ancillary_axes.cla() self.ancillary_axes.set_axis_off() ## probably should test if this needs to be on at some point self.AltVsT_axes.set_xlabel(self.coordinate_system.t_label, fontsize=self.axis_label_size) self.AltVsT_axes.set_ylabel(self.coordinate_system.z_label, fontsize=self.axis_label_size) self.AltVsEw_axes.set_ylabel(self.coordinate_system.zt_label, fontsize=self.axis_label_size) self.NsVsEw_axes.set_xlabel(self.coordinate_system.x_label, fontsize=self.axis_label_size) self.NsVsEw_axes.set_ylabel(self.coordinate_system.y_label, fontsize=self.axis_label_size) self.NsVsAlt_axes.set_xlabel(self.coordinate_system.zt_label, fontsize=self.axis_label_size) #### create button press/release events self.key_press = self.fig.canvas.mpl_connect('key_press_event', self.key_press_event) self.key_release = self.fig.canvas.mpl_connect('key_release_event', self.key_release_event) self.button_press = self.fig.canvas.mpl_connect('button_press_event', self.button_press_event) ##mouse button self.button_release = self.fig.canvas.mpl_connect('button_release_event', self.button_release_event) ##mouse button print() for DS in self.data_sets: DS.plot( self.AltVsT_axes, self.AltVsEw_axes, self.NsVsEw_axes, self.NsVsAlt_axes, self.ancillary_axes, self.coordinate_system ) #### set limits #### X, Y, Z, Zt, T = self.coordinate_system.get_limits_plotCoords() self.NsVsEw_axes.set_xlim( X ) self.AltVsEw_axes.set_xlim( X ) self.NsVsAlt_axes.set_ylim( Y ) self.NsVsEw_axes.set_ylim( Y ) self.AltVsT_axes.set_ylim( Zt ) self.AltVsEw_axes.set_ylim( Z ) self.NsVsAlt_axes.set_xlim( Z ) # self.ancillary_axes.set_ylim( self.alt_limits ) self.AltVsT_axes.set_xlim( T ) #### create selectors on plots # self.TAlt_selector_rect = None self.TAlt_selector_rect = RectangleSelector(self.AltVsT_axes, self.TAlt_selector, useblit=False, rectprops=dict(alpha=0.5, facecolor='red'), button=1, state_modifier_keys={'move':'', 'clear':'', 'square':'', 'center':''}) # self.XAlt_selector_rect = None self.XAlt_selector_rect = RectangleSelector(self.AltVsEw_axes, self.XAlt_selector, useblit=False, rectprops=dict(alpha=0.5, facecolor='red'), button=1, state_modifier_keys={'move':'', 'clear':'', 'square':'', 'center':''}) # self.XY_selector_rect = None self.XY_selector_rect = RectangleSelector(self.NsVsEw_axes, self.XY_selector, useblit=False, rectprops=dict(alpha=0.5, facecolor='red'), button=1, state_modifier_keys={'move':'', 'clear':'', 'square':'', 'center':''}) # self.YAlt_selector_rect = None self.YAlt_selector_rect = RectangleSelector(self.NsVsAlt_axes, self.AltY_selector, useblit=False, rectprops=dict(alpha=0.5, facecolor='red'), button=1, state_modifier_keys={'move':'', 'clear':'', 'square':'', 'center':''}) #### calbacks for various events def TAlt_selector(self, eclick, erelease): minT = min(eclick.xdata, erelease.xdata) maxT = max(eclick.xdata, erelease.xdata) minAlt = min(eclick.ydata, erelease.ydata) maxAlt = max(eclick.ydata, erelease.ydata) if minT == maxT or minAlt==maxAlt: self.mouse_move = False return self.mouse_move = True self.previous_view_states.append( self.previous_view_state( self.coordinate_system.get_limits_plotCoords() ) ) if len(self.previous_view_states) > self.previous_depth: N = len(self.previous_view_states) - self.previous_depth self.previous_view_states = self.previous_view_states[N:] if self.z_button_pressed: ## then we zoom out, Ztlims = self.coordinate_system.get_plotZt() Tlims = self.coordinate_system.get_plotT() minT = 2.0*Tlims[0] - minT maxT = 2.0*Tlims[1] - maxT minAlt = 2.0*Ztlims[0] - minAlt maxAlt = 2.0*Ztlims[1] - maxAlt self.set_T_lims(minT, maxT) self.set_Zt_lims(minAlt, maxAlt) self.replot_data() self.draw() def XAlt_selector(self, eclick, erelease): minX = min(eclick.xdata, erelease.xdata) maxX = max(eclick.xdata, erelease.xdata) minA = min(eclick.ydata, erelease.ydata) maxA = max(eclick.ydata, erelease.ydata) if minA==maxA or minX==maxX: self.mouse_move = False return self.mouse_move = True self.previous_view_states.append( self.previous_view_state( self.coordinate_system.get_limits_plotCoords() ) ) if len(self.previous_view_states) > self.previous_depth: N = len(self.previous_view_states) - self.previous_depth self.previous_view_states = self.previous_view_states[N:] if self.z_button_pressed: Xlims = self.coordinate_system.get_plotX() Zlims = self.coordinate_system.get_plotZ() minA = 2.0*Zlims[0] - minA maxA = 2.0*Zlims[1] - maxA minX = 2.0*Xlims[0] - minX maxX = 2.0*Xlims[1] - maxX self.set_Z_lims(minA, maxA) self.set_just_X_lims(minX, maxX) self.replot_data() self.draw() def AltY_selector(self, eclick, erelease): minA = min(eclick.xdata, erelease.xdata) maxA = max(eclick.xdata, erelease.xdata) minY = min(eclick.ydata, erelease.ydata) maxY = max(eclick.ydata, erelease.ydata) if minA==maxA or minY==maxY: self.mouse_move = False return self.mouse_move = True self.previous_view_states.append( self.previous_view_state( self.coordinate_system.get_limits_plotCoords() ) ) if len(self.previous_view_states) > self.previous_depth: N = len(self.previous_view_states) - self.previous_depth self.previous_view_states = self.previous_view_states[N:] if self.z_button_pressed: Ylims = self.coordinate_system.get_plotY() Zlims = self.coordinate_system.get_plotZ() minA = 2.0*Zlims[0] - minA maxA = 2.0*Zlims[1] - maxA minY = 2.0*Ylims[0] - minY maxY = 2.0*Ylims[1] - maxY self.set_Z_lims(minA, maxA) self.set_just_Y_lims(minY, maxY) self.replot_data() self.draw() def XY_selector(self, eclick, erelease): minX = min(eclick.xdata, erelease.xdata) maxX = max(eclick.xdata, erelease.xdata) minY = min(eclick.ydata, erelease.ydata) maxY = max(eclick.ydata, erelease.ydata) if minX==maxX or minY==maxY: self.mouse_move = False else: self.mouse_move = True self.previous_view_states.append( self.previous_view_state( self.coordinate_system.get_limits_plotCoords() ) ) if len(self.previous_view_states) > self.previous_depth: N = len(self.previous_view_states) - self.previous_depth self.previous_view_states = self.previous_view_states[N:] if self.z_button_pressed: Xlims = self.coordinate_system.get_plotX() Ylims = self.coordinate_system.get_plotY() minX = 2.0*Xlims[0] - minX maxX = 2.0*Xlims[1] - maxX minY = 2.0*Ylims[0] - minY maxY = 2.0*Ylims[1] - maxY self.set_XY_lims(minX, maxX, minY, maxY) self.replot_data() self.draw() def key_press_event(self, event): self.key_press_callback( event ) # print "key press:", event.key if event.key == 'z': self.z_button_pressed = True elif event.key == 'c': print(event.inaxes) print(event.xdata) print(event.ydata) def key_release_event(self, event): # print "key release:", event.key if event.key == 'z': self.z_button_pressed = False def button_press_event(self, event): # print "mouse pressed:", event if event.button == 2 and len(self.previous_view_states)>0: ##middle mouse, back up previous_state = self.previous_view_states.pop(-1) X, Y, Z, Zt, T = previous_state.limits self.set_XY_lims(X[0], X[1], Y[0], Y[1]) self.set_Z_lims(Z[0], Z[1]) self.set_Zt_lims(Zt[0], Zt[1]) self.set_T_lims(T[0], T[1]) self.replot_data() self.draw() elif event.button == 3: ##right mouse, record location for drag self.right_mouse_button_location = [event.xdata, event.ydata] self.right_button_axis = event.inaxes def button_release_event(self, event): if event.button == 1: pass # if len(self.data_sets)>0 and self.data_sets[0].name == "arrow" and not self.mouse_move: # print("mouse moved:", self.mouse_move) # C_X, C_Y, C_Z, C_T = self.coordinate_system.transform( [self.data_sets[0].XYZT[0]], [self.data_sets[0].XYZT[1]], [self.data_sets[0].XYZT[2]], [self.data_sets[0].XYZT[3]] ) # if event.inaxes is self.AltVsT_axes: # C_T[0] = event.xdata # C_Z[0] = event.ydata # elif event.inaxes is self.NsVsEw_axes: # C_X[0] = event.xdata # C_Y[0] = event.ydata # elif event.inaxes is self.AltVsEw_axes: # C_X[0] = event.xdata # C_Z[0] = event.ydata # elif event.inaxes is self.NsVsAlt_axes: # C_Z[0] = event.xdata # C_Y[0] = event.ydata # # minX, minY, minZ, minT = self.coordinate_system.invert( C_X, C_Y, C_Z, C_T ) # self.data_sets[0].XYZT[0] = minX[0] # self.data_sets[0].XYZT[1] = minY[0] # self.data_sets[0].XYZT[2] = minZ[0] # self.data_sets[0].XYZT[3] = minT[0] # self.data_sets[0].set_arrow() # self.replot_data() # self.draw() elif event.button == 3: ##drag if event.inaxes != self.right_button_axis: return deltaX = self.right_mouse_button_location[0] - event.xdata deltaY = self.right_mouse_button_location[1] - event.ydata lims = self.coordinate_system.get_limits_plotCoords() self.previous_view_states.append( self.previous_view_state( lims ) ) Xlims, Ylims, Zlims, Ztlims, Tlims = lims if event.inaxes is self.AltVsT_axes: self.set_T_lims( Tlims[0] + deltaX, Tlims[1] + deltaX) self.set_Zt_lims( Ztlims[0] + deltaY,
# This files contains your custom actions which can be used to run # custom Python code. # # See this guide on how to implement these action: # https://rasa.com/docs/rasa/core/actions/#custom-actions/ # This is a simple example for a custom action which utters "Hello World!" import re import io import ast import requests import numpy as np import pandas as pd import random import multiprocessing import threading, queue from decimal import Decimal from ttictoc import tic, toc from typing import Any, Text, Dict, List, Union, Optional from rasa_sdk import Action, Tracker from rasa_sdk import FormValidationAction from rasa_sdk.events import SlotSet, FollowupAction from rasa_sdk.types import DomainDict from rasa_sdk.executor import CollectingDispatcher import warnings from statistics import mean from os import path, getenv from datetime import datetime import matplotlib.pyplot as plt from botocore.exceptions import ClientError from boto3.exceptions import S3UploadFailedError import boto3 from sqlalchemy import create_engine import sqlalchemy.types as sql_types DB_AWS_ACCESS_KEY_ID = getenv('DB_AWS_ACCESS_KEY_ID') DB_AWS_SECRET_ACCESS_KEY = getenv('DB_AWS_SECRET_ACCESS_KEY') DB_AWS_BUCKET = 'journeypic' # ------------------------------------------------------------------ def connect_to_server(params_dict, logging_func=print, debug=False): connit = params_dict['connit_type'] + '://' + params_dict['connit_user'] + ':' \ + params_dict['connit_pass'] + '@' \ + params_dict['connit_host'] + ':' \ + params_dict['connit_port'] + '/' \ + params_dict['connit_db'] if debug: logging_func(connit) sql_engine = create_engine(connit, echo=False) try: sql_engine.connect() logging_func("Connected Successfully") except Exception as e: logging_func("Error connecting to SQL server!\n\n%s\n" % str(e)) raise (e) return sql_engine def read_table(sql_engine, sql_query, logging_func=print, debug=False): df = pd.read_sql(sql_query, sql_engine) if debug: match1 = search('FROM (.*) ORDER', sql_query) match2 = search('FROM (.*) LIMIT', sql_query) table_name = "Data" if match1: table_name = match1.group(1) elif match2: table_name = match2.group(1) logging_func('\n%s %s:' % (table_name, str(df.shape))) logging_func(df.head().to_string()) return df # ------------------------------------------------------------------ def res_timer(res, tracker): timer_state = tracker.get_slot('timer_state') if tracker.get_slot('timer_state') else 'n/a' if timer_state == 'on': res += '\nElapsed time: %.2f sec' % toc() return res # ------------------------------------------------------------------ def res_error(res, tracker, e): timer_state = tracker.get_slot('timer_state') if tracker.get_slot('timer_state') else 'n/a' if timer_state == 'on': res += '\nERROR: %s' % e return res # ------------------------------------------------------------------ def simpleQuestionAnswer(tracker, entity, db_dict, user_intent=""): lut_df = db_dict['lut'] custom_df = db_dict['nutrients_qna'] feature = lut_df['Entity'][entity] try: if feature in custom_df.index: res = custom_df.loc[feature][user_intent] else: res = custom_df[[str(s) in feature for s in custom_df.index.tolist()]][user_intent][0] if 'slot#' in res: res_list = res.split(' ') for k, el in enumerate(res_list): if 'slot#' in el: res_list[k] = str(tracker.get_slot(el.split('#')[1])) res = ' '.join(res_list) res_list = re.findall('\{.*?\}', res) for match in res_list: res = res.replace(match, str(eval(match[1:-1]))) except: res = "אין לי מושג, מצטער!" return res def checkPrecentinres(title, x): precent_position = None listNumbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] if 'אחוז' in title: precent_position = title.find('אחוז') if '%' in title: precent_position = title.find('%') if precent_position is not None: if title[precent_position - 2] == '0' and title[precent_position - 3] not in listNumbers: title = title[:title.find(x)] title += x return title # ------------------------------------------------------------------ def upload_file_to_s3(local_file, s3_folder, s3_file, aws_access_key_id, aws_secret_access_key, aws_bucket, debug_en=False): """ upload a given file to given location on Amazon-S3 """ success = True HTTP_OK = 200 # Connect to Amazon-S3 client: s3_client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key) # Make a new directory on S3 (if not already exists): if s3_folder + '/' in [x['Key'] for x in s3_client.list_objects(Bucket=aws_bucket)['Contents']]: pass elif not debug_en: res = s3_client.put_object(Bucket=aws_bucket, Key='%s/' % s3_folder) success = res['ResponseMetadata']['HTTPStatusCode'] == HTTP_OK if not success: return success, "" # Upload local_file to S3: x = 3 if not debug_en: try: if path.exists(local_file): s3_client.upload_file(local_file, aws_bucket, path.join(s3_folder, s3_file)) s3_client.put_object_acl(ACL='public-read', Bucket=aws_bucket, Key=path.join(s3_folder, s3_file)) except (ClientError, S3UploadFailedError) as e: success = False, "" return success, "https://%s.s3.eu-central-1.amazonaws.com/%s/%s" % (aws_bucket, s3_folder, s3_file) # ------------------------------------------------------------------ def donut_generator(names, sizes, radius=0.7, textstr_title='', colors=None, figname="image.png"): CARBS_GRAMS_CALOIRES = 4 PROTEIN_GRAMS_CALOIRES = 4 FAT_GRAMS_CALOIRES = 9 if colors is None: colors = [] my_circle = plt.Circle((0, 0), radius, color='white') fig, ax = plt.subplots() labels = [':' + k1 + '\nםרג ' + str(round(k2, 2)) for k1, k2 in zip(names, sizes)] if colors: ax.pie(sizes, colors=colors) else: ax.pie(sizes) plt.legend(bbox_to_anchor=(1.0, 0.88), fontsize=18, labels=labels) p = plt.gcf() p.gca().add_artist(my_circle) if textstr_title: ax.text(0.34, 1.05, textstr_title, transform=ax.transAxes, weight='bold', fontsize=30, verticalalignment='center_baseline') sizes[0] *= PROTEIN_GRAMS_CALOIRES sizes[1] *= CARBS_GRAMS_CALOIRES sizes[2] *= FAT_GRAMS_CALOIRES sum2 = round(sum(sizes), 2) textstr_center1 = str(sum2) textstr_center2 = 'קלוריות'[::-1] ax.text(0.39, 0.56, textstr_center1, transform=ax.transAxes, weight='bold', fontsize=24, verticalalignment='center_baseline') ax.text(0.37, 0.44, textstr_center2, transform=ax.transAxes, fontsize=18, verticalalignment='center_baseline') if figname: fig.patch.set_facecolor('white') fig.savefig(figname, bbox_inches='tight', facecolor='white') else: plt.show() # ------------------------------------------------------------------ def donut_generator_wrapper(title, data): names = [x[::-1] for x in list(data.keys())] sizes = list(data.values()) colors = ['darkorange', 'lightgreen', 'blue'] textstr_title = title[::-1] figname = "donut_image1.png" donut_generator(names=names, sizes=sizes, radius=0.7, textstr_title=textstr_title, colors=colors, figname=figname) return figname # ------------------------------------------------------------------ def iniliatize_Diagram(title, data): unique_filename = lambda fname: "%s_%s%s" % (path.splitext(fname)[0], datetime.now().strftime("%m%d%Y_%H%M%S"), path.splitext(fname)[1]) figname = donut_generator_wrapper(title, data) res, figure_url = upload_file_to_s3(local_file=figname, s3_folder="auto_generated", s3_file=unique_filename(figname), aws_access_key_id=DB_AWS_ACCESS_KEY_ID, aws_secret_access_key=DB_AWS_SECRET_ACCESS_KEY, aws_bucket=DB_AWS_BUCKET) return figure_url # ------------------------------------------------------------------ def activate_load_db(name, table, dic): dic[name] = load_db(table) def get_tables(bits): table_dict = {'0x1': 'tzameret', '0x2': 'lut', '0x4': 'nutrients_qna', '0x8': 'food_qna', '0x10': 'common_food', '0x20': 'food_ranges', '0x40': 'micro_nutrients', '0x80': 'food_units', '0x100': 'bloodtest_vals', '0x200': 'food_units_aliases', '0x400': 'food_units_features', '0x800': 'subs_tags_alias', '0x1000': 'Weights_and_measures'} scale = 16 bits_binary = bin(int(bits, scale))[2:].zfill(len(bits) * 4) numbers_zero = '' numbers = [] for digit in reversed(bits_binary): if digit != '1': numbers_zero += digit else: numbers.append('1' + numbers_zero) numbers_zero += '0' for i, value in enumerate(numbers): decimal_representation = int(value, 2) temp = hex(decimal_representation) temp = int(temp, 16) numbers[i] = hex(temp) manager = multiprocessing.Manager() db_dict = manager.dict() jobs = [] for value in numbers: # Pass the user at position i instead of the whole list p = multiprocessing.Process(target=activate_load_db, args=(table_dict[value], value, db_dict)) jobs.append(p) p.start() for proc in jobs: proc.join() return db_dict def load_db(db_bitmap, read_databse_en=True): # available_tables_df=read_database sql_params = {'connit_type': 'postgresql', 'connit_user': 'newtrds', 'connit_pass': '<PASSWORD>!', 'connit_host': 'newt-tzameret-db.c1ub7aqk5fah.eu-central-1.rds.amazonaws.com', 'connit_port': '5432', 'connit_db': 'postgres', 'max_records': 1000} sql_engine = connect_to_server(sql_params) if db_bitmap == '0x1': tzameret = read_table(sql_engine, "SELECT * FROM tzameret_entity") return tzameret # "Zameret_hebrew_features" - entities aliases if db_bitmap == '0x2': lut = read_table(sql_engine, "SELECT * FROM rasa_lut_entity") lut = lut.set_index('Entity Alias') return lut # "Zameret_hebrew_features" - nutrients_questions if db_bitmap == '0x4': nutrients_qna = read_table(sql_engine, "SELECT * FROM rasa_nutrients_qna_entity") nutrients_qna = nutrients_qna.set_index('Entity') return nutrients_qna # "Zameret_hebrew_features" - Food questions if db_bitmap == '0x8': food_qna = read_table(sql_engine, "SELECT * FROM rasa_food_qna_entity") food_qna = food_qna.set_index('nutrition_density') return food_qna # "Zameret_hebrew_features" - List of common foods if db_bitmap == '0x10': common_food = read_table(sql_engine, "SELECT * FROM common_food_entity") common_food = common_food.set_index('common_name') return common_food # "Newt Machine Readable" - FoodItemRanges if db_bitmap == '0x20': food_ranges = read_table(sql_engine, "SELECT * FROM food_ranges_entity") food_ranges = food_ranges.set_index('Nutrient') return food_ranges # "Newt Machine Readable" - MicroNutrients if db_bitmap == '0x40': micro_nutrients = read_table(sql_engine, "SELECT * FROM micronutrients_entity") return micro_nutrients # "Newt Machine Readable" - MicroNutrients if db_bitmap == '0x80': food_units = read_table(sql_engine, "SELECT * FROM food_units_entity") return food_units # "Newt Machine Readable" - BloodTestValues if db_bitmap == '0x100': bloodtest_vals = read_table(sql_engine, "SELECT * FROM bloodtest_vals_entity") return bloodtest_vals # "Zameret_hebrew_features" - Weight aliases if db_bitmap == '0x200': food_units_aliases = read_table(sql_engine, "SELECT * FROM food_units_aliases_entity") return food_units_aliases # "Zameret_hebrew_features" - For Noa if db_bitmap == '0x400': food_units_features_df = read_table(sql_engine, "SELECT * FROM tzameret_newt_entity") food_units_features = food_units_features_df.dropna(axis=0, how='all') food_units_features = food_units_features.rename({'Primary_SN': 'smlmitzrach'}, axis=1) return food_units_features # "Zameret_hebrew_features" - subs_tags_alias if db_bitmap == '0x800': subs_tags_alias = read_table(sql_engine, "SELECT * FROM subs_tags_aliases_entity") subs_tags_alias = subs_tags_alias.set_index('Entity Alias').fillna(0) return subs_tags_alias if db_bitmap == '0x1000': Weights_and_measures = read_table(sql_engine, "SELECT * FROM weights_measures") return Weights_and_measures def load_db_googleSheet(db_bitmap): db_dict = {} # "Zameret food list 22_JAN_2020" if (db_bitmap & 0x1) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=84892416" s = requests.get(url).content db_dict['tzameret'] = pd.read_csv(io.StringIO(s.decode('utf-8'))).fillna(0) # "Zameret_hebrew_features" - entities aliases if (db_bitmap & 0x2) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1805881936" s = requests.get(url).content db_dict['lut'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["Entity Alias"], usecols=["Entity Alias", "Entity", "Units", "Entity name", "RDA name", "action_simple_question", "action_nutrition_howmanyxiny_x", "action_nutrition_howmanyxiny_y", "action_nutrition_is_food_healthy", "action_nutrition_is_food_recommended", "action_nutrition_what_is_healthier_x", "action_nutrition_what_is_healthier_y", "action_nutrition_get_rda", "action_nutrition_bloodtest_generic", "action_nutrition_bloodtest_value", "action_nutrition_food_substitute", "action_nutrition_compare_foods", "action_nutrition_howmanyxyinz"]).fillna(0) # "Zameret_hebrew_features" - nutrients_questions if (db_bitmap & 0x4) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1706335378" s = requests.get(url).content db_dict['nutrients_qna'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["Entity"]).fillna(0) # "Zameret_hebrew_features" - Food questions if (db_bitmap & 0x8) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1099284657" s = requests.get(url).content db_dict['food_qna'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["nutrition_density"], usecols=["nutrition_density", "energy_density", "description_density"]).fillna(0) # "Zameret_hebrew_features" - List of common foods if (db_bitmap & 0x10) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=495295419" s = requests.get(url).content db_dict['common_food'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["common_name"], usecols=["common_name", "shmmitzrach", "smlmitzrach"]).fillna(0) # "Newt Machine Readable" - FoodItemRanges if (db_bitmap & 0x20) > 0: url = "https://docs.google.com/spreadsheets/d/1IPTflCe6shaP-FBAuXWSFCX5hSuAo7bMGczNMTSTYY0/export?format=csv&gid=885087351" s = requests.get(url).content db_dict['food_ranges'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["Nutrient"], usecols=["Nutrient", "Medium - threshold per 100gr", "High - threshold per 100gr", "good_or_bad", "tzameret_name", "hebrew_name"]).fillna(0) # "Newt Machine Readable" - MicroNutrients if (db_bitmap
that you give in the "x" local variable of this method. """ def getReluActivation(self, x): if (x > 0): return x else: return 0 """ getReluActivationDerivative(x="the instant independent value from which you want to know the derivate of the dependent ReLU value/result") This method calculates and returns the derivate ReLU function value of the instant independent value that you give in the "x" local variable of this method. """ def getReluActivationDerivative(self, x): if (x > 0): return 1 else: return 0 """ getTanhActivation(x="the instant independent value from which you want to know the dependent Hyperbolic Tangent (Tanh) value/result") This method calculates and returns the Hyperbolic Tangent (Tanh) function value of the instant independent value that you give in the "x" local variable of this method. """ def getTanhActivation(self, x): import math a = math.exp(x) b = math.exp(-x) return ((a-b)/(a+b)) """ getReluActivation(x="the instant independent value from which you want to know the dependent Sigmoid value/result") This method calculates and returns the Sigmoid function value of the instant independent value that you give in the "x" local variable of this method. """ def getSigmoidActivation(self, x): import math return (1/(1+math.exp(-x))) """ getRaiseToTheSecondPowerActivation(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheSecondPowerActivation(self, x): return x*x """ getRaiseToTheSecondPowerDerivative(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the derivate Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheSecondPowerDerivative(self, x): return 2*x """ getRaiseToTheThirdPowerActivation(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheThirdPowerActivation(self, x): return x*x*x """ getRaiseToTheThirdPowerDerivative(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the derivate Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheThirdPowerDerivative(self, x): return 3*x*x """ getRaiseToTheFourthPowerActivation(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheFourthPowerActivation(self, x): return x*x*x*x """ getRaiseToTheFourthPowerDerivative(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the derivate Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheFourthPowerDerivative(self, x): return 4*x*x*x """ getRaiseToTheFifthPowerActivation(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheFifthPowerActivation(self, x): return x*x*x*x*x """ getRaiseToTheFifthPowerDerivative(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the derivate Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheFifthPowerDerivative(self, x): return 5*x*x*x*x """ getRaiseToTheSixthPowerActivation(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheSixthPowerActivation(self, x): return x*x*x*x*x*x """ getRaiseToTheSixthPowerDerivative(x="the instant independent value from which you want to know the dependent Exponentiation value/result") This method calculates and returns the derivate Exponentiation function value of the instant independent value that you give in the "x" local variable of this method. """ def getRaiseToTheSixthPowerDerivative(self, x): return 6*x*x*x*x*x """ getExponentialActivation(x="the instant independent value from which you want to know the dependent Exponential-Euler value/result") This method calculates and returns the Exponential-Euler function value of the instant independent value that you give in the "x" local variable of this method. """ def getExponentialActivation(self, x): import math return math.exp(x) """ getExponentialDerivative(x="the instant independent value from which you want to know the dependent Exponential-Euler value/result") This method calculates and returns the derivate Exponential-Euler function value of the instant independent value that you give in the "x" local variable of this method. """ def getExponentialDerivative(self, x): import math return math.exp(x) """ getSingleArtificialNeuron(activationFunction="the name, in lowercaps, of the activation function that you want to apply the neuron. The available options are: 'sigmoid', 'relu', 'tanh', 'raiseTo2ndPower', 'raiseTo3rdPower', 'raiseTo4thPower', 'raiseTo5thPower', 'raiseTo6thPower', 'exponential'.", learningRate="the rate at which you want your neuron to learn (remember that 1=100% learning rate or normal learning rate)", numberOfEpochs="The number of times you want your neuron to train itself", stopTrainingIfAcurracy="define the % value that you want the neuron to stop training itself if such accuracy value is surpassed", isCustomizedInitialWeights="set to True if you will define a customized innitial weight vector for each neuron. False if you want them to be generated randomly", firstMatrix_w="If you set the input argument of this method isCustomizedInitialWeights to True, then assign here the customized innitial weight vectors you desire for each neuron", isClassification="set to True if you are solving a classification problem. False if otherwise") This method creates a single Artificial Neuron and, within this method, such neuron trains itself to learn to predict the input values that it was given to study by comparing them with the output expected values. When the neuron finishes its learning process, this method will return the modeling results. CODE EXAMPLE: # matrix_y = [expectedResult] matrix_y = [ [25.5], [31.2], [25.9], [38.4], [18.4], [26.7], [26.4], [25.9], [32], [25.2], [39.7], [35.7], [26.5] ] # matrix_x = [variable1, variable2, variable3] matrix_x = [ [1.74, 5.3, 10.8], [6.32, 5.42, 9.4], [6.22, 8.41, 7.2], [10.52, 4.63, 8.5], [1.19, 11.6, 9.4], [1.22, 5.85, 9.9], [4.1, 6.62, 8], [6.32, 8.72, 9.1], [4.08, 4.42, 8.7], [4.15, 7.6, 9.2], [10.15, 4.83, 9.4], [1.72, 3.12, 7.6], [1.7, 5.3, 8.2] ] from MortrackLibrary.machineLearning import MortrackML_Library as mSL dL = mSL.DeepLearning(matrix_x, matrix_y) modelingResults = dL.getSingleArtificialNeuron(activationFunction='none', learningRate=0.001, numberOfEpochs=100000, stopTrainingIfAcurracy=99.9, isCustomizedInitialWeights=False, firstMatrix_w=[], isClassification=False) modelCoefficients = modelingResults[0] accuracyFromTraining = modelingResults[1] predictedData = modelingResults[2] firstMatrix_w = modelingResults[3] coefficientDistribution = modelingResults[4] allModeledAccuracies = modelingResults[5] RESULT OF CODE: modelCoefficients = [[28.235246103419946], [1.12749544645359], [-1.7353168202914326], [0.7285727543658252]] accuracyFromTraining = 95.06995458954695 predictedData = [[28.868494779855514], [32.80418405006583], [25.89997715314427], [38.25484973427189], [16.295874460357858], [26.67205741761012], [27.198762118476985], [26.859066716794352], [31.50391014224514], [26.42881371215305], [38.14632853395502], [30.297502725191123], [26.929105800646223]] coefficientDistribution = " Coefficients distribution is as follows: modelCoefficients = [ [Neuron1_bias, Neuron1_weight1, Neuron1_weight2, ... , Neuron1_weightM] ] " allModeledAccuracies["independent variable distribution used to get a model"]["model accuracy", "model coefficients obtained but with original distribution"] = # NOTE: since this variable contains large amounts of information, it # will not be displayed but only described on how to use it. """ def getSingleArtificialNeuron(self, activationFunction='sigmoid', learningRate=1, numberOfEpochs=1000, stopTrainingIfAcurracy=95, isCustomizedInitialWeights=False, firstMatrix_w=[], isClassification=True): if ((activationFunction!='none') and (activationFunction!='sigmoid') and (activationFunction!='relu') and (activationFunction!='tanh') and (activationFunction!='raiseTo2ndPower') and (activationFunction!='raiseTo3rdPower') and (activationFunction!='raiseTo4thPower') and (activationFunction!='raiseTo5thPower') and (activationFunction!='raiseTo6thPower') and (activationFunction!='exponential')): raise Exception('ERROR: The selected Activation Function does not exist or has not been programmed in this method yet.') from ..linearAlgebra import MortrackLinearAlgebraLibrary as mLAL # from . import MortrackML_Library as mSL # import math import random numberOfIndependentRows= len(self.x_samplesList) numberOfIndependentVariables = len(self.x_samplesList[0]) matrix_x = [] for row in range(0, numberOfIndependentRows): temporalRow = [] temporalRow.append(1) for column in range(0, numberOfIndependentVariables): temporalRow.append(self.x_samplesList[row][column]) matrix_x.append(temporalRow) matrix_y = self.y_samplesList # We innitialize the weight vector random values from -1 up to +1 if
<reponame>ViriginaWangluyao/test ''' Utils for io, language, connectivity graphs etc ''' import os import sys import re sys.path.append('build') import MatterSim import string import json import time import math from collections import Counter, defaultdict import numpy as np import networkx as nx from param import args # padding, unknown word, end of sentence base_vocab = ['<PAD>', '<UNK>', '<EOS>'] padding_idx = base_vocab.index('<PAD>') def load_nav_graphs(scans): ''' Load connectivity graph for each scan ''' def distance(pose1, pose2): ''' Euclidean distance between two graph poses ''' return ((pose1['pose'][3]-pose2['pose'][3])**2\ + (pose1['pose'][7]-pose2['pose'][7])**2\ + (pose1['pose'][11]-pose2['pose'][11])**2)**0.5 graphs = {} for scan in scans: with open('connectivity/%s_connectivity.json' % scan) as f: G = nx.Graph() positions = {} data = json.load(f) for i,item in enumerate(data): if item['included']: for j,conn in enumerate(item['unobstructed']): if conn and data[j]['included']: positions[item['image_id']] = np.array([item['pose'][3], item['pose'][7], item['pose'][11]]); assert data[j]['unobstructed'][i], 'Graph should be undirected' G.add_edge(item['image_id'],data[j]['image_id'],weight=distance(item,data[j])) nx.set_node_attributes(G, values=positions, name='position') graphs[scan] = G return graphs def load_datasets(splits): """ :param splits: A list of split. if the split is "something@5000", it will use a random 5000 data from the data :return: """ import random data = [] old_state = random.getstate() for split in splits: # It only needs some part of the dataset? components = split.split("@") number = -1 if len(components) > 1: split, number = components[0], int(components[1]) # Load Json # if split in ['train', 'val_seen', 'val_unseen', 'test', # 'val_unseen_half1', 'val_unseen_half2', 'val_seen_half1', 'val_seen_half2']: # Add two halves for sanity check if "/" not in split: with open('tasks/R2R/data/R2R_%s.json' % split) as f: new_data = json.load(f) else: with open(split) as f: new_data = json.load(f) # Partition if number > 0: random.seed(0) # Make the data deterministic, additive random.shuffle(new_data) new_data = new_data[:number] # Join data += new_data random.setstate(old_state) # Recover the state of the random generator return data class Tokenizer(object): ''' Class to tokenize and encode a sentence. ''' SENTENCE_SPLIT_REGEX = re.compile(r'(\W+)') # Split on any non-alphanumeric character def __init__(self, vocab=None, encoding_length=20): self.encoding_length = encoding_length self.vocab = vocab self.word_to_index = {} self.index_to_word = {} if vocab: for i,word in enumerate(vocab): self.word_to_index[word] = i new_w2i = defaultdict(lambda: self.word_to_index['<UNK>']) new_w2i.update(self.word_to_index) self.word_to_index = new_w2i for key, value in self.word_to_index.items(): self.index_to_word[value] = key old = self.vocab_size() self.add_word('<BOS>') assert self.vocab_size() == old+1 print("OLD_VOCAB_SIZE", old) print("VOCAB_SIZE", self.vocab_size()) print("VOACB", len(vocab)) def finalize(self): """ This is used for debug """ self.word_to_index = dict(self.word_to_index) # To avoid using mis-typing tokens def add_word(self, word): assert word not in self.word_to_index self.word_to_index[word] = self.vocab_size() # vocab_size() is the self.index_to_word[self.vocab_size()] = word @staticmethod def split_sentence(sentence): ''' Break sentence into a list of words and punctuation ''' toks = [] for word in [s.strip().lower() for s in Tokenizer.SENTENCE_SPLIT_REGEX.split(sentence.strip()) if len(s.strip()) > 0]: # Break up any words containing punctuation only, e.g. '!?', unless it is multiple full stops e.g. '..' if all(c in string.punctuation for c in word) and not all(c in '.' for c in word): toks += list(word) else: toks.append(word) return toks def vocab_size(self): return len(self.index_to_word) def encode_sentence(self, sentence, max_length=None): if max_length is None: max_length = self.encoding_length if len(self.word_to_index) == 0: sys.exit('Tokenizer has no vocab') encoding = [self.word_to_index['<BOS>']] for word in self.split_sentence(sentence): encoding.append(self.word_to_index[word]) # Default Dict encoding.append(self.word_to_index['<EOS>']) if len(encoding) <= 2: return None #assert len(encoding) > 2 if len(encoding) < max_length: encoding += [self.word_to_index['<PAD>']] * (max_length-len(encoding)) # Padding elif len(encoding) > max_length: encoding[max_length - 1] = self.word_to_index['<EOS>'] # Cut the length with EOS return np.array(encoding[:max_length]) def decode_sentence(self, encoding, length=None): sentence = [] if length is not None: encoding = encoding[:length] for ix in encoding: if ix == self.word_to_index['<PAD>']: break else: sentence.append(self.index_to_word[ix]) return " ".join(sentence) def shrink(self, inst): """ :param inst: The id inst :return: Remove the potential <BOS> and <EOS> If no <EOS> return empty list """ if len(inst) == 0: return inst end = np.argmax(np.array(inst) == self.word_to_index['<EOS>']) # If no <EOS>, return empty string if len(inst) > 1 and inst[0] == self.word_to_index['<BOS>']: start = 1 else: start = 0 # print(inst, start, end) return inst[start: end] def build_vocab(splits=['train'], min_count=5, start_vocab=base_vocab): ''' Build a vocab, starting with base vocab containing a few useful tokens. ''' count = Counter() t = Tokenizer() data = load_datasets(splits) for item in data: for instr in item['instructions']: count.update(t.split_sentence(instr)) vocab = list(start_vocab) for word,num in count.most_common(): if num >= min_count: vocab.append(word) else: break return vocab def write_vocab(vocab, path): print('Writing vocab of size %d to %s' % (len(vocab),path)) with open(path, 'w') as f: for word in vocab: f.write("%s\n" % word) def read_vocab(path): with open(path) as f: vocab = [word.strip() for word in f.readlines()] return vocab def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (asMinutes(s), asMinutes(rs)) def read_img_features(feature_store): import csv import base64 from tqdm import tqdm print("Start loading the image feature") start = time.time() if "detectfeat" in args.features: views = int(args.features[10:]) else: views = 36 args.views = views tsv_fieldnames = ['scanId', 'viewpointId', 'image_w', 'image_h', 'vfov', 'features'] features = {} with open(feature_store, "r") as tsv_in_file: # Open the tsv file. reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames=tsv_fieldnames) for item in reader: long_id = item['scanId'] + "_" + item['viewpointId'] features[long_id] = np.frombuffer(base64.decodestring(item['features'].encode('ascii')), dtype=np.float32).reshape((views, -1)) # Feature of long_id is (36, 2048) print("Finish Loading the image feature from %s in %0.4f seconds" % (feature_store, time.time() - start)) return features def read_candidates(candidates_store): import csv import base64 from collections import defaultdict print("Start loading the candidate feature") start = time.time() TSV_FIELDNAMES = ['scanId', 'viewpointId', 'heading', 'elevation', 'next', 'pointId', 'idx', 'feature'] candidates = defaultdict(lambda: list()) items = 0 with open(candidates_store, "r") as tsv_in_file: # Open the tsv file. reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames=TSV_FIELDNAMES) for item in reader: long_id = item['scanId'] + "_" + item['viewpointId'] candidates[long_id].append( {'heading': float(item['heading']), 'elevation': float(item['elevation']), 'scanId': item['scanId'], 'viewpointId': item['next'], 'pointId': int(item['pointId']), 'idx': int(item['idx']) + 1, # Because a bug in the precompute code, here +1 is important 'feature': np.frombuffer( base64.decodestring(item['feature'].encode('ascii')), dtype=np.float32) } ) items += 1 for long_id in candidates: assert (len(candidates[long_id])) != 0 assert sum(len(candidate) for candidate in candidates.values()) == items # candidate = candidates[long_id] # print(candidate) print("Finish Loading the candidates from %s in %0.4f seconds" % (candidates_store, time.time() - start)) candidates = dict(candidates) return candidates def add_exploration(paths): explore = json.load(open("tasks/R2R/data/exploration.json", 'r')) inst2explore = {path['instr_id']: path['trajectory'] for path in explore} for path in paths: path['trajectory'] = inst2explore[path['instr_id']] + path['trajectory'] return paths def angle_feature(heading, elevation): import math # twopi = math.pi * 2 # heading = (heading + twopi) % twopi # From 0 ~ 2pi # It will be the same return np.array([math.sin(heading), math.cos(heading), math.sin(elevation), math.cos(elevation)] * (args.angle_feat_size // 4), dtype=np.float32) def new_simulator(): import MatterSim # Simulator image parameters WIDTH = 640 HEIGHT = 480 VFOV = 60 sim = MatterSim.Simulator() sim.setRenderingEnabled(False) sim.setCameraResolution(WIDTH, HEIGHT) sim.setCameraVFOV(math.radians(VFOV)) sim.setDiscretizedViewingAngles(True) sim.init() return sim def get_point_angle_feature(baseViewId=0): sim = new_simulator() feature = np.empty((36, args.angle_feat_size), np.float32) base_heading = (baseViewId % 12) * math.radians(30) for ix in range(36): if ix == 0: sim.newEpisode('ZMojNkEp431', '2f4d90acd4024c269fb0efe49a8ac540', 0, math.radians(-30)) elif ix % 12 == 0: sim.makeAction(0, 1.0, 1.0) else: sim.makeAction(0, 1.0, 0) state = sim.getState() assert state.viewIndex == ix heading = state.heading - base_heading feature[ix, :] = angle_feature(heading, state.elevation) return feature def get_all_point_angle_feature(): return [get_point_angle_feature(baseViewId) for baseViewId in range(36)] def add_idx(inst): toks = Tokenizer.split_sentence(inst) return " ".join([str(idx)+tok for idx, tok in enumerate(toks)]) import signal class GracefulKiller: kill_now = False def __init__(self): signal.signal(signal.SIGINT, self.exit_gracefully) signal.signal(signal.SIGTERM, self.exit_gracefully) def exit_gracefully(self,signum, frame): self.kill_now = True from collections import OrderedDict class Timer: def __init__(self): self.cul = OrderedDict() self.start = {} self.iter = 0 def reset(self): self.cul = OrderedDict() self.start = {} self.iter = 0 def tic(self, key): self.start[key] = time.time() def toc(self, key): delta = time.time() - self.start[key] if key not in self.cul: self.cul[key] = delta else: self.cul[key] += delta def step(self): self.iter += 1 def show(self): total = sum(self.cul.values()) for key in self.cul: print("%s, total time %0.2f, avg time %0.2f, part of %0.2f" % (key, self.cul[key], self.cul[key]*1./self.iter, self.cul[key]*1./total)) print(total / self.iter) stop_word_list = [ ",", ".", "and", "?", "!" ] def stop_words_location(inst, mask=False): toks = Tokenizer.split_sentence(inst) sws = [i for i, tok in enumerate(toks) if tok in stop_word_list] # The index of the stop words if len(sws)
import warnings from functools import partial import onnx from onnx import numpy_helper import tensorflow as tf from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE import numpy as np from tensorflow.python.ops.image_ops_impl import ResizeMethodV1 class Operations: def make_op(self, op_type, inputs, attrs): # print(op_type) # print([i.shape for i in inputs]) # print(attrs) # print() return getattr(self, 'op_' + op_type.lower())(*inputs, **attrs) class DataFormat: pass class OnnxTensor(DataFormat): pass class OnnxConstant(OnnxTensor): pass class InterleavedImageBatch(DataFormat): pass class OptimizationMissingWarning(Warning): pass def ensure_data_format(tensor, format): if issubclass(tensor.data_format, format): return tensor elif tensor.data_format is OnnxConstant and format is InterleavedImageBatch: assert len(tensor.shape) == 4 out = tensor.transpose([0, 2, 3, 1]) out.data_format = InterleavedImageBatch return out elif tensor.data_format is OnnxTensor and format is InterleavedImageBatch: assert len(tensor.shape) == 4 n, c, h, w = tensor.shape if h == w == 1 or c == 1: out = tf.reshape(tensor, [n, h, w, c]) else: out = tf.transpose(tensor, [0, 2, 3, 1]) warnings.warn("Transpose inserted. Please report at https://github.com/AxisCommunications/onnx-to-keras/issues", OptimizationMissingWarning) out.data_format = InterleavedImageBatch return out elif tensor.data_format is InterleavedImageBatch and format is OnnxTensor: assert len(tensor.shape) == 4 n, h, w, c = tensor.shape if h == w == 1 or c == 1: out = tf.reshape(tensor, [n, c, h, w]) else: out = tf.transpose(tensor, [0, 3, 1, 2]) warnings.warn("Transpose inserted. Please report at https://github.com/AxisCommunications/onnx-to-keras/issues", OptimizationMissingWarning) out.data_format = OnnxTensor return out else: raise NotImplementedError def compatible_data_format(format1, format2): return issubclass(format1, format2) or issubclass(format2, format1) def ensure_compatible_data_format(a, b): if compatible_data_format(a.data_format, b.data_format): return a, b if b.data_format is OnnxConstant: return a, ensure_data_format(b, a.data_format) return ensure_data_format(a, b.data_format), b class Constant(np.ndarray): data_format = OnnxConstant class TfKerasOperations(Operations): keras = tf.keras def parse_attr(self, a): if a.type == onnx.AttributeProto.INT: return a.i elif a.type == onnx.AttributeProto.INTS: return tuple(a.ints) elif a.type == onnx.AttributeProto.FLOAT: return a.f elif a.type == onnx.AttributeProto.STRING: return a.s elif a.type == onnx.AttributeProto.TENSOR: return self.make_constant(numpy_helper.to_array(a.t)) else: raise NotImplementedError def make_constant(self, x): return np.asarray(x).view(Constant) def make_input(self, shape, dtype, name=None): dtype = tf.as_dtype(dtype) # XXX: Assumes all inputs are image batches that we want to transpose assert len(shape) == 4 tensor = tf.keras.layers.Input((shape[2], shape[3], shape[1]), shape[0], name, dtype) tensor.data_format = InterleavedImageBatch return tensor def op_conv(self, x, weights, bias=None, kernel_shape=None, strides=None, pads=None, dilations=None, group=None): # Torch: (out_channels, in_channels, kH, kW) weights = ensure_data_format(weights, OnnxConstant) # XXX Assumes no ops on weights if len(kernel_shape) == 2: x = ensure_data_format(x, InterleavedImageBatch) assert kernel_shape == weights.shape[2:4] if group == 1: # Tf; filter_height, filter_width, in_channels, out_channels weights = weights.transpose(2, 3, 1, 0) filters = weights.shape[3] ConvClass = self.keras.layers.Conv2D elif group == x.shape[3]: # Tf; filter_height, filter_width, out_channels, in_channels weights = weights.transpose(2, 3, 0, 1) filters = weights.shape[2] def ConvClass(filters, kernel_size, strides, dilation_rate, padding, kernel_initializer, use_bias=True, bias_initializer='zeros'): return self.keras.layers.DepthwiseConv2D(kernel_size, strides, dilation_rate=dilation_rate, padding=padding, use_bias=use_bias, bias_initializer=bias_initializer, depthwise_initializer=kernel_initializer) else: raise NotImplementedError if pads == (0,0,0,0): padding = 'valid' elif (kernel_shape[0] == kernel_shape[1] and pads[0] == pads[1] == pads[2] == pads[3] and pads[0] * 2 + 1 == kernel_shape[0] and strides == (1, 1) and dilations == (1, 1)): padding = 'same' elif (kernel_shape == (3, 3) and pads == (1,1,1,1) and strides == (2,2) and dilations == (1, 1) and x.shape[1] % 2 == 1 and x.shape[2] % 2 == 1): padding = 'same' else: # ((top_pad, bottom_pad), (left_pad, right_pad)) pad = self.keras.layers.ZeroPadding2D(((pads[0], pads[2]), (pads[1], pads[3]))) x = pad(x) padding = 'valid' if bias is None: conv = ConvClass(filters, kernel_shape, strides, dilation_rate=dilations, padding=padding, kernel_initializer='zeros', use_bias=False) out = conv(x) conv.set_weights([weights.view(np.ndarray)]) else: bias = ensure_data_format(bias, OnnxConstant) # XXX Assumes no ops on weights conv = ConvClass(filters, kernel_shape, strides, dilation_rate=dilations, padding=padding, kernel_initializer='zeros', bias_initializer='zeros') out = conv(x) conv.set_weights([weights.view(np.ndarray), bias.view(np.ndarray)]) out.data_format = InterleavedImageBatch return [out] else: raise NotImplementedError def op_relu(self, x): out = self.keras.layers.ReLU()(x) out.data_format = x.data_format return [out] def op_leakyrelu(self, x, alpha): out = self.keras.layers.LeakyReLU(alpha=alpha)(x) out.data_format = x.data_format return [out] def op_sigmoid(self, x): out = self.keras.activations.sigmoid(x) out.data_format = x.data_format return [out] def op_softmax(self, x, axis): out = self.keras.activations.softmax(x, axis=axis) out.data_format = x.data_format return [out] def op_prelu(self, x, alpha): alpha = ensure_data_format(alpha, OnnxConstant) # XXX Assumes no ops on alpha if len(alpha) == 1: shared = list(range(1, len(x.shape))) alpha = alpha.reshape((1,) * (len(x.shape) - 1)) elif len(alpha) == x.shape[-1]: shared = list(range(1, len(x.shape) - 1)) else: raise NotImplementedError alpha_initializer = self.keras.initializers.Constant(alpha.view(np.ndarray)) out = self.keras.layers.PReLU(shared_axes=shared, alpha_initializer=alpha_initializer)(x) out.data_format = x.data_format return [out] def op_maxpool(self, x, kernel_shape, pads, strides, ceil_mode=0): assert ceil_mode == 0 if len(kernel_shape) == 2: x = ensure_data_format(x, InterleavedImageBatch) if pads == (0, 0, 0, 0): padding = 'valid' else: # ((top_pad, bottom_pad), (left_pad, right_pad)) pad = self.keras.layers.ZeroPadding2D(((pads[0], pads[2]), (pads[1], pads[3]))) x = pad(x) padding = 'valid' out = self.keras.layers.MaxPool2D(kernel_shape, strides, padding)(x) out.data_format = InterleavedImageBatch return [out] else: raise NotImplementedError def op_concat(self, *tensors, axis): if all(t.data_format is InterleavedImageBatch for t in tensors): axis = (0, 3, 1, 2)[axis] out = self.keras.layers.Concatenate(axis)(list(tensors)) out.data_format = InterleavedImageBatch elif all(t.data_format is OnnxConstant for t in tensors): out = self.make_constant(np.concatenate(tensors, axis)) else: raise NotImplementedError return [out] def op_convtranspose(self, x, weights, bias=None, kernel_shape=None, strides=None, pads=None, dilations=None, group=None, output_padding=(0, 0)): assert kernel_shape is not None assert strides is not None assert pads is not None assert dilations is not None assert group is not None weights = ensure_data_format(weights, OnnxConstant) # XXX Assumes no ops on weights if bias is None: use_bias = False bias_initializer = None else: bias = ensure_data_format(bias, OnnxConstant) # XXX Assumes no ops on weights use_bias = True if len(kernel_shape) == 2: x = ensure_data_format(x, InterleavedImageBatch) assert kernel_shape == weights.shape[2:4] _, h_in, w_in, _ = x.shape h_out = (h_in - 1) * strides[0] - 2 * pads[0] + dilations[0] * (kernel_shape[0] - 1) + 1 + output_padding[0] w_out=(w_in - 1) * strides[1] - 2 * pads[1] + dilations[1] * (kernel_shape[1] - 1) + 1 + output_padding[1] if pads == (0,0,0,0): padding = 'valid' elif h_out == strides[0] * h_in and w_out == strides[1] * w_in and output_padding==(0,0): padding = 'same' output_padding = None # output_padding overrides the padding argument in keras else: raise NotImplementedError # Tf; filter_height, filter_width, out_channels, in_channels # Torch: (in_channels, out_channels, kH, kW) weights = weights.transpose(2, 3, 1, 0) filters = weights.shape[2] if group == 1: conv = self.keras.layers.Conv2DTranspose(filters, kernel_shape, strides, dilation_rate=dilations, padding=padding, kernel_initializer='zeros', use_bias=use_bias, bias_initializer='zeros', output_padding=output_padding) out = conv(x) if use_bias: conv.set_weights([weights.view(np.ndarray), bias.view(np.ndarray)]) else: conv.set_weights([weights.view(np.ndarray)]) else: splits = tf.split(x, group, axis=-1) convolved_splits = [] n = weights.shape[3] // group assert group * n == weights.shape[3] for i, split in enumerate(splits): conv = self.keras.layers.Conv2DTranspose(filters, kernel_shape, strides, dilation_rate=dilations, padding=padding, kernel_initializer='zeros', use_bias=use_bias, bias_initializer='zeros', output_padding=output_padding) convolved_splits.append(conv(split)) grouped_weights = weights[:, :, :, i*n:(i+1)*n] if use_bias: grouped_bias = bias[i*n:(i+1)*n] conv.set_weights([grouped_weights.view(np.ndarray), grouped_bias.view(np.ndarray)]) else: conv.set_weights([grouped_weights.view(np.ndarray)]) out = tf.concat(convolved_splits, -1) assert out.shape[1] == h_out assert out.shape[2] == w_out out.data_format = InterleavedImageBatch return [out] else: raise NotImplementedError def op_batchnormalization(self, x, weight, bias, running_mean, running_var, momentum, epsilon): if len(x.shape) != 4: raise NotImplementedError norm = self.keras.layers.BatchNormalization(momentum=momentum, epsilon=epsilon) out = norm(x) norm.set_weights([weight.view(np.ndarray), bias.view(np.ndarray), running_mean.view(np.ndarray), running_var.view(np.ndarray)]) out.data_format = x.data_format return [out] def op_unsqueeze(self, x, axes): x = ensure_data_format(x, OnnxTensor) out = x if isinstance(x, Constant): for ax in sorted(axes): out = np.expand_dims(out, ax).view(Constant) out.data_format = x.data_format else: for ax in sorted(axes): out = self.keras.backend.expand_dims(out, ax) out.data_format = OnnxTensor return [out] def op_clip(self, x, min, max): if min == 0: out = self.keras.layers.ReLU(max)(x) else: out = self.keras.backend.clip(x, min, max) out.data_format = x.data_format return [out] def op_add(self, x1, x2): x1, x2 = ensure_compatible_data_format(x1, x2) out = self.keras.layers.Add()([x1, x2]) out.data_format = x1.data_format return [out] def op_sub(self, x1, x2): x1, x2 = ensure_compatible_data_format(x1, x2) out = self.keras.layers.Subtract()([x1, x2]) out.data_format = x1.data_format return [out] def op_reducemean(self, x, axes, keepdims): x = ensure_data_format(x, InterleavedImageBatch) if axes == (2, 3) and keepdims == 0: out = self.keras.layers.GlobalAveragePooling2D()(x) out.data_format = OnnxTensor else: raise NotImplementedError return [out] def op_gemm(self, x, weights, bias, beta, transB, alpha): x = ensure_data_format(x, OnnxTensor) if beta == 1.0 and transB == 1 and alpha == 1.0: out = self.keras.layers.Dense(weights.shape[0], kernel_initializer='zeros', bias_initializer='zeros', weights=[weights.view(np.ndarray).T, bias.view(np.ndarray)])(x) out.data_format = OnnxTensor else: raise NotImplementedError return [out] def op_pad(self, x, pads, mode, value=0.0): x = ensure_data_format(x, InterleavedImageBatch) if mode == b'constant' and len(pads) == 8: assert len(x.shape) * 2 == len(pads) if pads[0] == pads[1] == pads[4] == pads[5] == 0: # ((top_pad, bottom_pad), (left_pad, right_pad))
<filename>Model.py # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. import torch import torch.nn as nn from block_zoo import * import copy import logging import ujson as json from utils.exceptions import ConfigurationError, LayerUndefinedError, LayerConfigUndefinedError from queue import Queue from utils.common_utils import transform_tensors2params, transfer_to_gpu from block_zoo.Embedding import * EMBED_LAYER_NAME = 'Embedding' EMBED_LAYER_ID = 'embedding' def get_conf(layer_id, layer_name, input_layer_ids, all_layer_configs, model_input_ids, use_gpu, conf_dict=None, shared_conf=None, succeed_embedding_flag=False, output_layer_flag=False, target_num=None, fixed_lengths=None): """ get layer configuration Args layer_id: layer identifier layer_name: name of layer such as BiLSTM input_layer_ids (list): the inputs of current layer all_layer_configs (dict): records the conf class of each layer. model_input_ids (set): the inputs of the model, e.g. ['query', 'passage'] use_gpu: conf_dict: shared_conf: if fixed_lengths is not None, the output_dim of shared_conf should be corrected! flag: output_layer_flag: target_num: used for inference the dimension of output space if someone declare a dimension of -1 fixed_lengths Returns: configuration class coresponds to the layer """ if shared_conf: conf = copy.deepcopy(shared_conf) else: try: conf_dict['use_gpu'] = use_gpu # for classification tasks, we usually add a Linear layer to project the output to dimension of number of classes. If we don't know the #classes, we can use '-1' instead and we would calculate the number of classes from the corpus. if layer_name == 'Linear': if isinstance(conf_dict['hidden_dim'], list) and conf_dict['hidden_dim'][-1] == -1: assert output_layer_flag is True, "Only in the last layer, hidden_dim == -1 is allowed!" assert target_num is not None, "Number of targets should be given!" conf_dict['hidden_dim'][-1] = target_num elif isinstance(conf_dict['hidden_dim'], int) and conf_dict['hidden_dim'] == -1: assert output_layer_flag is True, "Only in the last layer, hidden_dim == -1 is allowed!" assert target_num is not None, "Number of targets should be given!" conf_dict['hidden_dim'] = target_num conf = eval(layer_name + "Conf")(**conf_dict) except NameError as e: raise LayerConfigUndefinedError("\"%sConf\" has not been defined" % layer_name) # verify the rank consistence of joint layers if layer_name == EMBED_LAYER_NAME: # the embedding layer pass else: # make sure all the inputs to current layer exist for input_layer_id in input_layer_ids: if not (input_layer_id in all_layer_configs or input_layer_id in model_input_ids): raise ConfigurationError("The input %s of layer %s does not exist. Please define it before " "defining layer %s!" % (input_layer_id, layer_id, layer_id)) former_output_ranks = [all_layer_configs[input_layer_id].output_rank if input_layer_id in all_layer_configs else all_layer_configs[EMBED_LAYER_ID].output_rank for input_layer_id in input_layer_ids] # inference input_dim conf.input_dims = [all_layer_configs[input_layer_id].output_dim if input_layer_id in all_layer_configs else all_layer_configs[EMBED_LAYER_ID].output_dim for input_layer_id in input_layer_ids] # If the inputs come from embedding layer and fixed_lengths exist, set the length to input_dims if len(input_layer_ids) == 1 and input_layer_ids[0] in model_input_ids and fixed_lengths: conf.input_dims[0][1] = fixed_lengths[input_layer_ids[0]] # check and verify input ranks if conf.num_of_inputs > 0: if conf.num_of_inputs != len(input_layer_ids): raise ConfigurationError("%s only accept %d inputs but you feed %d inputs to it!" % \ (layer_name, conf.num_of_inputs, len(input_layer_ids))) elif conf.num_of_inputs == -1: conf.num_of_inputs = len(input_layer_ids) if isinstance(conf.input_ranks, list): conf.input_ranks = conf.input_ranks * conf.num_of_inputs else: logging.warning("[For developer of %s] The input_ranks attribute should be a list!" % (layer_name)) [conf.input_ranks] * conf.num_of_inputs for input_rank, former_output_rank in zip(conf.input_ranks, former_output_ranks): if input_rank != -1 and input_rank != former_output_rank: raise ConfigurationError("Input ranks of %s are inconsistent with former layers" % layer_id) conf.input_ranks = copy.deepcopy(former_output_ranks) # inference and varification inside the layer conf.inference() # update some attributes which relies on input dimension or something else conf.verify() # verify if the configuration is legal logging.debug('Layer id: %s; name: %s; input_dims: %s; input_ranks: %s; output_dim: %s; output_rank: %s' % (layer_id, layer_name, conf.input_dims if layer_id != 'embedding' else 'None', conf.input_ranks, conf.output_dim, conf.output_rank)) return conf def get_layer(layer_name, conf): """ Args: layer_name: conf: configuration class Returns: specific layer """ try: layer = eval(layer_name)(conf) except NameError as e: raise Exception("%s; Layer \"%s\" has not been defined" % (str(e), layer_name)) return layer class Model(nn.Module): def __init__(self, conf, problem, vocab_info, use_gpu): """ Args: inputs: ['string1', 'string2'] layer_archs: The layers must produce tensors with similar shapes. The layers may be nested. [ { 'layer': Layer name, 'conf': {xxxx} }, [ { 'layer': Layer name, 'conf': {}, }, { 'layer': Layer name, 'conf': {}, } ] ] vocab_info: { 'word': { 'vocab_size': xxx, 'init_weights': np matrix } 'postag': { 'vocab_size': xxx, 'init_weights': None } } """ super(Model, self).__init__() inputs = conf.object_inputs_names layer_archs = conf.architecture target_num = problem.output_target_num() # correct the real fixed length if begin/end of sentence are added if conf.fixed_lengths: fixed_lengths_corrected = copy.deepcopy(conf.fixed_lengths) for seq in fixed_lengths_corrected: if problem.with_bos_eos: fixed_lengths_corrected[seq] += 2 else: fixed_lengths_corrected = None self.use_gpu = use_gpu all_layer_configs = dict() self.layers = nn.ModuleDict() self.layer_inputs = dict() self.layer_dependencies = dict() self.layer_dependencies[EMBED_LAYER_ID] = set() # change output_layer_id to list for support multi_output self.output_layer_id = [] for layer_index, layer_arch in enumerate(layer_archs): output_layer_flag = True if 'output_layer_flag' in layer_arch and layer_arch['output_layer_flag'] is True else False succeed_embedding_flag = True if layer_index > 0 and 'inputs' in layer_arch and \ [input in inputs for input in layer_arch['inputs']].count(True) == len(layer_arch['inputs']) else False if output_layer_flag: self.output_layer_id.append(layer_arch['layer_id']) # if hasattr(self, 'output_layer_id'): # raise ConfigurationError("There should be only one output!") # else: # self.output_layer_id = layer_arch['layer_id'] if layer_index == 0: # embedding layer emb_conf = copy.deepcopy(vocab_info) for input_cluster in emb_conf: emb_conf[input_cluster]['dim'] = layer_arch['conf'][input_cluster]['dim'] emb_conf[input_cluster]['fix_weight'] = layer_arch['conf'][input_cluster].get('fix_weight', False) all_layer_configs[EMBED_LAYER_ID] = get_conf(EMBED_LAYER_ID, layer_arch['layer'], None, all_layer_configs, inputs, self.use_gpu, conf_dict={'conf': emb_conf}, shared_conf=None, succeed_embedding_flag=False, output_layer_flag=output_layer_flag, target_num=target_num, fixed_lengths=fixed_lengths_corrected) self.add_layer(EMBED_LAYER_ID, get_layer(layer_arch['layer'], all_layer_configs[EMBED_LAYER_ID])) else: if layer_arch['layer'] in self.layers and not 'conf' in layer_arch: # reuse formly defined layers (share the same parameters) logging.debug("Layer id: %s; Sharing configuration with layer %s" % (layer_arch['layer_id'], layer_arch['layer'])) conf_dict = None shared_conf = all_layer_configs[layer_arch['layer']] else: conf_dict = layer_arch['conf'] shared_conf = None # if the layer is EncoderDecoder, inference the vocab size if layer_arch['layer'] == 'EncoderDecoder': layer_arch['conf']['decoder_conf']['decoder_vocab_size'] = target_num all_layer_configs[layer_arch['layer_id']] = get_conf(layer_arch['layer_id'], layer_arch['layer'], layer_arch['inputs'], all_layer_configs, inputs, self.use_gpu, conf_dict=conf_dict, shared_conf=shared_conf, succeed_embedding_flag=succeed_embedding_flag, output_layer_flag=output_layer_flag, target_num=target_num, fixed_lengths=fixed_lengths_corrected) if layer_arch['layer'] in self.layers and not 'conf' in layer_arch: self.add_layer(layer_arch['layer_id'], self.layers[layer_arch['layer']]) else: self.add_layer(layer_arch['layer_id'], get_layer(layer_arch['layer'], all_layer_configs[layer_arch['layer_id']])) self.layer_inputs[layer_arch['layer_id']] = layer_arch['inputs'] # register dependencies, except embeddings cur_layer_depend = set() for layer_depend_id in layer_arch['inputs']: if not layer_depend_id in inputs: cur_layer_depend.add(layer_depend_id) self.add_dependency(layer_arch['layer_id'], cur_layer_depend) logging.debug("Layer dependencies: %s" % repr(self.layer_dependencies)) if not hasattr(self, 'output_layer_id'): raise ConfigurationError("Please define an output layer") self.layer_topological_sequence = self.get_topological_sequence() def add_layer(self, layer_id, layer): """ register a layer Args: layer_id: layer: Returns: """ if layer_id in self.layers: raise ConfigurationError("The layer id %s is not unique!") else: self.layers[layer_id] = layer def add_dependency(self, layer_id, depend_layer_id): """ add the layers have to be proceed before layer_id Args: layer_id: depend_layer_id: Returns: """ if not layer_id in self.layer_dependencies: self.layer_dependencies[layer_id] = set() if isinstance(depend_layer_id, int): self.layer_dependencies[layer_id].add(depend_layer_id) else: self.layer_dependencies[layer_id] |= set(depend_layer_id) def remove_dependency(self, depend_layer_id): """ remove dependencies on layer_id Args: layer_id: Returns: """ for layer_id in self.layer_dependencies: self.layer_dependencies[layer_id].remove(depend_layer_id) def get_topological_sequence(self): """ get topological sequence of nodes in the model Returns: """ total_layer_ids = Queue() for layer_id in self.layers.keys(): if layer_id != EMBED_LAYER_ID: total_layer_ids.put(layer_id) topological_list = [] circular_cnt = 0 # used for checking if there is at least one legal topological sorting while not total_layer_ids.empty(): layer_id = total_layer_ids.get() if len(self.layer_dependencies[layer_id]) == 0: for layer_id2 in self.layer_dependencies: if layer_id in self.layer_dependencies[layer_id2]: self.layer_dependencies[layer_id2].remove(layer_id) circular_cnt = 0 topological_list.append(layer_id) else: total_layer_ids.put(layer_id) circular_cnt += 1 if circular_cnt >= total_layer_ids.qsize(): rest_layers = [] while not total_layer_ids.empty(): rest_layers.append(total_layer_ids.get()) raise ConfigurationError("The model architecture is illegal because there is a circular dependency " "or there are some isolated layers. The layers can not be resolved: [%s]" % (", ".join(rest_layers))) logging.debug("Topological sequence of nodes: %s" % (",".join(topological_list))) return topological_list def forward(self, inputs_desc, length_desc, *param_list): """ Args: with the help of transform_tensors2params(inputs_desc, length_desc, param_list), we can get the below inputs and lengths inputs: dict. { "string1":{ 'word': word ids, [batch size, seq len] 'postag': postag ids,[batch size, seq len] ... } "string2":{ 'word': word ids,[batch size, seq len] 'postag': postag ids,[batch size, seq len] ... } } lengths: dict. { "string1": [...] "string2": [...] } Returns: """ inputs, lengths = transform_tensors2params(inputs_desc, length_desc, param_list) representation = dict() representation[EMBED_LAYER_ID] = dict() repre_lengths = dict() repre_lengths[EMBED_LAYER_ID] = dict() for input in inputs: representation[input] = self.layers[EMBED_LAYER_ID](inputs[input], use_gpu=self.is_cuda()) if self.use_gpu: repre_lengths[input] = transfer_to_gpu(lengths[input]) else: repre_lengths[input] = lengths[input] for layer_id in self.layer_topological_sequence: #logging.debug("To proces layer %s" % layer_id) input_params = [] for input_layer_id in self.layer_inputs[layer_id]: input_params.append(representation[input_layer_id]) input_params.append(repre_lengths[input_layer_id])
false, "name": "name", "type_key": "String" } ], "given_name": null, "key": "Shape.241ac489ffa5f718db6444bae7849fb86a62e441", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.32aa7ec6e7407e8a502d0a6094909a9365103a8e": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "field_aliases": { "solids": "ops" }, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{\\"in_process\\": {}}", "description": null, "is_required": false, "name": "execution", "type_key": "Selector.fd22b7b986baf6998a8c16e63e78f44dd5e3f78f" }, { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{}", "description": null, "is_required": false, "name": "loggers", "type_key": "Shape.ebeaf4550c200fb540f2e1f3f2110debd8c4157c" }, { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{\\"io_manager\\": {}}", "description": null, "is_required": false, "name": "resources", "type_key": "<KEY>" }, { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{\\"noop_solid\\": {}}", "description": null, "is_required": false, "name": "solids", "type_key": "Shape.ba913521099bed4314e25592059869c8f3a3c96e" } ], "given_name": null, "key": "Shape.32aa7ec6e7407e8a502d0a6094909a9365103a8e", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.3baab16166bacfaf4705811e64d356112fd733cb": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{\\"log_level\\": \\"INFO\\", \\"name\\": \\"dagster\\"}", "description": null, "is_required": false, "name": "config", "type_key": "Shape.241ac489ffa5f718db6444bae7849fb86a62e441" } ], "given_name": null, "key": "Shape.3baab16166bacfaf4705811e64d356112fd733cb", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.41de0e2d7b75524510155d0bdab8723c6feced3b": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": false, "name": "result", "type_key": "Selector.e52fa3afbe531d9522fae1206f3ae9d248775742" } ], "given_name": null, "key": "Shape.41de0e2d7b75524510155d0bdab8723c6feced3b", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.45a8f1f21db73ecbfa5b4e07b9aedc1835cef1ef": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": "Explicit modules to preload in the forkserver.", "is_required": false, "name": "preload_modules", "type_key": "Array.String" } ], "given_name": null, "key": "Shape.45a8f1f21db73ecbfa5b4e07b9aedc1835cef1ef", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.4b53b73df342381d0d05c5f36183dc99cb9676e2": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": true, "name": "path", "type_key": "String" } ], "given_name": null, "key": "<KEY>", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.69ff9be621991cc7961ea5e667d43edaac9d2339": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "field_aliases": { "solids": "ops" }, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": false, "name": "config", "type_key": "Any" }, { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": false, "name": "outputs", "type_key": "Array.Shape.41de0e2d7b75524510155d0bdab8723c6feced3b" } ], "given_name": null, "key": "Shape.69ff9be621991cc7961ea5e667d43edaac9d2339", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.743e47901855cb245064dd633e217bfcb49a11a7": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": false, "name": "config", "type_key": "Any" } ], "given_name": null, "key": "<KEY>", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.979b3d2fece4f3eb92e90f2ec9fb4c85efe9ea5c": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": false, "name": "marker_to_close", "type_key": "String" }, { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{\\"enabled\\": {}}", "description": null, "is_required": false, "name": "retries", "type_key": "Selector.1bfb167aea90780aa679597800c71bd8c65ed0b2" } ], "given_name": null, "key": "Shape.979b3d2fece4f3eb92e90f2ec9fb4c85efe9ea5c", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.ba913521099bed4314e25592059869c8f3a3c96e": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "field_aliases": { "solids": "ops" }, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{}", "description": null, "is_required": false, "name": "noop_solid", "type_key": "Shape.69ff9be621991cc7961ea5e667d43edaac9d2339" } ], "given_name": null, "key": "Shape.ba913521099bed4314e25592059869c8f3a3c96e", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.ca5906d9a0377218b4ee7d940ad55957afa73d1b": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{\\"retries\\": {\\"enabled\\": {}}}", "description": null, "is_required": false, "name": "config", "type_key": "Shape.979b3d2fece4f3eb92e90f2ec9fb4c85efe9ea5c" } ], "given_name": null, "key": "Shape.ca5906d9a0377218b4ee7d940ad55957afa73d1b", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.da39a3ee5e6b4b0d3255bfef95601890afd80709": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [], "given_name": null, "key": "Shape.da39a3ee5e6b4b0d3255bfef95601890afd80709", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.e248cccc2d2206bf427e9bc9c2d22833f2aeb6d4": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "0", "description": null, "is_required": false, "name": "max_concurrent", "type_key": "Int" }, { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{\\"enabled\\": {}}", "description": null, "is_required": false, "name": "retries", "type_key": "Selector.1bfb167aea90780aa679597800c71bd8c65ed0b2" }, { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": "Select how subprocesses are created. Defaults to spawn.\\nWhen forkserver is selected, set_forkserver_preload will be called with either:\\n* the preload_modules list if provided by config\\n* the module containing the Job if it was loaded from a module\\n* dagster\\nhttps://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods", "is_required": false, "name": "start_method", "type_key": "Selector.0f5471adc2ad814d1c9fd94e2fa73c07217dea47" } ], "given_name": null, "key": "<KEY>", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "Shape.ebeaf4550c200fb540f2e1f3f2110debd8c4157c": { "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": false, "name": "console", "type_key": "Shape.3baab16166bacfaf4705811e64d356112fd733cb" } ], "given_name": null, "key": "Shape.ebeaf4550c200fb540f2e1f3f2110debd8c4157c", "kind": { "__enum__": "ConfigTypeKind.STRICT_SHAPE" }, "scalar_kind": null, "type_param_keys": null }, "String": { "__class__": "ConfigTypeSnap", "description": "", "enum_values": null, "fields": null, "given_name": "String", "key": "String", "kind": { "__enum__": "ConfigTypeKind.SCALAR" }, "scalar_kind": { "__enum__": "ConfigScalarKind.STRING" }, "type_param_keys": null } } }, "dagster_type_namespace_snapshot": { "__class__": "DagsterTypeNamespaceSnapshot", "all_dagster_type_snaps_by_key": { "Any": { "__class__": "DagsterTypeSnap", "description": null, "display_name": "Any", "is_builtin": true, "key": "Any", "kind": { "__enum__": "DagsterTypeKind.ANY" }, "loader_schema_key": "Selector.f2fe6dfdc60a1947a8f8e7cd377a012b47065bc4", "materializer_schema_key": "Selector.e52fa3afbe531d9522fae1206f3ae9d248775742", "name": "Any", "type_param_keys": [] }, "Bool": { "__class__": "DagsterTypeSnap", "description": null, "display_name": "Bool", "is_builtin": true, "key": "Bool", "kind": { "__enum__": "DagsterTypeKind.SCALAR" }, "loader_schema_key": "ScalarUnion.Bool-Selector.be5d518b39e86a43c5f2eecaf538c1f6c7711b59", "materializer_schema_key": "Selector.e52fa3afbe531d9522fae1206f3ae9d248775742", "name": "Bool", "type_param_keys": [] }, "Float": { "__class__": "DagsterTypeSnap", "description": null, "display_name": "Float", "is_builtin": true, "key": "Float", "kind": { "__enum__": "DagsterTypeKind.SCALAR" }, "loader_schema_key": "ScalarUnion.Float-Selector.d00a37e3807d37c9f69cc62997c4a5f4a176e5c3", "materializer_schema_key": "Selector.e52fa3afbe531d9522fae1206f3ae9d248775742", "name": "Float", "type_param_keys": [] }, "Int": { "__class__": "DagsterTypeSnap", "description": null, "display_name": "Int", "is_builtin": true, "key": "Int", "kind": { "__enum__": "DagsterTypeKind.SCALAR" }, "loader_schema_key": "ScalarUnion.Int-Selector.a9799b971d12ace70a2d8803c883c863417d0725", "materializer_schema_key": "Selector.e52fa3afbe531d9522fae1206f3ae9d248775742", "name": "Int", "type_param_keys": [] }, "Nothing": { "__class__": "DagsterTypeSnap", "description": null, "display_name": "Nothing", "is_builtin": true, "key": "Nothing", "kind": { "__enum__": "DagsterTypeKind.NOTHING" }, "loader_schema_key": null, "materializer_schema_key": null, "name": "Nothing", "type_param_keys": [] }, "String": { "__class__": "DagsterTypeSnap", "description": null, "display_name": "String", "is_builtin": true, "key": "String", "kind": { "__enum__": "DagsterTypeKind.SCALAR" }, "loader_schema_key": "ScalarUnion.String-Selector.e04723c9d9937e3ab21206435b22247cfbe58269", "materializer_schema_key": "Selector.e52fa3afbe531d9522fae1206f3ae9d248775742", "name": "String", "type_param_keys": [] } } }, "dep_structure_snapshot": { "__class__": "DependencyStructureSnapshot", "solid_invocation_snaps": [ { "__class__": "SolidInvocationSnap", "input_dep_snaps": [], "is_dynamic_mapped": false, "solid_def_name": "noop_solid", "solid_name": "noop_solid", "tags": {} } ] }, "description": null, "graph_def_name": "noop_pipeline", "lineage_snapshot": null, "mode_def_snaps": [ { "__class__": "ModeDefSnap", "description": null, "logger_def_snaps": [ { "__class__": "LoggerDefSnap", "config_field_snap": { "__class__": "ConfigFieldSnap", "default_provided": true, "default_value_as_json_str": "{\\"log_level\\": \\"INFO\\", \\"name\\": \\"dagster\\"}", "description": null, "is_required": false, "name": "config", "type_key": "Shape.241ac489ffa5f718db6444bae7849fb86a62e441" }, "description": "The default colored console logger.", "name": "console" } ], "name": "default", "resource_def_snaps": [ { "__class__": "ResourceDefSnap", "config_field_snap": { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": false, "name": "config", "type_key": "Any" }, "description": null, "name": "io_manager" } ], "root_config_key": "Shape.32aa7ec6e7407e8a502d0a6094909a9365103a8e" } ], "name": "noop_pipeline", "solid_definitions_snapshot": { "__class__": "SolidDefinitionsSnapshot", "composite_solid_def_snaps": [], "solid_def_snaps": [ { "__class__": "SolidDefSnap", "config_field_snap": { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": false, "name": "config", "type_key": "Any" }, "description": null, "input_def_snaps": [], "name": "noop_solid", "output_def_snaps": [ { "__class__": "OutputDefSnap", "dagster_type_key": "Any", "description": null, "is_dynamic": false, "is_required": true, "name": "result" } ], "required_resource_keys": [], "tags": {} } ] }, "tags": {} }''' snapshots['test_multi_type_config_array_dict_fields[Permissive] 1'] = '''{ "__class__": "ConfigTypeSnap", "description": "List of Array.Permissive.1f37a068c7c51aba23e9c41475c78eebc4e58471", "enum_values": null, "fields": null, "given_name": null, "key": "Array.Permissive.1f37a068c7c51aba23e9c41475c78eebc4e58471", "kind": { "__enum__": "ConfigTypeKind.ARRAY" }, "scalar_kind": null, "type_param_keys": [ "Permissive.1f37a068c7c51aba23e9c41475c78eebc4e58471" ] }''' snapshots['test_multi_type_config_array_dict_fields[Selector] 1'] = '''{ "__class__": "ConfigTypeSnap", "description": "List of Array.Selector.1f37a068c7c51aba23e9c41475c78eebc4e58471", "enum_values": null, "fields": null, "given_name": null, "key": "Array.Selector.1f37a068c7c51aba23e9c41475c78eebc4e58471", "kind": { "__enum__": "ConfigTypeKind.ARRAY" }, "scalar_kind": null, "type_param_keys": [ "Selector.1f37a068c7c51aba23e9c41475c78eebc4e58471" ] }''' snapshots['test_multi_type_config_array_dict_fields[Shape] 1'] = '''{ "__class__": "ConfigTypeSnap", "description": "List of Array.Shape.1f37a068c7c51aba23e9c41475c78eebc4e58471", "enum_values": null, "fields": null, "given_name": null, "key": "Array.Shape.1f37a068c7c51aba23e9c41475c78eebc4e58471", "kind": { "__enum__": "ConfigTypeKind.ARRAY" }, "scalar_kind": null, "type_param_keys": [ "Shape.1f37a068c7c51aba23e9c41475c78eebc4e58471" ] }''' snapshots['test_multi_type_config_array_map 1'] = '''{ "__class__": "ConfigTypeSnap", "description": "List of Array.Map.String.Int", "enum_values": null, "fields": null, "given_name": null, "key": "Array.Map.String.Int", "kind": { "__enum__": "ConfigTypeKind.ARRAY" }, "scalar_kind": null, "type_param_keys": [ "Map.String.Int" ] }''' snapshots['test_multi_type_config_nested_dicts[nested_dict_types0] 1'] = '''{ "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": true, "name": "foo", "type_key": "Permissive.c1ae6abf6c3c9e951eeefe4fde820cafc053ee40" } ], "given_name": null, "key": "Selector.cb18f2a8fc9fa17668d8f4fd6b44c86c30c56774", "kind": { "__enum__": "ConfigTypeKind.SELECTOR" }, "scalar_kind": null, "type_param_keys": null }''' snapshots['test_multi_type_config_nested_dicts[nested_dict_types1] 1'] = '''{ "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [ { "__class__": "ConfigFieldSnap", "default_provided": false, "default_value_as_json_str": null, "description": null, "is_required": true, "name": "foo", "type_key": "Shape.9bbda63934c371bf9be9a1cbb6fff9f5ee0be828" } ], "given_name": null, "key": "Selector.b188a7737a2fecf0fca8cf94d331be517176dddf", "kind": { "__enum__": "ConfigTypeKind.SELECTOR" }, "scalar_kind": null, "type_param_keys": null }''' snapshots['test_multi_type_config_nested_dicts[nested_dict_types2] 1'] = '''{ "__class__": "ConfigTypeSnap", "description": null, "enum_values": null, "fields": [
height_y > 0.7: vr_z_offset = 0.01 if hmd_height + curr_offset[2] + vr_z_offset <= self.vr_settings.height_bounds[1]: self.set_vr_offset([curr_offset[0], curr_offset[1], curr_offset[2] + vr_z_offset]) # Update haptics for body and hands if self.main_vr_robot: vr_body_id = self.main_vr_robot.links["body"].get_body_id() vr_hands = [ ("left_controller", self.main_vr_robot.links["left_hand"]), ("right_controller", self.main_vr_robot.links["right_hand"]), ] # Check for body haptics wall_ids = [x.get_body_id() for x in self.scene.objects_by_category["walls"]] for c_info in p.getContactPoints(vr_body_id): if wall_ids and (c_info[1] in wall_ids or c_info[2] in wall_ids): for controller in ["left_controller", "right_controller"]: is_valid, _, _ = self.get_data_for_vr_device(controller) if is_valid: # Use 90% strength for body to warn user of collision with wall self.trigger_haptic_pulse(controller, 0.9) # Check for hand haptics for hand_device, hand_obj in vr_hands: is_valid, _, _ = self.get_data_for_vr_device(hand_device) if is_valid: if len(p.getContactPoints(hand_obj.get_body_id())) > 0 or ( hasattr(hand_obj, "object_in_hand") and hand_obj.object_in_hand ): # Only use 30% strength for normal collisions, to help add realism to the experience self.trigger_haptic_pulse(hand_device, 0.3) def register_main_vr_robot(self, vr_robot): """ Register the robot representing the VR user. """ self.main_vr_robot = vr_robot def gen_vr_data(self): """ Generates a VrData object containing all of the data required to describe the VR system in the current frame. This data is used to power the BehaviorRobot each frame. """ v = dict() for device in VR_DEVICES: is_valid, trans, rot = self.get_data_for_vr_device(device) device_data = [is_valid, trans.tolist(), rot.tolist()] device_data.extend(self.get_device_coordinate_system(device)) v[device] = device_data if device in VR_CONTROLLERS: v["{}_button".format(device)] = self.get_button_data_for_controller(device) # Store final rotations of hands, with model rotation applied for hand in ["right", "left"]: # Base rotation quaternion base_rot = self.main_vr_robot.links["{}_hand".format(hand)].base_rot # Raw rotation of controller controller_rot = v["{}_controller".format(hand)][2] # Use dummy translation to calculation final rotation final_rot = p.multiplyTransforms([0, 0, 0], controller_rot, [0, 0, 0], base_rot)[1] v["{}_controller".format(hand)].append(final_rot) is_valid, torso_trans, torso_rot = self.get_data_for_vr_tracker(self.vr_settings.torso_tracker_serial) v["torso_tracker"] = [is_valid, torso_trans, torso_rot] v["eye_data"] = self.get_eye_tracking_data() v["event_data"] = self.get_vr_events() reset_actions = [] for controller in VR_CONTROLLERS: reset_actions.append(self.query_vr_event(controller, "reset_agent")) v["reset_actions"] = reset_actions v["vr_positions"] = [self.get_vr_pos().tolist(), list(self.get_vr_offset())] return VrData(v) def gen_vr_robot_action(self): """ Generates an action for the BehaviorRobot to perform based on VrData collected this frame. Action space (all non-normalized values that will be clipped if they are too large) * See BehaviorRobot.py for details on the clipping thresholds for Body: - 6DOF pose delta - relative to body frame from previous frame Eye: - 6DOF pose delta - relative to body frame (where the body will be after applying this frame's action) Left hand, right hand (in that order): - 6DOF pose delta - relative to body frame (same as above) - Trigger fraction delta - Action reset value Total size: 28 """ # Actions are stored as 1D numpy array action = np.zeros((28,)) # Get VrData for the current frame v = self.gen_vr_data() # Update body action space hmd_is_valid, hmd_pos, hmd_orn, hmd_r = v.query("hmd")[:4] torso_is_valid, torso_pos, torso_orn = v.query("torso_tracker") vr_body = self.main_vr_robot.links["body"] prev_body_pos, prev_body_orn = vr_body.get_position_orientation() inv_prev_body_pos, inv_prev_body_orn = p.invertTransform(prev_body_pos, prev_body_orn) if self.vr_settings.using_tracked_body: if torso_is_valid: des_body_pos, des_body_orn = torso_pos, torso_orn else: des_body_pos, des_body_orn = prev_body_pos, prev_body_orn else: if hmd_is_valid: des_body_pos, des_body_orn = hmd_pos, p.getQuaternionFromEuler([0, 0, calc_z_rot_from_right(hmd_r)]) else: des_body_pos, des_body_orn = prev_body_pos, prev_body_orn body_delta_pos, body_delta_orn = p.multiplyTransforms( inv_prev_body_pos, inv_prev_body_orn, des_body_pos, des_body_orn ) action[:3] = np.array(body_delta_pos) action[3:6] = np.array(p.getEulerFromQuaternion(body_delta_orn)) # Get new body position so we can calculate correct relative transforms for other VR objects clipped_body_delta_pos, clipped_body_delta_orn = vr_body.clip_delta_pos_orn(action[:3], action[3:6]) clipped_body_delta_orn = p.getQuaternionFromEuler(clipped_body_delta_orn) new_body_pos, new_body_orn = p.multiplyTransforms( prev_body_pos, prev_body_orn, clipped_body_delta_pos, clipped_body_delta_orn ) # Also calculate its inverse for further local transform calculations inv_new_body_pos, inv_new_body_orn = p.invertTransform(new_body_pos, new_body_orn) # Update action space for other VR objects body_relative_parts = ["right", "left", "eye"] for part_name in body_relative_parts: vr_part = ( self.main_vr_robot.links[part_name] if part_name == "eye" else self.main_vr_robot.links["{}_hand".format(part_name)] ) # Process local transform adjustments prev_world_pos, prev_world_orn = vr_part.get_position_orientation() prev_local_pos, prev_local_orn = vr_part.get_local_position_orientation() _, inv_prev_local_orn = p.invertTransform(prev_local_pos, prev_local_orn) if part_name == "eye": valid, world_pos, world_orn = hmd_is_valid, hmd_pos, hmd_orn else: valid, world_pos, _ = v.query("{}_controller".format(part_name))[:3] # Need rotation of the model so it will appear aligned with the physical controller in VR world_orn = v.query("{}_controller".format(part_name))[6] # Keep in same world position as last frame if controller/tracker data is not valid if not valid: world_pos, world_orn = prev_world_pos, prev_world_orn # Get desired local position and orientation transforms des_local_pos, des_local_orn = p.multiplyTransforms( inv_new_body_pos, inv_new_body_orn, world_pos, world_orn ) # Get the delta local orientation in the reference frame of the body _, delta_local_orn = p.multiplyTransforms( [0, 0, 0], des_local_orn, [0, 0, 0], inv_prev_local_orn, ) delta_local_orn = p.getEulerFromQuaternion(delta_local_orn) # Get the delta local position in the reference frame of the body delta_local_pos = np.array(des_local_pos) - np.array(prev_local_pos) if part_name == "eye": action[6:9] = np.array(delta_local_pos) action[9:12] = np.array(delta_local_orn) elif part_name == "left": action[12:15] = np.array(delta_local_pos) action[15:18] = np.array(delta_local_orn) else: action[20:23] = np.array(delta_local_pos) action[23:26] = np.array(delta_local_orn) # Process trigger fraction and reset for controllers if part_name in ["right", "left"]: prev_trig_frac = vr_part.trigger_fraction if valid: trig_frac = v.query("{}_controller_button".format(part_name))[0] delta_trig_frac = trig_frac - prev_trig_frac else: delta_trig_frac = 0.0 if part_name == "left": action[18] = delta_trig_frac else: action[26] = delta_trig_frac # If we reset, action is 1, otherwise 0 reset_action = v.query("reset_actions")[0] if part_name == "left" else v.query("reset_actions")[1] reset_action_val = 1.0 if reset_action else 0.0 if part_name == "left": action[19] = reset_action_val else: action[27] = reset_action_val return action def sync_vr_compositor(self): """ Sync VR compositor. """ self.renderer.vr_compositor_update() def perform_vr_start_pos_move(self): """ Sets the VR position on the first step iteration where the hmd tracking is valid. Not to be confused with self.set_vr_start_pos, which simply records the desired start position before the simulator starts running. """ # Update VR start position if it is not None and the hmd is valid # This will keep checking until we can successfully set the start position if self.vr_start_pos: hmd_is_valid, _, _, _ = self.renderer.vrsys.getDataForVRDevice("hmd") if hmd_is_valid: offset_to_start = np.array(self.vr_start_pos) - self.get_hmd_world_pos() if self.vr_height_offset is not None: offset_to_start[2] = self.vr_height_offset self.set_vr_offset(offset_to_start) self.vr_start_pos = None def fix_eye_tracking_value(self): """ Calculates and fixes eye tracking data to its value during step(). This is necessary, since multiple calls to get eye tracking data return different results, due to the SRAnipal multithreaded loop that runs in parallel to the iGibson main thread """ self.eye_tracking_data = self.renderer.vrsys.getEyeTrackingData() def poll_vr_events(self): """ Returns VR event data as list of lists. List is empty if all events are invalid. Components of a single event: controller: 0 (left_controller), 1 (right_controller) button_idx: any valid idx in EVRButtonId enum in openvr.h header file press: 0 (unpress), 1 (press) """ self.vr_event_data = self.renderer.vrsys.pollVREvents() # Enforce store_first_button_press_per_frame option, if user has enabled it if self.vr_settings.store_only_first_event_per_button: temp_event_data = [] # Make sure we only store the first (button, press) combo of each type event_set = set() for ev_data in self.vr_event_data: controller, button_idx, _ = ev_data key = (controller, button_idx) if key not in event_set: temp_event_data.append(ev_data) event_set.add(key) self.vr_event_data = temp_event_data[:] return self.vr_event_data def get_vr_events(self): """ Returns the VR events processed by the simulator """ return self.vr_event_data def get_button_for_action(self, action): """ Returns (button, state) tuple corresponding to an action :param action: an action name listed in "action_button_map" dictionary for the current device in the vr_config.yml """ return ( None if action not in self.vr_settings.action_button_map else tuple(self.vr_settings.action_button_map[action]) ) def query_vr_event(self, controller, action): """ Queries system for a VR event, and returns true if that event happened this frame :param controller: device to query for - can be left_controller or right_controller :param action: an action name listed in "action_button_map" dictionary for the current device in the vr_config.yml """ # Return false if any of input parameters are invalid if ( controller not in ["left_controller", "right_controller"] or action not in self.vr_settings.action_button_map.keys() ): return False # Search through event list to try to find desired event controller_id = 0 if controller == "left_controller" else 1 button_idx, press_id = self.vr_settings.action_button_map[action] for ev_data in self.vr_event_data: if controller_id == ev_data[0] and button_idx == ev_data[1] and press_id == ev_data[2]: return True # Return false if event was not found this frame return False def get_data_for_vr_device(self, device_name): """ Call this after step - returns all VR device data for a specific device Returns is_valid (indicating validity of data), translation and
<reponame>JacobParrott/OccultationProfiler<filename>FindDopplerMain.py import numpy as np import spiceypy as spice import spiceypy.utils.support_types as stypes import pandas as pd from os import * import matplotlib.pyplot as plt import time as timer from scipy import constants from tqdm import tqdm import math #Import custom modules #import main import atmosphere import swiftmain #THE CONTROL TIME = 636491202 #EXPERIEMNT mro->ODYSSEY = 24269137.689745 #your egress value because you are an idiot = 241895765.6228938 def ElectricCall(time): process_id = getpid() print("Process ID:", process_id) epoch = 636491202.20059 target = '-143' obs = '-41' #need a funtion that can interpolate between times at 10 Hz, then just sub those positions into the next function #MEX TGO positions to be created in this function with 10 Hz interpolation samplingfrequency =1 referencedirection = [0,0,0] result = np.zeros([samplingfrequency]) overshoot = np.zeros([samplingfrequency]) #636491202.20059 #MEX,TGO, Distance = ephemerides(636491202,time, samplingfrequency) #mex = MEX[:,0] ; tgo = TGO[0] for i in range(samplingfrequency): [tgo1, _] = spice.spkpos('MARS', epoch - time, 'IAU_MARS', 'NONE', target) [mex1, _] = spice.spkpos('MARS', epoch - time, 'IAU_MARS', 'NONE', obs) dis = mex1-tgo1 Distance = np.linalg.norm(dis) #print(f"Progess:{(i/samplingfrequency)*100} %") #mex = MEX[:,i]+0 ; tgo = TGO[:,i]+0 mex = mex1 ; tgo = tgo1 initialangle,xyzpoints= producegeometrymeter(mex,tgo) #make 2D for huge speed improvements. Bending, S , referencedirection = flatbending(xyzpoints,initialangle, mex,tgo, referencedirection) result = S #result[i] = np.stack((ElectricDistance, Distance), axis = 0) return S def TangentPointAltitude(time): epoch = 636491202.20059 target = '-143' obs = '-41' alt = np.zeros(len(time)+1) for i in time: [tgo, _] = spice.spkpos('MARS', epoch - i, 'IAU_MARS', 'NONE', target) [mex, _] = spice.spkpos('MARS', epoch - i, 'IAU_MARS', 'NONE', obs) [states,_] = spice.spkezr(target, epoch-i, 'IAU_MARS', 'NONE', obs) sc2scvector = states[0:3] displacement = np.linalg.norm(sc2scvector) sc2scunitvector = np.true_divide(sc2scvector, displacement) marsrad = spice.bodvrd('MARS', 'RADII', 3) _,alt[i] = spice.npedln(marsrad[1][0], marsrad[1][1], marsrad[1][2], tgo, sc2scunitvector) return alt *1000 def GeoCall(time): epoch = 636491202.20059 target = '-143' obs = '-41' process_id = getpid() print("Process ID:", process_id) [tgo1, _] = spice.spkpos('MARS', epoch - time, 'IAU_MARS', 'NONE', target) [mex1, _] = spice.spkpos('MARS', epoch - time, 'IAU_MARS', 'NONE', obs) dis = mex1-tgo1 result = np.linalg.norm(dis) return result #the smallest time quantum in SPICE is 1 second. to measure a dopplershift we need faster than this. # To sidestep this limmitation we interpolate 10 positions between seconds def ephemerides(et,when, samplingfrequency): Distance = np.zeros([samplingfrequency]) #Find the locations of MEX & TGO at epoch and epoch +1 second time = et+when # here is when u have set the order of the TGO = np.zeros((3,samplingfrequency)) ; MEX = np.zeros((3,samplingfrequency)) [tgo1, _] = spice.spkpos('MARS', time-samplingfrequency, 'IAU_MARS', 'NONE', target) ; [tgo2, _] = spice.spkpos('MARS', time, 'IAU_MARS', 'NONE', target) [mex1, _] = spice.spkpos('MARS', time-samplingfrequency, 'IAU_MARS', 'NONE', '-41') ; [mex2, _] = spice.spkpos('MARS', time, 'IAU_MARS', 'NONE', '-41') # [dis, _] = spice.spkpos('-143', time+1, 'IAU_MARS', 'NONE', '-41') # Distance = np.linalg.norm(dis) #find ten positions between the two epochs for both MEX & TGO delta_tgo = (tgo2 - tgo1)/samplingfrequency ; delta_mex = (mex2-mex1) /samplingfrequency for i in range(samplingfrequency): MEX[:,i] = mex1 + (delta_mex *i) TGO[:,i] = tgo1 + (delta_tgo *i) #[dis, _] = spice.spkpos('-143', time+(i/samplingfrequency), 'IAU_MARS', 'NONE', '-41') dis = MEX[:,i]-TGO[:,i] Distance[i] = np.linalg.norm(dis) return MEX, TGO, Distance def producegeometrymeter(MEX,TGO): #maybe completly thin this out, you know this is moslty pointless, what does it actually make class SpiceVariables: obs = '-41' # NAIF code for MEX '-74' target = '-143'# NAIF code for TGO ['EARTH'/'SUN'/ a groundstation etc] 'MARS ODYSSEY' obsfrm = 'IAU_MARS' abcorr = 'NONE' crdsys = 'LATITUDINAL' coord = 'LATITUDE' stepsz = 1.0 # Check every [300] seconds if there is an occultation MAXILV = 100000 #Max number of occultations that can be returned by gfoclt bshape = 'POINT' fshape = 'DSK/UNPRIORITIZED' front = 'MARS' fframe = 'IAU_MARS' TFMT = 'YYYY-MM-DD HR:MN:SC' # Format that Cosmographia understands sv = SpiceVariables() #THIS COULD BE REMOVED # [TGO, _] = spice.spkpos(sv.front, et-when, sv.fframe, 'NONE', sv.target) # [MEX, _] = spice.spkpos(sv.front, et-when, sv.fframe, 'NONE', sv.obs) TGO = TGO +0 ; MEX = MEX +0 #force to be non-strided dist = math.floor(spice.vdist(TGO,MEX)) angleseparation = (spice.vsep(MEX, TGO)) # angle taken a mars center initialangle = (spice.vsep(-MEX, (TGO-MEX))) * (180/math.pi)# angle taken at mars-MEX-tgo, that points to tgo. needed for the bending functions original starting angle #script needs to work via periods of ray and not meters. [totalperiods is the main iterable, not meters] sc2sc = TGO - MEX norm = np.linalg.norm(sc2sc) unitsc2sc = sc2sc/norm #this needs to shrink if the repeatable expands points = np.empty([3,dist]) sza = np.empty([1,dist]) angleprogression = np.empty([1,dist]) xyzpoints = np.zeros([3,dist]) marsrad = spice.bodvrd(sv.front, 'RADII', 3) flatteningcoefficient = ( marsrad[1][0] - marsrad[1][2] ) / marsrad[1][0] equatorialradii = marsrad[1][0] # find direction of sun, it will not change much during the occultation. so only calc it once #[SUN, _] = spice.spkpos(sv.front, et, sv.fframe, 'NONE', 'SUN') for i in range(dist): xyzpoint = MEX + (i * unitsc2sc) #move along ray, 1000 wavelength distance at a time (685 m). but unitsc2sc is in km... xyzpoints[:,i] = xyzpoint #sza[0,i] = spice.vsep(SUN,xyzpoint) angleprogression[0,i] = (spice.vsep( xyzpoint, MEX)) * (180 / math.pi) points[:,i] = spice.recgeo(xyzpoint, equatorialradii,flatteningcoefficient) points[0,i] = (points[0,i] * (-180 / math.pi)) points[1,i] = (points[1,i] * (-180 / math.pi)) # ray = np.concatenate((points,sza), axis=0) # important for when sza is included #plt.plot(angleprogression[0,:], ray[2,:]) #plt.show() # ray is in lat/lon/alt + sza and xyzpoints is cartesian, both describe the same thing return initialangle,xyzpoints def flatbending(xyzpoints,initialangle, MEX,TGO, referencedirection): class SpiceVariables: obs = '-74' # NAIF code for MEX target = 'MARS ODYSSEY'# NAIF code for TGO ['EARTH'/'SUN'/ a groundstation etc] obsfrm = 'IAU_MARS' abcorr = 'NONE' crdsys = 'LATITUDINAL' coord = 'LATITUDE' stepsz = 100.0 # Check every 300 seconds if there is an occultation MAXILV = 100000 #Max number of occultations that can be returned by gfoclt bshape = 'POINT' fshape = 'DSK/UNPRIORITIZED' front = 'MARS' fframe = 'IAU_MARS' TFMT = 'YYYY-MM-DD HR:MN:SC' # Format that Cosmographia understands sv = SpiceVariables() #form a coordinate system where tgo is @ y=0 and x= (5000 +norm), Mar's Barrycenter being @ [5000,0] subgroupsize = 1 #initialise non-global variables miniray = np.zeros(subgroupsize) raystep = np.zeros((2,100000000))# create a large array to populate and then shrink later barry2mex = np.linalg.norm(MEX) barry2tgo = np.linalg.norm(TGO) #find the martian geomoerty so you can reliably find the altitude of a point marsrad = spice.bodvrd(sv.front, 'RADII', 3) flatteningcoefficient = ( marsrad[1][0] - marsrad[1][2] ) / marsrad[1][0] equatorialradii = marsrad[1][0] TGO = TGO +0 ; MEX = MEX +0 #force to be non-strided _,_, MEXalt = spice.recgeo(MEX, equatorialradii,flatteningcoefficient) _,_, TGOalt = spice.recgeo(TGO, equatorialradii,flatteningcoefficient) #the possition of MEX is found by assuming that it will be somewhere over the relative horizon from TGO # (meaning over θ = 90°), finding the angle between the MEX and TGO's negative vector, will give the coords of MEX MexRelativeElevation = spice.vsep(-TGO, MEX) #radians mex_y = barry2mex * np.sin(MexRelativeElevation) mex_x = barry2mex * np.cos(MexRelativeElevation) mex = np.array([0-mex_x, mex_y]) tgo = np.array([0+barry2tgo, 0]) barry = np.array([0, 0]) #to plot the non-refracted propogation, we must convert the 3d xyzpoints to 2d, we do this the same way we found the x&y for MEX # ,using the norm distance and sep from -TGO5 length = np.size(xyzpoints,1) UnrefractedDistance = np.linalg.norm(xyzpoints[:,0]- xyzpoints[:,-1]) #in km UnrefractedRay = np.zeros([2,length]) for i in range(length): #conversion to 2D point = xyzpoints[:,i] + 0 #need to put vector into temp variable as spice cant handle strided array inputs angle = spice.vsep(-TGO, point) norm = np.linalg.norm(point) point_x = norm * np.cos(angle) point_y = norm * np.sin(angle) UnrefractedRay[0,i] = 0 - point_x UnrefractedRay[1,i] = point_y #this will produce and angle that is likly not going to be exactly on #the original propagation path, you compare to this if there is a drifting error, as both this and the resultant refracted ray # have the same bias error. THIS ANGLE IS BENDING ANTICLOCKWISE IN THIS FRAME (BENDING UPWARDS) initialtheta = -(spice.vsep(MEX-TGO, MEX)) nicetohave = np.degrees(initialtheta) #THIS NEEDS TO VARY IF THERE IS AN OVERSHOOT unit
<filename>LSDPlottingTools/LSDMap_GDALIO.py<gh_stars>1-10 ## LSDMap_GDALIO.py ##=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= ## These functions are tools to deal with rasters ##=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= ## SMM ## 26/07/2014 ##=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= #from __future__ import absolute_import, division, print_function, unicode_literals from __future__ import absolute_import, division, print_function import osgeo.gdal as gdal import osgeo.gdal_array as gdal_array import numpy as np from osgeo import osr from osgeo import ogr import os from os.path import exists from osgeo.gdalconst import GA_ReadOnly #============================================================================== def getNoDataValue(rasterfn): """This gets the nodata value from the raster Args: rasterfn (str): The filename (with path and extension) of the raster Returns: float: nodatavalue; the nodata value Author: SMM """ raster = gdal.Open(rasterfn) band = raster.GetRasterBand(1) return band.GetNoDataValue() #============================================================================== #============================================================================== def setNoDataValue(rasterfn): """This sets the nodata value from the raster Args: rasterfn (str): The filename (with path and extension) of the raster Returns: None Author: SMM """ raster = gdal.Open(rasterfn) band = raster.GetRasterBand(1) return band.SetNoDataValue() #============================================================================== #============================================================================== def GetUTMMaxMin(FileName): """This gets the minimum and maximum UTM values. *WARNING* it assumes raster is already projected into UTM, and is in ENVI format! It reads from an ENVI header file. Args: FileName (str): The filename (with path and extension) of the raster Returns: float: The cell size in metres float: The X minimum (easting) in metres float: The X maximum (easting) in metres float: The Y minimum (northing) in metres float: The Y maximum (northing) in metres Author: SMM """ if exists(FileName) is False: raise Exception('[Errno 2] No such file or directory: \'' + FileName + '\'') NDV, xsize, ysize, GeoT, Projection, DataType = GetGeoInfo(FileName) CellSize = GeoT[1] XMin = GeoT[0] XMax = XMin+CellSize*xsize YMax = GeoT[3] YMin = YMax-CellSize*ysize return CellSize,XMin,XMax,YMin,YMax #============================================================================== #============================================================================== # Gets the pixel area, assumes units are projected #============================================================================== def GetPixelArea(FileName): """Gets the area in m^2 of the pixels Args: rasterfn (str): The filename (with path and extension) of the raster Returns: float: Pixel_area (float): The area of each pixel Author: SMM """ if exists(FileName) is False: raise Exception('[Errno 2] No such file or directory: \'' + FileName + '\'') NDV, xsize, ysize, GeoT, Projection, DataType = GetGeoInfo(FileName) CellSize = GeoT[1] return CellSize*CellSize #============================================================================== #============================================================================== # this takes rows and columns of minium and maximum values and converts them # to UTM def GetUTMMaxMinFromRowsCol(FileName,x_max_col,x_min_col,y_max_row,y_min_row): """This gets the minimum and maximum UTM values but you give it the row and column numbers. Note: This assumes raster is already projected into UTM, and is in ENVI format! It reads from an ENVI header file. Args: FileName (str): The filename (with path and extension) of the raster x_max_col (int): The column to use as the maximum x_min_col (int): The column to use as the minimum y_max_row (int): The row to use as the maximum y_min_row (int): The row to use as the minimum Returns: float: The X maximum (easting) in metres float: The X minimum (easting) in metres float: The Y maximum (northing) in metres float: The Y minimum (northing) in metres Author: SMM """ if exists(FileName) is False: raise Exception('[Errno 2] No such file or directory: \'' + FileName + '\'') NDV, xsize, ysize, GeoT, Projection, DataType = GetGeoInfo(FileName) CellSize = GeoT[1] XMin = GeoT[0] YMax = GeoT[3] YMin = YMax-CellSize*ysize xmax_UTM = XMin+x_max_col*CellSize xmin_UTM = XMin+x_min_col*CellSize # need to be careful with the ymax_UTM since the rows go from the top # but the header index is to bottom corner print("yll: "+str(YMin)+" and nrows: " +str(ysize) + " dx: "+str(CellSize)) ymax_from_bottom = ysize-y_min_row ymin_from_bottom = ysize-y_max_row ymax_UTM = YMin+ymax_from_bottom*CellSize ymin_UTM = YMin+ymin_from_bottom*CellSize return xmax_UTM,xmin_UTM,ymax_UTM,ymin_UTM #============================================================================== #============================================================================== # This gets the x and y vectors of the data #============================================================================== def GetLocationVectors(FileName): """This gets a vector of the x and y locations of the coordinates Note: This assumes raster is already projected into UTM, and is in ENVI format! It reads from an ENVI header file. Args: FileName (str): The filename (with path and extension) of the raster. Return: float: A vector of the x locations (eastings) float: A vector of the y locations (northings) Author: SMM """ NDV, xsize, ysize, GeoT, Projection, DataType = GetGeoInfo(FileName) CellSize,XMin,XMax,YMin,YMax = GetUTMMaxMin(FileName) x_vec = np.arange(XMin,XMax,CellSize) y_vec = np.arange(YMin,YMax,CellSize) return x_vec,y_vec #============================================================================== #============================================================================== # This gets the extent of the raster def GetRasterExtent(FileName): """This gets a vector of the minimums and maximums of the coordinates Note: This assumes raster is already projected into UTM, and is in ENVI format! It reads from an ENVI header file. Args: FileName (str): The filename (with path and extension) of the raster. Return: float: A vector that contains * extent[0]: XMin * extent[1]: XMax * extent[2]: YMin * extent[3]: YMax Author: SMM """ CellSize,XMin,XMax,YMin,YMax = GetUTMMaxMin(FileName) extent = [XMin,XMax,YMin,YMax] return extent #============================================================================== # Function to read the original file's projection: def GetGeoInfo(FileName): """This gets information from the raster file using gdal Args: FileName (str): The filename (with path and extension) of the raster. Return: float: A vector that contains: * NDV: the nodata values * xsize: cellsize in x direction * ysize: cellsize in y direction * GeoT: the tranform (a string) * Projection: the Projection (a string) * DataType: The type of data (an int explaing the bits of each data element) Author: SMM """ if exists(FileName) is False: raise Exception('[Errno 2] No such file or directory: \'' + FileName + '\'') SourceDS = gdal.Open(FileName, gdal.GA_ReadOnly) if SourceDS == None: raise Exception("Unable to read the data file") NDV = SourceDS.GetRasterBand(1).GetNoDataValue() xsize = SourceDS.RasterXSize ysize = SourceDS.RasterYSize GeoT = SourceDS.GetGeoTransform() Projection = osr.SpatialReference() Projection.ImportFromWkt(SourceDS.GetProjectionRef()) DataType = SourceDS.GetRasterBand(1).DataType DataType = gdal.GetDataTypeName(DataType) return NDV, xsize, ysize, GeoT, Projection, DataType #============================================================================== #============================================================================== # This gets the UTM zone, if it exists def GetUTMEPSG(FileName): """Uses GDAL to get the EPSG string from the raster. Args: FileName (str): The filename (with path and extension) of the raster. Return: str: The EPSG string Author: SMM """ if exists(FileName) is False: raise Exception('[Errno 2] No such file or directory: \'' + FileName + '\'') # see if the file exists and get the dataset SourceDS = gdal.Open(FileName, gdal.GA_ReadOnly) if SourceDS == None: raise Exception("Unable to read the data file") EPSG_string = 'NULL' # get the projection print("Let me get that projection for you") prj=SourceDS.GetProjection() srs=osr.SpatialReference(wkt=prj) if srs.IsProjected: #print("Trying projcs") #print(str(srs.GetAttrValue(str('PROJCS'),0))) print(srs.GetAttrValue(str('projcs'))) proj_str = srs.GetAttrValue(str('projcs')) print("The projection string is: "+proj_str) print(proj_str) if proj_str != None: # extract the UTM information if "UTM Zone" in proj_str: first_split = proj_str.split(',') first_half = first_split[0] second_half = first_split[1] if "Northern" in second_half: N_or_S = "N" else: N_or_S = "S" second_split = first_half.split(' ') zone = second_split[2] else: proj_split = proj_str.split('_') zone = proj_split[-1] N_or_S = zone[-1] zone = zone[:-1] # adding some logic for zones < 10 if len(zone) < 2: zone = '0'+zone EPSG_string = 'epsg:' if N_or_S == 'S': EPSG_string = EPSG_string+'327'+zone else: EPSG_string = EPSG_string+'326'+zone print("The EPSG string is: "+EPSG_string) else: raise Exception("This is not a projected coordinate system!") print(EPSG_string) return EPSG_string #============================================================================== # Function to read the original file's projection: def GetNPixelsInRaster(FileName): """This gets the total number of pixels in the raster Args: FileName (str): The filename (with path and extension) of the raster. Return: int: The total number of pixels Author: SMM """ NDV, xsize, ysize, GeoT, Projection, DataType = GetGeoInfo(FileName) return xsize*ysize #============================================================================== #============================================================================== # Function to read the original file's projection: def CheckNoData(FileName): """This looks through the head file of an ENVI raster and if it doesn't find the nodata line it rewrites the file to include the nodata line. Args: FileName (str): The filename (with path and extension) of the raster. Return: int: The total number of pixels (although what it is really doing is updating the header file. The return is just to check if it is working and yes I know this is stupid. ) Author: SMM """ if exists(FileName) is False: raise Exception('[Errno 2] No such file or directory: \'' + FileName + '\'') # read the file, and check if there is a no data value SourceDS = gdal.Open(FileName, gdal.GA_ReadOnly) if SourceDS == None: raise Exception("Unable to read the data file") NoDataValue = SourceDS.GetRasterBand(1).GetNoDataValue() print("In the check nodata routine. Nodata is: ") print(NoDataValue) if NoDataValue == None: print("This raster does not have no data. Updating the header file") header_name = FileName[:-4]
the variables for which del was inserted. """ blocks = wrap_parfor_blocks(parfor) cfg = compute_cfg_from_blocks(blocks) usedefs = compute_use_defs(blocks) live_map = compute_live_map(cfg, blocks, usedefs.usemap, usedefs.defmap) dead_map = compute_dead_maps(cfg, blocks, live_map, usedefs.defmap) # treat loop variables and size variables as live loop_vars = { l.start.name for l in parfor.loop_nests if isinstance( l.start, ir.Var)} loop_vars |= { l.stop.name for l in parfor.loop_nests if isinstance( l.stop, ir.Var)} loop_vars |= { l.step.name for l in parfor.loop_nests if isinstance( l.step, ir.Var)} loop_vars |= {l.index_variable.name for l in parfor.loop_nests} # for var_list in parfor.array_analysis.array_size_vars.values(): # loop_vars |= {v.name for v in var_list if isinstance(v, ir.Var)} dead_set = set() for label in blocks.keys(): # only kill vars that are actually dead at the parfor's block dead_map.internal[label] &= curr_dead_set dead_map.internal[label] -= loop_vars dead_set |= dead_map.internal[label] dead_map.escaping[label] &= curr_dead_set dead_map.escaping[label] -= loop_vars dead_set |= dead_map.escaping[label] # dummy class to replace func_ir. _patch_var_dels only accesses blocks class DummyFuncIR(object): def __init__(self, blocks): self.blocks = blocks post_proc = postproc.PostProcessor(DummyFuncIR(blocks)) post_proc._patch_var_dels(dead_map.internal, dead_map.escaping) unwrap_parfor_blocks(parfor) return dead_set | loop_vars postproc.ir_extension_insert_dels[Parfor] = parfor_insert_dels # reorder statements to maximize fusion def maximize_fusion(func_ir, blocks): call_table, _ = get_call_table(blocks) for block in blocks.values(): order_changed = True while order_changed: order_changed = False i = 0 while i < len(block.body) - 2: stmt = block.body[i] next_stmt = block.body[i + 1] # swap only parfors with non-parfors # don't reorder calls with side effects (e.g. file close) # only read-read dependencies are OK # make sure there is no write-write, write-read dependencies if (isinstance( stmt, Parfor) and not isinstance( next_stmt, Parfor) and not isinstance( next_stmt, ir.Print) and (not isinstance(next_stmt, ir.Assign) or has_no_side_effect( next_stmt.value, set(), call_table) or guard(is_assert_equiv, func_ir, next_stmt.value))): stmt_accesses = {v.name for v in stmt.list_vars()} stmt_writes = get_parfor_writes(stmt) next_accesses = {v.name for v in next_stmt.list_vars()} next_writes = get_stmt_writes(next_stmt) if len((stmt_writes & next_accesses) | (next_writes & stmt_accesses)) == 0: block.body[i] = next_stmt block.body[i + 1] = stmt order_changed = True i += 1 return def is_assert_equiv(func_ir, expr): func_name, mod_name = find_callname(func_ir, expr) return func_name == 'assert_equiv' def get_parfor_writes(parfor): assert isinstance(parfor, Parfor) writes = set() blocks = parfor.loop_body.copy() blocks[-1] = parfor.init_block for block in blocks.values(): for stmt in block.body: writes.update(get_stmt_writes(stmt)) if isinstance(stmt, Parfor): writes.update(get_parfor_writes(stmt)) return writes def try_fuse(equiv_set, parfor1, parfor2): """try to fuse parfors and return a fused parfor, otherwise return None """ dprint("try_fuse trying to fuse \n", parfor1, "\n", parfor2) # fusion of parfors with different dimensions not supported yet if len(parfor1.loop_nests) != len(parfor2.loop_nests): dprint("try_fuse parfors number of dimensions mismatch") return None ndims = len(parfor1.loop_nests) # all loops should be equal length def is_equiv(x, y): return x == y or equiv_set.is_equiv(x, y) for i in range(ndims): nest1 = parfor1.loop_nests[i] nest2 = parfor2.loop_nests[i] if not (is_equiv(nest1.start, nest2.start) and is_equiv(nest1.stop, nest2.stop) and is_equiv(nest1.step, nest2.step)): dprint("try_fuse parfor dimension correlation mismatch", i) return None # TODO: make sure parfor1's reduction output is not used in parfor2 # only data parallel loops if has_cross_iter_dep(parfor1) or has_cross_iter_dep(parfor2): dprint("try_fuse parfor cross iteration dependency found") return None # make sure parfor2's init block isn't using any output of parfor1 parfor1_body_usedefs = compute_use_defs(parfor1.loop_body) parfor1_body_vardefs = set() for defs in parfor1_body_usedefs.defmap.values(): parfor1_body_vardefs |= defs init2_uses = compute_use_defs({0: parfor2.init_block}).usemap[0] if not parfor1_body_vardefs.isdisjoint(init2_uses): dprint("try_fuse parfor2 init block depends on parfor1 body") return None return fuse_parfors_inner(parfor1, parfor2) def fuse_parfors_inner(parfor1, parfor2): # fuse parfor2 into parfor1 # append parfor2's init block on parfor1's parfor1.init_block.body.extend(parfor2.init_block.body) # append parfor2's first block to parfor1's last block parfor2_first_label = min(parfor2.loop_body.keys()) parfor2_first_block = parfor2.loop_body[parfor2_first_label].body parfor1_first_label = min(parfor1.loop_body.keys()) parfor1_last_label = max(parfor1.loop_body.keys()) parfor1.loop_body[parfor1_last_label].body.extend(parfor2_first_block) # add parfor2 body blocks to parfor1's except first parfor1.loop_body.update(parfor2.loop_body) parfor1.loop_body.pop(parfor2_first_label) # replace parfor2 indices with parfor1's ndims = len(parfor1.loop_nests) index_dict = {parfor2.index_var.name: parfor1.index_var} for i in range(ndims): index_dict[parfor2.loop_nests[i].index_variable.name] = parfor1.loop_nests[ i].index_variable replace_vars(parfor1.loop_body, index_dict) # re-order labels from min to max blocks = wrap_parfor_blocks(parfor1, entry_label=parfor1_first_label) blocks = rename_labels(blocks) unwrap_parfor_blocks(parfor1, blocks) nameset = set(x.name for x in index_dict.values()) remove_duplicate_definitions(parfor1.loop_body, nameset) parfor1.patterns.extend(parfor2.patterns) if config.DEBUG_ARRAY_OPT_STATS: print('Parallel for-loop #{} is fused into for-loop #{}.'.format( parfor2.id, parfor1.id)) return parfor1 def remove_duplicate_definitions(blocks, nameset): """Remove duplicated definition for variables in the given nameset, which is often a result of parfor fusion. """ for label, block in blocks.items(): body = block.body new_body = [] defined = set() for inst in body: if isinstance(inst, ir.Assign): name = inst.target.name if name in nameset: if name in defined: continue defined.add(name) new_body.append(inst) block.body = new_body return def has_cross_iter_dep(parfor): # we consevatively assume there is cross iteration dependency when # the parfor index is used in any expression since the expression could # be used for indexing arrays # TODO: make it more accurate using ud-chains indices = {l.index_variable for l in parfor.loop_nests} for b in parfor.loop_body.values(): for stmt in b.body: # GetItem/SetItem nodes are fine since can't have expression inside # and only simple indices are possible if isinstance(stmt, (ir.SetItem, ir.StaticSetItem)): continue # tuples are immutable so no expression on parfor possible if isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr): op = stmt.value.op if op in ['build_tuple', 'getitem', 'static_getitem']: continue # other statements can have potential violations if not indices.isdisjoint(stmt.list_vars()): dprint("has_cross_iter_dep found", indices, stmt) return True return False def dprint(*s): if config.DEBUG_ARRAY_OPT == 1: print(*s) def get_parfor_pattern_vars(parfor): """ get the variables used in parfor pattern information """ out = set() # currently, only stencil pattern has variables for pattern in parfor.patterns: if pattern[0] == 'stencil': left_lengths = pattern[1][0] right_lengths = pattern[1][1] for v in left_lengths+right_lengths: if isinstance(v, ir.Var): out.add(v.name) return out def remove_dead_parfor(parfor, lives, arg_aliases, alias_map, typemap): """ remove dead code inside parfor including get/sets """ # remove dead get/sets in last block # FIXME: I think that "in the last block" is not sufficient in general. We might need to # remove from any block. last_label = max(parfor.loop_body.keys()) last_block = parfor.loop_body[last_label] # save array values set to replace getitems saved_values = {} new_body = [] for stmt in last_block.body: if (isinstance(stmt, ir.SetItem) and stmt.index.name == parfor.index_var.name and stmt.target.name not in lives): saved_values[stmt.target.name] = stmt.value if isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr): rhs = stmt.value if rhs.op == 'getitem' and isinstance(rhs.index, ir.Var): if rhs.index.name == parfor.index_var.name: # replace getitem if value saved stmt.value = saved_values.get(rhs.value.name, rhs) new_body.append(stmt) last_block.body = new_body alias_set = set(alias_map.keys()) # after getitem replacement, remove extra setitems new_body = [] in_lives = copy.copy(lives) for stmt in reversed(last_block.body): # aliases of lives are also live for setitems alias_lives = in_lives & alias_set for v in alias_lives: in_lives |= alias_map[v] if (isinstance(stmt, ir.SetItem) and stmt.index.name == parfor.index_var.name and stmt.target.name not in in_lives): continue in_lives |= {v.name for v in stmt.list_vars()} new_body.append(stmt) new_body.reverse() last_block.body = new_body # process parfor body recursively remove_dead_parfor_recursive( parfor, lives, arg_aliases, alias_map, typemap) # remove parfor if empty is_empty = len(parfor.init_block.body) == 0 for block in parfor.loop_body.values(): is_empty &= len(block.body) == 0 if is_empty: return None return parfor ir_utils.remove_dead_extensions[Parfor] = remove_dead_parfor def remove_dead_parfor_recursive(parfor, lives, arg_aliases, alias_map, typemap): """create a dummy function from parfor and call remove dead recursively """ blocks = parfor.loop_body.copy() # shallow copy is enough first_body_block = min(blocks.keys()) assert first_body_block > 0 # we are using 0 for init block here last_label = max(blocks.keys()) return_label = last_label + 1 loc = blocks[last_label].loc scope = blocks[last_label].scope blocks[return_label] = ir.Block(scope, loc) # add dummy jump in init_block for CFG to work blocks[0] = parfor.init_block blocks[0].body.append(ir.Jump(first_body_block, loc)) # add lives in a dummpy return to last block to avoid their removal tuple_var = ir.Var(scope, mk_unique_var("$tuple_var"), loc) # dummy type for tuple_var typemap[tuple_var.name] = types.containers.UniTuple( types.intp, 2) live_vars = [ir.Var(scope, v, loc) for v in lives] tuple_call = ir.Expr.build_tuple(live_vars, loc) blocks[return_label].body.append(ir.Assign(tuple_call, tuple_var, loc)) blocks[return_label].body.append(ir.Return(tuple_var, loc)) branch = ir.Branch(0, first_body_block, return_label, loc) blocks[last_label].body.append(branch) # args var including aliases is ok remove_dead(blocks, arg_aliases, typemap, alias_map, arg_aliases) typemap.pop(tuple_var.name) # remove dummy tuple type blocks[0].body.pop() # remove dummy jump blocks[last_label].body.pop() # remove branch return def find_potential_aliases_parfor(parfor, args, typemap, alias_map, arg_aliases): blocks = wrap_parfor_blocks(parfor) ir_utils.find_potential_aliases( blocks, args, typemap, alias_map, arg_aliases) unwrap_parfor_blocks(parfor) return ir_utils.alias_analysis_extensions[Parfor] = find_potential_aliases_parfor def wrap_parfor_blocks(parfor, entry_label = None): """wrap parfor blocks for analysis/optimization like CFG""" blocks = parfor.loop_body.copy() # shallow copy is enough if entry_label == None: entry_label = min(blocks.keys()) assert entry_label > 0 #
above that in the identifier so make sure the unique # keyword is present if attr[level][0] not in identifier: raise InvalidIdentifier( f"The Identifier is missing a unique key for " f"the '{level}' level" ) def clear(session): """Delete all entries from the database. Parameters ---------- session : sqlalchemy.orm.session.Session The session we are using to clear the database. """ for instance in session.query(Instance).all(): session.delete(instance) session.commit() def create(db_location, echo=False): """Create a new database at `db_location` if one doesn't already exist. Parameters ---------- db_location : str The location of the database. echo : bool, optional Turn the sqlalchemy logging on (default ``False``). """ engine = create_engine(db_location, echo=echo) # Create the tables (won't recreate tables already present) Base.metadata.create_all(engine) return engine def remove_instance(instance_uid, session): """Remove a SOP Instance from the database. Parameters ---------- instance_uid : pydicom.uid.UID The (0008,0018) *SOP Instance UID* of the SOP Instance to be removed from the database. session : sqlalchemy.orm.session.Session The session to use when querying the database for the instance. """ matches = ( session.query(Instance).filter(Instance.sop_instance_uid == instance_uid).all() ) if matches: session.delete(matches[0]) session.commit() def search(model, identifier, session): """Search the database. Optional keys are not supported. Parameters ---------- model : pydicom.uid.UID The Query/Retrieve Information Model. Supported models are: - *Patient Root Query Retrieve Information Model* for C-FIND, C-GET and C-MOVE - *Study Root Query Retrieve Information Model* for C-FIND, C-GET and C-MOVE identifier : pydicom.dataset.Dataset The Query/Retrieve request's *Identifier* dataset. session : sqlalchemy.orm.session.Session The session we are using to query the database. Returns ------- list of Instance The matching database Instances. Raises ------ ValueError If the `identifier` is invalid. """ if model not in _STUDY_ROOT and model not in _PATIENT_ROOT: raise ValueError(f"Unknown information model '{model.name}'") # Remove all optional keys, after this only unique/required will remain for elem in identifier: kw = elem.keyword if kw != "QueryRetrieveLevel" and kw not in _ATTRIBUTES: delattr(identifier, kw) if model in _C_GET or model in _C_MOVE: # Part 4, C.2.2.1.2: remove required keys from C-GET/C-MOVE for kw, value in _ATTRIBUTES.items(): if value[1] == "R" and kw in identifier: delattr(identifier, kw) return _search_qr(model, identifier, session) def _search_qr(model, identifier, session): """Search the database using a Query/Retrieve *Identifier* query. Parameters ---------- model : pydicom.uid.UID Either *Patient Root Query Retrieve Information Model* or *Study Root Query Retrieve Information Model* for C-FIND, C-GET or C-MOVE. identifier : pydicom.dataset.Dataset The request's *Identifier* dataset. session : sqlalchemy.orm.session.Session The session we are using to query the database. Returns ------- list of db.Instance The Instances that match the query. """ # Will raise InvalidIdentifier if check failed _check_identifier(identifier, model) if model in _PATIENT_ROOT: attr = _PATIENT_ROOT[model] else: attr = _STUDY_ROOT[model] # Hierarchical search method: C.4.1.3.1.1 query = None for level, keywords in attr.items(): # Keywords at current level that are in the identifier keywords = [kw for kw in keywords if kw in identifier] # Create query dataset for only the current level and run it ds = Dataset() [setattr(ds, kw, getattr(identifier, kw)) for kw in keywords] query = build_query(ds, session, query) if level == identifier.QueryRetrieveLevel: break return query.all() def _search_range(elem, session, query=None): """Perform a range search for DA, DT and TM elements with '-' in them. Parameters ---------- elem : pydicom.dataelem.DataElement The attribute to perform the search with. session : sqlalchemy.orm.session.Session The session we are using to query the database. query : sqlalchemy.orm.query.Query, optional An existing query within which this search should be performed. If not used then all the Instances in the database will be searched (default). Returns ------- sqlalchemy.orm.query.Query The resulting query. """ # range matching # <date1> - <date2>: matches any date within the range, inclusive # - <date2>: match all dates prior to and including <date2> # <date1> -: match all dates after and including <date1> # <time>: if Timezone Offset From UTC included, values are in specified # date: 20060705-20060707 + time: 1000-1800 matches July 5, 10 am to # July 7, 6 pm. start, end = elem.value.split("-") attr = getattr(Instance, _TRANSLATION[elem.keyword]) if not query: query = session.query(Instance) if start and end: return query.filter(attr >= start, attr <= end) elif start and not end: return query.filter(attr >= start) elif not start and end: return query.filter(attr <= end) raise ValueError("Invalid attribute value for range matching") def _search_single_value(elem, session, query=None): """Perform a search using single value matching. Single value matching shall be performed if the value of an Attribute is non-zero length and the VR is not SQ and: * the VR is AE, CS, LO, LT, PN, SH, ST, UC, UR or UT and contains no wild card characters, or * the VR is DA, TM or DT and contains a single value with no "-", or * any other VR Parameters ---------- elem : pydicom.dataelem.DataElement The attribute to perform the search with. session : sqlalchemy.orm.session.Session The session we are using to query the database. query : sqlalchemy.orm.query.Query, optional An existing query within which this search should be performed. If not used then all the Instances in the database will be searched (default). Returns ------- sqlalchemy.orm.query.Query The resulting query. """ attr = getattr(Instance, _TRANSLATION[elem.keyword]) if elem.VR == "PN": value = str(elem.value) else: value = elem.value if not query: query = session.query(Instance) return query.filter(attr == value) def _search_uid_list(elem, session, query=None): """Search using an element containing a list of UIDs. A match against any of the UIDs is considered a positive result. Parameters ---------- elem : pydicom.dataelem.DataElement The attribute to perform the search with. session : sqlalchemy.orm.session.Session The session we are using to query the database. query : sqlalchemy.orm.query.Query, optional An existing query within which this search should be performed. If not used then all the Instances in the database will be searched (default). Returns ------- sqlalchemy.orm.query.Query The resulting query. """ if not elem.value: return _search_universal(elem, session, query) attr = getattr(Instance, _TRANSLATION[elem.keyword]) if not query: query = session.query(Instance) return query.filter(attr.in_(elem.value)) def _search_universal(elem, session, query=None): """Perform a universal search for empty elements. Parameters ---------- elem : pydicom.dataelem.DataElement The attribute to perform the search with. session : sqlalchemy.orm.session.Session The session we are using to query the database. query : sqlalchemy.orm.query.Query, optional An existing query within which this search should be performed. If not used then all the Instances in the database will be searched (default). Returns ------- sqlalchemy.orm.query.Query The resulting query. """ # If the value is zero length then all entities shall match if not query: query = session.query(Instance) return query def _search_wildcard(elem, session, query=None): """Perform a wildcard search. Parameters ---------- elem : pydicom.dataelem.DataElement The attribute to perform the search with. session : sqlalchemy.orm.session.Session The session we are using to query the database. query : sqlalchemy.orm.query.Query, optional An existing query within which this search should be performed. If not used then all the Instances in the database will be searched (default). Returns ------- sqlalchemy.orm.query.Query The resulting query. """ # Contains '*' or '?', case-sensitive if not PN # '*' shall match any sequence of characters (incl. zero length) # '?' shall match any single character attr = getattr(Instance, _TRANSLATION[elem.keyword]) if elem.VR == "PN": value = str(elem.value) else: value = elem.value if value is None or value == "": value = "*" value = value.replace("*", "%") value = value.replace("?", "_") if not query: query = session.query(Instance) return query.filter(attr.like(value)) # Database table setup stuff Base = declarative_base() class Image(Base): __tablename__ = "image" # (0008,0018) SOP Instance UID | VR UI, VM 1, U sop_instance_uid = Column(String(64), primary_key=True) # (0020,0013) Instance Number | VR IS, VM 1, R instance_number = Column(Integer) class Instance(Base): __tablename__ = "instance" # Absolute path to the stored SOP Instance filename = Column(String) # Transfer Syntax UID of the SOP Instance transfer_syntax_uid = Column(String(64)) sop_class_uid = Column(String(64)) patient_id = Column(String, ForeignKey("patient.patient_id")) patient_name = Column(String, ForeignKey("patient.patient_id")) study_instance_uid = Column(String, ForeignKey("study.study_instance_uid")) study_date = Column(String, ForeignKey("study.study_date")) study_time = Column(String, ForeignKey("study.study_time")) accession_number = Column(String, ForeignKey("study.accession_number")) study_id = Column(String, ForeignKey("study.study_id")) series_instance_uid = Column(String, ForeignKey("series.series_instance_uid")) modality = Column(String, ForeignKey("series.modality")) series_number = Column(String, ForeignKey("series.series_number")) sop_instance_uid = Column( String, ForeignKey("image.sop_instance_uid"), primary_key=True, ) instance_number = Column(String,
<reponame>Blank3495/aiotfm<gh_stars>0 import asyncio import sys import time import traceback from aiotfm.packet import Packet from aiotfm.get_keys import get_keys from aiotfm.connection import Connection from aiotfm.player import Profile, Player from aiotfm.tribe import Tribe from aiotfm.message import Message, Whisper, Channel, ChannelMessage from aiotfm.shop import Shop from aiotfm.inventory import Inventory, InventoryItem, Trade from aiotfm.room import Room from aiotfm.locale import Locale from aiotfm.errors import * class Client: """Represents a client that connects to Transformice. Two argument can be passed to the :class:`Client`. .. _event loop: https://docs.python.org/3/library/asyncio-eventloops.html Parameters ---------- community: Optional[:class:`int`] Defines the community of the client. Defaults to 0 (EN community). loop: Optional[event loop] The `event loop`_ to use for asynchronous operations. If ``None`` is passed (defaults), the event loop used will be ``asyncio.get_event_loop()``. Attributes ---------- username: Optional[:class:`str`] The bot's username received from the server. Might be None if the bot didn't log in yet. room: Optional[:class:`aiotfm.room.Room`] The bot's room. Might be None if the bot didn't log in yet or couldn't join any room yet. trade: Optional[:class:`aiotfm.inventory.Trade`] The current trade that's going on (i.e: both traders accepted it). trades: :class:`list`[:class:`aiotfm.inventory.Trade`] All the trades that the bot participates. Most of them might be invitations only. inventory: Optional[:class:`aiotfm.inventory.Inventory`] The bot's inventory. Might be None if the bot didn't log in yet or it didn't receive anything. locale: :class:`aiotfm.locale.Locale` The bot's locale (translations). """ LOG_UNHANDLED_PACKETS = False def __init__(self, community=0, loop=None): self.loop = loop or asyncio.get_event_loop() self.main = Connection('main', self, self.loop) self.bulle = None self._waiters = {} self.room = None self.trade = None self.trades = [] self.inventory = None self.username = None self.locale = Locale() self.community = community # EN self.cp_fingerprint = 0 self._channels = [] async def received_data(self, data, connection): """|coro| Dispatches the received data. :param data: :class:`bytes` the received data. :param connection: :class:`aiotfm.connection.Connection` the connection that received the data. """ self.dispatch('raw_socket', connection, Packet(data)) try: await self.handle_packet(connection, Packet(data)) except Exception: traceback.print_exc() async def handle_packet(self, connection:Connection, packet:Packet): """|coro| Handles the known packets and dispatches events. Subclasses should handle only the unhandled packets from this method. Example: :: class Bot(aiotfm.Client): async def handle_packet(self, conn, packet): handled = await super().handle_packet(conn, packet.copy()) if not handled: # Handle here the unhandled packets. pass :param connection: :class:`aiotfm.connection.Connection` the connection that received the packet. :param packet: :class:`aiotfm.Packet` the packet. :return: True if the packet got handled, False otherwise. """ CCC = packet.readCode() if CCC==(1, 1): # Old packets data = packet.readBytes().split(b'\x01') oldCCC = tuple(data.pop(0)[:2]) self.dispatch('old_packet', connection, oldCCC, data) return await self.handle_old_packet(connection, oldCCC, data) elif CCC==(5, 21): # Joined room room = self.room = Room(private=not packet.readBool(), name=packet.readUTF()) self.dispatch('joined_room', room) elif CCC==(6, 6): # Room message player_id = packet.read32() username = packet.readUTF() commu = packet.read8() message = packet.readUTF() self.dispatch('room_message', Message(Player(username, pid=player_id), message, commu, self)) elif CCC==(6, 20): # Server message packet.readBool() # if False then the message will appear in the #Server channel t_key = packet.readUTF() t_args = [packet.readUTF() for i in range(packet.read8())] self.dispatch('server_message', self.locale[t_key], *t_args) elif CCC==(8, 5): # Show emoji player = self.room.get_player(pid=packet.read32()) emoji = packet.read8() self.dispatch('emoji', player, emoji) elif CCC==(8, 16): # Profile self.dispatch('profile', Profile(packet)) elif CCC==(8, 20): # Shop self.dispatch('shop', Shop(packet)) elif CCC==(8, 22): # Skills skills = {} for i in range(packet.read8()): key, value = packet.read8(), packet.read8() skills[key] = value self.dispatch('skills', skills) elif CCC==(16, 2): # Tribe invitation received author = packet.readUTF() tribe = packet.readUTF() self.dispatch('tribe_inv', author, tribe) elif CCC==(26, 2): # Logged in successfully player_id = packet.read32() self.username = username = packet.readUTF() played_time = packet.read32() community = packet.read8() pid = packet.read32() self.dispatch('logged', player_id, username, played_time, community, pid) elif CCC==(26, 3): # Handshake OK online_players = packet.read32() # online players connection.fingerprint = packet.read8() community = packet.readUTF() # community country = packet.readUTF() # country self.authkey = packet.read32() self.loop.create_task(self._heartbeat_loop()) await connection.send(Packet.new(8,2).write8(self.community).write8(0)) os_info = Packet.new(28,17).writeString('en').writeString('Linux') os_info.writeString('LNX 29,0,0,140').write8(0) await connection.send(os_info) self.dispatch('login_ready', online_players, community, country) elif CCC==(26, 12): # Login result self.dispatch('login_result', packet.read8(), packet.readUTF(), packet.readUTF()) elif CCC==(26, 25): # Ping self.dispatch('ping') elif CCC==(28, 6): # Server ping await connection.send(Packet.new(28, 6).write8(packet.read8())) elif CCC==(29, 6): # Lua logs self.dispatch('lua_log', packet.readUTF()) elif CCC==(31, 1): # Inventory data self.inventory = Inventory.from_packet(packet) self.inventory.client = self self.dispatch('inventory_update', self.inventory) elif CCC==(31, 2): # Update inventory item id = packet.read16() quantity = packet.read8() if id in self.inventory.items: item = self.inventory.items[id] previous = item.quantity item.quantity = quantity self.dispatch('item_update', item, previous) else: item = InventoryItem(id=id, quantity=quantity) self.inventory.items[item.id] = item self.dispatch('new_item', item) elif CCC==(31, 5): # Trade invite player = self.room.get_player(pid=packet.read32()) trade = Trade(player, self) self.trades.append(trade) trade.alive = True trade.on_invite = True self.dispatch('trade_invite', trade) elif CCC==(31, 6): # Trade error name = packet.readUTF() error = packet.read8() if name == "": if self.trade._other.username == name: self.trade._close() self.dispatch('trade_error', self.trade, error) self.dispatch('trade_close', self.trade) else: for trade in self.trades: if trade._other.username == name: trade._close() self.dispatch('trade_error', trade, error) self.dispatch('trade_close', trade) break elif CCC==(31, 7): # Trade start player = self.room.get_player(pid=packet.read32()) player.trade.on_invite = False player.trade.alive = True if self.trade is not None: trade = self.trade self.trade._close() self.dispatch('trade_close', trade) self.trade = player.trade self.dispatch('trade_start', self.trade) elif CCC==(31, 8): # Trade items me = packet.readBool() id = packet.read16() adding = packet.readBool() quantity = packet.read8() quantity = (1 if adding else -1) * quantity items = self.trade.items_me if me else self.trade.items_other if id in items: items[id] += quantity else: items[id] = quantity if items[id] == 0: del items[id] self.trade.locked_me = False self.trade.locked_other = False self.dispatch('trade_item_change', self.trade, self if me else self.trade._other, id, quantity, items[id] if id in items else 0) elif CCC==(31, 9): # Trade lock if packet.readBool(): self.trade.locked_me = packet.readBool() self.dispatch('trade_lock', self.trade, self, self.trade.locked_me) else: self.trade.locked_other = packet.readBool() self.dispatch('trade_lock', self.trade, self.trade._other, self.trade.locked_other) elif CCC==(31, 10): # Trade complete trade = self.trade self.trade._close() self.dispatch('trade_complete', trade) elif CCC==(44, 1): # Bulle switching bulle_id = packet.read32() bulle_ip = packet.readString().decode() if self.bulle is not None: self.bulle.close() self.bulle = Connection('bulle', self, self.loop) await self.bulle.connect(bulle_ip, self.main.address[1]) await self.bulle.send(Packet.new(*CCC).write32(bulle_id)) elif CCC==(44, 22): # Fingerprint offset changed connection.fingerprint = packet.read8() elif CCC==(60, 3): # Community platform TC = packet.read16() self.dispatch('raw_cp', TC, packet.copy(True)) if TC==3: # Connected to the community platform self.dispatch('ready') elif TC==55: # Channel join result result = packet.read8() self.dispatch('channel_joined_result', result) elif TC==57: # Channel leave result result = packet.read8() self.dispatch('channel_leaved_result', result) elif TC==59: # Channel /who result idSequence = packet.read32() result = packet.read8() players = [Player(packet.readUTF()) for _ in range(packet.read16())] self.dispatch('channel_who', idSequence, players) elif TC==62: # Joined a channel name = packet.readUTF() if name in self._channels: channel = [c for c in self._channels if c==name][0] else: channel = Channel(name, self) self._channels.append(channel) self.dispatch('channel_joined', channel) elif TC==63: # Quit a channel name = packet.readUTF() if name in self._channels: self._channels.remove(name) self.dispatch('channel_closed', name) elif TC==64: # Channel message author, community = packet.readUTF(), packet.read32() channel_name, message = packet.readUTF(), packet.readUTF() channel = self.get_channel(channel_name) if channel is None: channel = Channel(channel_name, self) self._channels.append(channel) self.dispatch('channel_message', ChannelMessage(author, community, message, channel)) elif TC==65: # Tribe message author, message = packet.readUTF(), packet.readUTF() self.dispatch('tribe_message', author, message) elif TC==66: # Whisper author, commu, receiver, message = Player(packet.readUTF()), packet.read32(), Player(packet.readUTF()), packet.readUTF() self.dispatch('whisper', Whisper(author, commu, receiver, message, self)) elif TC==88: # tribe member connected self.dispatch('member_connected', packet.readUTF()) elif TC==90: # tribe member disconnected self.dispatch('member_disconnected', packet.readUTF()) else: if self.LOG_UNHANDLED_PACKETS: print(CCC, TC, bytes(packet.buffer)[4:]) return False elif CCC==(100, 67): # New inventory item slot = packet.read8() id = packet.read16() quantity = packet.read8() item = InventoryItem(id=id, quantity=quantity, slot=None if slot == 0 else slot) self.inventory[id] = item self.dispatch('new_item', item) elif CCC==(144, 1): # Set player list before = self.room.players self.room.players = [] for player in range(packet.read16()): self.room.players.append(Player.from_packet(packet)) for player in before: if player.trade is not None: after = self.room.get_player(pid=player.pid) if after is not None: player.trade._update_player(after) else: trade = player.trade player.trade._close() self.dispatch('trade_close', trade) self.dispatch('bulk_player_update', before, self.room.players) elif CCC==(144, 2): # Add a player after = Player.from_packet(packet) before = self.room.get_player(pid=after.pid) self.room.players.append(after) if before is None: self.dispatch('player_join', after) else: self.room.players.remove(before) if before.trade is not None: before.trade._update_player(after) self.dispatch('player_update', before, after) else: if self.LOG_UNHANDLED_PACKETS: print(CCC, bytes(packet.buffer)[2:]) return False return True async def handle_old_packet(self, connection:Connection, oldCCC:tuple, data:list): """|coro| Handles the known packets from the old protocol and dispatches events. Subclasses should handle only the unhandled packets from this method. Example: :: class Bot(aiotfm.Client): async def handle_old_packet(self, conn, oldCCC, data): handled = await super().handle_old_packet(conn, data.copy()) if not handled: # Handle here the unhandled packets. pass :param connection: :class:`aiotfm.connection.Connection` the connection that received the packet. :param oldCCC: :class:`tuple` the packet identifiers on the old protocol. :param data: :class:`list` the packet data. :return: True if the packet got handled, False otherwise. """ if oldCCC==(8, 7): # Remove a player player = self.room.get_player(pid=int(data[0])) if player is not None: self.room.players.remove(player) if player.trade is not None: trade = player[1].trade player.trade._close() self.dispatch('trade_close', trade) self.dispatch('player_remove', player) else: if self.LOG_UNHANDLED_PACKETS: print("[OLD]", oldCCC, data) return False return True async def _heartbeat_loop(self): """|coro| Send a packet every fifteen seconds to stay connected to the game. """ last_heartbeat = 0 while self.main.open: if self.loop.time()-last_heartbeat>=15: t = time.perf_counter() await self.main.send(Packet.new(26, 26)) await self.main.send(Packet.new(26, 26)) if self.bulle is not None and self.bulle.open: await self.bulle.send(Packet.new(26, 26)) self.dispatch('heartbeat', (time.perf_counter()-t)*1000) last_heartbeat = self.loop.time() await asyncio.sleep(.5) def get_channel(self, name): if name is None: return None for channel in self._channels: if channel.name==name: return channel def event(self, coro): """A decorator that registers an event. More about events [here](Events.md). """ name = coro.__name__ if not name.startswith('on_'): raise InvalidEvent("'{}' isn't a correct event naming.".format(name)) if not asyncio.iscoroutinefunction(coro): raise InvalidEvent("Couldn't register a non-coroutine function for the event {}.".format(name)) setattr(self, name, coro) return coro def wait_for(self, event, condition=None, timeout=None, stopPropagation=False): """Wait for an event. Example: :: @client.event async def on_room_message(author, message): if message=='id': await client.sendCommand('profile '+author) profile = await client.wait_for('on_profile', lambda p: p.username==author) await client.sendRoomMessage('Your id: {}'.format(profile.id)) :param event: :class:`str` the event name. :param condition: Optionnal[:class:`function`] A predicate to check what to wait for. The arguments must meet the parameters of the event being waited for. :param timeout: Optionnal[:class:`int`] the number of seconds before raise asyncio.TimeoutError :return: :class:`asyncio.Future` a future that you must await. """ event = event.lower() future = self.loop.create_future() if condition is None: def condition(*a): return True if event not in self._waiters: self._waiters[event] = [] self._waiters[event].append((condition, future, stopPropagation)) return asyncio.wait_for(future, timeout, loop=self.loop) async def _run_event(self, coro, event_name, *args, **kwargs): """|coro| Runs an event and handle the error if any. :param coro: a coroutine function. :param event_name: :class:`str` the event's name. :param args: arguments to pass to the coro. :param kwargs: keyword arguments to pass to the coro. """ try: await coro(*args, **kwargs) except asyncio.CancelledError: pass except Exception as e: if hasattr(self, 'on_error'): try: await self.on_error(event_name, e, *args, **kwargs) except asyncio.CancelledError: pass def dispatch(self, event, *args, **kwargs): """Dispatches events :param event: :class:`str` event's name. (without 'on_') :param args: arguments to pass to the coro. :param kwargs: keyword arguments to pass to the coro. """ method = 'on_' + event if method in self._waiters: to_remove
feat2 = params interactions = [] # Favorable cation-nucleophile interaction if feat1.name == "Nucleophile" and feat2.name in CATIONS: dipole_grp, dipole_type = group1, "Nucleophile" ion_grp, ion_type = group2, "Cation" elif feat1.name in CATIONS and feat2.name == "Nucleophile": dipole_grp, dipole_type = group2, "Nucleophile" ion_grp, ion_type = group1, "Cation" # Favorable anion-electrophile interaction elif feat1.name == "Electrophile" and feat2.name in ANIONS: dipole_grp, dipole_type = group1, "Electrophile" ion_grp, ion_type = group2, "Anion" elif feat1.name in ANIONS and feat2.name == "Electrophile": dipole_grp, dipole_type = group2, "Electrophile" ion_grp, ion_type = group1, "Anion" # Unfavorable anion-nucleophile interaction elif feat1.name == "Nucleophile" and feat2.name in ANIONS: dipole_grp, dipole_type = group1, "Nucleophile" ion_grp, ion_type = group2, "Anion" elif feat1.name in ANIONS and feat2.name == "Nucleophile": dipole_grp, dipole_type = group2, "Nucleophile" ion_grp, ion_type = group1, "Anion" # Unfavorable cation-electrophile interaction elif feat1.name == "Electrophile" and feat2.name in CATIONS: dipole_grp, dipole_type = group1, "Electrophile" ion_grp, ion_type = group2, "Cation" elif feat1.name in CATIONS and feat2.name == "Electrophile": dipole_grp, dipole_type = group2, "Electrophile" ion_grp, ion_type = group1, "Cation" else: logger.warning("Ion-dipole interactions require a dipole and an ion group. However, the informed groups " "have the features %s and %s." % (group1.feature_names, group2.feature_names)) return [] # A nucleophile may have only 1 atom (water oxygen). part_charged_atm = dipole_grp.atoms[0] # If a nucleophile has 2 atoms, it will select the partially negative atom based on the electronegativity. if len(dipole_grp.atoms) == 2 and dipole_type == "Nucleophile": part_charged_atm = dipole_grp.atoms[0] if (dipole_grp.atoms[0].electronegativity > dipole_grp.atoms[1].electronegativity) else dipole_grp.atoms[1] # If an electrophile has two atoms. It will select the partially negative atom based on the electronegativity. elif len(dipole_grp.atoms) == 2 and dipole_type == "Electrophile": part_charged_atm = dipole_grp.atoms[0] if (dipole_grp.atoms[0].electronegativity < dipole_grp.atoms[1].electronegativity) else dipole_grp.atoms[1] # Distance between the ion and the dipole. id_dist = im.euclidean_distance(part_charged_atm.coord, ion_grp.centroid) if (self.is_within_boundary(id_dist, "boundary_cutoff", le) and self.is_within_boundary(id_dist, "max_id_dist_ion_multipole_inter", le)): idy_angle = -1 if len(dipole_grp.atoms) == 2: # Model: I ... D-Y, where I is the ion, D the dipole atom of interest (the electrophile or nucleophile), # and Y is its counterpart. y_atm = dipole_grp.atoms[1] if dipole_grp.atoms[0] == part_charged_atm else dipole_grp.atoms[0] di_vect = ion_grp.centroid - part_charged_atm.coord dy_vect = y_atm.coord - part_charged_atm.coord idy_angle = im.angle(di_vect, dy_vect) # Dipoles containing only one atom are allowed to pass without checking the angle IDY. if len(dipole_grp.atoms) == 1 or self.is_within_boundary(idy_angle, "min_idy_ang_ion_multipole_inter", ge): dipole_nb_coords = [nbi.coord for nbi in part_charged_atm.neighbors_info if nbi.atomic_num != 1] params = {} if len(dipole_nb_coords) > 1: dipole_normal = im.calc_normal(dipole_nb_coords + [part_charged_atm.coord]) disp_angle = im.to_quad1(im.angle(dipole_normal, di_vect)) if self.is_within_boundary(disp_angle, "max_disp_ang_ion_multipole_inter", le): params = {"id_dist_ion_multipole_inter": id_dist, "idy_ang_ion_multipole_inter": idy_angle, "disp_ang_ion_multipole_inter": disp_angle} else: params = {"id_dist_ion_multipole_inter": id_dist, "idy_ang_ion_multipole_inter": idy_angle, "disp_ang_ion_multipole_inter": -1} if params: if dipole_type == "Nucleophile" and ion_type == "Cation": inter = InteractionType(dipole_grp, ion_grp, "Cation-nucleophile", params=params) interactions.append(inter) elif dipole_type == "Nucleophile" and ion_type == "Anion": inter = InteractionType(dipole_grp, ion_grp, "Unfavorable anion-nucleophile", params=params) interactions.append(inter) elif dipole_type == "Electrophile" and ion_type == "Anion": inter = InteractionType(ion_grp, dipole_grp, "Anion-electrophile", params=params) interactions.append(inter) elif dipole_type == "Electrophile" and ion_type == "Cation": inter = InteractionType(ion_grp, dipole_grp, "Unfavorable cation-electrophile", params=params) interactions.append(inter) return interactions @staticmethod def calc_multipolar(self, params): """Default method to calculate favorable and unfavorable dipole-dipole interactions. Parameters ---------- params : tuple of (:class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.features.ChemicalFeature`,\ :class:`~luna.mol.features.ChemicalFeature`) The tuple follows the order (:math:`A`, :math:`B`, :math:`A_f`, :math:`B_f`), where :math:`A` and :math:`B` are two :class:`~luna.mol.groups.AtomGroup` objects, and :math:`A_f` and :math:`B_f` are their features (:class:`~luna.mol.features.ChemicalFeature` objects), respectively. Returns ------- : list """ if not self.add_non_cov: return [] group1, group2, feat1, feat2 = params interactions = [] if len(group1.atoms) != 1 and len(group1.atoms) != 2 and len(group2.atoms) != 1 and len(group2.atoms) != 2: logger.warning("A dipole group should have 1 (for cases when the atom has only hydrogens bonded to it) or 2 atoms. " "However, the informed groups '%s' and '%s' have %d and %d atoms, respectively." % (group1, group2, len(group1.atoms), len(group2.atoms))) return [] # The reference dipole will always be the second one, i.e., one of its atom will be the center in the angle NEY. # # Favorable interactions: in these cases, the Dipole 1 will always be the nucleophile and the Dipole 2 the # electrophile in order to represent the nucleophile atack, i.e., the angles calculated using the dipole 2 as reference # represents how the nucleophile aproximate the electrophile. if feat1.name == "Nucleophile" and feat2.name == "Electrophile": dipole_grp1, dipole_type1 = group1, feat1.name dipole_grp2, dipole_type2 = group2, feat2.name elif feat2.name == "Nucleophile" and feat1.name == "Electrophile": dipole_grp1, dipole_type1 = group2, feat2.name dipole_grp2, dipole_type2 = group1, feat1.name # Unfavorable interactions: in these cases, the reference dipole will depend on the number of atoms in the dipoles. # With dipoles containing 1 atom, it takes a generous approach by ignoring angles and accepting everything. # With dipoles containing two atoms, it requires that at least one of the angles fits the rules to be accepted. elif feat1.name == feat2.name and (feat1.name == "Nucleophile" or feat1.name == "Electrophile"): # If only one group contains 1 atom, use it as the dipole 2 because it is used as the reference to calculate # the NEY angle. Since we take a generous approach, with one atom no angle will be calculated and the interaction # will be accepted. if len(group1.atoms) == 1 and len(group2.atoms) == 2: dipole_grp1, dipole_type1 = group2, feat2.name dipole_grp2, dipole_type2 = group1, feat1.name # All the other number combinations ([2,1], [1,1], [2, 2]) come here. else: dipole_grp1, dipole_type1 = group1, feat1.name dipole_grp2, dipole_type2 = group2, feat2.name else: logger.warning("Multipolar interactions require a nucleophile and an electrophile group. " "However, the informed groups have the features %s and %s." % (group1.feature_names, group2.feature_names)) return [] # Ignore dipoles containing at least one common atom, which can happen to covalently bound dipoles. # An example of it is the C-S-C substructure that contains two dipoles. if any(atm in group2.atoms for atm in group1.atoms): return [] # Atom 1 => Dipole 1 # # A nucleophile may have only 1 atom (water oxygen). dipole_atm1 = dipole_grp1.atoms[0] # If it has 2 atoms, it will select the nucleophilic atom based on the electronegativity. if len(dipole_grp1.atoms) == 2 and dipole_type1 == "Nucleophile": dipole_atm1 = dipole_grp1.atoms[0] if (dipole_grp1.atoms[0].electronegativity > dipole_grp1.atoms[1].electronegativity) else dipole_grp1.atoms[1] # Or, it will select the nucleophilic atom based on the electronegativity. elif len(dipole_grp1.atoms) == 2 and dipole_type1 == "Electrophile": dipole_atm1 = dipole_grp1.atoms[0] if (dipole_grp1.atoms[0].electronegativity < dipole_grp1.atoms[1].electronegativity) else dipole_grp1.atoms[1] # Atom 2 => Dipole 2 # # An electrophile may have only 1 atom. E.g.: NH4, although by default we consider it as an ion. dipole_atm2 = dipole_grp2.atoms[0] # If it has 2 atoms, it will select the nucleophilic atom based on the electronegativity. if len(dipole_grp2.atoms) == 2 and dipole_type2 == "Nucleophile": dipole_atm2 = dipole_grp2.atoms[0] if (dipole_grp2.atoms[0].electronegativity > dipole_grp2.atoms[1].electronegativity) else dipole_grp2.atoms[1] # Or, it will select the nucleophilic atom based on the electronegativity. elif len(dipole_grp2.atoms) == 2 and dipole_type2 == "Electrophile": dipole_atm2 = dipole_grp2.atoms[0] if (dipole_grp2.atoms[0].electronegativity < dipole_grp2.atoms[1].electronegativity) else dipole_grp2.atoms[1] # Model for favorable interactions: A-N ... E-Y # Model for unfavorable interactions: A-N ... N-A, Y-E ... E-Y. # # Although there are two different models for unfavorable interactions, the method for them are equal to the # favorable interaction. So, from now on, we will deal with them as if it was the first model. # # Distance between the nucleophile and electrophile. ne_dist = im.euclidean_distance(dipole_atm1.coord, dipole_atm2.coord) if (self.is_within_boundary(ne_dist, "boundary_cutoff", le) and self.is_within_boundary(ne_dist, "max_ne_dist_multipolar_inter", le)): # No angle can be calculated if the electrophile (dipole 2) has only one atom. if len(dipole_grp2.atoms) == 1: params = {"ne_dist_multipolar_inter": ne_dist, "ney_ang_multipolar_inter": -1, "disp_ang_multipolar_inter": -1, "an_ey_ang_multipolar_inter": -1} inter_type = ("Multipolar" if not dipole_type1 == dipole_type2 else "Unfavorable %s-%s" % (dipole_type1.lower(), dipole_type2.lower())) inter = InteractionType(dipole_grp1, dipole_grp2, inter_type, directional=True, params=params) interactions.append(inter) else: dipole1 = (dipole_grp1, dipole_atm1, dipole_type1) dipole2 = (dipole_grp2, dipole_atm2, dipole_type2) combinations = [(dipole1, dipole2)] # For unfavorable interactions, it is necessary to evaluate each combination of dipoles. So, it can # produce two interactions. if
<reponame>karlp/KiCost # -*- coding: utf-8 -*- # MIT license # # Copyright (C) 2018 by XESS Corporation / <NAME> / <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # Author information. __author__ = '<NAME>' __webpage__ = 'https://github.com/hildogjr/' __company__ = 'University of Campinas - Brazil' # Libraries. import json import requests import re import sys import os import copy from collections import OrderedDict if sys.version_info[0] < 3: from urllib import quote_plus else: from urllib.parse import quote_plus # KiCost definitions. from ..global_vars import DEFAULT_CURRENCY, DEBUG_OVERVIEW, ERR_SCRAPE, KiCostError, W_NOINFO, NO_PRICE from .. import DistData # Distributors definitions. from .distributor import distributor_class # Uncomment for debug # Use `debug('x + 1')` for instance. # def debug(expression): # frame = sys._getframe(1) # distributor_class.logger.info(expression, '=', repr(eval(expression, frame.f_globals, frame.f_locals))) MAX_PARTS_PER_QUERY = 20 # Maximum number of parts in a single query. # Information to return from PartInfo KitSpace server. QUERY_AVAIABLE_CURRENCIES = ['GBP', 'EUR', 'USD'] # DEFAULT_CURRENCY QUERY_ANSWER = ''' mpn{manufacturer, part}, datasheet, description, specs{key, value}, offers(from: {DISTRIBUTORS}){ product_url, sku {vendor, part}, description, moq, in_stock_quantity, prices{''' + ','.join(QUERY_AVAIABLE_CURRENCIES) + '''} } ''' # Informations not used: type,specs{key, name, value},image {url, credit_string, credit_url},stock_location QUERY_ANSWER = re.sub(r'[\s\n]', '', QUERY_ANSWER) QUERY_PART = 'query ($input: MpnInput!) { part(mpn: $input) {' + QUERY_ANSWER + '} }' QUERY_MATCH = 'query ($input: [MpnOrSku]!){ match(parts: $input) {' + QUERY_ANSWER + '} }' QUERY_SEARCH = 'query ($input: String!){ search(term: $input) {' + QUERY_ANSWER + '} }' QUERY_URL = 'https://dev-partinfo.kitspace.org/graphql' __all__ = ['api_partinfo_kitspace'] class api_partinfo_kitspace(distributor_class): name = 'KitSpace' type = 'api' enabled = True url = 'https://kitspace.org/' # Web site API information. API_DISTRIBUTORS = ['digikey', 'farnell', 'mouser', 'newark', 'rs', 'arrow', 'tme', 'lcsc'] DIST_TRANSLATION = { # Distributor translation. 'Digikey': 'digikey', 'Farnell': 'farnell', 'Mouser': 'mouser', 'Newark': 'newark', 'RS': 'rs', 'TME': 'tme', 'Arrow Electronics': 'arrow', 'LCSC': 'lcsc', } # Dict to translate KiCost field names into KitSpace distributor names KICOST2KITSPACE_DIST = {v: k for k, v in DIST_TRANSLATION.items()} @staticmethod def init_dist_dict(): if api_partinfo_kitspace.enabled: distributor_class.add_distributors(api_partinfo_kitspace.API_DISTRIBUTORS) @staticmethod def query(query_parts, distributors, query_type=QUERY_MATCH): '''Send query to server and return results.''' distributors = [api_partinfo_kitspace.KICOST2KITSPACE_DIST[d] for d in distributors] # Allow changing the URL for debug purposes try: url = os.environ['KICOST_KITSPACE_URL'] except KeyError: url = QUERY_URL # Sort the distributors to create a reproducible query query_type = re.sub(r'\{DISTRIBUTORS\}', '["' + '","'.join(sorted(distributors)) + '"]', query_type) # r = requests.post(url, {"query": QUERY_SEARCH, "variables": variables}) #TODO future use for ISSUE #17 variables = '{"input":[' + ','.join(query_parts) + ']}' # Remove all spaces, even inside the manf# # SET comment: this is how the code always worked. Octopart (used by KitSpace) ignores spaces inside manf# codes. variables = variables.replace(' ', '') # Do the query using POST data = 'query={}&variables={}'.format(quote_plus(query_type), quote_plus(variables)) distributor_class.log_request(url, data) data = OrderedDict() data["query"] = query_type data["variables"] = variables response = requests.post(url, data) distributor_class.log_response(response) if response.status_code == requests.codes['ok']: # 200 results = json.loads(response.text) return results elif response.status_code == requests.codes['not_found']: # 404 raise KiCostError('Kitspace server not found check your internet connection.', ERR_SCRAPE) elif response.status_code == requests.codes['request_timeout']: # 408 raise KiCostError('KitSpace is not responding.', ERR_SCRAPE) elif response.status_code == requests.codes['bad_request']: # 400 raise KiCostError('Bad request to Kitspace server probably due to an incorrect string ' 'format check your `manf#` codes and contact the suport team.', ERR_SCRAPE) elif response.status_code == requests.codes['gateway_timeout']: # 504 raise KiCostError('One of the internal Kitspace services may experiencing problems. Contact the Kitspace support.', ERR_SCRAPE) else: raise KiCostError('Kitspace error: ' + str(response.status_code), ERR_SCRAPE) @staticmethod def get_spec(data, item, default=None): '''Get the value of `value` field of a dictionary if the `name` field identifier. Used to get information from the JSON response.''' for d in data['specs']: if d['key'] == item: value = d['value'] return value if value is not None else default return default @staticmethod def get_part_info(query, parts, distributors, currency, distributors_wanted): '''Query PartInfo for quantity/price info and place it into the parts list. `distributors_wanted` is the list of distributors we want for each query. `distributors` is the list of all distributors we want, in general. This difference is because some queries are for an specific distributor. ''' # Translate from PartInfo distributor names to the names used internally by kicost. dist_xlate = api_partinfo_kitspace.DIST_TRANSLATION results = api_partinfo_kitspace.query(query, distributors) # Loop through the response to the query and enter info into the parts list. for part_query, part, dist_want, result in zip(query, parts, distributors_wanted, results['data']['match']): if not result: distributor_class.logger.warning(W_NOINFO+'No information found for parts \'{}\' query `{}`'.format(part.refs, str(part_query))) continue # Get the information of the part. part.datasheet = result.get('datasheet') part.lifecycle = api_partinfo_kitspace.get_spec(result, 'lifecycle_status', 'active').lower() # Misc data collected, currently not used inside KiCost part.update_specs({sp['key']: (sp['key'], sp['value']) for sp in result['specs'] if sp['value']}) # Loop through the offers from various dists for this particular part. for offer in result['offers']: # Get the distributor who made the offer and add their # price/qty info to the parts list if its one of the accepted distributors. dist = dist_xlate.get(offer['sku']['vendor'], '') if dist not in dist_want: # Not interested in this distributor continue # Get the DistData for this distributor dd = part.dd.get(dist, DistData()) # This will happen if there are not enough entries in the price/qty list. # As a stop-gap measure, just assign infinity to the part increment. # A better alternative may be to examine the packaging field of the offer. part_qty_increment = float("inf") # Get pricing information from this distributor. dist_currency = {cur: pri for cur, pri in offer['prices'].items() if pri} if not dist_currency: # Some times the API returns minimum purchase 0 and a not valid `price_tiers`. distributor_class.logger.warning(NO_PRICE+'No price information found for parts \'{}\' query `{}`'. format(part.refs, str(part_query))) else: prices = None # Get the price tiers prioritizing: # 1) The asked currency by KiCost user; # 2) The default currency given by `DEFAULT_CURRENCY` in root `global_vars.py`; # 3) The first not null tiers if currency in dist_currency: prices = dist_currency[currency] dd.currency = currency elif DEFAULT_CURRENCY in dist_currency: prices = dist_currency[DEFAULT_CURRENCY] dd.currency = DEFAULT_CURRENCY else: dd.currency, prices = next(iter(dist_currency.items())) price_tiers = {qty: float(price) for qty, price in prices} # Combine price lists for multiple offers from the same distributor # to build a complete list of cut-tape and reeled components. dd.price_tiers.update(price_tiers) # Compute the quantity increment between the lowest two prices. # This will be used to distinguish the cut-tape from the reeled components. if len(price_tiers) > 1: part_break_qtys = sorted(price_tiers.keys()) part_qty_increment = part_break_qtys[1] - part_break_qtys[0] # Select the part SKU, web page, and available quantity. # Each distributor can have different stock codes for the same part in different # quantities / delivery package styles: cut-tape, reel, ... # Therefore we select and overwrite a previous selection if one of the # following conditions is met: # 1. We don't have a selection for this part from this distributor yet. # 2. The MOQ is smaller than for the current selection. # 3. The part_qty_increment for this offer smaller than that of the existing selection. # (we prefer cut-tape style packaging over reels) # 4. For DigiKey, we can't use part_qty_increment to distinguish between # reel and cut-tape, so we need to look at the actual DigiKey part number. # This procedure is made by the definition `distributors_info[dist]['ignore_cat#_re']` # at the distributor profile. dist_part_num = offer.get('sku', '').get('part', '') qty_avail
admx_policies: admx_policies.append(policy_item) log.trace("Search complete: %s seconds", time.time() - start_time) if return_not_configured: log.trace("Gathering non configured policies") start_time = time.time() not_configured_policies = ALL_CLASS_POLICY_XPATH( admx_policy_definitions, registry_class=policy_class ) for policy_item in admx_policies: if policy_item in not_configured_policies: not_configured_policies.remove(policy_item) for not_configured_policy in not_configured_policies: not_configured_policy_namespace = not_configured_policy.nsmap[ not_configured_policy.prefix ] if not_configured_policy_namespace not in policy_vals: policy_vals[not_configured_policy_namespace] = {} policy_vals[not_configured_policy_namespace][ not_configured_policy.attrib["name"] ] = "Not Configured" if return_full_policy_names: if not_configured_policy_namespace not in full_names: full_names[not_configured_policy_namespace] = {} full_names[not_configured_policy_namespace][ not_configured_policy.attrib["name"] ] = _getFullPolicyName( policy_item=not_configured_policy, policy_name=not_configured_policy.attrib["name"], return_full_policy_names=return_full_policy_names, adml_language=adml_language, ) log.trace( "building hierarchy for non-configured item %s", not_configured_policy.attrib["name"], ) if not_configured_policy_namespace not in hierarchy: hierarchy[not_configured_policy_namespace] = {} hierarchy[not_configured_policy_namespace][ not_configured_policy.attrib["name"] ] = _build_parent_list( policy_definition=not_configured_policy, return_full_policy_names=return_full_policy_names, adml_language=adml_language, ) log.trace("Gathering complete: %s seconds", time.time() - start_time) log.trace("Examining %s policies...", len(admx_policies)) start_time = time.time() for admx_policy in admx_policies: this_valuename = None this_policy_setting = "Not Configured" element_only_enabled_disabled = True explicit_enable_disable_value_setting = False if "key" in admx_policy.attrib: this_key = admx_policy.attrib["key"] else: log.error( 'policy item %s does not have the required "key" attribute', admx_policy.attrib, ) break if "valueName" in admx_policy.attrib: this_valuename = admx_policy.attrib["valueName"] if "name" in admx_policy.attrib: this_policyname = admx_policy.attrib["name"] else: log.error( 'policy item %s does not have the required "name" attribute', admx_policy.attrib, ) break this_policynamespace = admx_policy.nsmap[admx_policy.prefix] if ( ENABLED_VALUE_XPATH(admx_policy) and this_policy_setting == "Not Configured" ): # some policies have a disabled list but not an enabled list # added this to address those issues if DISABLED_LIST_XPATH(admx_policy) or DISABLED_VALUE_XPATH( admx_policy ): element_only_enabled_disabled = False explicit_enable_disable_value_setting = True if _checkValueItemParent( admx_policy, this_policyname, this_key, this_valuename, ENABLED_VALUE_XPATH, policy_file_data, ): this_policy_setting = "Enabled" log.trace( "%s is enabled by detected ENABLED_VALUE_XPATH", this_policyname ) if this_policynamespace not in policy_vals: policy_vals[this_policynamespace] = {} policy_vals[this_policynamespace][ this_policyname ] = this_policy_setting if ( DISABLED_VALUE_XPATH(admx_policy) and this_policy_setting == "Not Configured" ): # some policies have a disabled list but not an enabled list # added this to address those issues if ENABLED_LIST_XPATH(admx_policy) or ENABLED_VALUE_XPATH(admx_policy): element_only_enabled_disabled = False explicit_enable_disable_value_setting = True if _checkValueItemParent( admx_policy, this_policyname, this_key, this_valuename, DISABLED_VALUE_XPATH, policy_file_data, ): this_policy_setting = "Disabled" log.trace( "%s is disabled by detected DISABLED_VALUE_XPATH", this_policyname, ) if this_policynamespace not in policy_vals: policy_vals[this_policynamespace] = {} policy_vals[this_policynamespace][ this_policyname ] = this_policy_setting if ( ENABLED_LIST_XPATH(admx_policy) and this_policy_setting == "Not Configured" ): if DISABLED_LIST_XPATH(admx_policy) or DISABLED_VALUE_XPATH( admx_policy ): element_only_enabled_disabled = False explicit_enable_disable_value_setting = True if _checkListItem( admx_policy, this_policyname, this_key, ENABLED_LIST_XPATH, policy_file_data, ): this_policy_setting = "Enabled" log.trace( "%s is enabled by detected ENABLED_LIST_XPATH", this_policyname ) if this_policynamespace not in policy_vals: policy_vals[this_policynamespace] = {} policy_vals[this_policynamespace][ this_policyname ] = this_policy_setting if ( DISABLED_LIST_XPATH(admx_policy) and this_policy_setting == "Not Configured" ): if ENABLED_LIST_XPATH(admx_policy) or ENABLED_VALUE_XPATH(admx_policy): element_only_enabled_disabled = False explicit_enable_disable_value_setting = True if _checkListItem( admx_policy, this_policyname, this_key, DISABLED_LIST_XPATH, policy_file_data, ): this_policy_setting = "Disabled" log.trace( "%s is disabled by detected DISABLED_LIST_XPATH", this_policyname, ) if this_policynamespace not in policy_vals: policy_vals[this_policynamespace] = {} policy_vals[this_policynamespace][ this_policyname ] = this_policy_setting if not explicit_enable_disable_value_setting and this_valuename: # the policy has a key/valuename but no explicit enabled/Disabled # Value or List # these seem to default to a REG_DWORD 1 = "Enabled" **del. = "Disabled" if _regexSearchRegPolData( re.escape( _buildKnownDataSearchString( this_key, this_valuename, "REG_DWORD", "1" ) ), policy_file_data, ): this_policy_setting = "Enabled" log.trace( "%s is enabled by no explicit enable/disable list or value", this_policyname, ) if this_policynamespace not in policy_vals: policy_vals[this_policynamespace] = {} policy_vals[this_policynamespace][ this_policyname ] = this_policy_setting elif _regexSearchRegPolData( re.escape( _buildKnownDataSearchString( this_key, this_valuename, "REG_DWORD", None, check_deleted=True, ) ), policy_file_data, ): this_policy_setting = "Disabled" log.trace( "%s is disabled by no explicit enable/disable list or value", this_policyname, ) if this_policynamespace not in policy_vals: policy_vals[this_policynamespace] = {} policy_vals[this_policynamespace][ this_policyname ] = this_policy_setting if ELEMENTS_XPATH(admx_policy): if element_only_enabled_disabled or this_policy_setting == "Enabled": # TODO does this need to be modified based on the 'required' attribute? required_elements = {} configured_elements = {} policy_disabled_elements = 0 for elements_item in ELEMENTS_XPATH(admx_policy): for child_item in elements_item: this_element_name = _getFullPolicyName( policy_item=child_item, policy_name=child_item.attrib["id"], return_full_policy_names=return_full_policy_names, adml_language=adml_language, ) required_elements[this_element_name] = None child_key = child_item.attrib.get("key", this_key) child_valuename = child_item.attrib.get( "valueName", this_valuename ) if etree.QName(child_item).localname == "boolean": # https://msdn.microsoft.com/en-us/library/dn605978(v=vs.85).aspx if child_item: if ( TRUE_VALUE_XPATH(child_item) and this_element_name not in configured_elements ): if _checkValueItemParent( child_item, this_policyname, child_key, child_valuename, TRUE_VALUE_XPATH, policy_file_data, ): configured_elements[ this_element_name ] = True log.trace( "element %s is configured true", child_item.attrib["id"], ) if ( FALSE_VALUE_XPATH(child_item) and this_element_name not in configured_elements ): if _checkValueItemParent( child_item, this_policyname, child_key, child_valuename, FALSE_VALUE_XPATH, policy_file_data, ): configured_elements[ this_element_name ] = False policy_disabled_elements = ( policy_disabled_elements + 1 ) log.trace( "element %s is configured false", child_item.attrib["id"], ) # WARNING - no standard ADMX files use true/falseList # so this hasn't actually been tested if ( TRUE_LIST_XPATH(child_item) and this_element_name not in configured_elements ): log.trace("checking trueList") if _checkListItem( child_item, this_policyname, this_key, TRUE_LIST_XPATH, policy_file_data, ): configured_elements[ this_element_name ] = True log.trace( "element %s is configured true", child_item.attrib["id"], ) if ( FALSE_LIST_XPATH(child_item) and this_element_name not in configured_elements ): log.trace("checking falseList") if _checkListItem( child_item, this_policyname, this_key, FALSE_LIST_XPATH, policy_file_data, ): configured_elements[ this_element_name ] = False policy_disabled_elements = ( policy_disabled_elements + 1 ) log.trace( "element %s is configured false", child_item.attrib["id"], ) else: if _regexSearchRegPolData( re.escape( _processValueItem( child_item, child_key, child_valuename, admx_policy, elements_item, check_deleted=True, ) ), policy_file_data, ): configured_elements[this_element_name] = False policy_disabled_elements = ( policy_disabled_elements + 1 ) log.trace( "element %s is configured false", child_item.attrib["id"], ) elif _regexSearchRegPolData( re.escape( _processValueItem( child_item, child_key, child_valuename, admx_policy, elements_item, check_deleted=False, ) ), policy_file_data, ): configured_elements[this_element_name] = True log.trace( "element %s is configured true", child_item.attrib["id"], ) elif ( etree.QName(child_item).localname == "decimal" or etree.QName(child_item).localname == "text" or etree.QName(child_item).localname == "longDecimal" or etree.QName(child_item).localname == "multiText" ): # https://msdn.microsoft.com/en-us/library/dn605987(v=vs.85).aspx if _regexSearchRegPolData( re.escape( _processValueItem( child_item, child_key, child_valuename, admx_policy, elements_item, check_deleted=True, ) ), policy_file_data, ): configured_elements[this_element_name] = "Disabled" policy_disabled_elements = ( policy_disabled_elements + 1 ) log.trace( "element %s is disabled", child_item.attrib["id"], ) elif _regexSearchRegPolData( re.escape( _processValueItem( child_item, child_key, child_valuename, admx_policy, elements_item, check_deleted=False, ) ), policy_file_data, ): configured_value = _getDataFromRegPolData( _processValueItem( child_item, child_key, child_valuename, admx_policy, elements_item, check_deleted=False, ), policy_file_data, ) configured_elements[ this_element_name ] = configured_value log.trace( "element %s is enabled, value == %s", child_item.attrib["id"], configured_value, ) elif etree.QName(child_item).localname == "enum": if _regexSearchRegPolData( re.escape( _processValueItem( child_item, child_key, child_valuename, admx_policy, elements_item, check_deleted=True, ) ), policy_file_data, ): log.trace( "enum element %s is disabled", child_item.attrib["id"], ) configured_elements[this_element_name] = "Disabled" policy_disabled_elements = ( policy_disabled_elements + 1 ) else: for enum_item in child_item: if _checkValueItemParent( enum_item, child_item.attrib["id"], child_key, child_valuename, VALUE_XPATH, policy_file_data, ): if VALUE_LIST_XPATH(enum_item): log.trace("enum item has a valueList") if _checkListItem( enum_item, this_policyname, child_key, VALUE_LIST_XPATH, policy_file_data, ): log.trace( "all valueList items exist in" " file" ) configured_elements[ this_element_name ] = _getAdmlDisplayName( adml_policy_resources, enum_item.attrib["displayName"], ) break else: configured_elements[ this_element_name ] = _getAdmlDisplayName( adml_policy_resources, enum_item.attrib["displayName"], ) break elif etree.QName(child_item).localname == "list": return_value_name = False if ( "explicitValue" in child_item.attrib and child_item.attrib["explicitValue"].lower() == "true" ): log.trace( "explicitValue list, we will return value names" ) return_value_name = True regex_str = [ r"(?!\*", r"\*", "D", "e", "l", "V", "a", "l", "s", r"\.", ")", ] delvals_regex = "\x00".join(regex_str) delvals_regex = salt.utils.stringutils.to_bytes( delvals_regex ) if _regexSearchRegPolData( re.escape( _processValueItem( child_item, child_key, child_valuename, admx_policy, elements_item, check_deleted=False, ) ) + delvals_regex, policy_file_data, ): configured_value = _getDataFromRegPolData( _processValueItem( child_item, child_key, child_valuename, admx_policy, elements_item, check_deleted=False, ), policy_file_data, return_value_name=return_value_name, ) configured_elements[ this_element_name ] = configured_value log.trace( "element %s is enabled values: %s", child_item.attrib["id"], configured_value, ) elif _regexSearchRegPolData( re.escape( _processValueItem( child_item, child_key, child_valuename, admx_policy, elements_item, check_deleted=True, ) ), policy_file_data, ): configured_elements[this_element_name] = "Disabled" policy_disabled_elements = ( policy_disabled_elements + 1 ) log.trace( "element %s is disabled", child_item.attrib["id"], ) if element_only_enabled_disabled: if len(required_elements.keys()) > 0 and len( configured_elements.keys() ) == len(required_elements.keys()): if policy_disabled_elements == len( required_elements.keys() ): log.trace( "%s is disabled by all enum elements", this_policyname, ) if this_policynamespace not in policy_vals: policy_vals[this_policynamespace] = {} policy_vals[this_policynamespace][ this_policyname ] = "Disabled" else: if this_policynamespace not in policy_vals: policy_vals[this_policynamespace] = {} policy_vals[this_policynamespace][ this_policyname ] = configured_elements log.trace( "%s is enabled by enum elements", this_policyname ) else: if this_policy_setting == "Enabled": if this_policynamespace not in policy_vals: policy_vals[this_policynamespace] = {} policy_vals[this_policynamespace][ this_policyname ] = configured_elements if ( return_full_policy_names and this_policynamespace in policy_vals and this_policyname in policy_vals[this_policynamespace] ): if this_policynamespace not in full_names: full_names[this_policynamespace] = {} full_names[this_policynamespace][this_policyname] = _getFullPolicyName( policy_item=admx_policy, policy_name=admx_policy.attrib["name"], return_full_policy_names=return_full_policy_names, adml_language=adml_language, ) # Make sure the we're passing the full policy name # This issue was found when setting the `Allow
from __future__ import division import io import os import logging from math import ceil import numpy as np from sklearn.utils import Bunch from keras.models import Sequential, Model from keras.layers import (Conv2D, Dropout, Input, concatenate, MaxPooling2D, Conv2DTranspose, UpSampling2D) from keras.callbacks import (ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, TensorBoard, LambdaCallback, CSVLogger) from keras.optimizers import Adam from keras.layers.noise import GaussianNoise from coindeblend.models import UNet_modular from coindeblend.scores import jaccard_coef_int, iou import matplotlib.pyplot as plt import tensorflow as tf def plot_to_image(figure): """Converts the matplotlib plot specified by 'figure' to a PNG image and returns it. The supplied figure is closed and inaccessible after this call.""" # Save the plot to a PNG in memory. buf = io.BytesIO() plt.savefig(buf, format='png') # Closing the figure prevents it from being displayed directly inside # the notebook. plt.close(figure) buf.seek(0) # Convert PNG buffer to TF image image = tf.image.decode_png(buf.getvalue(), channels=4) buf.close() # Add the batch dimension image = tf.expand_dims(image, 0) return image class ObjectDetector(object): """Object detector. Parameters ---------- batch_size : int, optional The batch size used during training. Set by default to 32 samples. epoch : int, optional The number of epoch for which the model will be trained. Set by default to 50 epochs. model_check_point : bool, optional Whether to create a callback for intermediate models. Attributes ---------- model_ : object The DNN model. params_model_ : Bunch dictionary All hyper-parameters to build the DNN model. """ def __init__(self, batch_size=32, epoch=10, model_check_point=True, filename=None, maindir=None, seed=42, plot_history=False, display_img=None): self.model_, self.params_model_ = self._build_model() self.batch_size = batch_size self.epoch = epoch self.model_check_point = model_check_point self.filename = filename self.maindir = maindir self.seed = seed self._plot_history = plot_history self.log = logging.getLogger(__name__) self.test_display_img = display_img self._init_repos() self._write_info() def _write_info(self): self.log.info("") self.log.info("\tModel summary") self.log.info("\t=============") self.model_.summary(print_fn=lambda x: self.log.info(f"\t{x}")) self.log.info("") self.log.info("\tParameters") self.log.info("\t==========") for k, v in self.params_model_.items(): self.log.info(f"\t{k}: {v}") self.log.info("") def _init_repos(self): self.weightdir = os.path.join(self.maindir, 'weights') self.plotdir = os.path.join(self.maindir, 'plots') self.logdir = os.path.join(os.getenv('COIN'), 'projects', 'logs') os.makedirs(self.weightdir, exist_ok=True) os.makedirs(self.plotdir, exist_ok=True) os.makedirs(self.logdir, exist_ok=True) def load_weights(self, weights_file): self.model_.load_weights(weights_file) def fit(self, X, y): # build the box encoder to later encode y to make usable in the model train_dataset = BatchGeneratorBuilder(X, y) train_generator, val_generator, n_train_samples, n_val_samples = \ train_dataset.get_train_valid_generators( batch_size=self.batch_size, valid_ratio=self.params_model_.valid_ratio) # create the callbacks to get during fitting callbacks = self._build_callbacks() # fit the model history = self.model_.fit_generator( generator=train_generator, steps_per_epoch=ceil(n_train_samples / self.batch_size), epochs=self.epoch, callbacks=callbacks, validation_data=val_generator, validation_steps=ceil(n_val_samples / self.batch_size)) if self._plot_history: self.plot_history(history) def predict(self, X): if X.ndim == 3: X = np.expand_dims(X, -1) return self.model_.predict(X) def predict_score(self, X, y_true): if X.ndim == 3: X = np.expand_dims(X, -1) if y_true.ndim == 3: y_true = np.expand_dims(y_true, -1) y_pred = self.model_.predict(X) return iou(y_true, y_pred) def plot_history(self, history): import matplotlib.pyplot as plt self.log.info(" => Creating plots..") plt.figure() plt.semilogy(history.epoch, history.history['loss'], label='train loss') plt.semilogy( history.epoch, history.history['val_loss'], label='valid loss') plt.title('Loss history') plt.legend() plt.tight_layout() loss_plot_file = os.path.join( self.plotdir, f"{self.filename}_train_history.png") plt.savefig(loss_plot_file) plt.close() self.log.info(f"\tplot saved in {loss_plot_file}") plt.figure() plt.plot(history.epoch, history.history['acc'], label='train accuracy') plt.plot(history.epoch, history.history['val_acc'], label='valid accuracy') plt.title('Accuracy history') plt.legend() plt.tight_layout() accuracy_plot_file = os.path.join( self.plotdir, f"{self.filename}_train_accuracy.png") plt.savefig(accuracy_plot_file) plt.close() self.log.info(f"\tplot saved in {accuracy_plot_file}") ########################################################################### # Setup model @staticmethod def _init_params_model(): params_model = Bunch() # image and class parameters params_model.img_rows = 128 params_model.img_cols = 128 params_model.img_channels = 1 # ARCHITECTURE PARAMS # they depend exclusively on your model # the names can be changed since they will only be called by your model params_model.output_channels = 3 params_model.depth = 6 params_model.init_filt_size = 64 params_model.dropout_rate = 0.3 # LOSS # this is basically the metric for optimizing your model # this needs to be selected in accordance to the task you want to achieve params_model.keras_loss = 'binary_crossentropy' # params_model.keras_loss = 'mse' # OPTIMIZER PARAMS # these values are good starting point # you should not change them during the first runs. params_model.lr = 1e-4 params_model.beta_1 = 0.9 params_model.beta_2 = 0.999 params_model.epsilon = 1e-08 params_model.decay = 5e-05 params_model.valid_ratio = 0.2 # callbacks parameters # params_model.early_stopping = True params_model.early_stopping = False params_model.es_patience = 12 params_model.es_min_delta = 0.001 params_model.reduce_learning_rate = True params_model.lr_patience = 5 params_model.lr_factor = 0.5 params_model.lr_min_delta = 0.001 params_model.lr_cooldown = 2 params_model.tensorboard = True params_model.tb_write_grads = True return params_model def _build_model(self): # load the parameter for the SSD model params_model = self._init_params_model() ####################################################################### # # --- CHANGE HERE --- # # The deep neural network model can be imported from an external file # like here or be defined right below. model = UNet_modular( input_shape=(params_model.img_rows, params_model.img_cols, params_model.img_channels), output_channels=params_model.output_channels, depth=params_model.depth, filt_size=params_model.init_filt_size, dropout_rate=params_model.dropout_rate) optimizer = Adam(lr=params_model.lr) # # ####################################################################### model.compile(optimizer=optimizer, loss=params_model.keras_loss, metrics=['acc']) return model, params_model def _build_callbacks(self): logdir = os.path.join(self.logdir, f"{self.filename}") callbacks = [] epoch_logger = LambdaCallback( on_epoch_begin=lambda epoch, logs: self.log.info( f"\t\tStarting Epoch {epoch}/{self.epoch}")) callbacks.append(epoch_logger) csv_logger = CSVLogger(os.path.join(self.plotdir, 'history.csv')) callbacks.append(csv_logger) if self.model_check_point: wdir = os.path.join(self.weightdir, f'{self.filename}_weights_best.h5') callbacks.append( ModelCheckpoint(wdir, monitor='val_loss', save_best_only=True, save_weights_only=True, period=1, verbose=1)) # add early stopping if self.params_model_.early_stopping: callbacks.append( EarlyStopping(monitor='val_loss', min_delta=self.params_model_.es_min_delta, patience=self.params_model_.es_patience, verbose=1)) # reduce learning-rate when reaching plateau if self.params_model_.reduce_learning_rate: callbacks.append( ReduceLROnPlateau(monitor='val_loss', factor=self.params_model_.lr_factor, patience=self.params_model_.lr_patience, cooldown=self.params_model_.lr_cooldown, # min_delta=self.params_model_.lr_min_delta, verbose=1)) if self.params_model_.tensorboard: callbacks.append( TensorBoard(log_dir=logdir, write_grads=self.params_model_.tb_write_grads, batch_size=self.batch_size) ) return callbacks ############################################################################### # Batch generator class BatchGeneratorBuilder(object): """A batch generator builder for generating batches of images on the fly. This class is a way to build training and validation generators that yield each time a tuple (X, y) of mini-batches. The generators are built in a way to fit into keras API of `fit_generator` (see https://keras.io/models/model/). The fit function from `Classifier` should then use the instance to build train and validation generators, using the method `get_train_valid_generators` Parameters ========== X_array : ArrayContainer of int vector of image data to train on y_array : vector of int vector of object labels corresponding to `X_array` """ def __init__(self, X_array, y_array): self.X_array = X_array self.y_array = y_array self.nb_examples = len(X_array) self.X_single_channel = X_array.ndim == 3 self.y_single_channel = y_array.ndim == 3 def get_train_valid_generators(self, batch_size=256, valid_ratio=0.1): """Build train and valid generators for keras. This method is used by the user defined `Classifier` to o build train and valid generators that will be used in keras `fit_generator`. Parameters ========== batch_size : int size of mini-batches valid_ratio : float between 0 and 1 ratio of validation data Returns ======= a 4-tuple (gen_train, gen_valid, nb_train, nb_valid) where: - gen_train is a generator function for training data - gen_valid is a generator function for valid data - nb_train is the number of training examples - nb_valid is the number of validation examples The number of training and validation data are necessary so that we can use the keras method `fit_generator`. """ nb_valid = int(valid_ratio * self.nb_examples) nb_train = self.nb_examples - nb_valid indices = np.arange(self.nb_examples) train_indices = indices[0:nb_train] valid_indices = indices[nb_train:] gen_train = self._get_generator( indices=train_indices, batch_size=batch_size) gen_valid = self._get_generator( indices=valid_indices, batch_size=batch_size) return gen_train, gen_valid, nb_train, nb_valid def _get_generator(self, indices=None, batch_size=32): if indices is None: indices = np.arange(self.nb_examples) # Infinite loop, as required by keras `fit_generator`. # However, as we provide the number of examples per epoch # and the user specifies the total number of epochs, it will # be able to end. while True: X = self.X_array[indices] y = self.y_array[indices] # converting to float needed? X = np.array(X, dtype='float32') y = np.array(y, dtype='float32') # Yielding mini-batches for i in range(0, len(X), batch_size): if self.X_single_channel: X_batch = [np.expand_dims(img, -1) for img in X[i:i + batch_size]] else: X_batch = [img for img in X[i:i + batch_size]] if self.y_single_channel: y_batch = [np.expand_dims(seg, -1) for seg in y[i:i + batch_size]] else: y_batch = [seg for seg in y[i:i + batch_size]] for j in range(len(X_batch)): # flip images if np.random.randint(2): X_batch[j] = np.flip(X_batch[j], axis=0) y_batch[j] = np.flip(y_batch[j], axis=0) if np.random.randint(2): X_batch[j] = np.flip(X_batch[j], axis=1) y_batch[j] = np.flip(y_batch[j], axis=1) # TODO add different data augmentation steps yield np.array(X_batch), np.array(y_batch) def main(): import sys import time try: extra_arg = sys.argv[1] except IndexError: extra_arg = "" if extra_arg in ['--help', '-h']: print("\nUsage:\n" f"\tpython {sys.argv[0]} <name/id>") sys.exit() filename = os.path.splitext(sys.argv[0])[0] job_id = "_".join([f"{filename}"] + sys.argv[1:]) maindir = os.path.dirname(os.path.abspath(__file__)) datadir = os.getenv("COINBLEND_DATADIR") workdir = os.path.join(maindir, "jobs", job_id) logfile = os.path.join(workdir, "run.log") resfile = os.path.join(maindir, 'results.csv') modelfile = os.path.join(workdir, "model.json") fullmodelfile = os.path.join(workdir, "fullmodel.h5") predictionfile = os.path.join(workdir, "test_predictions.npy") if os.path.exists(workdir): print("\n --== WARNING ==--") print(f"Directory 'jobs/{job_id}' already existing") print("Job aborting..") sys.exit() os.makedirs(workdir) logging.basicConfig(filename=logfile, level=logging.INFO) log = logging.getLogger(__name__) log.info("
from datetime import datetime from importlib import import_module import inspect import json import logging from multiprocessing import Process from psycopg2.extras import execute_batch import sys import time from django.conf import settings from django.contrib.admin.utils import quote from django.contrib.auth.models import AbstractUser, Group from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.core.exceptions import PermissionDenied from django.core import mail from django.core.validators import FileExtensionValidator from django.db import models, DEFAULT_DB_ALIAS, connections, transaction from django.db.models import Q from django.db.models.signals import pre_delete from django.dispatch.dispatcher import receiver from django import forms from django.forms.models import modelform_factory from django.urls import NoReverseMatch, reverse from django.utils import timezone from django.utils.encoding import force_text from django.utils.html import mark_safe, escape from django.utils.translation import gettext_lazy as _ from django.utils.text import capfirst from .fields import JSONBField from .. import runFunction logger = logging.getLogger(__name__) class HierarchyModel(models.Model): lft = models.PositiveIntegerField( db_index=True, editable=False, null=True, blank=True ) rght = models.PositiveIntegerField(null=True, editable=False, blank=True) lvl = models.PositiveIntegerField(null=True, editable=False, blank=True) name = models.CharField( _("name"), max_length=300, primary_key=True, help_text=_("Unique identifier") ) owner = models.ForeignKey( "self", verbose_name=_("owner"), null=True, blank=True, related_name="xchildren", help_text=_("Hierarchical parent"), on_delete=models.SET_NULL, ) def save(self, *args, **kwargs): # Trigger recalculation of the hieracrhy. # TODO this triggers the recalculation in too many cases, including a lot # of changes which don't require it. Alternative solution is to use the # pre-save signal which has more information. self.lft = None self.rght = None self.lvl = None # Call the real save() method super().save(*args, **kwargs) def delete(self, *args, **kwargs): try: # Update an arbitrary other object to trigger recalculation of the hierarchy obj = self.__class__.objects.using(self._state.db).exclude(pk=self.pk)[0] obj.lft = None obj.rght = None obj.lvl = None obj.save(update_fields=["lft", "rght", "lvl"], using=self._state.db) except Exception: # Failure can happen when eg we delete the last record pass # Call the real delete() method super().delete(*args, **kwargs) class Meta: abstract = True @classmethod def rebuildHierarchy(cls, database=DEFAULT_DB_ALIAS): # Verify whether we need to rebuild or not. # We search for the first record whose lft field is null. if len(cls.objects.using(database).filter(lft__isnull=True)[:1]) == 0: return nodes = {} children = {} updates = [] def tagChildren(me, left, level): right = left + 1 # Get all children of this node for i in children.get(me, []): # Recursive execution of this function for each child of this node right = tagChildren(i, right, level + 1) # After processing the children of this node now know its left and right values updates.append((left, right, level, me)) # Remove from node list (to mark as processed) del nodes[me] # Return the right value of this node + 1 return right + 1 # Load all nodes in memory for i in cls.objects.using(database).values("name", "owner"): if i["name"] == i["owner"]: logging.error("Data error: '%s' points to itself as owner" % i["name"]) nodes[i["name"]] = None else: nodes[i["name"]] = i["owner"] if i["owner"]: if not i["owner"] in children: children[i["owner"]] = set() children[i["owner"]].add(i["name"]) keys = sorted(nodes.items()) # Loop over nodes without parent cnt = 1 for i, j in keys: if j is None: cnt = tagChildren(i, cnt, 0) if nodes: # If the nodes dictionary isn't empty, it is an indication of an # invalid hierarchy. # There are loops in your hierarchy, ie parent-chains not ending # at a top-level node without parent. bad = nodes.copy() updated = True while updated: updated = False for i in bad.keys(): ok = True for j, k in bad.items(): if k == i: ok = False break if ok: # If none of the bad keys points to me as a parent, I am unguilty del bad[i] updated = True logging.error("Data error: Hierarchy loops among %s" % sorted(bad.keys())) for i, j in sorted(bad.items()): children[j].remove(i) nodes[i] = None # Continue loop over nodes without parent keys = sorted(nodes.items()) for i, j in keys: if j is None: cnt = tagChildren(i, cnt, 0) # Write all results to the database with transaction.atomic(using=database): cursor = connections[database].cursor() execute_batch( cursor, "update %s set lft=%%s, rght=%%s, lvl=%%s where name = %%s" % connections[database].ops.quote_name(cls._meta.db_table), updates, ) @classmethod def createRootObject(cls, database=DEFAULT_DB_ALIAS): """ Rebuilds the hierarchy, and also assures we only have a single root object """ # Rebuild hierarchy cls.rebuildHierarchy(database=database) # Create root roots = cls.objects.using(database).filter(lvl=0).count() if roots != 1: # create a 'All dimensions' item (that might already be there) rootname = "All %ss" % cls._meta.db_table obj, created = cls.objects.using(database).get_or_create(name=rootname) if created: obj.description = "Automatically created root object" obj.save() else: # This is to force hierarchy rebuild that may not occur as all lft values are populated. obj.lft = None obj.save(update_fields=["lft"]) cls.objects.using(database).filter(owner__isnull=True).exclude( name=rootname ).update(owner=obj) # Rebuild the hierarchy again with the new root cls.rebuildHierarchy(database=database) class MultiDBManager(models.Manager): def get_queryset(self): from .middleware import _thread_locals req = getattr(_thread_locals, "request", None) if req: return ( super().get_queryset().using(getattr(req, "database", DEFAULT_DB_ALIAS)) ) else: db = getattr(_thread_locals, "database", None) return super().get_queryset().using(db or DEFAULT_DB_ALIAS) class MultiDBRouter: def db_for_read(self, model, **hints): from .middleware import _thread_locals req = getattr(_thread_locals, "request", None) if req: return getattr(req, "database", None) else: return getattr(_thread_locals, "database", None) def db_for_write(self, model, **hints): from .middleware import _thread_locals req = getattr(_thread_locals, "request", None) if req: return getattr(req, "database", None) else: return getattr(_thread_locals, "database", None) class AuditModel(models.Model): """ This is an abstract base model. It implements the capability to maintain: - the date of the last modification of the record. - a string intended to describe the source system that supplied the record """ # Database fields source = models.CharField( _("source"), db_index=True, max_length=300, null=True, blank=True ) lastmodified = models.DateTimeField( _("last modified"), editable=False, db_index=True, default=timezone.now ) objects = MultiDBManager() # The default manager. def save(self, *args, **kwargs): # Update the field with every change self.lastmodified = datetime.now() # Call the real save() method super().save(*args, **kwargs) class Meta: abstract = True class Parameter(AuditModel): # Database fields name = models.CharField(_("name"), max_length=60, primary_key=True) value = models.CharField(_("value"), max_length=1000, null=True, blank=True) description = models.CharField( _("description"), max_length=1000, null=True, blank=True ) def __str__(self): return self.name class Meta(AuditModel.Meta): db_table = "common_parameter" verbose_name = _("parameter") verbose_name_plural = _("parameters") @staticmethod def getValue(key, database=DEFAULT_DB_ALIAS, default=None): try: return Parameter.objects.using(database).only("value").get(pk=key).value except Exception: return default class Scenario(models.Model): scenarioStatus = (("free", _("free")), ("in use", _("in use")), ("busy", _("busy"))) # Database fields name = models.CharField(_("name"), max_length=300, primary_key=True) description = models.CharField( _("description"), max_length=500, null=True, blank=True ) status = models.CharField( _("status"), max_length=10, null=False, blank=False, choices=scenarioStatus ) lastrefresh = models.DateTimeField(_("last refreshed"), null=True, editable=False) help_url = models.URLField("help", null=True, editable=False) def __str__(self): return self.name @staticmethod def syncWithSettings(): try: # Bring the scenario table in sync with settings.databases with transaction.atomic(savepoint=False): dbs = [i for i, j in settings.DATABASES.items() if j["NAME"]] scs = [] for sc in Scenario.objects.using(DEFAULT_DB_ALIAS): if sc.name not in dbs: sc.delete() else: scs.append(sc.name) for db in dbs: if db not in scs: if db == DEFAULT_DB_ALIAS: Scenario( name=db, status="In use", description="Production" ).save(using=DEFAULT_DB_ALIAS) else: Scenario(name=db, status="Free").save( using=DEFAULT_DB_ALIAS ) except Exception: # Failures are acceptable - eg when the default database has not been intialized yet pass def __lt__(self, other): # Default database is always first in the list if self.name == DEFAULT_DB_ALIAS: return True elif other.name == DEFAULT_DB_ALIAS: return False # Other databases are sorted by their description return (self.description or self.name) < (other.description or other.name) class Meta: db_table = "common_scenario" default_permissions = ("copy", "release", "promote") verbose_name_plural = _("scenarios") verbose_name = _("scenario") ordering = ["name"] class User(AbstractUser): languageList = tuple( [("auto", _("Detect automatically"))] + list(settings.LANGUAGES) ) language = models.CharField( _("language"), max_length=10, choices=languageList, default="auto" ) theme = models.CharField( _("theme"), max_length=20, default=settings.DEFAULT_THEME, choices=[(i, capfirst(i)) for i in settings.THEMES], ) pagesize = models.PositiveIntegerField( _("page size"), default=settings.DEFAULT_PAGESIZE ) horizonbuckets = models.CharField(max_length=300, blank=True, null=True) horizonstart = models.DateTimeField(blank=True, null=True) horizonend = models.DateTimeField(blank=True, null=True) horizontype = models.BooleanField(blank=True, default=True) horizonlength = models.IntegerField(blank=True, default=6, null=True) horizonbefore = models.IntegerField(blank=True, default=0, null=True) horizonunit = models.CharField( blank=True, max_length=5, default="month", null=True, choices=(("day", "day"), ("week", "week"), ("month", "month")), ) avatar = models.ImageField(null=True, blank=True) lastmodified = models.DateTimeField( _("last modified"), auto_now=True, null=True, blank=True, editable=False, db_index=True, ) def save( self, force_insert=False, force_update=False, using=None, update_fields=None ): """ Every change to a user model is saved to all active scenarios. The is_superuser and is_active fields can be different in each scenario. All other fields are expected to be identical in each database. Because of the logic in this method creating users directly in the database tables is NOT a good idea! """ # We want to automatically give
#!/usr/bin/env python # Copyright 2021, <NAME>, mailto:<EMAIL> # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Main front-end to the tests of Nuitka. Has many options, read --help output. """ import os import subprocess import sys import tempfile from optparse import OptionParser from nuitka.freezer.Onefile import checkOnefileReadiness from nuitka.tools.Basics import goHome from nuitka.tools.testing.Common import my_print, withExtendedExtraOptions from nuitka.utils.Execution import ( check_call, check_output, getExecutablePath, getPythonExePathWindows, ) from nuitka.utils.FileOperations import withDirectoryChange from nuitka.utils.Timing import TimerReport from nuitka.utils.Utils import getOS, hasOnefileSupportedOS def parseOptions(): # There are freaking many options to honor, # pylint: disable=too-many-branches,too-many-statements parser = OptionParser() parser.add_option( "--skip-basic-tests", action="store_false", dest="basic_tests", default=True, help="""\ The basic tests, execute these to check if Nuitka is healthy. Default is %default.""", ) parser.add_option( "--skip-syntax-tests", action="store_false", dest="syntax_tests", default=True, help="""\ The syntax tests, execute these to check if Nuitka handles Syntax errors fine. Default is %default.""", ) parser.add_option( "--skip-program-tests", action="store_false", dest="program_tests", default=True, help="""\ The programs tests, execute these to check if Nuitka handles programs, e.g. import recursions, etc. fine. Default is %default.""", ) parser.add_option( "--skip-package-tests", action="store_false", dest="package_tests", default=True, help="""\ The packages tests, execute these to check if Nuitka handles packages, e.g. import recursions, etc. fine. Default is %default.""", ) parser.add_option( "--skip-plugins-tests", action="store_false", dest="plugin_tests", default=True, help="""\ The plugins tests, execute these to check if Nuitka handles its own plugin interfaces, e.g. user plugins, etc. fine. Default is %default.""", ) parser.add_option( "--skip-optimizations-tests", action="store_false", dest="optimization_tests", default=True, help="""\ The optimization tests, execute these to check if Nuitka does optimize certain constructs fully away. Default is %default.""", ) parser.add_option( "--skip-standalone-tests", action="store_false", dest="standalone_tests", default=getOS() != "NetBSD", help="""\ The standalone tests, execute these to check if Nuitka standalone mode, e.g. not referring to outside, important 3rd library packages like PyQt fine. Default is %default.""", ) parser.add_option( "--skip-onefile-tests", action="store_false", dest="onefile_tests", default=hasOnefileSupportedOS(), help="""\ The onefile tests, execute these to check if Nuitka works in onefile mode, e.g. not referring to outside, important 3rd library packages like PyQt fine. Default is %default.""", ) parser.add_option( "--skip-reflection-test", action="store_false", dest="reflection_test", default=True, help="""\ The reflection test compiles Nuitka with Nuitka, and then Nuitka with the compile Nuitka and compares the outputs. Default is %default.""", ) parser.add_option( "--skip-cpython26-tests", action="store_false", dest="cpython26", default=True, help="""\ The standard CPython2.6 test suite. Execute this for all corner cases to be covered. With Python 2.7 this covers exception behavior quite well. Default is %default.""", ) parser.add_option( "--skip-cpython27-tests", action="store_false", dest="cpython27", default=True, help="""\ The standard CPython2.7 test suite. Execute this for all corner cases to be covered. With Python 2.6 these are not run. Default is %default.""", ) parser.add_option( "--skip-cpython32-tests", action="store_false", dest="cpython32", default=True, help="""\ The standard CPython3.2 test suite. Execute this for all corner cases to be covered. With Python 2.6 these are not run. Default is %default.""", ) parser.add_option( "--skip-cpython33-tests", action="store_false", dest="cpython33", default=True, help="""\ The standard CPython3.3 test suite. Execute this for all corner cases to be covered. With Python 2.x these are not run. Default is %default.""", ) parser.add_option( "--skip-cpython34-tests", action="store_false", dest="cpython34", default=True, help="""\ The standard CPython3.4 test suite. Execute this for all corner cases to be covered. With Python 2.x these are not run. Default is %default.""", ) parser.add_option( "--skip-cpython35-tests", action="store_false", dest="cpython35", default=True, help="""\ The standard CPython3.5 test suite. Execute this for all corner cases to be covered. With Python 2.x these are not run. Default is %default.""", ) parser.add_option( "--skip-cpython36-tests", action="store_false", dest="cpython36", default=True, help="""\ The standard CPython3.6 test suite. Execute this for all corner cases to be covered. With Python 2.x these are not run. Default is %default.""", ) parser.add_option( "--skip-cpython37-tests", action="store_false", dest="cpython37", default=True, help="""\ The standard CPython3.7 test suite. Execute this for all corner cases to be covered. With Python 2.x these are not run. Default is %default.""", ) parser.add_option( "--skip-cpython38-tests", action="store_false", dest="cpython38", default=True, help="""\ The standard CPython3.8 test suite. Execute this for all corner cases to be covered. With Python 2.x these are not run. Default is %default.""", ) parser.add_option( "--skip-cpython39-tests", action="store_false", dest="cpython39", default=True, help="""\ The standard CPython3.9 test suite. Execute this for all corner cases to be covered. With Python 2.x these are not run. Default is %default.""", ) parser.add_option( "--skip-other-cpython-tests", action="store_true", dest="cpython_no_other", default=False, help="""\ Do not execute any CPython test suite other than the one matching the running Python. Default is %default.""", ) parser.add_option( "--skip-all-cpython-tests", action="store_true", dest="cpython_none", default=False, help="""\ Do not execute any CPython test suite other than the one matching the running Python. Default is %default.""", ) parser.add_option( "--no-other-python", action="store_true", dest="no_other", default=False, help="""\ Do not use any other Python than the one running, even if available on the system. Default is %default.""", ) parser.add_option( "--no-python2.6", action="store_true", dest="no26", default=False, help="""\ Do not use Python2.6 even if available on the system. Default is %default.""", ) parser.add_option( "--no-python2.7", action="store_true", dest="no27", default=False, help="""\ Do not use Python2.7 even if available on the system. Default is %default.""", ) parser.add_option( "--no-python3.3", action="store_true", dest="no33", default=False, help="""\ Do not use Python3.3 even if available on the system. Default is %default.""", ) parser.add_option( "--no-python3.4", action="store_true", dest="no34", default=False, help="""\ Do not use Python3.4 even if available on the system. Default is %default.""", ) parser.add_option( "--no-python3.5", action="store_true", dest="no35", default=False, help="""\ Do not use Python3.5 even if available on the system. Default is %default.""", ) parser.add_option( "--no-python3.6", action="store_true", dest="no36", default=False, help="""\ Do not use Python3.6 even if available on the system. Default is %default.""", ) parser.add_option( "--no-python3.7", action="store_true", dest="no37", default=False, help="""\ Do not use Python3.7 even if available on the system. Default is %default.""", ) parser.add_option( "--no-python3.8", action="store_true", dest="no38", default=False, help="""\ Do not use Python3.8 even if available on the system. Default is %default.""", ) parser.add_option( "--no-python3.9", action="store_true", dest="no39", default=False, help="""\ Do not use Python3.9 even if available on the system. Default is %default.""", ) parser.add_option( "--coverage", action="store_true", dest="coverage", default=False, help="""\ Make a coverage analysis, that does not really check. Default is %default.""", ) parser.add_option( "--no-debug", action="store_false", dest="debug", default=True, help="""\ Make a coverage analysis, that does not really check. Default is %default.""", ) parser.add_option( "--assume-yes-for-downloads", action="store_true", dest="assume_yes_for_downloads", default=False, help="""\ Allow Nuitka to download code if necessary, e.g. dependency walker on Windows. Default is %default.""", ) parser.add_option( "--mingw64", action="store_true", dest="mingw64", default=False, help="""\ Enforce the use of MinGW64 on Windows. Defaults to off.""", ) options, positional_args = parser.parse_args() if positional_args: parser.print_help() sys.exit("\nError, no positional argument allowed.") if options.no_other: if sys.version_info[0:2] != (2, 6): options.no26 = True if sys.version_info[0:2] != (2, 7): options.no27 = True if sys.version_info[0:2] != (3, 3): options.no33 = True if sys.version_info[0:2] != (3, 4): options.no34 = True if sys.version_info[0:2] != (3, 5): options.no35 = True if sys.version_info[0:2] != (3, 6): options.no36 = True if sys.version_info[0:2] != (3, 7): options.no37 = True if sys.version_info[0:2] != (3, 8): options.no38 = True if sys.version_info[0:2] != (3, 9): options.no39 = True if options.cpython_no_other: if sys.version_info[0:2] != (2, 6): options.cpython26 = False if sys.version_info[0:2] != (2, 7): options.cpython27 = False if sys.version_info[0:2] != (3, 2): options.cpython32 = False if sys.version_info[0:2] != (3, 3): options.cpython33 = False if sys.version_info[0:2] != (3, 4): options.cpython34 = False if sys.version_info[0:2] != (3, 5): options.cpython35 = False if sys.version_info[0:2] != (3, 6): options.cpython36 = False if sys.version_info[0:2] != (3, 7): options.cpython37 = False if sys.version_info[0:2] != (3, 8): options.cpython38 = False if sys.version_info[0:2] != (3, 9): options.cpython39 = False if options.cpython_none: options.cpython26 = False options.cpython27 = False options.cpython32 = False options.cpython33 = False options.cpython34 = False options.cpython35 = False options.cpython36 = False options.cpython37 = False options.cpython38 = False options.cpython39 = False if options.coverage and os.path.exists(".coverage"): os.unlink(".coverage") return options def publishCoverageData(): def copyToGlobalCoverageData(source, target): coverage_dir = os.environ.get("COVERAGE_DIR") if coverage_dir is None: return check_call(("scp", source, os.path.join(coverage_dir, target))) if os.name == "nt": suffix = "win" else: import platform suffix = platform.uname()[0] + "." + platform.uname()[4] with open("data.coverage", "w") as data_file: source_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) with withDirectoryChange(source_dir): nuitka_id = check_output("git rev-parse HEAD".split()) nuitka_id = nuitka_id.strip() if sys.version_info > (3,): nuitka_id = nuitka_id.decode() data_file.write("NUITKA_SOURCE_DIR=%r\n" % source_dir) data_file.write("NUITKA_COMMIT=%r\n" % nuitka_id) copyToGlobalCoverageData("data.coverage", "meta.coverage." + suffix) def makeCoverageRelative(filename): """Normalize coverage data.""" with open(filename)
int numel_in(self, str iname) -> int For a particular input or for all of the inputs """ return _casadi.Function_numel_in(self, *args) def numel_out(self, *args): """ Get number of output elements. numel_out(self) -> int numel_out(self, int ind) -> int numel_out(self, str oname) -> int For a particular output or for all of the outputs """ return _casadi.Function_numel_out(self, *args) def name_in(self, *args): """ Get input scheme name by index. name_in(self) -> [str] Get input scheme. name_in(self, int ind) -> str > name_in(self, int ind) ------------------------------------------------------------------------ Get input scheme name by index. > name_in(self) ------------------------------------------------------------------------ Get input scheme. """ return _casadi.Function_name_in(self, *args) def name_out(self, *args): """ Get output scheme name by index. name_out(self) -> [str] Get output scheme. name_out(self, int ind) -> str > name_out(self, int ind) ------------------------------------------------------------------------ Get output scheme name by index. > name_out(self) ------------------------------------------------------------------------ Get output scheme. """ return _casadi.Function_name_out(self, *args) def index_in(self, *args): """ Find the index for a string describing a particular entry of an input index_in(self, str name) -> int scheme. example: schemeEntry("x_opt") -> returns NLPSOL_X if FunctionInternal adheres to SCHEME_NLPINput """ return _casadi.Function_index_in(self, *args) def index_out(self, *args): """ Find the index for a string describing a particular entry of an output index_out(self, str name) -> int scheme. example: schemeEntry("x_opt") -> returns NLPSOL_X if FunctionInternal adheres to SCHEME_NLPINput """ return _casadi.Function_index_out(self, *args) def default_in(self, *args): """ Get default input value. default_in(self, int ind) -> float """ return _casadi.Function_default_in(self, *args) def max_in(self, *args): """ Get largest input value. max_in(self, int ind) -> float """ return _casadi.Function_max_in(self, *args) def min_in(self, *args): """ Get smallest input value. min_in(self, int ind) -> float """ return _casadi.Function_min_in(self, *args) def sparsity_in(self, *args): """ Get sparsity of a given input. sparsity_in(self, int ind) -> Sparsity sparsity_in(self, str iname) -> Sparsity """ return _casadi.Function_sparsity_in(self, *args) def sparsity_out(self, *args): """ Get sparsity of a given output. sparsity_out(self, int ind) -> Sparsity sparsity_out(self, str iname) -> Sparsity """ return _casadi.Function_sparsity_out(self, *args) def factory(self, *args): """ factory(self, str name, [str] s_in, [str] s_out, dict:[str] aux, dict opts) -> Function """ return _casadi.Function_factory(self, *args) def oracle(self, *args): """ Get oracle. oracle(self) -> Function """ return _casadi.Function_oracle(self, *args) def wrap(self, *args): """ Wrap in an Function instance consisting of only one MX call. wrap(self) -> Function """ return _casadi.Function_wrap(self, *args) def which_depends(self, *args): """ Which variables enter with some order. which_depends(self, str s_in, [str] s_out, int order, bool tr) -> [bool] Parameters: ----------- order: Only 1 (linear) and 2 (nonlinear) allowed tr: Flip the relationship. Return which expressions contain the variables """ return _casadi.Function_which_depends(self, *args) def print_dimensions(self, *args): """ Print dimensions of inputs and outputs. print_dimensions(self) """ return _casadi.Function_print_dimensions(self, *args) def print_options(self, *args): """ Print options to a stream. print_options(self) """ return _casadi.Function_print_options(self, *args) def print_option(self, *args): """ Print all information there is to know about a certain option. print_option(self, str name) """ return _casadi.Function_print_option(self, *args) def uses_output(self, *args): """ Do the derivative functions need nondifferentiated outputs? uses_output(self) -> bool """ return _casadi.Function_uses_output(self, *args) def jacobian_old(self, *args): """ Generate a Jacobian function of output oind with respect to input iind. jacobian_old(self, int iind, int oind) -> Function Parameters: ----------- iind: The index of the input oind: The index of the output Legacy function: To be deprecated in a future version of CasADi. Exists only for compatibility with Function::jacobian pre-CasADi 3.2 """ return _casadi.Function_jacobian_old(self, *args) def hessian_old(self, *args): """ Generate a Hessian function of output oind with respect to input iind. hessian_old(self, int iind, int oind) -> Function Parameters: ----------- iind: The index of the input oind: The index of the output Legacy function: To be deprecated in a future version of CasADi. Exists only for compatibility with Function::hessian pre- CasADi 3.2 """ return _casadi.Function_hessian_old(self, *args) def jacobian(self, *args): """ Generate a Jacobian function of all the inputs elements with respect to all jacobian(self) -> Function the output elements). """ return _casadi.Function_jacobian(self, *args) def jac(self, *args): """ Calculate all Jacobian blocks Generates a function that takes all non- jac(self) -> Function differentiated inputs and outputs and calculates all Jacobian blocks. Inputs that are not needed by the routine are all-zero sparse matrices with the correct dimensions. Output blocks that are not calculated, e.g. if the corresponding input or output is marked non-differentiated are also all-zero sparse. The Jacobian blocks are sorted starting by all the blocks for the first output, then all the blocks for the second output and so on. E.g. f:(x,y)->(r,s) results in the function jac_f:(x,y,r,s)->(dr_dx, dr_dy, ds_dx, ds_dy) This function is cached. """ return _casadi.Function_jac(self, *args) def call(self, *args): """ Generate a Jacobian function of output oind with respect to input iind. call(self, dict:DM arg, bool always_inline, bool never_inline) -> dict:DM call(self, [DM] arg, bool always_inline, bool never_inline) -> [DM] Evaluate the function symbolically or numerically. call(self, [SX] arg, bool always_inline, bool never_inline) -> [SX] call(self, dict:SX arg, bool always_inline, bool never_inline) -> dict:SX call(self, dict:MX arg, bool always_inline, bool never_inline) -> dict:MX call(self, [MX] arg, bool always_inline, bool never_inline) -> [MX] Parameters: ----------- iind: The index of the input oind: The index of the output Legacy function: To be deprecated in a future version of CasADi. Exists only for compatibility with Function::jacobian pre-CasADi 3.2 > call(self, [DM] arg, bool always_inline, bool never_inline) ------------------------------------------------------------------------ Evaluate the function symbolically or numerically. > call(self, dict:DM arg, bool always_inline, bool never_inline) > call(self, [SX] arg, bool always_inline, bool never_inline) > call(self, dict:SX arg, bool always_inline, bool never_inline) > call(self, dict:MX arg, bool always_inline, bool never_inline) > call(self, [MX] arg, bool always_inline, bool never_inline) ------------------------------------------------------------------------ Generate a Jacobian function of output oind with respect to input iind. Parameters: ----------- iind: The index of the input oind: The index of the output Legacy function: To be deprecated in a future version of CasADi. Exists only for compatibility with Function::jacobian pre-CasADi 3.2 """ return _casadi.Function_call(self, *args) def mapsum(self, *args): """ Evaluate symbolically in parallel and sum (matrix graph) mapsum(self, [MX] arg, str parallelization) -> [MX] Parameters: ----------- parallelization: Type of parallelization used: unroll|serial|openmp """ return _casadi.Function_mapsum(self, *args) def mapaccum(self, *args): """ Create a mapaccumulated version of this function. mapaccum(self, int n, dict opts) -> Function mapaccum(self, str name, int n, dict opts) -> Function mapaccum(self, str name, int n, int n_accum, dict opts) -> Function mapaccum(self, str name, int n, [str] accum_in, [str] accum_out, dict opts) -> Function mapaccum(self, str name, int n, [int] accum_in, [int] accum_out, dict opts) -> Function Suppose the function has a signature of: :: f: (x, u) -> (x_next , y ) The the mapaccumulated version has the signature: :: F: (x0, U) -> (X , Y ) with U: horzcat([u0, u1, ..., u_(N-1)]) X: horzcat([x1, x2, ..., x_N]) Y: horzcat([y0, y1, ..., y_(N-1)]) and x1, y0 <- f(x0, u0) x2, y1 <- f(x1, u1) ... x_N, y_(N-1) <- f(x_(N-1), u_(N-1)) Mapaccum has the following benefits over writing an equivalent for- loop: much faster at construction time potentially much faster compilation times (for codegen) offers a trade-off between memory and evaluation time The base (settable through the options dictionary, default 10), is used to create a tower of function calls, containing unrolled for- loops of length maximum base. This technique is much more scalable in terms of memory-usage, but slightly slower at evaluation, than a plain for-loop. The effect is similar to that of a for-loop with a check-pointing instruction after each chunk of iterations with size base. Set base to -1 to unroll all the way; no gains in memory efficiency here. """ return _casadi.Function_mapaccum(self, *args) def fold(self, *args): """ Create a mapaccumulated version of this function. fold(self, int n, dict opts) -> Function Suppose the function has a signature of: :: f: (x, u) -> (x_next , y ) The the mapaccumulated version has the signature: :: F: (x0, U) -> (X , Y ) with U: horzcat([u0,
'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data =
(m^3; net mouth is 15cm high)']] concentration_surf = pd.DataFrame(np.divide(counts_surf.values, volume_surf.values)) # Get a nice array with three columns corresponding to the three 'super station' sites concentrations = pd.DataFrame(columns=[0, 1, 2], index=[0, 1, 2, 3, 4, 5]).fillna(0.0) depths = pd.DataFrame(columns=[0, 1, 2], index=[0, 1, 2, 3, 4, 5]).fillna(0.0) for station in [0, 1, 2]: for rows in [0, 1, 2, 3, 4, 5]: if rows is 0: concentrations[station][rows] = concentration_surf[0][station] else: concentrations[station][rows] = concentration_multi[0][(rows - 1) + station * 5] depths[station][rows] = depth[(rows - 1) + station * 5] # Determining the MLD from the CTD data MLD = determine_MLD(prefix=prefix).values MLD = np.array([MLD, ] * 6).reshape(6, 3) # Normalizing the concentrations and depths depth_norm = np.divide(depths.values, MLD) concentrations = concentrations.apply(lambda x: x / x.sum(), axis=0).fillna(0.0) # Getting the wind data wind_data = pd.DataFrame(casino_wind(device='MultiNet', cruise='PE448')) wind_data = pd.concat([wind_data] * depths.shape[0], axis=1).transpose().values # Keeping just the measurements taken above max-depth max_depth = 73 depth_selec = depths.values.flatten() < max_depth # Saving everything into a dictionary output_dic = {'concentration': concentrations.values.flatten()[depth_selec], 'depth': depths.values.flatten()[depth_selec], 'depth_norm': depth_norm.flatten()[depth_selec], 'wind_speed': wind_data.flatten()[depth_selec], 'MLD': MLD.flatten()[depth_selec]} # Pickling the array utils.save_obj(filename=file_name, item=output_dic) def standardization_Egger(): """ Data provided by <NAME>, which was published in Egger et al. (2020) https://doi.org/10.1038/s41598-020-64465-8 The measurements were collected with a multinet The original published data had a depth correction included, the data here is without that depth correction included """ prefix = 'Egger' file_name = utils.get_data_output_name(prefix) if not utils.check_file_exist(file_name + '.pkl'): # Loading the data data_multi = pd.read_excel(settings.data_dir + 'Egger2020_processed.xlsx') # Create an empty dataframe to divide up the dataset according to the station concentrations = pd.DataFrame(columns=range(1, 6), index=range(16)).fillna(0.0) depths = pd.DataFrame(columns=range(1, 6), index=range(16)).fillna(0.0) MLD = pd.DataFrame(columns=range(1, 6), index=range(16)).fillna(1.0) wind = pd.DataFrame(columns=range(1, 6), index=range(16)).fillna(0.0) # Determining the MLD at the station with the provided CTD data MLD_station = determine_MLD(prefix=prefix) # looping through the stations to get the concentrations, depths, wind speeds and MlD for station in concentrations.columns: station_data = data_multi.loc[data_multi.Station == station].copy(deep=True).reset_index() concentrations.loc[:station_data.shape[0], station] = station_data['concentration'].copy(deep=True) depths.loc[:station_data.shape[0], station] = station_data['depth'].copy(deep=True) depths.loc[station_data.shape[0]:, station] = np.nan wind.loc[:station_data.shape[0], station] = station_data['wind'].copy(deep=True) MLD.loc[:, station] = MLD_station[station].values[0] # Normalizing the concentrations concentrations = concentrations.apply(lambda x: x / x.sum(), axis=0) # Normalizing depths depth_norm = depths.div(MLD) # Drop all nan measurements, and then only keep measurements above max-depth max_depth = 73 depth_selec = (deepcopy(depths.values) > max_depth) + (np.isnan(depths.values)) keys, arrays = ['concentration', 'depth', 'depth_norm', 'wind_speed', 'MLD'], [concentrations, depths, depth_norm, wind, MLD] output_dic = {} for ind, key in enumerate(keys): data = arrays[ind] # Only keep above max_depth, and drop all other values data = data.mask(depth_selec).values.flatten() output_dic[key] = data[~np.isnan(data)] # Pickling the array utils.save_obj(filename=file_name, item=output_dic) def standardization_average(): """ We calculate the average concentration in each depth bin and the standard deviation of all observations that fall into that bin :return: """ prefix = 'average' file_name = utils.get_data_output_name(prefix) if not utils.check_file_exist(file_name + '.pkl'): sources = ['Kooi', 'Pieper', 'Zettler', 'Kukulka', 'Egger'] # Setting the depth ranges depth_ranges = [(0, 0.5)] while depth_ranges[-1][-1] < 20: depth_ranges.append((depth_ranges[-1][-1], depth_ranges[-1][-1] + 0.5)) # Initializing the arrays for the mean concentration, the total standard deviation and all per depth level to # ease the RMSE per depth level calculation later on mean_concentration, std_concentration, total_std, all_concentrations = {}, {}, {}, {} for wind_range in utils.beaufort_limits(): mean_wind = np.nanmean(wind_range) mean_concentration[mean_wind] = np.zeros(shape=depth_ranges.__len__(), dtype=float) std_concentration[mean_wind] = np.zeros(shape=depth_ranges.__len__(), dtype=float) all_concentrations[mean_wind] = {} # Initializing arrays for the observation concentrations, depths and wind speeds data_concentration = np.array([], dtype=float) data_depth = np.array([], dtype=float) data_wind = np.array([], dtype=float) # Looping through all observations and putting them all into one big array for source in sources: data_dict = utils.load_obj(utils.get_data_output_name(source)) data_concentration = np.append(data_concentration, data_dict['concentration']) data_depth = np.append(data_depth, data_dict['depth']) data_wind = np.append(data_wind, data_dict['wind_speed']) # Looping through all the wind conditions and calculating the mean and std within each depth bin for wind_range in utils.beaufort_limits(): min_wind, max_wind = wind_range mean_wind = np.nanmean(wind_range) selection_wind = (data_wind < max_wind) & (data_wind > min_wind) for index_range, depth_range in enumerate(depth_ranges): selection = (selection_wind == True) & (data_depth <= depth_range[1]) & (data_depth > depth_range[0]) if max(selection) > 0: mean_concentration[mean_wind][index_range] = np.nanmean(data_concentration[selection]) std_concentration[mean_wind][index_range] = np.nanstd(data_concentration[selection]) all_concentrations[mean_wind][index_range] = data_concentration[selection] total_std[mean_wind] = np.nanstd(data_concentration[selection_wind]) # Creating an array containing the midpoint of each depth range depth_midpoint = np.array([]) for depth_range in depth_ranges: depth_midpoint = np.append(depth_midpoint, np.nanmean(depth_range)) # Creating the final output dict output_dict = {"depth": depth_midpoint, "average": mean_concentration, "std": std_concentration, "total_std": total_std, "all_concentrations": all_concentrations} # Pickling the output dictionary utils.save_obj(filename=file_name, item=output_dict) def determine_MLD(prefix: str, station_numbers=None): """ Determine the mixing layer depth according to de Boyer Montegut et al. (2004), which calculates the MLD from CTD data using a temperature threshold https://doi.org/10.1029/2004JC002378 MLD = depth at which there is a 0.2 degree temperature difference relative to the temperature at 10m depth The different field datasets have different ways of loading the data since all data formats were slightly different """ z_ref = 10 # reference depth in meters dif_ref = 0.2 # temperature difference relative to reference depth (degrees celcius) if prefix is 'Kooi': # Loading the CTD data data_ctd = pd.read_excel(settings.data_dir + 'Data_KooiEtAl.xlsx', sheet_name='CTD') # Changing the station numbering so the first station has index 0 instead of 1 data_ctd.station -= 1 station_numbers = np.sort(np.append(data_ctd.station.unique(), 24)) # Array in which to store the determined MLD values MLD = np.zeros((1, station_numbers.shape[0])) for station in station_numbers: if station == 24: # CTD data for station 24 is missing from the datasheet MLD[0, station] = np.nan else: # Load the depth and temperature data for that particular station, where we also include a check that all # of the depth files are sorted correctly depth = data_ctd['Depth'][data_ctd.station == station].values depth_sort = depth.argsort() depth = depth[depth_sort] temp = data_ctd['Temperature'][data_ctd.station == station].values[depth_sort] # Determine the index that corresponds to a depth of 10m ind_10 = utils.utils_files.find_nearest_index(depth=depth, z_ref=z_ref) temp_10 = temp[ind_10] # Determine the depth at which the temperature difference is equal to dif_ref with respect to z_ref depth, temp = depth[ind_10:], temp[ind_10:] MLD[0, station] = depth[np.where(np.abs(temp - temp_10) > dif_ref)[0][0]] if prefix is 'Pieper': MLD = pd.DataFrame(columns=station_numbers, index=[0]).fillna(0.0) # Check if there is a CTD file for the station in question for station in station_numbers: file_name = settings.data_dir + 'CTD_PE442/PE442_' + station + 'avg.cnv' if utils.check_file_exist(file_name): # Load the depth and temperature data for the particular station temperature = fCNV(file_name)['TEMP'] depth = fCNV(file_name)['DEPTH'] # Determine the index that corresponds to a depth of 10m ind_10 = utils.find_nearest_index(depth=depth, z_ref=z_ref) temp_10 = temperature[ind_10] # Determine the depth at which the temperature difference is equal to dif_ref with respect to z_ref depth, temp = depth[ind_10:], temperature[ind_10:] MLD[station] = depth[np.where(np.abs(temp - temp_10) > dif_ref)[0][0]] else: MLD[station] = np.nan if prefix is 'Zettler': MLD = pd.DataFrame(columns=range(1, 4), index=[0]).fillna(0.0) for station in MLD.columns: data_file = settings.data_dir + 'CTD_PE448/PE448_HC_avg_station_{}.cnv'.format(station) if utils.check_file_exist(data_file): # Load the depth and temperature data for the particular station temperature = fCNV(data_file)['TEMP'] depth = fCNV(data_file)['DEPTH'] # Determine the index that corresponds to a depth of 10m ind_10 = utils.utils_files.find_nearest_index(depth=depth, z_ref=z_ref) temp_10 = temperature[ind_10] # Determine the depth at which the temperature difference is equal to dif_ref with respect to z_ref depth, temp = depth[ind_10:], temperature[ind_10:] MLD[station] = depth[np.where(np.abs(temp - temp_10) > dif_ref)[0][0]] if prefix is 'Egger': MLD = pd.DataFrame(columns=range(1, 6), index=[0]).fillna(0.0) for station in MLD.columns: data_file = settings.data_dir + 'CTD_EGGER/station_{}/CTD Data/NPM2_Stat-{}_Cast1.txt'.format(station, station) # Loading the data for the depth and temperature (C) data = np.genfromtxt(data_file, skip_header=4, usecols=(1, 2)) # Determine index of the max depth, and then only use data from before that point, as we only want to use # data as the CTD was travelling downwards data = data[:np.argmax(data[:, 0]), :] # Bin the temperature data into 0.2 m intervals bin_T, depth, _ = stats.binned_statistic(x=data[:, 0], values=data[:, 1], bins=np.arange(min(data[:, 0]), max(data[:, 0]), 0.3)) # Determine the index that corresponds to a depth of 10m ind_10 = utils.find_nearest_index(depth=depth, z_ref=z_ref) temp_10 = bin_T[ind_10] # Determine the depth at which the temperature difference is equal to dif_ref with respect to z_ref depth, bin_T = depth[ind_10:], bin_T[ind_10:]
""" Constructs for grouping tool parameters """ import logging log = logging.getLogger( __name__ ) import os import StringIO import unicodedata from basic import ToolParameter from galaxy.datatypes import sniff from galaxy.util import inflector from galaxy.util import relpath from galaxy.util import sanitize_for_filename from galaxy.util.bunch import Bunch from galaxy.util.expressions import ExpressionContext from galaxy.model.item_attrs import Dictifiable class Group( object, Dictifiable ): dict_collection_visible_keys = ( 'name', 'type' ) def __init__( self ): self.name = None @property def visible( self ): return True def value_to_basic( self, value, app ): """ Convert value to a (possibly nested) representation using only basic types (dict, list, tuple, str, unicode, int, long, float, bool, None) """ return value def value_from_basic( self, value, app, ignore_errors=False ): """ Convert a basic representation as produced by `value_to_basic` back into the preferred value form. """ return value def get_initial_value( self, trans, context, history=None ): """ Return the initial state/value for this group """ raise TypeError( "Not implemented" ) def to_dict( self, trans, view='collection', value_mapper=None ): # TODO: need to to_dict conditions. group_dict = super( Group, self ).to_dict( view=view, value_mapper=value_mapper ) return group_dict class Repeat( Group ): dict_collection_visible_keys = ( 'name', 'type', 'title', 'help', 'default', 'min', 'max' ) type = "repeat" def __init__( self ): Group.__init__( self ) self.title = None self.inputs = None self.help = None self.default = 0 self.min = None self.max = None @property def title_plural( self ): return inflector.pluralize( self.title ) def label( self ): return "Repeat (%s)" % self.title def value_to_basic( self, value, app ): rval = [] for d in value: rval_dict = {} # Propogate __index__ if '__index__' in d: rval_dict['__index__'] = d['__index__'] for input in self.inputs.itervalues(): rval_dict[ input.name ] = input.value_to_basic( d[input.name], app ) rval.append( rval_dict ) return rval def value_from_basic( self, value, app, ignore_errors=False ): rval = [] try: for i, d in enumerate( value ): rval_dict = {} # If the special __index__ key is not set, create it (for backward # compatibility) rval_dict['__index__'] = d.get( '__index__', i ) # Restore child inputs for input in self.inputs.itervalues(): if ignore_errors and input.name not in d: # If we do not have a value, and are ignoring errors, we simply # do nothing. There will be no value for the parameter in the # conditional's values dictionary. pass else: rval_dict[ input.name ] = input.value_from_basic( d[input.name], app, ignore_errors ) rval.append( rval_dict ) except Exception, e: if not ignore_errors: raise e return rval def visit_inputs( self, prefix, value, callback ): for i, d in enumerate( value ): for input in self.inputs.itervalues(): new_prefix = prefix + "%s_%d|" % ( self.name, i ) if isinstance( input, ToolParameter ): callback( new_prefix, input, d[input.name], parent = d ) else: input.visit_inputs( new_prefix, d[input.name], callback ) def get_initial_value( self, trans, context, history=None ): rval = [] for i in range( self.default ): rval_dict = { '__index__': i} for input in self.inputs.itervalues(): rval_dict[ input.name ] = input.get_initial_value( trans, context, history=history ) rval.append( rval_dict ) return rval def to_dict( self, trans, view='collection', value_mapper=None ): repeat_dict = super( Repeat, self ).to_dict( trans, view=view, value_mapper=value_mapper ) def input_to_dict( input ): return input.to_dict( trans, view=view, value_mapper=value_mapper ) repeat_dict[ "inputs" ] = map( input_to_dict, self.inputs.values() ) return repeat_dict class UploadDataset( Group ): type = "upload_dataset" def __init__( self ): Group.__init__( self ) self.title = None self.inputs = None self.file_type_name = 'file_type' self.default_file_type = 'txt' self.file_type_to_ext = { 'auto':self.default_file_type } self.metadata_ref = 'files_metadata' def get_composite_dataset_name( self, context ): #FIXME: HACK #Special case of using 'base_name' metadata for use as Dataset name needs to be done in a General Fashion, as defined within a particular Datatype. #We get two different types of contexts here, one straight from submitted parameters, the other after being parsed into tool inputs dataset_name = context.get('files_metadata|base_name', None ) if dataset_name is None: dataset_name = context.get('files_metadata', {} ).get( 'base_name', None ) if dataset_name is None: dataset_name = 'Uploaded Composite Dataset (%s)' % self.get_file_type( context ) return dataset_name def get_file_base_name( self, context ): fd = context.get('files_metadata|base_name','Galaxy_Composite_file') return fd def get_file_type( self, context ): return context.get( self.file_type_name, self.default_file_type ) def get_datatype_ext( self, trans, context ): ext = self.get_file_type( context ) if ext in self.file_type_to_ext: ext = self.file_type_to_ext[ext] #when using autodetect, we will use composite info from 'text', i.e. only the main file return ext def get_datatype( self, trans, context ): ext = self.get_datatype_ext( trans, context ) return trans.app.datatypes_registry.get_datatype_by_extension( ext ) @property def title_plural( self ): return inflector.pluralize(self.title) def group_title( self, context ): return "%s (%s)" % ( self.title, context.get( self.file_type_name, self.default_file_type ) ) def title_by_index( self, trans, index, context ): d_type = self.get_datatype( trans, context ) for i, ( composite_name, composite_file ) in enumerate( d_type.writable_files.iteritems() ): if i == index: rval = composite_name if composite_file.description: rval = "%s (%s)" % ( rval, composite_file.description ) if composite_file.optional: rval = "%s [optional]" % rval return rval return None def value_to_basic( self, value, app ): rval = [] for d in value: rval_dict = {} # Propogate __index__ if '__index__' in d: rval_dict['__index__'] = d['__index__'] for input in self.inputs.itervalues(): rval_dict[ input.name ] = input.value_to_basic( d[input.name], app ) rval.append( rval_dict ) return rval def value_from_basic( self, value, app, ignore_errors=False ): rval = [] for i, d in enumerate( value ): rval_dict = {} # If the special __index__ key is not set, create it (for backward # compatibility) rval_dict['__index__'] = d.get( '__index__', i ) # Restore child inputs for input in self.inputs.itervalues(): if ignore_errors and input.name not in d: #this wasn't tested rval_dict[ input.name ] = input.get_initial_value( None, d ) else: rval_dict[ input.name ] = input.value_from_basic( d[input.name], app, ignore_errors ) rval.append( rval_dict ) return rval def visit_inputs( self, prefix, value, callback ): for i, d in enumerate( value ): for input in self.inputs.itervalues(): new_prefix = prefix + "%s_%d|" % ( self.name, i ) if isinstance( input, ToolParameter ): callback( new_prefix, input, d[input.name], parent = d ) else: input.visit_inputs( new_prefix, d[input.name], callback ) def get_initial_value( self, trans, context, history=None ): d_type = self.get_datatype( trans, context ) rval = [] for i, ( composite_name, composite_file ) in enumerate( d_type.writable_files.iteritems() ): rval_dict = {} rval_dict['__index__'] = i # create __index__ for input in self.inputs.itervalues(): rval_dict[ input.name ] = input.get_initial_value( trans, context, history=history ) #input.value_to_basic( d[input.name], app ) rval.append( rval_dict ) return rval def get_uploaded_datasets( self, trans, context, override_name = None, override_info = None ): def get_data_file_filename( data_file, override_name = None, override_info = None ): dataset_name = override_name dataset_info = override_info def get_file_name( file_name ): file_name = file_name.split( '\\' )[-1] file_name = file_name.split( '/' )[-1] return file_name try: # Use the existing file if not dataset_name and 'filename' in data_file: dataset_name = get_file_name( data_file['filename'] ) if not dataset_info: dataset_info = 'uploaded file' return Bunch( type='file', path=data_file['local_filename'], name=dataset_name ) #return 'file', data_file['local_filename'], get_file_name( data_file.filename ), dataset_name, dataset_info except: # The uploaded file should've been persisted by the upload tool action return Bunch( type=None, path=None, name=None ) #return None, None, None, None, None def get_url_paste_urls_or_filename( group_incoming, override_name = None, override_info = None ): filenames = [] url_paste_file = group_incoming.get( 'url_paste', None ) if url_paste_file is not None: url_paste = open( url_paste_file, 'r' ).read( 1024 ) if url_paste.lstrip().lower().startswith( 'http://' ) or url_paste.lstrip().lower().startswith( 'ftp://' ) or url_paste.lstrip().lower().startswith( 'https://' ): url_paste = url_paste.replace( '\r', '' ).split( '\n' ) for line in url_paste: line = line.strip() if line: if not line.lower().startswith( 'http://' ) and not line.lower().startswith( 'ftp://' ) and not line.lower().startswith( 'https://' ): continue # non-url line, ignore dataset_name = override_name if not dataset_name: dataset_name = line dataset_info = override_info if not dataset_info: dataset_info = 'uploaded url' yield Bunch( type='url', path=line, name=dataset_name ) #yield ( 'url', line, precreated_name, dataset_name, dataset_info ) else: dataset_name = dataset_info = precreated_name = 'Pasted Entry' #we need to differentiate between various url pastes here if override_name: dataset_name = override_name if override_info: dataset_info = override_info yield Bunch( type='file', path=url_paste_file, name=precreated_name ) #yield ( 'file', url_paste_file, precreated_name, dataset_name, dataset_info ) def get_one_filename( context ): data_file = context['file_data'] url_paste = context['url_paste'] ftp_files = context['ftp_files'] name = context.get( 'NAME', None ) info =
if pixel_select == 1: #RD=dir([r_path 'multiharlocs*.mat']); # DOESN'T seem to be used #str1=[q_path 'multiharlocs_' num2str(tmplt_index,'%.6d') '.mat']; #load(str1) # Retrieve the query harloc (Harris features) har1pp = q_path[tmplt_index]; #str2=[r_path 'multiharlocs_' num2str(img_index,'%.6d') '.mat']; #har2=load(str2); # Retrieve the reference harloc (Harris features) har2pp = r_path[img_index]; #har2.pp(:,2)=har2.pp(:,2)-2*p_init(7); har2pp[:, 1] = har2pp[:, 1] - 2 * p_init[6]; if levels == 1: #out1 = my_morph(pp(:,1:2),15,imres(1),imres(2)); out1 = my_morph(har1pp[:, 0: 2], 15, imres[0], imres[1]); #out2 = my_morph([har2.pp(:,1) har2.pp(:,2)],15,imres(1),imres(2)); out2 = my_morph(np.c_[har2pp[:, 0], har2pp[:, 1]], \ 15, imres[0], imres[1]); #out=out1.*out2; out = out1 * out2; #% out=imresize(out,.5)>0; %handle half-size images """ numpy.nonzero(a) Return the indices of the elements that are non-zero. Returns a tuple of arrays, one for each dimension of 'a', containing the indices of the non-zero elements in that dimension. From http://www.mathworks.com/help/matlab/ref/find.html: [row,col] = find(X, ...) returns the row and column indices of the nonzero entries in the matrix X. This syntax is especially useful when working with sparse matrices. If X is an N-dimensional array with N > 2, col contains linear indices for the columns. For example, for a 5-by-7-by-3 array X with a nonzero element at X(4,2,3), find returns 4 in row and 16 in col. That is, (7 columns in page 1) + (7 columns in page 2) + (2 columns in page 3) = 16. """ #[ny,nx]=find(out==1); if ORDER_MATTERS: nx, ny = np.nonzero((out == 1).T); else: ny, nx = np.nonzero(out == 1); """ This is important: if we don't copy the matrix, warp_p would referece the same numpy.array object as p_init and since warp_p is changed, p_init is changed as well, and at the next call of ecc_homo_spacetime() p_init will have this last value of warp_p before exiting ecc_homo_spacetime(); """ warp_p = p_init.copy(); if common.MY_DEBUG_STDOUT: common.DebugPrint("ecc_homo_spacetime(): warp_p = %s" % str(warp_p)); # This loop actually doesn't execute anything WHEN levels == 1. #for ii=1:levels-1: for ii in range(1, levels-1 + 1): warp_p = next_level(warp_p, "homography", 0); if weighted_flag == 1: #W=ones(size(tmplt1)); assert tmplt[1].ndim == 2; #W = np.ones(tmplt[1].shape); W = np.ones(tmplt[1].shape, dtype=MATRIX_FLOAT_TYPE); if common.MY_DEBUG_STDOUT: common.DebugPrint("ecc_homo_spacetime(): At init, W.shape = %s" % \ str(W.shape)); if time_flag == 1: N_p = 9; t = t0; else: N_p = 8; t = 0; if USE_DRIVER == True: volumeA = volume[1]; tmpltA = tmplt[1]; # input (query) frame """ cv2.imwrite("template_query_frame" + imformat, tmpltA); cv2.imwrite("reference_frame" + imformat, volumeA); """ cv2.imwrite(o_path + ("reference_frame") + imformat, \ volumeA[:, :, 0].astype(int)); cv2.imwrite(o_path + ("query_frame") + imformat, \ tmpltA.astype(int)); """ templateImage=tmplt[1], inputImage=image_temp, warpMatrix=warp_p, """ return fit; if config.USE_ECC_FROM_OPENCV: levels = 0; # We assign 0 to avoid executing the standard space-time ECC below weighted_flag = 0; #!!!!!!!TODO: volumeA = volume[1][:, :, 2]; """ volumeA is the sub-sequence of reference frames (a number of nof frames) used in interp_space_time(), for warping of the reference "frame". """ volumeA = volume[1]; tmpltA = tmplt[1]; # input (query) frame if save_image == 1: #clear xxx #TODO: think if we should do a del xxx, like he does in Matlab a clear # We allocate space for xxx xxx = np.zeros( (tmpltA.shape[0], tmpltA.shape[1], 3) ); #!!!!TODO: use MATRIX_FLOAT_TYPE #xxx(:,:,1)=tmplt; xxx[:, :, 0] = tmpltA; #xxx(:,:,3)=tmplt; xxx[:, :, 2] = tmpltA; if config.VISUAL_DIFF_FRAMES == True: xxx[:, :, 1] = tmpltA; #!!!!TODO: experiment if it helps to "reuse" warp_p between different pairs of frames, MAYBE reset it to eye(3) once in a while - for the sake of performance increase #warp_p = p_init; warp_p = p_init.copy(); if common.MY_DEBUG_STDOUT: common.DebugPrint( \ "ecc_homo_spacetime(): warp_p.dtype = %s" % str(warp_p.dtype)); common.DebugPrint( \ "ecc_homo_spacetime(): warp_p (before transformECC) = %s" % \ str(warp_p)); if False: cv2.imwrite(o_path + ("reference_frame") + imformat, \ volumeA[:, :, 0].astype(int)); cv2.imwrite(o_path + ("query_frame") + imformat, \ tmpltA.astype(int)); """ From http://opencvpython.blogspot.ro/2013/01/k-means-clustering-3-working-with-opencv.html Define criteria = ( type, max_iter = ... , epsilon = ...) Note: OpenCV's ECC uses by default: 50, 0.001 . #aCriteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 50, 0.001); See examples of criteria definition also at: http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_meanshift/py_meanshift.html http://opencvpython.blogspot.ro/2013/01/k-means-clustering-3-working-with-opencv.html - book pg 258, http://books.google.ro/books?id=seAgiOfu2EIC&pg=PA258&lpg=PA258&dq=OpenCV+CvTermCriteria&source=bl&ots=hTD0bmeANg&sig=eS7FA1QeEy_K5vAFpG_tCOjak7w&hl=en&sa=X&ei=DJN8U5XnOvTrygP5mYH4Aw&ved=0CEMQ6AEwAg#v=onepage&q=OpenCV%20CvTermCriteria&f=false - http://stackoverflow.com/questions/18955760/how-does-cvtermcriteria-work-in-opencv cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 50, // max number of iterations 0.0001)); // min accuracy """ #aCriteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 15, 0.001); aCriteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, config.EPS_ECC); """ See doc findTransformECC at http://docs.opencv.org/trunk/modules/video/doc/motion_analysis_and_object_tracking.html#findtransformecc http://docs.opencv.org/trunk/modules/video/doc/motion_analysis_and_object_tracking.html#double%20findTransformECC%28InputArray%20templateImage,%20InputArray%20inputImage,%20InputOutputArray%20warpMatrix,%20int%20motionType,%20TermCriteria%20criteria%29 Src code at https://github.com/Itseez/opencv/blob/ef91d7e8830c36785f0b6fdbf2045da48413dd76/modules/video/src/ecc.cpp (see also modules/video/include/opencv2/video/tracking.hpp and https://github.com/Itseez/opencv/blob/master/samples/cpp/image_alignment.cpp) """ tECC1 = float(cv2.getTickCount()); USE_MY_ECC_PY = False; if USE_MY_ECC_PY: import ECC import cv # From http://stackoverflow.com/questions/9913392/convert-numpy-array-to-cvmat-cv2 cvTmplt = cv.fromarray(tmplt[1]); cvImageTemp = cv.fromarray(image_temp); cvWarp = cv.fromarray(warp_p); print "cvTmplt = %s" % str(cvTmplt); #print "dir(cvTmplt) = %s" % str(dir(cvTmplt)); print "cvImageTemp = %s" % str(cvImageTemp); warp_p, retval = ECC.cvFindTransform(cvTmplt, cvImageTemp, cvWarp, ECC.WARP_MODE_HOMOGRAPHY, (cv.CV_TERMCRIT_ITER + cv.CV_TERMCRIT_EPS, 15, 0.001)); warp_p = Matlab.ConvertCvMatToNPArray(warp_p); else: retval, warp_p = cv2.findTransformECC( \ templateImage=tmplt[1], inputImage=image_temp, warpMatrix=warp_p, motionType=cv2.MOTION_HOMOGRAPHY, criteria=aCriteria); tECC2 = float(cv2.getTickCount()); myTime = (tECC2 - tECC1) / cv2.getTickFrequency(); print("ecc_homo_spacetime(): cv2.findTransformECC() took %.6f [sec]" % myTime); """ From http://docs.opencv.org/trunk/modules/video/doc/motion_analysis_and_object_tracking.html#findtransformecc: "It returns the final enhanced correlation coefficient, that is the correlation coefficient between the template image and the final warped input image." """ if common.MY_DEBUG_STDOUT: common.DebugPrint( \ "ecc_homo_spacetime(): retval (final value of ECC) of findTransformECC = %s" % \ str(retval)); common.DebugPrint( \ "ecc_homo_spacetime(): warp_p (after findTransformECC) = %s" % \ str(warp_p)); ##IMPORTANT NOTE: we don't execute the nol loop because now levels == 0 # (see above) ##IMPORTANT NOTE: we don't execute the nol loop because now levels == 0 ##IMPORTANT NOTE: we don't execute the nol loop because now levels == 0 ##IMPORTANT NOTE: we don't execute the nol loop because now levels == 0 ##IMPORTANT NOTE: we don't execute the nol loop because now levels == 0 ##IMPORTANT NOTE: we don't execute the nol loop because now levels == 0 ##IMPORTANT NOTE: we don't execute the nol loop because now levels == 0 if common.MY_DEBUG_STDOUT: common.DebugPrint("ecc_homo_spacetime(): levels = %s" % str(levels)); """ resize volume[*]; resize tmplt[nol + 1]; # input (query) frame for i in range(volume[nol].shape[2]): if common.MY_DEBUG_STDOUT: common.DebugPrint(" i = %s" % str(i)); volume[nol + 1][:, :, i] = Matlab.imresize(volume[nol][:, :, i], scale=0.5); """ #%%Iterative procedure #for nol=levels:-1:1 # IMPORTANT NOTE: We substitute nol - 1 --> nol (since array numbering # starts with 0, not like in Matlab from 1) for nol in range(levels - 1, 0-1, -1): # If levels == 1, it gets executed only once. #eval(['volume=volume' num2str(nol) ';']) volumeA = volume[nol + 1]; # (volumeA = volume[1], for our setting, when levels=1). # IMPORTANT NOTE: volumeA is a 3D matrix - it has nof matrices from the video sequence (in gray) if common.MY_DEBUG_STDOUT: common.DebugPrint( \ "ecc_homo_spacetime(): Am here: volumeA.shape = %s" % \ str(volumeA.shape)); common.DebugPrint( \ "ecc_homo_spacetime(): Am here: volumeA.dtype = %s" % \ str(volumeA.dtype)); if INVERSE == False: # Note: nof is the number of frames for sub-sequences if nof > 1: #!!!!TODO: we should be able to optimize heavily here if we compute only the required elements of vx, vy, vt, since these matrices are huge and very easy to compute #[vx,vy,vt]=gradient(volume); vx, vy, vt = Matlab.gradient(volumeA); else: #[vx,vy]=gradient(volume); #!!!!TODO: we should be able to optimize heavily here if we compute only the required elements of vx, vy since these matrices are huge and very easy to compute vx, vy = Matlab.gradient(volumeA); vt = 0 * vx; #eval(['tmplt=tmplt' num2str(nol) ';']) tmpltA = tmplt[nol + 1]; if INVERSE == True: print("IMPORTANT: ecc_homo_spacetime(): volumeA.shape = %s" % str(volumeA.shape)); print("IMPORTANT: ecc_homo_spacetime(): tmpltA.shape = %s" % str(tmpltA.shape)); """ From iat_eccIC.m: temp = TEMP{nol}; [vx,vy]=gradient(temp); """ #vx, vy, vt = Matlab.gradient(tmpltA); #!!!!TODO TODO TODO: see what I can do better vx, vy = Matlab.gradient(tmpltA); vt = 0 * vx; #[AA,BB,CC]=size(volume); AA, BB, CC = volumeA.shape; #% if nol>1 #% margin=floor(mean(AA,BB)*.05/(2^(nol-1))); #% else margin = 0; #% end if save_image == 1: #clear xxx #TODO: think if we should do a del xxx, like he does in Matlab a clear # We allocate space for xxx xxx = np.zeros( (tmpltA.shape[0], tmpltA.shape[1], 3) ); #xxx(:,:,1)=tmplt; xxx[:, :, 0] = tmpltA;
squares, three moves board = Board('k7/pp6/8/8/8/8/PPPPPPPP/RNBQKBNR w - - 0 1') target_bb = BitBoard(0) target_bb[Sq.H3] = 1 target_bb[Sq.E4] = 1 moves = board.get_target_noncapture_moves(target_bb) assert len(moves) == 3 assert sorted(moves) == sorted([Move(Sq.E2, Sq.E4, MoveType.DOUBLE), Move(Sq.H2, Sq.H3, MoveType.QUIET), Move(Sq.G1, Sq.H3, MoveType.QUIET)]) def test_get_attacking_sqs(self): """ Tests the get_attacking_sqs() function of the Board class """ # no checks board = Board() king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] check_sqs = board.get_attacking_sqs(king_sq) self.assertEqual(len(check_sqs), 0) # single check board = Board('4K2k/8/5B2/8/8/8/8/1n6 b - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] check_sqs = board.get_attacking_sqs(king_sq) self.assertEqual(len(check_sqs), 1) self.assertListEqual(sorted(check_sqs), sorted([Sq.F6])) # multiple checks board = Board('7k/8/8/8/7r/8/5n2/7K w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] check_sqs = board.get_attacking_sqs(king_sq) self.assertEqual(len(check_sqs), 2) self.assertListEqual(sorted(check_sqs), sorted([Sq.H4, Sq.F2])) def test_get_attacking_pawn_sqs(self): """ Tests the _get_attacking_pawn_sqs() function of the Board class """ # normal board = Board('7k/8/8/8/6p1/7K/8/8 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] pawn_sqs = board._get_attacking_pawn_sqs(king_sq) self.assertEqual(len(pawn_sqs), 1) self.assertListEqual(sorted(pawn_sqs), sorted([Sq.G4])) # no check board = Board('7k/8/8/8/p6p/7K/8/8 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] pawn_sqs = board._get_attacking_pawn_sqs(king_sq) self.assertEqual(len(pawn_sqs), 0) # double check # not possible in actual game of chess board = Board('7K/8/8/8/8/4k3/3P1P2/8 b - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] pawn_sqs = board._get_attacking_pawn_sqs(king_sq) self.assertEqual(len(pawn_sqs), 2) self.assertListEqual(sorted(pawn_sqs), sorted([Sq.D2, Sq.F2])) # pawn on 2nd/7th row (promotion) board = Board('7k/8/8/8/8/8/3p4/4K3 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] pawn_sqs = board._get_attacking_pawn_sqs(king_sq) self.assertEqual(len(pawn_sqs), 1) self.assertListEqual(sorted(pawn_sqs), sorted([Sq.D2])) def test_get_attacking_knight_sqs(self): """ Tests the _get_attacking_knight_sqs() function of the Board class """ # normal board = Board('7k/8/8/8/5n2/7K/8/8 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] knight_sqs = board._get_attacking_knight_sqs(king_sq) self.assertEqual(len(knight_sqs), 1) self.assertListEqual(sorted(knight_sqs), sorted([Sq.F4])) # no check board = Board('nn6/8/8/8/8/7K/8/3k4 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] knight_sqs = board._get_attacking_knight_sqs(king_sq) self.assertEqual(len(knight_sqs), 0) # double check # not possible in actual game of chess board = Board('7K/8/8/8/8/4k3/8/3N1N2 b - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] knight_sqs = board._get_attacking_knight_sqs(king_sq) self.assertEqual(len(knight_sqs), 2) self.assertListEqual(sorted(knight_sqs), sorted([Sq.D1, Sq.F1])) def test_get_attacking_bishop_sqs(self): """ Tests the _get_attacking_bishop_sqs() function of the Board class """ # normal board = Board('7k/8/8/8/6b1/7K/8/8 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] bishop_sqs = board._get_attacking_bishop_sqs(king_sq) self.assertEqual(len(bishop_sqs), 1) self.assertListEqual(sorted(bishop_sqs), sorted([Sq.G4])) # no check board = Board('6bb/8/8/8/8/7K/8/3k4 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] bishop_sqs = board._get_attacking_bishop_sqs(king_sq) self.assertEqual(len(bishop_sqs), 0) # no check (covered) board = Board('8/8/8/5b2/6N1/7K/8/3k4 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] bishop_sqs = board._get_attacking_bishop_sqs(king_sq) self.assertEqual(len(bishop_sqs), 0) # double check # not possible in actual game of chess board = Board('7K/8/8/8/8/4k3/3B4/6B1 b - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] bishop_sqs = board._get_attacking_bishop_sqs(king_sq) self.assertEqual(len(bishop_sqs), 2) self.assertListEqual(sorted(bishop_sqs), sorted([Sq.D2, Sq.G1])) def test_get_attacking_rook_sqs(self): """ Tests the _get_attacking_rook_sqs() function of the Board class """ # normal board = Board('7k/8/8/7r/8/7K/8/8 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] rook_sqs = board._get_attacking_rook_sqs(king_sq) self.assertEqual(len(rook_sqs), 1) self.assertListEqual(sorted(rook_sqs), sorted([Sq.H5])) # no check board = Board('6r1/8/8/8/8/7K/8/3k4 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] rook_sqs = board._get_attacking_rook_sqs(king_sq) self.assertEqual(len(rook_sqs), 0) # no check (covered) board = Board('8/8/8/5b2/6N1/5rnK/8/3k4 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] rook_sqs = board._get_attacking_rook_sqs(king_sq) self.assertEqual(len(rook_sqs), 0) # double check # not possible in actual game of chess board = Board('7K/8/8/4R3/8/2R1k3/3B4/6B1 b - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] rook_sqs = board._get_attacking_rook_sqs(king_sq) self.assertEqual(len(rook_sqs), 2) self.assertListEqual(sorted(rook_sqs), sorted([Sq.E5, Sq.C3])) def test_get_attacking_queen_sqs(self): """ Tests the _get_attacking_queen_sqs() function of the Board class """ # normal board = Board('7k/8/7q/8/8/7K/8/8 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] queen_sqs = board._get_attacking_queen_sqs(king_sq) self.assertEqual(len(queen_sqs), 1) self.assertListEqual(sorted(queen_sqs), sorted([Sq.H6])) # no check board = Board('5q1Q/8/8/8/8/7K/8/3k4 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] queen_sqs = board._get_attacking_queen_sqs(king_sq) self.assertEqual(len(queen_sqs), 0) # no check (covered) board = Board('8/8/8/5b2/q2N3K/8/8/3k4 w - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] queen_sqs = board._get_attacking_queen_sqs(king_sq) self.assertEqual(len(queen_sqs), 0) # triple check # not possible in actual game of chess board = Board('7K/8/6Q1/5n2/8/3Q2k1/7Q/6b1 b - - 0 1') king = Piece.WK if board.turn == Color.WHITE else Piece.BK king_sq = board.piece_sq[king][0] queen_sqs = board._get_attacking_queen_sqs(king_sq) self.assertEqual(len(queen_sqs), 3) self.assertListEqual(sorted(queen_sqs), sorted([Sq.H2, Sq.D3, Sq.G6])) def test_find_pinned(self): """ Tests the _find_pinned() function of the Board class """ # pinned by bishop board = Board('k6K/1p6/8/8/8/8/8/7B b - - 0 1') pinned = board.find_pinned() self.assertEqual(len(pinned[0]), 1) self.assertEqual(sorted(pinned[0]), sorted([Sq.B7])) self.assertEqual(len(pinned[1]), 0) # pinned by rook board = Board('k6K/8/8/n7/8/8/8/R7 b - - 0 1') pinned = board.find_pinned() self.assertEqual(len(pinned[0]), 1) self.assertEqual(sorted(pinned[0]), sorted([Sq.A5])) self.assertEqual(len(pinned[1]), 0) # pinned by queen board = Board('k6K/1p6/8/8/8/5Q2/8/8 b - - 0 1') pinned = board.find_pinned() self.assertEqual(len(pinned[0]), 1) self.assertEqual(sorted(pinned[0]), sorted([Sq.B7])) self.assertEqual(len(pinned[1]), 0) # no pinned piece (no slider on trajectory) board = Board('k6K/1p6/8/2r5/8/3b4/8/8 w - - 0 1') pinned = board.find_pinned() self.assertEqual(len(pinned[0]), 0) self.assertEqual(len(pinned[1]), 0) # no pinned piece (multiple allied piece on slider trajectory) board = Board('K6k/1N6/8/3P4/4q3/8/8/8 w - - 0 1') pinned = board.find_pinned() self.assertEqual(len(pinned[0]), 0) self.assertEqual(len(pinned[1]), 0) # no pinned piece (enemy piece on slider trajectory) board = Board('q3k3/8/2n5/3K4/8/8/8/7B w - - 0 1') pinned = board.find_pinned() self.assertEqual(len(pinned[0]), 0) self.assertEqual(len(pinned[1]), 0) # no pinned piece, piece in trajectory but further than king board = Board('1q5k/8/8/8/8/6K1/7R/8 w - - 0 1') pinned = board.find_pinned() self.assertEqual(len(pinned[0]), 0) self.assertEqual(len(pinned[1]), 0) # one pinned, piece in trajectory but further than king board = Board('q6k/8/8/8/4P3/5K2/8/7B w - - 0 1') pinned = board.find_pinned() self.assertEqual(len(pinned[0]), 1) self.assertEqual(sorted(pinned[0]), sorted([Sq.E4])) self.assertEqual(len(pinned[1]), 0) # multiple pinned pieces board = Board('1q1k4/2R5/8/rN2K3/8/8/8/8 w - - 0 1') pinned = board.find_pinned() print(board) self.assertEqual(len(pinned[0]), 2) self.assertEqual(sorted(pinned[0]), sorted([Sq.C7, Sq.B5])) self.assertEqual(len(pinned[1]), 0) def test_pinned_move_gen(self): """ Tests the _pinned_move_gen() function of the Board class """ # pawn pinned by rook board = Board('k6K/8/8/8/8/p7/8/R7 b - - 0 1') moves = board._pinned_move_gen(Sq.A3, Sq.A1, Direction.U) assert len(moves) == 1 assert sorted(moves) == [Move(Sq.A3, Sq.A2, MoveType. QUIET)] # knight pinned by rook board = Board('k6K/8/8/8/8/n7/8/R7 b - - 0 1') moves = board._pinned_move_gen(Sq.A3, Sq.A1, Direction.U) self.assertEqual(len(moves), 0) # bishop pinned by rook board = Board('k6K/8/8/8/b7/8/8/R7 b - - 0 1') moves = board._pinned_move_gen(Sq.A4, Sq.A1, Direction.U) self.assertEqual(len(moves), 0) # rook pinned by rook board = Board('8/8/8/k6K/8/r7/8/R7 b - - 0 1') moves = board._pinned_move_gen(Sq.A3, Sq.A1, Direction.U) assert len(moves) == 3 assert sorted(moves) == [Move(Sq.A3, Sq.A1, MoveType.CAPTURE), Move(Sq.A3, Sq.A2, MoveType.QUIET), Move(Sq.A3, Sq.A4, MoveType.QUIET)] # queen pinned by rook board = Board('8/8/8/8/k6K/q7/8/R7 b - - 0 1') moves = board._pinned_move_gen(Sq.A3, Sq.A1, Direction.U) assert len(moves) == 2 assert sorted(moves) == [Move(Sq.A3, Sq.A1, MoveType.CAPTURE), Move(Sq.A3, Sq.A2, MoveType.QUIET)] # pawn pinned by bishop (no attack) board = Board('K6k/8/8/8/3p4/8/1B6/8 b - - 0 1') moves = board._pinned_move_gen(Sq.D4, Sq.B2, Direction.UR) assert len(moves) == 0 # pawn pinned by bishop (can attack) board = Board('K6k/8/8/8/8/2p5/1B6/8 b - - 0 1') moves = board._pinned_move_gen(Sq.C3, Sq.B2, Direction.UR) self.assertEqual(len(moves), 1) self.assertEqual(sorted(moves), [Move(Sq.C3, Sq.B2, MoveType.CAPTURE)]) # pawn pinned by bishop (promo attack) board = Board('K6k/8/8/8/8/8/1p6/B7 b - - 0 1') moves = board._pinned_move_gen(Sq.B2, Sq.A1, Direction.UR) assert len(moves) == 4 assert sorted(moves) == [Move(Sq.B2, Sq.A1, MoveType.N_PROMO_CAPTURE), Move(Sq.B2, Sq.A1, MoveType.B_PROMO_CAPTURE), Move(Sq.B2, Sq.A1, MoveType.R_PROMO_CAPTURE), Move(Sq.B2, Sq.A1, MoveType.Q_PROMO_CAPTURE)] # knight pinned by bishop board = Board('k6K/6N1/8/8/8/8/1b6/8 w - - 0 1') moves = board._pinned_move_gen(Sq.G7, Sq.B2, Direction.UR) self.assertEqual(len(moves), 0) # bishop pinned by bishop board
auth_source_ldap['name'] = self.params.name auth_source_ldap['attr_mail'] = self.params.extra['attr_mail'] auth_source_ldap['account_password'] = self.params.extra['account_password'] auth_source_ldap['attr_firstname'] = self.params.extra['arttr_firstname'] auth_source_ldap['host'] = self.params.extra['host'] auth_source_ldap['attr_lastname'] = self.params.extra['attr_lastname'] except KeyError as e: self.log.debug(e) quit("Cannot create " + str(self.params.function)) if 'tls' in self.params.extra: auth_source_ldap['tls'] = self.params.extra['tls'] if 'port' in self.params.extra: auth_source_ldap['port'] = self.params.extra['port'] if 'account' in self.params.extra: auth_source_ldap['account'] = self.params.extra['account'] if 'onthefly_register' in self.params.extra: auth_source_ldap['onthefly_register'] = self.params.extra['onthefly_register'] if 'base_dn' in self.params.extra: auth_source_ldap['base_dn'] = self.params.extra['base_dn'] try: auth_source_ldap = conn.create_auth_source_ldaps(auth_source_ldap) except Exception as e: self.log.error(e) quit("There was a problem creating your " + str(self.params.function)) return auth_source_ldap def create_paramter(self,conn): common_parameter = {} try: common_parameter['value'] = self.params.extra['value'] common_parameter['name'] = self.params.name except KeyError as e: self.log.debug(e) quit("Cannot create " + str(self.params.function)) try: common_paramter = conn.create_common_paramters(common_paramter) except Exception as e: self.log.error(e) quit("There was a problem creating your " + str(self.params.function)) return common_parameter def create_key(self,conn): lookup_key = {} try: lookup_key['key'] = self.params.name except KeyError as e: self.log.debug(e) quit("Cannot create " + str(self.params.function)) if 'default_value' in self.params.extra: lookup_key['default_value'] = self.params.extra['default_value'] if 'description' in self.params.extra: lookup_key['description'] = self.params.extra['description'] if 'path' in self.params.extra: lookup_key['path'] = self.params.extra['path'] if 'puppetclass_id' in self.params.extra: lookup_key['puppetclass_id'] = self.params.extra['puppetclass_id'] if 'lookup_values_count' in self.params.extra: lookup_key['lookup_values_count'] = self.params.extra['lookup_values_count'] try: lookup_key = conn.create_lookup_keys(lookup_key) except Exception as e: self.log.error(e) quit("There was a problem creating your " + str(self.params.function)) return lookup_key def create_partitiontable(self,conn): ptable = {} try: ptable['layout'] = self.params.extra['layout'] ptable['name'] = self.params.name except KeyError as e: self.log.debug(e) quit("Cannot create " + str(self.params.function)) if 'os_family' in self.params.extra: ptable['os_family'] = self.params.extra['os_family'] try: ptable = conn.create_ptables(ptable) except Exception as e: self.log.error(e) quit("There was a problem creating your " + str(self.params.function)) return ptable def create_role(self,conn): role = {} try: role['name'] = self.params.name except KeyError as e: self.log.debug(e) quit("Cannot create environment") try: role = conn.create_roles(role) except Exception as e: self.log.error("Not enough detail provided with element - Unsure what to do - Skipping!") return return role def create_usergroup(self,conn): usergroup = {} try: usergroup['name'] = self.params.name except KeyError as e: self.log.debug(e) quit("Cannot create environment") try: usergroup = conn.create_usergroups(usergroup) except Exception as e: self.log.error("Not enough detail provided with element - Unsure what to do - Skipping!") return return usergroup def create_user(self,conn): user = {} try: user['login'] = self.params.name user['password'] = self.params.extra['password'] user['mail'] = self.params.extra['mail'] user['auth_source_id'] = self.params.extra['auth_source_id'] except KeyError as e: self.log.debug(e) quit("Cannot create environment") if 'firstname' in self.params.extra: user['firstname'] = self.params.extra['firstname'] if 'admin' in self.params.extra: user['admin'] = self.params.extra['admin'] if 'lastname' in self.params.extra: user['lastname'] = self.params.extra['lastname'] try: user = conn.create_users(user) except Exception as e: self.log.error("Not enough detail provided with element - Unsure what to do - Skipping!") return return user def update_host(self,conn,i): host = {} self.log.info(conn.show_hosts(i)) try: host['id'] = i except KeyError as e: self.log.debug(e) quit("Cannot update " + str(self.params.function)) if 'new_name' in self.params.extra: host['name'] = self.params.extra['new_name'] if 'architecture_id' in self.params.extra: host['architecture_id'] = self.params.extra['architecture_id'] if 'model_id' in self.params.extra: host['model_id'] = self.params.extra['model_id'] if 'puppet_proxy_id' in self.params.extra: host['puppet_proxy_id'] = self.params.extra['puppet_proxy_id'] if 'environment_id' in self.params.extra: host['environment_id'] = self.params.extra['environment_id'] if 'domain_id' in self.params.extra: host['domain_id'] = self.params.extra['domain_id'] if 'mac' in self.params.extra: host['mac'] = self.params.extra['mac'] if 'ip' in self.params.extra: host['ip'] = self.params.extra['ip'] if 'operatingsystem_id' in self.params.extra: host['operatingsystem_id'] = self.params.extra['operatingsystem_id'] if 'ptable_id' in self.params.extra: host['ptable_id'] = self.params.extra['ptable_id'] if 'hostgroup_id' in self.params.extra: host['hostgroup_id'] = self.params.extra['hostgroup'] if 'sp_subnet_id' in self.params.extra: host['sp_subnet_id']= self.params.extra['sp_subnet_id'] if 'subnet_id' in self.params.extra: host['subnet_id'] = self.params.extra['subnet_id'] if 'owner_id' in self.params.extra: host['owner_id']= self.params.extra['owner_id'] if 'host_parameters_attributes' in self.params.extra: host['host_parameters_attributes'] = self.params.extra['host_parameters_attributes'] if 'puppet_ca_proxy_id' in self.params.extra: host['puppet_ca_proxy_id'] = self.params.extra['puppet_ca_proxy_id'] if 'image_id' in self.params.extra: host['image_id'] = self.params.extra['image_id'] if 'medium_id' in self.params.extra: host['medium_id'] = self.params.extra['medium_id'] try: host = conn.update_hosts(host) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return host def update_smart_proxy(self,conn,i): smartProxy = {} try: smartProxy['id'] = i except KeyError as e: self.log.debug(e) quit("Please provide a JSON string") if 'new_name' in self.params.extra: smartProxy['name'] = self.params.extra['new_name'] if 'url' in self.params.extra: smartProxy['url'] = self.params.extra['url'] try: proxy = conn.update_smart_proxies(smartProxy) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return proxy def update_compute_resource(self,conn,i): computeResource = {} try: computeResource['id'] = i except KeyError: quit("Please deliver a json string with - password, url, description, user and provider values ") if 'new_name' in self.params.extra: computeResource['name'] = self.params.extra['new_name'] if 'password' in self.params.extra: computeResource['password'] = self.params.extra['password'] if 'url' in self.params.extra: computeResource['url'] = self.params.extra['url'] if 'description' in self.params.extra: computeResource['description'] = self.params.extra['description'] if 'user' in self.params.extra: computeResource['user'] = self.params.extra['user'] if 'provider' in self.params.extra: computeResource['provider'] = self.params.extra['provider'] if 'server' in self.params.extra: ComputeResource['server'] = self.params.extra['server'] if 'uuid' in self.params.extra: ComputeResource['uuid'] = self.params.extra['uuid'] if 'tenant' in self.params.extra: ComputeResource['tenant'] = self.params.extra['tenant'] if 'region' in self.params.extra: ComputeResource['region'] = self.params.extra['region'] try: resource = conn.update_compute_resources(computeResource) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return resource def update_subnet(self,conn,i): subnet = {} try: subnet['id'] = i except KeyError: quit("Please enter a valid JSON string with name, subnetmask, network") if 'new_name' in self.params.extra: subnet['name'] = self.params.extra['new_name'] if 'mask' in self.params.extra: subnet['mask'] = self.params.extra['subnetmask'] if 'network' in self.params.extra: subnet['network'] = self.params.extra['network'] if 'vlanid' in self.params.extra: subnet['vlanid'] = self.params.extra['vlanid'] if 'dns_primary' in self.params.extra: subnet['dns_primary'] = self.params.extra['dns_primary'] if 'gateway' in self.params.extra: subnet['gateway'] = self.params.extra['gateway'] if 'to' in self.params.extra: subnet['to'] = self.params.extra['to'] if 'dns_id' in self.params.extra: subnet['dns_id'] = self.params.extra['dns_id'] if 'dhcp_id' in self.params.extra: subnet['dhcp_id'] = self.params.extra['dhcp_id'] if 'from' in self.params.extra: subnet['from'] = self.params.extra['from'] if 'dns_secondary' in self.params.extra: subnet['dns_secondary'] = self.params.extra['dns_secondary'] if 'domain_ids' in self.params.extra: subnet['domain_ids'] = self.params.extra['domain_ids'] if 'tftp_id' in self.params.extra: subnet['tftp_id'] = self.params.extra['tftp_id'] try: sub = conn.update_subnets(subnet) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return sub def update_domain(self,conn,i): domain = {} try: domain['id'] = i except KeyError: quit("Please enter a valid JSON string with dns_id and description") if 'new_name' in self.params.extra: domain['name'] = self.params.extra['new_name'] if 'dns_id' in self.params.extra: domain['dns_id'] = self.params.extra['dns_id'] if 'fullname' in self.params.extra: domain['fullname'] = self.params.extra['fullname'] if 'domain_parameters_attributes' in self.params.extra: domain['domain_parameters_attributes'] = self.params.extra['domain_parameters_attributes'] try: dom = conn.update_domains(domain) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return dom def update_hostgroup(self,conn,i): hostgroup = {} try: hostgroup['id'] = i except KeyError: quit('Please provide a valid JSON string that has name') if 'new_name' in self.params.extra: hostgroup['name'] = self.params.extra['new_name'] if 'operatingsystem_id' in self.params.extra: hostgroup['operatingsystem_id'] = self.params.extra['operatingsystem_id'] if 'puppet_ca_proxy_id' in self.params.extra: hostgroup['puppet_ca_proxy_id'] = self.params.extra['puppet_ca_proxy_id'] if 'ptable_id' in self.params.extra: hostgroup['ptable_id'] = self.params.extra['ptable_id'] if 'environment_id' in self.params.extra: hostgroup['environment_id'] = self.params.extra['environment_id'] if 'medium_id' in self.params.extra: hostgroup['medium_id'] = self.params.extra['medium_id'] if 'subnet_id' in self.params.extra: hostgroup['subnet_id'] = self.params.extra['subnet_id'] if 'architecture_id' in self.params.extra: hostgroup['architecture_id'] = self.params.extra['architecture_id'] if 'puppet_proxy_id' in self.params.extra: hostgroup['puppet_proxy_id'] = self.params.extra['puppet_proxy_id'] if 'puppetclass_ids' in self.params.extra: hostgroup['puppetclass_ids'] = self.params.extra['puppetclass_ids'] if 'root_pass' in self.params.extra: hostgroup['root_pass'] = self.params.extra['root_pass'] if 'domain_id' in self.params.extra: hostgroup['domain_id'] = self.params.extra['domain_id'] try: hostgroup = conn.update_hostgroups(hostgroup) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return hostgroup def update_puppetclass(self,conn,i): puppetclass = {} try: puppetclass['id'] = i except KeyError: quit('Please provide a valid JSON string') if 'new_name' in self.params.extra: puppetclass['name'] = self.params.extra['new_name'] try: pclass = conn.update_puppetclasses(puppetclass) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return pclass def update_hardwaremodel(self,conn,i): hardware = {} try: hardware['id'] = i except KeyError: quit('please provide a valid JSON string') if 'new_name' in self.params.extra: hardware['name'] = self.params.extra['new_name'] if 'hardware_model' in self.params.extra: hardware['hardware_model'] = self.params.extra['hardware_model'] if 'vendor_class' in self.params.extra: hardware['vendor_class'] = self.params.extra['vendor_class'] if 'info' in self.params.extra: hardware['info'] = self.params.extra['info'] try: model = conn.update_models(hardware) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return model def update_os(self,conn,i): os = {} try: os['id'] = i except KeyError: quit('Please provide a valid JSON string') if 'new_name' in self.params.extra: os['name'] = self.params.extra['new_name'] if 'minor' in self.params.extra: os['minor'] = self.params.extra['minor'] if 'major' in self.params.extra: os['major'] = self.params.extra['major'] try: operatingsys = conn.update_operatingsystems(os) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return operatingsys def update_env(self,conn,i): env = {} try: env['id'] = i except KeyError as e: self.log.debug(e) quit("Cannot update environment") if 'new_name' in self.params.extra: env['name'] = self.params.extra['new_name'] try: environment = conn.update_environments(env) except Exception as e: self.log.error(e) quit("There was a problem updating your " + str(self.params.function)) return environment def update_install_media(self,conn,i): install = {} try: install['id'] = i
<reponame>myvyang/rre #!/usr/bin/env python # coding: utf-8 import os import sys """ laucha: regular expressions static compiler. <NAME>, @alejolp """ RE_SPECIAL_SYMBOLS = set(".[]^$()*+?|{}") RE_CLASSES = ['[:upper:]', '[:lower:]', '[:alpha:]', '[:alnum:]', '[:digit:]', '[:xdigit:]', '[:punct:]', '[:blank:]', '[:space:]', '[:cntrl:]', '[:graph:]', '[:print:]'] TOK_SPECIAL = 'special' TOK_LITERAL = 'literal' TOK_CLASS = 'class' TOK_ENDOFSTR = 'eos' class laucha_parser_error(Exception): pass class laucha_parser_missing_token(Exception): """ Backtrack the parser """ pass def tokenize_regexp(S): i = 0 R = [] in_char_class = False try: while i < len(S): if S.startswith('[:', i): class_str = None for c in RE_CLASSES: if S.startswith(c, i): class_str = c break if class_str is None: raise laucha_parser_error() R.append((TOK_CLASS, class_str)) i += len(class_str) elif S.startswith('[^', i): R.append((TOK_SPECIAL, S[i:i+2])) i = i + 2 elif S[i] in RE_SPECIAL_SYMBOLS: if in_char_class and S[i] not in "^-]\\": R.append((TOK_LITERAL, S[i])) else: R.append((TOK_SPECIAL, S[i])) if S[i] == '[': in_char_class = True if S[i] == ']': in_char_class = False i = i + 1 elif S[i] == '\\': i = i + 1 if S[i] in "sSwW": R.append((TOK_LITERAL, "\\" + S[i])) elif S[i] in "nrtf": m = {"n": "\n", "r": "\r", "t": "\t", "f": "\f"} R.append((TOK_LITERAL, m[S[i]])) else: R.append((TOK_LITERAL, S[i])) i = i + 1 else: R.append((TOK_LITERAL, S[i])) i = i + 1 except Exception as e: raise laucha_parser_error("Exception: " + str(e)) R.append((TOK_ENDOFSTR, None)) return R class regexp_node: def __init__(self, name): self.name = name self.childs = [] def __repr__(self): return "('" + self.name + "', " + ', '.join([repr(x) for x in self.childs]) + ")" class regexp_parser: """ Recursive descent parser for regular expressions. GRAMMAR ------- http://www.cs.sfu.ca/~cameron/Teaching/384/99-3/regexp-plg.html <START> ::= <RE> <TOK_ENDOFSTR> <RE> ::= <union> | <simple_RE> <union> ::= <RE> "|" <simple_RE> <simple_RE> ::= <concatenation> | <basic_RE> <concatenation> ::= <simple_RE> <basic_RE> <basic_RE> ::= <star> | <plus> | <question> | <num_copy> | <elementary_RE> <star> ::= <elementary_RE> "*" <plus> ::= <elementary_RE> "+" <question> ::= <elementary_RE> "?" <num_copy> ::= <elementary_RE> <num_copy_struct> <num_copy_struct> ::= "{" num "}" | "{" num "," num "}" <num> ::= 0123456789 <elementary_RE> ::= <group> | <any> | <eos> | <sos> | <char> | <char_group> | <set> <group> ::= "(" <RE> ")" <set> ::= <positive_set> | <negative_set> <positive_set> ::= "[" <set_items> "]" <negative_set> ::= "[^" <set_items> "]" <set_items> ::= <set_item> | <set_item> <set_items> <set_item> ::= <range> | <char> | <char_group> <range> ::= <char> "-" <char> <any> ::= "." <sos> ::= "^" <eos> ::= "$" <char> ::= any non metacharacter | "\" metacharacter <char_group> ::= "\s" | "\w" | \S | \W # Left factored grammar <RE> ::= <simple_RE> <union> | <simple_RE> <union> ::= "|" <simple_RE> <union> | "|" <simple_RE> <simple_RE> ::= <basic_RE> <concatenation> | <basic_RE> <concatenation> ::= <simple_RE> """ def __init__(self, T): self.toks = T self.pos = 0 def tok_peek(self): t = self.toks[self.pos] #print "peek", t return t def tok_next(self): t = self.toks[self.pos] #print "next", t self.pos += 1 return t def parse_any(self): """ <any> ::= "." """ if self.tok_peek() != (TOK_SPECIAL, '.'): raise laucha_parser_missing_token() node = regexp_node('any') node.childs.append(self.tok_next()) return node def parse_sos(self): """ <sos> ::= "^" """ if self.tok_peek() != (TOK_SPECIAL, '^'): raise laucha_parser_missing_token() node = regexp_node('sos') node.childs.append(self.tok_next()) return node def parse_eos(self): """ <eos> ::= "$" """ if self.tok_peek() != (TOK_SPECIAL, '$'): raise laucha_parser_missing_token() node = regexp_node('eos') node.childs.append(self.tok_next()) return node def parse_char(self): """ <char> ::= any non metacharacter | "\" metacharacter """ if self.tok_peek()[0] != TOK_LITERAL: raise laucha_parser_missing_token() if self.tok_peek()[1] in "\s\w\S\W": node = regexp_node('char_group') node.childs.append(self.tok_next()) else: node = regexp_node('char') node.childs.append(self.tok_next()) return node def parse_range(self): """ <range> ::= <char> "-" <char> """ oldpos = self.pos try: a = self.parse_char() if self.tok_peek()[1] != '-': raise laucha_parser_missing_token() b = self.tok_next() c = self.parse_char() node = regexp_node('range') node.childs.append(a) node.childs.append(b) node.childs.append(c) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_set_item(self): """ <set_item> ::= <range> | <char> """ oldpos = self.pos try: node = regexp_node('set_item') try: a = self.parse_range() node.childs.append(a) return node except laucha_parser_missing_token as e: pass a = self.parse_char() node.childs.append(a) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_set_items(self): """ <set_items> ::= <set_item> | <set_item> <set_items> """ oldpos = self.pos try: node = regexp_node('set_items') a = self.parse_set_item() node.childs.append(a) try: b = self.parse_set_items() node.childs.append(b) except laucha_parser_missing_token as e: pass return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_set(self): """ <set> ::= <positive_set> | <negative_set> """ oldpos = self.pos try: node = regexp_node('set') try: a = self.parse_positive_set() node.childs.append(a) return node except laucha_parser_missing_token as e: pass a = self.parse_negative_set() node.childs.append(a) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_positive_set(self): """ <positive_set> ::= "[" <set_items> "]" """ oldpos = self.pos try: node = regexp_node('positive_set') if self.tok_peek() != (TOK_SPECIAL, '['): raise laucha_parser_missing_token() a = self.tok_next() b = self.parse_set_items() if self.tok_peek() != (TOK_SPECIAL, ']'): raise laucha_parser_missing_token() c = self.tok_next() node.childs.append(a) node.childs.append(b) node.childs.append(c) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_negative_set(self): """ <negative_set> ::= "[^" <set_items> "]" """ oldpos = self.pos try: node = regexp_node('negative_set') if self.tok_peek() != (TOK_SPECIAL, '[^'): raise laucha_parser_missing_token() a = self.tok_next() b = self.parse_set_items() if self.tok_peek() != (TOK_SPECIAL, ']'): raise laucha_parser_missing_token() c = self.tok_next() node.childs.append(a) node.childs.append(b) node.childs.append(c) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_group(self): """ <group> ::= "(" <RE> ")" """ oldpos = self.pos try: node = regexp_node('group') if self.tok_peek() != (TOK_SPECIAL, '('): raise laucha_parser_missing_token() a = self.tok_next() if self.tok_peek() == (TOK_SPECIAL, '?'): self.tok_next() b = self.parse_RE() if self.tok_peek() != (TOK_SPECIAL, ')'): raise laucha_parser_missing_token() c = self.tok_next() node.childs.append(a) node.childs.append(b) node.childs.append(c) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_START(self): """ <START> ::= <RE> <TOK_ENDOFSTR> """ oldpos = self.pos try: node = regexp_node('RE') a = self.parse_RE() if self.tok_peek() != (TOK_ENDOFSTR, None): raise laucha_parser_missing_token() b = self.tok_next() node.childs.append(a) node.childs.append(b) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_RE(self): """ <RE> ::= <simple_RE> <union> | <simple_RE> """ oldpos = self.pos try: node = regexp_node('RE') a = self.parse_simple_RE() node.childs.append(a) try: b = self.parse_union() node.childs.append(b) except laucha_parser_missing_token as e: pass return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_union(self): """ <union> ::= "|" <simple_RE> <union> | "|" <simple_RE> """ oldpos = self.pos try: node = regexp_node('union') if self.tok_peek() != (TOK_SPECIAL, '|'): raise laucha_parser_missing_token() a = self.tok_next() node.childs.append(a) b = self.parse_simple_RE() node.childs.append(b) try: c = self.parse_union() node.childs.append(c) except laucha_parser_missing_token as e: pass return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_simple_RE(self): """ <simple_RE> ::= <basic_RE> <concatenation> | <basic_RE> """ oldpos = self.pos try: node = regexp_node('simple_RE') a = self.parse_basic_RE() node.childs.append(a) try: b = self.parse_concatenation() node.childs.append(b) except laucha_parser_missing_token as e: pass return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_concatenation(self): """ <concatenation> ::= <simple_RE> """ oldpos = self.pos try: node = regexp_node('concatenation') a = self.parse_simple_RE() node.childs.append(a) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_basic_RE(self): """ <basic_RE> ::= <star> | <plus> | <question> | <num_copy> | <elementary_RE> """ oldpos = self.pos try: node = regexp_node('basic_RE') try: a = self.parse_star() node.childs.append(a) return node except laucha_parser_missing_token as e: self.pos = oldpos try: a = self.parse_plus() node.childs.append(a) return node except laucha_parser_missing_token as e: self.pos = oldpos try: a = self.parse_question() node.childs.append(a) return node except laucha_parser_missing_token as e: self.pos = oldpos try: a = self.parse_num_copy() node.childs.append(a) return node except laucha_parser_missing_token as e: self.pos = oldpos a = self.parse_elementary_RE() node.childs.append(a) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_star(self): """ <star> ::= <elementary_RE> "*" """ oldpos = self.pos try: node = regexp_node('star') a = self.parse_elementary_RE() if self.tok_peek() != (TOK_SPECIAL, '*'): raise laucha_parser_missing_token() b = self.tok_next() if self.tok_peek() == (TOK_SPECIAL, '?'): self.tok_next() node.childs.append(a) node.childs.append(b) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_plus(self): """ <plus> ::= <elementary_RE> "+" """ oldpos = self.pos try: node = regexp_node('plus') a = self.parse_elementary_RE() if self.tok_peek() != (TOK_SPECIAL, '+'): raise laucha_parser_missing_token() b = self.tok_next() if self.tok_peek() == (TOK_SPECIAL, '?'): self.tok_next() node.childs.append(a) node.childs.append(b) return node except laucha_parser_missing_token as e: self.pos = oldpos raise def parse_question(self): """ <question> ::= <elementary_RE> "?" """ oldpos = self.pos try: node = regexp_node('question') a = self.parse_elementary_RE() if self.tok_peek() != (TOK_SPECIAL,
<reponame>gynvael/stream from z3 import * def movsx(v): return ZeroExt(32 - 8, v) def imul(a, b, c = None): if c is None: return a * b return b * c def xor_(r, v): return r ^ v def or_(r, v): return r | v def mov(_, r2): return r2 def shr(r1, c): return LShR(r1, c) def shl(r1, c): return r1 << c def calc(): esp_0x10 = BitVec("esp_0x10", 8) esp_0x11 = BitVec("esp_0x11", 8) esp_0x12 = BitVec("esp_0x12", 8) esp_0x13 = BitVec("esp_0x13", 8) esp_0x14 = BitVec("esp_0x14", 8) esp_0x15 = BitVec("esp_0x15", 8) esp_0x16 = BitVec("esp_0x16", 8) esp_0x17 = BitVec("esp_0x17", 8) esp_0x18 = BitVec("esp_0x18", 8) esp_0x19 = BitVec("esp_0x19", 8) esp_0x1A = BitVec("esp_0x1A", 8) esp_0x1B = BitVec("esp_0x1B", 8) esp_0x1C = BitVec("esp_0x1C", 8) esp_0x1D = BitVec("esp_0x1D", 8) esp_0x1E = BitVec("esp_0x1E", 8) esp_0x1F = BitVec("esp_0x1F", 8) eax = BitVec("eax", 32) ebx = BitVec("ebx", 32) ecx = BitVec("ecx", 32) edx = BitVec("edx", 32) esi = BitVec("esi", 32) edi = BitVec("edi", 32) ebp = BitVec("ebp", 32) edi = movsx(esp_0x10) edx = imul(edx, edi, 0x3039) edx = xor_(edx, 0x93E6BBCF) ebx = imul(ebx, edi, 0x0AEDCE) ebx = xor_(ebx, 0x2ECBBAE2) ecx = imul(ecx, edi, 0x2EF8F) ecx = xor_(ecx, 0x0A0A2A282) edi = imul(edi, 0x0DEDC7) edi = xor_(edi, 0x9BDFE6F7) eax = mov(eax, edx) eax = shr(eax, 3) edx = shl(edx, 3) eax = or_(eax, edx) edx = movsx(esp_0x11) esi = imul(esi, edx, 0x3039) eax = xor_(eax, esi) esi = mov(esi, ebx) esi = shr(esi, 5) ebx = shl(ebx, 5) esi = or_(esi, ebx) ebx = imul(ebx, edx, 0x0AEDCE) esi = xor_(esi, ebx) ebx = mov(ebx, ecx) ebx = shr(ebx, 7) ecx = shl(ecx, 7) ebx = or_(ebx, ecx) ecx = imul(ecx, edx, 0x2EF8F) ebx = xor_(ebx, ecx) ecx = mov(ecx, edi) ecx = shr(ecx, 9) edi = shl(edi, 9) ecx = or_(ecx, edi) edx = imul(edx, 0x0DEDC7) ecx = xor_(ecx, edx) edx = mov(edx, eax) edx = shr(edx, 3) eax = shl(eax, 3) edx = or_(edx, eax) edi = movsx(esp_0x12) eax = imul(eax, edi, 0x3039) edx = xor_(edx, eax) eax = mov(eax, esi) eax = shr(eax, 5) esi = shl(esi, 5) eax = or_(eax, esi) esi = imul(esi, edi, 0x0AEDCE) eax = xor_(eax, esi) esi = mov(esi, ebx) esi = shr(esi, 7) ebx = shl(ebx, 7) esi = or_(esi, ebx) ebx = imul(ebx, edi, 0x2EF8F) esi = xor_(esi, ebx) ebx = mov(ebx, ecx) ebx = shr(ebx, 9) ecx = shl(ecx, 9) ebx = or_(ebx, ecx) edi = imul(edi, 0x0DEDC7) ebx = xor_(ebx, edi) ecx = mov(ecx, edx) ecx = shr(ecx, 3) edx = shl(edx, 3) ecx = or_(ecx, edx) edi = movsx(esp_0x13) edx = imul(edx, edi, 0x3039) ecx = xor_(ecx, edx) edx = mov(edx, eax) edx = shr(edx, 5) eax = shl(eax, 5) edx = or_(edx, eax) eax = imul(eax, edi, 0x0AEDCE) edx = xor_(edx, eax) eax = mov(eax, esi) eax = shr(eax, 7) esi = shl(esi, 7) eax = or_(eax, esi) esi = imul(esi, edi, 0x2EF8F) eax = xor_(eax, esi) esi = mov(esi, ebx) esi = shr(esi, 9) ebx = shl(ebx, 9) esi = or_(esi, ebx) edi = imul(edi, 0x0DEDC7) esi = xor_(esi, edi) ebx = mov(ebx, ecx) ebx = shr(ebx, 3) ecx = shl(ecx, 3) ebx = or_(ebx, ecx) edi = movsx(esp_0x14) ecx = imul(ecx, edi, 0x3039) ebx = xor_(ebx, ecx) ecx = mov(ecx, edx) ecx = shr(ecx, 5) edx = shl(edx, 5) ecx = or_(ecx, edx) edx = imul(edx, edi, 0x0AEDCE) ecx = xor_(ecx, edx) edx = mov(edx, eax) edx = shr(edx, 7) eax = shl(eax, 7) edx = or_(edx, eax) eax = imul(eax, edi, 0x2EF8F) edx = xor_(edx, eax) eax = mov(eax, esi) eax = shr(eax, 9) esi = shl(esi, 9) eax = or_(eax, esi) edi = imul(edi, 0x0DEDC7) eax = xor_(eax, edi) esi = mov(esi, ebx) esi = shr(esi, 3) ebx = shl(ebx, 3) esi = or_(esi, ebx) edi = movsx(esp_0x15) ebx = imul(ebx, edi, 0x3039) esi = xor_(esi, ebx) ebx = mov(ebx, ecx) ebx = shr(ebx, 5) ecx = shl(ecx, 5) ebx = or_(ebx, ecx) ecx = imul(ecx, edi, 0x0AEDCE) ebx = xor_(ebx, ecx) ecx = mov(ecx, edx) ecx = shr(ecx, 7) edx = shl(edx, 7) ecx = or_(ecx, edx) edx = imul(edx, edi, 0x2EF8F) ecx = xor_(ecx, edx) edx = mov(edx, eax) edx = shr(edx, 9) eax = shl(eax, 9) edx = or_(edx, eax) edi = imul(edi, 0x0DEDC7) edx = xor_(edx, edi) eax = mov(eax, esi) eax = shr(eax, 3) esi = shl(esi, 3) eax = or_(eax, esi) edi = movsx(esp_0x16) esi = imul(esi, edi, 0x3039) eax = xor_(eax, esi) esi = mov(esi, ebx) esi = shr(esi, 5) ebx = shl(ebx, 5) esi = or_(esi, ebx) ebx = imul(ebx, edi, 0x0AEDCE) esi = xor_(esi, ebx) ebx = mov(ebx, ecx) ebx = shr(ebx, 7) ecx = shl(ecx, 7) ebx = or_(ebx, ecx) ecx = imul(ecx, edi, 0x2EF8F) ebx = xor_(ebx, ecx) ecx = mov(ecx, edx) ecx = shr(ecx, 9) edx = shl(edx, 9) ecx = or_(ecx, edx) edi = imul(edi, 0x0DEDC7) ecx = xor_(ecx, edi) edx = mov(edx, eax) edx = shr(edx, 3) eax = shl(eax, 3) edx = or_(edx, eax) edi = movsx(esp_0x17) eax = imul(eax, edi, 0x3039) edx = xor_(edx, eax) eax = mov(eax, esi) eax = shr(eax, 5) esi = shl(esi, 5) eax = or_(eax, esi) esi = imul(esi, edi, 0x0AEDCE) eax = xor_(eax, esi) esi = mov(esi, ebx) esi = shr(esi, 7) ebx = shl(ebx, 7) esi = or_(esi, ebx) ebx = imul(ebx, edi, 0x2EF8F) esi = xor_(esi, ebx) ebx = mov(ebx, ecx) ebx = shr(ebx, 9) ecx = shl(ecx, 9) ebx = or_(ebx, ecx) edi = imul(edi, 0x0DEDC7) ebx = xor_(ebx, edi) ecx = mov(ecx, edx) ecx = shr(ecx, 3) edx = shl(edx, 3) ecx = or_(ecx, edx) edi = movsx(esp_0x18) edx = imul(edx, edi, 0x3039) ecx = xor_(ecx, edx) edx = mov(edx, eax) edx = shr(edx, 5) eax = shl(eax, 5) edx = or_(edx, eax) eax = imul(eax, edi, 0x0AEDCE) edx = xor_(edx, eax) eax = mov(eax, esi) eax = shr(eax, 7) esi = shl(esi, 7) eax = or_(eax, esi) esi = imul(esi, edi, 0x2EF8F) eax = xor_(eax, esi) esi = mov(esi, ebx) esi = shr(esi, 9) ebx = shl(ebx, 9) esi = or_(esi, ebx) edi = imul(edi, 0x0DEDC7) esi = xor_(esi, edi) ebx = mov(ebx, ecx) ebx = shr(ebx, 3) ecx = shl(ecx, 3) ebx = or_(ebx, ecx) edi = movsx(esp_0x19) ecx = imul(ecx, edi, 0x3039) ebx = xor_(ebx, ecx) ecx = mov(ecx, edx) ecx = shr(ecx, 5) edx = shl(edx, 5) ecx = or_(ecx, edx) edx = imul(edx, edi, 0x0AEDCE) ecx = xor_(ecx, edx) edx = mov(edx, eax) edx = shr(edx, 7) eax = shl(eax, 7) edx = or_(edx, eax) eax = imul(eax, edi, 0x2EF8F) edx = xor_(edx, eax) eax = mov(eax, esi) eax = shr(eax, 9) esi = shl(esi, 9) eax = or_(eax, esi) edi = imul(edi, 0x0DEDC7) eax = xor_(eax, edi) esi = mov(esi, ebx) esi = shr(esi, 3) ebx = shl(ebx, 3) esi = or_(esi, ebx) edi = movsx(esp_0x1A) ebx = imul(ebx, edi, 0x3039) esi = xor_(esi, ebx) ebx = mov(ebx, ecx) ebx = shr(ebx, 5) ecx = shl(ecx, 5) ebx = or_(ebx, ecx) ecx = imul(ecx, edi, 0x0AEDCE) ebx = xor_(ebx, ecx) ecx = mov(ecx, edx) ecx = shr(ecx, 7) edx = shl(edx, 7) ecx = or_(ecx, edx) edx = imul(edx, edi, 0x2EF8F) ecx = xor_(ecx, edx) edx = mov(edx, eax) edx = shr(edx, 9) eax = shl(eax, 9) edx = or_(edx, eax) edi = imul(edi, 0x0DEDC7) edx = xor_(edx, edi) eax = mov(eax, esi) eax = shr(eax, 3) esi = shl(esi, 3) eax = or_(eax, esi) esi = movsx(esp_0x1B) edi = imul(edi, esi, 0x3039) eax = xor_(eax, edi) edi = mov(edi, ebx) edi = shr(edi, 5) ebx = shl(ebx, 5) edi = or_(edi, ebx) ebx = imul(ebx, esi, 0x0AEDCE) edi = xor_(edi, ebx) ebx = mov(ebx, ecx) ebx = shr(ebx, 7) ecx = shl(ecx, 7)
struct_anon_97(Structure): __slots__ = [ 'type', 'serial', 'send_event', 'display', 'window', 'deviceid', 'mode', 'detail', 'time', ] struct_anon_97._fields_ = [ ('type', c_int), ('serial', c_ulong), ('send_event', c_int), ('display', POINTER(Display)), ('window', Window), ('deviceid', XID), ('mode', c_int), ('detail', c_int), ('time', Time), ] XDeviceFocusChangeEvent = struct_anon_97 # /usr/include/X11/extensions/XInput.h:5133 XDeviceFocusInEvent = XDeviceFocusChangeEvent # /usr/include/X11/extensions/XInput.h:5135 XDeviceFocusOutEvent = XDeviceFocusChangeEvent # /usr/include/X11/extensions/XInput.h:5136 class struct_anon_98(Structure): __slots__ = [ 'type', 'serial', 'send_event', 'display', 'window', 'deviceid', 'root', 'subwindow', 'time', 'x', 'y', 'x_root', 'y_root', 'state', 'same_screen', 'device_state', 'axes_count', 'first_axis', 'axis_data', ] struct_anon_98._fields_ = [ ('type', c_int), ('serial', c_ulong), ('send_event', c_int), ('display', POINTER(Display)), ('window', Window), ('deviceid', XID), ('root', Window), ('subwindow', Window), ('time', Time), ('x', c_int), ('y', c_int), ('x_root', c_int), ('y_root', c_int), ('state', c_uint), ('same_screen', c_int), ('device_state', c_uint), ('axes_count', c_ubyte), ('first_axis', c_ubyte), ('axis_data', c_int * 6), ] XProximityNotifyEvent = struct_anon_98 # /usr/include/X11/extensions/XInput.h:5164 XProximityInEvent = XProximityNotifyEvent # /usr/include/X11/extensions/XInput.h:5165 XProximityOutEvent = XProximityNotifyEvent # /usr/include/X11/extensions/XInput.h:5166 class struct_anon_99(Structure): __slots__ = [ 'class', 'length', ] struct_anon_99._fields_ = [ ('class', c_ubyte), ('length', c_ubyte), ] XInputClass = struct_anon_99 # /usr/include/X11/extensions/XInput.h:5183 class struct_anon_100(Structure): __slots__ = [ 'type', 'serial', 'send_event', 'display', 'window', 'deviceid', 'time', 'num_classes', 'data', ] struct_anon_100._fields_ = [ ('type', c_int), ('serial', c_ulong), ('send_event', c_int), ('display', POINTER(Display)), ('window', Window), ('deviceid', XID), ('time', Time), ('num_classes', c_int), ('data', c_char * 64), ] XDeviceStateNotifyEvent = struct_anon_100 # /usr/include/X11/extensions/XInput.h:5195 class struct_anon_101(Structure): __slots__ = [ 'class', 'length', 'num_valuators', 'mode', 'valuators', ] struct_anon_101._fields_ = [ ('class', c_ubyte), ('length', c_ubyte), ('num_valuators', c_ubyte), ('mode', c_ubyte), ('valuators', c_int * 6), ] XValuatorStatus = struct_anon_101 # /usr/include/X11/extensions/XInput.h:5207 class struct_anon_102(Structure): __slots__ = [ 'class', 'length', 'num_keys', 'keys', ] struct_anon_102._fields_ = [ ('class', c_ubyte), ('length', c_ubyte), ('num_keys', c_short), ('keys', c_char * 32), ] XKeyStatus = struct_anon_102 # /usr/include/X11/extensions/XInput.h:5218 class struct_anon_103(Structure): __slots__ = [ 'class', 'length', 'num_buttons', 'buttons', ] struct_anon_103._fields_ = [ ('class', c_ubyte), ('length', c_ubyte), ('num_buttons', c_short), ('buttons', c_char * 32), ] XButtonStatus = struct_anon_103 # /usr/include/X11/extensions/XInput.h:5229 class struct_anon_104(Structure): __slots__ = [ 'type', 'serial', 'send_event', 'display', 'window', 'deviceid', 'time', 'request', 'first_keycode', 'count', ] struct_anon_104._fields_ = [ ('type', c_int), ('serial', c_ulong), ('send_event', c_int), ('display', POINTER(Display)), ('window', Window), ('deviceid', XID), ('time', Time), ('request', c_int), ('first_keycode', c_int), ('count', c_int), ] XDeviceMappingEvent = struct_anon_104 # /usr/include/X11/extensions/XInput.h:5250 class struct_anon_105(Structure): __slots__ = [ 'type', 'serial', 'send_event', 'display', 'window', 'deviceid', 'time', 'request', ] struct_anon_105._fields_ = [ ('type', c_int), ('serial', c_ulong), ('send_event', c_int), ('display', POINTER(Display)), ('window', Window), ('deviceid', XID), ('time', Time), ('request', c_int), ] XChangeDeviceNotifyEvent = struct_anon_105 # /usr/include/X11/extensions/XInput.h:5268 class struct_anon_106(Structure): __slots__ = [ 'type', 'serial', 'send_event', 'display', 'window', 'time', 'devchange', 'deviceid', 'control', ] struct_anon_106._fields_ = [ ('type', c_int), ('serial', c_ulong), ('send_event', c_int), ('display', POINTER(Display)), ('window', Window), ('time', Time), ('devchange', c_int), ('deviceid', XID), ('control', XID), ] XDevicePresenceNotifyEvent = struct_anon_106 # /usr/include/X11/extensions/XInput.h:5293 class struct_anon_107(Structure): __slots__ = [ 'class', 'length', 'id', ] struct_anon_107._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ] XFeedbackState = struct_anon_107 # /usr/include/X11/extensions/XInput.h:5311 class struct_anon_108(Structure): __slots__ = [ 'class', 'length', 'id', 'click', 'percent', 'pitch', 'duration', 'led_mask', 'global_auto_repeat', 'auto_repeats', ] struct_anon_108._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('click', c_int), ('percent', c_int), ('pitch', c_int), ('duration', c_int), ('led_mask', c_int), ('global_auto_repeat', c_int), ('auto_repeats', c_char * 32), ] XKbdFeedbackState = struct_anon_108 # /usr/include/X11/extensions/XInput.h:5328 class struct_anon_109(Structure): __slots__ = [ 'class', 'length', 'id', 'accelNum', 'accelDenom', 'threshold', ] struct_anon_109._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('accelNum', c_int), ('accelDenom', c_int), ('threshold', c_int), ] XPtrFeedbackState = struct_anon_109 # /usr/include/X11/extensions/XInput.h:5341 class struct_anon_110(Structure): __slots__ = [ 'class', 'length', 'id', 'resolution', 'minVal', 'maxVal', ] struct_anon_110._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('resolution', c_int), ('minVal', c_int), ('maxVal', c_int), ] XIntegerFeedbackState = struct_anon_110 # /usr/include/X11/extensions/XInput.h:5354 class struct_anon_111(Structure): __slots__ = [ 'class', 'length', 'id', 'max_symbols', 'num_syms_supported', 'syms_supported', ] KeySym = pyglet.libs.x11.xlib.KeySym struct_anon_111._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('max_symbols', c_int), ('num_syms_supported', c_int), ('syms_supported', POINTER(KeySym)), ] XStringFeedbackState = struct_anon_111 # /usr/include/X11/extensions/XInput.h:5367 class struct_anon_112(Structure): __slots__ = [ 'class', 'length', 'id', 'percent', 'pitch', 'duration', ] struct_anon_112._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('percent', c_int), ('pitch', c_int), ('duration', c_int), ] XBellFeedbackState = struct_anon_112 # /usr/include/X11/extensions/XInput.h:5380 class struct_anon_113(Structure): __slots__ = [ 'class', 'length', 'id', 'led_values', 'led_mask', ] struct_anon_113._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('led_values', c_int), ('led_mask', c_int), ] XLedFeedbackState = struct_anon_113 # /usr/include/X11/extensions/XInput.h:5392 class struct_anon_114(Structure): __slots__ = [ 'class', 'length', 'id', ] struct_anon_114._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ] XFeedbackControl = struct_anon_114 # /usr/include/X11/extensions/XInput.h:5402 class struct_anon_115(Structure): __slots__ = [ 'class', 'length', 'id', 'accelNum', 'accelDenom', 'threshold', ] struct_anon_115._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('accelNum', c_int), ('accelDenom', c_int), ('threshold', c_int), ] XPtrFeedbackControl = struct_anon_115 # /usr/include/X11/extensions/XInput.h:5415 class struct_anon_116(Structure): __slots__ = [ 'class', 'length', 'id', 'click', 'percent', 'pitch', 'duration', 'led_mask', 'led_value', 'key', 'auto_repeat_mode', ] struct_anon_116._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('click', c_int), ('percent', c_int), ('pitch', c_int), ('duration', c_int), ('led_mask', c_int), ('led_value', c_int), ('key', c_int), ('auto_repeat_mode', c_int), ] XKbdFeedbackControl = struct_anon_116 # /usr/include/X11/extensions/XInput.h:5433 class struct_anon_117(Structure): __slots__ = [ 'class', 'length', 'id', 'num_keysyms', 'syms_to_display', ] struct_anon_117._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('num_keysyms', c_int), ('syms_to_display', POINTER(KeySym)), ] XStringFeedbackControl = struct_anon_117 # /usr/include/X11/extensions/XInput.h:5445 class struct_anon_118(Structure): __slots__ = [ 'class', 'length', 'id', 'int_to_display', ] struct_anon_118._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('int_to_display', c_int), ] XIntegerFeedbackControl = struct_anon_118 # /usr/include/X11/extensions/XInput.h:5456 class struct_anon_119(Structure): __slots__ = [ 'class', 'length', 'id', 'percent', 'pitch', 'duration', ] struct_anon_119._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('percent', c_int), ('pitch', c_int), ('duration', c_int), ] XBellFeedbackControl = struct_anon_119 # /usr/include/X11/extensions/XInput.h:5469 class struct_anon_120(Structure): __slots__ = [ 'class', 'length', 'id', 'led_mask', 'led_values', ] struct_anon_120._fields_ = [ ('class', XID), ('length', c_int), ('id', XID), ('led_mask', c_int), ('led_values', c_int), ] XLedFeedbackControl = struct_anon_120 # /usr/include/X11/extensions/XInput.h:5481 class struct_anon_121(Structure): __slots__ = [ 'control', 'length', ] struct_anon_121._fields_ = [ ('control', XID), ('length', c_int), ] XDeviceControl = struct_anon_121 # /usr/include/X11/extensions/XInput.h:5492 class struct_anon_122(Structure): __slots__ = [ 'control', 'length', 'first_valuator', 'num_valuators', 'resolutions', ] struct_anon_122._fields_ = [ ('control', XID), ('length', c_int), ('first_valuator', c_int), ('num_valuators', c_int), ('resolutions', POINTER(c_int)), ] XDeviceResolutionControl = struct_anon_122 # /usr/include/X11/extensions/XInput.h:5500 class struct_anon_123(Structure): __slots__ = [ 'control', 'length', 'num_valuators', 'resolutions', 'min_resolutions', 'max_resolutions', ] struct_anon_123._fields_ = [ ('control', XID), ('length', c_int), ('num_valuators', c_int), ('resolutions', POINTER(c_int)), ('min_resolutions', POINTER(c_int)), ('max_resolutions', POINTER(c_int)), ] XDeviceResolutionState = struct_anon_123 # /usr/include/X11/extensions/XInput.h:5509 class struct_anon_124(Structure): __slots__ = [ 'control', 'length', 'min_x', 'max_x', 'min_y', 'max_y', 'flip_x', 'flip_y', 'rotation', 'button_threshold', ] struct_anon_124._fields_ = [ ('control', XID), ('length', c_int), ('min_x', c_int), ('max_x', c_int), ('min_y', c_int), ('max_y', c_int), ('flip_x', c_int), ('flip_y', c_int), ('rotation', c_int), ('button_threshold', c_int), ] XDeviceAbsCalibControl = struct_anon_124 # /usr/include/X11/extensions/XInput.h:5522 class struct_anon_125(Structure): __slots__ = [ 'control', 'length', 'min_x', 'max_x', 'min_y', 'max_y', 'flip_x', 'flip_y', 'rotation', 'button_threshold', ] struct_anon_125._fields_ = [ ('control', XID), ('length', c_int), ('min_x', c_int), ('max_x', c_int), ('min_y', c_int), ('max_y', c_int), ('flip_x', c_int), ('flip_y', c_int), ('rotation', c_int), ('button_threshold', c_int), ] XDeviceAbsCalibState = struct_anon_125 # /usr/include/X11/extensions/XInput.h:5522 class struct_anon_126(Structure): __slots__ = [ 'control', 'length', 'offset_x', 'offset_y', 'width', 'height', 'screen', 'following', ] struct_anon_126._fields_ = [ ('control', XID), ('length', c_int), ('offset_x', c_int), ('offset_y', c_int), ('width', c_int), ('height', c_int), ('screen', c_int), ('following', XID), ] XDeviceAbsAreaControl = struct_anon_126 # /usr/include/X11/extensions/XInput.h:5533 class struct_anon_127(Structure): __slots__ = [ 'control', 'length', 'offset_x', 'offset_y', 'width', 'height', 'screen', 'following', ] struct_anon_127._fields_ = [ ('control', XID), ('length', c_int), ('offset_x', c_int), ('offset_y', c_int), ('width', c_int), ('height', c_int), ('screen', c_int), ('following', XID), ] XDeviceAbsAreaState = struct_anon_127 # /usr/include/X11/extensions/XInput.h:5533 class struct_anon_128(Structure): __slots__ = [ 'control', 'length', 'status', ] struct_anon_128._fields_ = [ ('control', XID), ('length', c_int), ('status', c_int), ] XDeviceCoreControl = struct_anon_128 # /usr/include/X11/extensions/XInput.h:5539 class struct_anon_129(Structure): __slots__ = [ 'control', 'length', 'status', 'iscore', ] struct_anon_129._fields_ = [ ('control', XID), ('length', c_int), ('status', c_int), ('iscore', c_int), ] XDeviceCoreState = struct_anon_129 # /usr/include/X11/extensions/XInput.h:5546 class struct_anon_130(Structure): __slots__ = [ 'control', 'length', 'enable', ] struct_anon_130._fields_ = [ ('control', XID), ('length', c_int), ('enable', c_int), ] XDeviceEnableControl = struct_anon_130 # /usr/include/X11/extensions/XInput.h:5552 class struct_anon_131(Structure): __slots__ = [ 'control', 'length', 'enable', ] struct_anon_131._fields_ = [ ('control', XID), ('length', c_int), ('enable', c_int), ] XDeviceEnableState = struct_anon_131 # /usr/include/X11/extensions/XInput.h:5552 class struct__XAnyClassinfo(Structure): __slots__ = [ ] struct__XAnyClassinfo._fields_ = [ ('_opaque_struct', c_int) ] class struct__XAnyClassinfo(Structure): __slots__ = [ ] struct__XAnyClassinfo._fields_ = [ ('_opaque_struct', c_int) ] XAnyClassPtr = POINTER(struct__XAnyClassinfo) # /usr/include/X11/extensions/XInput.h:5564 class struct__XAnyClassinfo(Structure): __slots__ = [ 'class', 'length', ] struct__XAnyClassinfo._fields_ = [ ('class', XID), ('length', c_int), ] XAnyClassInfo = struct__XAnyClassinfo # /usr/include/X11/extensions/XInput.h:5573 class struct__XDeviceInfo(Structure): __slots__ = [ ] struct__XDeviceInfo._fields_ = [ ('_opaque_struct', c_int) ] class struct__XDeviceInfo(Structure): __slots__ = [ ] struct__XDeviceInfo._fields_ = [ ('_opaque_struct', c_int) ] XDeviceInfoPtr = POINTER(struct__XDeviceInfo) # /usr/include/X11/extensions/XInput.h:5575 class struct__XDeviceInfo(Structure): __slots__ = [ 'id', 'type', 'name', 'num_classes', 'use', 'inputclassinfo', ] Atom = pyglet.libs.x11.xlib.Atom struct__XDeviceInfo._fields_ = [ ('id', XID), ('type', Atom), ('name', c_char_p), ('num_classes', c_int), ('use', c_int), ('inputclassinfo', XAnyClassPtr), ] XDeviceInfo = struct__XDeviceInfo # /usr/include/X11/extensions/XInput.h:5585 class struct__XKeyInfo(Structure): __slots__ = [ ] struct__XKeyInfo._fields_ = [ ('_opaque_struct', c_int) ] class struct__XKeyInfo(Structure): __slots__ = [ ] struct__XKeyInfo._fields_ = [ ('_opaque_struct', c_int) ] XKeyInfoPtr = POINTER(struct__XKeyInfo) # /usr/include/X11/extensions/XInput.h:5587 class struct__XKeyInfo(Structure): __slots__ = [ 'class', 'length', 'min_keycode', 'max_keycode', 'num_keys', ] struct__XKeyInfo._fields_ = [ ('class', XID), ('length', c_int), ('min_keycode', c_ushort), ('max_keycode', c_ushort), ('num_keys', c_ushort), ] XKeyInfo = struct__XKeyInfo # /usr/include/X11/extensions/XInput.h:5600 class struct__XButtonInfo(Structure): __slots__ = [ ] struct__XButtonInfo._fields_ = [ ('_opaque_struct', c_int) ] class struct__XButtonInfo(Structure): __slots__ = [ ] struct__XButtonInfo._fields_ = [ ('_opaque_struct', c_int) ] XButtonInfoPtr = POINTER(struct__XButtonInfo) # /usr/include/X11/extensions/XInput.h:5602 class struct__XButtonInfo(Structure): __slots__ = [ 'class', 'length', 'num_buttons', ] struct__XButtonInfo._fields_ = [ ('class', XID), ('length', c_int), ('num_buttons', c_short), ] XButtonInfo = struct__XButtonInfo # /usr/include/X11/extensions/XInput.h:5612 class struct__XAxisInfo(Structure): __slots__ = [ ] struct__XAxisInfo._fields_ = [ ('_opaque_struct', c_int) ] class struct__XAxisInfo(Structure): __slots__ = [ ] struct__XAxisInfo._fields_
no children of the same type, so it's the "deepest" in its branch. else: # Return this match return node # Failing a direct descendant match, we'll check each descendant's children (grandchildren check) for node in self.nodes: # Check for grandchild node node2 = node.find_deepest_node_by_tag(tag_type) # Did we find a match? if (node2): # Return match return node2 # Could not find a node of that type anywhere in the tree return None # Find all nodes that match a given tag, even searching recursively if desired def find_nodes_by_tag(self, tag_type, recursive = False): # Matches results = [] # Loop children for node in self.nodes: # Child match? if ( node.tag_type == tag_type ): # Track result results.append(node) # Always recur, if/a if (recursive): # Extend results results.extend( node.find_nodes_by_tag(tag_type, recursive) ) # Return all matches return results def compile_xml_string(self, prefix = "", include_namespaces = False, encode_innerText = True, pretty = True): # Assume no namespace tag_data = "%s" % self.tag_type # Check namespace inclusion flag if (include_namespaces): # Confirm that a namespace exists if (self.tag_namespace != None): # Add namespace tag_data = "%s:%s" % (self.tag_namespace, self.tag_type) # Begin serialization xml = prefix + "<%s" % tag_data for key in self.attributes: xml += " %s = '%s'" % (key, self.attributes[key]) # Any children? if (len(self.nodes) > 0): # Pretty formatting? if (pretty): # Add newline xml += ">\n" # Loop through nodes and indent each one for each in self.nodes: xml += each.compile_xml_string("\t" + prefix, include_namespaces, encode_innerText, pretty) # Close tag xml += prefix + "</%s>\n" % tag_data # Everything in a single line else: # Close tag without newline xml += ">" # Loop through nodes, no indention for each in self.nodes: xml += each.compile_xml_string(prefix, include_namespaces, encode_innerText, pretty) # Close tag, don't add newline xml += prefix + "</%s>" % tag_data # Inner text? elif (self.innerText != ""): # If the inner text has one or more line breaks, # then I'm going to indent it on a new line. if ( self.innerText.find("\n") >= 0 ): # Pretty with trailing newline? if (pretty): xml += ">\n%s\t%s\n%s</%s>\n" % (prefix, self.innerText.strip(), prefix, tag_data) # No newline else: xml += ">\n%s\t%s\n%s</%s>\n" % (prefix, self.innerText.strip(), prefix, tag_data) # Otherwise, I'm going to print it out without any indenting... else: # I don't always want to encode the inner text data if (encode_innerText): # Pretty with trailing newline? if (pretty): xml += ">%s</%s>\n" % ( xml_encode( self.innerText.strip() ), tag_data ) # No newline else: xml += ">%s</%s>" % ( xml_encode( self.innerText.strip() ), tag_data ) # Flag set to false? else: # Pretty with trailing newline? if (pretty): xml += ">%s</%s>\n" % ( self.innerText, tag_data ) # No newline else: xml += ">%s</%s>" % ( self.innerText, tag_data ) # Nope; self-closing... else: # Pretty with newline? if (pretty): xml += " />\n" # No newline else: xml += " />" return xml def compile_inner_xml_string(self, prefix = "", include_namespaces = False): xml = "" # Any children? if (len(self.nodes) > 0): for each in self.nodes: xml += each.compile_xml_string("\t" + prefix, include_namespaces) # Inner text? elif (self.innerText != ""): xml += xml_encode(self.innerText) return xml def compile_xml_abstract(self, prefix = "", include_namespaces = False): # Assume no namespace tag_data = "%s" % self.tag_type # Check namespace inclusion flag if (include_namespaces): # Confirm that a namespace exists if (self.tag_namespace != None): # Add namespace tag_data = "%s:%s" % (self.tag_namespace, self.tag_type) xml = prefix + "<%s" % tag_data for key in self.attributes: xml += " %s = '%s' " % (key, self.attributes[key]) if (len(self.nodes) > 0): xml += ">" else: xml += " />" return xml class XMLDocument: def __init__(self, xml, parent = None): self.nodes = {} #self.parse_xml(xml) #def clear(self): # self.tag_collections = {} class XMLParser: def __init__(self): return # Compile an xml string into a single xml node, wrapping the entire contents in a parent node def create_node_from_xml(self, xml, maxdepth = -1): # Create a new root node node = XMLNode("xml-root") # Parse into that node. Return no node if the xml does not validate if ( not self.parse_xml(xml, node, maxdepth = maxdepth) ): # Abandon return None else: # Return the new node return node # Import a filepath into a single xml node, wrapping the file's xml contents in a parent node. Returns a single (empty) wrapper node if file does not exist. def create_node_from_file(self, filepath, maxdepth = -1): # Create wrapper node = XMLNode("xml-root") # Validate filepath if ( os.path.exists(filepath) ): # Read file contents f = open(filepath, "r") xml = f.read() f.close() # Parse file contents. Return no node if the parsing fails validation if ( not self.parse_xml(xml, node, maxdepth = maxdepth) ): # Abandon return None # Return the node, presumably with the file contents imported return node # If the XML contains more than one "root" node, this function will ignore all except the first... def convert_xml_to_one_node(self, xml): # Create a temporary root node node = XMLNode("temp") # Parse into that node self.parse_xml(xml, node) # Return the first node in the temp node return node.get_nodes_by_tag("*")[0] def parse_xml(self, xml, parent, depth = 1, maxdepth = -1): # Track whether or not we have valid xml data. Assume we do, at the beginning. valid = True # Strip comments from the markup xml = re.sub("\<\!\-\-[^$]*?\-\-\>", "", xml) # Strip whitespace surrounding new lines, remove tabs, excess whitespace, etc. xml = re.sub("[ \t]+?\n[ \t]+?", "\n", xml).strip(" \n").replace("\t", "") """ def gLog(args): for arg in args: print arg log = lambda *s: gLog(s) log2 = log logn = log #log(xml) """ # Begin by finding the first element a = xml.find("<") b = -1 if (a >= 0): b = self.find_tag_end(xml, a) # If we couldn't find the end of the tag, then we invalidate the entire document if (b < 0): # Just for posterity valid = False # Immediately abandon parsing for this node return False # We found the end of the intro tag. while (a >= 0): # Check to see if this is a self-closing tag ( e.g. <node /> or <node attribute = '1' /> ) self_closing = (xml[b - 1] == "/") # Get the contents of the XML s = xml[a + 1 : b].strip() # For self-closing tags, let's ditch the closing / if (self_closing): s = xml[a + 1 : b - 1].strip() # Split to calculate (1) tag type, and (2) tag attributes pieces = s.split(" ", 1) # We definitely will have a tag type. We might have namespace data. tag_data = pieces[0].strip() # Assume (tag_namespace, tag_type) = ( None, tag_data ) # Check for namespace if ( tag_data.find(":") >= 0 ): # Reinterpret data (tag_namespace, tag_type) = tag_data.split(":", 1) # Create a new node using the given tag type node = XMLNode(tag_type, tag_namespace) # Strip any whitespace surrounding = in the attributes, if we actually have any attribute to read if (len(pieces) > 1): # Remove whitespace surrounding the assignment operator ( e.g. attribute = '1' -> attribute='1' ). This simplifies parsing. pieces[1] = escape_special_characters( re.sub("[ ]+=[ ]+", "=", pieces[1]).strip() ) # Check any attribute assignments... assignments = pieces[1].split(" ") # Loop all for each in assignments: # Split by the assignment operator to get the key and the value kv = each.split("=") # If we didn't assign a value to this attribute, we'll treat it as a boolean attribute, set as True... if ( len(kv) == 1 ): (key, value) = (kv[0], True) node.set_attribute(key, value) else: (key, value) = (kv[0].strip(), kv[1].strip()) # String assignment? if (value[0] == "'"): # Unescape value (?) value = unescape_special_characters(value).strip("'") # Save attribute node.set_attribute(key, value) else: # (?) Save as integer try: node.set_attribute(key, int(value)) # Can't set this attribute. Assumed integer, but # cannot convert. except: pass#node.set_attribute( z = 0 # For
f the fraction on N # of the max growth rate ga_vars = self.get_ordered_ga_vars() out_expr = self.mu.variable.lb # Build z = ga_0*2^0*mu_max/N * [E] # + ga_1*2^1*mu_max/N * [E] # + ... # + ga_n*2^n*mu_max/N * [E] for i, ga_i in enumerate(ga_vars): # Linearization step for ga_i * [E] z_name = '__MUL__'.join([ga_i.name, E.name]) # Add the variables model_z_i = self.add_variable(kind=LinearizationVariable, hook=self, id_=z_name, lb=0, ub=ub, queue=False) # z_i, cons = glovers_linearization(b = ga_i, fy=E, L=E.lb, U=E.ub, z=model_z_i) z_i, new_constraints = petersen_linearization(b=ga_i, x=E, M=E.ub, z=model_z_i) # Add the constraints: for cons in new_constraints: # Do not forget to substitute the sympy symbol in the constraint # with a variable ! # new_expression = cons.expression.subs(z_i, model_z_i.variable) # EDIT: Not anymore needed if we supply the variable self.add_constraint(kind=LinearizationConstraint, hook=self, id_=cons.name, expr=cons.expression, # expr=new_expression, ub=cons.ub, lb=cons.lb, queue=queue) out_expr += (2 ** i) * self.mu_approx_resolution * model_z_i self.dilution_terms[macromolecule.id] = out_expr return out_expr def get_ordered_ga_vars(self): """ Returns in order the variables that discretize growth :return: """ # ga_i is a binary variable for the binary expansion f the fraction on N # of the max growth rate ga_vars = self.get_variables_of_type(GrowthActivation) ga_vars = sorted(ga_vars, key=lambda x: x.ix) return ga_vars def _prep_enzyme_variables(self, enzyme): """ Reads Enzyme.composition to find complexation reaction from enzyme information :param reaction: :type reaction: cobra.Reaction :return: """ #1. Complexation # Does this enzyme already have a complexation reaction ? # This happens if an enzyme is used in several reactions if enzyme.complexation is not None: complexation = enzyme.complexation else: complexation = self.make_enzyme_complexation(enzyme) enzyme.init_variable() #2. Also add degradation self._add_enzyme_degradation(enzyme, scaled=True, queue=True) #3. Finally make the mass balance # Cannot queue, if the same enzyme is to be added twice self.add_mass_balance_constraint(complexation, enzyme, queue=False) def make_enzyme_complexation(self, enzyme): """ Makes the complexation reaction and attached it to its enzyme :param enzyme: :return: """ if not enzyme.composition: self.logger.warning('Enzyme {} has no composition' .format(enzyme.id)) return None this_id = '{}_complex'.format(enzyme.id) this_name = '{} Complexation'.format(enzyme.id) complexation = ProteinComplexation(id=this_id, name=this_name, target=enzyme, # upper_bound=1, scaled=True) try: peptides = {self.peptides.get_by_id(k): -v \ for k, v in enzyme.composition.items()} except KeyError: missing_genes = '.'.join(enzyme.composition.keys()) self.logger.warning('No nucleotide sequence found for ' 'some of these genes {}'.format(missing_genes)) return None self.add_reactions([complexation]) complexation.add_peptides(peptides) # Post processing self.complexation_reactions+= [complexation] enzyme.complexation = complexation return complexation def add_enzymes(self, enzyme_list, prep = True): """ Adds an Enzyme object, or iterable of Enzyme objects, to the model :param enzyme_list: :type enzyme_list:Iterable(Enzyme) or Enzyme :param prep: whether or not to add complexation, degradation, and mass balance constraints (needs to be overridden for dummies for example) :type prep: Boolean :return: """ if not hasattr(enzyme_list, '__iter__'): enzyme_list = [enzyme_list] else: enzyme_list = list(enzyme_list) if len(enzyme_list) == 0: return None # unpacking if not isinstance(enzyme_list[0],Enzyme): enzyme_list = [x for item in enzyme_list for x in item] # First check whether the enzymes exist in the model # Also enzymes could be declared twice for different reactions, # hence turn the list into a set enzyme_list = [x for x in set(enzyme_list) if x.id not in self.enzymes] enz_ids = [x.id for x in enzyme_list] tot_ids = len(enz_ids) unique_ids = len(set(enz_ids)) if tot_ids != unique_ids: msg = '{} duplicate enzyme IDs detected'.format(tot_ids-unique_ids) self.logger.error(msg) raise KeyError(msg) for enz in enzyme_list: enz._model = self self.enzymes += enzyme_list if prep: for enz in tqdm(enzyme_list, desc='enz. vars'): self._prep_enzyme_variables(enz) def add_mrnas(self, mrna_list, add_degradation=True): """ Adds a mRNA object, or iterable of mRNA objects, to the model :param mrna_list: :type mrna_list:Iterable(mRNA) or mRNA :return: """ if not hasattr(mrna_list, '__iter__'): mrna_list = [mrna_list] if len(mrna_list) == 0: return None # First check whether the mRNAs exist in the model mrna_list = [x for x in mrna_list if x.id not in self.mrnas] for mrna in mrna_list: mrna._model = self mrna.init_variable() if add_degradation: self._add_mrna_degradation(mrna, scaled=True, queue=True) self.mrnas += mrna_list self._push_queue def add_trnas(self, trna_list): """ Adds a tRNA object, or iterable of tRNA objects, to the model :param trna_list: :type trna_list:Iterable(tRNA) or tRNA :return: """ if not hasattr(trna_list, '__iter__'): trna_list = [trna_list] if len(trna_list) == 0: return None # First check whether the tRNAs exist in the model trna_list = [x for x in trna_list if x.id not in self.trnas] for trna in trna_list: trna._model = self trna.init_variable() self.trnas += trna_list def add_dna(self, dna): """ Adds a DNA object to the model :param dna: :type dna: DNA :return: """ dna._model = self dna.init_variable() self.dna = dna def add_lipid(self, lipid): """ Adds a lipid object to the model :param lipid: :type lipid: Lipid :return: """ lipid._model = self lipid.init_variable() self.lipid = lipid def add_ion(self, ion): """ Adds a ion object to the model :param ion: :type ion: ion :return: """ ion._model = self ion.init_variable() self.ion = ion def add_carbohydrate(self, carbohydrate): """ Adds a carbohydrate object to the model :param carbohydrate: :type carbohydrate: carbohydrate :return: """ carbohydrate._model = self carbohydrate.init_variable() self.carbohydrate = carbohydrate def remove_enzymes(self, enzyme_list): """ Removes an Enzyme object, or iterable of Enzyme objects, from the model :param enzyme_list: :type enzyme_list:Iterable(Enzyme) or Enzyme :return: """ if not hasattr(enzyme_list, '__iter__'): enzyme_list = [enzyme_list] if len(enzyme_list) == 0: return None # First check whether the metabolites exist in the model enzyme_list = [x for x in enzyme_list if x.id not in self.enzymes] for enz in enzyme_list: self.remove_reactions(enz.degradation) self.remove_reactions(enz.complexation) self.enzymes.pop(enz.id) def _add_enzyme_degradation(self, enzyme, scaled=True, queue=False): """ Given an enzyme, adds the corresponding degradation reaction :param enzyme: :type enzyme: Enzyme :param scaled: Indicates whether scaling should be performed (see manuscript) :type scaled: bool :param queue: Indicates whether to add the variable directly or in the next batch :type queue: bool :return: """ h2o = self.essentials['h2o'] if enzyme.kdeg is None or np.isnan(enzyme.kdeg): return None complex_dict = enzyme.complexation.metabolites deg_stoich = defaultdict(int) for peptide, stoich in complex_dict.items(): the_pep = self.peptides.get_by_id(peptide.id) degradation_mets = degrade_peptide(the_pep, self.aa_dict, h2o) for k,v in degradation_mets.items(): deg_stoich[k]+=-1*v*stoich # stoich is negative self._make_degradation_reaction(deg_stoich, enzyme, EnzymeDegradation, scaled=scaled, queue=queue) def _add_mrna_degradation(self, mrna, scaled = True, queue=False): """ Given an mRNA, adds the corresponding degradation reaction :param mrna: :type mrna: mRNA :param scaled: Indicates whether scaling should be performed (see manuscript) :type scaled: bool :param queue: Indicates whether to add the variable directly or in the next batch :type queue: bool :return: """ h2o = self.essentials['h2o'] h = self.essentials['h'] if mrna.kdeg is None or np.isnan(mrna.kdeg): return None degradation_mets = degrade_mrna(mrna, self.rna_nucleotides_mp, h2o, h) self._make_degradation_reaction(degradation_mets,mrna,mRNADegradation, scaled=scaled, queue=queue) def _make_degradation_reaction(self, deg_stoich, macromolecule, kind, scaled, queue=False): """ given a degradation stoichiometry, makes the corresponding degradation reaction :param deg_stoich: stoichiometry of the degradation :type deg_stoich: dict({:class:`cobra.core.Species:Number`}) :param macromolecule: the macromalecule being degraded. Used for binding the degradation constraint :type macromolecule: Macromolecule :param kind: kind of constraint :type kind: mRNADegradation or EnzymeDegradation :param scaled: Indicates whether scaling should be performed (see manuscript) :type scaled: bool :param queue: Indicates whether to add the variable directly or in the next batch :type queue: bool :return: """ reaction = DegradationReaction(id='{}_degradation'.format(macromolecule.id), macromolecule=macromolecule, scaled=scaled) if scaled: reaction.upper_bound = 1 # Assignment to model must be done before since met dict kas string keys self.add_reactions([reaction]) self.degradation_reactions += [reaction] reaction.add_metabolites(deg_stoich, rescale = True) # Couple with the expression constraint v_deg = k_deg [E] # Scaled into v_deg_hat = E_hat # expr = reaction.scaled_net \ # - (macromolecule.kdeg / self.mu_max) * macromolecule.scaled_concentration # expr = reaction.scaled_net - macromolecule.scaled_concentration expr = reaction.net - macromolecule.kdeg * macromolecule.concentration self.add_constraint(kind=kind, hook=macromolecule, expr=expr, lb=0, ub=0, queue=queue) def populate_expression(self): """ Defines upper- and lower_bound for the RNAP and Ribosome binding capacities and define catalytic constraints for the RNAP and Ribosome :return: """ # This part defines catalytic constraints by iterating over transcription # and translation rxns. This already excluded ExpressedGene from translation self._populate_rnap() self._populate_ribosomes() self._push_queue() # This part defines the min and max binding capacities by iterating over # the gene names, So we need to check if the gene is expressed or not. for the_mrna in tqdm(self.mrnas, desc='populating expression'): self.add_mrna_mass_balance(the_mrna) self._constrain_polysome(the_mrna) if self.dna is not None: print("Constraining
<reponame>facebookresearch/Project_FARSI #Copyright (c) Facebook, Inc. and its affiliates. #This source code is licensed under the MIT license found in the #LICENSE file in the root directory of this source tree. import json import os from settings import config from typing import Dict, List import collections import random from datetime import datetime import numpy as np import time import math # This class is to model a task, that is the smallest software execution unit. class Task: task_id_for_debugging_static = 0 def __init__(self, name, work, iteration_ctr =1): self.iteration_ctr = iteration_ctr self.name = name self.progress = 0 # progress percentage (how much of the task has been finished) self.task_fraction = 1 # TODO: right now always set to 1 self.task_fraction_index = 0 # TODO: always shunned to zero for now self.__children = [] # task children, i.e., the tasks that read from it self.__parents = [] # task parents, i.e., the tasks that write to the task self.__siblings = [] # tasks siblings, i.e., tasks with the same parents. self.PA_prop_dict = collections.OrderedDict() # all the props used PA self.PA_prop_auto_tuning_list = [] # list of auto tuned variables self.__task_to_family_task_work = {} # task to parent work-ratio self.__task_to_family_task_work[self] = work # task self work self.task_id_for_debugging = self.task_id_for_debugging_static self.updated_task_work_for_debug = False self.__task_work_distribution = [] # Todo: double check and deprecate later self.__task_to_child_work_distribution = {} # double check and deprecate later self.__fake_children = [] # from the parent perspective, there is no new data transferred to children # but the reuse of the old generate data. So this is not used in # work ratio calculation self.__fake_parents = [] # from the parent perspective, there is no new data transferred to children # but the reuse of the old generate data. So this is not used in # work ratio calculation self.__task_to_family_task_work_unit = {} # task to family task unit of work. For example # work unit from bus and memory perspective is the burst size # (in bytes) self.burst_size = config.default_burst_size def get_iteration_cnt(self): return self.iteration_ctr def set_burst_size(self, burst_size): self.burst_size = burst_size def get_burst_size(self): return self.burst_size def get_name(self): return self.name # --------------- # Functionality: # get a task's family tasks (tasks that it reads from). # Variables: # task_name: name of the task. # --------------- def get_family_task_by_name(self, task_name): for task in self.__parents + self.__siblings + self.__children + [self]: if task.name == task_name: return task # --------------- # Functionality: # resetting Platform Architect (PA) props. Used in PA design generation. # task_name: name of the task. # --------------- def reset_PA_props(self): self.PA_prop_dict = collections.OrderedDict() # --------------- # Functionality: # update Platform Architect (PA) props. # Variables: # PA_prop_dict: dictionary containing all the PA props # --------------- def update_PA_props(self, PA_prop_dict): self.PA_prop_dict.update(PA_prop_dict) def update_PA_auto_tunning_knob_list(self, prop_auto_tuning_list): self.PA_prop_auto_tuning_list = prop_auto_tuning_list # --------------- # Functionality: # pick one off the children at random. # --------------- def sample_child(self): random.seed(datetime.now().microsecond) return random.choice(self.get_children()) # --------------- # Functionality: # sample the task distribution work. Used for jitter modeling/incorporation. # --------------- def sample_self_task_work(self): time.sleep(.00005) np.random.seed(datetime.now().microsecond) task_work = [task_work for task_work, work_prob in self.get_task_work_distribution()] work_prob = [work_prob for task_work, work_prob in self.get_task_work_distribution()] return np.random.choice(task_work, p=work_prob) # --------------- # Functionality: # sample the task to child work (how much data gets writen into the child task) distribution. # Used for jitter modeling/incorporation. # Variables: # child: task's child # --------------- def sample_self_to_child_task_work(self, child): np.random.seed(datetime.now().microsecond) task_to_child_work = [task_work for task_work, work_prob in self.get_task_to_child_work_distribution(child)] work_prob = [work_prob for task_work, work_prob in self.get_task_to_child_work_distribution(child)] return np.random.choice(task_to_child_work, p=work_prob) # --------------- # Functionality: # update the task work (used in jitter modeling after a new work is assigned to the task). # Variables: # self_work: work to assign to the task. # --------------- def update_task_work(self, self_work): delete_later_ = self.get_self_task_work() self.updated_task_work_for_debug = True self.__task_to_family_task_work[self] = self_work delete_later = self.get_self_task_work() a = delete_later # --------------- # Functionality: # update the task to child work (used in jitter modeling after a new work is assigned to the task). # Variables: # child: tasks's child. # child_work: tasks's child work. # --------------- def update_task_to_child_work(self, child, child_work): self.__task_to_family_task_work[child] = child_work child.__task_to_family_task_work[self] = child_work if self.updated_task_work_for_debug: self.update_task_work_for_debug = False self.task_id_for_debugging +=1 # --------------- # Functionality: # add task to child work to the distribution of tasks. Used for jitter modeling. # Variables: # child: tasks's child. # work: work to add to the distribution. # --------------- def add_task_to_child_work_distribution(self, child, work): self.__task_to_child_work_distribution[child] = work # --------------- # Functionality: # add a parent(a task that it reads data from) for the task. # Variables: # child: tasks's child. # work: works of the child. # --------------- def add_parent(self, parent,child_nature = "real"): self.__parents.append(parent) if child_nature == "fake": self.__fake_parents.append(parent) # add a child (a task that it writes to). # nature determines whether the work is real or fake. real means real generation of the data (which needs to be pass # along to the child) whereas fake means that the data has already been generated and just needs to be passed along. def add_child(self, child, work, child_nature="real"): self.__task_to_family_task_work[child] = work for other_child in self.__children: other_child.add_sibling(child) child.add_sibling(other_child) self.__children.append(child) child.add_parent(self, child_nature) child.__task_to_family_task_work[self] = work assert(child_nature in ["fake", "real"]), "child nature can only be fake or real but " + child_nature + " was given" if child_nature == "fake": self.__fake_children.append(child) # --------------- # Functionality: # fake children are children that we need to pass data to, but we don't need to generate the data # since it is already generate. This situation happens when two children use the same exact data # --------------- def get_fake_children(self): return self.__fake_children def get_fake_children_name(self): return [task.name for task in self.__fake_children] # --------------- # Functionality: # fake parents are parents that pass data to, but don't need to generate the data # since it is already generate. # --------------- def get_fake_parent_name(self): return [task.name for task in self.__fake_parents] def get_fake_family_name(self): return self.get_fake_children_name() + self.get_fake_parent_name() # --------------- # Functionality: # remove a child (a task that it writes data to) for the task. # Variables: # child: tasks's child. # --------------- def remove_child(self, child): for other_child in self.__children: other_child.remove_sibling(child) child.remove_sibling(other_child) self.__children.remove(child) del self.__task_to_family_task_work[child] child.__parents.remove(self) del child.__task_to_family_task_work[self] def remove_parent(self, parent): self.__parents.remove(parent) del self.__task_to_family_task_work[parent] parent.__children.remove(self) del parent.__task_to_family_task_work[self] # --------------- # Functionality: # add sibling (a task with the same parent) for the task. # Variables: # task: sibling task. # --------------- def add_sibling(self, task): if task not in self.__siblings: self.__siblings.append(task) # --------------- # Functionality: # removing sibling (a task with the same parent) for the task. # Variables: # task: sibling task. # --------------- def remove_sibling(self, task): if task in self.__siblings: self.__siblings.remove(task) # --------------- # Functionality: # get the relationship of the task with the input task. # Variables: # task_: the task to find the relationship for. # --------------- def get_relationship(self, task_): if any([task__.name == task_.name for task__ in self.__children]): return "child" elif any([task__.name == task_.name for task__ in self.__parents]): return "parent" elif any([task__.name == task_.name for task__ in self.__siblings]): return "sibling" elif task_.name == self.name: return "self" else: return "no relationship" # --------------- # Functionality: # get tasks's work # --------------- def get_self_task_work(self): return self.__task_to_family_task_work[self] # --------------- # Functionality: # get self to task family work (how much data is passed from/to the family task). # Variables: # family_task: family task. # --------------- def get_self_to_family_task_work(self, family_task): if family_task in self.get_children(): return self.__task_to_family_task_work[family_task] elif family_task in self.get_parents(): return family_task.get_self_to_family_task_work(self) elif family_task == self: return self.get_self_task_work() else: print(family_task.name + " is not a family task of " + self.name) exit(0) def get_self_total_work(self, mode): total_work = 0 if mode == "execute": total_work = self.__task_to_family_task_work[self] if mode == "read": for family_task in self.get_parents(): total_work += family_task.get_self_to_family_task_work(self) if mode == "write": for family_task in self.get_children(): total_work += self.__task_to_family_task_work[family_task] return total_work # return self to family task unit of work. For example # work unit from bus and memory perspective is the burst size # (in bytes) def get_self_to_family_task_work_unit(self, family_task): return self.__task_to_family_task_work_unit[family_task] # determines what the dicing "grain" should be such that that # work unit (e.g., burst
"""Preprocessing functions. Authors: <NAME> <<EMAIL>> <NAME> <<EMAIL>> """ def preprocess_fif(fif_file, l_freq=None, h_freq=None, down_sfreq=None): """Filter and downsample data.""" import os from mne.io import read_raw_fif from mne import pick_types from nipype.utils.filemanip import split_filename as split_f _, basename, ext = split_f(fif_file) raw = read_raw_fif(fif_file, preload=True) filt_str, down_str = '', '' select_sensors = pick_types(raw.info, meg=True, ref_meg=False, eeg=False) if l_freq or h_freq: raw.filter(l_freq=l_freq, h_freq=h_freq, picks=select_sensors, fir_design='firwin') filt_str = '_filt' if down_sfreq: raw.resample(sfreq=down_sfreq, npad=0, stim_picks=select_sensors) down_str = '_dsamp' savename = os.path.abspath(basename + filt_str + down_str + ext) raw.save(savename) return savename def compute_ica(fif_file, ecg_ch_name, eog_ch_name, n_components, reject): """Compute ica solution.""" import os import mne from mne.io import read_raw_fif from mne.preprocessing import ICA from mne.preprocessing import create_ecg_epochs, create_eog_epochs from nipype.utils.filemanip import split_filename as split_f subj_path, basename, ext = split_f(fif_file) raw = read_raw_fif(fif_file, preload=True) # select sensors select_sensors = mne.pick_types(raw.info, meg=True, ref_meg=False, exclude='bads') # 1) Fit ICA model using the FastICA algorithm # Other available choices are `infomax` or `extended-infomax` # We pass a float value between 0 and 1 to select n_components based on the # percentage of variance explained by the PCA components. # reject = dict(mag=1e-1, grad=1e-9) flat = dict(mag=1e-13, grad=1e-13) ica = ICA(n_components=n_components, method='fastica', max_iter=500) ica.fit(raw, picks=select_sensors, reject=reject, flat=flat) # -------------------- Save ica timeseries ---------------------------- # ica_ts_file = os.path.abspath(basename + "_ica-tseries.fif") ica_src = ica.get_sources(raw) ica_src.save(ica_ts_file) ica_src = None # --------------------------------------------------------------------- # # 2) identify bad components by analyzing latent sources. # generate ECG epochs use detection via phase statistics # if we just have exclude channels we jump these steps n_max_ecg = 3 n_max_eog = 2 # check if ecg_ch_name is in the raw channels if ecg_ch_name in raw.info['ch_names']: raw.set_channel_types({ecg_ch_name: 'ecg'}) else: ecg_ch_name = None ecg_epochs = create_ecg_epochs(raw, tmin=-0.5, tmax=0.5, picks=select_sensors, ch_name=ecg_ch_name) ecg_inds, ecg_scores = ica.find_bads_ecg(ecg_epochs, method='ctps') ecg_evoked = ecg_epochs.average() ecg_epochs = None ecg_inds = ecg_inds[:n_max_ecg] ica.exclude += ecg_inds eog_ch_name = eog_ch_name.replace(' ', '') if set(eog_ch_name.split(',')).issubset(set(raw.info['ch_names'])): print('*** EOG CHANNELS FOUND ***') eog_inds, eog_scores = ica.find_bads_eog(raw, ch_name=eog_ch_name) eog_inds = eog_inds[:n_max_eog] ica.exclude += eog_inds eog_evoked = create_eog_epochs(raw, tmin=-0.5, tmax=0.5, picks=select_sensors, ch_name=eog_ch_name).average() else: print('*** NO EOG CHANNELS FOUND!!! ***') eog_inds = eog_scores = eog_evoked = None report_file = generate_report(raw=raw, ica=ica, subj_name=fif_file, basename=basename, ecg_evoked=ecg_evoked, ecg_scores=ecg_scores, ecg_inds=ecg_inds, ecg_ch_name=ecg_ch_name, eog_evoked=eog_evoked, eog_scores=eog_scores, eog_inds=eog_inds, eog_ch_name=eog_ch_name) report_file = os.path.abspath(report_file) ica_sol_file = os.path.abspath(basename + '_ica_solution.fif') ica.save(ica_sol_file) raw_ica = ica.apply(raw) raw_ica_file = os.path.abspath(basename + '_ica' + ext) raw_ica.save(raw_ica_file) return raw_ica_file, ica_sol_file, ica_ts_file, report_file def preprocess_set_ica_comp_fif_to_ts(fif_file, subject_id, n_comp_exclude, is_sensor_space): """Preprocess ICA fif to ts.""" import os import sys import mne from mne.preprocessing import read_ica from nipype.utils.filemanip import split_filename as split_f from ephypype.preproc import create_ts subj_path, basename, ext = split_f(fif_file) (data_path, sbj_name) = os.path.split(subj_path) print(('*** SBJ %s' % subject_id + '***')) # Read raw current_dir = os.getcwd() if os.path.exists(os.path.join(current_dir, '../ica', basename + '_ica' + ext)): raw_ica_file = os.path.join( current_dir, '../ica', basename + '_ica' + ext) elif os.path.exists(os.path.join(current_dir, '../ica', basename + '_filt_ica' + ext)): raw_ica_file = os.path.join( current_dir, '../ica', basename + '_filt_ica' + ext) elif os.path.exists(os.path.join(current_dir, '../ica', basename + '_filt_dsamp_ica' + ext)): raw_ica_file = os.path.join( current_dir, '../ica', basename + '_filt_dsamp_ica' + ext) print(('*** raw_ica_file %s' % raw_ica_file + '***')) raw = mne.io.read_raw_fif(raw_ica_file, preload=True) # load ICA if os.path.exists(os.path.join(current_dir, '../ica', basename + '_ica_solution.fif')): ica_sol_file = os.path.join( current_dir, '../ica', basename + '_ica_solution.fif') elif os.path.exists(os.path.join(current_dir, '../ica', basename + '_filt_ica_solution.fif')): ica_sol_file = os.path.join( current_dir, '../ica', basename + '_filt_ica_solution.fif') elif os.path.exists(os.path.join(current_dir, '../ica', basename + "_filt_dsamp_ica_solution." "fif")): ica_sol_file = os.path.join( current_dir, '../ica', basename + '_filt_dsamp_ica_solution.fif') if os.path.exists(ica_sol_file) is False: print(('$$$ Warning, no %s found' % ica_sol_file)) sys.exit() else: ica = read_ica(ica_sol_file) print(('\n *** ica.exclude before set components= ', ica.exclude)) if subject_id in n_comp_exclude: print(('*** ICA to be excluded for sbj %s ' % subject_id)) print((' ' + str(n_comp_exclude[subject_id]) + '***')) session_dict = n_comp_exclude[subject_id] session_names = list(session_dict.keys()) componentes = [] for s in session_names: componentes = session_dict[s] if len(componentes) == 0: print('\n no ICA to be excluded \n') else: print(('\n *** ICA to be excluded for session %s ' % s + ' ' + str(componentes) + ' *** \n')) ica.exclude = componentes print(('\n *** ica.exclude after set components = ', ica.exclude)) # apply ICA to raw data new_raw_ica_file = os.path.join(subj_path, basename + '_ica-raw.fif') raw_ica = ica.apply(raw) raw_ica.save(new_raw_ica_file, overwrite=True) # save ICA solution print(ica_sol_file) ica.save(ica_sol_file) (ts_file, channel_coords_file, channel_names_file, raw.info['sfreq']) = create_ts(new_raw_ica_file) if is_sensor_space: return (ts_file, channel_coords_file, channel_names_file, raw.info['sfreq']) else: return (raw_ica, channel_coords_file, channel_names_file, raw.info['sfreq']) def get_raw_info(raw_fname): """Get info from raw.""" from mne.io import Raw raw = Raw(raw_fname, preload=True) return raw.info def get_epochs_info(raw_fname): """Get epoch info.""" from mne import read_epochs epochs = read_epochs(raw_fname) return epochs.info def get_raw_sfreq(raw_fname): """Get raw sfreq.""" import mne try: data = mne.io.read_raw_fif(raw_fname) except: # noqa data = mne.read_epochs(raw_fname) return data.info['sfreq'] def create_reject_dict(raw_info): """Create reject dir.""" from mne import pick_types picks_eog = pick_types(raw_info, meg=False, ref_meg=False, eog=True) picks_mag = pick_types(raw_info, meg='mag', ref_meg=False) picks_grad = pick_types(raw_info, meg='grad', ref_meg=False) reject = dict() if picks_mag.size != 0: reject['mag'] = 4e-12 if picks_grad.size != 0: reject['grad'] = 4000e-13 if picks_eog.size != 0: reject['eog'] = 150e-6 return reject def create_ts(raw_fname): """Read a raw data in **.fif** format. Parameters ---------- raw_fname : str pathname of the raw data to read Returns ------- ts_file : str pathname of the numpy file (.npy) containing the data read from raw_fname channel_coords_file : str pathname of .txt file containing the channels coordinates channel_names_file : str pathname of .txt file containing the channels labels sfreq : float sampling frequency """ import os import numpy as np import mne from mne.io import read_raw_fif from nipype.utils.filemanip import split_filename as split_f raw = read_raw_fif(raw_fname, preload=True) subj_path, basename, ext = split_f(raw_fname) select_sensors = mne.pick_types(raw.info, meg=True, ref_meg=False, exclude='bads') # save electrode locations sens_loc = [raw.info['chs'][i]['loc'][:3] for i in select_sensors] sens_loc = np.array(sens_loc) channel_coords_file = os.path.abspath('correct_channel_coords.txt') np.savetxt(channel_coords_file, sens_loc, fmt=str("%s")) # np.savetxt(ROI_coords_file,np.array(ROI_coords,dtype = int),fmt = "%d") # save electrode names sens_names = np.array([raw.ch_names[pos] for pos in select_sensors], dtype='str') channel_names_file = os.path.abspath('correct_channel_names.txt') np.savetxt(channel_names_file, sens_names, fmt=str('%s')) data, times = raw[select_sensors, :] print((data.shape)) ts_file = os.path.abspath(basename + '.npy') np.save(ts_file, data) print(('\n *** TS FILE ' + ts_file + '*** \n')) print(('*** raw.info[sfreq] = ' + str(raw.info['sfreq']))) return ts_file, channel_coords_file, channel_names_file, raw.info['sfreq'] def generate_report(raw, ica, subj_name, basename, ecg_evoked, ecg_scores, ecg_inds, ecg_ch_name, eog_evoked, eog_scores, eog_inds, eog_ch_name): """Generate report for ica solution.""" from mne.report import Report import numpy as np import os report = Report() ica_title = 'Sources related to %s artifacts (red)' is_show = False # ------------------- Generate report for ECG ------------------------ # fig_ecg_scores = ica.plot_scores(ecg_scores, exclude=ecg_inds, title=ica_title % 'ecg', show=is_show) # Pick the five largest ecg_scores and plot them show_picks = np.abs(ecg_scores).argsort()[::-1][:5] # Plot estimated latent sources given the unmixing matrix. fig_ecg_ts = ica.plot_sources(raw, show_picks, exclude=ecg_inds, title=ica_title % 'ecg' + ' in 30s', start=0, stop=30, show=is_show) # topoplot of unmixing matrix columns fig_ecg_comp = ica.plot_components(show_picks, title=ica_title % 'ecg', colorbar=True, show=is_show) # plot ECG sources + selection fig_ecg_src = ica.plot_sources(ecg_evoked, exclude=ecg_inds, show=is_show) fig = [fig_ecg_scores, fig_ecg_ts, fig_ecg_comp, fig_ecg_src] report.add_figs_to_section(fig, captions=['Scores of ICs related to ECG', 'Time Series plots of ICs (ECG)', 'TopoMap of ICs (ECG)', 'Time-locked ECG sources'], section='ICA - ECG') # -------------------- end generate report for ECG ---------------------- # # -------------------------- Generate report for EoG -------------------- # # check how many EoG ch we have if set(eog_ch_name.split(',')).issubset(set(raw.info['ch_names'])): fig_eog_scores = ica.plot_scores(eog_scores, exclude=eog_inds, title=ica_title % 'eog', show=is_show) report.add_figs_to_section(fig_eog_scores, captions=['Scores of ICs related to EOG'], section='ICA - EOG') n_eogs = np.shape(eog_scores) if len(n_eogs) > 1: n_eog0 = n_eogs[0] show_picks = [np.abs(eog_scores[i][:]).argsort()[::-1][:5] for i in range(n_eog0)] for i in range(n_eog0): fig_eog_comp = ica.plot_components(show_picks[i][:], title=ica_title % 'eog', colorbar=True, show=is_show) fig = [fig_eog_comp] report.add_figs_to_section(fig, captions=['Scores of EoG ICs'], section='ICA - EOG') else: show_picks = np.abs(eog_scores).argsort()[::-1][:5] fig_eog_comp = ica.plot_components(show_picks, title=ica_title % 'eog', colorbar=True, show=is_show) fig = [fig_eog_comp] report.add_figs_to_section(fig, captions=['TopoMap of ICs (EOG)'], section='ICA - EOG') fig_eog_src = ica.plot_sources(eog_evoked, exclude=eog_inds, show=is_show) fig = [fig_eog_src] report.add_figs_to_section(fig, captions=['Time-locked EOG sources'], section='ICA - EOG') # ----------------- end generate report for EoG ---------- # ic_nums = list(range(ica.n_components_)) fig = ica.plot_components(picks=ic_nums, show=False) report.add_figs_to_section(fig, captions=['All IC topographies'], section='ICA - muscles') fig = ica.plot_sources(raw, start=0, stop=None, title='All IC time series') report.add_figs_to_section(fig, captions=['All IC time series'], section='ICA - muscles') psds = [] captions_psd = [] ica_src = ica.get_sources(raw) for i_ic in ic_nums: fig =
<reponame>davidyzeng/sigpy<filename>sigpy/plot/image.py<gh_stars>0 # -*- coding: utf-8 -*- """Image plot. """ import os import uuid import subprocess import datetime import numpy as np import matplotlib.pyplot as plt from sigpy.util import prod, move class Image(object): """Plot array as image. Keyword Args: x/y: select current dimension as x and y dimension. t: swap between x and y axis. z: toggle current dimension as z dimension. c: toggle current dimension as color channel. Only works if current dimension is of length 3. left/right: increment/decrement current dimension up/down: flip axis when current dimension is x or y. Otherwise increment/decrement slice at current dimension. h: toggle hide all labels, titles and axes. m: magnitude mode. Renormalizes when pressed each time. p: phase mode. Renormalizes when pressed each time. r: real mode. Renormalizes when pressed each time. i: imaginary mode. Renormalizes when pressed each time. l: log mode. Renormalizes when pressed each time. [: decreases brightness. Shifts window level up by 10% of window width. ]: increases brightness. Shifts window level down by 10% of window width. {: decreases contrast. Scale window width by 0.9. }: increases contrast. Scale window width by 1.1. s: save as png. g: save as gif by traversing current dimension. v: save as mp4 by traversing current dimension. 0-9: enter slice number. enter: Set current dimension as slice number. """ def __init__(self, im, x=-1, y=-2, z=None, c=None, hide=False, mode='m', title='', interpolation='lanczos', save_basename='Figure', fps=10): if im.ndim < 2: raise TypeError('Image dimension must at least be two, got {im_ndim}'.format( im_ndim=im.ndim)) self.axim = None self.im = im self.fig = plt.figure() self.ax = self.fig.add_subplot(111) self.shape = self.im.shape self.ndim = self.im.ndim self.slices = [s // 2 for s in self.shape] self.flips = [1] * self.ndim self.x = x % self.ndim self.y = y % self.ndim self.z = z % self.ndim if z is not None else None self.c = c % self.ndim if c is not None else None self.d = max(self.ndim - 3, 0) self.hide = hide self.title = title self.interpolation = interpolation self.mode = mode self.entering_slice = False self.vmin = None self.vmax = None self.save_basename = save_basename self.fps = fps self.fig.canvas.mpl_disconnect( self.fig.canvas.manager.key_press_handler_id) self.fig.canvas.mpl_connect('key_press_event', self.key_press) self.update_axes() self.update_image() self.fig.canvas.draw() plt.show() def key_press(self, event): if event.key == 'up': if self.d not in [self.x, self.y, self.z, self.c]: self.slices[self.d] = ( self.slices[self.d] + 1) % self.shape[self.d] else: self.flips[self.d] *= -1 self.update_axes() self.update_image() self.fig.canvas.draw() elif event.key == 'down': if self.d not in [self.x, self.y, self.z, self.c]: self.slices[self.d] = ( self.slices[self.d] - 1) % self.shape[self.d] else: self.flips[self.d] *= -1 self.update_axes() self.update_image() self.fig.canvas.draw() elif event.key == 'left': self.d = (self.d - 1) % self.ndim self.update_axes() self.fig.canvas.draw() elif event.key == 'right': self.d = (self.d + 1) % self.ndim self.update_axes() self.fig.canvas.draw() elif event.key == 'x' and self.d not in [self.x, self.z, self.c]: if self.d == self.y: self.x, self.y = self.y, self.x else: self.x = self.d self.update_axes() self.update_image() self.fig.canvas.draw() elif event.key == 'y' and self.d not in [self.y, self.z, self.c]: if self.d == self.x: self.x, self.y = self.y, self.x else: self.y = self.d self.update_axes() self.update_image() self.fig.canvas.draw() elif event.key == 'z' and self.d not in [self.x, self.y, self.c]: if self.d == self.z: self.z = None else: self.z = self.d self.update_axes() self.update_image() self.fig.canvas.draw() elif (event.key == 'c' and self.d not in [self.x, self.y, self.z] and self.shape[self.d] == 3): if self.d == self.c: self.c = None else: self.c = self.d self.update_axes() self.update_image() self.fig.canvas.draw() elif event.key == 't': self.x, self.y = self.y, self.x self.update_axes() self.update_image() self.fig.canvas.draw() elif event.key == 'h': self.hide = not self.hide self.update_axes() self.fig.canvas.draw() elif event.key == 'f': self.fig.canvas.manager.full_screen_toggle() elif event.key == ']': width = self.vmax - self.vmin self.vmin -= width * 0.1 self.vmax -= width * 0.1 self.update_image() self.fig.canvas.draw() elif event.key == '[': width = self.vmax - self.vmin self.vmin += width * 0.1 self.vmax += width * 0.1 self.update_image() self.fig.canvas.draw() elif event.key == '}': width = self.vmax - self.vmin center = (self.vmax + self.vmin) / 2 self.vmin = center - width * 1.1 / 2 self.vmax = center + width * 1.1 / 2 self.update_image() self.fig.canvas.draw() elif event.key == '{': width = self.vmax - self.vmin center = (self.vmax + self.vmin) / 2 self.vmin = center - width * 0.9 / 2 self.vmax = center + width * 0.9 / 2 self.update_image() self.fig.canvas.draw() elif event.key in ['m', 'p', 'r', 'i', 'l']: self.vmin = None self.vmax = None self.mode = event.key self.update_axes() self.update_image() self.fig.canvas.draw() elif event.key == 's': filename = self.save_basename + \ datetime.datetime.now().strftime(' %Y-%m-%d at %I.%M.%S %p.png') self.fig.savefig(filename, transparent=True, format='png', bbox_inches='tight', pad_inches=0) elif event.key == 'g': filename = self.save_basename + \ datetime.datetime.now().strftime(' %Y-%m-%d at %I.%M.%S %p.gif') temp_basename = uuid.uuid4() bbox = self.fig.get_tightbbox(self.fig.canvas.get_renderer()) for i in range(self.shape[self.d]): self.slices[self.d] = i self.update_axes() self.update_image() self.fig.canvas.draw() self.fig.savefig('{} {:05d}.png'.format(temp_basename, i), format='png', bbox_inches=bbox, pad_inches=0) subprocess.run(['ffmpeg', '-f', 'image2', '-s', '{}x{}'.format(int(bbox.width * self.fig.dpi), int(bbox.height * self.fig.dpi)), '-r', str(self.fps), '-i', '{} %05d.png'.format(temp_basename), '-vf', 'palettegen', '{} palette.png'.format(temp_basename)]) subprocess.run(['ffmpeg', '-f', 'image2', '-s', '{}x{}'.format(int(bbox.width * self.fig.dpi), int(bbox.height * self.fig.dpi)), '-r', str(self.fps), '-i', '{} %05d.png'.format(temp_basename), '-i', '{} palette.png'.format(temp_basename), '-lavfi', 'paletteuse', filename]) os.remove('{} palette.png'.format(temp_basename)) for i in range(self.shape[self.d]): os.remove('{} {:05d}.png'.format(temp_basename, i)) elif event.key == 'v': filename = self.save_basename + \ datetime.datetime.now().strftime(' %Y-%m-%d at %I.%M.%S %p.mp4') temp_basename = uuid.uuid4() bbox = self.fig.get_tightbbox(self.fig.canvas.get_renderer()) for i in range(self.shape[self.d]): self.slices[self.d] = i self.update_axes() self.update_image() self.fig.canvas.draw() self.fig.savefig('{} {:05d}.png'.format(temp_basename, i), format='png', bbox_inches=bbox, pad_inches=0) subprocess.run(['ffmpeg', '-f', 'image2', '-s', '{}x{}'.format(int(bbox.width * self.fig.dpi), int(bbox.height * self.fig.dpi)), '-r', str(self.fps), '-i', '{} %05d.png'.format(temp_basename), '-vf', "scale=trunc(iw/2)*2:trunc(ih/2)*2", '-vcodec', 'libx264', '-pix_fmt', 'yuv420p', filename]) for i in range(self.shape[self.d]): os.remove('{} {:05d}.png'.format(temp_basename, i)) elif (event.key in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'backspace'] and self.d not in [self.x, self.y, self.z, self.c]): if self.entering_slice: if event.key == 'backspace': if self.entered_slice < 10: self.entering_slice = False else: self.entered_slice //= 10 else: self.entered_slice = self.entered_slice * \ 10 + int(event.key) else: self.entering_slice = True self.entered_slice = int(event.key) self.update_axes() self.fig.canvas.draw() elif event.key == 'enter' and self.entering_slice: self.entering_slice = False if self.entered_slice < self.shape[self.d]: self.slices[self.d] = self.entered_slice self.update_image() self.update_axes() self.fig.canvas.draw() else: return def update_image(self): # Extract slice. idx = [] for i in range(self.ndim): if i in [self.x, self.y, self.z, self.c]: idx.append(slice(None, None, self.flips[i])) else: idx.append(self.slices[i]) imv = move(self.im[idx]) # Transpose to have [z, y, x, c]. imv_dims = [self.y, self.x] if self.z is not None: imv_dims = [self.z] + imv_dims if self.c is not None: imv_dims = imv_dims + [self.c] imv = np.transpose(imv, np.argsort(np.argsort(imv_dims))) imv = array_to_image(imv, color=self.c is not None) if self.mode == 'm': imv = np.abs(imv) elif self.mode == 'p': imv = np.angle(imv) elif self.mode == 'r': imv = np.real(imv) elif self.mode == 'i': imv = np.imag(imv) elif self.mode == 'l': imv = np.abs(imv) imv = np.log(imv, out=np.ones_like(imv) * -31, where=imv != 0) if self.vmin is None: self.vmin = imv.min() if self.vmax is None: self.vmax = imv.max() if self.axim is None: self.axim = self.ax.imshow(imv, vmin=self.vmin, vmax=self.vmax, cmap='gray', origin='lower', interpolation=self.interpolation, aspect=1.0, extent=[0, imv.shape[1], 0, imv.shape[0]]) else: self.axim.set_data(imv) self.axim.set_extent([0, imv.shape[1], 0, imv.shape[0]]) self.axim.set_clim(self.vmin, self.vmax) def update_axes(self): if not self.hide: caption = '[' for i in range(self.ndim): if i == self.d: caption += '[' else: caption += ' ' if (self.flips[i] == -1 and (i == self.x or i == self.y or i == self.z)): caption += '-' if i == self.x: caption += 'x' elif i == self.y: caption += 'y' elif i == self.z: caption += 'z' elif i == self.c: caption += 'c' elif i == self.d and self.entering_slice: caption += str(self.entered_slice) + '_' else: caption += str(self.slices[i]) if i == self.d: caption += ']' else: caption += ' ' caption += ']' self.ax.set_title(caption) self.fig.suptitle(self.title) self.ax.xaxis.set_visible(True) self.ax.yaxis.set_visible(True) self.ax.title.set_visible(True) else: self.ax.set_title('') self.fig.suptitle('') self.ax.xaxis.set_visible(False) self.ax.yaxis.set_visible(False) self.ax.title.set_visible(False) def mosaic_shape(batch): mshape = [int(batch**0.5), batch // int(batch**0.5)] while (prod(mshape) < batch): mshape[1] += 1 if (mshape[0] - 1) * (mshape[1] + 1) == batch: mshape[0] -= 1 mshape[1] += 1 return tuple(mshape) def array_to_image(arr, color=False): """ Flattens all dimensions except the last two """ if color: arr = np.divide(arr, np.abs(arr).max(), out=np.zeros_like(arr), where=arr != 0) if arr.ndim == 2: return arr elif color and arr.ndim == 3: return arr if
<reponame>duncanesmith/lsclib # -*- coding: utf-8 -*- """ Created on Mon Feb 18 10:33:32 2019 @author: smithd24 """ # import common functions from default python library import math # import math functions import random # import random number functions import numpy as np # import numpy matrix operations # import transformation functions from lsclib import rotations as rm from lsclib.coordinate_transformations import sph2cart, cart2sph def xenon_spectrum(spectrum, spectrum_max): """From the normalized incident light spectrum on an LSC, probabilistically determine an individual wavelength. Parameters ---------- spectrum : DataFrame, float Normalized incident light spectrum or individual wavelength spectrum_max : float Maximum normalized probability Returns ------- wave_len : float Initial wavelength of a bundle Notes ----- This function should be renamed - it can handle other incident spectra, not just xenon. spectrum_max should be automated here, should not be an input """ wave_len = 0 if type(spectrum) is float: wave_len = spectrum else: wave_len = spectrum.__call__(random.uniform(0,spectrum_max)) return wave_len def pathlength_matrix(wave_len, wave_len_min, wave_len_max, absorption): """Determines pathlength through a volume as a function of wavelength using the Bouger's law. Parameters ---------- wave_len : float Bundle wavelength wave_len_min : float Minimum wavelength absorbed by matrix wave_len_max : float Maximum wavelength absorbed by matrix absorption : float, DataFrame Float value for probability of absorption by the matrix, or the normalized absorption spectrum for the matrix. Returns ------- matrix_path : float Distance a bundle can travel before it is absorbed. Notes ----- """ if type(absorption) is float: matrix_abco = absorption # matrix_abco = matrix absorption coefficient else: matrix_abco = 0 if wave_len < wave_len_min or wave_len > wave_len_max: matrix_abco = 10000 if wave_len >= wave_len_min and wave_len <= wave_len_max: matrix_abco = absorption.__call__(wave_len) # calculate pathlength using Bouger's law matrix_path = ((-1 / matrix_abco) * math.log(random.uniform(0, 1))) return matrix_path def surface_absorption(wave_len, wave_len_min, wave_len_max, abs_surface): """Determines probability of absorption as a function of wavelength at a particular boundary. Parameters ---------- wave_len : float Bundle wavelength wave_len_min : float Minimum wavelength absorbed by matrix wave_len_max : float Maximum wavelength absorbed by matrix abs_surface : DataFrame Probability of absorption of a surface as a function of wavelength Returns ------- probability : float Probability that a bundle is absorbed Notes ----- surface_absorption should be renamed to boundary_absorption """ probability = 0 if wave_len >= wave_len_min and wave_len <= wave_len_max: probability = abs_surface.__call__(wave_len) return probability def refracted_vect(n_i, n_f, vect): """Determines refracted angle based on incoming vector and index of refraction of 1st/2nd mediums Parameters ---------- n_i : float Index of refraction of the current medium n_f : float Index of refraction of the medium a bundle is attempting to enter vect : NumPy array Current bundle trajectory in local coordinates Returns ------- refr_vect : NumPy array, string Refracted vector - bundle trajectory after refraction. If no refraction occurred, the output is a string. Notes ----- """ [theta, phi] = cart2sph(vect) # solve Snell's law to evaluate critical angle reflect_test = math.sin(theta) * n_i / n_f # test for critical angle if (n_f < n_i) and (reflect_test > 1): refr_vect = "no refraction" # use Snell's law to solve for the refracted vector else: refr_angle = math.asin(reflect_test) # realign refr_angle within one quadrant if theta > (math.pi/2): refr_angle = math.pi - refr_angle refr_vect = sph2cart(refr_angle, phi) return refr_vect def reflectivity(vect, refracted_vect): """Calculate reflectivity at an interface using Fresnel's equations. Light is assumed to be unpolarized. Parameters ---------- vect : NumPy array Current bundle trajectory in local coordinates refr_vect : NumPy array, string Refracted vector - bundle trajectory after refraction. If refraction was impossible, this is a string. Returns ------- rho : float Reflectivity at an interface calculated using Fresnel's equations Notes ----- """ if isinstance(refracted_vect, str) is False: [xi, phi] = cart2sph(refracted_vect) [theta, phi] = cart2sph(vect) # apply Fresnel's equations for reflectivity to determine reflectivity rho = 0.5 * ((math.tan(theta - xi))**2 / (math.tan(theta + xi))**2 + (math.sin(theta - xi))**2/(math.sin(theta + xi))**2) else: rho = 1 # critical angle was achieved ensuring reflection return rho def refraction_or_reflection(rho, vect, tilt, refracted_vect, indexmatch, n, surface_type = 'specular'): """Determine if a bundle is refracted or reflected at an interface. Parameters ---------- rho : float Reflectivity at an interface calculated using Fresnel's equations vect : NumPy array Current bundle trajectory in local coordinates tilt : float Boundary angle relative to the xy plane refracted_vect : NumPy array, string Refracted vector - bundle trajectory after refraction. If refraction was impossible, this is a string. indexmatch : int If indexmatch is 1, bundle remains in the same volume or is lost If indexmatch is 0, bundle has the opportunity to move to an adjacent volume. n : NumPy array Normal vector of a boundary, faces inward towards center of the volume surface_type : string, optional Indicates the behavior of reflected bundles, options are: (1) Specular (2) Diffuse Returns ------- theta : float Polar incidence angle (classically defined as just the incidence angle) in global coordinates. This is a spherical coordinate. phi : float Azimuthal incidence angle in global coordinates. This is a spherical coordinate. bundle_reflect_stay : int Bundle is reflected but remains within the LSC (1) otherwise (0) bundle_reflect_lost : int Bundle is reflected and is lost (1) otherwise (0) bundle_refract_lost : int Bundle is refracted out of the LSC (1) otherwise (0) Notes ----- There is an excess rotation to produce "ray_vector", this could be included within bundle_reflection and/or bundle_reflection and processed there instead. """ bundle_reflect_stay = 0 bundle_reflect_lost = 0 bundle_refract_lost = 0 # ray_vector : NumPy array # reflected/refracted vector in local coordinates # ray_normal_angle : NumPy array # Angle between surface normal and reflected/refracted vector if random.uniform(0, 1) < rho: [theta, phi] = bundle_reflection(surface_type, vect, tilt, n) ray_vector = sph2cart(theta, phi) ray_vector = rm.rot(tilt, ray_vector, n) # rotate into local coords ray_normal_angle = tilt_angle(ray_vector) if ray_normal_angle < 0: ray_normal_angle = 2*math.pi + ray_normal_angle # if outgoing angle will cause bundle to move in opposite direction of # normal, otherwise bundle stays in LSC if ((3*math.pi/2) > ray_normal_angle > (math.pi/2)): bundle_reflect_lost = 1 else: bundle_reflect_stay = 1 else: [theta, phi] = bundle_refraction(surface_type, refracted_vect, tilt, n) ray_vector = sph2cart(theta, phi) ray_vector = rm.rot(tilt, ray_vector, n) # rotate into local coords ray_normal_angle = tilt_angle(ray_vector) if ray_normal_angle < 0: ray_normal_angle = 2 * math.pi + ray_normal_angle # if outgoing angle will cause bundle to move in opposite direction of # the normal and bundle will not enter a new volume then the bundle is # lost. Otherwise, the bundle stays in the LSC if (((3 * math.pi / 2) > ray_normal_angle > (math.pi / 2)) and (indexmatch == 1)): bundle_refract_lost = 1 return [theta, phi, bundle_reflect_stay, bundle_reflect_lost, bundle_refract_lost] def bundle_reflection(surface_type, vect, tilt, n): """Determine bundle trajectory upon reflection. Currently, bundles can be reflected specularly or diffusely. Parameters ---------- vect : NumPy array Current bundle trajectory in local coordinates tilt : float Boundary angle relative to the xy plane n : NumPy array Normal vector of a boundary, faces inward towards center of the volume surface_type : string, optional Indicates the behavior of reflected bundles, options are: (1) Specular (2) Diffuse Returns ------- theta : float Polar incidence angle (classically defined as just the incidence angle) in global coordinates. This is a spherical coordinate. phi : float Azimuthal incidence angle in global coordinates. This is a spherical coordinate. Notes ----- """ if surface_type == 'specular': vect = np.array(vect) * -1 # flip direction of vector vect = rm.z(math.pi, vect) # rotate 180 around normal vect = rm.rot(-tilt, vect, n) # rotate back to global coords [theta, phi] = cart2sph(vect) return [theta, phi] elif surface_type == 'diffuse': theta_rand = math.asin(math.sqrt(random.uniform(0, 1))) phi_rand = 2 * math.pi * random.uniform(0, 1) vect = sph2cart(theta_rand, phi_rand) vect = rm.rot(-tilt, vect, n) # rotate back to global coords [theta, phi] = cart2sph(vect)
# -*- coding: utf-8 -*- import time import sys import traceback import xbmc import xbmcgui # Add JSON support for queries if sys.version_info < (2, 7): import simplejson else: import json as simplejson # Import the common settings from settings import Settings from settings import log from settings import os_path_join from settings import os_path_split from settings import normalize_string from settings import WindowShowing from themeFinder import ThemeFiles from themeFinder import MusicThemeFiles from themePlayer import ThemePlayer ######################################################### # Class to handle delaying the start of playing a theme ######################################################### class DelayedStartTheme(): def __init__(self): self.themesToStart = None self.anchorTime = 0 def shouldStartPlaying(self, themes): # For Music Themes there will not be any locations firstTheme = None if len(themes.getThemeLocations()) > 0: firstTheme = themes.getThemeLocations()[0] delaySeconds = Settings.getStartDelaySeconds(firstTheme) # Check is the start playing should be delayed if delaySeconds < 1: # Start playing straight away, but check for List playing built in delay first return self._checkListPlayingDelay(themes) currentTime = int(time.time()) if themes != self.themesToStart: log("DelayedStartTheme: Themes do not match, new anchor = %s" % str(currentTime)) self.themesToStart = themes # Reset the current time as we need the delay from here self.anchorTime = currentTime else: log("DelayedStartTheme: Target time = %s current time = %s" % (str(self.anchorTime + delaySeconds), str(currentTime))) # Themes are the same, see if it is time to play the the theme yet if currentTime > (self.anchorTime + delaySeconds): log("DelayedStartTheme: Start playing") # Now we are going to start the theme, clear the values self.clear() return True return False def clear(self): self.themesToStart = None self.anchorTime = 0 # Method to support a small delay if running on the list screen def _checkListPlayingDelay(self, themes): # Check if we are playing themes on the list view, in which case we will want to delay them if (Settings.isPlayMovieList() and WindowShowing.isMovies()) or (Settings.isPlayTvShowList() and WindowShowing.isTvShowTitles()) or (Settings.isPlayMusicVideoList() and WindowShowing.isMusicVideoTitles()): log("DelayedStartTheme: Movie List playing delay detected, anchorTime = %s" % str(self.anchorTime)) if themes != self.themesToStart: # Theme selection has changed self.themesToStart = themes # Reset the current time as we need the delay from here self.anchorTime = 2 # for movie list delay, it is just a counter else: # reduce the anchor by one self.anchorTime = self.anchorTime - 1 if self.anchorTime < 1: self.clear() return True return False # Default is to allow playing return True ########################################### # Class to run the program back-end in ########################################### class TunesBackend(): def __init__(self): self.themePlayer = ThemePlayer() log("### starting TvTunes Backend ###") self.newThemeFiles = ThemeFiles("") self.oldThemeFiles = ThemeFiles("") self.prevThemeFiles = ThemeFiles("") self.delayedStart = DelayedStartTheme() self.isAlive = False # Only used for logging filtering self.lastLoggedThemePath = "" def runAsAService(self): logVideoLibraryNotShowing = True while not xbmc.abortRequested: # Wait a little before starting the check each time xbmc.sleep(200) # Check the forced TV Tunes status at the start of the loop, if this is True # then we don't want to stop themes until the next iteration, this stops the case # where some checks are done and the value changes part was through a single # loop iteration isForcedTvTunesContinue = WindowShowing.isTvTunesOverrideContinuePlaying() # Stop the theme if the shutdown menu appears - it normally means # we are about to shut the system down, so get ahead of the game if WindowShowing.isShutdownMenu(): self.stop(fastFade=True) continue # NOTE: The screensaver kicking in will only be picked up if the option # "Use Visualization if Playing Audio" is disabled if WindowShowing.isScreensaver(): if self.isAlive: log("TunesBackend: Screensaver active") self.stop(fastFade=True) # It may be possible that we stopped for the screen-saver about to kick in # If we are using Gotham or higher, it is possible for us to re-kick off the # screen-saver, otherwise the action of us stopping the theme will reset the # timeout and the user will have to wait longer log("TunesBackend: Restarting screensaver that TvTunes stopped") xbmc.executebuiltin("ActivateScreensaver", True) continue # Check if TvTunes is blocked from playing any themes if xbmcgui.Window(10025).getProperty('TvTunesBlocked') not in [None, ""]: self.stop(fastFade=True) continue if (not WindowShowing.isVideoLibrary()) and (not WindowShowing.isMusicSection()): log("TunesBackend: Video Library no longer visible", logVideoLibraryNotShowing) logVideoLibraryNotShowing = False # End playing cleanly (including any fade out) and then stop everything self.stop() continue else: logVideoLibraryNotShowing = True # There is a valid page selected and there is currently nothing playing if self.isPlayingZone() and not WindowShowing.isTvTunesOverrideContinuePrevious(): newThemes = self.getThemes() if self.newThemeFiles != newThemes: self.newThemeFiles = newThemes # Check if the file path has changed, if so there is a new file to play if self.newThemeFiles != self.oldThemeFiles and self.newThemeFiles.hasThemes(): log("TunesBackend: old path: %s" % self.oldThemeFiles.getPath()) log("TunesBackend: new path: %s" % self.newThemeFiles.getPath()) if self.start_playing(): # Now that playing has started, update the current themes that are being used self.oldThemeFiles = self.newThemeFiles # Check the operations where we are currently running and we need to stop # playing the current theme if self.isAlive: if self.themePlayer.isPlayingTheme(): # There is no theme at this location, so make sure we are stopped if not self.newThemeFiles.hasThemes(): log("TunesBackend: No themes to play for current item") self.themePlayer.endPlaying() self.oldThemeFiles.clear() self.prevThemeFiles.clear() self.delayedStart.clear() self.isAlive = False else: # This will occur when a theme has stopped playing, maybe is is not set to loop # There can be a delay when playing between playlist items, so give it a little # time to start playing the next one themeIsStillPlaying = False maxLoop = 500 while (maxLoop > 0) and (not themeIsStillPlaying): maxLoop = maxLoop - 1 xbmc.sleep(1) if self.themePlayer.isPlayingTheme(): themeIsStillPlaying = True break if not themeIsStillPlaying: log("TunesBackend: playing ended, restoring settings") self.themePlayer.restoreSettings() self.isAlive = False # This is the case where the user has moved from within an area where the themes # to an area where the theme is no longer played, so it will trigger a stop and # reset everything to highlight that nothing is playing if (not self.isPlayingZone()) and (not isForcedTvTunesContinue): self.stop() else: # Check for the case where we are playing the trailer as a theme # video, if so we want to stop the trailer playing when the video # information screen is displayed. If we don't, when the trailer is # started then TvTunes will automatically stop it if Settings.useTrailers() and WindowShowing.isMovieInformation() and self.themePlayer.isPlayingTrailerTheme(): self.stop() # Check to see if the setting to restrict the theme duration is enabled # and if it is we need to stop the current theme playing self.themePlayer.checkEnding() # We have finished running, just make one last check to ensure # we do not need to stop any audio self.stop(True) del self.themePlayer # Works out if the currently displayed area on the screen is something # that is deemed a zone where themes should be played def isPlayingZone(self): if WindowShowing.isTvTunesOverrideContinuePlaying(): return True if WindowShowing.isRecentEpisodesAdded(): return False if WindowShowing.isPluginPath(): return False if WindowShowing.isMovieInformation() and Settings.isPlayVideoInformation(): return True if WindowShowing.isSeasons() and Settings.isPlayTvShowSeasons(): return True if WindowShowing.isEpisodes() and Settings.isPlayTvShowEpisodes(): return True # Only valid if wanting theme on movie list if WindowShowing.isMovies() and Settings.isPlayMovieList(): return True # Only valid if wanting theme on TV list if WindowShowing.isTvShowTitles() and Settings.isPlayTvShowList(): return True # Only valid if wanting theme on Music Video list if WindowShowing.isMusicVideoTitles() and Settings.isPlayMusicVideoList(): return True if WindowShowing.isMusicSection(): return True # Any other area is deemed to be a non play area return False # Locates the path to look for a theme to play based on what is # currently being displayed on the screen def getThemes(self): themePath = "" # Only need the theme path for videos if not WindowShowing.isMusicSection(): # Check if the files are stored in a custom path if Settings.isCustomPathEnabled(): if not WindowShowing.isMovies(): videotitle = xbmc.getInfoLabel("ListItem.TVShowTitle") else: videotitle = xbmc.getInfoLabel("ListItem.Title") videotitle = normalize_string(videotitle) themePath = os_path_join(Settings.getCustomPath(), videotitle) # Looking at the TV Show information page elif WindowShowing.isMovieInformation() and (WindowShowing.isTvShowTitles() or WindowShowing.isTvShows()): themePath = xbmc.getInfoLabel("ListItem.FilenameAndPath") else: themePath = xbmc.getInfoLabel("ListItem.Path") # To try and reduce the amount of "noise" in the logging, where the # same check is logged again and again, we record if it has been # logged for this video, and then do not do it again until the # video changes and what
<filename>mom6_tools/m6plot.py<gh_stars>1-10 """ A method for producing a standardized pseudo-color plot of 2D data """ import os try: if os.environ['DISPLAY'] != None: pass except: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm, ListedColormap, LogNorm from matplotlib.ticker import MaxNLocator import matplotlib import matplotlib.path as mpath import math import numpy, numpy.matlib import cartopy.crs as ccrs import cartopy.feature from mom6_tools import VerticalSplitScale from mom6_tools import m6toolbox try: from mpl_toolkits.basemap import Basemap except: print('Basemap module not found. Some regional plots may not function properly') try: import cmocean except: if "HTTP_USER_AGENT" in os.environ.keys(): pass else: print('cmocean module not found. Some color maps may not render properly') from sys import modules def plot_stats_da(stats, var, units, save=None): """ Plot statistics computed by myStats_da for multiple basins. Parameters ---------- stats : xarray.DataArray DataArray with statistics computed using myStats_da. title : str Title to be used in the plot. var : str Variable to used to compute stats. units : str Units of variable var. save : str, optional Name of file to save figure in. Default None. """ import seaborn import matplotlib matplotlib.rcParams.update({'font.size': 15}) seaborn.set() labels = ['Min', 'Max', 'Mean', 'Std', 'RMS'] plt.figure(figsize=(12,14)) for i in range(len(labels)): ax1 = plt.subplot(5,1,i+1) for r in range(len(stats.basin)): stats[r,i,:].plot(ax=ax1, marker='.', linewidth = 3, label=str(stats.basin[r].values)); ax1.set_ylabel(str(labels[i])) if i == 0: plt.legend() plt.title(str(var) + ' ['+str(units)+']') else: plt.title('') if i < (len(labels) -1): ax1.set_xlabel('') if save is not None: plt.savefig(save) plt.close() return def plot_stats_da_reg(stats, title, var, units): """ Plot statistics computed by myStats_da for a specific region. Parameters ---------- stats : xarray.DataArray DataArray with statistics computed using myStats_da. title : str Title to be used in the plot. var : str Variable to used to compute stats. units : str Units of variable var. """ import seaborn matplotlib.rcParams.update({'font.size': 15}) seaborn.set() plt.figure(figsize=(12,14)) ax1 = plt.subplot(511) stats[0,:].plot(ax=ax1, marker='.'); ax1.set_ylabel('Min') plt.title(str(var) + ' ['+str(units)+'], Region = '+ str(title)) ax1.set_xlabel('') ax2 = plt.subplot(512, sharex=ax1) stats[1,:].plot(ax=ax2, marker='.'); ax2.set_ylabel('Max') plt.title('') ax2.set_xlabel('') ax3 = plt.subplot(513, sharex=ax1) stats[2,:].plot(ax=ax3, marker='.'); ax3.set_ylabel('Mean') plt.title('') ax3.set_xlabel('') ax4 = plt.subplot(514, sharex=ax1) stats[3,:].plot(ax=ax4, marker='.'); ax4.set_ylabel('Std') plt.title('') ax4.set_xlabel('') ax5 = plt.subplot(515, sharex=ax1) stats[4,:].plot(ax=ax5, marker='.'); ax5.set_ylabel('RMS') plt.title('') if save is not None: plt.savefig(save) plt.close() return def polarcomparison(field1, field2, grd, proj='SP', circle=True, clim = None, colormap = None, nbins = None, save=None, title1='', title2='', title3='A - B', suptitle='', ignore = None, debug=False, show=False, extend = None, sigma = 2.0, logscale = False, landcolor=[.5,.5,.5], interactive=False, dlim=None, dcolormap=None, dextend=None, addplabel=True): """Renders n-panel plot of two scalar field1(x,y) and field2(x,y) using polar projections. Parameters ---------- field1 : 2D numpy array Scalar 2D array to be plotted and compared to field2. field2 : 2D numpy array Scalar 2D array to be plotted and compared to field1. grd : object with MOM6 grid data This is the output of module MOM6grid. title1 : str, optional The title to place at the top of panel 1. Default ''. title2 : str, optional The title to place at the top of panel 2. Default ''. title3 : str, optional The title to place at the top of panel 3. Default 'A-B'. addplabel : boolean, optional Adds a 'A:' or 'B:' to the title1 and title2. Default True. suptitle : str, optional The super-title to place at the top of the figure. Default ''. proj : str, optional Type of projection: 'SP' = SouthPolarStereo (default) or 'NP' = NorthPolarStereo circle : boolean, optional If true, compute a circle in axes coordinates, which we can use as a boundary for the map clim : tuple of (min,max), optional color range OR a list of contour levels. Default None colormap : str, optional The name of the colormap to use. Default None (choose using chooseColorMap) nbins : integer, optional The number of colors levels (used if clim is missing or only specifies the color range). ignore : float, optional A value to use as no-data (NaN). Default None save : str, optional Name of file to save figure in. Default None (do not save figure) debug : boolean, optional If true, report stuff for debugging. Default False show : boolean, optional If true, causes the figure to appear on screen. Used for testing. Default False. extend : str, optional Can be one of 'both', 'neither', 'max', 'min'. Default None logscale : boolean, optional If true, use logaritmic coloring scheme. Default False sigma : float, optional Range for difference plot autocolor levels. Default is to span a 2. sigma range title : str, optional The title to place at the top of the panel. Default '' landcolor : RGB tuple, optional An rgb tuple to use for the color of land (no data). Default [.5,.5,.5]. dlim : tuple (min,max) A tuple of (min,max) color range OR a list of contour levels for the difference plot. Default None. dcolormap : str, optional The name of the colormap to use for the difference plot. Default None. dextend : str, optional For the difference colorbar. Can be one of 'both', 'neither', 'max', 'min'. Default None. interactive : boolean, optional If true, adds interactive features such as zoom, close and cursor. Default False. Returns ------- """ if (field1.shape)!=(field2.shape): raise Exception('field1 and field2 must be the same shape') xCoord, yCoord = createXYcoords(field1, grd.geolon, grd.geolat) if proj == 'SP': proj = ccrs.SouthPolarStereo() extent = [-180, 180, -90, -50] else: # NP proj = ccrs.NorthPolarStereo() extent = [-180, 180, 50, 90] # Establish ranges for sectors #lonRange=(grd.geolon.min(), grd.geolon.max()); latRange=(extent[2], extent[3]) lonRange=(-360, 360.); latRange=(extent[2], extent[3]) # Diagnose statistics if ignore is not None: maskedField1 = numpy.ma.masked_array(field1, mask=[field1==ignore]) maskedField2 = numpy.ma.masked_array(field2, mask=[field2==ignore]) else: maskedField1 = regionalMasking(field1, yCoord, xCoord, latRange, lonRange) maskedField2 = regionalMasking(field2, yCoord, xCoord, latRange, lonRange) s1Min, s1Max, s1Mean, s1Std, s1RMS = myStats(maskedField1, grd.area_t, debug=debug) s2Min, s2Max, s2Mean, s2Std, s2RMS = myStats(maskedField2, grd.area_t, debug=debug) dMin, dMax, dMean, dStd, dRMS = myStats(maskedField1 - maskedField2, grd.area_t, debug=debug) if s1Mean is not None: dRxy = corr(maskedField1 - s1Mean, maskedField2 - s2Mean, grd.area_t) else: dRxy = None s12Min = min(s1Min, s2Min); s12Max = max(s1Max, s2Max) xLims = boundaryStats(xCoord); yLims = boundaryStats(yCoord) if debug: print('s1: min, max, mean =', s1Min, s1Max, s1Mean) print('s2: min, max, mean =', s2Min, s2Max, s2Mean) print('s12: min, max =', s12Min, s12Max) # Choose colormap if nbins is None and (clim is None or len(clim)==2): cBins=35 else: cBins=nbins if nbins is None and (dlim is None or len(dlim)==2): nbins=35 if colormap is None: colormap = chooseColorMap(s12Min, s12Max) cmap, norm, extend = chooseColorLevels(s12Min, s12Max, colormap, clim=clim, nbins=cBins, extend=extend) if addplabel: preTitleA = 'A: '; preTitleB = 'B: ' else: preTitleA = ''; preTitleB = '' # hard-coded number of panels, aspect and resolution npanels=3 #aspect=None #resolution=None #axis = None # fig=setFigureSize(aspect, resolution, npanels=npanels, debug=debug) fig = plt.figure(figsize=[8, 24]) # panel 1 ax = plt.subplot(npanels,1,1, projection=proj) ax.set_extent(extent, ccrs.PlateCarree()) ax.add_feature(cartopy.feature.LAND) ax.gridlines() if circle: circle_value = get_circle() ax.set_boundary(circle_value, transform=ax.transAxes) cs = ax.pcolormesh(xCoord,yCoord,maskedField1,transform=ccrs.PlateCarree(),cmap=cmap, shading='flat', norm=norm) def add_features(fig, ax, cs, extend, landcolor): """ Adds some features to the map """ fig.colorbar(cs,fraction=.08, pad=0.02, extend=extend) # Add Land ax.add_feature( cartopy.feature.LAND, zorder=1, edgecolor='none', facecolor=landcolor) # add Ocean ax.add_feature(cartopy.feature.OCEAN) # Add coastline ax.coastlines(color='black') # Add lat lon rings ax.gridlines(alpha='0.1',color='black') return add_features(fig, ax, cs, extend, landcolor) if interactive: addStatusBar(xCoord, yCoord, maskedField1) ax.set_xticklabels(['']) annotateStats(ax, s1Min, s1Max, s1Mean, s1Std, s1RMS, webversion=False) if len(title1)>0: ax.set_title(preTitleA+title1) # panel 2 ax = plt.subplot(npanels,1,2, projection=proj) ax.set_extent(extent, ccrs.PlateCarree()) ax.add_feature(cartopy.feature.LAND) ax.gridlines() if circle: circle_value = get_circle() ax.set_boundary(circle_value, transform=ax.transAxes) cs = ax.pcolormesh(xCoord,yCoord,maskedField2,transform=ccrs.PlateCarree(),cmap=cmap, shading='flat', norm=norm) add_features(fig, ax, cs, extend, landcolor) if interactive: addStatusBar(xCoord, yCoord, maskedField2) if npanels>2: ax.set_xticklabels(['']) annotateStats(ax, s2Min, s2Max, s2Mean, s2Std, s2RMS, webversion=False) if len(title2)>0: ax.set_title(preTitleB+title2) # panel 3 ax = plt.subplot(npanels,1,npanels, projection=proj) ax.set_extent(extent, ccrs.PlateCarree()) ax.add_feature(cartopy.feature.LAND) ax.gridlines() if circle: circle_value = get_circle() ax.set_boundary(circle_value, transform=ax.transAxes) if dcolormap is None: dcolormap = chooseColorMap(dMin, dMax) if dlim is None and dStd>0: cmap, norm, dextend = chooseColorLevels(dMean-sigma*dStd, dMean+sigma*dStd, dcolormap, clim=dlim, nbins=nbins, \ extend=dextend, autocenter=True) else: cmap, norm, dextend = chooseColorLevels(dMin, dMax, dcolormap, clim=dlim, nbins=nbins, extend=dextend, autocenter=True) cs = ax.pcolormesh(xCoord,yCoord,maskedField1 - maskedField2,transform=ccrs.PlateCarree(),cmap=cmap, shading='flat', norm=norm) if interactive: addStatusBar(xCoord, yCoord, maskedField1 - maskedField2) if dextend is None: dextend = extend add_features(fig, ax, cs, dextend, landcolor) annotateStats(ax, dMin, dMax, dMean, dStd,
ID can be in ASCII form (e.g. "abcd") or in colon-separated HEX form (e.g. 1:2:ab:cd). HEX representation is used only when the sub-option value contains unprintable characters. If a remote ID sub-option value is in ASCII form, it is always enclosed in quotes to prevent ambiguous values (e.g. "10:20" - ASCII 5-byte string; 10:20 - HEX 2-byte value).NIOS does not support the convertion between HEX and ASCII formats. Searches are performed using the exact same format and value as the sub-option is represented.Query examples assume the following leases are stored in the database:Expected results: served_by: The IP address of the server that sends an active lease to a client. server_host_name: The host name of the Grid member or Microsoft DHCP server that issues the lease. starts: The start time of a DHCP Lease object. This field specifies the time when the lease starts. tsfp: The TSFP (Time Sent From Partner) value of a DHCP Lease object. This field specifies the time that the current lease state ends, from the point of view of a remote DHCP failover peer. This field is for IPv4 leases only. tstp: The TSTP (Time Sent To Partner) value of a DHCP Lease object. This field specifies the time that the current lease state ends, from the point of view of a local DHCP failover peer. This field is for IPv4 leases only. uid: The UID (User ID) value of a DHCP Lease object. This field specifies the client identifier that the DHCP client sends the Infoblox appliance (in DHCP option 61) when it acquires the lease. Not all DHCP clients send a UID. This field is for IPv4 leases only. username: The user name that the server has associated with a DHCP Lease object. variable: The variable value of a DHCP Lease object. This field keeps all variables related to the DDNS update of the DHCP lease. The variables related to the DDNS updates of the DHCP lease. The variables can be one of the following:ddns-text: The ddns-text variable is used to record the value of the client's TXT identification record when the interim DDNS update style has been used to update the DNS service for a particular lease.ddns- fwd-name: When a DDNS update was successfully completed, the ddns-fwd-name variable records the value of the name used when the client's A record was updated. The server may have used this name when it updated the client's PTR record.ddns-client-fqdn: If the server is configured to use the interim DDNS update style and is also configured to allow clients to update their own FQDNs, the ddns-client-fqdn variable records the name that the client used when it updated its own FQDN. This is also the name that the server used to update the client's PTR record.ddns-rev- name: If the server successfully updates the client's PTR record, this variable will record the name that the DHCP server used for the PTR record. The name to which the PTR record points will be either the ddns-fwd-name or the ddns-client-fqdn. """ _infoblox_type = 'lease' _fields = ['address', 'billing_class', 'binding_state', 'client_hostname', 'cltt', 'discovered_data', 'ends', 'fingerprint', 'hardware', 'ipv6_duid', 'ipv6_iaid', 'ipv6_preferred_lifetime', 'ipv6_prefix_bits', 'is_invalid_mac', 'ms_ad_user_data', 'network', 'network_view', 'never_ends', 'never_starts', 'next_binding_state', 'on_commit', 'on_expiry', 'on_release', 'option', 'protocol', 'remote_id', 'served_by', 'server_host_name', 'starts', 'tsfp', 'tstp', 'uid', 'username', 'variable'] _search_for_update_fields = ['address', 'network_view'] _updateable_search_fields = [] _all_searchable_fields = ['address', 'client_hostname', 'fingerprint', 'hardware', 'ipv6_duid', 'ipv6_prefix_bits', 'network', 'network_view', 'protocol', 'remote_id', 'username'] _return_fields = ['address', 'network_view'] _remap = {} _shadow_fields = ['_ref'] class LicenseGridwide(InfobloxObject): """ LicenseGridwide: Gridwide license object. Corresponds to WAPI object 'license:gridwide' This object represents the Grid-wide license. Fields: expiration_status: The license expiration status. expiry_date: The expiration timestamp of the license. key: The license string. limit: The license limit value. limit_context: The license limit context. type: The license type. """ _infoblox_type = 'license:gridwide' _fields = ['expiration_status', 'expiry_date', 'key', 'limit', 'limit_context', 'type'] _search_for_update_fields = ['type'] _updateable_search_fields = [] _all_searchable_fields = ['key', 'limit', 'type'] _return_fields = ['type'] _remap = {} _shadow_fields = ['_ref'] class LocaluserAuthservice(InfobloxObject): """ LocaluserAuthservice: Local user authentication service object. Corresponds to WAPI object 'localuser:authservice' The object represents a local authentication service for authenticating users against the local database. Note that read by reference is not supported. Fields: comment: The local user authentication service comment. disabled: Flag that indicates whether the local user authentication service is enabled or not. name: The name of the local user authentication service. """ _infoblox_type = 'localuser:authservice' _fields = ['comment', 'disabled', 'name'] _search_for_update_fields = [] _updateable_search_fields = [] _all_searchable_fields = [] _return_fields = ['comment', 'disabled', 'name'] _remap = {} _shadow_fields = ['_ref'] class Macfilteraddress(InfobloxObject): """ Macfilteraddress: MAC Filter Address object. Corresponds to WAPI object 'macfilteraddress' MAC filter address is part of the MAC filter. Fields: authentication_time: The absolute UNIX time (in seconds) since the address was last authenticated. comment: Comment for the MAC filter address; maximum 256 characters. expiration_time: The absolute UNIX time (in seconds) until the address expires. extattrs: Extensible attributes associated with the object.For valid values for extensible attributes, see the following information. filter: Name of the MAC filter to which this address belongs. fingerprint: DHCP fingerprint for the address. guest_custom_field1: Guest custom field 1. guest_custom_field2: Guest custom field 2. guest_custom_field3: Guest custom field 3. guest_custom_field4: Guest custom field 4. guest_email: Guest e-mail. guest_first_name: Guest first name. guest_last_name: Guest last name. guest_middle_name: Guest middle name. guest_phone: Guest phone number. is_registered_user: Determines if the user has been authenticated or not. mac: MAC Address. never_expires: Determines if MAC address expiration is enabled or disabled. reserved_for_infoblox: Reserved for future use. username: Username for authenticated DHCP purposes. """ _infoblox_type = 'macfilteraddress' _fields = ['authentication_time', 'comment', 'expiration_time', 'extattrs', 'filter', 'fingerprint', 'guest_custom_field1', 'guest_custom_field2', 'guest_custom_field3', 'guest_custom_field4', 'guest_email', 'guest_first_name', 'guest_last_name', 'guest_middle_name', 'guest_phone', 'is_registered_user', 'mac', 'never_expires', 'reserved_for_infoblox', 'username'] _search_for_update_fields = ['authentication_time', 'expiration_time', 'filter', 'guest_custom_field1', 'guest_custom_field2', 'guest_custom_field3', 'guest_custom_field4', 'guest_email', 'guest_first_name', 'guest_last_name', 'guest_middle_name', 'guest_phone', 'mac', 'never_expires', 'reserved_for_infoblox', 'username'] _updateable_search_fields = ['authentication_time', 'comment', 'expiration_time', 'filter', 'guest_custom_field1', 'guest_custom_field2', 'guest_custom_field3', 'guest_custom_field4', 'guest_email', 'guest_first_name', 'guest_last_name', 'guest_middle_name', 'guest_phone', 'mac', 'never_expires', 'reserved_for_infoblox', 'username'] _all_searchable_fields = ['authentication_time', 'comment', 'expiration_time', 'filter', 'fingerprint', 'guest_custom_field1', 'guest_custom_field2', 'guest_custom_field3', 'guest_custom_field4', 'guest_email', 'guest_first_name', 'guest_last_name', 'guest_middle_name', 'guest_phone', 'mac', 'never_expires', 'reserved_for_infoblox', 'username'] _return_fields = ['authentication_time', 'comment', 'expiration_time', 'extattrs', 'filter', 'guest_custom_field1', 'guest_custom_field2', 'guest_custom_field3', 'guest_custom_field4', 'guest_email', 'guest_first_name', 'guest_last_name', 'guest_middle_name', 'guest_phone', 'is_registered_user', 'mac', 'never_expires', 'reserved_for_infoblox', 'username'] _remap = {} _shadow_fields = ['_ref'] class Mastergrid(InfobloxObject): """ Mastergrid: Master Grid object. Corresponds to WAPI object 'mastergrid' This object represents the Master Grid. The Master Grid object is automatically generated when a Grid successfully joins the Master Grid. Fields: address: The domain name or IP address for the Master Grid. connection_disabled: Determines if the sub-grid is currently disabled. connection_timestamp: The timestamp that indicates when the connection to the Master Grid was established. detached: The detached flag for the Master Grid. enable: Determines if the Master Grid is enabled. joined: The flag shows if the Grid has joined the Master Grid. last_event: The Master Grid's last event. last_event_details: The details of the Master Grid's last event. last_sync_timestamp: The timestamp or the last synchronization operation with the Master Grid. port: The Master Grid port to which the Grid connects. status: The Master Grid's status. use_mgmt_port: The flag shows if the MGMT port was used to join the Grid. """ _infoblox_type = 'mastergrid' _fields = ['address', 'connection_disabled', 'connection_timestamp', 'detached', 'enable', 'joined', 'last_event', 'last_event_details', 'last_sync_timestamp', 'port', 'status', 'use_mgmt_port'] _search_for_update_fields = ['address', 'port'] _updateable_search_fields = ['address', 'port'] _all_searchable_fields = ['address', 'port'] _return_fields = ['address', 'enable', 'port'] _remap = {} _shadow_fields = ['_ref'] class Member(InfobloxObject): """ Member: Member object. Corresponds to WAPI object 'member' This object represents the Infoblox Grid Member. Fields: active_position: The active server of a Grid member. additional_ip_list: The additional IP list of a Grid member. This list contains additional interface information that can be used at the member level.Note that interface structure(s) with interface type set to 'MGMT' are not supported. automated_traffic_capture_setting: Member level settings for automated traffic capture. bgp_as: The BGP configuration
<filename>evap/staff/views.py import csv import itertools from collections import OrderedDict, defaultdict, namedtuple from dataclasses import dataclass from datetime import date, datetime from typing import Any, Container, Dict from django.conf import settings from django.contrib import messages from django.core.exceptions import PermissionDenied, SuspiciousOperation from django.db import IntegrityError, transaction from django.db.models import BooleanField, Case, Count, ExpressionWrapper, IntegerField, Prefetch, Q, Sum, When from django.dispatch import receiver from django.forms import formset_factory from django.forms.models import inlineformset_factory, modelformset_factory from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import get_object_or_404, redirect, render from django.urls import reverse from django.utils.html import format_html from django.utils.translation import get_language from django.utils.translation import gettext as _ from django.utils.translation import gettext_lazy, ngettext from django.views.decorators.http import require_POST from xlrd import open_workbook from xlutils.copy import copy as copy_workbook from evap.contributor.views import export_contributor_results from evap.evaluation.auth import manager_required, reviewer_required, staff_permission_required from evap.evaluation.models import ( Contribution, Course, CourseType, Degree, EmailTemplate, Evaluation, FaqQuestion, FaqSection, Question, Questionnaire, RatingAnswerCounter, Semester, TextAnswer, UserProfile, ) from evap.evaluation.tools import FileResponse, get_parameter_from_url_or_session, sort_formset from evap.grades.models import GradeDocument from evap.results.exporters import ResultsExporter from evap.results.tools import TextResult, calculate_average_distribution, distribution_to_grade from evap.results.views import update_template_cache_of_published_evaluations_in_course from evap.rewards.models import RewardPointGranting from evap.rewards.tools import can_reward_points_be_used_by, is_semester_activated from evap.staff import staff_mode from evap.staff.forms import ( AtLeastOneFormSet, ContributionCopyForm, ContributionCopyFormSet, ContributionForm, ContributionFormSet, CourseCopyForm, CourseForm, CourseTypeForm, CourseTypeMergeSelectionForm, DegreeForm, EmailTemplateForm, EvaluationCopyForm, EvaluationEmailForm, EvaluationForm, EvaluationParticipantCopyForm, ExportSheetForm, FaqQuestionForm, FaqSectionForm, ImportForm, ModelWithImportNamesFormSet, QuestionForm, QuestionnaireForm, QuestionnairesAssignForm, RemindResponsibleForm, SemesterForm, SingleResultForm, TextAnswerForm, TextAnswerWarningForm, UserBulkUpdateForm, UserForm, UserImportForm, UserMergeSelectionForm, ) from evap.staff.importers import EnrollmentImporter, PersonImporter, UserImporter, sorted_messages from evap.staff.tools import ( ImportType, bulk_update_users, delete_import_file, delete_navbar_cache_for_users, find_unreviewed_evaluations, forward_messages, get_import_file_content_or_raise, import_file_exists, merge_users, save_import_file, ) from evap.student.forms import QuestionnaireVotingForm from evap.student.models import TextAnswerWarning from evap.student.views import get_valid_form_groups_or_render_vote_page @manager_required def index(request): template_data = dict( semesters=Semester.objects.all(), templates=EmailTemplate.objects.all().order_by("id"), sections=FaqSection.objects.all(), disable_breadcrumb_manager=True, ) return render(request, "staff_index.html", template_data) def annotate_evaluations_with_grade_document_counts(evaluations): return evaluations.annotate( midterm_grade_documents_count=Count( "course__grade_documents", filter=Q(course__grade_documents__type=GradeDocument.Type.MIDTERM_GRADES), distinct=True, ), final_grade_documents_count=Count( "course__grade_documents", filter=Q(course__grade_documents__type=GradeDocument.Type.FINAL_GRADES), distinct=True, ), ) def get_evaluations_with_prefetched_data(semester): evaluations = ( semester.evaluations.select_related("course__type") .prefetch_related( Prefetch( "contributions", queryset=Contribution.objects.filter(contributor=None), to_attr="general_contribution" ), "course__degrees", "course__responsibles", ) .annotate( num_contributors=Count("contributions", filter=~Q(contributions__contributor=None), distinct=True), num_textanswers=Count( "contributions__textanswer_set", filter=Q(contributions__evaluation__can_publish_text_results=True), distinct=True, ), num_reviewed_textanswers=Count( "contributions__textanswer_set", filter=~Q(contributions__textanswer_set__state=TextAnswer.State.NOT_REVIEWED), distinct=True, ), num_course_evaluations=Count("course__evaluations", distinct=True), ) ).order_by("pk") evaluations = annotate_evaluations_with_grade_document_counts(evaluations) evaluations = Evaluation.annotate_with_participant_and_voter_counts(evaluations) return evaluations @reviewer_required def semester_view(request, semester_id): semester = get_object_or_404(Semester, id=semester_id) if semester.results_are_archived and not request.user.is_manager: raise PermissionDenied rewards_active = is_semester_activated(semester) evaluations = get_evaluations_with_prefetched_data(semester) evaluations = sorted(evaluations, key=lambda cr: cr.full_name) courses = Course.objects.filter(semester=semester) # semester statistics (per degree) @dataclass class Stats: # pylint: disable=too-many-instance-attributes num_enrollments_in_evaluation: int = 0 num_votes: int = 0 num_evaluations_evaluated: int = 0 num_evaluations: int = 0 num_textanswers: int = 0 num_textanswers_reviewed: int = 0 first_start: datetime = datetime(9999, 1, 1) last_end: date = date(2000, 1, 1) degree_stats = defaultdict(Stats) total_stats = Stats() for evaluation in evaluations: if evaluation.is_single_result: continue degrees = evaluation.course.degrees.all() stats_objects = [degree_stats[degree] for degree in degrees] stats_objects += [total_stats] for stats in stats_objects: if evaluation.state >= Evaluation.State.IN_EVALUATION: stats.num_enrollments_in_evaluation += evaluation.num_participants stats.num_votes += evaluation.num_voters stats.num_textanswers += evaluation.num_textanswers stats.num_textanswers_reviewed += evaluation.num_reviewed_textanswers if evaluation.state >= Evaluation.State.EVALUATED: stats.num_evaluations_evaluated += 1 if evaluation.state != Evaluation.State.NEW: stats.num_evaluations += 1 stats.first_start = min(stats.first_start, evaluation.vote_start_datetime) stats.last_end = max(stats.last_end, evaluation.vote_end_date) degree_stats = OrderedDict(sorted(degree_stats.items(), key=lambda x: x[0].order)) degree_stats["total"] = total_stats template_data = dict( semester=semester, evaluations=evaluations, Evaluation=Evaluation, disable_breadcrumb_semester=True, rewards_active=rewards_active, num_evaluations=len(evaluations), degree_stats=degree_stats, courses=courses, approval_states=[ Evaluation.State.NEW, Evaluation.State.PREPARED, Evaluation.State.EDITOR_APPROVED, Evaluation.State.APPROVED, ], ) return render(request, "staff_semester_view.html", template_data) class EvaluationOperation: email_template_name = None email_template_contributor_name = None email_template_participant_name = None confirmation_message = None @staticmethod def applicable_to(evaluation): raise NotImplementedError @staticmethod def warning_for_inapplicables(amount): raise NotImplementedError @staticmethod def apply( request, evaluations, email_template=None, email_template_contributor=None, email_template_participant=None ): raise NotImplementedError class RevertToNewOperation(EvaluationOperation): confirmation_message = gettext_lazy("Do you want to revert the following evaluations to preparation?") @staticmethod def applicable_to(evaluation): return Evaluation.State.PREPARED <= evaluation.state <= Evaluation.State.APPROVED @staticmethod def warning_for_inapplicables(amount): return ngettext( "{} evaluation can not be reverted, because it already started. It was removed from the selection.", "{} evaluations can not be reverted, because they already started. They were removed from the selection.", amount, ).format(amount) @staticmethod def apply( request, evaluations, email_template=None, email_template_contributor=None, email_template_participant=None ): assert email_template_contributor is None assert email_template_participant is None for evaluation in evaluations: evaluation.revert_to_new() evaluation.save() messages.success( request, ngettext( "Successfully reverted {} evaluation to in preparation.", "Successfully reverted {} evaluations to in preparation.", len(evaluations), ).format(len(evaluations)), ) class ReadyForEditorsOperation(EvaluationOperation): email_template_name = EmailTemplate.EDITOR_REVIEW_NOTICE confirmation_message = gettext_lazy("Do you want to send the following evaluations to editor review?") @staticmethod def applicable_to(evaluation): return evaluation.state in [Evaluation.State.NEW, Evaluation.State.EDITOR_APPROVED] @staticmethod def warning_for_inapplicables(amount): return ngettext( "{} evaluation can not be reverted, because it already started. It was removed from the selection.", "{} evaluations can not be reverted, because they already started. They were removed from the selection.", amount, ).format(amount) @staticmethod def apply( request, evaluations, email_template=None, email_template_contributor=None, email_template_participant=None ): assert email_template_contributor is None assert email_template_participant is None for evaluation in evaluations: evaluation.ready_for_editors() evaluation.save() messages.success( request, ngettext( "Successfully enabled {} evaluation for editor review.", "Successfully enabled {} evaluations for editor review.", len(evaluations), ).format(len(evaluations)), ) if email_template: evaluations_by_responsible = {} for evaluation in evaluations: for responsible in evaluation.course.responsibles.all(): evaluations_by_responsible.setdefault(responsible, []).append(evaluation) for responsible, responsible_evaluations in evaluations_by_responsible.items(): body_params = {"user": responsible, "evaluations": responsible_evaluations} editors = UserProfile.objects.filter( contributions__evaluation__in=responsible_evaluations, contributions__role=Contribution.Role.EDITOR, ).exclude(pk=responsible.pk) email_template.send_to_user( responsible, subject_params={}, body_params=body_params, use_cc=True, additional_cc_users=editors, request=request, ) class BeginEvaluationOperation(EvaluationOperation): email_template_name = EmailTemplate.EVALUATION_STARTED confirmation_message = gettext_lazy("Do you want to immediately start the following evaluations?") @staticmethod def applicable_to(evaluation): return evaluation.state == Evaluation.State.APPROVED and evaluation.vote_end_date >= date.today() @staticmethod def warning_for_inapplicables(amount): return ngettext( "{} evaluation can not be started, because it was not approved, was already evaluated or its evaluation end date lies in the past. It was removed from the selection.", "{} evaluations can not be started, because they were not approved, were already evaluated or their evaluation end dates lie in the past. They were removed from the selection.", amount, ).format(amount) @staticmethod def apply( request, evaluations, email_template=None, email_template_contributor=None, email_template_participant=None ): assert email_template_contributor is None assert email_template_participant is None for evaluation in evaluations: evaluation.vote_start_datetime = datetime.now() evaluation.begin_evaluation() evaluation.save() messages.success( request, ngettext( "Successfully started {} evaluation.", "Successfully started {} evaluations.", len(evaluations) ).format(len(evaluations)), ) if email_template: email_template.send_to_users_in_evaluations( evaluations, [EmailTemplate.Recipients.ALL_PARTICIPANTS], use_cc=False, request=request ) class UnpublishOperation(EvaluationOperation): confirmation_message = gettext_lazy("Do you want to unpublish the following evaluations?") @staticmethod def applicable_to(evaluation): return evaluation.state == Evaluation.State.PUBLISHED @staticmethod def warning_for_inapplicables(amount): return ngettext( "{} evaluation can not be unpublished, because it's results have not been published. It was removed from the selection.", "{} evaluations can not be unpublished because their results have not been published. They were removed from the selection.", amount, ).format(amount) @staticmethod def apply( request, evaluations, email_template=None, email_template_contributor=None, email_template_participant=None ): assert email_template_contributor is None assert email_template_participant is None for evaluation in evaluations: evaluation.unpublish() evaluation.save() messages.success( request, ngettext( "Successfully unpublished {} evaluation.", "Successfully unpublished {} evaluations.", len(evaluations) ).format(len(evaluations)), ) class PublishOperation(EvaluationOperation): email_template_contributor_name = EmailTemplate.PUBLISHING_NOTICE_CONTRIBUTOR email_template_participant_name = EmailTemplate.PUBLISHING_NOTICE_PARTICIPANT confirmation_message = gettext_lazy("Do you want to publish the following evaluations?") @staticmethod def applicable_to(evaluation): return evaluation.state == Evaluation.State.REVIEWED @staticmethod def warning_for_inapplicables(amount): return ngettext( "{} evaluation can not be published, because it's not finished or not all of its text answers have been reviewed. It was removed from the selection.", "{} evaluations can not be published, because they are not finished or not all of their text answers have been reviewed. They were removed from the selection.", amount, ).format(amount) @staticmethod def apply( request, evaluations, email_template=None, email_template_contributor=None, email_template_participant=None ): assert email_template is None for evaluation in evaluations: evaluation.publish() evaluation.save() messages.success( request, ngettext( "Successfully published {} evaluation.", "Successfully published {} evaluations.", len(evaluations) ).format(len(evaluations)), ) if email_template_contributor: EmailTemplate.send_contributor_publish_notifications(evaluations, template=email_template_contributor) if email_template_participant: EmailTemplate.send_participant_publish_notifications(evaluations, template=email_template_participant) EVALUATION_OPERATIONS = { Evaluation.State.NEW: RevertToNewOperation, Evaluation.State.PREPARED: ReadyForEditorsOperation, Evaluation.State.IN_EVALUATION: BeginEvaluationOperation, Evaluation.State.REVIEWED: UnpublishOperation, Evaluation.State.PUBLISHED: PublishOperation, } @manager_required def semester_evaluation_operation(request, semester_id): semester = get_object_or_404(Semester, id=semester_id) if semester.participations_are_archived: raise PermissionDenied raw_target_state = request.GET.get("target_state") try: target_state = int(raw_target_state) except ValueError as err: raise SuspiciousOperation("Unparseable target state: " + str(raw_target_state)) from err if target_state not in EVALUATION_OPERATIONS.keys(): raise SuspiciousOperation("Unknown target state: " + str(target_state)) evaluation_ids = (request.GET if request.method == "GET" else request.POST).getlist("evaluation") evaluations = list( annotate_evaluations_with_grade_document_counts(Evaluation.objects.filter(id__in=evaluation_ids)) ) evaluations.sort(key=lambda evaluation: evaluation.full_name) operation = EVALUATION_OPERATIONS[target_state] if request.method == "POST": email_template = None email_template_contributor = None email_template_participant = None if request.POST.get("send_email") == "on": email_template = EmailTemplate( subject=request.POST["email_subject"], plain_content=request.POST["email_plain"], html_content=request.POST["email_html"], ) if request.POST.get("send_email_contributor") == "on": email_template_contributor = EmailTemplate( subject=request.POST["email_subject_contributor"], plain_content=request.POST["email_plain_contributor"], html_content=request.POST["email_html_contributor"], ) if request.POST.get("send_email_participant") == "on": email_template_participant = EmailTemplate( subject=request.POST["email_subject_participant"], plain_content=request.POST["email_plain_participant"], html_content=request.POST["email_html_participant"], ) operation.apply(request, evaluations, email_template, email_template_contributor, email_template_participant) return redirect("staff:semester_view", semester_id) applicable_evaluations = list(filter(operation.applicable_to, evaluations)) difference = len(evaluations) - len(applicable_evaluations) if difference: messages.warning(request, operation.warning_for_inapplicables(difference)) if not applicable_evaluations: # no evaluations where applicable or none were selected messages.warning(request, _("Please select at least one evaluation.")) return redirect("staff:semester_view", semester_id) email_template = None email_template_contributor = None email_template_participant = None if operation.email_template_name: email_template = EmailTemplate.objects.get(name=operation.email_template_name) if operation.email_template_contributor_name: email_template_contributor
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2011-2014, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Core objects and functionality for py2neo. authenticate - register authentication details for a host:port rewrite - register a rewrite hook for a scheme://host:port Resource - local representation of a remote web resource ResourceTemplate - template for Resource generation based on a pattern Service - base class for objects that can be bound to remote resources ServiceRoot - root resource for a Neo4j server instance Graph - main graph resource class to bind to a remote graph database service Schema - schema index and constraint management resource PropertySet - dict subclass that equates None and missing values for storing properties LabelSet - set subclass for storing labels PropertyContainer - base class for Node and Relationship classes Node - local graph node object that can be bound to a remote Neo4j node NodePointer - reference to a node object defined elsewhere Rel - forward relationship without start and end node information Rev - reverse relationship without start and end node information Path - local graph path object that represents a remote Neo4j path Relationship - local graph relationship object that can be bound to a remote Neo4j relationship """ from __future__ import division, unicode_literals import base64 import re from warnings import warn from weakref import WeakValueDictionary from py2neo import __version__ from py2neo.error.client import BindError, JoinError from py2neo.error.server import GraphError from py2neo.packages.httpstream import http, ClientError, ServerError, \ Resource as _Resource, ResourceTemplate as _ResourceTemplate from py2neo.packages.httpstream.http import JSONResponse from py2neo.packages.httpstream.numbers import NOT_FOUND from py2neo.packages.httpstream.packages.urimagic import URI from py2neo.types import cast_property from py2neo.util import is_collection, is_integer, round_robin, ustr, version_tuple, raise_from __all__ = ["authenticate", "rewrite", "Resource", "ResourceTemplate", "Service", "ServiceRoot", "Graph", "Schema", "PropertySet", "LabelSet", "PropertyContainer", "Node", "NodePointer", "Rel", "Rev", "Path", "Relationship", "ServerPlugin", "UnmanagedExtension"] DEFAULT_SCHEME = "http" DEFAULT_HOST = "localhost" DEFAULT_PORT = 7474 DEFAULT_HOST_PORT = "{0}:{1}".format(DEFAULT_HOST, DEFAULT_PORT) PRODUCT = ("py2neo", __version__) NON_ALPHA_NUM = re.compile("[^0-9A-Za-z_]") SIMPLE_NAME = re.compile(r"[A-Za-z_][0-9A-Za-z_]*") http.default_encoding = "UTF-8" _headers = { None: [("X-Stream", "true")], } _http_rewrites = {} def _add_header(key, value, host_port=None): """ Add an HTTP header to be sent with all requests if no `host_port` is provided or only to those matching the value supplied otherwise. """ if host_port in _headers: _headers[host_port].append((key, value)) else: _headers[host_port] = [(key, value)] def _get_headers(host_port): """Fetch all HTTP headers relevant to the `host_port` provided. """ uri_headers = {} for n, headers in _headers.items(): if n is None or n == host_port: uri_headers.update(headers) return uri_headers def authenticate(host_port, user_name, password): """ Set HTTP basic authentication values for specified `host_port`. The code below shows a simple example:: # set up authentication parameters neo4j.authenticate("camelot:7474", "arthur", "excalibur") # connect to authenticated graph database graph = neo4j.Graph("http://camelot:7474/db/data/") Note: a `host_port` can be either a server name or a server name and port number but must match exactly that used within the Graph URI. :param host_port: the host and optional port requiring authentication (e.g. "bigserver", "camelot:7474") :param user_name: the user name to authenticate as :param password: the password """ credentials = (user_name + ":" + password).encode("UTF-8") value = "Basic " + base64.b64encode(credentials).decode("ASCII") _add_header("Authorization", value, host_port=host_port) def rewrite(from_scheme_host_port, to_scheme_host_port): """ Automatically rewrite all URIs directed to the scheme, host and port specified in `from_scheme_host_port` to that specified in `to_scheme_host_port`. As an example:: # implicitly convert all URIs beginning with <http://localhost:7474> # to instead use <https://dbserver:9999> neo4j.rewrite(("http", "localhost", 7474), ("https", "dbserver", 9999)) If `to_scheme_host_port` is :py:const:`None` then any rewrite rule for `from_scheme_host_port` is removed. This facility is primarily intended for use by database servers behind proxies which are unaware of their externally visible network address. """ global _http_rewrites if to_scheme_host_port is None: try: del _http_rewrites[from_scheme_host_port] except KeyError: pass else: _http_rewrites[from_scheme_host_port] = to_scheme_host_port class Resource(_Resource): """ Variant of HTTPStream Resource that passes extra headers and product detail. """ error_class = GraphError def __init__(self, uri, metadata=None): uri = URI(uri) scheme_host_port = (uri.scheme, uri.host, uri.port) if scheme_host_port in _http_rewrites: scheme_host_port = _http_rewrites[scheme_host_port] # This is fine - it's all my code anyway... uri._URI__set_scheme(scheme_host_port[0]) uri._URI__set_authority("{0}:{1}".format(scheme_host_port[1], scheme_host_port[2])) if uri.user_info: authenticate(uri.host_port, *uri.user_info.partition(":")[0::2]) self._resource = _Resource.__init__(self, uri) #self._subresources = {} self.__headers = _get_headers(self.__uri__.host_port) self.__base = super(Resource, self) if metadata is None: self.__initial_metadata = None else: self.__initial_metadata = dict(metadata) self.__last_get_response = None uri = uri.string service_root_uri = uri[:uri.find("/", uri.find("//") + 2)] + "/" if service_root_uri == uri: self.__service_root = self else: self.__service_root = ServiceRoot(service_root_uri) self.__relative_uri = NotImplemented @property def graph(self): return self.__service_root.graph @property def headers(self): return self.__headers @property def metadata(self): if self.__last_get_response is None: if self.__initial_metadata is not None: return self.__initial_metadata self.get() return self.__last_get_response.content @property def relative_uri(self): if self.__relative_uri is NotImplemented: self_uri = self.uri.string graph_uri = self.graph.uri.string self.__relative_uri = URI(self_uri[len(graph_uri):]) return self.__relative_uri @property def service_root(self): return self.__service_root def get(self, headers=None, redirect_limit=5, **kwargs): headers = dict(headers or {}) headers.update(self.__headers) kwargs.update(product=PRODUCT, cache=True) try: response = self.__base.get(headers, redirect_limit, **kwargs) except (ClientError, ServerError) as error: if isinstance(error, JSONResponse): content = dict(error.content, request=error.request, response=error) else: content = {} message = content.pop("message", "HTTP GET returned response %s" % error.status_code) raise_from(self.error_class(message, **content), error) else: self.__last_get_response = response return response def put(self, body=None, headers=None, **kwargs): headers = dict(headers or {}) headers.update(self.__headers) kwargs.update(product=PRODUCT) try: response = self.__base.put(body, headers, **kwargs) except (ClientError, ServerError) as error: if isinstance(error, JSONResponse): content = dict(error.content, request=error.request, response=error) else: content = {} message = content.pop("message", "HTTP PUT returned response %s" % error.status_code) raise_from(self.error_class(message, **content), error) else: return response def post(self, body=None, headers=None, **kwargs): headers = dict(headers or {}) headers.update(self.__headers) kwargs.update(product=PRODUCT) try: response = self.__base.post(body, headers, **kwargs) except (ClientError, ServerError) as error: if isinstance(error, JSONResponse): content = dict(error.content, request=error.request, response=error) else: content = {} message = content.pop("message", "HTTP POST returned response %s" % error.status_code) raise_from(self.error_class(message, **content), error) else: return response def delete(self, headers=None, **kwargs): headers = dict(headers or {}) headers.update(self.__headers) kwargs.update(product=PRODUCT) try: response = self.__base.delete(headers, **kwargs) except (ClientError, ServerError) as error: if isinstance(error, JSONResponse): content = dict(error.content, request=error.request, response=error) else: content = {} message = content.pop("message", "HTTP DELETE returned response %s" % error.status_code) raise_from(self.error_class(message, **content), error) else: return response class ResourceTemplate(_ResourceTemplate): error_class = GraphError def expand(self, **values): resource = Resource(self.uri_template.expand(**values)) resource.error_class = self.error_class return resource class Service(object): """ Base class for objects that can be bound to a remote resource. """ error_class = GraphError __resource__ = None def bind(self, uri, metadata=None): """ Bind object to Resource or ResourceTemplate. """ if "{" in uri and "}" in uri: if metadata: raise ValueError("Initial metadata cannot be passed to a resource template") self.__resource__ = ResourceTemplate(uri) else: self.__resource__ = Resource(uri, metadata) self.__resource__.error_class = self.error_class @property def bound(self): """ Returns :const:`True` if bound to a remote resource. """ return self.__resource__ is not None @property def graph(self): return self.service_root.graph @property def relative_uri(self): return self.resource.relative_uri @property def resource(self): """ Returns the :class:`Resource` to which this is bound. """ if self.bound: return self.__resource__ else: raise BindError("Local entity is not bound to a remote entity") @property def service_root(self): return self.resource.service_root def unbind(self): self.__resource__ = None @property def uri(self): if isinstance(self.resource, ResourceTemplate): return self.resource.uri_template else: return self.resource.uri class ServiceRoot(object): """ Neo4j REST API service root resource. """ DEFAULT_URI = "{0}://{1}/".format(DEFAULT_SCHEME, DEFAULT_HOST_PORT) __instances = {} __graph = None def __new__(cls, uri=None): if uri is None: uri = cls.DEFAULT_URI if not uri.endswith("/"): uri += "/" try: inst = cls.__instances[uri] except KeyError: inst = super(ServiceRoot, cls).__new__(cls) inst.__resource = Resource(uri) inst.__graph = None cls.__instances[uri] = inst return inst @property def graph(self): if self.__graph is None: self.__graph = Graph(self.resource.metadata["data"]) return self.__graph @property def resource(self): return self.__resource @property def uri(self): return self.resource.uri class Graph(Service): """ Top-level wrapper around a Neo4j database service identified by URI. To connect to a local server on the default URI, simply use:: >>> from py2neo import Graph >>> graph = Graph() The server address can also be provided explicitly:: >>> other_graph = Graph("http://camelot:1138/db/data/") If the database server is behind a proxy that requires HTTP authorisation, this can
Waveform 0xe0c8: { 'align': 'l', 'valign': 'c', 'stretch': 'xy', 'params': {'overlap': 0.01}}, # Hexagons 0xe0cc: {'align': 'l', 'valign': 'c', 'stretch': 'xy', 'params': ''}, 0xe0cd: {'align': 'l', 'valign': 'c', 'stretch': 'xy', 'params': ''}, # Legos 0xe0ce: {'align': 'l', 'valign': 'c', 'stretch': 'xy', 'params': ''}, 0xe0cf: {'align': 'c', 'valign': 'c', 'stretch': 'xy', 'params': ''}, 0xe0d1: { 'align': 'l', 'valign': 'c', 'stretch': 'xy', 'params': {'overlap': 0.02}}, # Top and bottom trapezoid 0xe0d2: { 'align': 'l', 'valign': 'c', 'stretch': 'xy', 'params': {'overlap': 0.02}}, 0xe0d4: { 'align': 'r', 'valign': 'c', 'stretch': 'xy', 'params': {'overlap': 0.02}}} symAttrDefault = { # 'pa' == preserve aspect ratio 'default': {'align': 'c', 'valign': 'c', 'stretch': 'pa', 'params': ''}} symAttrFontA = { # 'pa' == preserve aspect ratio 'default': {'align': 'c', 'valign': 'c', 'stretch': 'pa', 'params': ''}, # Don't center these arrows vertically 0xf0dc: {'align': 'c', 'valign': '', 'stretch': 'pa', 'params': ''}, 0xf0dd: {'align': 'c', 'valign': '', 'stretch': 'pa', 'params': ''}, 0xf0de: {'align': 'c', 'valign': '', 'stretch': 'pa', 'params': ''}} customAttr = { # 'pa' == preserve aspect ratio 'default': {'align': 'c', 'valign': '', 'stretch': '', 'params': ''}} # Most glyphs we want to maximize during the scale. However, there are some # that need to be small or stay relative in size to each other. # The following list are those glyphs. A tuple represents a range. deviScaleList = {'ScaleGlyph': 0xE60E, 'GlyphsToScale': [(0xe6bd, 0xe6c3)]} fontAScaleList = { 'ScaleGlyph': 0xF17A, 'GlyphsToScale': [ 0xf005, 0xf006, (0xf026, 0xf028), 0xf02b, 0xf02c, (0xf031, 0xf035), (0xf044, 0xf054), (0xf060, 0xf063), 0xf077, 0xf078, 0xf07d, 0xf07e, 0xf089, (0xf0d7, 0xf0da), (0xf0dc, 0xf0de), (0xf100, 0xf107), 0xf141, 0xf142, (0xf153, 0xf15a), (0xf175, 0xf178), 0xf182, 0xf183, (0xf221, 0xf22d), (0xf255, 0xf25b)]} octiScaleList = { 'ScaleGlyph': 0xF02E, 'GlyphsToScale': [(0xf03d, 0xf040), 0xf044, (0xf051, 0xf053), 0xf05a, 0xf05b, 0xf071, 0xf078, (0xf09f, 0xf0aa), 0xf0ca]} # Define the character ranges # Symbol font ranges # yapf: disable self.patchSet = [ {'Enabled': True, 'Name': "Seti-UI + Custom", 'Filename': "original-source.otf", 'Exact': False, 'SymStart': 0xE4FA, 'SymEnd': 0xE52E, 'SrcStart': 0xE5FA, 'SrcEnd': 0xE62E, 'ScaleGlyph': None, 'Attributes': symAttrDefault}, {'Enabled': True, 'Name': "Devicons", 'Filename': "devicons.ttf", 'Exact': False, 'SymStart': 0xE600, 'SymEnd': 0xE6C5, 'SrcStart': 0xE700, 'SrcEnd': 0xE7C5, 'ScaleGlyph': deviScaleList, 'Attributes': symAttrDefault}, {'Enabled': self.args.powerline, 'Name': "Powerline Symbols", 'Filename': "PowerlineSymbols.otf", 'Exact': True, 'SymStart': 0xE0A0, 'SymEnd': 0xE0A2, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': None, 'Attributes': symAttrPowerline}, {'Enabled': self.args.powerline, 'Name': "Powerline Symbols", 'Filename': "PowerlineSymbols.otf", 'Exact': True, 'SymStart': 0xE0B0, 'SymEnd': 0xE0B3, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': None, 'Attributes': symAttrPowerline}, {'Enabled': self.args.powerlineextra, 'Name': "Powerline Extra Symbols", 'Filename': "PowerlineExtraSymbols.otf", 'Exact': True, 'SymStart': 0xE0A3, 'SymEnd': 0xE0A3, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': None, 'Attributes': symAttrPowerline}, {'Enabled': self.args.powerlineextra, 'Name': "Powerline Extra Symbols", 'Filename': "PowerlineExtraSymbols.otf", 'Exact': True, 'SymStart': 0xE0B4, 'SymEnd': 0xE0C8, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': None, 'Attributes': symAttrPowerline}, {'Enabled': self.args.powerlineextra, 'Name': "Powerline Extra Symbols", 'Filename': "PowerlineExtraSymbols.otf", 'Exact': True, 'SymStart': 0xE0CA, 'SymEnd': 0xE0CA, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': None, 'Attributes': symAttrPowerline}, {'Enabled': self.args.powerlineextra, 'Name': "Powerline Extra Symbols", 'Filename': "PowerlineExtraSymbols.otf", 'Exact': True, 'SymStart': 0xE0CC, 'SymEnd': 0xE0D4, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': None, 'Attributes': symAttrPowerline}, {'Enabled': self.args.pomicons, 'Name': "Pomicons", 'Filename': "Pomicons.otf", 'Exact': True, 'SymStart': 0xE000, 'SymEnd': 0xE00A, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': None, 'Attributes': symAttrDefault}, {'Enabled': self.args.fontawesome, 'Name': "Font Awesome", 'Filename': "FontAwesome.otf", 'Exact': True, 'SymStart': 0xF000, 'SymEnd': 0xF2E0, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': fontAScaleList, 'Attributes': symAttrFontA}, {'Enabled': self.args.fontawesomeextension, 'Name': "Font Awesome Extension", 'Filename': "font-awesome-extension.ttf", 'Exact': False, 'SymStart': 0xE000, 'SymEnd': 0xE0A9, 'SrcStart': 0xE200, 'SrcEnd': 0xE2A9, 'ScaleGlyph': None, 'Attributes': symAttrDefault}, # Maximize {'Enabled': self.args.powersymbols, 'Name': "Power Symbols", 'Filename': "Unicode_IEC_symbol_font.otf", 'Exact': True, 'SymStart': 0x23FB, 'SymEnd': 0x23FE, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': None, 'Attributes': symAttrDefault}, # Power, Power On/Off, Power On, Sleep {'Enabled': self.args.powersymbols, 'Name': "Power Symbols", 'Filename': "Unicode_IEC_symbol_font.otf", 'Exact': True, 'SymStart': 0x2B58, 'SymEnd': 0x2B58, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': None, 'Attributes': symAttrDefault}, # Heavy Circle (aka Power Off) {'Enabled': self.args.material, 'Name': "Material", 'Filename': "materialdesignicons-webfont.ttf", 'Exact': False, 'SymStart': 0xF001, 'SymEnd': 0xF847, 'SrcStart': 0xF500, 'SrcEnd': 0xFD46, 'ScaleGlyph': None, 'Attributes': symAttrDefault}, {'Enabled': self.args.weather, 'Name': "Weather Icons", 'Filename': "weathericons-regular-webfont.ttf", 'Exact': False, 'SymStart': 0xF000, 'SymEnd': 0xF0EB, 'SrcStart': 0xE300, 'SrcEnd': 0xE3EB, 'ScaleGlyph': None, 'Attributes': symAttrDefault}, {'Enabled': self.args.fontlinux, 'Name': "Font Logos (Font Linux)", 'Filename': "font-logos.ttf", 'Exact': self.fontlinuxExactEncodingPosition, 'SymStart': 0xF100, 'SymEnd': 0xF11C, 'SrcStart': 0xF300, 'SrcEnd': 0xF31C, 'ScaleGlyph': None, 'Attributes': symAttrDefault}, {'Enabled': self.args.octicons, 'Name': "Octicons", 'Filename': "octicons.ttf", 'Exact': self.octiconsExactEncodingPosition, 'SymStart': 0xF000, 'SymEnd': 0xF105, 'SrcStart': 0xF400, 'SrcEnd': 0xF505, 'ScaleGlyph': octiScaleList, 'Attributes': symAttrDefault}, # Magnifying glass {'Enabled': self.args.octicons, 'Name': "Octicons", 'Filename': "octicons.ttf", 'Exact': self.octiconsExactEncodingPosition, 'SymStart': 0x2665, 'SymEnd': 0x2665, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': octiScaleList, 'Attributes': symAttrDefault}, # Heart {'Enabled': self.args.octicons, 'Name': "Octicons", 'Filename': "octicons.ttf", 'Exact': self.octiconsExactEncodingPosition, 'SymStart': 0X26A1, 'SymEnd': 0X26A1, 'SrcStart': None, 'SrcEnd': None, 'ScaleGlyph': octiScaleList, 'Attributes': symAttrDefault}, # Zap {'Enabled': self.args.octicons, 'Name': "Octicons", 'Filename': "octicons.ttf", 'Exact': self.octiconsExactEncodingPosition, #'SymStart': 0xF27C, 'SymEnd': 0xF27C, 'SrcStart': 0xF4A9, 'SrcEnd': 0xF4A9, 'SymStart': 0xF27C, 'SymEnd': 0xF2BD, 'SrcStart': 0xF4A9, 'SrcEnd': 0xF4EA, 'ScaleGlyph': octiScaleList, 'Attributes': symAttrDefault}, # Desktop {'Enabled': self.args.custom, 'Name': "Custom", 'Filename': self.args.custom, 'Exact': True, 'SymStart': 0x0000, 'SymEnd': 0x0000, 'SrcStart': 0x0000, 'SrcEnd': 0x0000, 'ScaleGlyph': None, 'Attributes': customAttr}] # yapf: enable def setupLineDimensions(self): """ win_ascent and win_descent are used to set the line height for windows fonts. hhead_ascent and hhead_descent are used to set the line height for mac fonts. Make the total line size even. This seems to make the powerline separators center more evenly. """ if self.args.adjustLineHeight: if (self.sourceFont.os2_winascent + self.sourceFont.os2_windescent) % 2 != 0: self.sourceFont.os2_winascent += 1 # Make the line size identical for windows and mac self.sourceFont.hhea_ascent = self.sourceFont.os2_winascent self.sourceFont.hhea_descent = -self.sourceFont.os2_windescent # Line gap add extra space on the bottom of the line which # doesn't allow the powerline glyphs to fill the entire line. self.sourceFont.hhea_linegap = 0 self.sourceFont.os2_typolinegap = 0 def getSourceFontDimensions(self): # Initial font dimensions self.fontDim = { 'xmin': 0, 'ymin': -self.sourceFont.os2_windescent, 'xmax': 0, 'ymax': self.sourceFont.os2_winascent, 'width': 0, 'height': 0, } # Find the biggest char width # Ignore the y-values, os2_winXXXXX values set above are used for line height # # 0x00-0x17f is the Latin Extended-A range for glyph in range(0x00, 0x17f): try: (_, _, xmax, _) = self.sourceFont[glyph].boundingBox() except TypeError: continue if self.fontDim['width'] < self.sourceFont[glyph].width: self.fontDim['width'] = self.sourceFont[glyph].width if xmax > self.fontDim['xmax']: self.fontDim['xmax'] = xmax # Calculate font height self.fontDim['height'] = abs(self.fontDim['ymin']) + self.fontDim['ymax'] def getScaleFactor(self, symDim): scaleRatio = 1 # We want to preserve x/y aspect ratio, so find biggest scale factor that allows symbol to fit scaleRatioX = self.fontDim['width'] / symDim['width'] # fontDim['height'] represents total line height, keep our symbols sized based upon font's em # NOTE: is this comment correct? fontDim['height'] isn't used here scaleRatioY = self.sourceFont.em / symDim['height'] if scaleRatioX > scaleRatioY: scaleRatio = scaleRatioY else: scaleRatio = scaleRatioX return scaleRatio def copyGlyphs(self, sourceFontStart, sourceFontEnd, symbolFont, symbolFontStart, symbolFontEnd, exactEncoding, scaleGlyph, setName, attributes): """ Copies symbol glyphs into self.sourceFont """ progressText = '' careful = False glyphSetLength = 0 if self.args.careful: careful = True if exactEncoding is False: sourceFontList = [] sourceFontCounter = 0 for i in range(sourceFontStart, sourceFontEnd + 1): sourceFontList.append(format(i, 'X')) scaleFactor = 0 if scaleGlyph: symDim = getGlyphDimensions(symbolFont[scaleGlyph['ScaleGlyph']]) scaleFactor = self.getScaleFactor(symDim) # Create glyphs from symbol font # # If we are going to copy all Glyphs, then assume we want to be careful # and only copy those that are not already contained in the source font if symbolFontStart == 0: symbolFont.selection.all() self.sourceFont.selection.all() careful = True else: symbolFont.selection.select((str("ranges"), str("unicode")), symbolFontStart, symbolFontEnd) self.sourceFont.selection.select((str("ranges"), str("unicode")), sourceFontStart, sourceFontEnd) # Get number of selected non-empty glyphs @TODO FIXME for index, symGlyph in enumerate(symbolFont.selection.byGlyphs): glyphSetLength += 1 # end for if self.args.quiet is False: sys.stdout.write("Adding " + str(max(1, glyphSetLength)) + " Glyphs from " + setName + " Set \n") for index, symGlyph in enumerate(symbolFont.selection.byGlyphs): index = max(1, index) try: symAttr = attributes[symGlyph.unicode] except KeyError: symAttr = attributes['default'] if exactEncoding: # use the exact same hex values for the source font as for the symbol font currentSourceFontGlyph = symGlyph.encoding # Save as a hex string without the '0x' prefix copiedToSlot = format(symGlyph.unicode, 'X') else: # use source font defined hex values based on passed in start and end # convince that this string really is a hex: currentSourceFontGlyph = int("0x" + sourceFontList[sourceFontCounter], 16) copiedToSlot = sourceFontList[sourceFontCounter] sourceFontCounter += 1 if int(copiedToSlot, 16) < 0: print("Found invalid glyph slot number. Skipping.") continue if self.args.quiet is False: updateProgress(round(float(index + 1) / glyphSetLength, 2)) # Prepare symbol glyph dimensions symDim = getGlyphDimensions(symGlyph) # check if a glyph already exists in this location if careful or 'careful' in symAttr['params']: if copiedToSlot.startswith("uni"): copiedToSlot = copiedToSlot[3:] codepoint = int("0x" + copiedToSlot, 16) if codepoint in self.sourceFont: if self.args.quiet is False: print(" Found existing Glyph at {}. Skipping...".format(copiedToSlot)) # We don't want to touch anything so move to next Glyph continue # Select and copy symbol from its encoding point # We need to do this select after the careful check, this way we don't # reset our selection before starting the next loop symbolFont.selection.select(symGlyph.encoding) symbolFont.copy() # Paste it self.sourceFont.selection.select(currentSourceFontGlyph) self.sourceFont.paste() self.sourceFont[currentSourceFontGlyph].glyphname = symGlyph.glyphname scaleRatioX = 1 scaleRatioY = 1 # Now that we have copy/pasted the glyph, if we are creating a monospace # font we need to scale and move the glyphs. It is possible to have # empty glyphs, so we need to skip those. if self.args.single and symDim['width'] and symDim['height']: # If we want to preserve that aspect ratio of the glyphs we need to # find the largest possible scaling factor that will allow the glyph # to fit in both the x and y directions if symAttr['stretch'] == 'pa': if scaleFactor and useScaleGlyph(symGlyph.unicode, scaleGlyph['GlyphsToScale']): # We want to preserve the relative size of each glyph to other glyphs # in the same symbol font. scaleRatioX = scaleFactor scaleRatioY = scaleFactor else: # In this case, each glyph is sized independently to each other scaleRatioX = self.getScaleFactor(symDim) scaleRatioY = scaleRatioX else: if 'x' in symAttr['stretch']: # Stretch the glyph horizontally to fit the entire
<filename>melodic/lib/python2.7/dist-packages/mavros_msgs/msg/_CommandCode.py # This Python file uses the following encoding: utf-8 """autogenerated by genpy from mavros_msgs/CommandCode.msg. Do not edit.""" import codecs import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class CommandCode(genpy.Message): _md5sum = "9c980aa1230f756ac9d693ff35accb29" _type = "mavros_msgs/CommandCode" _has_header = False # flag to mark the presence of a Header object _full_text = """# MAV_CMD command codes. # Actual meaning and params you may find in MAVLink documentation # https://mavlink.io/en/messages/common.html#MAV_CMD # [[[cog: # from pymavlink.dialects.v20 import common # from collections import OrderedDict # import re # # def wr_enum(enum, ename, pfx='', bsz=16): # cog.outl("# " + ename + "_" + pfx) # for k, e in enum: # # exclude also deprecated commands # if 'MAV_CMD' + "_" + pfx in e.name and not re.search('deprecated', e.description, re.IGNORECASE): # sn = e.name[len('MAV_CMD') + 1:] # l = "uint{bsz} {sn} = {k}".format(**locals()) # if e.description: # l += ' ' * (50 - len(l)) + ' # ' + e.description # cog.outl(l) # cog.out('\n') # # def decl_enum(ename): # enum = sorted(common.enums[ename].items()) # enum.pop() # remove ENUM_END # # enumt = [] # # exception list of commands to not include # exlist = ['SPATIAL', 'USER', 'WAYPOINT'] # for k, e in enum: # enumt.extend(e.name[len(ename) + 1:].split('_')[0:1]) # # enumt = sorted(set(enumt)) # enumt = [word for word in enumt if word not in exlist] # # for key in enumt: # wr_enum(enum, ename, key) # # decl_enum('MAV_CMD') # ]]] # MAV_CMD_AIRFRAME uint16 AIRFRAME_CONFIGURATION = 2520 # MAV_CMD_ARM uint16 ARM_AUTHORIZATION_REQUEST = 3001 # Request authorization to arm the vehicle to a external entity, the arm authorizer is responsible to request all data that is needs from the vehicle before authorize or deny the request. If approved the progress of command_ack message should be set with period of time that this authorization is valid in seconds or in case it was denied it should be set with one of the reasons in ARM_AUTH_DENIED_REASON. # MAV_CMD_COMPONENT uint16 COMPONENT_ARM_DISARM = 400 # Arms / Disarms a component # MAV_CMD_CONDITION uint16 CONDITION_DELAY = 112 # Delay mission state machine. uint16 CONDITION_CHANGE_ALT = 113 # Ascend/descend at rate. Delay mission state machine until desired altitude reached. uint16 CONDITION_DISTANCE = 114 # Delay mission state machine until within desired distance of next NAV point. uint16 CONDITION_YAW = 115 # Reach a certain target angle. uint16 CONDITION_LAST = 159 # NOP - This command is only used to mark the upper limit of the CONDITION commands in the enumeration # MAV_CMD_CONTROL uint16 CONTROL_HIGH_LATENCY = 2600 # Request to start/stop transmitting over the high latency telemetry # MAV_CMD_DO uint16 DO_FOLLOW = 32 # Being following a target uint16 DO_FOLLOW_REPOSITION = 33 # Reposition the MAV after a follow target command has been sent uint16 DO_SET_MODE = 176 # Set system mode. uint16 DO_JUMP = 177 # Jump to the desired command in the mission list. Repeat this action only the specified number of times uint16 DO_CHANGE_SPEED = 178 # Change speed and/or throttle set points. uint16 DO_SET_HOME = 179 # Changes the home location either to the current location or a specified location. uint16 DO_SET_PARAMETER = 180 # Set a system parameter. Caution! Use of this command requires knowledge of the numeric enumeration value of the parameter. uint16 DO_SET_RELAY = 181 # Set a relay to a condition. uint16 DO_REPEAT_RELAY = 182 # Cycle a relay on and off for a desired number of cycles with a desired period. uint16 DO_SET_SERVO = 183 # Set a servo to a desired PWM value. uint16 DO_REPEAT_SERVO = 184 # Cycle a between its nominal setting and a desired PWM for a desired number of cycles with a desired period. uint16 DO_FLIGHTTERMINATION = 185 # Terminate flight immediately uint16 DO_CHANGE_ALTITUDE = 186 # Change altitude set point. uint16 DO_LAND_START = 189 # Mission command to perform a landing. This is used as a marker in a mission to tell the autopilot where a sequence of mission items that represents a landing starts. It may also be sent via a COMMAND_LONG to trigger a landing, in which case the nearest (geographically) landing sequence in the mission will be used. The Latitude/Longitude is optional, and may be set to 0 if not needed. If specified then it will be used to help find the closest landing sequence. uint16 DO_RALLY_LAND = 190 # Mission command to perform a landing from a rally point. uint16 DO_GO_AROUND = 191 # Mission command to safely abort an autonomous landing. uint16 DO_REPOSITION = 192 # Reposition the vehicle to a specific WGS84 global position. uint16 DO_PAUSE_CONTINUE = 193 # If in a GPS controlled position mode, hold the current position or continue. uint16 DO_SET_REVERSE = 194 # Set moving direction to forward or reverse. uint16 DO_SET_ROI_LOCATION = 195 # Sets the region of interest (ROI) to a location. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. uint16 DO_SET_ROI_WPNEXT_OFFSET = 196 # Sets the region of interest (ROI) to be toward next waypoint, with optional pitch/roll/yaw offset. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. uint16 DO_SET_ROI_NONE = 197 # Cancels any previous ROI command returning the vehicle/sensors to default flight characteristics. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. uint16 DO_CONTROL_VIDEO = 200 # Control onboard camera system. uint16 DO_SET_ROI = 201 # Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. uint16 DO_DIGICAM_CONFIGURE = 202 # Configure digital camera. This is a fallback message for systems that have not yet implemented PARAM_EXT_XXX messages and camera definition files (see https://mavlink.io/en/services/camera_def.html ). uint16 DO_DIGICAM_CONTROL = 203 # Control digital camera. This is a fallback message for systems that have not yet implemented PARAM_EXT_XXX messages and camera definition files (see https://mavlink.io/en/services/camera_def.html ). uint16 DO_MOUNT_CONFIGURE = 204 # Mission command to configure a camera or antenna mount uint16 DO_MOUNT_CONTROL = 205 # Mission command to control a camera or antenna mount uint16 DO_SET_CAM_TRIGG_DIST = 206 # Mission command to set camera trigger distance for this flight. The camera is triggered each time this distance is exceeded. This command can also be used to set the shutter integration time for the camera. uint16 DO_FENCE_ENABLE = 207 # Mission command to enable the geofence uint16 DO_PARACHUTE = 208 # Mission command to trigger a parachute uint16 DO_MOTOR_TEST = 209 # Mission command to perform motor test. uint16 DO_INVERTED_FLIGHT = 210 # Change to/from inverted flight. uint16 DO_SET_CAM_TRIGG_INTERVAL = 214 # Mission command to set camera trigger interval for this flight. If triggering is enabled, the camera is triggered each time this interval expires. This command can also be used to set the shutter integration time for the camera. uint16 DO_MOUNT_CONTROL_QUAT = 220 # Mission command to control a camera or antenna mount, using a quaternion as reference. uint16 DO_GUIDED_MASTER = 221 # set id of master controller uint16 DO_GUIDED_LIMITS = 222 # Set limits for external control uint16 DO_ENGINE_CONTROL = 223 # Control vehicle engine. This is interpreted by the vehicles engine controller to change the target engine state. It is intended for vehicles with internal combustion engines uint16 DO_SET_MISSION_CURRENT = 224 # Set the mission item with sequence number seq as current item. This means that the MAV will continue to this mission item on the shortest path (not following the mission items in-between). uint16 DO_LAST = 240 # NOP - This command is only used to mark the upper limit of the DO commands in the enumeration uint16 DO_JUMP_TAG = 601 # Jump to the matching tag in the mission list. Repeat this action for the specified number of times. A mission should contain a single matching tag for each jump. If this is not the case then a jump to a missing tag should complete the mission, and a jump where there are multiple matching tags should always select the one with the lowest mission sequence number. uint16 DO_TRIGGER_CONTROL = 2003
= [ ] mock_do_request.side_effect = [ MockResponse(200, ""), MockResponse(200) ] expected = [ { "lang": "en", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "https://www.scielo.br/j/xjk/a/ldld?format=html&lang=en", "available": True, "status code": 200, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, "components": [ { "type": "pdf", "id": "en", "present_in_html": [], "absent_in_html": [ "/j/xjk/a/ldld?format=pdf&lang=en", "/j/xjk/a/ldld?lang=en&format=pdf", "/j/xjk/a/ldld?format=pdf", "/j/xjk/a/ldld?lang=en", "/j/xjk/a/ldld/?format=pdf&lang=en", "/j/xjk/a/ldld/?lang=en&format=pdf", "/j/xjk/a/ldld/?format=pdf", "/j/xjk/a/ldld/?lang=en", ], }, ], "total expected components": 1, "total missing components": 1, "pdf": {"total": 1, "missing": 1}, "assets": { "total expected": 0, "total missing": 0, "total alternatives": 0, "total alternatives present in html": 0, }, "existing_uri_items_in_html": [], }, { "lang": "en", "format": "pdf", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "https://www.scielo.br/j/xjk/a/ldld?format=pdf&lang=en", "available": True, "status code": 200, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, }, ] object_store_url = None result, summary = check_document_webpages_availability( website_url, doc_data_list, assets_data, object_store_url) self.assertDictEqual({ "web html": {"total": 1, "total unavailable": 0, "total incomplete": 1}, "web pdf": {"total": 1, "total unavailable": 0}, }, summary ) self.assertListEqual(expected, result) @patch("operations.check_website_operations.do_request") def test_check_document_webpages_availability_returns_html_es_is_not_available_although_it_is_present_in_html_en(self, mock_do_request): website_url = "https://www.scielo.br" doc_data_list = [ { "lang": "en", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "/j/xjk/a/ldld?format=html&lang=en", "uri_alternatives": [ "/j/xjk/a/ldld?format=html&lang=en", "/j/xjk/a/ldld?lang=en&format=html", "/j/xjk/a/ldld?format=html", "/j/xjk/a/ldld?lang=en", "/j/xjk/a/ldld/?format=html&lang=en", "/j/xjk/a/ldld/?lang=en&format=html", "/j/xjk/a/ldld/?format=html", "/j/xjk/a/ldld/?lang=en", ], }, { "lang": "es", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "/j/xjk/a/ldld?format=html&lang=es", "uri_alternatives": [ "/j/xjk/a/ldld?format=html&lang=es", "/j/xjk/a/ldld?lang=es&format=html", "/j/xjk/a/ldld?format=html", "/j/xjk/a/ldld?lang=es", "/j/xjk/a/ldld/?format=html&lang=es", "/j/xjk/a/ldld/?lang=es&format=html", "/j/xjk/a/ldld/?format=html", "/j/xjk/a/ldld/?lang=es", ], }, ] assets_data = [ ] mock_do_request.side_effect = [ MockResponse(200, """ Versão ingles no formato html <a href="/j/xjk/a/ldld?format=html&lang=es"/> """ ), MockResponse(None) ] expected = [ { "lang": "en", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "https://www.scielo.br/j/xjk/a/ldld?format=html&lang=en", "available": True, "status code": 200, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, "components": [ { "type": "html", "id": "es", "present_in_html": [ "/j/xjk/a/ldld?format=html&lang=es", ], }, ], "total missing components": 0, "total expected components": 1, "html": {"total": 1, "missing": 0}, "assets": { "total expected": 0, "total missing": 0, "total alternatives": 0, "total alternatives present in html": 0, }, }, { "lang": "es", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "https://www.scielo.br/j/xjk/a/ldld?format=html&lang=es", "available": False, "status code": None, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, "total missing components": 1, "total expected components": 1, }, ] object_store_url = None result, summary = check_document_webpages_availability( website_url, doc_data_list, assets_data, object_store_url) self.assertDictEqual( { "web html": { "total": 2, "total unavailable": 1, "total incomplete": 0}, }, summary ) self.assertListEqual(expected, result) @patch("operations.check_website_operations.do_request") def test_check_document_webpages_availability_returns_html_es_is_available_although_it_is_not_present_in_html_en(self, mock_do_request): website_url = "https://www.scielo.br" doc_data_list = [ { "lang": "en", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "/j/xjk/a/ldld?format=html&lang=en", "uri_alternatives": [ "/j/xjk/a/ldld?format=html&lang=en", "/j/xjk/a/ldld?lang=en&format=html", "/j/xjk/a/ldld?format=html", "/j/xjk/a/ldld?lang=en", "/j/xjk/a/ldld/?format=html&lang=en", "/j/xjk/a/ldld/?lang=en&format=html", "/j/xjk/a/ldld/?format=html", "/j/xjk/a/ldld/?lang=en", ], }, { "lang": "es", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "/j/xjk/a/ldld?format=html&lang=es", "uri_alternatives": [ "/j/xjk/a/ldld?format=html&lang=es", "/j/xjk/a/ldld?lang=es&format=html", "/j/xjk/a/ldld?format=html", "/j/xjk/a/ldld?lang=es", "/j/xjk/a/ldld/?format=html&lang=es", "/j/xjk/a/ldld/?lang=es&format=html", "/j/xjk/a/ldld/?format=html", "/j/xjk/a/ldld/?lang=es", ], }, ] assets_data = [ ] mock_do_request.side_effect = [ MockResponse( 200, "documento sem links, conteúdo do html em Ingles"), MockResponse( 200, """ conteúdo do documento em espanhol com link para a versão ingles <a href="/j/xjk/a/ldld?format=html"/> """ ), ] expected = [ { "lang": "en", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "https://www.scielo.br/j/xjk/a/ldld?format=html&lang=en", "available": True, "status code": 200, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, "components": [ { "type": "html", "id": "es", "present_in_html": [], "absent_in_html": [ "/j/xjk/a/ldld?format=html&lang=es", "/j/xjk/a/ldld?lang=es&format=html", "/j/xjk/a/ldld?format=html", "/j/xjk/a/ldld?lang=es", "/j/xjk/a/ldld/?format=html&lang=es", "/j/xjk/a/ldld/?lang=es&format=html", "/j/xjk/a/ldld/?format=html", "/j/xjk/a/ldld/?lang=es", ], }, ], "total expected components": 1, "total missing components": 1, "html": {"total": 1, "missing": 1}, "assets": { "total expected": 0, "total missing": 0, "total alternatives": 0, "total alternatives present in html": 0, }, "existing_uri_items_in_html": [] }, { "lang": "es", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "https://www.scielo.br/j/xjk/a/ldld?format=html&lang=es", "available": True, "status code": 200, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, "components": [ { "type": "html", "id": "en", "present_in_html": [ "/j/xjk/a/ldld?format=html", ], }, ], "total expected components": 1, "total missing components": 0, "html": {"total": 1, "missing": 0}, "assets": { "total expected": 0, "total missing": 0, "total alternatives": 0, "total alternatives present in html": 0, }, }, ] object_store_url = None result, summary = check_document_webpages_availability( website_url, doc_data_list, assets_data, object_store_url) self.assertDictEqual( { "web html": {"total": 2, "total unavailable": 0, "total incomplete": 1, }, }, summary ) self.assertListEqual(expected, result) class TestCheckDocumentHtml(TestCase): @patch("operations.check_website_operations.datetime") @patch("operations.check_website_operations.requests.get") def test_check_document_html_returns_not_available(self, mock_get, mock_dt): mock_get.return_value = None mock_dt.utcnow.side_effect = [START_TIME, END_TIME] uri = "https://..." assets_data = [] other_webpages_data = [] expected = { "available": False, "status code": None, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, "total expected components": 0, "total missing components": 0, } object_store_url = None result = check_document_html( uri, assets_data, other_webpages_data, object_store_url) self.assertEqual(expected, result) @patch("operations.check_website_operations.datetime") @patch("operations.check_website_operations.requests.get") def test_check_document_html_returns_available_and_empty_components(self, mock_get, mock_dt): mock_response = MockResponse(200, "") mock_get.return_value = mock_response mock_dt.utcnow.side_effect = [START_TIME, END_TIME] uri = "https://..." assets_data = [] other_webpages_data = [] expected = { "available": True, "status code": 200, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, "components": [], "total missing components": 0, "total expected components": 0, "assets": { "total expected": 0, "total missing": 0, "total alternatives": 0, "total alternatives present in html": 0, }, } object_store_url = None result = check_document_html( uri, assets_data, other_webpages_data, object_store_url) self.assertEqual(expected, result) @patch("operations.check_website_operations.datetime") @patch("operations.check_website_operations.requests.get") def test_check_document_html_returns_available_and_components_are_absent(self, mock_get, mock_dt): mock_response = MockResponse(200, "") mock_get.return_value = mock_response mock_dt.utcnow.side_effect = [START_TIME, END_TIME] uri = "https://..." assets_data = [ { "prefix": "asset_uri_1", "uri_alternatives": [ "asset_uri_1.tiff", "asset_uri_1.jpg", "asset_uri_1.png"] }, ] other_webpages_data = [ { "lang": "en", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "/j/xjk/a/ldld?format=html&lang=en", "uri_alternatives": [ "/j/xjk/a/ldld?format=html&lang=en", "/j/xjk/a/ldld?lang=en&format=html", "/j/xjk/a/ldld?format=html", "/j/xjk/a/ldld?lang=en", "/j/xjk/a/ldld/?format=html&lang=en", "/j/xjk/a/ldld/?lang=en&format=html", "/j/xjk/a/ldld/?format=html", "/j/xjk/a/ldld/?lang=en", ], }, ] expected = { "available": True, "status code": 200, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, "components": [ { "type": "asset", "id": "asset_uri_1", "present_in_html": [], "absent_in_html": [ "asset_uri_1.tiff", "asset_uri_1.jpg", "asset_uri_1.png"], }, { "type": "html", "id": "en", "present_in_html": [], "absent_in_html": [ "/j/xjk/a/ldld?format=html&lang=en", "/j/xjk/a/ldld?lang=en&format=html", "/j/xjk/a/ldld?format=html", "/j/xjk/a/ldld?lang=en", "/j/xjk/a/ldld/?format=html&lang=en", "/j/xjk/a/ldld/?lang=en&format=html", "/j/xjk/a/ldld/?format=html", "/j/xjk/a/ldld/?lang=en", ], }, ], "total missing components": 2, "total expected components": 2, "html": {"total": 1, "missing": 1}, "assets": { "total expected": 1, "total missing": 1, "total alternatives": 3, "total alternatives present in html": 0, }, "existing_uri_items_in_html": [] } object_store_url = None result = check_document_html( uri, assets_data, other_webpages_data, object_store_url) self.assertEqual(expected, result) @patch("operations.check_website_operations.datetime") @patch("operations.check_website_operations.requests.get") def test_check_document_html_returns_available_and_components_are_present(self, mock_get, mock_dt): mock_response = MockResponse(200, "") mock_response.text = """ <img src="asset_uri_1.jpg"/> <a href="/j/xjk/a/ldld?lang=en"/> """ mock_get.return_value = mock_response mock_dt.utcnow.side_effect = [START_TIME, END_TIME] uri = "https://..." assets_data = [ { "prefix": "asset_uri_1", "uri_alternatives": [ "asset_uri_1.tiff", "asset_uri_1.jpg", "asset_uri_1.png"] }, ] other_webpages_data = [ { "lang": "en", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "/j/xjk/a/ldld?format=html&lang=en", "uri_alternatives": [ "/j/xjk/a/ldld?format=html&lang=en", "/j/xjk/a/ldld?lang=en&format=html", "/j/xjk/a/ldld?format=html", "/j/xjk/a/ldld?lang=en", "/j/xjk/a/ldld/?format=html&lang=en", "/j/xjk/a/ldld/?lang=en&format=html", "/j/xjk/a/ldld/?format=html", "/j/xjk/a/ldld/?lang=en", ], }, ] expected = { "available": True, "status code": 200, "start time": START_TIME, "end time": END_TIME, "duration": DURATION, "components": [ { "type": "asset", "id": "asset_uri_1", "present_in_html": ["asset_uri_1.jpg"], "absent_in_html": [ "asset_uri_1.tiff", "asset_uri_1.png" ], }, { "type": "html", "id": "en", "present_in_html": [ "/j/xjk/a/ldld?lang=en", ], }, ], "total missing components": 0, "total expected components": 2, "html": {"total": 1, "missing": 0}, "assets": { "total expected": 1, "total missing": 0, "total alternatives": 3, "total alternatives present in html": 1, }, } object_store_url = None result = check_document_html( uri, assets_data, other_webpages_data, object_store_url) self.assertEqual(expected, result) class TestCheckDocumentHtmlContent(TestCase): def test_check_document_html_content_returns_not_available(self): assets_data = [] other_webpages_data = [] expected = { "total expected components": 0, "total missing components": 0, } object_store_url = None result = check_document_html_content( None, assets_data, other_webpages_data, object_store_url) self.assertEqual(expected, result) def test_check_document_html_content_returns_available_and_empty_components(self): assets_data = [] other_webpages_data = [] expected = { "components": [], "total missing components": 0, "total expected components": 0, "assets": { "total expected": 0, "total missing": 0, "total alternatives": 0, "total alternatives present in html": 0, }, } object_store_url = None result = check_document_html_content( "", assets_data, other_webpages_data, object_store_url) self.assertEqual(expected, result) def test_check_document_html_content_returns_available_and_components_are_absent(self): assets_data = [ { "prefix": "asset_uri_1", "uri_alternatives": [ "asset_uri_1.tiff", "asset_uri_1.jpg", "asset_uri_1.png"] }, ] other_webpages_data = [ { "lang": "en", "format": "html", "pid_v2": "pid-v2", "acron": "xjk", "doc_id_for_human": "artigo-1234", "doc_id": "ldld", "uri": "/j/xjk/a/ldld?format=html&lang=en", "uri_alternatives": [ "/j/xjk/a/ldld?format=html&lang=en", "/j/xjk/a/ldld?lang=en&format=html", "/j/xjk/a/ldld?format=html", "/j/xjk/a/ldld?lang=en", "/j/xjk/a/ldld/?format=html&lang=en", "/j/xjk/a/ldld/?lang=en&format=html", "/j/xjk/a/ldld/?format=html", "/j/xjk/a/ldld/?lang=en", ], }, ] expected = { "components": [ { "type":
<gh_stars>0 """ This module handles conversion of POP files to JSON files in ESPEI format """ from sympy.parsing.sympy_parser import parse_expr from pyparsing import * from pop_keywords import expand_keyword, POP_COMMANDS print("""WARNING! This module is VERY experimental. You will most likely get failures or incorrect answers. You should check all of your data instead of assuming it is correct. Please report any errors so that this module can be improved.""") __author__ = "<NAME> <<EMAIL>>, <NAME> <<EMAIL>>" class ExperimentSet(dict): """ Experiment set, which is a stored as a dictionary. The reason for the subclass is to store metadata about the experiment set while it is being constructed by parsing. Once it is constructed, there is no use for having a class because the data will be fully populated as a normal dictionary. """ def update(self, E=None, **F): """ Overrides dict update to return self (for lambda functions) """ super(ExperimentSet, self).update(E, **F) return self class POPCommand(CaselessKeyword): """ Parser element for dealing with POP command abbreviations. """ def parseImpl(self, instring, loc, doActions=True): # Find the end of the keyword by searching for an end character # TODO: how much of this do I need? start = loc endchars = ' ():,' loc = -1 for charx in endchars: locx = instring.find(charx, start) if locx != -1: # match the end-character closest to the start character if loc != -1: loc = min(loc, locx) else: loc = locx # if no end character found, just match the whole thing if loc == -1: loc = len(instring) try: res = expand_keyword([self.match], instring[start:loc]) if len(res) > 1: self.errmsg = '{0!r} is ambiguous: matches {1}' \ .format(instring[start:loc], res) raise ParseException(instring, loc, self.errmsg, self) # res[0] is the unambiguous expanded keyword # in principle, res[0] == self.match return loc, res[0] except ValueError: pass raise ParseException(instring, loc, self.errmsg, self) def _pop_grammar(): """ Returns the pyparsing grammar for a POP file. """ # pyparsing "constants" sCOMMA = Suppress(',') # supresses int_number = Word(nums).setParseAction(lambda t: [int(t[0])]) # matching float w/ regex is ugly but is recommended by pyparsing float_number = (Regex(r'[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?') | '0') \ .setParseAction(lambda t: [float(t[0])]) # symbol name, e.g., phase name or equilibrium name symbol_name = Word(alphanums + '_:', min=1) equalities = Word('=') ^ Word('<') ^ Word('>') pm = oneOf('+ -') label = Word('@' + nums) value = (float_number | int_number | label | symbol_name) const = Group(symbol_name + equalities + value) phases = Group(OneOrMore(symbol_name + Optional(sCOMMA))) | '*' prop_prefix = symbol_name + Suppress('(') + phases + Suppress(')') property = Group(prop_prefix + equalities + value) expr = Group(OneOrMore(prop_prefix | float_number | oneOf('. + - / * ( )') | symbol_name)) arith_cond = Group(OneOrMore(Optional(Word(nums) + '*') + prop_prefix + Optional( pm)) + equalities + value) # an arithmetic matcher for complex conditions error = Group(Suppress(':') + float_number + Optional('%')) sERROR = Suppress(error) cmd_equilibrium = POPCommand('CREATE_NEW_EQUILIBRIUM') + (Word('@@,') ^ int_number) + Optional( sCOMMA) + int_number # TODO: implement changing status of other things phase_statuses = ((POPCommand('FIXED') ^ POPCommand('ENTERED')) + float_number) | POPCommand( 'DORMANT') | POPCommand('SUSPENDED') cmd_change_status = POPCommand('CHANGE_STATUS') + POPCommand('PHASE') + phases + Suppress( '=') + Group(phase_statuses) enter_const = POPCommand('CONSTANT') + Group(OneOrMore(const)) enter_func_var = (POPCommand('FUNCTION') | POPCommand('VARIABLE')) + Group(symbol_name + '=' + expr) enter_table = POPCommand('TABLE') # TODO: implement cmd_en_symbol = POPCommand('ENTER_SYMBOL') + (enter_const | enter_func_var | enter_table) cmd_table_head = POPCommand('TABLE_HEAD') + int_number cmd_table_values = POPCommand('TABLE_VALUES') + sCOMMA + Group( delimitedList(Group(OneOrMore(float_number)))) + Suppress(POPCommand('TABLE_END')) cmd_set_ref_state = POPCommand('SET_REFERENCE_STATE') + symbol_name + Optional(sCOMMA) + symbol_name + Optional( OneOrMore(sCOMMA)) # TODO: should these default values be handled? cmd_set_condition = POPCommand('SET_CONDITION') + OneOrMore( (arith_cond | property | const) + Optional(sERROR) + Optional(sCOMMA)) cmd_label = POPCommand('LABEL_DATA') + OneOrMore(Word(alphanums)) cmd_alternate = POPCommand('SET_ALTERNATE_CONDITION') + OneOrMore( Group((property | const) + sERROR) + Optional(sCOMMA)) cmd_experiment_phase = POPCommand('EXPERIMENT') + OneOrMore( Group((property | const) + sERROR) + Optional(sCOMMA)) cmd_start_value = POPCommand('SET_START_VALUE') + OneOrMore( (arith_cond | property | const) + Optional(sERROR) + Optional(sCOMMA)) cmd_save = POPCommand('SAVE_WORKSPACES') return ( cmd_equilibrium | cmd_change_status | cmd_en_symbol | cmd_table_head | cmd_table_values | cmd_set_ref_state | cmd_set_condition | cmd_label | cmd_alternate | cmd_experiment_phase | cmd_start_value | cmd_save) + Optional( Suppress(';')) + stringEnd def unpack_parse_results(parse_results): """ Recursively unpacks parse results and return the unpacked result. Args: parse_results (ParseResults): a tuple of a list of values and dict of names. The list may contain nested ParseResults Returns: list: List of the intended structure """ results_list = [] for result in parse_results: if isinstance(result, ParseResults): results_list.append(unpack_parse_results(result)) else: results_list.append(result) return results_list def _unimplemented(*args, **kwargs): """ Wrapper to raise NotImplementedError This should be used when a command that affects the data is unimplmented. If the command does not affect the data, then `_pass` should be used. """ raise NotImplementedError def _pass(*args, **kwargs): """ Pass is intended for POP commands that do not impact the data Commands that do impact the data should use `_unimplemented` """ return args[0] # return the experiment unchanged def _new_equilibrium(_, name, code): """ Args: _ (ExperimentSet): The old experiment set. Will not be used. name (str): The name code given to the new equilibrium. Unused. code (The ): The initilization code for the equilibrium Returns: Possible initialization codes: 0: suspend all phases and components 1: enter all components only 2: enter all """ if code == 1: return ExperimentSet() else: _unimplemented() def _process_phases(exp, status_type, phases, status): """ Get the phases from change status Args: exp (ExperimentSet): The current experiment set status_type (str): What to change the status of e.g. a PHASE phases ([str]): A list of phase names status ([str, int?]): A string denoting the status with an optional int for the numerical representation Returns: """ if status_type != 'PHASE': _unimplemented() # TODO: fixed vs entered in implementation? if status[0] == 'FIXED' or status[0] == 'ENTERED' or status[0][:3] == 'DOR': existing_phases = exp.get("phases", {}) if status[0][:3] == 'DOR': status = status.asList() status.append("DORMANT") exp["phases"] = {phase: status[1] for phase in phases} for existing_phase in existing_phases: exp["phases"][existing_phase] = existing_phases[existing_phase] elif status[0] == 'SUSPENDED': pass return exp def construct_symbol(symbol_list): """ Get a SymPy representation from brute force concatenating and parsing Args: symbol_list ([str*, float*, int*]): Strings, floats and/or ints describing the symbol symbolically Returns: Expr: A SymPy expression constructed from the SymPy parser """ symbol_string = '' for s in symbol_list: if s == '.': s = '*d' # handle derivatives. TODO: improve derivative handling elif '@' in str(s): # print(type(s)) s = str(s).replace('@', 'col') # replace column reference, '@' with 'col' # print(str(s)) if isinstance(s, ParseResults): s = unpack_parse_results(s) new_s = '_' for sub_s in s: new_s = ''.join([new_s, sub_s]) s = new_s symbol_string = ''.join([symbol_string,str(s)]) expr = parse_expr(symbol_string) return expr def _process_symbols(exp, symbol_type, symbols): """ Args: exp (ExperimentSet): The current experiment set symbol_type (str): CONSTANT, FUNCTION, or TABLE symbols ([[str]]): List of symbol names and values usually ["SYM","=","VALUE"] Returns: ExperimentSet: the passed experiment set object """ if symbol_type == 'CONSTANT': exp_symbols = exp.get('symbols', {}) for symbol in symbols: # we are going to assume that the first value in an array is the symbol name, # the second is '=' and the remaining are symbolic and can be constructed with SymPy exp_symbols[symbol[0]] = construct_symbol(symbol[2:]) exp["symbols"] = exp_symbols elif symbol_type == 'FUNCTION': exp_symbols = exp.get('symbols', {}) # we are going to assume that the first value in an array is the symbol name, # the second is '=' and the remaining are symbolic and can be constructed with SymPy exp_symbols[symbols[0]] = construct_symbol(symbols[2]) exp["symbols"] = exp_symbols elif symbol_type == 'TABLE': raise NotImplementedError return exp def _process_experiment(exp, experiments): exp_experiments = exp.get('experiments', []) for experiment in experiments: d = {} d["property"] = experiment[0] # print(experiment) # directly create a symbolic equation with all of the if isinstance(experiment[1], ParseResults): # assume the format prop(phase) (=/>/<) symbol is followed d["phases"] = experiment[1] d["equality"] = experiment[2] d["symbol_repr"] = construct_symbol(experiment[3:]) else: # assume prop (=/>/<) symbol d["equality"] = experiment[1] d["symbol_repr"] = construct_symbol(experiment[2:]) exp_experiments.append(d) exp["experiments"] = exp_experiments return exp def _process_condition(exp, *conditions): exp["conditions"] = exp.get('conditions', []) for cond in conditions: d = {} d["property"] = cond[0] if isinstance(cond[1], ParseResults): # assume the format prop(phase) (=/>/<)
= SymmetricFunctions(QQ) sage: e = NCSym.e() sage: elem = Sym.e() sage: elt = e.from_symmetric_function(elem[2,1,1]); elt 1/12*e{{1}, {2}, {3, 4}} + 1/12*e{{1}, {2, 3}, {4}} + 1/12*e{{1}, {2, 4}, {3}} + 1/12*e{{1, 2}, {3}, {4}} + 1/12*e{{1, 3}, {2}, {4}} + 1/12*e{{1, 4}, {2}, {3}} sage: elem(elt.to_symmetric_function()) e[2, 1, 1] sage: e.from_symmetric_function(elem[4]) 1/24*e{{1, 2, 3, 4}} sage: p = NCSym.p() sage: pow = Sym.p() sage: elt = p.from_symmetric_function(pow[2,1,1]); elt 1/6*p{{1}, {2}, {3, 4}} + 1/6*p{{1}, {2, 3}, {4}} + 1/6*p{{1}, {2, 4}, {3}} + 1/6*p{{1, 2}, {3}, {4}} + 1/6*p{{1, 3}, {2}, {4}} + 1/6*p{{1, 4}, {2}, {3}} sage: pow(elt.to_symmetric_function()) p[2, 1, 1] sage: p.from_symmetric_function(pow[4]) p{{1, 2, 3, 4}} sage: h = NCSym.h() sage: comp = Sym.complete() sage: elt = h.from_symmetric_function(comp[2,1,1]); elt 1/12*h{{1}, {2}, {3, 4}} + 1/12*h{{1}, {2, 3}, {4}} + 1/12*h{{1}, {2, 4}, {3}} + 1/12*h{{1, 2}, {3}, {4}} + 1/12*h{{1, 3}, {2}, {4}} + 1/12*h{{1, 4}, {2}, {3}} sage: comp(elt.to_symmetric_function()) h[2, 1, 1] sage: h.from_symmetric_function(comp[4]) 1/24*h{{1, 2, 3, 4}} """ m = self.realization_of().m() return self(m.from_symmetric_function(f)) def primitive(self, A, i=1): r""" Return the primitive associated to ``A`` in ``self``. .. SEEALSO:: :meth:`~sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.powersum.primitive` INPUT: - ``A`` -- a set partition - ``i`` -- a positive integer OUTPUT: - an element of ``self`` EXAMPLES:: sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e() sage: elt = e.primitive(SetPartition([[1,3],[2]])); elt e{{1, 2}, {3}} - e{{1, 3}, {2}} sage: elt.coproduct() e{} # e{{1, 2}, {3}} - e{} # e{{1, 3}, {2}} + e{{1, 2}, {3}} # e{} - e{{1, 3}, {2}} # e{} """ p = self.realization_of().p() return self(p.primitive(A, i)) @abstract_method(optional = True) def internal_coproduct_on_basis(self, i): """ The internal coproduct of the algebra on the basis (optional). INPUT: - ``i`` -- the indices of an element of the basis of ``self`` OUTPUT: - an element of the tensor squared of ``self`` EXAMPLES:: sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m() sage: m.internal_coproduct_on_basis(SetPartition([[1,2]])) m{{1, 2}} # m{{1, 2}} """ @lazy_attribute def internal_coproduct(self): """ Compute the internal coproduct of ``self``. If :meth:`internal_coproduct_on_basis()` is available, construct the internal coproduct morphism from ``self`` to ``self`` `\otimes` ``self`` by extending it by linearity. Otherwise, this uses :meth:`internal_coproduct_by_coercion()`, if available. OUTPUT: - an element of the tensor squared of ``self`` EXAMPLES:: sage: cp = SymmetricFunctionsNonCommutingVariables(QQ).cp() sage: cp.internal_coproduct(cp[[1,3],[2]] - 2*cp[[1]]) -2*cp{{1}} # cp{{1}} + cp{{1, 2, 3}} # cp{{1, 3}, {2}} + cp{{1, 3}, {2}} # cp{{1, 2, 3}} + cp{{1, 3}, {2}} # cp{{1, 3}, {2}} """ if self.internal_coproduct_on_basis is not NotImplemented: return Hom(self, tensor([self, self]), ModulesWithBasis(self.base_ring()))(on_basis=self.internal_coproduct_on_basis) elif hasattr(self, "internal_coproduct_by_coercion"): return self.internal_coproduct_by_coercion def internal_coproduct_by_coercion(self, x): r""" Return the internal coproduct by coercing the element to the powersum basis. INPUT: - ``x`` -- an element of ``self`` OUTPUT: - an element of the tensor squared of ``self`` EXAMPLES:: sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h() sage: h[[1,3],[2]].internal_coproduct() # indirect doctest 2*h{{1}, {2}, {3}} # h{{1}, {2}, {3}} - h{{1}, {2}, {3}} # h{{1, 3}, {2}} - h{{1, 3}, {2}} # h{{1}, {2}, {3}} + h{{1, 3}, {2}} # h{{1, 3}, {2}} """ R = self.realization_of().a_realization() return self.tensor_square().sum(coeff * tensor([self(R[A]), self(R[B])]) for ((A, B), coeff) in R(x).internal_coproduct()) class ElementMethods: def expand(self, n, alphabet='x'): r""" Expand the symmetric function into ``n`` non-commuting variables in an alphabet, which by default is ``'x'``. This computation is completed by coercing the element ``self`` into the monomial basis and computing the expansion in the ``alphabet`` there. INPUT: - ``n`` -- the number of variables in the expansion - ``alphabet`` -- (default: ``'x'``) the alphabet in which ``self`` is to be expanded OUTPUT: - an expansion of ``self`` into the ``n`` non-commuting variables specified by ``alphabet`` EXAMPLES:: sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h() sage: h[[1,3],[2]].expand(3) 2*x0^3 + x0^2*x1 + x0^2*x2 + 2*x0*x1*x0 + x0*x1^2 + x0*x1*x2 + 2*x0*x2*x0 + x0*x2*x1 + x0*x2^2 + x1*x0^2 + 2*x1*x0*x1 + x1*x0*x2 + x1^2*x0 + 2*x1^3 + x1^2*x2 + x1*x2*x0 + 2*x1*x2*x1 + x1*x2^2 + x2*x0^2 + x2*x0*x1 + 2*x2*x0*x2 + x2*x1*x0 + x2*x1^2 + 2*x2*x1*x2 + x2^2*x0 + x2^2*x1 + 2*x2^3 sage: x = SymmetricFunctionsNonCommutingVariables(QQ).x() sage: x[[1,3],[2]].expand(3) -x0^2*x1 - x0^2*x2 - x0*x1^2 - x0*x1*x2 - x0*x2*x1 - x0*x2^2 - x1*x0^2 - x1*x0*x2 - x1^2*x0 - x1^2*x2 - x1*x2*x0 - x1*x2^2 - x2*x0^2 - x2*x0*x1 - x2*x1*x0 - x2*x1^2 - x2^2*x0 - x2^2*x1 """ m = self.parent().realization_of().monomial() return m(self).expand(n, alphabet) def to_symmetric_function(self): r""" Compute the projection of an element of symmetric function in non-commuting variables to the symmetric functions. The projection of a monomial symmetric function in non-commuting variables indexed by the set partition ``A`` is defined as .. MATH:: \mathbf{m}_A \mapsto m_{\lambda(A)} \prod_i n_i(\lambda(A))! where `\lambda(A)` is the partition associated with `A` by taking the sizes of the parts and `n_i(\mu)` is the multiplicity of `i` in `\mu`. For other bases this map is extended linearly. OUTPUT: - an element of the symmetric functions in the monomial basis EXAMPLES:: sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: e = NCSym.e() sage: h = NCSym.h() sage: p = NCSym.p() sage: cp = NCSym.cp() sage: x = NCSym.x() sage: cp[[1,3],[2]].to_symmetric_function() m[2, 1] sage: x[[1,3],[2]].to_symmetric_function() -6*m[1, 1, 1] - 2*m[2, 1] sage: e[[1,3],[2]].to_symmetric_function() 2*e[2, 1] sage: h[[1,3],[2]].to_symmetric_function() 2*h[2, 1] sage: p[[1,3],[2]].to_symmetric_function() p[2, 1] """ m = self.parent().realization_of().monomial() return m(self).to_symmetric_function() def internal_coproduct(self): """ Return the internal coproduct of ``self``. The internal coproduct is defined on the power sum basis as .. MATH:: \mathbf{p}_A \mapsto \mathbf{p}_A \otimes \mathbf{p}_A and the map is extended linearly. OUTPUT: - an element of the tensor square of the basis of ``self`` EXAMPLES:: sage: x = SymmetricFunctionsNonCommutingVariables(QQ).x() sage: x[[1,3],[2]].internal_coproduct() x{{1}, {2}, {3}} # x{{1, 3}, {2}} + x{{1, 3}, {2}} # x{{1}, {2}, {3}} + x{{1, 3}, {2}} # x{{1, 3}, {2}} """ return self.parent().internal_coproduct(self) def omega(self): """ Return the involution `\omega` applied to ``self``. The involution `\omega` is defined by .. MATH:: \mathbf{e}_A \mapsto \mathbf{h}_A and the result is extended linearly. OUTPUT: - an element in the same basis as ``self`` EXAMPLES:: sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: m = NCSym.m() sage: m[[1,3],[2]].omega() -2*m{{1, 2, 3}} - m{{1, 3}, {2}} sage: p = NCSym.p() sage: p[[1,3],[2]].omega() -p{{1, 3}, {2}} sage: cp = NCSym.cp() sage: cp[[1,3],[2]].omega() -2*cp{{1, 2, 3}} - cp{{1, 3}, {2}} sage: x = NCSym.x() sage: x[[1,3],[2]].omega() -2*x{{1}, {2}, {3}} - x{{1, 3}, {2}} """ P = self.parent() e = P.realization_of().e() h = P.realization_of().h() return P(h.sum_of_terms(e(self))) class MultiplicativeNCSymBases(Category_realization_of_parent): r""" Category of multiplicative bases of symmetric functions in non-commuting variables. A multiplicative basis is one for which `\mathbf{b}_A \mathbf{b}_B = \mathbf{b}_{A|B}` where `A|B` is the :meth:`~sage.combinat.set_partition.SetPartition.pipe` operation on set partitions. EXAMPLES:: sage: from sage.combinat.ncsym.bases import MultiplicativeNCSymBases sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: MultiplicativeNCSymBases(NCSym) Category of multiplicative bases of symmetric functions in non-commuting variables over the Rational Field """ def super_categories(self): r""" Return the super categories of bases of the Hopf dual of the symmetric functions in non-commuting variables. OUTPUT: - a list of categories TESTS:: sage: from sage.combinat.ncsym.bases import MultiplicativeNCSymBases sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: MultiplicativeNCSymBases(NCSym).super_categories() [Category of bases of symmetric functions in non-commuting variables over the Rational Field] """ return [NCSymBases(self.base())] def _repr_(self): r""" Return a string representation of ``self``. TESTS:: sage: from sage.combinat.ncsym.bases import MultiplicativeNCSymBases sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: MultiplicativeNCSymBases(NCSym) Category of multiplicative bases of symmetric functions in non-commuting variables over the Rational Field """ return "Category of multiplicative bases of symmetric functions in non-commuting"\ " variables over the {}".format(self.base().base_ring()) class ParentMethods: def product_on_basis(self, A, B): r""" The product on basis elements. The product on a multiplicative basis is given by `\mathbf{b}_A \cdot \mathbf{b}_B = \mathbf{b}_{A | B}`. The bases `\{ \mathbf{e}, \mathbf{h}, \mathbf{x}, \mathbf{cp}, \mathbf{p}, \mathbf{chi}, \mathbf{rho} \}` are all multiplicative. INPUT: - ``A``, ``B`` -- set partitions OUTPUT: - an element in the basis ``self`` EXAMPLES:: sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e() sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h() sage: x = SymmetricFunctionsNonCommutingVariables(QQ).x() sage: cp = SymmetricFunctionsNonCommutingVariables(QQ).cp() sage: p = SymmetricFunctionsNonCommutingVariables(QQ).p() sage: chi = SymmetricFunctionsNonCommutingVariables(QQ).chi() sage: rho = SymmetricFunctionsNonCommutingVariables(QQ).rho() sage: A = SetPartition([[1], [2, 3]]) sage: B = SetPartition([[1], [3], [2,4]]) sage: e.product_on_basis(A, B) e{{1}, {2, 3}, {4}, {5, 7},
if len(list_sentences) > 1: split_match = TMSplitMatch([TMUtilsMatching.pre_process(q.split(' '), self.src_lang, 'untokenizer', {}) for q in list_sentences], [], self.src_lang, self.tgt_lang, 'sentence', self.machine_translation, self.domain) src_text, tgt_text, editSplit = split_match._match() #print('*****Only sentences *****') #print(src_text) #print(tgt_text) #print(editSplit) if editSplit >= self.min_match: # Check if split method return segments from ActivaTM segment.source_text, segment.target_text, editD = src_text, tgt_text, editSplit else: # Split in small phrase # Check if exist split for an especific pairs of languages lang_class = G_CONFIG.get_split_rules(self.src_lang, self.tgt_lang) if lang_class: logging.info("Split Query by Phrase") all_split, all_marks = self._splitByPhrase(lang_class, list_sentences) # Check if any split rule was applied if len(all_split) > 1: # print(list_query_split) split_match = TMSplitMatch(all_split, all_marks, self.src_lang, self.tgt_lang, 'phrase', self.machine_translation, self.domain) src_text, tgt_text, editSplit = split_match._match() if editSplit >= self.min_match: #Check if split method return segments from ActivaTM segment.source_text, segment.target_text, editD = src_text, tgt_text, editSplit if editD >= self.min_match: status = 'find' status_tokenizer = True else: if not self.trans_segments: #If doesn't found any match, prepare segment to automatic translation. If there aren't automatic translation, then return [] #logging.info("Prepare Automatic Translation : ") self.trans_segments.append((segment, editD)) status = 'break' # If exist segment on the list, break the for and there aren't translation return segment, editD, status, equal, status_tokenizer # Send and input sentence into subsegments usng rules based on posTag annotation def _splitByPhrase(self, lang_class, list_sentences): splitTask = TMMatching.split_source(lang_class, self.src_lang) # class with the rule for specific language and language list_word_pos = [] if 'pos' in self.query_dic: i = 0 for each_sent in list_sentences: # Create word_pos len_e = len(each_sent.split()) list_word_pos.append([(w, p) for w, p in zip(each_sent.split(), self.query_dic['pos'].split()[i:i + len_e])]) i = i + len_e # TODO: Call another method to applied other rules that don't need posTag anotation --> ELSE STATEMENT ''' if list_sentences: i = 0 for each_sent in list_sentences: # Create word_pos len_e = len(each_sent.split()) list_word_pos.append([(w, p) for w, p in zip(each_sent.split(), self.query_dic['pos'].split()[i:i + len_e])]) i = i + len_e else: if 'pos' in self.query_dic: list_word_pos.append([(w, p) for w, p in zip(self.query_dic['tokenizer'].split(), self.query_dic['pos'].split())]) ''' all_split = [] all_marks = [] for sentence in list_word_pos: segmentsStructure = splitTask.clause_chunk(sentence) # preProcess.split_process(p_segments) logging.info("split INFO : {} ".format(segmentsStructure)) # print(segmentsStructure) list_query_split, list_marks_split = splitTask.split_output(segmentsStructure) if len(list_query_split) > 1: for e_part in list_query_split: all_split.append(e_part) if list_marks_split: all_marks.append(list_marks_split.pop(0)) else: all_split.append(sentence) all_marks.append([]) logging.info("split Output : {} ".format(all_split)) logging.info("split Sequences : {} ".format(all_marks)) return all_split, all_marks #*********General Functions*********** def _deals_output(self, segment, editD, trans_segments, status_tokenizer, status): if self.out == 'moses': # Moses output is tokenizer if status_tokenizer == False:# tokenize output segment.source_text = TMUtilsMatching.pre_process(segment.source_text, self.src_lang, 'tokenizer', {}) segment.target_text = TMUtilsMatching.pre_process(segment.target_text, self.tgt_lang, 'tokenizer', {}) trans_segments.append((segment, editD)) return trans_segments, 'break' else: if status_tokenizer == True: # TM output is untokenizer segment.target_text = TMUtilsMatching.pre_process(segment.target_text.split(' '), self.tgt_lang, 'untokenizer', {}) segment.source_text = TMUtilsMatching.pre_process(segment.source_text.split(' '), self.src_lang, 'untokenizer', {}) trans_segments.append((segment, editD)) if status == 'translate': status = 'break' else: status = 'continue' #if editD == 100: # Add this if to obtain better matching time # status = 'break' logging.info("Final Output (Query -- Source -- Target): {} {} {}".format(safe_str(self.query_dic['query'] + ' -- '), safe_str(segment.source_text + ' -- '), safe_str(segment.target_text))) return trans_segments, status def style_string(self, src_text, tgt_text, status_tokenizer): #Check upper and lower case if src_text and tgt_text: src_text, tgt_text = self._transform_case(src_text, tgt_text) # Transfer XML tags (if needed) self.timer.start("transfer_tags") if re.search("</?[^<>]+/?>", self.query) is not None: # transfer tags only if query has and tgt and src don't status_tokenizer = True if (re.search("</?[^<>]+/?>", src_text) is None): src_text = TMUtilsMatching.transfer_tags(self.query, src_text, (self.src_lang, self.tgt_lang)) if (re.search("</?[^<>]+/?>", tgt_text) is None): tgt_text = TMUtilsMatching.transfer_tags(self.query, tgt_text, (self.src_lang, self.tgt_lang)) self.timer.stop("transfer_tags") return src_text, tgt_text, status_tokenizer def _transform_case(self, src_text, tgt_text): #All cases (first word phrase; all first word and all upper all lower) if self.query.istitle(): # All the first words are upper src_text = src_text.title() tgt_text = tgt_text.title() else: if self.query[0].istitle(): #Only the first word is upper src_text = src_text[0].upper() + src_text[1:] tgt_text = tgt_text[0].upper() + tgt_text[1:] if self.query.isupper(): # All in upper case src_text = src_text.upper() tgt_text = tgt_text.upper() if self.query.islower(): # All in lower case src_text = src_text.lower() tgt_text = tgt_text.lower() return src_text, tgt_text def _preprocess(self): self.query_dic['query'] = self.query if re.search("<.*>", self.query): # Uniform tags --> # Yo tengo un <b>gato</b>. --> Yo tengo un <T1>gato</T1> self.query_dic['query_tags'] = TMUtilsMatching.pre_process(self.query, (self.src_lang, self.tgt_lang), 'tags', {}) self.query_dic['query'] = self.query_dic['query_tags'] # query now have the tags <T1>gato</T1> if 'regex' in self.pipe: self.query_dic['query_re'] = TMUtilsMatching.pre_process(self.query_dic['query'], self.src_lang, 'reg_exp', self.match['regex'].re_pp) else: self.query_dic['query_re'] = self.query_dic['query'] self.query_dic['query_re_reduce'] = TMRegexMatch.simplified_name(self.query_dic['query_re']) return self.query_dic # Good explanation about editdistance --> http://stackoverflow.com/questions/10405440/percentage-rank-of-matches-using-levenshtein-distance-matching # http://math.stackexchange.com/questions/1776860/convert-levenshtein-distance-to-percents # Ways to estimate the match percent --> https://www.tm-town.com/blog/the-fuzziness-of-fuzzy-matches def _tm_edit_distance(self, q_text, s_text, q_simplified, s_simplified): # Corner case - matching artificial empty segment -> giving minimal score if q_text and not s_text.strip(): return 1 #Always reduce the tags to count only one element ''' print('**original**') print(q_text) print('**src**') print(s_text) print('**originalS**') print(q_simplified) print('**srcS**') print(s_simplified) ''' # 1) ********** Obtain words and stop words sequences q_onlyW, q_st_word = TMMatching._only_word_sequence(q_text, self.src_lang) s_onlyW, s_st_word = TMMatching._only_word_sequence(s_text, self.src_lang) ''' print(q_onlyW) print(s_onlyW) print(q_st_word) print(s_st_word) ''' if not q_onlyW and not q_st_word: #print(self.src_lang) #if self.src_lang=='zh': editD = 100 - (TMUtilsMatching._edit_distance(q_text, s_text)) #* 100 else: # Normal editDistance, without puntuation marks and only word, without stop words nchar_diff = TMUtilsMatching._edit_distance(' '.join(q_onlyW), ' '.join(s_onlyW)) # Consider all the words, without any substitution #print(q_onlyW) #print(s_onlyW) nchar_len = len(' '.join(q_onlyW)) + len(' '.join(s_onlyW)) if nchar_len == 0: nchar_len = 1 #print(nchar_len) char_diff = (2*nchar_diff)/(nchar_len) # total of charaters # 2) ********* Simplified --> Convert to letter and keep only puntuation marks q_replaceW, q_onlyS = TMMatching._symbol_sequence(q_simplified) # Original query # Ex. '- 3.67 housing units constructed under the $ # home % ownership saving scheme in the Hanano/ and (Hamdaniya districts;' --> - N N N N N N $ # N % N N N N N N/ N (N N; s_replaceW, s_onlyS = TMMatching._symbol_sequence(s_simplified) # Original tm_src if (len(s_onlyS) == 0 and len(q_onlyS) == 0): # There are not symbol n_symbol_diff = 0 else: n_symbol_diff = TMUtilsMatching._edit_distance(q_replaceW, s_replaceW) #(' '.join(q_onlyS), ' '.join(s_onlyS))/2# len_symbols = len(q_replaceW.split(' ')) + len(q_replaceW.split(' ')) # len(q_onlyS) + len(s_onlyS) if len_symbols == 0: len_symbols = 1 symbol_diff = (2*n_symbol_diff)/len_symbols # 3) ********* Exist or not exist the query words on source nword_diff = set(q_onlyW).difference(s_onlyW) # Replace regular expression by only one word onlyW_len = len(q_onlyW) if onlyW_len == 0: onlyW_len = 1 word_diff = (len(nword_diff))/onlyW_len # only query words # 4) ********* Stop words stop_words = True if (len(q_st_word) == 0 and len(s_st_word) == 0): # There are not stop word or this language doesn't have stop words list stop_words = False if stop_words: n_st_diff = TMUtilsMatching._edit_distance(' '.join(q_st_word), ' '.join(s_st_word)) len_stop_word = len(' '.join(q_st_word)) + len(' '.join(s_st_word)) stop_word_diff = (2 * n_st_diff)/len_stop_word editD = (1 - ((0.70 * (char_diff)) + (0.10 * (word_diff)) + (0.10 * (symbol_diff)) + (0.10 * (stop_word_diff)))) * 100 else: editD = (1 - ((0.70 * (char_diff)) + (0.15 * (word_diff)) + (0.15 * (symbol_diff)))) * 100 if editD < 0: editD = 10 return int(math.floor(editD)) # Match Kanji --> u'[\u4E00-\u9FFF]+' # Match Hiragana --> u'[\u3040-\u309Fー]+' # Match Katakana --> u'[\u30A0-\u30FF]+ @staticmethod def _only_word_sequence(text, lang): # Receive original sequence only_word = [] only_st = [] l_src_st = TMUtilsMatching.check_stopwords(lang) for match in re.finditer(r'[a-zA-Z0-9\u4e00-\u9fff\u3040-\u309Fー\u30A0-\u30FF]+', text): # Get all the words and numbers if l_src_st: # For some language we don't have stopwords list if match.group() in l_src_st: only_st.append(match.group()) else: only_st.append('P') only_word.append(match.group()) return only_word, only_st @staticmethod def _symbol_sequence(text): # Receive simplified sequence, without elements match with regular expression only_symbol = [] for match in re.finditer(r'[a-zA-Z0-9\u4e00-\u9fff\u3040-\u309Fー\u30A0-\u30FF]+', text): text = text.replace(match.group(), 'P', 1) # Replace all words by for match in re.finditer(r'[^\w\s]', text): only_symbol.append(match.group()) # Obtain list os symbols # r'[^a-zA-Z0-9\s]+' return text, only_symbol # Input : list of segments; query # Output: Sort the list of all the segmets [(segment, editD); ...(segment, editD)] considering edit distance def _match_rank(self, best_segments): self.timer.start("rank segments") editD_score = [] if 'query_tags' in self.query_dic: # Simplified tags query = TMUtilsMatching.reduce_tags(self.query_dic['query_tags']) # Yo tengo un <T1>gato</T1>. Yo tengo un T
<reponame>aalmah/Theano<gh_stars>0 """ Define abstract conv2d interface """ import logging import theano from theano.tensor import (as_tensor_variable, patternbroadcast) from theano.tensor import TensorType from theano.gof import Apply, Op from theano.gof import local_optimizer from theano.tensor.opt import register_specialize_device # Cpu implementation from theano.tensor.nnet import conv2d as cpu_conv2d, ConvOp from theano.tensor.nnet.ConvGrad3D import convGrad3D from theano.tensor.nnet.ConvTransp3D import convTransp3D __docformat__ = "restructuredtext en" _logger = logging.getLogger("theano.tensor.nnet.conv2d") def conv2d(input, filters, input_shape=None, filter_shape=None, border_mode='valid', subsample=(1, 1), filter_flip=True): """ This function will build the symbolic graph for convolving a mini-batch of a stack of 2D inputs with a set of 2D filters. The implementation is modelled after Convolutional Neural Networks (CNN). :type input: symbolic 4D tensor :param input: mini-batch of feature map stacks, of shape (batch size, input channels, input rows, input columns). See the optional parameter ``input_shape``. :type filters: symbolic 4D tensor :param filters: set of filters used in CNN layer of shape (output channels, input channels, filter rows, filter columns). See the optional parameter ``filter_shape``. :type input_shape: None, tuple/list of len 4 of int or Constant variable :param input_shape: The shape of the input parameter. Optional, possibly used to choose an optimal implementation. You can give ``None`` for any element of the list to specify that this element is not known at compile time. :type filter_shape: None, tuple/list of len 4 of int or Constant variable :param filter_shape: The shape of the filters parameter. Optional, possibly used to choose an optimal implementation. You can give ``None`` for any element of the list to specify that this element is not known at compile time. :type border_mode: str, int or tuple of two int :param border_mode: Either of the following: * ``'valid'``: apply filter wherever it completely overlaps with the input. Generates output of shape: input shape - filter shape + 1 * ``'full'``: apply filter wherever it partly overlaps with the input. Generates output of shape: input shape + filter shape - 1 * ``'half'``: pad input with a symmetric border of ``filter rows // 2`` rows and ``filter columns // 2`` columns, then perform a valid convolution. For filters with an odd number of rows and columns, this leads to the output shape being equal to the input shape. * ``int``: pad input with a symmetric border of zeros of the given width, then perform a valid convolution. * ``(int1, int2)``: pad input with a symmetric border of ``int1`` rows and ``int2`` columns, then perform a valid convolution. :type subsample: tuple of len 2 :param subsample: factor by which to subsample the output. Also called strides elsewhere. :type filter_flip: bool :param filter_flip: If ``True``, will flip the filter rows and columns before sliding them over the input. This operation is normally referred to as a convolution, and this is the default. If ``False``, the filters are not flipped and the operation is referred to as a cross-correlation. :rtype: symbolic 4D tensor :return: set of feature maps generated by convolutional layer. Tensor is of shape (batch size, output channels, output rows, output columns) """ conv_op = AbstractConv2d(imshp=input_shape, kshp=filter_shape, border_mode=border_mode, subsample=subsample, filter_flip=filter_flip) return conv_op(input, filters) class BaseAbstractConv2d(Op): """ Base class for AbstractConv Define an abstract convolution op that will be replaced with the appropriate implementation :type imshp: None, tuple/list of len 4 of int or Constant variable :param imshp: The shape of the input parameter. Optional, possibly used to choose an optimal implementation. You can give ``None`` for any element of the list to specify that this element is not known at compile time. imshp is defined w.r.t the forward conv. :type kshp: None, tuple/list of len 4 of int or Constant variable :param kshp: The shape of the filters parameter. Optional, possibly used to choose an optimal implementation. You can give ``None`` for any element of the list to specify that this element is not known at compile time. kshp is defined w.r.t the forward conv. :type border_mode: str, int or tuple of two int :param border_mode: Either of the following: * ``'valid'``: apply filter wherever it completely overlaps with the input. Generates output of shape: input shape - filter shape + 1 * ``'full'``: apply filter wherever it partly overlaps with the input. Generates output of shape: input shape + filter shape - 1 * ``'half'``: pad input with a symmetric border of ``filter rows // 2`` rows and ``filter columns // 2`` columns, then perform a valid convolution. For filters with an odd number of rows and columns, this leads to the output shape being equal to the input shape. * ``int``: pad input with a symmetric border of zeros of the given width, then perform a valid convolution. * ``(int1, int2)``: pad input with a symmetric border of ``int1`` rows and ``int2`` columns, then perform a valid convolution. :type subsample: tuple of len 2 :param subsample: factor by which to subsample the output. Also called strides elsewhere. :type filter_flip: bool :param filter_flip: If ``True``, will flip the filter rows and columns before sliding them over the input. This operation is normally referred to as a convolution, and this is the default. If ``False``, the filters are not flipped and the operation is referred to as a cross-correlation. """ check_broadcast = False __props__ = ('border_mode', 'subsample', 'filter_flip', 'imshp', 'kshp') def __init__(self, imshp=None, kshp=None, border_mode="valid", subsample=(1, 1), filter_flip=True): if isinstance(border_mode, int): border_mode = (border_mode, border_mode) if isinstance(border_mode, tuple): pad_h, pad_w = map(int, border_mode) border_mode = (pad_h, pad_w) if not ((isinstance(border_mode, tuple) and min(border_mode) >= 0) or border_mode in ('valid', 'full', 'half')): raise ValueError( 'invalid border_mode {}, which must be either ' '"valid", "full", "half", an integer or a pair of' ' integers'.format(border_mode)) self.imshp = imshp self.kshp = kshp self.border_mode = border_mode self.filter_flip = filter_flip if len(subsample) != 2: raise ValueError("subsample must have two elements") self.subsample = subsample def flops(self, inp, outp): """ Useful with the hack in profilemode to print the MFlops""" # if the output shape is correct, then this gives the correct # flops for any direction, sampling, padding, and border mode inputs, filters = inp outputs, = outp assert inputs[1] == filters[1] # nb mul and add by output pixel flops = filters[2] * filters[3] * 2 # nb flops by output image flops *= outputs[2] * outputs[3] # nb patch multiplied flops *= inputs[1] * filters[0] * inputs[0] return flops class AbstractConv2d(BaseAbstractConv2d): """ Abstract Op for the forward convolution. """ def __init__(self, imshp=None, kshp=None, border_mode="valid", subsample=(1, 1), filter_flip=True): super(AbstractConv2d, self).__init__(imshp, kshp, border_mode, subsample, filter_flip) def make_node(self, img, kern): if img.type.ndim != 4: raise TypeError('img must be 4D tensor') if kern.type.ndim != 4: raise TypeError('kern must be 4D tensor') broadcastable = [img.broadcastable[0], kern.broadcastable[0], False, False] output = img.type.clone(broadcastable=broadcastable)() return Apply(self, [img, kern], [output]) def perform(self, node, inp, out_): raise NotImplementedError('AbstractConv2d theano optimization failed') def grad(self, inp, grads): bottom, weights = inp top, = grads d_bottom = AbstractConv2d_gradInputs(self.imshp, self.kshp, self.border_mode, self.subsample, self.filter_flip)( weights, top, bottom.shape[-2:]) d_weights = AbstractConv2d_gradWeights(self.imshp, self.kshp, self.border_mode, self.subsample, self.filter_flip)( bottom, top, weights.shape[-2:]) return d_bottom, d_weights class AbstractConv2d_gradWeights(BaseAbstractConv2d): """Gradient wrt. filters for `AbstractConv2d`. :note: You will not want to use this directly, but rely on Theano's automatic differentiation or graph optimization to use it as needed. """ def __init__(self, imshp=None, kshp=None, border_mode="valid", subsample=(1, 1), filter_flip=True): super(AbstractConv2d_gradWeights, self).__init__(imshp, kshp, border_mode, subsample, filter_flip) # Update shape/height_width def make_node(self, img, topgrad, shape): if img.type.ndim != 4: raise TypeError('img must be 4D tensor') if topgrad.type.ndim != 4: raise TypeError('topgrad must be 4D tensor') shape = as_tensor_variable(shape) broadcastable = [topgrad.broadcastable[1], img.broadcastable[1], False, False] output = img.type.clone(broadcastable=broadcastable)() return Apply(self, [img, topgrad, shape], [output]) def perform(self, node, inp, out_): raise NotImplementedError('AbstractConv2d_gradWeight theano optimization failed') def grad(self, inp, grads): bottom, top = inp[:2] weights, = grads d_bottom = AbstractConv2d_gradInputs(self.imshp, self.kshp, self.border_mode, self.subsample, self.filter_flip)(weights, top, bottom.shape[-2:]) d_top = AbstractConv2d(self.imshp, self.kshp, self.border_mode, self.subsample, self.filter_flip)(bottom, weights) d_height_width = (theano.gradient.DisconnectedType()(),) return (d_bottom, d_top) + d_height_width def connection_pattern(self, node): return [[1], [1], [0]] # no connection to height, width class AbstractConv2d_gradInputs(BaseAbstractConv2d): """Gradient wrt. inputs for `AbstractConv2d`. :note: You will
import datetime import json from flask_sqlalchemy import SQLAlchemy from sqlalchemy import Column, Integer, String, Boolean, ForeignKey, Float, \ Enum, DateTime, Numeric, Text, Unicode, UnicodeText from sqlalchemy import event from sqlalchemy.dialects.mysql import LONGTEXT from sqlalchemy.sql import func from sqlalchemy.orm import relationship, backref from sqlalchemy.schema import UniqueConstraint from sqlalchemy_i18n import make_translatable, translation_base, Translatable make_translatable(options={'locales': ['pt', 'en'], 'auto_create_locales': True, 'fallback_locale': 'en'}) db = SQLAlchemy() # noinspection PyClassHasNoInit class DataSourceFormat: CSV = 'CSV' CUSTOM = 'CUSTOM' GEO_JSON = 'GEO_JSON' JDBC = 'JDBC' IMAGE_FOLDER = 'IMAGE_FOLDER' DATA_FOLDER = 'DATA_FOLDER' HAR_IMAGE_FOLDER = 'HAR_IMAGE_FOLDER' HDF5 = 'HDF5' HIVE = 'HIVE' JSON = 'JSON' NPY = 'NPY' PICKLE = 'PICKLE' PARQUET = 'PARQUET' SAV = 'SAV' SHAPEFILE = 'SHAPEFILE' TAR_IMAGE_FOLDER = 'TAR_IMAGE_FOLDER' TEXT = 'TEXT' VIDEO_FOLDER = 'VIDEO_FOLDER' XML_FILE = 'XML_FILE' UNKNOWN = 'UNKNOWN' @staticmethod def values(): return [n for n in list(DataSourceFormat.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class DataSourceInitialization: NO_INITIALIZED = 'NO_INITIALIZED' INITIALIZING = 'INITIALIZING' INITIALIZED = 'INITIALIZED' @staticmethod def values(): return [n for n in list(DataSourceInitialization.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class ModelType: KERAS = 'KERAS' MLEAP = 'MLEAP' PERFORMANCE_SPARK = 'PERFORMANCE_SPARK' PERFORMANCE_KERAS = 'PERFORMANCE_KERAS' SPARK_ML_CLASSIFICATION = 'SPARK_ML_CLASSIFICATION' SPARK_ML_REGRESSION = 'SPARK_ML_REGRESSION' SPARK_MLLIB_CLASSIFICATION = 'SPARK_MLLIB_CLASSIFICATION' UNSPECIFIED = 'UNSPECIFIED' @staticmethod def values(): return [n for n in list(ModelType.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class DeploymentStatus: NOT_DEPLOYED = 'NOT_DEPLOYED' ERROR = 'ERROR' EDITING = 'EDITING' SAVED = 'SAVED' RUNNING = 'RUNNING' STOPPED = 'STOPPED' SUSPENDED = 'SUSPENDED' PENDING = 'PENDING' DEPLOYED = 'DEPLOYED' @staticmethod def values(): return [n for n in list(DeploymentStatus.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class StorageType: MONGODB = 'MONGODB' ELASTIC_SEARCH = 'ELASTIC_SEARCH' HDFS = 'HDFS' HIVE = 'HIVE' HIVE_WAREHOUSE = 'HIVE_WAREHOUSE' KAFKA = 'KAFKA' LOCAL = 'LOCAL' JDBC = 'JDBC' CASSANDRA = 'CASSANDRA' @staticmethod def values(): return [n for n in list(StorageType.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class DataType: BINARY = 'BINARY' CHARACTER = 'CHARACTER' DATE = 'DATE' DATETIME = 'DATETIME' DECIMAL = 'DECIMAL' DOUBLE = 'DOUBLE' ENUM = 'ENUM' FILE = 'FILE' FLOAT = 'FLOAT' INTEGER = 'INTEGER' LAT_LONG = 'LAT_LONG' LONG = 'LONG' TEXT = 'TEXT' TIME = 'TIME' TIMESTAMP = 'TIMESTAMP' VECTOR = 'VECTOR' @staticmethod def values(): return [n for n in list(DataType.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class AttributeForeignKeyDirection: FROM = 'FROM' TO = 'TO' @staticmethod def values(): return [n for n in list(AttributeForeignKeyDirection.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class PrivacyRiskType: IDENTIFICATION = 'IDENTIFICATION' @staticmethod def values(): return [n for n in list(PrivacyRiskType.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class PermissionType: READ = 'READ' WRITE = 'WRITE' MANAGE = 'MANAGE' @staticmethod def values(): return [n for n in list(PermissionType.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class AnonymizationTechnique: ENCRYPTION = 'ENCRYPTION' GENERALIZATION = 'GENERALIZATION' SUPPRESSION = 'SUPPRESSION' MASK = 'MASK' NO_TECHNIQUE = 'NO_TECHNIQUE' @staticmethod def values(): return [n for n in list(AnonymizationTechnique.__dict__.keys()) if n[0] != '_' and n != 'values'] # noinspection PyClassHasNoInit class PrivacyType: IDENTIFIER = 'IDENTIFIER' QUASI_IDENTIFIER = 'QUASI_IDENTIFIER' SENSITIVE = 'SENSITIVE' NON_SENSITIVE = 'NON_SENSITIVE' @staticmethod def values(): return [n for n in list(PrivacyType.__dict__.keys()) if n[0] != '_' and n != 'values'] # Association tables definition class Attribute(db.Model): """ Data source attribute. """ __tablename__ = 'attribute' # Fields id = Column(Integer, primary_key=True) name = Column(String(100), nullable=False) description = Column(String(500)) type = Column(Enum(*list(DataType.values()), name='DataTypeEnumType'), nullable=False) size = Column(Integer) precision = Column(Integer) scale = Column(Integer) nullable = Column(Boolean, default=False, nullable=False) enumeration = Column(Boolean, default=False, nullable=False) missing_representation = Column(String(200)) feature = Column(Boolean, default=True, nullable=False) label = Column(Boolean, default=True, nullable=False) distinct_values = Column(Integer) mean_value = Column(Float) median_value = Column(String(200)) max_value = Column(String(200)) min_value = Column(String(200)) std_deviation = Column(Float) missing_total = Column(String(200)) deciles = Column(LONGTEXT) format = Column(String(100)) key = Column(Boolean, default=False, nullable=False) # Associations data_source_id = Column(Integer, ForeignKey("data_source.id", name="fk_attribute_data_source_id"), nullable=False, index=True) data_source = relationship( "DataSource", overlaps='attributes', foreign_keys=[data_source_id], backref=backref("attributes", cascade="all, delete-orphan")) attribute_privacy = relationship( "AttributePrivacy", uselist=False, back_populates="attribute", lazy='joined') def __str__(self): return self.name def __repr__(self): return '<Instance {}: {}>'.format(self.__class__, self.id) class AttributeForeignKey(db.Model): """ Attribute that form a foreign key in data sources """ __tablename__ = 'attribute_foreign_key' # Fields id = Column(Integer, primary_key=True) order = Column(Integer, nullable=False) direction = Column(Enum(*list(AttributeForeignKeyDirection.values()), name='AttributeForeignKeyDirectionEnumType'), nullable=False) # Associations foreign_key_id = Column(Integer, ForeignKey("data_source_foreign_key.id", name="fk_attribute_foreign_key_foreign_key_id"), nullable=False, index=True) foreign_key = relationship( "DataSourceForeignKey", overlaps='attributes', foreign_keys=[foreign_key_id], backref=backref("attributes", cascade="all, delete-orphan")) from_attribute_id = Column(Integer, ForeignKey("attribute.id", name="fk_attribute_foreign_key_from_attribute_id"), nullable=False, index=True) from_attribute = relationship( "Attribute", overlaps='foreign_keys', foreign_keys=[from_attribute_id], backref=backref("foreign_keys", cascade="all, delete-orphan")) to_attribute_id = Column(Integer, ForeignKey("attribute.id", name="fk_attribute_foreign_key_to_attribute_id"), nullable=False, index=True) to_attribute = relationship( "Attribute", overlaps='references', foreign_keys=[to_attribute_id], backref=backref("references", cascade="all, delete-orphan")) def __str__(self): return self.order def __repr__(self): return '<Instance {}: {}>'.format(self.__class__, self.id) class AttributePrivacy(db.Model): """ Privacy configuration for an attribute. """ __tablename__ = 'attribute_privacy' # Fields id = Column(Integer, primary_key=True) attribute_name = Column(String(200), nullable=False) data_type = Column(Enum(*list(DataType.values()), name='DataTypeEnumType')) privacy_type = Column(Enum(*list(PrivacyType.values()), name='PrivacyTypeEnumType'), nullable=False) category_technique = Column(String(100)) anonymization_technique = Column(Enum(*list(AnonymizationTechnique.values()), name='AnonymizationTechniqueEnumType'), nullable=False) hierarchical_structure_type = Column(String(100)) privacy_model_technique = Column(String(100)) hierarchy = Column(LONGTEXT) category_model = Column(LONGTEXT) privacy_model = Column(LONGTEXT) privacy_model_parameters = Column(LONGTEXT) unlock_privacy_key = Column(String(400)) is_global_law = Column(Boolean, default=False) # Associations attribute_id = Column(Integer, ForeignKey("attribute.id", name="fk_attribute_privacy_attribute_id"), index=True) attribute = relationship( "Attribute", overlaps='attribute_privacy', foreign_keys=[attribute_id], back_populates="attribute_privacy") attribute_privacy_group_id = Column(Integer, ForeignKey("attribute_privacy_group.id", name="fk_attribute_privacy_attribute_privacy_group_id"), index=True) attribute_privacy_group = relationship( "AttributePrivacyGroup", overlaps='attribute_privacy', foreign_keys=[attribute_privacy_group_id], backref=backref("attribute_privacy", cascade="all, delete-orphan")) def __str__(self): return self.attribute_name def __repr__(self): return '<Instance {}: {}>'.format(self.__class__, self.id) class AttributePrivacyGroup(db.Model): """ Groups attributes with same semantic """ __tablename__ = 'attribute_privacy_group' # Fields id = Column(Integer, primary_key=True) name = Column(String(100), nullable=False) user_id = Column(Integer, nullable=False) def __str__(self): return self.name def __repr__(self): return '<Instance {}: {}>'.format(self.__class__, self.id) class DataSource(db.Model): """ Data source in Lemonade system (anything that stores data. """ __tablename__ = 'data_source' # Fields id = Column(Integer, primary_key=True) name = Column(String(100), nullable=False) description = Column(String(500)) enabled = Column(Boolean, default=True, nullable=False) statistics_process_counter = Column(Integer, default=0, nullable=False) read_only = Column(Boolean, default=True, nullable=False) privacy_aware = Column(Boolean, default=False, nullable=False) url = Column(String(200), nullable=False) created = Column(DateTime, default=func.now(), nullable=False) updated = Column(DateTime, default=datetime.datetime.utcnow, nullable=False, onupdate=datetime.datetime.utcnow) format = Column(Enum(*list(DataSourceFormat.values()), name='DataSourceFormatEnumType'), nullable=False) initialization = Column(Enum(*list(DataSourceInitialization.values()), name='DataSourceInitializationEnumType'), default=DataSourceInitialization.INITIALIZED, nullable=False) initialization_job_id = Column(String(200)) provenience = Column(LONGTEXT) estimated_rows = Column(Integer, default=0) estimated_size_in_mega_bytes = Column(Numeric(10, 2)) expiration = Column(String(200)) user_id = Column(Integer) user_login = Column(String(50)) user_name = Column(String(200)) tags = Column(String(100)) temporary = Column(Boolean, default=False, nullable=False) workflow_id = Column(Integer) task_id = Column(String(200)) attribute_delimiter = Column(String(20)) record_delimiter = Column(String(20)) text_delimiter = Column(String(20)) is_public = Column(Boolean, default=False, nullable=False) treat_as_missing = Column(LONGTEXT) encoding = Column(String(200)) is_first_line_header = Column(Boolean, default=0, nullable=False) is_multiline = Column(Boolean, default=0, nullable=False) command = Column(LONGTEXT) is_lookup = Column(Boolean, default=0, nullable=False) use_in_workflow = Column(Boolean, default=0, nullable=False, index=True) # Associations storage_id = Column(Integer, ForeignKey("storage.id", name="fk_data_source_storage_id"), nullable=False, index=True) storage = relationship( "Storage", overlaps='storage', foreign_keys=[storage_id]) def __str__(self): return self.name def __repr__(self): return '<Instance {}: {}>'.format(self.__class__, self.id) class DataSourceForeignKey(db.Model): """ Foreign key in data sources """ __tablename__ = 'data_source_foreign_key' # Fields id = Column(Integer, primary_key=True) # Associations from_source_id = Column(Integer, ForeignKey("data_source.id", name="fk_data_source_foreign_key_from_source_id"), nullable=False, index=True) from_source = relationship( "DataSource", overlaps='foreign_keys', foreign_keys=[from_source_id], backref=backref("foreign_keys", cascade="all, delete-orphan")) to_source_id = Column(Integer, ForeignKey("data_source.id", name="fk_data_source_foreign_key_to_source_id"), nullable=False, index=True) to_source = relationship( "DataSource", overlaps='references', foreign_keys=[to_source_id], backref=backref("references", cascade="all, delete-orphan")) def __str__(self): return 'DataSourceForeignKey' def __repr__(self): return '<Instance {}: {}>'.format(self.__class__, self.id) class DataSourcePermission(db.Model): """ Associate users and permissions """ __tablename__ = 'data_source_permission' # Fields id = Column(Integer, primary_key=True) permission = Column(Enum(*list(PermissionType.values()), name='PermissionTypeEnumType'), nullable=False) user_id = Column(Integer, nullable=False) user_login = Column(String(50), nullable=False) user_name = Column(String(200), nullable=False) # Associations data_source_id = Column(Integer, ForeignKey("data_source.id", name="fk_data_source_permission_data_source_id"), nullable=False, index=True) data_source = relationship( "DataSource", overlaps='permissions', foreign_keys=[data_source_id], backref=backref("permissions", cascade="all, delete-orphan")) def __str__(self): return self.permission def __repr__(self): return '<Instance {}: {}>'.format(self.__class__, self.id) class Model(db.Model): """ Machine learning model """ __tablename__ = 'model' # Fields id = Column(Integer, primary_key=True) name = Column(String(100), nullable=False) enabled = Column(Boolean, default=True, nullable=False) created = Column(DateTime, default=func.now(), nullable=False) path = Column(String(500), nullable=False) class_name = Column(String(500), nullable=False) type = Column(Enum(*list(ModelType.values()), name='ModelTypeEnumType'), default=ModelType.UNSPECIFIED, nullable=False) deployment_status = Column(Enum(*list(DeploymentStatus.values()), name='DeploymentStatusEnumType'), default=DeploymentStatus.NOT_DEPLOYED, nullable=False) user_id = Column(Integer, nullable=False) user_login = Column(String(50), nullable=False) user_name = Column(String(200), nullable=False) workflow_id = Column(Integer) workflow_name = Column(String(200)) task_id = Column(String(200)) job_id = Column(Integer) # Associations storage_id = Column(Integer, ForeignKey("storage.id", name="fk_model_storage_id"), nullable=False, index=True) storage = relationship( "Storage", overlaps='storage', foreign_keys=[storage_id]) def __str__(self): return self.name def __repr__(self): return '<Instance {}: {}>'.format(self.__class__, self.id) class ModelPermission(db.Model): """
<gh_stars>0 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """Convenient library for data statistics generation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import logging import multiprocessing import os import tempfile import apache_beam as beam from apache_beam.options.pipeline_options import PipelineOptions from joblib import delayed from joblib import Parallel import numpy as np import pandas as pd import tensorflow as tf from tensorflow_data_validation import types from tensorflow_data_validation.api import stats_api from tensorflow_data_validation.coders import csv_decoder from tensorflow_data_validation.coders import tf_example_decoder from tensorflow_data_validation.statistics import stats_impl from tensorflow_data_validation.statistics import stats_options as options from tensorflow_data_validation.statistics.generators import stats_generator from tensorflow_data_validation.types_compat import Any, List, Optional, Text from tensorflow_metadata.proto.v0 import schema_pb2 from tensorflow_metadata.proto.v0 import statistics_pb2 def generate_statistics_from_tfrecord( data_location, output_path = None, stats_options = options.StatsOptions(), pipeline_options = None, ): """Compute data statistics from TFRecord files containing TFExamples. Runs a Beam pipeline to compute the data statistics and return the result data statistics proto. This is a convenience method for users with data in TFRecord format. Users with data in unsupported file/data formats, or users who wish to create their own Beam pipelines need to use the 'GenerateStatistics' PTransform API directly instead. Args: data_location: The location of the input data files. output_path: The file path to output data statistics result to. If None, we use a temporary directory. It will be a TFRecord file containing a single data statistics proto, and can be read with the 'load_statistics' API. If you run this function on Google Cloud, you must specify an output_path. Specifying None may cause an error. stats_options: `tfdv.StatsOptions` for generating data statistics. pipeline_options: Optional beam pipeline options. This allows users to specify various beam pipeline execution parameters like pipeline runner (DirectRunner or DataflowRunner), cloud dataflow service project id, etc. See https://cloud.google.com/dataflow/pipelines/specifying-exec-params for more details. Returns: A DatasetFeatureStatisticsList proto. """ if output_path is None: output_path = os.path.join(tempfile.mkdtemp(), 'data_stats.tfrecord') output_dir_path = os.path.dirname(output_path) if not tf.gfile.Exists(output_dir_path): tf.gfile.MakeDirs(output_dir_path) # PyLint doesn't understand Beam PTransforms. # pylint: disable=no-value-for-parameter with beam.Pipeline(options=pipeline_options) as p: # Auto detect tfrecord file compression format based on input data # path suffix. _ = ( p | 'ReadData' >> beam.io.ReadFromTFRecord(file_pattern=data_location) | 'DecodeData' >> tf_example_decoder.DecodeTFExample() | 'GenerateStatistics' >> stats_api.GenerateStatistics(stats_options) # TODO(b/112014711) Implement a custom sink to write the stats proto. | 'WriteStatsOutput' >> beam.io.WriteToTFRecord( output_path, shard_name_template='', coder=beam.coders.ProtoCoder( statistics_pb2.DatasetFeatureStatisticsList))) return load_statistics(output_path) def generate_statistics_from_csv( data_location, column_names = None, delimiter = ',', output_path = None, stats_options = options.StatsOptions(), pipeline_options = None, ): """Compute data statistics from CSV files. Runs a Beam pipeline to compute the data statistics and return the result data statistics proto. This is a convenience method for users with data in CSV format. Users with data in unsupported file/data formats, or users who wish to create their own Beam pipelines need to use the 'GenerateStatistics' PTransform API directly instead. Args: data_location: The location of the input data files. column_names: A list of column names to be treated as the CSV header. Order must match the order in the input CSV files. If this argument is not specified, we assume the first line in the input CSV files as the header. Note that this option is valid only for 'csv' input file format. delimiter: A one-character string used to separate fields in a CSV file. output_path: The file path to output data statistics result to. If None, we use a temporary directory. It will be a TFRecord file containing a single data statistics proto, and can be read with the 'load_statistics' API. If you run this function on Google Cloud, you must specify an output_path. Specifying None may cause an error. stats_options: `tfdv.StatsOptions` for generating data statistics. pipeline_options: Optional beam pipeline options. This allows users to specify various beam pipeline execution parameters like pipeline runner (DirectRunner or DataflowRunner), cloud dataflow service project id, etc. See https://cloud.google.com/dataflow/pipelines/specifying-exec-params for more details. Returns: A DatasetFeatureStatisticsList proto. """ if output_path is None: output_path = os.path.join(tempfile.mkdtemp(), 'data_stats.tfrecord') output_dir_path = os.path.dirname(output_path) if not tf.gfile.Exists(output_dir_path): tf.gfile.MakeDirs(output_dir_path) # PyLint doesn't understand Beam PTransforms. # pylint: disable=no-value-for-parameter with beam.Pipeline(options=pipeline_options) as p: # If a header is not provided, assume the first line in a file # to be the header. skip_header_lines = 1 if column_names is None else 0 if column_names is None: column_names = get_csv_header(data_location, delimiter) _ = ( p | 'ReadData' >> beam.io.textio.ReadFromText( file_pattern=data_location, skip_header_lines=skip_header_lines) | 'DecodeData' >> csv_decoder.DecodeCSV( column_names=column_names, delimiter=delimiter, schema=stats_options.schema, infer_type_from_schema=stats_options.infer_type_from_schema) | 'GenerateStatistics' >> stats_api.GenerateStatistics(stats_options) # TODO(b/112014711) Implement a custom sink to write the stats proto. | 'WriteStatsOutput' >> beam.io.WriteToTFRecord( output_path, shard_name_template='', coder=beam.coders.ProtoCoder( statistics_pb2.DatasetFeatureStatisticsList))) return load_statistics(output_path) def generate_statistics_from_dataframe( dataframe, stats_options = options.StatsOptions(), n_jobs = 1 ): """Compute data statistics for the input pandas DataFrame. This is a utility method for users with in-memory data represented as a pandas DataFrame. Args: dataframe: Input pandas DataFrame. stats_options: `tfdv.StatsOptions` for generating data statistics. n_jobs: Number of processes to run (defaults to 1). If -1 is provided, uses the same number of processes as the number of CPU cores. Returns: A DatasetFeatureStatisticsList proto. """ if not isinstance(dataframe, pd.DataFrame): raise TypeError('dataframe argument is of type {}. Must be a ' 'pandas DataFrame.'.format(type(dataframe).__name__)) stats_generators = stats_impl.get_generators(stats_options, in_memory=True) # type: List[stats_generator.CombinerStatsGenerator] if n_jobs < -1 or n_jobs == 0: raise ValueError('Invalid n_jobs parameter {}. Should be either ' ' -1 or >= 1.'.format(n_jobs)) if n_jobs == -1: n_jobs = multiprocessing.cpu_count() n_jobs = max(min(n_jobs, multiprocessing.cpu_count()), 1) if n_jobs == 1: merged_partial_stats = _generate_partial_statistics_from_df( dataframe, stats_options, stats_generators) else: # TODO(pachristopher): Investigate why we don't observe linear speedup after # a certain number of processes. splits = np.array_split(dataframe, n_jobs) partial_stats = Parallel(n_jobs=n_jobs)( delayed(_generate_partial_statistics_from_df)( splits[i], stats_options, stats_generators) for i in range(n_jobs)) merged_partial_stats = [ gen.merge_accumulators(stats) for gen, stats in zip(stats_generators, zip(*partial_stats)) ] return stats_impl.extract_statistics_output( merged_partial_stats, stats_generators) def _generate_partial_statistics_from_df( dataframe, stats_options, stats_generators ): """Generate accumulators containing partial stats.""" inmemory_dicts = [{} for _ in range(len(dataframe))] isnull = pd.isnull # Initialize decoding fn based on column type. int_fn = lambda x: np.array([x], dtype=np.integer) float_fn = lambda x: None if isnull(x) else np.array([x], dtype=np.floating) str_fn = lambda x: None if isnull(x) else np.array([x], dtype=np.object) decode_fn = { # int type. 'i': int_fn, 'u': int_fn, # float type. 'f': float_fn, # bool type. 'b': int_fn, # string type. 'S': str_fn, 'O': str_fn, 'U': str_fn, } schema = schema_pb2.Schema() for col_name, col_type in zip(dataframe.columns, dataframe.dtypes): kind = col_type.kind if kind not in decode_fn: logging.warning('Ignoring feature %s of type %s', col_name, col_type) continue if kind == 'b': # Track bool type feature as categorical. schema.feature.add( name=col_name, type=schema_pb2.INT, bool_domain=schema_pb2.BoolDomain()) # Get decoding fn based on column type. fn = decode_fn[kind] # Iterate over the column and apply the decoding fn. j = 0 for val in dataframe[col_name]: inmemory_dicts[j][col_name] = fn(val) j += 1 if schema.feature: stats_options.schema = schema return stats_impl.generate_partial_statistics_in_memory( inmemory_dicts, stats_options, stats_generators) def get_csv_header(data_location, delimiter): """Gets the CSV header from the input files. This function assumes that the header is present as the first line in all the files in the input path. Args: data_location: Glob pattern(s) specifying the location of the input data files. delimiter: A one-character string used to separate fields in a CSV file. Returns: The list of column names. Raises: ValueError: If any of the input files is not found or empty, or if the files have different headers. """ matched_files = tf.gfile.Glob(data_location) if not matched_files: raise ValueError( 'No file found in the input data location: %s' % data_location) # Read the header line in the first file. with tf.gfile.GFile(matched_files[0], 'r') as reader: try: result = next(csv.reader(reader, delimiter=delimiter)) except StopIteration: raise ValueError('Found empty file when reading the header line: %s' % matched_files[0]) # Make sure that all files have the same header. for filename in matched_files[1:]: with tf.gfile.GFile(filename,
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest import Serializer, Deserializer from typing import Any, AsyncIterable, Callable, Dict, Generic, IO, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.core.polling.async_base_polling import AsyncLROBasePolling class FormRecognizerClientOperationsMixin(object): async def begin_analyze_business_card_async( self, include_text_details: Optional[bool] = False, locale: Optional[str] = None, file_stream: Optional[Union[IO, "models.SourcePath"]] = None, **kwargs ) -> AsyncLROPoller[None]: """Analyze Business Card. Extract field text and semantic values from a given business card document. The input document must be of one of the supported content types - 'application/pdf', 'image/jpeg', 'image/png' or 'image/tiff'. Alternatively, use 'application/json' type to specify the location (Uri) of the document to be analyzed. :param include_text_details: Include text lines and element references in the result. :type include_text_details: bool :param locale: Locale of the business card. Supported locales include: en-AU, en-CA, en-GB, en- IN, en-US(default). :type locale: str :param file_stream: .json, .pdf, .jpg, .png or .tiff type file stream. :type file_stream: IO or ~azure.ai.formrecognizer.models.SourcePath :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ api_version = self._get_api_version('begin_analyze_business_card_async') if api_version == '2.1-preview.1': from ..v2_1_preview_1.aio.operations import FormRecognizerClientOperationsMixin as OperationClass else: raise ValueError("API version {} does not have operation 'begin_analyze_business_card_async'".format(api_version)) mixin_instance = OperationClass() mixin_instance._client = self._client mixin_instance._config = self._config mixin_instance._serialize = Serializer(self._models_dict(api_version)) mixin_instance._serialize.client_side_validation = False mixin_instance._deserialize = Deserializer(self._models_dict(api_version)) return await mixin_instance.begin_analyze_business_card_async(include_text_details, locale, file_stream, **kwargs) async def begin_analyze_layout_async( self, file_stream: Optional[Union[IO, "models.SourcePath"]] = None, **kwargs ) -> AsyncLROPoller[None]: """Analyze Layout. Extract text and layout information from a given document. The input document must be of one of the supported content types - 'application/pdf', 'image/jpeg', 'image/png' or 'image/tiff'. Alternatively, use 'application/json' type to specify the location (Uri or local path) of the document to be analyzed. :param file_stream: .json, .pdf, .jpg, .png or .tiff type file stream. :type file_stream: IO or ~azure.ai.formrecognizer.models.SourcePath :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ api_version = self._get_api_version('begin_analyze_layout_async') if api_version == '2.0': from ..v2_0.aio.operations import FormRecognizerClientOperationsMixin as OperationClass elif api_version == '2.1-preview.1': from ..v2_1_preview_1.aio.operations import FormRecognizerClientOperationsMixin as OperationClass else: raise ValueError("API version {} does not have operation 'begin_analyze_layout_async'".format(api_version)) mixin_instance = OperationClass() mixin_instance._client = self._client mixin_instance._config = self._config mixin_instance._serialize = Serializer(self._models_dict(api_version)) mixin_instance._serialize.client_side_validation = False mixin_instance._deserialize = Deserializer(self._models_dict(api_version)) return await mixin_instance.begin_analyze_layout_async(file_stream, **kwargs) async def begin_analyze_receipt_async( self, include_text_details: Optional[bool] = False, locale: Optional[str] = None, file_stream: Optional[Union[IO, "models.SourcePath"]] = None, **kwargs ) -> AsyncLROPoller[None]: """Analyze Receipt. Extract field text and semantic values from a given receipt document. The input document must be of one of the supported content types - 'application/pdf', 'image/jpeg', 'image/png' or 'image/tiff'. Alternatively, use 'application/json' type to specify the location (Uri) of the document to be analyzed. :param include_text_details: Include text lines and element references in the result. :type include_text_details: bool :param locale: Locale of the receipt. Supported locales include: en-AU, en-CA, en-GB, en-IN, en-US(default). :type locale: str :param file_stream: .json, .pdf, .jpg, .png or .tiff type file stream. :type file_stream: IO or ~azure.ai.formrecognizer.models.SourcePath :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ api_version = self._get_api_version('begin_analyze_receipt_async') if api_version == '2.0': from ..v2_0.aio.operations import FormRecognizerClientOperationsMixin as OperationClass elif api_version == '2.1-preview.1': from ..v2_1_preview_1.aio.operations import FormRecognizerClientOperationsMixin as OperationClass else: raise ValueError("API version {} does not have operation 'begin_analyze_receipt_async'".format(api_version)) mixin_instance = OperationClass() mixin_instance._client = self._client mixin_instance._config = self._config mixin_instance._serialize = Serializer(self._models_dict(api_version)) mixin_instance._serialize.client_side_validation = False mixin_instance._deserialize = Deserializer(self._models_dict(api_version)) # FIXME: this is handwritten if api_version == '2.0': return await mixin_instance.begin_analyze_receipt_async(include_text_details, file_stream, **kwargs) elif api_version == '2.1-preview.1': return await mixin_instance.begin_analyze_receipt_async(include_text_details, locale, file_stream, **kwargs) async def begin_analyze_with_custom_model( self, model_id: str, include_text_details: Optional[bool] = False, file_stream: Optional[Union[IO, "models.SourcePath"]] = None, **kwargs ) -> AsyncLROPoller[None]: """Analyze Form. Extract key-value pairs, tables, and semantic values from a given document. The input document must be of one of the supported content types - 'application/pdf', 'image/jpeg', 'image/png' or 'image/tiff'. Alternatively, use 'application/json' type to specify the location (Uri or local path) of the document to be analyzed. :param model_id: Model identifier. :type model_id: str :param include_text_details: Include text lines and element references in the result. :type include_text_details: bool :param file_stream: .json, .pdf, .jpg, .png or .tiff type file stream. :type file_stream: IO or ~azure.ai.formrecognizer.models.SourcePath :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ api_version = self._get_api_version('begin_analyze_with_custom_model') if api_version == '2.0': from ..v2_0.aio.operations import FormRecognizerClientOperationsMixin as OperationClass elif api_version == '2.1-preview.1': from ..v2_1_preview_1.aio.operations import FormRecognizerClientOperationsMixin as OperationClass else: raise ValueError("API version {} does not have operation 'begin_analyze_with_custom_model'".format(api_version)) mixin_instance = OperationClass() mixin_instance._client = self._client mixin_instance._config = self._config mixin_instance._serialize = Serializer(self._models_dict(api_version)) mixin_instance._serialize.client_side_validation = False mixin_instance._deserialize = Deserializer(self._models_dict(api_version)) return await mixin_instance.begin_analyze_with_custom_model(model_id, include_text_details, file_stream, **kwargs) async def begin_compose_custom_models_async( self, compose_request: "models.ComposeRequest", **kwargs ) -> AsyncLROPoller[None]: """Compose trained with labels models into one composed model. Compose request would include list of models ids. It would validate what all models either trained with labels model or composed model. It would validate limit of models put together. :param compose_request: Compose models. :type compose_request: ~azure.ai.formrecognizer.models.ComposeRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ api_version = self._get_api_version('begin_compose_custom_models_async') if api_version == '2.1-preview.1': from ..v2_1_preview_1.aio.operations import FormRecognizerClientOperationsMixin as OperationClass else: raise ValueError("API version {} does not have operation 'begin_compose_custom_models_async'".format(api_version)) mixin_instance = OperationClass() mixin_instance._client = self._client mixin_instance._config = self._config mixin_instance._serialize = Serializer(self._models_dict(api_version)) mixin_instance._serialize.client_side_validation = False mixin_instance._deserialize = Deserializer(self._models_dict(api_version)) return await mixin_instance.begin_compose_custom_models_async(compose_request, **kwargs) async def
<filename>pyethapp/jsonrpc.py<gh_stars>0 from decorator import decorator from collections import Iterable import inspect from ethereum.utils import is_numeric, is_string, int_to_big_endian, encode_hex, decode_hex, sha3 import ethereum.slogging as slogging from ethereum.transactions import Transaction from ethereum import processblock import gevent import gevent.wsgi import gevent.queue import rlp from tinyrpc.dispatch import RPCDispatcher from tinyrpc.dispatch import public as public_ from tinyrpc.exc import BadRequestError, MethodNotFoundError from tinyrpc.protocols.jsonrpc import JSONRPCProtocol, JSONRPCInvalidParamsError from tinyrpc.server.gevent import RPCServerGreenlets from tinyrpc.transports.wsgi import WsgiServerTransport from devp2p.service import BaseService from eth_protocol import ETHProtocol log = slogging.get_logger('jsonrpc') slogging.configure(config_string=':debug') # route logging messages class WSGIServerLogger(object): _log = slogging.get_logger('jsonrpc.wsgi') @classmethod def log(cls, msg): cls._log.debug(msg.strip()) write = log def log_error(cls, msg, *args): cls._log.error(msg % args) gevent.wsgi.WSGIHandler.log_error = WSGIServerLogger.log_error # hack to return the correct json rpc error code if the param count is wrong # (see https://github.com/mbr/tinyrpc/issues/19) def public(f): def new_f(*args, **kwargs): try: inspect.getcallargs(f, *args, **kwargs) except TypeError: raise JSONRPCInvalidParamsError() else: return f(*args, **kwargs) new_f.func_name = f.func_name new_f.func_doc = f.func_doc return public_(new_f) class LoggingDispatcher(RPCDispatcher): """A dispatcher that logs every RPC method call.""" def __init__(self): super(LoggingDispatcher, self).__init__() self.logger = log.debug def dispatch(self, request): if isinstance(request, Iterable): request_list = request else: request_list = [request] for req in request_list: self.logger('RPC call', method=req.method, args=req.args, kwargs=req.kwargs, id=req.unique_id) response = super(LoggingDispatcher, self).dispatch(request) if isinstance(response, Iterable): response_list = response else: response_list = [response] for res in response_list: try: self.logger('RPC result', id=res.unique_id, result=res.result) except AttributeError: self.logger('RPC error', id=res.unique_id, error=res.error) return response class JSONRPCServer(BaseService): """Service providing an HTTP server with JSON RPC interface. Other services can extend the JSON RPC interface by creating a :class:`Subdispatcher` and registering it via `Subdispatcher.register(self.app.services.json_rpc_server)`. Alternatively :attr:`dispatcher` can be extended directly (see https://tinyrpc.readthedocs.org/en/latest/dispatch.html). """ name = 'jsonrpc' default_config = dict(jsonrpc=dict(listen_port=4000, listen_host='127.0.0.1')) def __init__(self, app): log.debug('initializing JSONRPCServer') BaseService.__init__(self, app) self.app = app self.dispatcher = LoggingDispatcher() # register sub dispatchers for subdispatcher in (Web3, Net, Compilers, DB, Chain, Miner, FilterManager): subdispatcher.register(self) transport = WsgiServerTransport(queue_class=gevent.queue.Queue) # start wsgi server as a background-greenlet self.listen_port = app.config['jsonrpc']['listen_port'] self.listen_host = app.config['jsonrpc']['listen_host'] self.wsgi_server = gevent.wsgi.WSGIServer((self.listen_host, self.listen_port), transport.handle, log=WSGIServerLogger) self.rpc_server = RPCServerGreenlets( transport, JSONRPCProtocol(), self.dispatcher ) self.default_block = 'latest' def _run(self): log.info('starting JSONRPCServer', port=self.listen_port) # in the main greenlet, run our rpc_server self.wsgi_thread = gevent.spawn(self.wsgi_server.serve_forever) self.rpc_server.serve_forever() def stop(self): log.info('stopping JSONRPCServer') self.wsgi_thread.kill() def get_block(self, chain, block_id=None): """Return the block identified by `block_id`. This method also sets :attr:`default_block` to the value of `block_id` which will be returned if, at later calls, `block_id` is not provided. Subdispatchers using this function have to ensure sure that a chainmanager is registered via :attr:`required_services`. :param block_id: either the block number as integer or 'pending', 'earliest' or 'latest', or `None` for the default block :raises: `BadRequestError` if the block does not exist """ assert 'chain' in self.app.services chain = self.app.services.chain.chain if block_id is None: block_id = self.default_block else: self.default_block = block_id if block_id == 'pending': return self.app.services.chain.chain.head_candidate if block_id == 'latest': return chain.head if block_id == 'earliest': return chain.genesis try: if is_numeric(block_id): # by number hash_ = chain.index.get_block_by_number(block_id) else: # by hash assert is_string(block_id) hash_ = block_id return chain.get(hash_) except KeyError: raise BadRequestError('Unknown block') class Subdispatcher(object): """A JSON RPC subdispatcher which can be registered at JSONRPCService. :cvar prefix: common prefix shared by all rpc methods implemented by this subdispatcher :cvar required_services: a list of names of services the subdispatcher is built on and will be made available as instance variables """ prefix = '' required_services = [] @classmethod def register(cls, json_rpc_service): """Register a new instance at ``json_rpc_service.dispatcher``. The subdispatcher will be able to access all required services as well as the app object as attributes. If one of the required services is not available, log this as warning but don't fail. """ dispatcher = cls() for service_name in cls.required_services: try: service = json_rpc_service.app.services[service_name] except KeyError: log.warning('No {} registered. Some RPC methods will not be ' 'available'.format(service_name)) return setattr(dispatcher, service_name, service) dispatcher.app = json_rpc_service.app dispatcher.json_rpc_server = json_rpc_service json_rpc_service.dispatcher.register_instance(dispatcher, cls.prefix) def quantity_decoder(data): """Decode `data` representing a quantity.""" if not is_string(data): success = False elif not data.startswith('0x'): success = False # must start with 0x prefix elif len(data) > 3 and data[2] == '0': success = False # must not have leading zeros (except `0x0`) else: data = data[2:] # ensure even length if len(data) % 2 == 1: data = '0' + data try: return int(data, 16) except ValueError: success = False assert not success raise BadRequestError('Invalid quantity encoding') def quantity_encoder(i): """Encode interger quantity `data`.""" assert is_numeric(i) data = int_to_big_endian(i) return '0x' + (encode_hex(data).lstrip('0') or '0') def data_decoder(data): """Decode `data` representing unformatted data.""" if not data.startswith('0x'): data = '0x' + data if len(data) % 2 != 0: success = False # must be even length else: if len(data) % 2 != 0: # TODO: remove data += '0' # TODO: remove try: return decode_hex(data[2:]) except TypeError: success = False assert not success raise BadRequestError('Invalid data encoding') def data_encoder(data): """Encode unformatted binary `data`.""" return '0x' + encode_hex(data) def address_decoder(data): """Decode an address from hex with 0x prefix to 20 bytes.""" if not data.startswith('0x'): data = '0x' + data addr = data_decoder(data) if len(addr) != 20: raise BadRequestError('Addresses must be 20 bytes long') return addr def address_encoder(address): assert len(address) == 20 return encode_hex(address) def block_id_decoder(data): """Decode a block identifier as expected from :meth:`JSONRPCServer.get_block`.""" if data in (None, 'latest', 'earliest', 'pending'): return data else: return quantity_decoder(data) def block_hash_decoder(data): """Decode a block hash.""" decoded = data_decoder(data) if len(decoded) != 32: raise BadRequestError('Block hashes must be 32 bytes long') return decoded def tx_hash_decoder(data): """Decode a transaction hash.""" decoded = data_decoder(data) if len(decoded) != 32: raise BadRequestError('Transaction hashes must be 32 bytes long') return decoded def bool_decoder(data): if not isinstance(data, bool): raise BadRequestError('Paremter must be boolean') return data def block_encoder(block, include_transactions, pending=False): """Encode a block as JSON object. :param block: a :class:`ethereum.blocks.Block` :param include_transactions: if true transactions are included, otherwise only their hashes :returns: a json encodable dictionary """ d = { 'number': quantity_encoder(block.number), 'hash': data_encoder(block.hash), 'parentHash': data_encoder(block.prevhash), 'nonce': data_encoder(block.nonce), 'sha3Uncles': data_encoder(block.uncles_hash), 'logsBloom': data_encoder(int_to_big_endian(block.bloom)), 'transactionsRoot': data_encoder(block.tx_list_root), 'stateRoot': data_encoder(block.state_root), 'miner': data_encoder(block.coinbase), 'difficulty': quantity_encoder(block.difficulty), 'totalDifficulty': quantity_encoder(block.chain_difficulty()), 'extraData': data_encoder(block.extra_data), 'size': quantity_encoder(len(rlp.encode(block))), 'gasLimit': quantity_encoder(block.gas_limit), 'minGasPrice': quantity_encoder(0), # TODO quantity_encoder(block.gas_price), 'gasUsed': quantity_encoder(block.gas_used), 'timestamp': quantity_encoder(block.timestamp), 'uncles': [data_encoder(u.hash) for u in block.uncles] } if include_transactions: d['transactions'] = [] for i, tx in enumerate(block.get_transactions()): d['transactions'].append(tx_encoder(tx, block, i, pending)) else: d['transactions'] = [quantity_encoder(tx.hash) for x in block.get_transactions()] return d def tx_encoder(transaction, block, i, pending): """Encode a transaction as JSON object. `transaction` is the `i`th transaction in `block`. `pending` specifies if the block is pending or already mined. """ return { 'hash': data_encoder(transaction.hash), 'nonce': quantity_encoder(transaction.nonce), 'blockHash': data_encoder(block.hash), 'blockNumber': quantity_encoder(block.number) if pending else None, 'transactionIndex': quantity_encoder(i), 'from': data_encoder(transaction.sender), 'to': data_encoder(transaction.to), 'value': quantity_encoder(transaction.value), 'gasPrice': quantity_encoder(transaction.gasprice), 'gas': quantity_encoder(transaction.startgas), 'input': data_encoder(transaction.data), } def loglist_encoder(loglist): """Encode a list of log""" l = [] if len(loglist) > 0 and loglist[0] is None: assert all(element is None for element in l) return l result = [] for log, index, block in loglist: result.append({ 'hash': data_encoder(log.hash), 'logIndex': quantity_encoder(index), 'transactionIndex': None, 'transactionHash': None, 'blockHash': data_encoder(block.hash), 'blockNumber': quantity_encoder(block.number), 'address': address_encoder(log.address), 'data': data_encoder(log.data), 'topics': [data_encoder(topic) for topic in log.topics] }) return result def decode_arg(name, decoder): """Create a decorator that applies `decoder` to argument `name`.""" @decorator def new_f(f, *args, **kwargs): call_args = inspect.getcallargs(f, *args, **kwargs) call_args[name] = decoder(call_args[name]) return f(**call_args) return new_f def encode_res(encoder): """Create a decorator that applies `encoder` to the return value of the decorated function. """ @decorator def new_f(f, *args, **kwargs): res = f(*args, **kwargs) return encoder(res) return new_f class Web3(Subdispatcher): """Subdispatcher for some generic RPC methods.""" prefix = 'web3_' @public @decode_arg('data', data_decoder) @encode_res(data_encoder) def sha3(self, data): return sha3(data) @public def clientVersion(self): return self.app.client_version class Net(Subdispatcher): """Subdispatcher for network related RPC methods.""" prefix = 'net_' required_services = ['peermanager'] @public def version(self): return ETHProtocol.version @public def listening(self): return self.peermanager.num_peers() < self.peermanager.config['p2p']['min_peers'] @public @encode_res(quantity_encoder) def peerCount(self): return self.peermanager.num_peers() class Compilers(Subdispatcher): """Subdispatcher for compiler related RPC methods.""" prefix = 'eth_' required_services = [] def __init__(self): super(Compilers, self).__init__() self.compilers_ = None @property def compilers(self): if self.compilers_ is None: self.compilers_ = {} try: import serpent self.compilers_['serpent'] = serpent.compile self.compilers_['lll'] = serpent.compile_lll except ImportError: pass try: import solidity self.compilers_['solidity'] = solidity.compile except ImportError: pass return self.compilers_ @public def getCompilers(self): return self.compilers.keys() @public @encode_res(data_encoder) def compileSolidity(self, code): try: return self.compilers['solidity'](code) except KeyError: raise MethodNotFoundError() @public @encode_res(data_encoder) def compileSerpent(self, code): try: return self.compilers['serpent'](code)
<gh_stars>0 """Parse the model definition into a MCX graph. When the user defines a model in MCX she uses the symbol `<~` to denote random variable assignment, and the decorator `@mcx.model` to denote the definition of a multivariate distribution. The constructs do not exist in Python and we parse them into SampleOps and GraphicalModels respectively. Other python constructs are transformed into Ops using a surjective mapping. The ensuing graphical model can then be manipulated at runtime, and used to compile samplers and logpdfs. """ import inspect import textwrap from collections import defaultdict from functools import partial from types import FunctionType from typing import Dict, List, Optional, Tuple, Union import libcst as cst import networkx as nx import mcx from mcx.core.graph import GraphicalModel from mcx.core.nodes import ( Constant, FunctionOp, ModelOp, Name, Op, Placeholder, SampleModelOp, SampleOp, ) MODEL_BADLY_FORMED_ERROR = ( "a MCX model should be defined in a single function. This exception is completely unexpected." " Please file an issue on https://github.com/rlouf/mcx" ) # TODO: Allow random variable assignments from models that return multiple variables MULTIPLE_RETURNED_VALUES_ERROR = ( "only one variable is allowed on the left-hand-side of a random variable assignment " " , several were provided" ) TRANSFORMED_RETURNED_VALUE_ERROR = ( "only random variables can be returned from the model, found a transformed variable instead. " "If you are interested in the posterior value of such a transformed variable, first sample " " from the posterior distribution of random variables and apply the transformation to the variables " " in the trace.\n" "If you are looking to condition on a transformed variable, however, this is not yet possible. Please " "open an issue on https://github.com/rlouf/mcx to signal your interest in having this feature" ) DUPLICATE_VARIABLE_NAME_ERROR = "you cannot reuse the name of random variables." def parse(model_fn: FunctionType) -> Tuple[GraphicalModel, dict]: """Parse the model definition to build a graphical model. Parameter --------- model A live function object that contains the model definition. Returns ------- The intermediate representation of the model. """ source = inspect.getsource(model_fn) source = textwrap.dedent(source) # TODO: do we need this with libcst? tree = cst.parse_module(source) namespace = model_fn.__globals__ definition_visitor = ModelDefinitionParser(namespace) tree.visit(definition_visitor) graph = definition_visitor.graph return graph, namespace class ModelDefinitionParser(cst.CSTVisitor): """Parses the model definition's Concrete Syntax Tree. MCX models are expressed in the form of a function with the `@mcx.model` decorator. MCX then parses the definition's code into an intermediate representation, which is a graph where sample and deterministic operations as well as the function's arguments are named nodes while intermediate operations are part of the graph but unnamed. This approach is similar to that of Theano. But unlike Theano, we do not build the graph at runtime using side-effects. Instead, when the model is instantiated its code source is read and translated into a graph. Every subsequent operation is an operation on this graph. This class contains all the parsing and graph building logic. Whenever a sample statement is encountered, we perform a recursive visit of the variables used to instantiate the distribution. The recursion stops whenever we encounter a constant or a named variable. We then add node in the reverse order to the graph; nodes contain a function that can reconstruct the corresponding CST node when called with arguments. Say the parser encounters the following line: >>> var <~ Normal(0, x) where `x` is an argument to the model. The recursion stops immediately since both arguments are either a constant or a named node. So we create a new `SampleOp` with name `var` and a cst_generator funtion defined as: >>> def cst_generator(*args): ... return cst.Call( ... func='Normal', ... args=args ... ) And we create an edge between the constant `0` and this SampleOp, the placeholder `x` and this SampleOp. Each edge is indexed by the position of the argument. All the compiler has to do is to traverse the graph in topological order, translate `0` and `x` to their equivalent CST nodes, and pass these nodes to var's `cst_generator` function when translating it into its AST equivalent. When parsing the following: >>> var <~ Normal(0, f(x)) The procedure is similar except we first add the unnamed `f` node to the graph and the edge from `x` to `f` before adding the `var` node and the edges 0 -> `var` and `f` -> `var`. There are a few potential pitfalls that we need to be aware of: 1. When a random variable is distributed following another MCX model, the model is merged with the current one. Since namespaces can overlap we add a scope for variables, named after the model which introduced the variables. Furthermore, since the same model can be used several times (this would be common in deep learning), we append the model's current number of occurences to the scope name. 2. As discussed in the docstring of `visit_FunctionDef` below, functions are to be treated with care as they can either be standard functions, models that are called within the current model, or models that are defined via a closure. Attributes ---------- current_scope: Name of the model being currently parsed. scopes: Counts the number of times each scope has been encountered. Important in situations like deep learning where the same module can be called several times. namespace: Dictionnary that contains the global namespace in which the model is called. sample_this_op: Whether the Op currently being traversed should appear in forward sampling and whether we should include them in the posterior samples. named_variables: Dictionary that associates the name of each Op to its node. """ def __init__(self, namespace: Dict): self.namespace = namespace self.current_scope: Optional[str] = None self.scopes: Dict = defaultdict(int) self.named_variables: Dict = {} self.sample_this_op = True def visit_FunctionDef(self, node: cst.FunctionDef) -> Union[None, bool]: """Visit a function definition. When we traverse the Concrete Syntax Tree of a MCX model, a function definition can represent several objects. The main model definition ~~~~~~~~~~~~~~~~~~~~~~~~~ >>> @mcx.model ... def my_model(*args): ... # do things ... return A regular function ~~~~~~~~~~~~~~~~~~~ >>> @mcx.model ... def my_model(*args): ... x <~ Normal(0, 1) ... y <~ Normal(0, 1) ... ... def add(a, b): ... return a + b ... ... z = add(x, y) ... return z A closure ~~~~~~~~~ It is perfectly reasonable (and is necessary to work with nonparametrics) to define a model like the following: >>> @mcx.model ... def mint_coin(): ... p <~ Beta(1, 1) ... ... @mcx.model ... def coin(): ... head <~ Bernoulli(p) ... return head ... ... return coin A submodel ~~~~~~~~~~ >>> @mcx.model ... def linreg(x): ... scale <~ HalfCauchy(0, 1) ... ... @mcx.model ... def Horseshoe(mu=0, tau=1., s=1.): ... scale <~ HalfCauchy(0, s) ... noise <~ Normal(0, tau) ... res = scale * noise + mu ... return res ... ... coefs <~ Horseshoe(np.zeros(x.shape[1])) ... predictions <~ Normal(np.matmul(x, coefs), scale) ... return predictions We can even have nested submodels. """ # Standard python functions defined within a model need to be included # as is in the resulting source code. So do submodels. if hasattr(self, "graph"): if is_model_definition(node, self.namespace): model_node = ModelOp(lambda: node, node.name.value) self.graph.add(model_node) self.named_variables[node.name] = model_node else: function_node = FunctionOp(lambda: node, node.name.value) self.graph.add(function_node) self.named_variables[node.name] = function_node return False # don't visit the node's children # Each time we enter a model definition we create a new GraphicalModel # which is returned after the definition's children have been visited. # The current version does not support nested models but will. self.graph: GraphicalModel = GraphicalModel() self.graph.name = node.name.value self.scope = node.name.value def argument_cst(name, default=None): return cst.Param(cst.Name(name), default=default) function_args = node.params.params for _, argument in enumerate(function_args): name = argument.name.value try: # parse argument default value is any default = self.recursive_visit(argument.default) argument_node = Placeholder( partial(argument_cst, name), name, False, True ) self.graph.add(argument_node, default) except TypeError: argument_node = Placeholder(partial(argument_cst, name), name) self.graph.add(argument_node) self.named_variables[name] = argument_node return None # ---------------------------------------------------------------- # PARSE COMMENTS # ---------------------------------------------------------------- def visit_SimpleStatementLine(self, node: cst.SimpleStatementLine) -> None: """Read comments. LibCST includes each assignment statement in a statement line, to which comments are attached. We include an experimental feature
import torch import torch.nn as nn import torch.nn.functional as F class ResNet50(nn.Module): def __init__(self, num_classes = 1000): super(ResNet50, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size = 7, stride = 2, padding = 3, bias = False) # 112x112x64, 1층 self.bn = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size = 3, stride = 2, padding = 1) #56x56x64 self.conv_001 = nn.Conv2d(64, 64, kernel_size = 1, stride = 1, bias = False) #56x56x64, 2층 self.bn_001 = nn.BatchNorm2d(64) self.conv_002 = nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1, bias = False) #56x56x64, 3층 self.bn_002 = nn.BatchNorm2d(64) self.conv_003 = nn.Conv2d(64, 256, kernel_size = 1, stride = 1,bias = False) #56x56x256, 4층 self.bn_003 = nn.BatchNorm2d(256) # shortcut 위치 (입력 64, 출력 256) self.conv_short0 = nn.Conv2d(64, 256, kernel_size = 1, stride = 1, bias = False) self.bn_short0 = nn.BatchNorm2d(256) self.conv_011 = nn.Conv2d(256, 64, kernel_size = 1, stride = 1, bias = False) #56x56x256, 5층 self.bn_011 = nn.BatchNorm2d(64) self.conv_012 = nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1, bias = False) #56x56x64, 6층 self.bn_012 = nn.BatchNorm2d(64) self.conv_013 = nn.Conv2d(64, 256, kernel_size = 1, stride = 1,bias = False) #56x56x256, 7층 self.bn_013 = nn.BatchNorm2d(256) # (입력 256, 출력 256) self.conv_021 = nn.Conv2d(256, 64, kernel_size = 1, stride = 1, bias = False) #56x56x256, 8층 self.bn_021 = nn.BatchNorm2d(64) self.conv_022 = nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1, bias = False) #56x56x64, 9층 self.bn_022 = nn.BatchNorm2d(64) self.conv_023 = nn.Conv2d(64, 256, kernel_size = 1, stride = 1,bias = False) #56x56x256, 10층 self.bn_023 = nn.BatchNorm2d(256) # (입력 256, 출력 256) self.conv_031 = nn.Conv2d(256, 128, kernel_size = 1, stride = 1, bias = False) #56x56x128, 11층 self.bn_031 = nn.BatchNorm2d(128) self.conv_032 = nn.Conv2d(128, 128, kernel_size = 3, stride = 2, padding = 1, bias = False) #28x28x128, 12층 self.bn_032 = nn.BatchNorm2d(128) self.conv_033 = nn.Conv2d(128, 512, kernel_size = 1, stride = 1,bias = False) #28x28x512, 13층 self.bn_033 = nn.BatchNorm2d(512) # shortcut 위치 (입력 256, 출력 512) (stride == 2) self.conv_short3 = nn.Conv2d(256, 512, kernel_size = 1, stride = 2, bias = False) self.bn_short3 = nn.BatchNorm2d(512) self.conv_041 = nn.Conv2d(512, 128, kernel_size = 1, stride = 1, bias = False) #28x28x128, 14층 self.bn_041 = nn.BatchNorm2d(128) self.conv_042 = nn.Conv2d(128, 128, kernel_size = 3, stride = 1, padding = 1, bias = False) #28x28x128, 15층 self.bn_042 = nn.BatchNorm2d(128) self.conv_043 = nn.Conv2d(128, 512, kernel_size = 1, stride = 1,bias = False) #28x28x512, 16층 self.bn_043 = nn.BatchNorm2d(512) # (입력 512, 출력 512) self.conv_051 = nn.Conv2d(512, 128, kernel_size = 1, stride = 1, bias = False) #28x28x128, 17층 self.bn_051 = nn.BatchNorm2d(128) self.conv_052 = nn.Conv2d(128, 128, kernel_size = 3, stride = 1, padding = 1, bias = False) #28x28x128, 18층 self.bn_052 = nn.BatchNorm2d(128) self.conv_053 = nn.Conv2d(128, 512, kernel_size = 1, stride = 1,bias = False) #28x28x512, 19층 self.bn_053 = nn.BatchNorm2d(512) # (입력 512, 출력 512) self.conv_061 = nn.Conv2d(512, 128, kernel_size = 1, stride = 1, bias = False) #28x28x128, 20층 self.bn_061 = nn.BatchNorm2d(128) self.conv_062 = nn.Conv2d(128, 128, kernel_size = 3, stride = 1, padding = 1, bias = False) #28x28x128, 21층 self.bn_062 = nn.BatchNorm2d(128) self.conv_063 = nn.Conv2d(128, 512, kernel_size = 1, stride = 1,bias = False) #28x28x512, 22층 self.bn_063 = nn.BatchNorm2d(512) # (입력 512, 출력 512) self.conv_071 = nn.Conv2d(512, 256, kernel_size = 1, stride = 1, bias = False) #28x28x256, 23층 self.bn_071 = nn.BatchNorm2d(256) self.conv_072 = nn.Conv2d(256, 256, kernel_size = 3, stride = 2, padding = 1, bias = False) #14x14x256, 24층 self.bn_072 = nn.BatchNorm2d(256) self.conv_073 = nn.Conv2d(256, 1024, kernel_size = 1, stride = 1,bias = False) #14x14x1024, 25층 self.bn_073 = nn.BatchNorm2d(1024) # shortcut 위치 (입력 512, 출력 1024) (stride == 2) self.conv_short7 = nn.Conv2d(512, 1024, kernel_size = 1, stride = 2, bias = False) self.bn_short7 = nn.BatchNorm2d(1024) self.conv_081 = nn.Conv2d(1024, 256, kernel_size = 1, stride = 1, bias = False) #14x14x256, 26층 self.bn_081 = nn.BatchNorm2d(256) self.conv_082 = nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1, bias = False) #14x14x256, 27층 self.bn_082 = nn.BatchNorm2d(256) self.conv_083 = nn.Conv2d(256, 1024, kernel_size = 1, stride = 1,bias = False) #14x14x1024, 28층 self.bn_083 = nn.BatchNorm2d(1024) # (입력 1024, 출력 1024) self.conv_091 = nn.Conv2d(1024, 256, kernel_size = 1, stride = 1, bias = False) #14x14x256, 29층 self.bn_091 = nn.BatchNorm2d(256) self.conv_092 = nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1, bias = False) #14x14x256, 30층 self.bn_092 = nn.BatchNorm2d(256) self.conv_093 = nn.Conv2d(256, 1024, kernel_size = 1, stride = 1,bias = False) #14x14x1024, 31층 self.bn_093 = nn.BatchNorm2d(1024) # (입력 1024, 출력 1024) self.conv_101 = nn.Conv2d(1024, 256, kernel_size = 1, stride = 1, bias = False) #14x14x256, 32층 self.bn_101 = nn.BatchNorm2d(256) self.conv_102 = nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1, bias = False) #14x14x256, 33층 self.bn_102 = nn.BatchNorm2d(256) self.conv_103 = nn.Conv2d(256, 1024, kernel_size = 1, stride = 1,bias = False) #14x14x1024, 34층 self.bn_103 = nn.BatchNorm2d(1024) # (입력 1024, 출력 1024) self.conv_111 = nn.Conv2d(1024, 256, kernel_size = 1, stride = 1, bias = False) #14x14x256, 35층 self.bn_111 = nn.BatchNorm2d(256) self.conv_112 = nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1, bias = False) #14x14x256, 36층 self.bn_112 = nn.BatchNorm2d(256) self.conv_113 = nn.Conv2d(256, 1024, kernel_size = 1, stride = 1,bias = False) #14x14x1024, 37층 self.bn_113 = nn.BatchNorm2d(1024) # (입력 1024, 출력 1024) self.conv_121 = nn.Conv2d(1024, 256, kernel_size = 1, stride = 1, bias = False) #14x14x256, 38층 self.bn_121 = nn.BatchNorm2d(256) self.conv_122 = nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1, bias = False) #14x14x256, 39층 self.bn_122 = nn.BatchNorm2d(256) self.conv_123 = nn.Conv2d(256, 1024, kernel_size = 1, stride = 1,bias = False) #14x14x1024, 40층 self.bn_123 = nn.BatchNorm2d(1024) # (입력 1024, 출력 1024) self.conv_131 = nn.Conv2d(1024, 512, kernel_size = 1, stride = 1, bias = False) #14x14x512, 41층 self.bn_131 = nn.BatchNorm2d(512) self.conv_132 = nn.Conv2d(512, 512, kernel_size = 3, stride = 2, padding = 1, bias = False) #7x7x512, 42층 self.bn_132 = nn.BatchNorm2d(512) self.conv_133 = nn.Conv2d(512, 2048, kernel_size = 1, stride = 1,bias = False) #7x7x2048, 43층 self.bn_133 = nn.BatchNorm2d(2048) # shortcut 위치 (입력 1024, 출력 2048) (stride == 2) self.conv_short13 = nn.Conv2d(1024, 2048, kernel_size = 1, stride = 2, bias = False) self.bn_short13 = nn.BatchNorm2d(2048) self.conv_141 = nn.Conv2d(2048, 512, kernel_size = 1, stride = 1, bias = False) #7x7x512, 44층 self.bn_141 = nn.BatchNorm2d(512) self.conv_142 = nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1, bias = False) #7x7x512, 45층 self.bn_142 = nn.BatchNorm2d(512) self.conv_143 = nn.Conv2d(512, 2048, kernel_size = 1, stride = 1,bias = False) #7x7x2048, 46층 self.bn_143 = nn.BatchNorm2d(2048) # (입력 2048, 출력 2048) self.conv_151 = nn.Conv2d(2048, 512, kernel_size = 1, stride = 1, bias = False) #7x7x512, 47층 self.bn_151 = nn.BatchNorm2d(512) self.conv_152 = nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1, bias = False) #7x7x512, 48층 self.bn_152 = nn.BatchNorm2d(512) self.conv_153 = nn.Conv2d(512, 2048, kernel_size = 1, stride = 1,bias = False) #7x7x2048, 49층 self.bn_153 = nn.BatchNorm2d(2048) # (입력 2048, 출력 2048) self.linear = nn.Linear(2048, num_classes)# FC, 50층 def forward(self, x): print("[input]:",x.shape) #224 out = self.conv1(x) out = self.bn(out) print("[7x7 conv]:",out.shape) out = F.relu(out) #112 out = self.maxpool(out) print("[max pooled] :",out.shape) x = out #layer0 - 1 out = self.conv_001(out) #1 out = self.bn_001(out) out = F.relu(out) out = self.conv_002(out) #2 out = self.bn_002(out) out = F.relu(out) out = self.conv_003(out) #3 out = self.bn_003(out) shortcut =self.conv_short0(x) shortcut = self.bn_short0(shortcut) out = out + shortcut out = F.relu(out) #layer0 - 2 out = self.conv_011(out) #1 out = self.bn_011(out) out = F.relu(out) out = self.conv_012(out) #2 out = self.bn_012(out) out = F.relu(out) out = self.conv_013(out) #3 out = self.bn_013(out) #layer0 - 3 out = self.conv_021(out) #1 out = self.bn_021(out) out = F.relu(out) out = self.conv_022(out) #2 out = self.bn_022(out) out = F.relu(out) out = self.conv_023(out) #3 out = self.bn_023(out) print("[layer 0]:",out.shape) #layer1 - 1 out = self.conv_031(out) #1 out = self.bn_031(out) out = F.relu(out) out = self.conv_032(out) #2 out = self.bn_032(out) out = F.relu(out) out =
<filename>Misc/functionalList.py #============================================= #============================================= # A Functional-Paradigm List Implementation # in Python 3 # # <NAME> #============================================= #============================================= """ The following code implements the idea of a list as would be experienced in a functional or logical language such as Haskel or Prolog. Three List classes inhert from the 'AbstractList' superclass simply to avoid code duplication. Framework: AbstractList | | |----------------|----------------| | | | EmptyList ConsList InfiniteList An interface is enforced automatically towards the bottom of this document. When interpreted, this script imports runs `doctest` (also towards the bottom), to demonstrate and exercise the dynamic dispatch of shared functionality. Index: -- AbstractList -- > __repr__(self) > isEmpty(self) > __str__(self) > takeWhile(self, predicate) > do(self, function) > detect(self, predicate) > map(self, transformer) > filter(self, predicate) -- EmptyList -- > length(self) > isEmpty(self) > head(self) > tail(self) > concat(self, other) > __add__(self, other) > strChain(self) > commaElements(self) > takeWhile(self, predicate) > dropWhile(self, predicate) > do(self, function) > detect(self, predicate) -- ConsList -- > __init__(self, self, head, tail) > length(self) > head(self) > tail(self) > next(self) > concat(self, other) > __add__(self, other) > strChain(self) > commaElements(self) > dropWhile(self, predicate) -- InfiniteList -- > __init__(self, initial, nextFun) > head(self) > next(self) > tail(self) > length(self) > concat(self, other) > __add__(self, other) > commaElements(self, ctr) > __str__(self) > dropWhile(self, predicate) """ #*********************** #*********************** # AbstractList #*********************** #*********************** class AbstractList: #~ def __repr__(self): return self.__str__() #~ def isEmpty(self): return False #~ def __str__(self): """ >>> str(EmptyList()) '[]' """ return '[' + self.commaElements() + ']' #~ def takeWhile(self, predicate): """ returns a list containing the elements of self as far as (but excluding) the first element for which predicate is false; predicate is a function on the elements of self that returns a Boolean. >>> oneToFifty = nums(1, 51) >>> oneToTwenty = oneToFifty.takeWhile(lambda x: x <= 20) >>> oneToTwenty.length() 20 >>> oneToTwenty.head() 1 >>> oneToTwenty.tail().tail().head() 3 """ return ConsList(self.head(), self.tail().takeWhile(predicate)) if predicate(self.head()) else EmptyList() #~ def do(self, function): """ Applies function to every element of this list Returns no result. >>> ConsList(1, ConsList(2, ConsList(3, EmptyList()))).do(lambda each: print(each)) 1 2 3 """ function(self.head()) (self.tail()).do(function) #~ def detect(self, predicate): """ Returns the first element of this list for which predicate is true. If there is no such element, raises the exception IndexError("No such object") >>> ConsList(1, ConsList(2, ConsList(3, EmptyList()))).detect(lambda each: each > 2) 3 >>> (nums(1, 25)).detect(lambda each: each > 20) 21 """ return self.head() if predicate(self.head()) else (self.tail()).detect(predicate) #~ def __iter__(self): """ >>> for i in ConsList(1, ConsList(2, ConsList(3, ConsList(4, EmptyList())))): print(i) 1 2 3 4 >>> for i in (InfiniteList(0, lambda n: n + 1)).takeWhile(lambda m: m < 5): print(i) 0 1 2 3 4 """ return ListIterator(self) #~ def map(self, transformer): """ Returns a new list, the same length as self, whose elements are obtained by applying the function transformer to the elements of self. >>> ConsList(1, ConsList(2, ConsList(3, EmptyList()))).map(lambda x: x * 2) [2, 4, 6] >>> EmptyList().map(lambda x: x * 2) [] """ if self.length() == 0: return EmptyList() res = EmptyList() for i in self: res = res.concat(ConsList(transformer(i), EmptyList())) return res #~ def filter(self, predicate): """ returns a new list, no longer than self, that contains just those elements of self for which the function predicate is true. >>> ConsList(1, ConsList(2, ConsList(3, EmptyList()))).filter(lambda x: x%2 == 0) [2] """ if self.length() == 0: return EmptyList() res = EmptyList() for i in self: if predicate(i): res = res.concat(ConsList(i, EmptyList())) return res #*********************** # Empty List #*********************** class EmptyList(AbstractList): """ Represents an empty list. """ #~ def length(self): """ >>> EmptyList().length() 0 """ return 0 #~ def isEmpty(self): """ >>> EmptyList().isEmpty() True """ return True #~ def head(self): raise ValueError("Can't take `head` of the empty list") #~ def tail(self): raise ValueError("Can't take `tail` of the empty list") #~ def concat(self, other): """ >>> EmptyList().concat(ConsList(1, ConsList(2, ConsList (3, EmptyList())))) [1, 2, 3] """ return other #~ def __add__(self, other): """ >>> EmptyList() + ConsList(1, ConsList(2, ConsList(3, EmptyList()))) [1, 2, 3] >>> (EmptyList() + ConsList(8, ConsList(4, EmptyList()))).length() 2 """ return other #~ def strChain(self): """ Utility function for commaElements(). """ return '' #~ def commaElements(self): """ Utility function for __str__(). """ return '' #~ def takeWhile(self, predicate): """ >>> EmptyList().takeWhile(lambda n: n < 3) [] """ return EmptyList() #~ def dropWhile(self, predicate): """ >>> EmptyList().dropWhile(lambda n: n < 3) [] """ return EmptyList() #~ def do(self, function): return #~ def detect(self, predicate): raise IndexError("No such object") #*********************** # Cons List #*********************** class ConsList(AbstractList): """ Represents a non-empty list. """ #~ def __init__(self, head, tail): self.__head = head self.__tail = tail #~ def length(self): """ >>> la = ConsList('a', EmptyList()) >>> la.length() 1 >>> ConsList(1, ConsList(2, EmptyList())).length() 2 """ return 1 + self.tail().length() #~ def head(self): """ >>> ConsList(1, ConsList(2, ConsList(3, EmptyList()))).head() 1 >>> (ConsList(90, ConsList(80, ConsList(70, EmptyList()))).tail()).head() 80 """ return self.__head #~ def tail(self): """ >>> ConsList(1, ConsList(2, ConsList(3, EmptyList()))).tail() [2, 3] """ return self.__tail #~ def next(self): """ >>> ConsList(90, ConsList(80, EmptyList())).next() 80 >>> (ConsList(90, ConsList(80, ConsList(70, EmptyList()))).tail()).next() 70 """ return (self.tail()).head() #~ def concat(self, other): """ >>> ConsList(3, ConsList(2, EmptyList())).concat(ConsList(1, ConsList(2, ConsList (3, EmptyList())))) [3, 2, 1, 2, 3] """ return ConsList(self.head(), (self.tail()).concat(other)) #~ def __add__(self, other): """ >>> ConsList(3, ConsList(2, ConsList(1, EmptyList()))) + ConsList(2, ConsList(3, EmptyList())) [3, 2, 1, 2, 3] >>> (ConsList(16, EmptyList()) + ConsList(8, ConsList(4, EmptyList()))).length() 3 """ return self.concat(other) #~ def strChain(self): return ', ' + str(self.head()) + (self.tail()).strChain() #~ def commaElements(self): return str(self.head()) + (self.tail()).strChain() #~ def dropWhile(self, predicate): """ returns a list like self except that all of the leading elements for which predicate is true have been removed. Thus, predicate will be false on the first element of the result; predicate is a function on the elements of self that returns a Boolean. >>> oneToFifty = nums(1, 51) >>> twentyOneOn = oneToFifty.dropWhile(lambda x: x <= 20) >>> twentyOneOn.length() 30 >>> twentyOneOn.head() 21 >>> twentyOneOn.tail().tail().head() 23 """ return self.tail().dropWhile(predicate) if predicate(self.head()) else ConsList(self.head(), self.tail()) #*********************** # Infinite List #*********************** class InfiniteList(AbstractList): ''' Represents an infinite list, defined by an initial value, and a function that generates the next value. So, for example, the Natural numbers would be represented by the initial value 0, and the function λn. n + 1. ''' #~ def __init__(self, initial, nextFun): self.__initial = initial self.__nextFun = nextFun #~ def head(self): """ >>> InfiniteList(0, lambda n: n + 1).head() 0 """ return self.__initial #~ def next(self): return self.__nextFun(self.__initial) #~ def tail(self): """ >>> InfiniteList(0, lambda n: n + 1).tail().head() 1 >>> InfiniteList(0, lambda n: n + 1).tail().tail().head() 2 >>> InfiniteList(0, lambda n: n + 1).tail().tail().tail().head() 3 """ return InfiniteList(self.next(), self.__nextFun) #~ def length(self): """ >>> InfiniteList(0, lambda n: n + 1).length() inf """ return float('inf') #~ def concat(self, other): return self #~ def __add__(self, other): return self #~ def commaElements(self, ctr): return str(self.head()) + ", " + (self.tail()).commaElements(ctr+1) if (ctr < 7) else "..." #~ def __str__(self): """ >>> InfiniteList(0, lambda n: n + 1) [0, 1, 2, 3, 4, 5, 6, ...] """ return '[' + self.commaElements(0) + ']' #~ def dropWhile(self, predicate): """ returns a list like self except that all of the leading elements for which predicate is true have been removed. Thus, predicate will be false on the first element of the result; predicate is a function on the elements of self that returns a Boolean. >>> oneToFifty = InfiniteList(1, lambda n: n + 1) >>> twentyOneOn = oneToFifty.dropWhile(lambda x: x <= 20) >>> twentyOneOn.head() 21 >>> twentyOneOn.tail().tail().head() 23 """ return self.tail().dropWhile(predicate) if predicate(self.head()) else InfiniteList(self.head(), self.__nextFun) #*********************** # Iterator Engine #*********************** """ allows for python list iterators such as `for i in iterable` """ class ListIterator: def __init__(self, aList): self.remainderOfList = aList def __next__(self): if self.remainderOfList.isEmpty(): raise StopIteration result = self.remainderOfList.head() self.remainderOfList = self.remainderOfList.tail() return result #============================================= #============================================= # Testing Engine #============================================= #============================================= #*********************** # Interface Enforcement #*********************** """ >>> set(dir(EmptyList)).issuperset(listInterface) True """ listInterface = {'head', 'tail', 'next', 'isEmpty', 'takeWhile',\ 'dropWhile', 'length', 'do', 'detect', 'concat',\ '__add__', 'commaElements'} def classImplements(c, ms): """ c is a class, and ms is a set of method names. Returns True if c implements all the methods in c. Complains otherwise, and returns False """ result = True for n in ms: m = getattr(c, n, False) if not (m and callable(m)): print(c, "does not have method", n) result = False return result #*********************** # Generator Functions #*********************** #~ def nums(lo, hi): """ returns a list containing the
<gh_stars>10-100 #!/usr/bin/env python #------------------------------ def usage() : return "Use command: python hexanode/examples/ex-10-sort-data.py" #------------------------------ import os import sys import hexanode import numpy as np from time import time from math import sqrt from pyimgalgos.GlobalUtils import print_ndarr from expmon.HexDataIO import HexDataIO, do_print #from pyimgalgos.HBins import HBins OSQRT3 = 1./sqrt(3.) #------------------------------ def py_sort(**kwargs) : SRCCHS = kwargs.get('srcchs', {'AmoETOF.0:Acqiris.0':(6,7,8,9,10,11),'AmoITOF.0:Acqiris.0':(0,)}) DSNAME = kwargs.get('dsname', 'exp=xpptut15:run=390:smd') # or h5 file: 'xpptut15-r0390-e300000-n32-mpi.h5' EVSKIP = kwargs.get('evskip', 0) EVENTS = kwargs.get('events', 100) + EVSKIP NUM_CHANNELS = kwargs.get('numchs', 7) NUM_HITS = kwargs.get('numhits', 16) CALIBTAB = kwargs.get('calibtab', 'calibration_table_data.txt') VERBOSE = kwargs.get('verbose', False) tdc_ns = np.zeros((NUM_CHANNELS, NUM_HITS), dtype=np.float64) number_of_hits = np.zeros((NUM_CHANNELS,), dtype=np.int32) command = -1; # The "command"-value is set in the first line of configuration file "sorter_data_cfg.txt" # 1 = sort and write new file # 2 = calibrate fv, fw, w_offset # 3 = create calibration table files # create the sorter object: sorter = hexanode.py_sort_class() fname_cfg = "sorter_data_cfg.txt" status, command, offset_sum_u, offset_sum_v, offset_sum_w, w_offset, pos_offset_x, pos_offset_y=\ hexanode.py_read_config_file(fname_cfg, sorter) print 'read_config_file status, command, offset_sum_u, offset_sum_v, offset_sum_w, w_offset, pos_offset_x, pos_offset_y=',\ status, command, offset_sum_u, offset_sum_v, offset_sum_w, w_offset, pos_offset_x, pos_offset_y if not status : print "WARNING: can't read config file %s" % fname_cfg del sorter sys.exit(0) print 'use_sum_correction', sorter.use_sum_correction print 'use_pos_correction', sorter.use_pos_correction if sorter is not None : if sorter.use_sum_correction or sorter.use_pos_correction : status = hexanode.py_read_calibration_tables(CALIBTAB, sorter) if command == -1 : print "no config file was read. Nothing to do." if sorter is not None : del sorter sys.exit(0) Cu1 = sorter.cu1 Cu2 = sorter.cu2 Cv1 = sorter.cv1 Cv2 = sorter.cv2 Cw1 = sorter.cw1 Cw2 = sorter.cw2 Cmcp = sorter.cmcp print "Numeration of channels - u1:%i u2:%i v1:%i v2:%i w1:%i w2:%i mcp:%i"%\ (Cu1, Cu2, Cv1, Cv2, Cw1, Cw2, Cmcp) inds_of_channels = (Cu1, Cu2, Cv1, Cv2, Cw1, Cw2) incr_of_consistence = ( 1, 2, 4, 8, 16, 32) inds_incr = zip(inds_of_channels, incr_of_consistence) DIO = HexDataIO(srcchs=SRCCHS, numchs=NUM_CHANNELS, numhits=NUM_HITS) #===================== if '.h5' in DSNAME : DIO.open_input_h5file(DSNAME) else : DIO.open_input_dataset(DSNAME, pbits=0) DIO.set_wf_hit_finder_parameters(**kwargs) DIO.print_wf_hit_finder_parameters() #===================== print 'DIO experiment : %s' % DIO.experiment() print 'DIO run : %s' % DIO.run() print 'DIO start time : %s' % DIO.start_time() print 'DIO stop time : %s' % DIO.stop_time() print 'DIO tdc_resolution : %.3f' % DIO.tdc_resolution() print "init sorter... " #sorter.set_tdc_resolution_ns(0.025) sorter.set_tdc_resolution_ns(DIO.tdc_resolution()) sorter.set_tdc_array_row_length(NUM_HITS) sorter.set_count(number_of_hits) sorter.set_tdc_pointer(tdc_ns) #sorter.set_use_reflection_filter_on_u1(False) # Achim recommended False #sorter.set_use_reflection_filter_on_u2(False) if command >= 2 : sorter.create_scalefactors_calibrator(True,\ sorter.runtime_u,\ sorter.runtime_v,\ sorter.runtime_w, 0.78,\ sorter.fu, sorter.fv, sorter.fw) error_code = sorter.init_after_setting_parameters() if error_code : print "sorter could not be initialized\n" error_text = sorter.get_error_text(error_code, 512) print 'Error %d: %s' % (error_code, error_text) sys.exit(0) print "Calibration factors:\n f_U (mm/ns) =%f\n f_V (mm/ns) =%f\n f_W (mm/ns) =%f\n Offset on layer W (ns) =%f\n"%\ (2*sorter.fu, 2*sorter.fv, 2*sorter.fw, w_offset) print "ok for sorter initialization\n" print "reading event data... \n" evnum = 0 t_sec = time() t1_sec = time() while DIO.read_next_event() : evnum = DIO.event_number() if evnum < EVSKIP : continue if evnum > EVENTS : break if do_print(evnum) : t1 = time() print 'Event: %06d, dt(sec): %.3f' % (evnum, t1 - t1_sec) t1_sec = t1 #================================== # TODO by end user: # Here you must read in a data block from your data file # and fill the array tdc_ns[][] and number_of_hits[] #nhits = np.zeros((NUMBER_OF_CHANNELS,), dtype=np.int32) DIO.get_number_of_hits_array(number_of_hits) if DIO.error_flag() : error_text = DIO.get_error_text(DIO.error_flag()) print "DIO Error %d: %s" % (DIO.error_flag(), error_text) sys.exit(0) if VERBOSE : print ' number_of_hits_array', number_of_hits[:8] DIO.get_tdc_data_array(tdc_ns) if DIO.error_flag() : error_text = DIO.get_error_text(DIO.error_flag()) print "DIO Error %d: %s" % (DIO.error_flag(), error_text) sys.exit(0) if VERBOSE : print ' TDC data:\n', tdc_ns[0:8,0:5] # apply conversion of times to ns if False : # DIO returns tdc_ns already in [ns] tdc_ns *= DIO.tdc_resolution() #================================== # NHITS - number of hits per channel if True : nhits_u1 = number_of_hits[Cu1] nhits_u2 = number_of_hits[Cu2] nhits_v1 = number_of_hits[Cv1] nhits_v2 = number_of_hits[Cv2] nhits_w1 = number_of_hits[Cw1] nhits_w2 = number_of_hits[Cw2] nhits_mcp= number_of_hits[Cmcp] # TIME_CH - time of the 1-st hit if True : t0_u1 = tdc_ns[Cu1,0] t0_u2 = tdc_ns[Cu2,0] t0_v1 = tdc_ns[Cv1,0] t0_v2 = tdc_ns[Cv2,0] t0_w1 = tdc_ns[Cw1,0] t0_w2 = tdc_ns[Cw2,0] t0_mcp= tdc_ns[Cmcp,0] # REFLECTIONS if True : if number_of_hits[Cu2]>1 : refl_u1= tdc_ns[Cu2,1] - tdc_ns[Cu1,0] if number_of_hits[Cu1]>1 : refl_u2= tdc_ns[Cu1,1] - tdc_ns[Cu2,0] if number_of_hits[Cv2]>1 : refl_v1= tdc_ns[Cv2,1] - tdc_ns[Cv1,0] if number_of_hits[Cv1]>1 : refl_v2= tdc_ns[Cv1,1] - tdc_ns[Cv2,0] if number_of_hits[Cw2]>1 : refl_w1= tdc_ns[Cw2,1] - tdc_ns[Cw1,0] if number_of_hits[Cw1]>1 : refl_w2= tdc_ns[Cw1,1] - tdc_ns[Cw2,0] # TIME_SUMS time_sum_u = tdc_ns[Cu1,0] + tdc_ns[Cu2,0] - 2*tdc_ns[Cmcp,0] time_sum_v = tdc_ns[Cv1,0] + tdc_ns[Cv2,0] - 2*tdc_ns[Cmcp,0] time_sum_w = tdc_ns[Cw1,0] + tdc_ns[Cw2,0] - 2*tdc_ns[Cmcp,0] # UVW u_ns = tdc_ns[Cu1,0] - tdc_ns[Cu2,0] v_ns = tdc_ns[Cv1,0] - tdc_ns[Cv2,0] w_ns = tdc_ns[Cw1,0] - tdc_ns[Cw2,0] u = u_ns * sorter.fu v = v_ns * sorter.fv w = (w_ns + w_offset) * sorter.fw Xuv = u Xuw = u Xvw = v + w Yuv = (u - 2*v)*OSQRT3 Yuw = (2*w - u)*OSQRT3 Yvw = (w - v)*OSQRT3 dX = Xuv - Xvw dY = Yuv - Yvw Deviation = sqrt(dX*dX + dY*dY) if sorter.use_hex : # shift the time sums to zero: sorter.shift_sums(+1, offset_sum_u, offset_sum_v, offset_sum_w) #shift layer w so that the middle lines of all layers intersect in one point: sorter.shift_layer_w(+1, w_offset) else : # shift the time sums to zero: sorter.shift_sums(+1, offset_sum_u, offset_sum_v) # shift all signals from the anode so that the center of the detector is at x=y=0: sorter.shift_position_origin(+1, pos_offset_x, pos_offset_y) sorter.feed_calibration_data(True, w_offset) # for calibration of fv, fw, w_offset and correction tables #DIO.get_tdc_data_array(tdc_ns) time_sum_u_corr = tdc_ns[Cu1,0] + tdc_ns[Cu2,0] - 2*tdc_ns[Cmcp,0] time_sum_v_corr = tdc_ns[Cv1,0] + tdc_ns[Cv2,0] - 2*tdc_ns[Cmcp,0] time_sum_w_corr = tdc_ns[Cw1,0] + tdc_ns[Cw2,0] - 2*tdc_ns[Cmcp,0] #print 'map_is_full_enough', hexanode.py_sorter_scalefactors_calibration_map_is_full_enough(sorter) sfco = hexanode.py_scalefactors_calibration_class(sorter) # break loop if statistics is enough if sfco : if sfco.map_is_full_enough() : print 'sfo.map_is_full_enough(): %s event number: %06d' % (sfco.map_is_full_enough(), evnum) break # XY_RESOLUTION : if True : #print " binx: %d biny: %d resolution(FWHM): %.6f" % (sfco.binx, sfco.biny, sfco.detector_map_resol_FWHM_fill) if sfco.binx>=0 and sfco.biny>=0 : binx= sfco.binx biny= sfco.biny resol_fwhm= sfco.detector_map_resol_FWHM_fill # Sort the TDC-Data and reconstruct missing signals and apply the sum- and NL-correction. # number_of_particles is the number of reconstructed particles #======================================================== number_of_particles = sorter.sort() if command == 1 else\ sorter.run_without_sorting() #======================================================== if True : print " Event %5i number_of_particles: %i" % (evnum, number_of_particles) for i in range(number_of_particles) : hco= hexanode.py_hit_class(sorter, i) print " p:%1i x:%.3f y:%.3f t:%.3f met:%d" % (i, hco.x, hco.y, hco.time, hco.method) print " part1 u:%.3f v:%.3f w:%.3f" % (u, v, w) #------------------------- # TODO by the end user..." if number_of_particles<1 : continue hco= hexanode.py_hit_class(sorter, 0) # MISC if False : # fill Consistence Indicator consistenceIndicator = 0 for (ind, incr) in inds_incr : if number_of_hits[ind]>0 : consistenceIndicator += incr consist_indicator = consistenceIndicator rec_method = hco.method #print 'reconstruction method %d' % hco.method # XY_2D : if False : # fill 2-d images x1, y1 = hco.x, hco.y x2, y2 = (-10,-10) if number_of_particles > 1 : hco2 = hexanode.py_hit_class(sorter, 1) x2, y2 = hco2.x, hco2.y ix1, ix2, ixuv, ixuw, ixvw = img_x_bins.bin_indexes((x1, x2, Xuv, Xuw, Xvw)) iy1, iy2, iyuv, iyuw, iyvw = img_y_bins.bin_indexes((y1, y2, Yuv, Yuw, Yvw)) img_xy_1 [iy1, ix1] += 1 img_xy_2 [iy2, ix2] += 1 img_xy_uv[iyuv, ixuv] += 1 img_xy_uw[iyuw, ixuw] += 1 img_xy_vw[iyvw, ixvw] += 1 # PHYSICS : if False : if number_of_hits[Cmcp]>1 : t0, t1 = tdc_ns[Cmcp,:2] it0, it1 = t_ns_bins.bin_indexes((t0, t1)) t1_vs_t0[it1, it0] += 1 ix, iy = x_mm_bins.bin_indexes((Xuv,Yuv)) #iy = y_mm_bins.bin_indexes((Yuv,)) x_vs_t0[ix, it0] += 1 y_vs_t0[iy, it0] += 1 # // write the results into a new data file. # // the variable "number_of_particles" contains the number of reconstructed particles. # // the x and y (in mm) and TOF (in ns) is stored in the array sorter->output_hit_array: # // for the i-th particle (i starts from 0): # // hco= hexanode.py_hit_class(sorter, i) # // hco.x, hco.y, hco.time # // for each particle you can also retrieve the information about how the particle # // was reconstructed (tog et some measure of the confidence): # // hco.method # end of the event loop if
find CLR method """ IsRequiredForFormCore(self: UIElementAutomationPeer) -> bool Gets a value that indicates whether the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer is required to be completed on a form. This method is called by System.Windows.Automation.Peers.AutomationPeer.IsRequiredForForm. Returns: A boolean that contains the value that is returned by System.Windows.Automation.AutomationProperties.GetIsRequiredForForm(System.Windo ws.DependencyObject), if it's set; otherwise false. """ pass def PeerFromProvider(self, *args): #cannot find CLR method """ PeerFromProvider(self: AutomationPeer, provider: IRawElementProviderSimple) -> AutomationPeer Gets an System.Windows.Automation.Peers.AutomationPeer for the specified System.Windows.Automation.Provider.IRawElementProviderSimple proxy. provider: The class that implements System.Windows.Automation.Provider.IRawElementProviderSimple. Returns: The System.Windows.Automation.Peers.AutomationPeer. """ pass def ProviderFromPeer(self, *args): #cannot find CLR method """ ProviderFromPeer(self: AutomationPeer, peer: AutomationPeer) -> IRawElementProviderSimple Gets the System.Windows.Automation.Provider.IRawElementProviderSimple for the specified System.Windows.Automation.Peers.AutomationPeer. peer: The automation peer. Returns: The proxy. """ pass def SetFocusCore(self, *args): #cannot find CLR method """ SetFocusCore(self: ComboBoxAutomationPeer) Sets the keyboard input focus on the System.Windows.Controls.ComboBox control that is associated with this System.Windows.Automation.Peers.ComboBoxAutomationPeer object. This method is called by System.Windows.Automation.Peers.AutomationPeer.SetFocus. """ pass def __init__(self, *args): #cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod # known case of __new__ def __new__(self, owner): """ __new__(cls: type, owner: ComboBox) """ pass IsHwndHost = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Gets a value that indicates whether the element that is associated with this System.Windows.Automation.Peers.AutomationPeer hosts hwnds in Windows Presentation Foundation (WPF). """ IsVirtualized = property(lambda self: object(), lambda self, v: None, lambda self: None) # default class ContentElementAutomationPeer(AutomationPeer): """ Exposes System.Windows.ContentElement types to UI Automation. ContentElementAutomationPeer(owner: ContentElement) """ @staticmethod def CreatePeerForElement(element): """ CreatePeerForElement(element: ContentElement) -> AutomationPeer Creates a System.Windows.Automation.Peers.ContentElementAutomationPeer for the specified System.Windows.ContentElement. element: The System.Windows.ContentElement that is associated with this System.Windows.Automation.Peers.ContentElementAutomationPeer. Returns: The System.Windows.Automation.Peers.ContentElementAutomationPeer for the specified System.Windows.ContentElement. """ pass @staticmethod def FromElement(element): """ FromElement(element: ContentElement) -> AutomationPeer Gets the System.Windows.Automation.Peers.ContentElementAutomationPeer for the specified System.Windows.ContentElement. element: The System.Windows.ContentElement that is associated with this System.Windows.Automation.Peers.ContentElementAutomationPeer. Returns: The System.Windows.Automation.Peers.ContentElementAutomationPeer for the specified System.Windows.ContentElement, or null if the System.Windows.Automation.Peers.ContentElementAutomationPeer has not been created by the System.Windows.Automation.Peers.ContentElementAutomationPeer.CreatePeerForElemen t(System.Windows.ContentElement) method. """ pass def GetPattern(self, patternInterface): """ GetPattern(self: ContentElementAutomationPeer, patternInterface: PatternInterface) -> object Gets the control pattern for the System.Windows.ContentElement that is associated with this System.Windows.Automation.Peers.ContentElementAutomationPeer. patternInterface: One of the enumeration values. Returns: An object that implements the System.Windows.Automation.Provider.ISynchronizedInputProvider interface if patternInterface is System.Windows.Automation.Peers.PatternInterface.SynchronizedInput; otherwise, null. """ pass @staticmethod # known case of __new__ def __new__(self, owner): """ __new__(cls: type, owner: ContentElement) """ pass IsHwndHost = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Gets a value that indicates whether the element that is associated with this System.Windows.Automation.Peers.AutomationPeer hosts hwnds in Windows Presentation Foundation (WPF). """ Owner = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Gets the System.Windows.ContentElement that is associated with this System.Windows.Automation.Peers.ContentElementAutomationPeer. Get: Owner(self: ContentElementAutomationPeer) -> ContentElement """ class FrameworkContentElementAutomationPeer(ContentElementAutomationPeer): """ Exposes System.Windows.FrameworkContentElement types to UI Automation. FrameworkContentElementAutomationPeer(owner: FrameworkContentElement) """ @staticmethod # known case of __new__ def __new__(self, owner): """ __new__(cls: type, owner: FrameworkContentElement) """ pass IsHwndHost = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Gets a value that indicates whether the element that is associated with this System.Windows.Automation.Peers.AutomationPeer hosts hwnds in Windows Presentation Foundation (WPF). """ class ContentTextAutomationPeer(FrameworkContentElementAutomationPeer): """ Represents a base class for exposing System.Windows.Automation.TextPattern types to UI Automation. """ @staticmethod # known case of __new__ def __new__(self, *args): #cannot find CLR constructor """ __new__(cls: type, owner: FrameworkContentElement) """ pass IsHwndHost = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Gets a value that indicates whether the element that is associated with this System.Windows.Automation.Peers.AutomationPeer hosts hwnds in Windows Presentation Foundation (WPF). """ class ContextMenuAutomationPeer(FrameworkElementAutomationPeer): """ Exposes System.Windows.Controls.ContextMenu types to UI Automation. ContextMenuAutomationPeer(owner: ContextMenu) """ @staticmethod # known case of __new__ def __new__(self, owner): """ __new__(cls: type, owner: ContextMenu) """ pass IsHwndHost = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Gets a value that indicates whether the element that is associated with this System.Windows.Automation.Peers.AutomationPeer hosts hwnds in Windows Presentation Foundation (WPF). """ class DataGridAutomationPeer(ItemsControlAutomationPeer, IItemContainerProvider, IGridProvider, ISelectionProvider, ITableProvider): """ Exposes System.Windows.Controls.DataGrid types to UI Automation. DataGridAutomationPeer(owner: DataGrid) """ def CreateItemAutomationPeer(self, *args): #cannot find CLR method """ CreateItemAutomationPeer(self: DataGridAutomationPeer, item: object) -> ItemAutomationPeer """ pass def FindOrCreateItemAutomationPeer(self, *args): #cannot find CLR method """ FindOrCreateItemAutomationPeer(self: ItemsControlAutomationPeer, item: object) -> ItemAutomationPeer """ pass def GetAcceleratorKeyCore(self, *args): #cannot find CLR method """ GetAcceleratorKeyCore(self: UIElementAutomationPeer) -> str Gets the accelerator key for the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer. This method is called by System.Windows.Automation.Peers.AutomationPeer.GetAcceleratorKey. Returns: The System.Windows.Automation.AutomationProperties.AcceleratorKey that is returned by System.Windows.Automation.AutomationProperties.GetAcceleratorKey(System.Windows. DependencyObject). """ pass def GetAccessKeyCore(self, *args): #cannot find CLR method """ GetAccessKeyCore(self: UIElementAutomationPeer) -> str Gets the access key for the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer.This method is called by System.Windows.Automation.Peers.AutomationPeer.GetAccessKey. Returns: The access key for the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer. """ pass def GetAutomationControlTypeCore(self, *args): #cannot find CLR method """ GetAutomationControlTypeCore(self: DataGridAutomationPeer) -> AutomationControlType """ pass def GetAutomationIdCore(self, *args): #cannot find CLR method """ GetAutomationIdCore(self: FrameworkElementAutomationPeer) -> str Gets the string that uniquely identifies the System.Windows.FrameworkElement that is associated with this System.Windows.Automation.Peers.FrameworkElementAutomationPeer. Called by System.Windows.Automation.Peers.AutomationPeer.GetAutomationId. Returns: The automation identifier for the element associated with the System.Windows.Automation.Peers.FrameworkElementAutomationPeer, or System.String.Empty if there isn't an automation identifier. """ pass def GetBoundingRectangleCore(self, *args): #cannot find CLR method """ GetBoundingRectangleCore(self: UIElementAutomationPeer) -> Rect Gets the System.Windows.Rect that represents the bounding rectangle of the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer. This method is called by System.Windows.Automation.Peers.AutomationPeer.GetBoundingRectangle. Returns: The System.Windows.Rect that contains the coordinates of the element. Optionally, if the element is not both a System.Windows.Interop.HwndSource and a System.Windows.PresentationSource, this method returns System.Windows.Rect.Empty. """ pass def GetChildrenCore(self, *args): #cannot find CLR method """ GetChildrenCore(self: DataGridAutomationPeer) -> List[AutomationPeer] """ pass def GetClassNameCore(self, *args): #cannot find CLR method """ GetClassNameCore(self: DataGridAutomationPeer) -> str """ pass def GetClickablePointCore(self, *args): #cannot find CLR method """ GetClickablePointCore(self: UIElementAutomationPeer) -> Point Gets a System.Windows.Point that represents the clickable space that is on the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer. This method is called by System.Windows.Automation.Peers.AutomationPeer.GetClickablePoint. Returns: The System.Windows.Point on the element that allows a click. The point values are (System.Double.NaN, System.Double.NaN) if the element is not both a System.Windows.Interop.HwndSource and a System.Windows.PresentationSource. """ pass def GetHelpTextCore(self, *args): #cannot find CLR method """ GetHelpTextCore(self: FrameworkElementAutomationPeer) -> str Gets the string that describes the functionality of the System.Windows.ContentElement that is associated with this System.Windows.Automation.Peers.ContentElementAutomationPeer. Called by System.Windows.Automation.Peers.AutomationPeer.GetHelpText. Returns: The help text, usually from the System.Windows.Controls.ToolTip, or System.String.Empty if there is no help text. """ pass def GetHostRawElementProviderCore(self, *args): #cannot find CLR method """ GetHostRawElementProviderCore(self: AutomationPeer) -> HostedWindowWrapper Tells UI Automation where in the UI Automation tree to place the hwnd being hosted by a Windows Presentation Foundation (WPF) element. Returns: This method returns the hosted hwnd to UI Automation for controls that host hwnd objects. """ pass def GetItemStatusCore(self, *args): #cannot find CLR method """ GetItemStatusCore(self: UIElementAutomationPeer) -> str Gets a string that communicates the visual status of the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer. This method is called by System.Windows.Automation.Peers.AutomationPeer.GetItemStatus. Returns: The string that contains the System.Windows.Automation.AutomationProperties.ItemStatus that is returned by System.Windows.Automation.AutomationProperties.GetItemStatus(System.Windows.Depe ndencyObject). """ pass def GetItemTypeCore(self, *args): #cannot find CLR method """ GetItemTypeCore(self: UIElementAutomationPeer) -> str Gets a human-readable string that contains the item
3) self.points_table = FCTable() self.points_table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) # self.points_table.setSizeAdjustPolicy(QtWidgets.QAbstractScrollArea.AdjustToContents) grid_lay.addWidget(self.points_table, 16, 0, 1, 3) self.points_table.setColumnCount(4) self.points_table.setHorizontalHeaderLabels( [ '#', _("Name"), _("Target"), _("Found Delta") ] ) self.points_table.setRowCount(8) row = 0 # BOTTOM LEFT id_item_1 = QtWidgets.QTableWidgetItem('%d' % 1) flags = QtCore.Qt.ItemIsEnabled id_item_1.setFlags(flags) self.points_table.setItem(row, 0, id_item_1) # Tool name/id self.bottom_left_coordx_lbl = QtWidgets.QLabel('%s' % _('Bot Left X')) self.points_table.setCellWidget(row, 1, self.bottom_left_coordx_lbl) self.bottom_left_coordx_tgt = EvalEntry() self.points_table.setCellWidget(row, 2, self.bottom_left_coordx_tgt) self.bottom_left_coordx_tgt.setReadOnly(True) self.bottom_left_coordx_found = EvalEntry() self.points_table.setCellWidget(row, 3, self.bottom_left_coordx_found) row += 1 self.bottom_left_coordy_lbl = QtWidgets.QLabel('%s' % _('Bot Left Y')) self.points_table.setCellWidget(row, 1, self.bottom_left_coordy_lbl) self.bottom_left_coordy_tgt = EvalEntry() self.points_table.setCellWidget(row, 2, self.bottom_left_coordy_tgt) self.bottom_left_coordy_tgt.setReadOnly(True) self.bottom_left_coordy_found = EvalEntry() self.points_table.setCellWidget(row, 3, self.bottom_left_coordy_found) self.bottom_left_coordx_found.setDisabled(True) self.bottom_left_coordy_found.setDisabled(True) row += 1 # BOTTOM RIGHT id_item_2 = QtWidgets.QTableWidgetItem('%d' % 2) flags = QtCore.Qt.ItemIsEnabled id_item_2.setFlags(flags) self.points_table.setItem(row, 0, id_item_2) # Tool name/id self.bottom_right_coordx_lbl = QtWidgets.QLabel('%s' % _('Bot Right X')) self.points_table.setCellWidget(row, 1, self.bottom_right_coordx_lbl) self.bottom_right_coordx_tgt = EvalEntry() self.points_table.setCellWidget(row, 2, self.bottom_right_coordx_tgt) self.bottom_right_coordx_tgt.setReadOnly(True) self.bottom_right_coordx_found = EvalEntry() self.points_table.setCellWidget(row, 3, self.bottom_right_coordx_found) row += 1 self.bottom_right_coordy_lbl = QtWidgets.QLabel('%s' % _('Bot Right Y')) self.points_table.setCellWidget(row, 1, self.bottom_right_coordy_lbl) self.bottom_right_coordy_tgt = EvalEntry() self.points_table.setCellWidget(row, 2, self.bottom_right_coordy_tgt) self.bottom_right_coordy_tgt.setReadOnly(True) self.bottom_right_coordy_found = EvalEntry() self.points_table.setCellWidget(row, 3, self.bottom_right_coordy_found) row += 1 # TOP LEFT id_item_3 = QtWidgets.QTableWidgetItem('%d' % 3) flags = QtCore.Qt.ItemIsEnabled id_item_3.setFlags(flags) self.points_table.setItem(row, 0, id_item_3) # Tool name/id self.top_left_coordx_lbl = QtWidgets.QLabel('%s' % _('Top Left X')) self.points_table.setCellWidget(row, 1, self.top_left_coordx_lbl) self.top_left_coordx_tgt = EvalEntry() self.points_table.setCellWidget(row, 2, self.top_left_coordx_tgt) self.top_left_coordx_tgt.setReadOnly(True) self.top_left_coordx_found = EvalEntry() self.points_table.setCellWidget(row, 3, self.top_left_coordx_found) row += 1 self.top_left_coordy_lbl = QtWidgets.QLabel('%s' % _('Top Left Y')) self.points_table.setCellWidget(row, 1, self.top_left_coordy_lbl) self.top_left_coordy_tgt = EvalEntry() self.points_table.setCellWidget(row, 2, self.top_left_coordy_tgt) self.top_left_coordy_tgt.setReadOnly(True) self.top_left_coordy_found = EvalEntry() self.points_table.setCellWidget(row, 3, self.top_left_coordy_found) row += 1 # TOP RIGHT id_item_4 = QtWidgets.QTableWidgetItem('%d' % 4) flags = QtCore.Qt.ItemIsEnabled id_item_4.setFlags(flags) self.points_table.setItem(row, 0, id_item_4) # Tool name/id self.top_right_coordx_lbl = QtWidgets.QLabel('%s' % _('Top Right X')) self.points_table.setCellWidget(row, 1, self.top_right_coordx_lbl) self.top_right_coordx_tgt = EvalEntry() self.points_table.setCellWidget(row, 2, self.top_right_coordx_tgt) self.top_right_coordx_tgt.setReadOnly(True) self.top_right_coordx_found = EvalEntry() self.top_right_coordx_found.setDisabled(True) self.points_table.setCellWidget(row, 3, self.top_right_coordx_found) row += 1 self.top_right_coordy_lbl = QtWidgets.QLabel('%s' % _('Top Right Y')) self.points_table.setCellWidget(row, 1, self.top_right_coordy_lbl) self.top_right_coordy_tgt = EvalEntry() self.points_table.setCellWidget(row, 2, self.top_right_coordy_tgt) self.top_right_coordy_tgt.setReadOnly(True) self.top_right_coordy_found = EvalEntry() self.top_right_coordy_found.setDisabled(True) self.points_table.setCellWidget(row, 3, self.top_right_coordy_found) vertical_header = self.points_table.verticalHeader() vertical_header.hide() self.points_table.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) horizontal_header = self.points_table.horizontalHeader() horizontal_header.setMinimumSectionSize(10) horizontal_header.setDefaultSectionSize(70) self.points_table.setSizeAdjustPolicy(QtWidgets.QAbstractScrollArea.AdjustToContents) # for x in range(4): # self.points_table.resizeColumnToContents(x) self.points_table.resizeColumnsToContents() self.points_table.resizeRowsToContents() horizontal_header.setSectionResizeMode(0, QtWidgets.QHeaderView.Fixed) horizontal_header.resizeSection(0, 20) horizontal_header.setSectionResizeMode(1, QtWidgets.QHeaderView.Fixed) horizontal_header.setSectionResizeMode(2, QtWidgets.QHeaderView.Stretch) horizontal_header.setSectionResizeMode(3, QtWidgets.QHeaderView.Stretch) self.points_table.setMinimumHeight(self.points_table.getHeight() + 2) self.points_table.setMaximumHeight(self.points_table.getHeight() + 3) # ## Get Points Button self.start_button = QtWidgets.QPushButton(_("Get Points")) self.start_button.setToolTip( _("Pick four points by clicking on canvas if the source choice\n" "is 'free' or inside the object geometry if the source is 'object'.\n" "Those four points should be in the four squares of\n" "the object.") ) self.start_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) grid_lay.addWidget(self.start_button, 17, 0, 1, 3) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) grid_lay.addWidget(separator_line, 18, 0, 1, 3) grid_lay.addWidget(QtWidgets.QLabel(''), 19, 0) # STEP 2 # step_2 = QtWidgets.QLabel('<b>%s</b>' % _("STEP 2: Verification GCode")) step_2.setToolTip( _("Generate GCode file to locate and align the PCB by using\n" "the four points acquired above.\n" "The points sequence is:\n" "- first point -> set the origin\n" "- second point -> alignment point. Can be: top-left or bottom-right.\n" "- third point -> check point. Can be: top-left or bottom-right.\n" "- forth point -> final verification point. Just for evaluation.") ) grid_lay.addWidget(step_2, 20, 0, 1, 3) # ## GCode Button self.gcode_button = QtWidgets.QPushButton(_("Generate GCode")) self.gcode_button.setToolTip( _("Generate GCode file to locate and align the PCB by using\n" "the four points acquired above.\n" "The points sequence is:\n" "- first point -> set the origin\n" "- second point -> alignment point. Can be: top-left or bottom-right.\n" "- third point -> check point. Can be: top-left or bottom-right.\n" "- forth point -> final verification point. Just for evaluation.") ) self.gcode_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) grid_lay.addWidget(self.gcode_button, 21, 0, 1, 3) separator_line1 = QtWidgets.QFrame() separator_line1.setFrameShape(QtWidgets.QFrame.HLine) separator_line1.setFrameShadow(QtWidgets.QFrame.Sunken) grid_lay.addWidget(separator_line1, 22, 0, 1, 3) grid_lay.addWidget(QtWidgets.QLabel(''), 23, 0, 1, 3) # STEP 3 # step_3 = QtWidgets.QLabel('<b>%s</b>' % _("STEP 3: Adjustments")) step_3.setToolTip( _("Calculate Scale and Skew factors based on the differences (delta)\n" "found when checking the PCB pattern. The differences must be filled\n" "in the fields Found (Delta).") ) grid_lay.addWidget(step_3, 24, 0, 1, 3) # ## Factors Button self.generate_factors_button = QtWidgets.QPushButton(_("Calculate Factors")) self.generate_factors_button.setToolTip( _("Calculate Scale and Skew factors based on the differences (delta)\n" "found when checking the PCB pattern. The differences must be filled\n" "in the fields Found (Delta).") ) self.generate_factors_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) grid_lay.addWidget(self.generate_factors_button, 25, 0, 1, 3) separator_line1 = QtWidgets.QFrame() separator_line1.setFrameShape(QtWidgets.QFrame.HLine) separator_line1.setFrameShadow(QtWidgets.QFrame.Sunken) grid_lay.addWidget(separator_line1, 26, 0, 1, 3) grid_lay.addWidget(QtWidgets.QLabel(''), 27, 0, 1, 3) # STEP 4 # step_4 = QtWidgets.QLabel('<b>%s</b>' % _("STEP 4: Adjusted GCode")) step_4.setToolTip( _("Generate verification GCode file adjusted with\n" "the factors above.") ) grid_lay.addWidget(step_4, 28, 0, 1, 3) self.scalex_label = QtWidgets.QLabel(_("Scale Factor X:")) self.scalex_label.setToolTip( _("Factor for Scale action over X axis.") ) self.scalex_entry = FCDoubleSpinner(callback=self.confirmation_message) self.scalex_entry.set_range(0, 10000.0000) self.scalex_entry.set_precision(self.decimals) self.scalex_entry.setSingleStep(0.1) grid_lay.addWidget(self.scalex_label, 29, 0) grid_lay.addWidget(self.scalex_entry, 29, 1, 1, 2) self.scaley_label = QtWidgets.QLabel(_("Scale Factor Y:")) self.scaley_label.setToolTip( _("Factor for Scale action over Y axis.") ) self.scaley_entry = FCDoubleSpinner(callback=self.confirmation_message) self.scaley_entry.set_range(0, 10000.0000) self.scaley_entry.set_precision(self.decimals) self.scaley_entry.setSingleStep(0.1) grid_lay.addWidget(self.scaley_label, 30, 0) grid_lay.addWidget(self.scaley_entry, 30, 1, 1, 2) self.scale_button = QtWidgets.QPushButton(_("Apply Scale Factors")) self.scale_button.setToolTip( _("Apply Scale factors on the calibration points.") ) self.scale_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) grid_lay.addWidget(self.scale_button, 31, 0, 1, 3) self.skewx_label = QtWidgets.QLabel(_("Skew Angle X:")) self.skewx_label.setToolTip( _("Angle, in degrees.\n" "Float number between -360 and 359.") ) self.skewx_entry = FCDoubleSpinner(callback=self.confirmation_message) self.skewx_entry.set_range(-360, 360) self.skewx_entry.set_precision(self.decimals) self.skewx_entry.setSingleStep(0.1) grid_lay.addWidget(self.skewx_label, 32, 0) grid_lay.addWidget(self.skewx_entry, 32, 1, 1, 2) self.skewy_label = QtWidgets.QLabel(_("Skew Angle Y:")) self.skewy_label.setToolTip( _("Angle, in degrees.\n" "Float number between -360 and 359.") ) self.skewy_entry = FCDoubleSpinner(callback=self.confirmation_message) self.skewy_entry.set_range(-360, 360) self.skewy_entry.set_precision(self.decimals) self.skewy_entry.setSingleStep(0.1) grid_lay.addWidget(self.skewy_label, 33, 0) grid_lay.addWidget(self.skewy_entry, 33, 1, 1, 2) self.skew_button = QtWidgets.QPushButton(_("Apply Skew Factors")) self.skew_button.setToolTip( _("Apply Skew factors on the calibration points.") ) self.skew_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) grid_lay.addWidget(self.skew_button, 34, 0, 1, 3) # final_factors_lbl = QtWidgets.QLabel('<b>%s</b>' % _("Final Factors")) # final_factors_lbl.setToolTip( # _("Generate verification GCode file adjusted with\n" # "the factors above.") # ) # grid_lay.addWidget(final_factors_lbl, 27, 0, 1, 3) # # self.fin_scalex_label = QtWidgets.QLabel(_("Scale Factor X:")) # self.fin_scalex_label.setToolTip( # _("Final factor for Scale action over X axis.") # ) # self.fin_scalex_entry = FCDoubleSpinner(callback=self.confirmation_message) # self.fin_scalex_entry.set_range(0, 10000.0000) # self.fin_scalex_entry.set_precision(self.decimals) # self.fin_scalex_entry.setSingleStep(0.1) # # grid_lay.addWidget(self.fin_scalex_label, 28, 0) # grid_lay.addWidget(self.fin_scalex_entry, 28, 1, 1, 2) # # self.fin_scaley_label = QtWidgets.QLabel(_("Scale Factor Y:")) # self.fin_scaley_label.setToolTip( # _("Final factor for Scale action over Y axis.") # ) # self.fin_scaley_entry = FCDoubleSpinner(callback=self.confirmation_message) # self.fin_scaley_entry.set_range(0, 10000.0000) # self.fin_scaley_entry.set_precision(self.decimals) # self.fin_scaley_entry.setSingleStep(0.1) # # grid_lay.addWidget(self.fin_scaley_label, 29, 0) # grid_lay.addWidget(self.fin_scaley_entry, 29, 1, 1, 2) # # self.fin_skewx_label = QtWidgets.QLabel(_("Skew Angle X:")) # self.fin_skewx_label.setToolTip( # _("Final value for angle for Skew action, in degrees.\n" # "Float number between -360 and 359.") # ) # self.fin_skewx_entry = FCDoubleSpinner(callback=self.confirmation_message) # self.fin_skewx_entry.set_range(-360, 360) # self.fin_skewx_entry.set_precision(self.decimals) # self.fin_skewx_entry.setSingleStep(0.1) # # grid_lay.addWidget(self.fin_skewx_label, 30, 0) # grid_lay.addWidget(self.fin_skewx_entry, 30, 1, 1, 2) # # self.fin_skewy_label = QtWidgets.QLabel(_("Skew Angle Y:")) # self.fin_skewy_label.setToolTip( # _("Final value for angle for Skew action, in degrees.\n" # "Float number between -360 and 359.") # ) # self.fin_skewy_entry = FCDoubleSpinner(callback=self.confirmation_message) # self.fin_skewy_entry.set_range(-360, 360) # self.fin_skewy_entry.set_precision(self.decimals) # self.fin_skewy_entry.setSingleStep(0.1) # # grid_lay.addWidget(self.fin_skewy_label, 31, 0) # grid_lay.addWidget(self.fin_skewy_entry, 31, 1, 1, 2) # ## Adjusted GCode Button self.adj_gcode_button = QtWidgets.QPushButton(_("Generate Adjusted GCode")) self.adj_gcode_button.setToolTip( _("Generate verification GCode file adjusted with\n" "the factors set above.\n" "The GCode parameters can be readjusted\n" "before clicking this button.") ) self.adj_gcode_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) grid_lay.addWidget(self.adj_gcode_button, 42, 0, 1, 3) separator_line1 = QtWidgets.QFrame() separator_line1.setFrameShape(QtWidgets.QFrame.HLine) separator_line1.setFrameShadow(QtWidgets.QFrame.Sunken) grid_lay.addWidget(separator_line1, 43, 0, 1, 3) grid_lay.addWidget(QtWidgets.QLabel(''), 44, 0, 1, 3) # STEP 5 # step_5 = QtWidgets.QLabel('<b>%s</b>' % _("STEP 5: Calibrate FlatCAM Objects")) step_5.setToolTip( _("Adjust the FlatCAM objects\n" "with the factors determined and verified above.") ) grid_lay.addWidget(step_5, 45, 0, 1, 3) self.adj_object_type_combo = FCComboBox() self.adj_object_type_combo.addItems([_("Gerber"), _("Excellon"), _("Geometry")]) self.adj_object_type_combo.setItemIcon(0, QtGui.QIcon(self.app.resource_location + "/flatcam_icon16.png")) self.adj_object_type_combo.setItemIcon(1, QtGui.QIcon(self.app.resource_location + "/drill16.png")) self.adj_object_type_combo.setItemIcon(2, QtGui.QIcon(self.app.resource_location + "/geometry16.png")) self.adj_object_type_label = QtWidgets.QLabel("%s:" % _("Adjusted object type")) self.adj_object_type_label.setToolTip(_("Type of the FlatCAM Object to be adjusted.")) grid_lay.addWidget(self.adj_object_type_label, 46, 0, 1, 3) grid_lay.addWidget(self.adj_object_type_combo, 47, 0, 1, 3) self.adj_object_combo = FCComboBox() self.adj_object_combo.setModel(self.app.collection) self.adj_object_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex())) self.adj_object_combo.is_last = True self.adj_object_combo.obj_type = { _("Gerber"): "Gerber", _("Excellon"): "Excellon", _("Geometry"): "Geometry" }[self.adj_object_type_combo.get_value()] self.adj_object_label = QtWidgets.QLabel("%s:" % _("Adjusted object selection")) self.adj_object_label.setToolTip( _("The FlatCAM Object to be adjusted.") ) grid_lay.addWidget(self.adj_object_label, 48, 0, 1, 3)
<filename>src/vrf.py from src import common_ops import json def get_all_vrfs(**kwargs): """ Perform a GET call to get a list (or dictionary) of all entries in VRF table :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: List/dict of all VRFs in the table """ target_url = kwargs["url"] + "system/vrfs" response = kwargs["s"].get(target_url, verify=False) if not common_ops._response_ok(response, "GET"): print("FAIL: Getting list/dict of all VRF table entries failed with status code %d" % response.status_code) vrfs = [] else: print("SUCCESS: Getting list/dict of all VRF table entries succeeded") vrfs = response.json() return vrfs def add_vrf(vrf_name, route_distinguisher=None, vrf_type="user", **kwargs): """ Perform a POST call to create a new VRF, and add a route distinguisher if desired. :param vrf_name: Alphanumeric name of VRF :param route_distinguisher: Optional route distinguisher to add. Defaults to nothing if not specified. :param vrf_type: Optional VRF type. Defaults to "user" if not specified. :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: Nothing """ if kwargs["url"].endswith("/v1/"): add_vrf_v1(vrf_name, route_distinguisher, vrf_type, **kwargs) else: # Updated else for when version is v10.04 _add_vrf(vrf_name, route_distinguisher, vrf_type, **kwargs) def add_vrf_v1(vrf_name, route_distinguisher=None, vrf_type="user", **kwargs): """ Perform a POST call to create a new VRF, and add a route distinguisher if desired. :param vrf_name: name of VRF :param route_distinguisher: Optional route distinguisher to add. Defaults to nothing if not specified. :param vrf_type: Optional VRF type. Defaults to "user" if not specified. :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: Nothing """ vrfs_list = get_all_vrfs(**kwargs) if "/rest/v1/system/vrfs/%s" % vrf_name not in vrfs_list: vrf_data = {"name": vrf_name, "type": vrf_type} if route_distinguisher is not None: vrf_data["rd"] = route_distinguisher target_url = kwargs["url"] + "system/vrfs" post_data = json.dumps(vrf_data, sort_keys=True, indent=4) response = kwargs["s"].post(target_url, data=post_data, verify=False) if not common_ops._response_ok(response, "POST"): print("FAIL: Creating new VRF '%s' failed with status code %d" % (vrf_name, response.status_code)) else: print("SUCCESS: Creating new VRF '%s' succeeded" % vrf_name) else: print("SUCCESS: No need to create VRF '%s' since it already exists" % vrf_name) def _add_vrf(vrf_name, route_distinguisher=None, vrf_type="user", **kwargs): """ Perform a POST call to create a new VRF, and add a route distinguisher if desired. :param vrf_name: name of VRF :param route_distinguisher: Optional route distinguisher to add. Defaults to nothing if not specified. :param vrf_type: Optional VRF type. Defaults to "user" if not specified. :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: Nothing """ vrfs_dict = get_all_vrfs(**kwargs) if vrf_name not in vrfs_dict: vrf_data = {"name": vrf_name, "type": vrf_type} if route_distinguisher is not None: vrf_data["rd"] = route_distinguisher target_url = kwargs["url"] + "system/vrfs" post_data = json.dumps(vrf_data, sort_keys=True, indent=4) response = kwargs["s"].post(target_url, data=post_data, verify=False) if not common_ops._response_ok(response, "POST"): print("FAIL: Creating new VRF '%s' failed with status code %d" % (vrf_name, response.status_code)) else: print("SUCCESS: Creating new VRF '%s' succeeded" % vrf_name) else: print("SUCCESS: No need to create VRF '%s' since it already exists" % vrf_name) def get_vrf(vrf_name, depth=0, selector=None, **kwargs): """ Perform a GET call to get data for a VRF table entry :param vrf_name: Alphanumeric name of the VRF :param depth: Integer deciding how many levels into the API JSON that references will be returned. :param selector: Alphanumeric option to select specific information to return. The options are 'configuration', 'status', 'statistics' or 'writable'. :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: Dictionary containing the VRF data """ if kwargs["url"].endswith("/v1/"): return _get_vrf_v1(vrf_name, depth, selector, **kwargs) else: # Updated else for when version is v10.04 return _get_vrf(vrf_name, depth, selector, **kwargs) def _get_vrf_v1(vrf_name, depth=0, selector=None, **kwargs): """ Perform a GET call to get data for a VRF table entry :param vrf_name: Alphanumeric name of the VRF :param depth: Integer deciding how many levels into the API JSON that references will be returned. :param selector: Alphanumeric option to select specific information to return. The options are 'configuration', 'status', 'statistics' or 'writable'. :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: Dictionary containing the VRF data """ if selector not in ['configuration', 'status', 'statistics', None]: raise Exception("ERROR: Selector should be 'configuration', 'status', or 'statistics'") target_url = kwargs["url"] + "system/vrfs/%s" % vrf_name payload = { "depth": depth, "selector": selector } response = kwargs["s"].get(target_url, verify=False, params=payload, timeout=2) if not common_ops._response_ok(response, "GET"): print("FAIL: Getting VRF table entry '%s' failed with status code %d" % (vrf_name, response.status_code)) vrf = [] else: print("SUCCESS: Getting VRF table entry '%s' succeeded" % vrf_name) vrf = response.json() return vrf def _get_vrf(vrf_name, depth=1, selector=None, **kwargs): """ Perform a GET call to get data for a VRF table entry :param vrf_name: Alphanumeric name of the VRF :param depth: Integer deciding how many levels into the API JSON that references will be returned. :param selector: Alphanumeric option to select specific information to return. The options are 'configuration', 'status', 'statistics' or 'writable'. :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: Dictionary containing the VRF data """ if selector not in ['configuration', 'status', 'statistics', 'writable', None]: raise Exception("ERROR: Selector should be 'configuration', 'status', 'statistics', or 'writable'") target_url = kwargs["url"] + "system/vrfs/%s" % vrf_name payload = { "depth": depth, "selector": selector } response = kwargs["s"].get(target_url, verify=False, params=payload, timeout=2) if not common_ops._response_ok(response, "GET"): print("FAIL: Getting VRF table entry '%s' failed with status code %d" % (vrf_name, response.status_code)) vrf = [] else: print("SUCCESS: Getting VRF table entry '%s' succeeded" % vrf_name) vrf = response.json() return vrf def delete_vrf(vrf_name, **kwargs): """ Perform a DELETE call to delete a VRF. Note that this functions has logic that works for both v1 and v10.04 :param vrf_name: Alphanumeric name of VRF :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: Nothing """ vrf_list = get_all_vrfs(**kwargs) if kwargs["url"].endswith("/v1/"): vrf_check = "/rest/v1/system/vrfs/%s" % vrf_name else: # Else logic designed for v10.04 and later vrf_check = vrf_name if vrf_check in vrf_list: target_url = kwargs["url"] + "system/vrfs/%s" % vrf_name response = kwargs["s"].delete(target_url, verify=False) if not common_ops._response_ok(response, "DELETE"): print("FAIL: Deleting VRF '%s' failed with status code %d" % (vrf_name, response.status_code)) else: print("SUCCESS: Deleting VRF '%s' succeeded" % vrf_name) else: print("SUCCESS: No need to delete VRF '%s' since it doesn't exist" % vrf_name) def add_vrf_address_family(vrf_name, family_type="ipv4_unicast", export_target=[], import_targets=[], **kwargs): """ Perform a POST call to create a new VRF, and add a route distinguisher if desired. Note that this functions has logic that works for both v1 and v10.04 :param vrf_name: Alphanumeric name of VRF :param family_type: Alphanumeric type of the Address Family. The options are 'ipv4_unicast' and 'ipv6_unicast'. The default value is set to 'ipv4_unicast'. :param export_target: Optional list of export route targets. :param import_targets: Optional list of import route targets :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: Nothing """ vrf_list = get_all_vrfs(**kwargs) if family_type == "ipv4-unicast": family_type = "ipv4_unicast" elif family_type == "ipv6-unicast": family_type = "ipv6_unicast" if family_type not in ['ipv4_unicast', 'ipv6_unicast']: raise Exception("ERROR: family_type should be 'ipv4_unicast', or 'ipv6_unicast'") if kwargs["url"].endswith("/v1/"): vrf_check = "/rest/v1/system/vrfs/%s" % vrf_name else: # Else logic designed for v10.04 and later vrf_check = vrf_name if vrf_check in vrf_list: address_family_data = { "address_family": family_type, "export_route_targets": export_target, "import_route_targets": import_targets, "route_map": {} } target_url = kwargs["url"] + "system/vrfs/%s/vrf_address_families" % vrf_name post_data = json.dumps(address_family_data, sort_keys=True, indent=4) response = kwargs["s"].post(target_url, data=post_data, verify=False) if not common_ops._response_ok(response, "POST"): print("FAIL: Creating '%s' Address Family on VRF '%s' failed with status code %d" % (family_type, vrf_name, response.status_code)) else: print("SUCCESS: Creating '%s' Address Family on VRF '%s' succeeded" % (family_type, vrf_name)) else: print("FAIL: Cannot add Address Family to VRF '%s' since the VRF has not been created yet" % vrf_name) def delete_vrf_address_family(vrf_name, family_type="ipv4_unicast", **kwargs): """ Perform a DELETE call to remove a VRF address family. Note that this functions has logic that works for both v1 and v10.04 :param vrf_name: Alphanumeric name of
from .explorers import * from .jericho_env import * from .utils import * import time from tqdm import tqdm @dataclass class GridDimension: attr: str div: int @dataclass() class ChainLink: __slots__ = ['start_cell', 'end_cell', 'seed'] start_cell: typing.Any end_cell: typing.Any seed: int @dataclass class Cell: # The list of ChainLink that can take us to this place chain: typing.List[ChainLink] = copyfield([]) seen: list = copyfield({}) score: int = -infinity # Number of times this was chosen and seen seen_times: int = 0 chosen_times: int = 0 chosen_since_new: int = 0 action_times: int = 0 # This is the number of action that led to this cell # Length of the trajectory trajectory_len: int = infinity # Saved restore state. In a purely deterministic environment, # this allows us to fast-forward to the end state instead # of replaying. restore: typing.Any = None # TODO: JH: This should not refer to a Montezuma-only data-structure exact_pos: ZorkPos = None trajectory: list = copyfield([]) real_cell: ZorkPos = None @dataclass class PosInfo: __slots__ = ['exact', 'cell', 'state', 'restore'] exact: tuple cell: tuple state: typing.Any restore: typing.Any @dataclass class TrajectoryElement: __slots__ = ['from_', 'to', 'action', 'reward', 'done', 'real_pos'] from_: PosInfo to: PosInfo action: int reward: float done: bool real_pos: ZorkPos # ### Main POOL = None ENV = None def get_env(): return ENV class Explore: def __init__( self, explorer_policy, cell_selector, env, grid_info: tuple, explore_steps=50, ignore_death: int = 1, n_cpus=None, optimize_score=True, use_real_pos=False, prob_override=0.0, pool_class=multiprocessing.Pool, reset_pool=False, batch_size=100, reset_cell_on_update=False, qbert_params=None ): global POOL, ENV self.env_info = env self.qbert_params = qbert_params self.make_env() self.pool_class = pool_class self.reset_pool = reset_pool if self.reset_pool: POOL = self.pool_class(multiprocessing.cpu_count() * 2) else: POOL = self.pool_class(multiprocessing.cpu_count() * 2, maxtasksperchild=100) self.use_real_pos = use_real_pos self.n_cpus = n_cpus self.batch_size = batch_size self.explore_steps = explore_steps self.explorer = explorer_policy self.selector = cell_selector self.grid_info = grid_info self.grid = defaultdict(Cell) self.ignore_death = ignore_death self.frames_true = 0 self.frames_compute = 0 self.start = None self.cycles = 0 self.seen_level_1 = False self.optimize_score = optimize_score self.prob_override = prob_override self.state = None self.reset() self.grid[self.get_cell()].trajectory_len = 0 self.grid[self.get_cell()].score = 0 self.grid[self.get_cell()].exact_pos = self.get_pos() self.grid[self.get_cell()].real_cell = self.get_real_cell() self.real_grid = set() self.pos_cache = None self.reset_cell_on_update = reset_cell_on_update self.max_score = 0 def make_env(self): global ENV if ENV is None: ENV = self.env_info[0](self.qbert_params) def reset(self): self.pos_cache = None self.make_env() return ENV.reset() # def step(self, action): # self.pos_cache = None # return ENV.step(action) # def step(self): # self.pos_cache = None # return ENV.step() def get_pos(self): if self.use_real_pos: return self.get_real_pos() else: if not self.pos_cache: self.pos_cache = (ENV.state[-1].reshape((ENV.state[-1].size,)).tobytes(),) return self.pos_cache def get_real_pos(self): return ENV.get_pos() def get_pos_info(self, include_restore=True): return PosInfo(self.get_pos() if self.use_real_pos else None, self.get_cell(), None, self.get_restore() if include_restore else None) def get_restore(self): x = ENV.get_restore() return x def restore(self, val): self.make_env() ENV.restore(val) def get_real_cell(self): pos = self.get_real_pos() res = {} for dimension in self.grid_info: value = getattr(pos, dimension.attr) if dimension.div == 1: res[dimension.attr] = value else: res[dimension.attr] = (int(value / dimension.div)) return pos.__class__(**res) def get_cell(self): if self.use_real_pos: return self.get_real_cell() else: pos = self.get_pos() return pos def run_explorer(self, explorer, start_cell=None, max_steps=1): import sys np.set_printoptions(threshold=sys.maxsize) explorer.init_trajectory(start_cell, self.grid) trajectory = [] # while True: initial_pos_info = self.get_pos_info(include_restore=True) # if ((max_steps > 0 and len(trajectory) >= max_steps) or # initial_pos_info.cell == start_cell): # break # action = explorer.get_action(self.state, ENV) # # self.state, reward, done, _ = self.step(action) # print ("right before:{}".format(ENV.trainer.vec_env.get_score()[0])) # print ("moves before:{}".format(ENV.trainer.vec_env.get_moves()[0])) obs, rewards, dones, infos, graph_infos, scores, chosen_actions, IM = ENV.step(max_steps=32) print (infos) self.frames_true += 1 self.frames_compute += 1 trajectory.append( TrajectoryElement( initial_pos_info, self.get_pos_info(), chosen_actions[0], scores[0], dones[0], self.get_real_cell() ) ) # print (trajectory) # explorer.seen_state(trajectory[-1]) # print (obs) # print (rewards) # print (dones) # print (infos) # print (graph_infos) # print (scores) # print (chosen_actions) # if dones[0]: # break # print (trajectory) # print (trajectory) return trajectory # def run_explorer(self, explorer, start_cell=None, max_steps=-1): # explorer.init_trajectory(start_cell, self.grid) # trajectory = explorer.get_trajectory() # for action in trajectory: # explorer.seen_state(action) # return trajectory def run_seed(self, seed, start_cell=None, max_steps=1): with use_seed(seed): self.explorer.init_seed() return self.run_explorer(self.explorer, start_cell, max_steps) def process_cell(self, info): # This function runs in a SUBPROCESS, and processes a single cell. cell_key, cell, seed= info # self.env_info[0].TARGET_SHAPE = target_shape # self.env_info[0].MAX_PIX_VALUE = max_pix self.frames_true = 0 self.frames_compute = 0 #print (cell_key) #time.sleep(300) if cell.restore is not None: self.restore(cell.restore) self.frames_true += cell.trajectory_len else: # TODO: implement recovering the restore from, say, the trajectory on the cell, so that this # isn't a problem anymore when recovering from a checkpoint. # assert cell.trajectory_len == 0, 'Cells must have a restore unless they are the initial state' self.reset() start_cell = self.get_cell() end_trajectory = self.run_seed(seed, start_cell=cell, max_steps=self.explore_steps) # print (end_trajectory) # We are not done, check that doing nothing for self.ignore_death steps won't kill us. if self.ignore_death > 0: if not end_trajectory[-1].done: end_trajectory += self.run_explorer(DoNothingExplorer(), max_steps=self.ignore_death) end_trajectory = end_trajectory[:-self.ignore_death] seen_to = set() #print (end_trajectory) for e in end_trajectory: e.from_.restore = None e.from_.state = None if e.to.cell in seen_to: e.to.restore = None e.to.state = None seen_to.add(e.to.cell) # known_room_data = {} # if len(ENV.rooms) > known_rooms: # known_room_data = ENV.rooms return ((start_cell, end_trajectory)) return TimedPickle((start_cell, end_trajectory, self.frames_true, self.frames_compute, known_room_data), 'ret', enabled=info.enabled) def run_cycle(self): # Choose a bunch of cells, send them to the workers for processing, then combine the results. # A lot of what this function does is only aimed at minimizing the amount of data that needs # to be pickled to the workers, which is why it sets a lot of variables to None only to restore # them later. global POOL if self.start is None: self.start = time.time() self.cycles += 1 chosen_cells = [] # print ('grid length: {}'.format(len(self.grid))) # for i, s in enumerate(self.grid): # print ('cell {}: {}'.format(i, self.grid[s].restore is not None)) cell_keys = self.selector.choose_cell(self.grid, size=self.batch_size) old_trajectories = [] for i, cell_key in enumerate(cell_keys): cell = self.grid[cell_key] old_trajectories.append((cell.trajectory, cell.seen, cell.chain)) cell.trajectory = None cell.seen = None cell.chain = None seed = random.randint(0, 2 ** 31) #chosen_cells.append(TimedPickle((cell_key, cell, seed), 'args', enabled=(i == 0 and False))) chosen_cells.append((cell_key, cell, seed)) # NB: self.grid is uncessecary for process_cell, and might be # VERY large. We temporarily replace it with None so it doesn't # need to be serialized by the pool. old_grid = self.grid self.grid = None #print ("STARTING PROCESS_CELLS") #trajectories = [e.data for e in POOL.map(self.process_cell, chosen_cells)] #print (chosen_cells) trajectories = [self.process_cell(e) for e in chosen_cells] # if self.reset_pool and (self.cycles + 1) % 100 == 0: # POOL.close() # POOL.join() # POOL = None # gc.collect() # POOL = self.pool_class(self.n_cpus) #chosen_cells = [e for e in chosen_cells] self.grid = old_grid for ((_, cell, _), (old_traj, old_seen, old_chain)) in zip(chosen_cells, old_trajectories): if old_traj is not None: cell.trajectory = old_traj if old_seen is not None: cell.seen = old_seen if old_chain is not None: cell.chain = old_chain # Note: we do this now because starting here we're going to be concatenating the trajectories # of these cells, and they need to remain the same! chosen_cells = [(k, copy.copy(c), s) for k, c, s in chosen_cells] cells_to_reset = set() for ((cell_key, cell, seed), (start_cell, end_trajectory)) in zip(chosen_cells, trajectories): # self.frames_true += ft # self.frames_compute += fc if cell.seen is None: continue seen_cells = {} #print ("END_TRAJECTORY: " + str(end_trajectory)) # Note(adrien): this changes the behavior of seen_times and action_times, # but it makes the whole code slower and it isn't clear that the behavior # implied by these next few lines is better anyway. # for e in cell.seen: # if e not in seen_cells: # seen_cells[e] = cell.seen[e] # self.grid[e].seen_times += 1 # self.grid[e].action_times += cell.seen[e] # for k in known_rooms: # if k not in ENV.rooms: # ENV.rooms[k] = known_rooms[k] self.grid[cell_key].chosen_times += 1 self.grid[cell_key].chosen_since_new += 1 cur_score = cell.score self.max_score = max(cur_score, self.max_score) #print ("CUR_SCORE: " + str(cur_score)) # tqdm.write(f'CUR_SCORE: {cur_score}') # tqdm.write(f'length of grid: {len(self.grid)}') for i, elem in enumerate(end_trajectory): potential_cell_key = elem.to.cell self.selector.reached_state(elem) self.real_grid.add(elem.real_pos) # if not isinstance(potential_cell_key, tuple) and potential_cell_key.level > 0: # self.seen_level_1 = True potential_cell = self.grid[potential_cell_key] full_traj_len = cell.trajectory_len + i + 1 cur_score += elem.reward for p in [potential_cell_key, elem.from_.cell]: if p not in seen_cells: seen_cells[p] = 0
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2016-2018 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """Functions and classes for array-like objects, implementing common numpy array features for datasets or nested sequences, while trying to avoid copying data. Classes: - :class:`DatasetView`: Similar to a numpy view, to access a h5py dataset as if it was transposed, without casting it into a numpy array (this lets h5py handle reading the data from the file into memory, as needed). - :class:`ListOfImages`: Similar to a numpy view, to access a list of 2D numpy arrays as if it was a 3D array (possibly transposed), without casting it into a numpy array. Functions: - :func:`is_array` - :func:`is_list_of_arrays` - :func:`is_nested_sequence` - :func:`get_shape` - :func:`get_dtype` - :func:`get_concatenated_dtype` """ from __future__ import absolute_import, print_function, division import sys import numpy import six import numbers __authors__ = ["<NAME>"] __license__ = "MIT" __date__ = "26/04/2017" def is_array(obj): """Return True if object implements necessary attributes to be considered similar to a numpy array. Attributes needed are "shape", "dtype", "__getitem__" and "__array__". :param obj: Array-like object (numpy array, h5py dataset...) :return: boolean """ # add more required attribute if necessary for attr in ("shape", "dtype", "__array__", "__getitem__"): if not hasattr(obj, attr): return False return True def is_list_of_arrays(obj): """Return True if object is a sequence of numpy arrays, e.g. a list of images as 2D arrays. :param obj: list of arrays :return: boolean""" # object must not be a numpy array if is_array(obj): return False # object must have a __len__ method if not hasattr(obj, "__len__"): return False # all elements in sequence must be arrays for arr in obj: if not is_array(arr): return False return True def is_nested_sequence(obj): """Return True if object is a nested sequence. A simple 1D sequence is considered to be a nested sequence. Numpy arrays and h5py datasets are not considered to be nested sequences. To test if an object is a nested sequence in a more general sense, including arrays and datasets, use:: is_nested_sequence(obj) or is_array(obj) :param obj: nested sequence (numpy array, h5py dataset...) :return: boolean""" # object must not be a numpy array if is_array(obj): return False if not hasattr(obj, "__len__"): return False # obj must not be a list of (lists of) numpy arrays subsequence = obj while hasattr(subsequence, "__len__"): if is_array(subsequence): return False # strings cause infinite loops if isinstance(subsequence, six.string_types + (six.binary_type, )): return True subsequence = subsequence[0] # object has __len__ and is not an array return True def get_shape(array_like): """Return shape of an array like object. In case the object is a nested sequence but not an array or dataset (list of lists, tuples...), the size of each dimension is assumed to be uniform, and is deduced from the length of the first sequence. :param array_like: Array like object: numpy array, hdf5 dataset, multi-dimensional sequence :return: Shape of array, as a tuple of integers """ if hasattr(array_like, "shape"): return array_like.shape shape = [] subsequence = array_like while hasattr(subsequence, "__len__"): shape.append(len(subsequence)) # strings cause infinite loops if isinstance(subsequence, six.string_types + (six.binary_type, )): break subsequence = subsequence[0] return tuple(shape) def get_dtype(array_like): """Return dtype of an array like object. In the case of a nested sequence, the type of the first value is inspected. :param array_like: Array like object: numpy array, hdf5 dataset, multi-dimensional nested sequence :return: numpy dtype of object """ if hasattr(array_like, "dtype"): return array_like.dtype subsequence = array_like while hasattr(subsequence, "__len__"): # strings cause infinite loops if isinstance(subsequence, six.string_types + (six.binary_type, )): break subsequence = subsequence[0] return numpy.dtype(type(subsequence)) def get_concatenated_dtype(arrays): """Return dtype of array resulting of concatenation of a list of arrays (without actually concatenating them). :param arrays: list of numpy arrays :return: resulting dtype after concatenating arrays """ dtypes = {a.dtype for a in arrays} dummy = [] for dt in dtypes: dummy.append(numpy.zeros((1, 1), dtype=dt)) return numpy.array(dummy).dtype class ListOfImages(object): """This class provides a way to access values and slices in a stack of images stored as a list of 2D numpy arrays, without creating a 3D numpy array first. A transposition can be specified, as a 3-tuple of dimensions in the wanted order. For example, to transpose from ``xyz`` ``(0, 1, 2)`` into ``yzx``, the transposition tuple is ``(1, 2, 0)`` All the 2D arrays in the list must have the same shape. The global dtype of the stack of images is the one that would be obtained by casting the list of 2D arrays into a 3D numpy array. :param images: list of 2D numpy arrays, or :class:`ListOfImages` object :param transposition: Tuple of dimension numbers in the wanted order """ def __init__(self, images, transposition=None): """ """ super(ListOfImages, self).__init__() # if images is a ListOfImages instance, get the underlying data # as a list of 2D arrays if isinstance(images, ListOfImages): images = images.images # test stack of images is as expected assert is_list_of_arrays(images), \ "Image stack must be a list of arrays" image0_shape = images[0].shape for image in images: assert image.ndim == 2, \ "Images must be 2D numpy arrays" assert image.shape == image0_shape, \ "All images must have the same shape" self.images = images """List of images""" self.shape = (len(images), ) + image0_shape """Tuple of array dimensions""" self.dtype = get_concatenated_dtype(images) """Data-type of the global array""" self.ndim = 3 """Number of array dimensions""" self.size = len(images) * image0_shape[0] * image0_shape[1] """Number of elements in the array.""" self.transposition = list(range(self.ndim)) """List of dimension indices, in an order depending on the specified transposition. By default this is simply [0, ..., self.ndim], but it can be changed by specifying a different ``transposition`` parameter at initialization. Use :meth:`transpose`, to create a new :class:`ListOfImages` with a different :attr:`transposition`. """ if transposition is not None: assert len(transposition) == self.ndim assert set(transposition) == set(list(range(self.ndim))), \ "Transposition must be a sequence containing all dimensions" self.transposition = transposition self.__sort_shape() def __sort_shape(self): """Sort shape in the order defined in :attr:`transposition` """ new_shape = tuple(self.shape[dim] for dim in self.transposition) self.shape = new_shape def __sort_indices(self, indices): """Return array indices sorted in the order needed to access data in the original non-transposed images. :param indices: Tuple of ndim indices, in the order needed to access the transposed view :return: Sorted tuple of indices, to access original data """ assert len(indices) == self.ndim sorted_indices = tuple(idx for (_, idx) in sorted(zip(self.transposition, indices))) return sorted_indices def __array__(self, dtype=None): """Cast the images into a numpy array, and return it. If a transposition has been done on this images, return a transposed view of a numpy array.""" return numpy.transpose(numpy.array(self.images, dtype=dtype), self.transposition) def __len__(self): return self.shape[0] def transpose(self, transposition=None): """Return a re-ordered (dimensions permutated) :class:`ListOfImages`. The returned object refers to the same images but with a different :attr:`transposition`. :param List[int] transposition: List/tuple of dimension numbers in the wanted order. If ``None`` (default), reverse the dimensions. :return: new :class:`ListOfImages` object """ # by default, reverse the dimensions if transposition is None: transposition = list(reversed(self.transposition)) # If this ListOfImages is already transposed, sort new transposition # relative to old transposition elif list(self.transposition) != list(range(self.ndim)): transposition = [self.transposition[i]
finger_jnt: self.ring_list.append(finger_jnt) elif "pinky" in finger_jnt: self.pinkey_list.append(finger_jnt) # Move the hand_cc, move the pivot to the wrist, and rename it if self.type_flag == "hand": self.hand_cc = cmds.duplicate(self.hand_cc, n="hand_" + self.side + "_cc")[0] elif self.type_flag == "foot": self.hand_cc = cmds.duplicate(self.hand_cc, n="foot_" + self.side + "_cc")[0] self.hand_cc_grp = cmds.group(self.hand_cc, n=self.hand_cc + "_grp") if self.type_flag == "hand": cmds.parent(self.hand_cc_grp, self.hand_jnt) cmds.setAttr(self.hand_cc_grp + ".translate", 0, 0, 0, type="double3") cmds.parent(self.hand_cc_grp, w=True) wrist_jnt_pos = cmds.xform(wrist_jnt, ws=True, t=True, q=True) cmds.move(wrist_jnt_pos[0], wrist_jnt_pos[1], wrist_jnt_pos[2], self.hand_cc_grp + ".rotatePivot", self.hand_cc_grp + ".scalePivot", ws=True, a=True) cmds.move(wrist_jnt_pos[0], wrist_jnt_pos[1], wrist_jnt_pos[2], self.hand_cc + ".rotatePivot", self.hand_cc + ".scalePivot", ws=True, a=True) elif self.type_flag == "foot": cmds.parent(self.hand_cc_grp, wrist_jnt) cmds.setAttr(self.hand_cc_grp + ".translate", 0, 0, 0, type="double3") cmds.parent(self.hand_cc_grp, w=True) # Add the IK_FK_Switch attribute cmds.select(self.hand_cc, r=True) cmds.addAttr(ln="_____", at="float", k=True,) cmds.addAttr(at="float", min=0.0, max=1.0, k=True, ln="IK_FK_Switch", sn="IKFKSw") # This will create the CC and its group while in the loop because we want the # names to be consistent. for curr_finger in self.fingers_list: above_jnt = self.hand_jnt for curr_jnt in curr_finger: if "_tip_" in curr_jnt: continue else: finger_cc = cmds.curve(n=curr_jnt.replace("_jnt", "_cc"), d=1, p=[(0, 0.4, 0), (0, 0.4, 0.2), (0, 0.8, 0.2), (0, 0.8, -0.2), (0, 0.4, -0.2), (0, 0.4, 0), (0, 0, 0)], k=[0, 1, 2, 3, 4, 5, 6]) if self.type_flag == "foot": cmds.rotate(90, finger_cc, y=True) cmds.makeIdentity(finger_cc, a=True, n=0, pn=True, t=True, r=True, s=True) finger_cc_grp = cmds.group(finger_cc, n=curr_jnt.replace("_jnt", "_grp"), r=True) cmds.move(0, 0, 0, finger_cc_grp + ".rotatePivot", finger_cc_grp + ".scalePivot", ws=True) cmds.parent(finger_cc_grp, curr_jnt) cmds.setAttr(finger_cc_grp + ".translate", 0, 0, 0, type="double3") cmds.setAttr(finger_cc_grp + ".rotate", 0, 0, 0, type="double3") cmds.parent(finger_cc_grp, above_jnt) cmds.parent(curr_jnt, finger_cc) above_jnt = curr_jnt # Parent the hand joint under the hand_cc, or the footRoot under the CC then # parent the ball to the footRoot if self.type_flag == "hand": cmds.parent(self.hand_jnt, self.hand_cc) elif self.type_flag == "foot": footRoot_jnt = "footRoot_" + self.side + "_jnt" cmds.parent(footRoot_jnt, self.hand_cc) class CreateFoot(object): """ This class will create a hand rig. """ def __init__(self, footRoot_jnt, foot_cc, side, IK_flag): self.footRoot_jnt = footRoot_jnt self.ball_jnt = "" self.heel_jnt = "" self.foot_cc = foot_cc self.side = side self.IK_flag = IK_flag self.extra_indicator = "" def create_foot(self): if self.IK_flag: self.extra_indicator = "1" # Find the ball, heel, and longest toe joint. find_ball_list = cmds.listRelatives(self.footRoot_jnt, type="joint") ball_index = find_ball_list.index("ball_" + self.side + "_jnt" + self.extra_indicator) heel_index = find_ball_list.index("heel_" + self.side + "_jnt" + self.extra_indicator) self.ball_jnt = find_ball_list[ball_index] self.heel_jnt = find_ball_list[heel_index] # Get the big toe joint and the pinky joint. find_toes_list = cmds.listRelatives(self.ball_jnt, type="transform") bigToe_index = find_toes_list.index("big_01_toe_" + self.side + "_grp" + self.extra_indicator) pinkey_index = find_toes_list.index("pinky_01_toe_" + self.side + "_grp" + self.extra_indicator) bigToe_pos = cmds.xform(find_toes_list[bigToe_index], ws=True, t=True, q=True) pinky_pos = cmds.xform(find_toes_list[pinkey_index], ws=True, t=True, q=True) # Get the position of the ball joint and heel joint position. ball_pos = cmds.xform(self.ball_jnt, ws=True, t=True, q=True) heel_pos = cmds.xform(self.heel_jnt, ws=True, t=True, q=True) # Find the maximum Z length of the foot. # calc_foot_list = cmds.xform(self.ball_jnt, bb=True, ws=True, r=True, q=True) # z_difference = calc_foot_list[5] - calc_foot_list[2] # max_toe_pos = [ball_pos[0], ball_pos[1] - .1, ball_pos[2]+z_difference] max_toe_pos = cmds.xform("mid_tip_toe_" + self.side + "_jnt" + self.extra_indicator, ws=True, t=True, q=True) max_toe_pos[2] = max_toe_pos[2] + 0.05 #inBall_pos = cmds.xform() # Create the reverse foot groups, parented under each other. revFoot = ["revBallFix", "revBall", "revToe", "revHeel", "revOutBank", "revInBank"] revFoot_grp_list = [] above_grp = "" for curr_grp in revFoot: if curr_grp == "revBallFix": revFoot_grp_list.append(cmds.group(em=True, n=curr_grp + "_" + self.side + "_grp" + self.extra_indicator)) above_grp = curr_grp + "_" + self.side + "_grp" + self.extra_indicator else: revFoot_grp_list.append(cmds.group(above_grp, n=curr_grp + "_" + self.side + "_grp" + self.extra_indicator)) above_grp = curr_grp + "_" + self.side + "_grp" + self.extra_indicator # Loop through the group list and move them to their respective positions. # Reversed group because the list starts with the ball fix grp to the in bank grp. for curr_grp in reversed(revFoot_grp_list): if "revInBank" in curr_grp: cmds.move(bigToe_pos[0], bigToe_pos[1], bigToe_pos[2], curr_grp, a=True, ws=True) elif "revOutBank" in curr_grp: cmds.move(pinky_pos[0], pinky_pos[1], pinky_pos[2], curr_grp, a=True, ws=True) elif "revHeel" in curr_grp: cmds.move(heel_pos[0], heel_pos[1], heel_pos[2], curr_grp, a=True, ws=True) elif "revToe" in curr_grp: cmds.move(max_toe_pos[0], max_toe_pos[1], max_toe_pos[2], curr_grp, a=True, ws=True) elif "revBall" in curr_grp: cmds.move(ball_pos[0], ball_pos[1], ball_pos[2], curr_grp, a=True, ws=True) # Parent the foot under the rev ball grp and the ball under the rev ball fix grp. cmds.parent(revFoot_grp_list[5], self.foot_cc) cmds.parent(self.footRoot_jnt, revFoot_grp_list[1]) cmds.parent(revFoot_grp_list[0], self.footRoot_jnt) cmds.parent(self.ball_jnt, revFoot_grp_list[0]) # Create the controls on the foot. cmds.select(self.foot_cc, r=True) cmds.addAttr(ln="______", at="float", k=True,) cmds.addAttr(ln="ballRoll", at="float", k=True) cmds.addAttr(ln="toeRoll", at="float", k=True) cmds.addAttr(ln="heelRoll", at="float", k=True) cmds.addAttr(ln="bank", at="float", k=True) cmds.addAttr(ln="toePivot", at="float", k=True) cmds.addAttr(ln="heelPivot", at="float", k=True) foot_cc_attrs = ["ballRoll", "toeRoll", "heelRoll", "bank", "toePivot", "heelPivot"] # Create the nodes to turn on and off the controls, these are only meant for IKs. IK_switch_node1 = cmds.shadingNode("multiplyDivide", n="foot_01_" + self.side + "_IKSwitch_multdiv", au=True) IK_switch_node2 = cmds.shadingNode("multiplyDivide", n="foot_01_" + self.side + "_IKSwitch_multdiv", au=True) IK_switch_nodes = [IK_switch_node1, IK_switch_node2] self.attach_foot_controls(IK_switch_nodes, foot_cc_attrs, revFoot_grp_list) # Now duplicate the foot for the IK leg. # foot_cc_grp = cmds.listRelatives(self.foot_cc, p=True)[0] # selected = cmds.select("foot_" + self.side + "_cc", r=True) # cmds.duplicate(rr=True, un=True, rc=True, # ic=True, st=True, # n="footDup_" + self.side + "_grp") # dup_foot_cc = cmds.listRelatives(duplicated_foot_grp)[0] # dup_foot_grp_children = cmds.listRelatives(duplicated_foot_grp, ad=True) # Find revBall fix and parent it under the revBall to not get deleted. # dup_revBall_index = dup_foot_grp_children.index(revFoot[1] + "_" + # self.side + "_grp1") # dup_revBallFix_index = dup_foot_grp_children.index(revFoot[0] + "_" + # self.side + "_grp1") # cmds.parent(dup_foot_grp_children[dup_revBallFix_index], # dup_foot_grp_children[dup_revBall_index]) # Find all the joints and delete it, will also delete the toes. # dup_foot_jnts = cmds.listRelatives(dup_foot_grp_children, ad=True, type="joint") # cmds.delete(dup_foot_jnts) # # new_dup_cc_children = cmds.listRelatives(dup_foot_cc, ad=True) # Find the rpIK object in the IK_cc # rp_IK = cmds.listRelatives(IK_cc, ad=True, type="ikHandle")[0] # Parent to the IK_cc # cmds.parent(duplicated_foot_grp, IK_cc) # cmds.parent(rp_IK, new_dup_cc_children[4]) # Connect all the attributes from the original foot cc to the duplicated one. # cmds.connectAttr(self.foot_cc + ".translate", dup_foot_cc + ".translate") # cmds.connectAttr(self.foot_cc + ".rotate", dup_foot_cc + ".rotate") # cmds.connectAttr(self.foot_cc + ".IK_FK_Switch", dup_foot_cc + ".IK_FK_Switch") # cmds.connectAttr(self.foot_cc + ".ballRoll", dup_foot_cc + ".ballRoll") # cmds.connectAttr(self.foot_cc + ".toeRoll", dup_foot_cc + ".toeRoll") # cmds.connectAttr(self.foot_cc + ".heelRoll", dup_foot_cc + ".heelRoll") # cmds.connectAttr(self.foot_cc + ".bank", dup_foot_cc + ".bank") # cmds.connectAttr(self.foot_cc + ".toePivot", dup_foot_cc + ".toePivot") # cmds.connectAttr(self.foot_cc + ".heelPivot", dup_foot_cc + ".heelPivot") def attach_foot_controls(self, IK_switch_nodes, foot_attrs, revFoot_grp_list): transforms = ["X", "Y", "Z"] negative_math_node = cmds.shadingNode("multiplyDivide", n="foot_01_" + self.side + "_footRev_multdiv", au=True) for curr_trans in transforms: cmds.setAttr(negative_math_node + ".input2" + curr_trans, -1) # Attach the IK_FK_Switch to the newly created nodes, for all of the first input. # IK_switch_nodes = [IK_switch_node1, IK_switch_node2] for curr_trans in transforms: cmds.connectAttr(self.foot_cc + ".IK_FK_Switch", IK_switch_nodes[0] + ".input1" + curr_trans, f=True) for curr_trans in transforms: cmds.connectAttr(self.foot_cc + ".IK_FK_Switch", IK_switch_nodes[1] + ".input1" + curr_trans, f=True) # Attach the foot attrs to the second inputs of the math nodes. # foot_attrs = ["ballRoll", "toeRoll", "heelRoll", "bank", # "toePivot", "heelPivot"] cmds.connectAttr(self.foot_cc + "." + foot_attrs[0], IK_switch_nodes[0] + ".input2X", f=True) cmds.connectAttr(self.foot_cc + "." + foot_attrs[1], IK_switch_nodes[0] + ".input2Y", f=True) cmds.connectAttr(self.foot_cc + "." + foot_attrs[2], IK_switch_nodes[0] + ".input2Z", f=True) cmds.connectAttr(self.foot_cc + "." + foot_attrs[3], IK_switch_nodes[1] + ".input2X", f=True) cmds.connectAttr(self.foot_cc + "." + foot_attrs[4], IK_switch_nodes[1] + ".input2Y", f=True) cmds.connectAttr(self.foot_cc + "." + foot_attrs[5], IK_switch_nodes[1] + ".input2Z", f=True) # revFoot_grp_list = ["revBallFix_*SIDE*_grp", "revBall_*SIDE*_grp, # "revToe_*SIDE*_grp, "revHeel_*SIDE*_grp, # "revOutBank_*SIDE*_grp, "revInBank_*SIDE*_grp] # The ball fix group, roll cmds.connectAttr(IK_switch_nodes[0] + ".outputX", negative_math_node + ".input1X", f=True) cmds.connectAttr(negative_math_node + ".outputX", revFoot_grp_list[0] + ".rx", f=True) # The ball group, roll cmds.connectAttr(IK_switch_nodes[0] + ".outputX", revFoot_grp_list[1] + ".rx", f=True) # The toe group, roll cmds.connectAttr(IK_switch_nodes[0] + ".outputY", revFoot_grp_list[2] + ".rx", f=True) # The heel group, roll cmds.connectAttr(IK_switch_nodes[0] + ".outputZ", revFoot_grp_list[3] + ".rx", f=True) # The out bank group cmds.connectAttr(IK_switch_nodes[1] + ".outputX", revFoot_grp_list[4] + ".rz", f=True) # The in bank group cmds.connectAttr(IK_switch_nodes[1] + ".outputX", revFoot_grp_list[5] + ".rz", f=True) if self.side == "l": cmds.transformLimits(revFoot_grp_list[5], rz=[0, 45], erz=[1, 0]) cmds.transformLimits(revFoot_grp_list[4], rz=[0, 0], erz=[0, 1]) elif self.side == "r": cmds.transformLimits(revFoot_grp_list[5], rz=[0, 0], erz=[0, 1]) cmds.transformLimits(revFoot_grp_list[4], rz=[0, 45], erz=[1, 0]) # The toe group, pivot cmds.connectAttr(IK_switch_nodes[1] + ".outputY", revFoot_grp_list[2] + ".ry", f=True) # The heel group, roll cmds.connectAttr(IK_switch_nodes[1] + ".outputZ", revFoot_grp_list[3] + ".ry", f=True) def clean_IK_foot(self, IK_cc): # Delete all the joints of the IK cc. When creating the foot,
return Component('Multiply', arguments={'left': self, 'right': Component.of(other)}) def __rmul__(self, other) -> "Component": return Component('Multiply', arguments={'left': Component.of(other), 'right': self}) def __floordiv__(self, other) -> "Component": return Component('Divide', arguments={'left': self, 'right': Component.of(other)}) def __rfloordiv__(self, other) -> "Component": return Component('Divide', arguments={'left': Component.of(other), 'right': self}) def __truediv__(self, other) -> "Component": return Component('Divide', arguments={ 'left': Component('Cast', arguments={'data': self}, options={"atomic_type": "float"}), 'right': Component('Cast', arguments={'data': Component.of(other)}, options={"atomic_type": "float"})}) def __rtruediv__(self, other) -> "Component": return Component('Divide', arguments={ 'left': Component('Cast', arguments={'data': Component.of(other)}, options={"atomic_type": "float"}), 'right': Component('Cast', arguments={'data': self}, options={"atomic_type": "float"})}) def __mod__(self, other) -> "Component": return Component('Modulo', arguments={'left': self, 'right': Component.of(other)}) def __rmod__(self, other) -> "Component": return Component('Modulo', arguments={'left': Component.of(other), 'right': self}) def __pow__(self, power, modulo=None) -> "Component": return Component('Power', arguments={'data': self, 'radical': Component.of(power)}) def __rpow__(self, other) -> "Component": return Component('Power', arguments={'left': Component.of(other), 'right': self}) def __or__(self, other) -> "Component": return Component('Or', arguments={'left': self, 'right': Component.of(other)}) def __ror__(self, other) -> "Component": return Component('Or', arguments={'left': Component.of(other), 'right': self}) def __and__(self, other) -> "Component": return Component('And', arguments={'left': self, 'right': Component.of(other)}) def __rand__(self, other) -> "Component": return Component('And', arguments={'left': Component.of(other), 'right': self}) def __invert__(self) -> "Component": return Component('Negate', arguments={'data': self}) def __xor__(self, other) -> "Component": return (self | other) & ~(self & other) def __gt__(self, other) -> "Component": return Component('GreaterThan', arguments={'left': self, 'right': Component.of(other)}) def __ge__(self, other) -> "Component": return Component('GreaterThan', arguments={'left': self, 'right': Component.of(other)}) \ or Component('Equal', arguments={'left': self, 'right': Component.of(other)}) def __lt__(self, other) -> "Component": return Component('LessThan', arguments={'left': self, 'right': Component.of(other)}) def __le__(self, other) -> "Component": return Component('LessThan', arguments={'left': self, 'right': Component.of(other)}) \ or Component('Equal', arguments={'left': self, 'right': Component.of(other)}) def __eq__(self, other) -> "Component": return Component('Equal', arguments={'left': self, 'right': Component.of(other)}) def __ne__(self, other) -> "Component": return ~(self == other) def __abs__(self) -> "Component": return Component('Abs', arguments={'data': self}) def __getitem__(self, identifier) -> "Component": return Component('Index', arguments={'names': Component.of(identifier), 'data': self}) def __hash__(self): return id(self) def __str__(self, depth=0): value = self.analysis.release_values.get(self.component_id, {"value": None})["value"] if value is not None and depth != 0: return str(value).replace("\n", "") inner = [] if self.arguments: inner.append(",\n".join([ f'{(" " * (depth + 1))}{name}={value.__str__(depth + 1)}' for name, value in self.arguments.items() if value is not None ])) if self.options: inner.append(",\n".join([ f'{(" " * (depth + 1))}{name}={str(value).replace(chr(10), "")}' for name, value in self.options.items() if value is not None ])) if self.name == "Literal": inner = "released value: " + str(self.value).replace("\n", "") elif inner: inner = f'\n{("," + chr(10)).join(inner)}\n{(" " * depth)}' else: inner = "" return f'{self.name}({inner})' def __repr__(self): return f'<{self.component_id}: {self.name} Component>' @staticmethod def of(value, value_format=None, public=True) -> typing.Optional["Component"]: """ Given an array, list of lists, or dictionary, attempt to wrap it in a component and place the value in the release. Loose literals are by default public. This is an alternative constructor for a Literal, that potentially doesn't wrap the value in a Literal component if it is None or already a Component :param value: The value to be wrapped. :param value_format: must be one of `array`, `indexmap`, `jagged` :param public: Loose literals are by default public. :return: A Literal component with the value attached to the parent analysis' release. """ if value is None: return # the dataset class if type(value) == Dataset: value = value.component if type(value) == Component: return value return Component('Literal', value=value, value_format=value_format, value_public=public) @staticmethod def _expand_constraints(arguments, constraints): """ Helper function to insert additional nodes when _lower, _n, etc constraints are passed through to the component constructor utilities' kwargs. :param arguments: {[argument name]: [component]} :param constraints: restrictions on the data that will be translated into additional nodes components :return: a modified argument set for the current component """ if not constraints: return arguments for argument in arguments.keys(): filtered = [i[len(argument) + 1:] for i in constraints.keys() if i.startswith(argument)] filtered = [i for i in filtered if i in ALL_CONSTRAINTS] if 'columns' in filtered: if 'upper' in filtered and 'lower' in filtered: arguments[argument] = Component('Resize', arguments={ "data": arguments[argument], "upper": Component.of(constraints[argument + '_upper']), "lower": Component.of(constraints[argument + '_lower']), "number_columns": Component.of(constraints.get(argument + '_columns')) }) elif 'categories' in filtered: arguments[argument] = Component('Resize', arguments={ "data": arguments[argument], "categories": Component.of(constraints[argument + '_categories']), "number_columns": Component.of(constraints.get(argument + '_columns')) }) else: arguments[argument] = Component('Resize', arguments={ "data": arguments[argument], "number_columns": Component.of(constraints.get(argument + '_columns')) }) del constraints[argument + '_columns'] if 'upper' in filtered and 'lower' in filtered: min_component = Component.of(constraints[argument + '_lower']) max_component = Component.of(constraints[argument + '_upper']) arguments[argument] = Component('Clamp', arguments={ "data": arguments[argument], "lower": min_component, "upper": max_component }) # TODO: imputation on ints is unnecessary arguments[argument] = Component('Impute', arguments={ "data": arguments[argument] }) del constraints[argument + '_lower'] del constraints[argument + '_upper'] else: if 'upper' in filtered: arguments[argument] = Component('RowMax', arguments={ "left": arguments[argument], "right": Component.of(constraints[argument + '_upper']) }) del constraints[argument + '_upper'] if 'lower' in filtered: arguments[argument] = Component('RowMin', arguments={ "left": arguments[argument], "right": Component.of(constraints[argument + '_lower']) }) del constraints[argument + '_lower'] if 'categories' in filtered: arguments[argument] = Component('Clamp', arguments={ "data": arguments[argument], "categories": Component.of(constraints[argument + '_categories']) }) del constraints[argument + '_categories'] if 'n' in filtered: warnings.warn("The `_n` constraint is deprecated. Use `_rows` or `_columns` instead.") arguments[argument] = Component('Resize', arguments={ "data": arguments[argument], "number_rows": Component.of(constraints[argument + '_n']) }) del constraints[argument + '_n'] if 'rows' in filtered: arguments[argument] = Component('Resize', arguments={ "data": arguments[argument], "number_rows": Component.of(constraints.get(argument + '_rows')) }) del constraints[argument + '_rows'] if constraints: raise ValueError(f"unrecognized constraints: {list(constraints.keys())}") return arguments class Analysis(object): """ Top-level class that contains a definition of privacy and collection of statistics. This class tracks cumulative privacy usage for all components within. The dynamic flag makes the library easier to use, because multiple batches may be strung together before calling release(). However, it opens the execution up to potential side channel timing attacks. Disable this if side channels are a concern. The eager flag makes the library easier to debug, because stack traces pass through malformed components. As a library user, it may be useful to enable eager and find a small, similar public dataset to help shape your analysis. Building an analysis with a large dataset and eager enabled is not recommended, because the analysis is re-executed for each additional node. `filter_level` determines what data is included in the release: - `public` only newly released public data is included in the release - `public_and_prior` will also retain private values previously included in the release - `all` for including all evaluations from all nodes, which is useful for system debugging There are several arguments for enabling/disabling individual protections. - `protect_floating_point` (enabled by default): - if enabled, disables the runtime if the runtime was not compiled against mpfr - if enabled, prevents the usage of the laplace and gaussian mechanisms - if enabled, noise-addition statistics on floating point numbers default to the snapping mechanism - `protect_sensitivity` (enabled by default): - if enabled, users may not pass custom sensitivities to mechanisms - `protect_elapsed_time` (disabled by default): - if enabled, forces all computations to run in constant time, regardless of the private dataset - WARNING: this feature is still in development. Some components (like resize) may still have different execution times on neighboring datasets. - `strict_parameter_checks` (enabled by default): - if enabled, analyses may not consume more then epsilon=1, or delta greater than a value proportional to the number of records - `stack_traces` (enabled by default): - Disable stack traces to limit the amount of private information leaked should an error be encountered. - This only turns off stack traces from the runtime- the rest of the library is not affected. - The library does not take epsilon consumed from errors into account :param dynamic: flag for enabling dynamic validation :param eager: release every time a component is added :param neighboring: may be `substitute` or `add_remove` :param group_size: number of individuals to protect simultaneously :param filter_level: may be `public`, `public_and_prior` or `all` :param protect_floating_point: enable for protection against floating point attacks :param protect_elapsed_time: enable for protection against side-channel timing attacks :param protect_sensitivity: disable to pass custom sensitivities :param stack_traces: set to False to suppress potentially sensitive stack traces :param strict_parameter_checks: enable this to fail when some soft privacy
content_cell = content_cell['content'] # spec. align property SPEC_PROPS = ['align',] if 'align' in cell_spec_style: align = celstyle[i]['align'] # any property for cell, by OOXML specification for cs, attrs in cell_spec_style.items(): if cs in SPEC_PROPS: continue cell_prop = makeelement(cs, attributes=attrs) cellprops.append(cell_prop) cell.append(cellprops) # Paragraph (Content) if not isinstance(content_cell, (list, tuple)): content_cell = [content_cell,] for c in content_cell: # cell.append(cellprops) if isinstance(c, etree._Element): cell.append(c) else: cell.append(paragraph(c, jc=align)) row.append(cell) i += 1 table.append(row) return table def picture(relationshiplist, picname, picdescription, pixelwidth=None, pixelheight=None, nochangeaspect=True, nochangearrowheads=True, temp_dir=None): '''Take a relationshiplist, picture file name, and return a paragraph containing the image and an updated relationshiplist''' # http://openxmldeveloper.org/articles/462.aspx # Create an image. Size may be specified, otherwise it will based on the # pixel size of image. Return a paragraph containing the picture''' # Copy the file into the media dir assert temp_dir media_dir = join(temp_dir, _DOCX_DIR_NAME, 'word', 'media') if not os.path.isdir(media_dir): os.makedirs(media_dir) shutil.copyfile(picname, join(media_dir,picname)) # Check if the user has specified a size if not pixelwidth or not pixelheight: # If not, get info from the picture itself pixelwidth,pixelheight = Image.open(picname).size[0:2] # OpenXML measures on-screen objects in English Metric Units # 1cm = 36000 EMUs emuperpixel = 12667 width = str(pixelwidth * emuperpixel) height = str(pixelheight * emuperpixel) # Set relationship ID to the first available picid = '2' picrelid = 'rId'+str(len(relationshiplist)+1) relationshiplist.append([ 'http://schemas.openxmlformats.org/officeDocument/2006/relationships/image', 'media/'+picname]) # There are 3 main elements inside a picture # 1. The Blipfill - specifies how the image fills the picture area (stretch, tile, etc.) blipfill = makeelement('blipFill',nsprefix='pic') blipfill.append(makeelement('blip',nsprefix='a',attrnsprefix='r',attributes={'embed':picrelid})) stretch = makeelement('stretch',nsprefix='a') stretch.append(makeelement('fillRect',nsprefix='a')) blipfill.append(makeelement('srcRect',nsprefix='a')) blipfill.append(stretch) # 2. The non visual picture properties nvpicpr = makeelement('nvPicPr',nsprefix='pic') cnvpr = makeelement('cNvPr',nsprefix='pic', attributes={'id':'0','name':'Picture 1','descr':picname}) nvpicpr.append(cnvpr) cnvpicpr = makeelement('cNvPicPr',nsprefix='pic') cnvpicpr.append(makeelement('picLocks', nsprefix='a', attributes={'noChangeAspect':str(int(nochangeaspect)), 'noChangeArrowheads':str(int(nochangearrowheads))})) nvpicpr.append(cnvpicpr) # 3. The Shape properties sppr = makeelement('spPr',nsprefix='pic',attributes={'bwMode':'auto'}) xfrm = makeelement('xfrm',nsprefix='a') xfrm.append(makeelement('off',nsprefix='a',attributes={'x':'0','y':'0'})) xfrm.append(makeelement('ext',nsprefix='a',attributes={'cx':width,'cy':height})) prstgeom = makeelement('prstGeom',nsprefix='a',attributes={'prst':'rect'}) prstgeom.append(makeelement('avLst',nsprefix='a')) sppr.append(xfrm) sppr.append(prstgeom) # Add our 3 parts to the picture element pic = makeelement('pic',nsprefix='pic') pic.append(nvpicpr) pic.append(blipfill) pic.append(sppr) # Now make the supporting elements # The following sequence is just: make element, then add its children graphicdata = makeelement('graphicData',nsprefix='a', attributes={'uri':'http://schemas.openxmlformats.org/drawingml/2006/picture'}) graphicdata.append(pic) graphic = makeelement('graphic',nsprefix='a') graphic.append(graphicdata) framelocks = makeelement('graphicFrameLocks',nsprefix='a',attributes={'noChangeAspect':'1'}) framepr = makeelement('cNvGraphicFramePr',nsprefix='wp') framepr.append(framelocks) docpr = makeelement('docPr',nsprefix='wp', attributes={'id':picid,'name':'Picture 1','descr':picdescription}) effectextent = makeelement('effectExtent',nsprefix='wp', attributes={'l':'25400','t':'0','r':'0','b':'0'}) extent = makeelement('extent',nsprefix='wp',attributes={'cx':width,'cy':height}) inline = makeelement('inline', attributes={'distT':"0",'distB':"0",'distL':"0",'distR':"0"},nsprefix='wp') inline.append(extent) inline.append(effectextent) inline.append(docpr) inline.append(framepr) inline.append(graphic) drawing = makeelement('drawing') drawing.append(inline) run = makeelement('r') run.append(drawing) paragraph = makeelement('p') paragraph.append(run) return relationshiplist,paragraph def search(document,search): '''Search a document for a regex, return success / fail result''' result = False searchre = re.compile(search) for element in document.iter(): if element.tag == '{%s}t' % nsprefixes['w']: # t (text) elements if element.text: if searchre.search(element.text): result = True return result def replace(document,search,replace): '''Replace all occurences of string with a different string, return updated document''' newdocument = document searchre = re.compile(search) for element in newdocument.iter(): if element.tag == '{%s}t' % nsprefixes['w']: # t (text) elements if element.text: if searchre.search(element.text): element.text = re.sub(search,replace,element.text) return newdocument def clean(document): """ Perform misc cleaning operations on documents. Returns cleaned document. """ newdocument = document # Clean empty text and r tags for t in ('t', 'r'): rmlist = [] for element in newdocument.iter(): if element.tag == '{%s}%s' % (nsprefixes['w'], t): if not element.text and not len(element): rmlist.append(element) for element in rmlist: element.getparent().remove(element) return newdocument def findTypeParent(element, tag): """ Finds fist parent of element of the given type @param object element: etree element @param string the tag parent to search for @return object element: the found parent or None when not found """ p = element while True: p = p.getparent() if p.tag == tag: return p # Not found return None def AdvSearch(document, search, bs=3): '''Return set of all regex matches This is an advanced version of python-docx.search() that takes into account blocks of <bs> elements at a time. What it does: It searches the entire document body for text blocks. Since the text to search could be spawned across multiple text blocks, we need to adopt some sort of algorithm to handle this situation. The smaller matching group of blocks (up to bs) is then adopted. If the matching group has more than one block, blocks other than first are cleared and all the replacement text is put on first block. Examples: original text blocks : [ 'Hel', 'lo,', ' world!' ] search : 'Hello,' output blocks : [ 'Hello,' ] original text blocks : [ 'Hel', 'lo', ' __', 'name', '__!' ] search : '(__[a-z]+__)' output blocks : [ '__name__' ] @param instance document: The original document @param str search: The text to search for (regexp) append, or a list of etree elements @param int bs: See above @return set All occurences of search string ''' # Compile the search regexp searchre = re.compile(search) matches = [] # Will match against searchels. Searchels is a list that contains last # n text elements found in the document. 1 < n < bs searchels = [] for element in document.iter(): if element.tag == '{%s}t' % nsprefixes['w']: # t (text) elements if element.text: # Add this element to searchels searchels.append(element) if len(searchels) > bs: # Is searchels is too long, remove first elements searchels.pop(0) # Search all combinations, of searchels, starting from # smaller up to bigger ones # l = search lenght # s = search start # e = element IDs to merge found = False for l in range(1,len(searchels)+1): if found: break for s in range(len(searchels)): if found: break if s+l <= len(searchels): e = range(s,s+l) txtsearch = '' for k in e: txtsearch += searchels[k].text # Searcs for the text in the whole txtsearch match = searchre.search(txtsearch) if match: matches.append(match.group()) found = True return set(matches) def advReplace(document,search,replace,bs=3): '''Replace all occurences of string with a different string, return updated document This is a modified version of python-docx.replace() that takes into account blocks of <bs> elements at a time. The replace element can also be a string or an xml etree element. What it does: It searches the entire document body for text blocks. Then scan thos text blocks for replace. Since the text to search could be spawned across multiple text blocks, we need to adopt some sort of algorithm to handle this situation. The smaller matching group of blocks (up to bs) is then adopted. If the matching group has more than one block, blocks other than first are cleared and all the replacement text is put on first block. Examples: original text blocks : [ 'Hel', 'lo,', ' world!' ] search / replace: 'Hello,' / 'Hi!' output blocks : [ 'Hi!', '', ' world!' ] original text blocks : [ 'Hel', 'lo,', ' world!' ] search / replace: 'Hello, world' / 'Hi!' output blocks : [ 'Hi!!', '', '' ] original text blocks : [ 'Hel', 'lo,', ' world!' ] search / replace: 'Hel' / 'Hal' output blocks : [ 'Hal', 'lo,', ' world!' ] @param instance document: The original document @param str search: The text to search for (regexp) @param mixed replace: The replacement text or lxml.etree element to append, or a list of etree elements @param int bs: See above @return instance The document with replacement applied ''' # Enables debug output DEBUG = False newdocument = document # Compile the search regexp searchre = re.compile(search) # Will match against searchels. Searchels is a list that contains last # n text elements found in the document. 1 < n < bs searchels = [] for element in newdocument.iter(): if element.tag == '{%s}t' % nsprefixes['w']: # t (text) elements if element.text: # Add this element to searchels searchels.append(element) if len(searchels) > bs: # Is searchels is too long, remove first elements searchels.pop(0) # Search all combinations, of searchels, starting from # smaller up to bigger ones # l = search lenght # s = search start # e = element IDs to merge found = False for l in
<reponame>Askinkaty/text-readability<gh_stars>0 # -*- coding: utf-8 -*- from process_gram import process_grammar import codecs first_pp = ['мы', 'я', 'наш', 'мой'] second_pp = ['ты', 'вы', 'ваш', 'твой'] third_pp = ['он', 'она', 'они', 'оно', 'их', 'ee', 'его', 'ихний', 'ихним', 'ихнем'] indef_pron = ['некто', 'некого', 'некому', 'некем', 'нечто', 'нечего', 'нечему', 'нечем', 'некоторый', 'некий', 'любой', 'никто', 'ничто', 'никакой', 'нисколько', 'нигде', 'негде', 'некуда', 'никуда', 'неоткуда', 'ниоткуда', 'некогда', 'никогда', 'никак', 'незачем', 'незачем'] place_adverbs = ['близко', 'ближе', 'вблизи', 'вверх', 'вверху', 'ввысь', 'вглубь', 'вдали', 'вдаль', 'везде', 'взад', 'влево', 'вне', 'вниз', 'внизу', 'внутри', 'внутрь', 'вовне', 'вовнутрь', 'вокруг', 'вперед', 'впереди', 'вправо', 'всюду', 'высоко', 'выше', 'глубоко', 'глубже', 'далеко', 'дальше', 'донизу', 'дома', 'здесь', 'издалека', 'издалече', 'издали', 'изнутри', 'кверху', 'книзу', 'кругом', 'левее', 'наверх', 'наверху', 'наискосок', 'налево', 'направо', 'напротив', 'наружно', 'наружу', 'невысоко', 'неглубоко', 'недалеко', 'неподалеку', 'низко', 'ниже', 'одаль', 'около', 'окрест', 'особняком', 'отдельно', 'откуда', 'отсюда', 'поближе', 'поверх', 'повсеместно', 'повсюду', 'повыше', 'поглубже', 'подальше', 'позади', 'пониже', 'понизу', 'посередке', 'посередине', 'посреди', 'посредине', 'поодаль', 'правее', 'рядом', 'сбоку', 'сверху', 'свыше', 'сзади', 'слева', 'снизу', 'снаружи', 'спереди', 'справа', 'стороной', 'супротив'] time_adverbs = ['бесконечно', 'беспрерывно', 'ввек', 'весной', 'вечно', 'вмиг', 'вначале', 'вовек', 'вовремя', 'впору', 'впоследствии', 'впредь', 'враз', 'временно', 'всечасно', 'вскоре', 'встарь', 'вчера', 'вчерась', 'давеча', 'давно', 'давненько', 'денно', 'длительно', 'днесь', 'доколе', 'долго', 'дольше', 'доныне', 'досветла', 'доселе', 'досрочно', 'дотемна', 'доутра', 'единовременно', 'ежеквартально', 'ежеминутно', 'еженощно', 'ежесекундно', 'ежечасно', 'еще', 'заблаговременно', 'завсегда', 'завтра', 'задолго', 'загодя', 'заранее', 'зараз', 'засим', 'затем', 'зимой', 'извечно', 'издревле', 'изначально', 'иногда', 'исконно', 'испокон', 'исстари', 'круглосуточно', 'кряду', 'летом', 'мимолетно', 'навек', 'навеки', 'навсегда', 'надолго', 'назавтра', 'накануне', 'наконец', 'намедни', 'наперед', 'напоследок', 'напролет', 'насовсем', 'наутро', 'недавно', 'недолго', 'незадолго', 'незамедлительно', 'ненадолго', 'нескоро', 'неоднократно', 'нонче', 'непрерывно', 'непродолжительно', 'нощно', 'ныне', 'нынче', 'однажды', 'одновременно', 'осенью', 'отколе', 'отныне', 'отродясь', 'первоначально', 'позавчера', 'позднее', 'поздно', 'поздновато', 'позже', 'подолгу', 'подряд', 'пожизненно', 'пока', 'покамест', 'поныне', 'поначалу', 'попозже', 'пораньше', 'после', 'послезавтра', 'поспешно', 'поскорее', 'постоянно', 'поутру', 'прежде', 'преждевременно', 'присно', 'продолжительно', 'редко', 'реже', 'ранее', 'рано', 'рановато', 'раньше', 'редко', 'своевременно', 'сегодня', 'скорее', 'скорей', 'скоро', 'смолоду', 'сначала', 'сперва', 'сразу', 'срочно', 'сроду', 'теперича', 'часто', 'уже', 'ужо'] interrogative_pronoun = ['кто', 'что', 'какой', 'каков', 'чей', 'который', 'почему', 'зачем', 'где', 'куда', 'откуда', 'отчего'] def is_have_grammar(e): # try: return e[1] != '' # except KeyError as ke: # print("Key error:" + str(e)) # raise ke # 1 # test that the current word is a first person pronoun def first_person_pronoun(t): fpp1 = 0 for el in t: if el[2] in first_pp: fpp1 += 1 return fpp1 # 2 # test that the current word is a second person pronoun def second_person_pronoun(t): spp2 = 0 for el in t: if el[2] in second_pp: spp2 += 1 return spp2 # 3 # test that the current word is a third person pronoun def third_person_pronoun(t): tpp3 = 0 for el in t: if el[2] in third_pp: tpp3 += 1 return tpp3 # 4 # test that the current word is a pronoun def is_pronoun(t): pron = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'P': pron += 1 else: continue return pron # 5 # test that the current word is a finite verb def is_finite_verb(t): finite = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'V' and d_el.get('vform') == 'i': finite += 1 else: continue return finite # 6 # test that the current word is an adjective or a participle # may be we should leave only test for adjectives and add a test that they are modifiers and not parts of predicates def is_modifier(t): mod = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'A' or (d_el.get('pos') == 'V' and d_el.get('vform') == 'p'): mod += 1 else: continue return mod # 7 # test that the current word has a past tense form def past_tense(t): past = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'V' and d_el.get('tense') == 's': past += 1 else: continue return past # 8 # test that the current word has a perfect aspect form def perf_aspect(t): perf = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'V' and d_el.get('aspect') == 'p': perf += 1 else: continue return perf # 9 # test that the current word has a present tense form def present_tense(t): pres = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'V' and d_el.get('tense') == 'p': pres += 1 else: continue return pres # 10 # test that the current word is an adverb def total_adverb(t): total_adv = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'R': total_adv += 1 else: continue return total_adv # nouns # 11 # 12 # test that the current word a verbal noun (отглагольное сущ.) or not verbal noun def is_nominalization(t): nomz = 0 nouns = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'N': with codecs.open('dictionaries/final_lemmas_nominalizations.txt', mode='r', encoding='utf-8') as f: read_lines = set([s.strip() for s in f.readlines()]) if el[2].lower() in read_lines: nomz += 1 else: nouns += 1 else: continue return nomz, nouns # 13 # test that the current word has a genitive case form def is_genitive(t): gen = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if (d_el.get('pos') == 'N' or d_el.get('pos') == 'P' or d_el.get('pos') == 'A') and d_el.get('case') == 'g': gen += 1 else: continue return gen # 14 # test that the current word has a neuter gender form def is_neuter(t): neuter = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if ((d_el.get('pos') == 'N' or d_el.get('pos') == 'P' or d_el.get('pos') == 'A') and d_el.get('gender') == 'n'): neuter += 1 else: continue return neuter # 15 # test that the current word has a passive form def is_passive(t): passive = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'V' and 'p' == d_el.get('voice'): passive += 1 else: continue return passive # 16 # test that the current verb is an infinitive def infinitives(t): infin = 0 for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'V' and d_el.get('vform') == 'n': infin += 1 else: continue return infin # 17 # test that the current word is a speech verb def speech_verb(t): sp_verb = 0 with codecs.open(r'dictionaries/all_lemmas_verb_speech.txt', mode='r', encoding='utf-8') as f: read_lines = set([s.strip() for s in f.readlines()]) for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'V': if el[2].lower() in read_lines: sp_verb += 1 else: continue return sp_verb # 18 # test that the current word is a mental verb def mental_verb(t): mntl_verb = 0 with codecs.open(r'dictionaries/all_lemmas_verb_mental.txt', mode='r', encoding='utf-8') as f: read_lines = set([s.strip() for s in f.readlines()]) for i, el in enumerate(t): if is_have_grammar(el): d_el = process_grammar(el) if d_el.get('pos') == 'V': if el[2].lower() in read_lines: mntl_verb += 1 else: continue return mntl_verb # 19 # test that the current sentence includes that-complement clause def that_complement(t): that_compl = 0 l = len(t) for i, el in enumerate(t): if is_have_grammar(el): if t[l - 1][0] != '?': d_el = process_grammar(el) d_next_el = {} if i + 1 < len(t): next_el = t[i + 1] d_next_el = process_grammar(next_el) d_next_el = d_next_el if d_next_el is not None else {} # test that current word is verb or short-form adjective and the next word is not a verb or # short-form adjective because of sentences like 'Я был счастлив, что она пришла'. if d_el.get('pos') == 'V' or (d_el.get('pos') == 'A' and d_el.get('definiteness') == 's'): if is_have_grammar(next_el): if (d_next_el.get('pos') != 'V' and (d_next_el.get('pos') != 'A' or d_next_el.get('definiteness') != 's')): for j in range(4): # test that there's no pronouns like 'то, это, такой' between the current word and comma # because of sentences like 'Я не предвидел того, что вы приедете', # which has relative meaning. # test that conjunction like 'что', 'чтобы' directly follow after comma if (i + j + 1 < len(t) and t[i + j][2] not in ['весь', 'все', 'такой', 'то', 'это', 'тот', 'этот'] and t[i + j + 1][0] == ',' and i + j + 2 < len(t) and t[i + j + 2][2] in ['что', 'чтобы']): if i + j + 3 < len(t): # test that if the conjunction is 'чтобы', there's no infinitive verb after it # to
or rev_big == 20 ): version = 20.0; elif ( rev_little == 21 or rev_big == 21 ): version = 21.0; elif ( rev_little == 23 or rev_big == 23 ): version = 21.0; elif ( rev_little == 24 or rev_big == 24 ): version = 24.0; elif ( rev_little == 26 or rev_big == 26 ): version = 26.0; else: raise UnknownPfile("Unknown header structure for revision %s" % rev_little) return version; def dump_header_strarr(self): dumped = self._dump_struct(self.hdr) strarr = [] for info in dumped: if (info.label.find("pad") == 0): continue # needed this because Gregor's UID values had some odd chars which # caused errors on the import of Probep data try: val = info.value # needed this because Pom's UID values were causing errors # when VIFF was read back in if info.label == 'rhe_study_uid': val = ' ' if info.label == 'rhs_series_uid': val = ' ' if info.label == 'rhs_landmark_uid': val = ' ' if info.label == 'rhi_image_uid': val = ' ' val = str(val) except: val = ' ' strarr.append(str(info.label)+' '+val) return strarr def dump_header(self): dumped = self._dump_struct(self.hdr) writer = csv.writer(sys.stdout, delimiter="\t") writer.writerow(["\n\nHeader All - field", "value"]) for info in dumped: if (info.label.find("pad") == 0): continue writer.writerow([info.label, str(info.value)]) def _dump_struct(self, struct, include_structs=False): """ Recursively travels through a ctypes.Structure and returns a list of namedtuples, containing label, depth, value, size, and offset. If include_structs is true, output will include lines for individual structures and their sizes and offsets -- not just non-structure fields. """ output = [] self._dump_struct_rec(struct, output, include_structs) return output def _dump_struct_rec(self, struct, output, include_structs=False, prefix='', depth=0, base_offset=0): """ Internal recursive method for dumping structures. Appends to the "output" parameter. """ struct_class = type(struct) if include_structs: output.append(StructInfo( "%s (%s)" % (prefix, struct_class.__name__), depth, '', str(struct_class), ctypes.sizeof(struct_class), base_offset)) for f in struct._fields_: name = f[0] field_type = f[1] field_meta = getattr(struct_class, name) field = getattr(struct, name) cur_prefix = "%s%s." % (prefix, name) field_offset = base_offset + field_meta.offset if isinstance(field, ctypes.Structure): self._dump_struct_rec(field, output, include_structs, cur_prefix,depth+1, field_offset) else: label = prefix+name output.append(StructInfo(label, depth, field, field_type.__name__, field_meta.size, field_offset)) #------------------------------------------------------------------------------ # originally ge_pfile_mapper.py #------------------------------------------------------------------------------ class PfileMapper(object): def __init__(self, file_name, hdr, version, endian): """ Given a file name, its header, version number and endianess, this class will parse the data section of the file for the suppressed and unsuppressed data. All 'timePts' (aka. FID data arrays) are stored in the raw_data attribute. It is a numpy ndarray with shape of: [cols, rows, slices, numTimePts, numCoils, numSpecPts], np.complex64 For SVS data, cols, rows and slices are all equal to 1. - raw_suppressed is a view onto the water suppressed fids data - raw_unsuppressed is a view onto the water unsuppressed fids data - avg_suppressed and avg_unsuppressed are numpy arrays where the relevant raw_ views have been summed along the numTimePts dimension. shape = [cols, rows, slices, numCoils, numSpecPts] For non-SVS data, only the raw_data attribute has data in it. History: Derived from SIVIC file svkGEPFileMapper.cc which was used to map data from PROBE-P and PRESSCSI P-files. SIVIC has other mapper classes for other types of P-file data. I will plan on using this model here, too. """ self.file_name = file_name self.hdr = hdr self.version = version self.endian = endian self.is_svs = False self.raw_data = None self.raw_suppressed = None self.avg_suppressed = None self.raw_unsuppressed = None self.avg_unsuppressed = None @property def get_select_box_center(self): """ Center position is taken from user variables. The Z "slice" position used to be taken from the image header "image.loc", but with the LX architecture, this held the table position only, so if Graphic RX was used to introduce an offset, it wouldn't be successfully extracted. """ center0 = -1 * self.hdr.rhi_user11 center1 = -1 * self.hdr.rhi_user12 center2 = self.hdr.rhi_user13 return np.array([center0, center1, center2]) @property def get_select_box_size(self): boxsize = np.array([0.0, 0.0, 0.0]) dcos = self.get_dcos if self.version > 9: lMax = 0 pMax = 0 sMax = 0 lIndex = 0 pIndex = 0 sIndex = 0 for i in range(3): if abs( dcos[i][0] ) > lMax: lIndex = i lMax = abs( dcos[i][0] ) if abs( dcos[i][1] ) > pMax: pIndex = i pMax = abs( dcos[i][1] ) if abs( dcos[i][2] ) > sMax: sIndex = i sMax = abs( dcos[i][2] ) boxsize[ lIndex ] = self.hdr.rhi_user8 boxsize[ pIndex ] = self.hdr.rhi_user9 boxsize[ sIndex ] = self.hdr.rhi_user10 else: boxsize[0] = self.hdr.rhr_roilenx boxsize[1] = self.hdr.rhr_roileny boxsize[2] = self.hdr.rhr_roilenz if self.is_swap_on: ftemp = boxsize[0] boxsize[0] = boxsize[1] boxsize[1] = ftemp return boxsize @property def get_voxel_spacing(self): """ Get the voxel spacing in 3D. Note that the slice spacing may include a skip. Swaps the FOV if necessary based on freq_dir setting. """ user19 = self.hdr.rhi_user19 voxspace = np.array([0.0, 0.0, 0.0]) if (user19 > 0) and (self.version > 9): voxspace[0] = user19 voxspace[1] = user19 voxspace[2] = user19 else: fov = self.get_fov nvox = self.get_num_voxels voxspace[0] = fov[0]/nvox[0] voxspace[1] = fov[1]/nvox[1] voxspace[2] = fov[2]/nvox[2] return voxspace @property def get_fov(self): fov = np.array([0.0, 0.0, 0.0]) nvox = self.get_num_voxels dfov = self.hdr.rhi_dfov if self.version > 9: fov[0] = dfov fov[1] = dfov # 2D case vs 3D cases if self.is_2d: fov[2] = self.hdr.rhi_user10 else: fov[2] = self.hdr.rhi_scanspacing * self.hdr.rhr_zcsi else: fov[0] = self.hdr.rhr_rh_user7 fov[1] = self.hdr.rhr_rh_user8 fov[2] = self.hdr.rhr_rh_user9 # Anisotropic voxels: if (self.version > 9) and (nvox[0] != nvox[1]): # CSI has already been reordered if needed - so fov calculated # with this CSI will not need reordering, need next power of 2: xdim = int(pow(2, math.ceil(math.log(nvox[0], 2)))) ydim = int(pow(2, math.ceil(math.log(nvox[1], 2)))) if( ydim > xdim ): fov_spatial_resolution = dfov/ydim else: fov_spatial_resolution = dfov/xdim fov[1] = fov_spatial_resolution * ydim fov[0] = fov_spatial_resolution * xdim elif self.is_swap_on: # Swap the FOV if necessary based on freq dir: temp = fov[0] fov[0] = fov[1] fov[1] = temp return fov @property def get_num_voxels(self): """ Get the 3D spatial dimensionality of the data set Returns an int array with 3 dimensions. Swaps if necessary based on freq_dir setting. """ nvox = np.array([0, 0, 0]) if self.hdr.rhr_rh_file_contents == 0: nvox[0] = 1 nvox[1] = 1 nvox[2] = 1 else: nvox[0] = int(self.hdr.rhr_xcsi) nvox[1] = int(self.hdr.rhr_ycsi) nvox[2] = int(self.hdr.rhr_zcsi) # Swap dimensions if necessary: if self.is_swap_on: temp = nvox[0] nvox[0] = nvox[1] nvox[1] = temp return nvox @property def get_dcos(self): dcos = np.zeros([3, 3], float) dcos[0][0] = -( self.hdr.rhi_trhc_R - self.hdr.rhi_tlhc_R ) dcos[0][1] = -( self.hdr.rhi_trhc_A - self.hdr.rhi_tlhc_A ) dcos[0][2] = ( self.hdr.rhi_trhc_S - self.hdr.rhi_tlhc_S ) dcosLengthX = np.sqrt( dcos[0][0] * dcos[0][0] + dcos[0][1] * dcos[0][1] + dcos[0][2] * dcos[0][2] ) dcos[0][0] /= dcosLengthX dcos[0][1] /= dcosLengthX dcos[0][2] /= dcosLengthX dcos[1][0] = -( self.hdr.rhi_brhc_R - self.hdr.rhi_trhc_R ) dcos[1][1] = -( self.hdr.rhi_brhc_A - self.hdr.rhi_trhc_A ) dcos[1][2] = ( self.hdr.rhi_brhc_S - self.hdr.rhi_trhc_S ) dcosLengthY = np.sqrt( dcos[1][0] * dcos[1][0] + dcos[1][1] * dcos[1][1] + dcos[1][2] * dcos[1][2] ) dcos[1][0] /= dcosLengthY dcos[1][1] /= dcosLengthY dcos[1][2] /= dcosLengthY # third row is the vector product of the first two rows # actually, -1* vector product, at least for the axial and axial oblique # which is all that we support now dcos[2][0] = - dcos[0][1] * dcos[1][2] + dcos[0][2] * dcos[1][1] dcos[2][1] = - dcos[0][2] * dcos[1][0] + dcos[0][0] * dcos[1][2] dcos[2][2] = - dcos[0][0] * dcos[1][1] + dcos[0][1] * dcos[1][0] return dcos @property def is_swap_on(self): """ Is frequency direction swapped? """ if self.hdr.rhi_freq_dir != 1: return True else: return False @property def is_2d(self): """ Is this a 2D or 3D data set (spatial dimensions)? """ is2D = False ndims = self.hdr.rhr_csi_dims if ndims ==
"""A basic extended attributes (xattr) implementation for Linux, FreeBSD and MacOS X.""" import errno import os import re import subprocess import sys import tempfile from ctypes import CDLL, create_string_buffer, c_ssize_t, c_size_t, c_char_p, c_int, c_uint32, get_errno from ctypes.util import find_library from distutils.version import LooseVersion from .helpers import Buffer try: ENOATTR = errno.ENOATTR except AttributeError: # on some platforms, ENOATTR is missing, use ENODATA there ENOATTR = errno.ENODATA buffer = Buffer(create_string_buffer, limit=2**24) def is_enabled(path=None): """Determine if xattr is enabled on the filesystem """ with tempfile.NamedTemporaryFile(dir=path, prefix='borg-tmp') as fd: try: setxattr(fd.fileno(), 'user.name', b'value') except OSError: return False return getxattr(fd.fileno(), 'user.name') == b'value' def get_all(path, follow_symlinks=True): try: result = {} names = listxattr(path, follow_symlinks=follow_symlinks) for name in names: try: result[name] = getxattr(path, name, follow_symlinks=follow_symlinks) except OSError as e: # if we get ENOATTR, a race has happened: xattr names were deleted after list. # we just ignore the now missing ones. if you want consistency, do snapshots. if e.errno != ENOATTR: raise return result except OSError as e: if e.errno in (errno.ENOTSUP, errno.EPERM): return {} libc_name = find_library('c') if libc_name is None: # find_library didn't work, maybe we are on some minimal system that misses essential # tools used by find_library, like ldconfig, gcc/cc, objdump. # so we can only try some "usual" names for the C library: if sys.platform.startswith('linux'): libc_name = 'libc.so.6' elif sys.platform.startswith(('freebsd', 'netbsd')): libc_name = 'libc.so' elif sys.platform == 'darwin': libc_name = 'libc.dylib' else: msg = "Can't find C library. No fallback known. Try installing ldconfig, gcc/cc or objdump." print(msg, file=sys.stderr) # logger isn't initialized at this stage raise Exception(msg) # If we are running with fakeroot on Linux, then use the xattr functions of fakeroot. This is needed by # the 'test_extract_capabilities' test, but also allows xattrs to work with fakeroot on Linux in normal use. # TODO: Check whether fakeroot supports xattrs on all platforms supported below. # TODO: If that's the case then we can make Borg fakeroot-xattr-compatible on these as well. XATTR_FAKEROOT = False if sys.platform.startswith('linux'): LD_PRELOAD = os.environ.get('LD_PRELOAD', '') preloads = re.split("[ :]", LD_PRELOAD) for preload in preloads: if preload.startswith("libfakeroot"): fakeroot_version = LooseVersion(subprocess.check_output(['fakeroot', '-v']).decode('ascii').split()[-1]) if fakeroot_version >= LooseVersion("1.20.2"): # 1.20.2 has been confirmed to have xattr support # 1.18.2 has been confirmed not to have xattr support # Versions in-between are unknown libc_name = preload XATTR_FAKEROOT = True break try: libc = CDLL(libc_name, use_errno=True) except OSError as e: msg = "Can't find C library [%s]. Try installing ldconfig, gcc/cc or objdump." % e raise Exception(msg) def split_string0(buf): """split a list of zero-terminated strings into python not-zero-terminated bytes""" return buf.split(b'\0')[:-1] def split_lstring(buf): """split a list of length-prefixed strings into python not-length-prefixed bytes""" result = [] mv = memoryview(buf) while mv: length = mv[0] result.append(bytes(mv[1:1 + length])) mv = mv[1 + length:] return result class BufferTooSmallError(Exception): """the buffer given to an xattr function was too small for the result.""" def _check(rv, path=None, detect_buffer_too_small=False): if rv < 0: e = get_errno() if detect_buffer_too_small and e == errno.ERANGE: # listxattr and getxattr signal with ERANGE that they need a bigger result buffer. # setxattr signals this way that e.g. a xattr key name is too long / inacceptable. raise BufferTooSmallError else: try: msg = os.strerror(e) except ValueError: msg = '' if isinstance(path, int): path = '<FD %d>' % path raise OSError(e, msg, path) if detect_buffer_too_small and rv >= len(buffer): # freebsd does not error with ERANGE if the buffer is too small, # it just fills the buffer, truncates and returns. # so, we play sure and just assume that result is truncated if # it happens to be a full buffer. raise BufferTooSmallError return rv def _listxattr_inner(func, path): if isinstance(path, str): path = os.fsencode(path) size = len(buffer) while True: buf = buffer.get(size) try: n = _check(func(path, buf, size), path, detect_buffer_too_small=True) except BufferTooSmallError: size *= 2 else: return n, buf.raw def _getxattr_inner(func, path, name): if isinstance(path, str): path = os.fsencode(path) name = os.fsencode(name) size = len(buffer) while True: buf = buffer.get(size) try: n = _check(func(path, name, buf, size), path, detect_buffer_too_small=True) except BufferTooSmallError: size *= 2 else: return n, buf.raw def _setxattr_inner(func, path, name, value): if isinstance(path, str): path = os.fsencode(path) name = os.fsencode(name) value = value and os.fsencode(value) size = len(value) if value else 0 _check(func(path, name, value, size), path, detect_buffer_too_small=False) if sys.platform.startswith('linux'): # pragma: linux only libc.llistxattr.argtypes = (c_char_p, c_char_p, c_size_t) libc.llistxattr.restype = c_ssize_t libc.flistxattr.argtypes = (c_int, c_char_p, c_size_t) libc.flistxattr.restype = c_ssize_t libc.lsetxattr.argtypes = (c_char_p, c_char_p, c_char_p, c_size_t, c_int) libc.lsetxattr.restype = c_int libc.fsetxattr.argtypes = (c_int, c_char_p, c_char_p, c_size_t, c_int) libc.fsetxattr.restype = c_int libc.lgetxattr.argtypes = (c_char_p, c_char_p, c_char_p, c_size_t) libc.lgetxattr.restype = c_ssize_t libc.fgetxattr.argtypes = (c_int, c_char_p, c_char_p, c_size_t) libc.fgetxattr.restype = c_ssize_t def listxattr(path, *, follow_symlinks=True): def func(path, buf, size): if isinstance(path, int): return libc.flistxattr(path, buf, size) else: if follow_symlinks: return libc.listxattr(path, buf, size) else: return libc.llistxattr(path, buf, size) n, buf = _listxattr_inner(func, path) return [os.fsdecode(name) for name in split_string0(buf[:n]) if name and not name.startswith(b'system.posix_acl_')] def getxattr(path, name, *, follow_symlinks=True): def func(path, name, buf, size): if isinstance(path, int): return libc.fgetxattr(path, name, buf, size) else: if follow_symlinks: return libc.getxattr(path, name, buf, size) else: return libc.lgetxattr(path, name, buf, size) n, buf = _getxattr_inner(func, path, name) return buf[:n] or None def setxattr(path, name, value, *, follow_symlinks=True): def func(path, name, value, size): flags = 0 if isinstance(path, int): return libc.fsetxattr(path, name, value, size, flags) else: if follow_symlinks: return libc.setxattr(path, name, value, size, flags) else: return libc.lsetxattr(path, name, value, size, flags) _setxattr_inner(func, path, name, value) elif sys.platform == 'darwin': # pragma: darwin only libc.listxattr.argtypes = (c_char_p, c_char_p, c_size_t, c_int) libc.listxattr.restype = c_ssize_t libc.flistxattr.argtypes = (c_int, c_char_p, c_size_t) libc.flistxattr.restype = c_ssize_t libc.setxattr.argtypes = (c_char_p, c_char_p, c_char_p, c_size_t, c_uint32, c_int) libc.setxattr.restype = c_int libc.fsetxattr.argtypes = (c_int, c_char_p, c_char_p, c_size_t, c_uint32, c_int) libc.fsetxattr.restype = c_int libc.getxattr.argtypes = (c_char_p, c_char_p, c_char_p, c_size_t, c_uint32, c_int) libc.getxattr.restype = c_ssize_t libc.fgetxattr.argtypes = (c_int, c_char_p, c_char_p, c_size_t, c_uint32, c_int) libc.fgetxattr.restype = c_ssize_t XATTR_NOFLAGS = 0x0000 XATTR_NOFOLLOW = 0x0001 def listxattr(path, *, follow_symlinks=True): def func(path, buf, size): if isinstance(path, int): return libc.flistxattr(path, buf, size, XATTR_NOFLAGS) else: if follow_symlinks: return libc.listxattr(path, buf, size, XATTR_NOFLAGS) else: return libc.listxattr(path, buf, size, XATTR_NOFOLLOW) n, buf = _listxattr_inner(func, path) return [os.fsdecode(name) for name in split_string0(buf[:n]) if name] def getxattr(path, name, *, follow_symlinks=True): def func(path, name, buf, size): if isinstance(path, int): return libc.fgetxattr(path, name, buf, size, 0, XATTR_NOFLAGS) else: if follow_symlinks: return libc.getxattr(path, name, buf, size, 0, XATTR_NOFLAGS) else: return libc.getxattr(path, name, buf, size, 0, XATTR_NOFOLLOW) n, buf = _getxattr_inner(func, path, name) return buf[:n] or None def setxattr(path, name, value, *, follow_symlinks=True): def func(path, name, value, size): if isinstance(path, int): return libc.fsetxattr(path, name, value, size, 0, XATTR_NOFLAGS) else: if follow_symlinks: return libc.setxattr(path, name, value, size, 0, XATTR_NOFLAGS) else: return libc.setxattr(path, name, value, size, 0, XATTR_NOFOLLOW) _setxattr_inner(func, path, name, value) elif sys.platform.startswith('freebsd'): # pragma: freebsd only libc.extattr_list_fd.argtypes = (c_int, c_int, c_char_p, c_size_t) libc.extattr_list_fd.restype = c_ssize_t libc.extattr_list_link.argtypes = (c_char_p, c_int, c_char_p, c_size_t) libc.extattr_list_link.restype = c_ssize_t libc.extattr_list_file.argtypes = (c_char_p, c_int, c_char_p, c_size_t) libc.extattr_list_file.restype = c_ssize_t libc.extattr_get_fd.argtypes = (c_int, c_int, c_char_p, c_char_p, c_size_t) libc.extattr_get_fd.restype = c_ssize_t libc.extattr_get_link.argtypes = (c_char_p, c_int, c_char_p, c_char_p, c_size_t) libc.extattr_get_link.restype = c_ssize_t libc.extattr_get_file.argtypes = (c_char_p, c_int, c_char_p, c_char_p, c_size_t) libc.extattr_get_file.restype = c_ssize_t libc.extattr_set_fd.argtypes = (c_int, c_int, c_char_p, c_char_p, c_size_t) libc.extattr_set_fd.restype = c_int libc.extattr_set_link.argtypes = (c_char_p, c_int, c_char_p, c_char_p, c_size_t) libc.extattr_set_link.restype = c_int libc.extattr_set_file.argtypes = (c_char_p, c_int, c_char_p, c_char_p, c_size_t) libc.extattr_set_file.restype = c_int ns = EXTATTR_NAMESPACE_USER = 0x0001 def listxattr(path, *, follow_symlinks=True): def func(path, buf, size): if isinstance(path, int): return libc.extattr_list_fd(path, ns, buf, size) else: if follow_symlinks: return libc.extattr_list_file(path, ns, buf, size) else: return libc.extattr_list_link(path, ns, buf, size) n, buf = _listxattr_inner(func, path) return [os.fsdecode(name) for name in split_lstring(buf[:n]) if name] def getxattr(path, name, *, follow_symlinks=True): def func(path, name, buf, size): if isinstance(path, int): return libc.extattr_get_fd(path, ns, name, buf, size) else: if follow_symlinks: return libc.extattr_get_file(path, ns, name, buf, size) else: return libc.extattr_get_link(path, ns, name, buf, size) n, buf = _getxattr_inner(func, path, name) return buf[:n] or None def setxattr(path, name, value, *, follow_symlinks=True): def func(path, name, value, size): if isinstance(path, int): return libc.extattr_set_fd(path, ns, name, value, size) else: if follow_symlinks: return libc.extattr_set_file(path, ns, name, value, size) else: return
numbers. portstr: does exactly that. Example: dfm r:logs service=port:port,proto The above will create/overwrite columns 'service' with a port string constructed from the port number and protocol number: service,port,proto 80/tcp,"80","6" 53/udp,53,17 ''' # sanity check lhs, rhs errors = [] if len(lhs) != 1: errors.append('need exactly 1 lhs field') if len(rhs) !=2: errors.append('need exactly 2 rhs fields') dst = lhs[0] self.check_fields(errors, rhs) self.fatal(errors, lhs, rhs) fport, fproto = rhs def safe_port(row): try: port, proto = row[fport], row[fproto] return Ival.port_proto(port, proto).port() except ValueError: return np.nan try: self.dfm[dst] = self.dfm.apply(safe_port, axis=1) except Exception as e: self.fatal(['runtime error: {!r}'.format(e)], lhs, rhs) return self def cmd_servicename(self, lhs, rhs): ''' syntax: fx=service:fportstr info: fx := iana service name via portstring descr: Looks up the portstring (eg 80/tcp) or port,protocols nrs (eg 80, 6) in a table and returns the iana assigned name and/or description. Example: dfm r:logs application,descr=portname:service dfm r:logs ,descr=portname:service dfm r:logs application,descr=portname:port,proto dfm r:logs ,descr=portname:port,proto The first command assigns the iana service name and its description to (possibly) new fields application,descr using the df-column service which should contain portstrings like '80/tcp'. The second command only assigns the description. The 3rd and 4th commands do the same, but using port nr and protocol nr columns instead (where port, proto would refer to eg 80, 6). ''' # sanity check lhs, rhs errors = [] if len(lhs) > 2: errors.append('need 1 or 2 lhs fields') if len(rhs) != 1: errors.append('need 1 rhs field') self.check_fields(errors, rhs) self.fatal(errors, lhs, rhs) log.info('loading services ...') ipp = Ip4Service() log.info('... done!') fdst, fport = lhs[0], rhs[0] def get_name(row): try: portstr = row[fport] if portstr is not np.nan and len(portstr): name = ipp.getservbyport(portstr) if name is None or len(name) == 0: return portstr return name return 'unknown' except ValueError: return 'err' try: self.dfm[fdst] = self.dfm.apply(get_name, axis=1) except Exception as e: self.fatal(['runtime error: {!r}'.format(e)], lhs, rhs) return self def cmd_join(self, lhs, rhs): ''' syntax: fx=join:sep,fy,fz,.. info: join 2+ fields using sep descr: Create new column fx (or overwrite existing one) by joining the string values of columns fy,fz,.. using the string <sep>. Only 1 lhs-field is allowed and a minimum of 3 rhs-fields are required. All rhs-fiels, except the <sep>-string must be existing fields in the dataframe. Example: | a num | a 1 | a 2 Using b=join:\\:a,num will get you | a num b | a 1 a:1 | a 2 a:2 Usually you'll need to double the escape '\'-char on the command line. (note: ':~=' are special characters for the command parser). ''' # sanity check lhs, rhs errors = [] if len(rhs) < 3: errors.append('need 3+ fields in rhs: sep,f1,f2,...') if len(lhs) != 1: errors.append('need exactly 1 lhs field') dst = lhs[0] sep, srcs = rhs[0], rhs[1:] self.check_fields(errors, srcs) self.fatal(errors, lhs, rhs) try: self.dfm[dst] = self.dfm[srcs].apply(lambda x: sep.join(str(f) for f in x), axis=1) except Exception as e: self.fatal(['runtime error: {!r}'.format(e)], lhs, rhs) return self def cmd_add(self, lhs, rhs): ''' syntax: fx=add:fy,fz,.. info: add fields after mapping them to numbers descr: Create new column fx (or overwrite existing one) by add the values of columns fy,fz,.. after converting them to int(s) A field value that fails to convert, defaults to nan. Only 1 lhs-field is allowed and a minimum of 2 rhs-fields are required. All rhs-fiels must be existing fields in the dataframe. ''' # sanity check lhs, rhs errors = [] if len(rhs) < 2: errors.append('need 2+ fields in rhs: sep,f1,f2,...') if len(lhs) != 1: errors.append('need exactly 1 lhs field') dst = lhs[0] srcs = rhs self.check_fields(errors, srcs) self.fatal(errors, lhs, rhs) # helper to safely convert & sum fields def intsum(fields): val = 0 log.debug('adding %s', fields) for field in fields: try: val += int(float(field)) log.debug('val is %s', val) except ValueError: pass return val try: self.dfm[dst] = self.dfm[srcs].apply( lambda x: intsum(f for f in x), axis=1) except Exception as e: self.fatal(['runtime error: {!r}'.format(e)], lhs, rhs) return self def cmd_map(self, lhs, rhs): ''' syntax: fx,..=map:fy info: create (fy,fx)-map and apply to existing fx,.. descr: 'map:' is a sort of forced forward/backward fill, using column fy to create a dictionary of fy->fx valid-values-mapping (retaining first mapping found) and them apply that to column fx. The process is repeated for any additional lhs-fields, which must all exist. Only fx-nan-values are replaced by a known fx-valid-value given the value of fy in that row. Example: | hostname ip count | nan 172.16.17.32 10 | www.ietf.com 172.16.17.32 12 Using hostname=map:ip, will get you: | hostname ip count | www.ietf.com 172.16.17.32 10 | www.ietf.com 172.16.17.32 12 Mostly useful when the dataset is derived from events with common fields, but where not all events have all the fields all the time. ''' # sanity check lhs, rhs errors = [] if len(lhs) < 1: errors.append('need at least 1 lhs field to assign to') if len(rhs) != 1: errors.append('need exactly 1 rhs field as map source') self.check_fields(errors, lhs + rhs) self.fatal(errors, lhs, rhs) src = rhs[0] dst = [c for c in lhs if c != src] # avoid source control column fix = self.dfm.set_index(src) # src value mappings to other columns log.info('- control column {}'.format(src)) for col in dst: dct = fix[[col]].dropna().to_dict()[col] # null's should be NaNs! log.info('- mapping to {!r} with {} unique maps'.format(col, len(dct))) self.dfm[col] = self.dfm[src].map(dct) return self def cmd_regex(self, lhs, rhs): ''' syntax: [fx=]fy~/abc/[ABC/][i] info: create/modify fx or filter by fy descr: 'regex:' can be used to either: - filter rows by matching fy to a regular expression - perform a substitution on fy via a regular expression, or - assign the value of the substitution to a new/existing column. Example: status~/up/down/ - flip 'up' to 'down' in status column host=name~/-[^-]+$// - bare hostname with last part stripped status~/up/i - keep rows where status contains 'up' (case-insensitive) The following flags are picked up on: /i = re.I - case insensitive /a = re.A - ascii-only matching instead of full unicode for \w, \W .. /s = re.S - make '.' match newline as well /m = re.M - make '^','$' also match at beginning/end of each line /r = reverse meaning in case of matching/filtering ''' # regexp work on strings, not numbers. At the moment, str(x) is used to # ensure a column field value is a string. Not needed when its already # string-like. So a speed-up is handy by first checking if the field # being matched/search is already string-like (save str(x) on every # value in a column .... # sanity check lhs, rhs errors = [] if len(lhs) < 1: errors.append('need at least 1 field to work with') if len(rhs) < 1: errors.append('missing field or regexp') self.check_fields(errors, rhs[:-1]) self.fatal(errors, lhs, rhs) expression = rhs.pop() parts = re.split('((?<!\\\)/)', expression) # keep delim / in parts delim = parts[1::2] # either 2 or 3 /'s are valid! terms = list(parts[::2]) rgx_inverse = False flags = 0 for f in terms[-1]: f = f.lower() if f == 'i': flags |= re.I elif f == 'a': flags |= re.A elif f == 's': flags |= re.S elif f == 'm': flags |= re.M elif f == 'r': rgx_inverse = True else: errors.append('regexp, unknown flag in {!r}'.format(f)) if len(errors): self.fatal(errors, lhs, rhs) try: #pdh:new replace any escaped forward slash rgx = re.compile(terms[1].replace('\/', '/'), flags) except Exception as e: errors.append('Failed to compile expression {!}'.format(expression)) errors.append(' - error: {}'.format(repr(e))) self.fatal(errors, lhs, rhs) log.info('- {!r}'.format(rgx)) if len(delim) == 2: if len(rhs) == 0: # f1[,f2,..]~/expr/ -> rows where expr matches 1 of f1[f2,..] self.check_fields(errors, lhs) # ensure lhs-fields exist self.fatal(errors, lhs, rhs) log.info("- filter rows by re.search on '{}'".format(lhs)) n1 = len(self.dfm.index) if rgx_inverse: match = lambda r: any(not rgx.search(str(f)) for f in r) else: match = lambda r: any(rgx.search(str(f)) for f in r) self.dfm = self.dfm[self.dfm[lhs].apply(match, axis=1)] n2 = len(self.dfm.index) fmt = 'filtering {!r}:
<reponame>Na2CuCl4/latex2sympy<filename>gen/PSLexer.py # Generated from PS.g4 by ANTLR 4.7.2 # encoding: utf-8 from __future__ import print_function from antlr4 import * from io import StringIO import sys def serializedATN(): with StringIO() as buf: buf.write(u"\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2") buf.write(u"\u0087\u06c3\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6") buf.write(u"\t\6\4\7\t\7\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t") buf.write(u"\f\4\r\t\r\4\16\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4") buf.write(u"\22\t\22\4\23\t\23\4\24\t\24\4\25\t\25\4\26\t\26\4\27") buf.write(u"\t\27\4\30\t\30\4\31\t\31\4\32\t\32\4\33\t\33\4\34\t") buf.write(u"\34\4\35\t\35\4\36\t\36\4\37\t\37\4 \t \4!\t!\4\"\t\"") buf.write(u"\4#\t#\4$\t$\4%\t%\4&\t&\4\'\t\'\4(\t(\4)\t)\4*\t*\4") buf.write(u"+\t+\4,\t,\4-\t-\4.\t.\4/\t/\4\60\t\60\4\61\t\61\4\62") buf.write(u"\t\62\4\63\t\63\4\64\t\64\4\65\t\65\4\66\t\66\4\67\t") buf.write(u"\67\48\t8\49\t9\4:\t:\4;\t;\4<\t<\4=\t=\4>\t>\4?\t?\4") buf.write(u"@\t@\4A\tA\4B\tB\4C\tC\4D\tD\4E\tE\4F\tF\4G\tG\4H\tH") buf.write(u"\4I\tI\4J\tJ\4K\tK\4L\tL\4M\tM\4N\tN\4O\tO\4P\tP\4Q\t") buf.write(u"Q\4R\tR\4S\tS\4T\tT\4U\tU\4V\tV\4W\tW\4X\tX\4Y\tY\4Z") buf.write(u"\tZ\4[\t[\4\\\t\\\4]\t]\4^\t^\4_\t_\4`\t`\4a\ta\4b\t") buf.write(u"b\4c\tc\4d\td\4e\te\4f\tf\4g\tg\4h\th\4i\ti\4j\tj\4k") buf.write(u"\tk\4l\tl\4m\tm\4n\tn\4o\to\4p\tp\4q\tq\4r\tr\4s\ts\4") buf.write(u"t\tt\4u\tu\4v\tv\4w\tw\4x\tx\4y\ty\4z\tz\4{\t{\4|\t|") buf.write(u"\4}\t}\4~\t~\4\177\t\177\4\u0080\t\u0080\4\u0081\t\u0081") buf.write(u"\4\u0082\t\u0082\4\u0083\t\u0083\4\u0084\t\u0084\4\u0085") buf.write(u"\t\u0085\4\u0086\t\u0086\4\u0087\t\u0087\4\u0088\t\u0088") buf.write(u"\4\u0089\t\u0089\4\u008a\t\u008a\4\u008b\t\u008b\4\u008c") buf.write(u"\t\u008c\4\u008d\t\u008d\4\u008e\t\u008e\4\u008f\t\u008f") buf.write(u"\4\u0090\t\u0090\4\u0091\t\u0091\3\2\3\2\3\2\3\3\3\3") buf.write(u"\3\4\6\4\u012a\n\4\r\4\16\4\u012b\3\4\3\4\3\5\3\5\3\5") buf.write(u"\3\5\3\5\3\6\3\6\3\7\3\7\3\b\3\b\3\t\3\t\3\n\3\n\3\13") buf.write(u"\3\13\3\f\3\f\3\f\3\f\3\f\3\f\3\f\3\f\3\r\3\r\3\r\3\r") buf.write(u"\3\r\3\r\3\r\3\r\3\16\3\16\3\17\3\17\3\20\3\20\3\20\3") buf.write(u"\21\3\21\3\21\3\22\3\22\3\22\3\22\3\22\3\22\3\22\3\22") buf.write(u"\3\23\3\23\3\23\3\23\3\23\3\23\3\23\3\23\3\24\3\24\3") buf.write(u"\25\3\25\3\26\3\26\3\26\3\26\3\26\3\26\3\26\3\26\3\27") buf.write(u"\3\27\3\27\3\27\3\27\3\27\3\27\3\27\3\30\3\30\3\31\3") buf.write(u"\31\3\31\3\31\3\31\3\31\3\31\3\32\3\32\3\32\3\32\3\32") buf.write(u"\3\32\3\32\3\33\3\33\3\33\3\33\3\33\3\33\3\34\3\34\3") buf.write(u"\34\3\34\3\34\3\34\3\34\3\34\3\35\3\35\3\35\3\35\3\35") buf.write(u"\3\35\3\35\3\35\3\36\3\36\3\36\3\36\3\36\3\36\3\36\3") buf.write(u"\36\3\36\3\36\3\37\3\37\3\37\3\37\3\37\3\37\3\37\3\37") buf.write(u"\3\37\3\37\3 \3 \3 \3 \3 \3 \3 \3!\3!\3!\3!\3!\3!\3!") buf.write(u"\3\"\3\"\3\"\3\"\3\"\3\"\3\"\3\"\3\"\3\"\3#\3#\3#\3#") buf.write(u"\3#\3#\3#\3#\3#\3#\3$\3$\3$\3$\3$\3$\3%\3%\3%\3%\3%\3") buf.write(u"%\3%\3&\3&\3&\3&\3&\3&\3&\3\'\3\'\3\'\3\'\3\'\3\'\3\'") buf.write(u"\3\'\3(\3(\3(\3(\3(\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)") buf.write(u"\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3") buf.write(u")\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)\3)") buf.write(u"\3)\3)\3)\3)\3)\3)\3)\3)\3)\5)\u0233\n)\3*\3*\3*\3*\3") buf.write(u"*\3+\3+\3+\3+\3+\3,\3,\3,\3,\3,\3,\3-\3-\3-\3-\3-\3.") buf.write(u"\3.\3.\3.\3/\3/\3/\3/\3/\3\60\3\60\3\60\3\60\3\60\3\61") buf.write(u"\3\61\3\61\3\61\3\61\3\62\3\62\3\62\3\62\3\62\3\63\3") buf.write(u"\63\3\63\3\63\3\63\3\64\3\64\3\64\3\64\3\64\3\65\3\65") buf.write(u"\3\65\3\65\3\65\3\66\3\66\3\66\3\66\3\66\3\66\3\66\3") buf.write(u"\66\3\67\3\67\3\67\3\67\3\67\3\67\3\67\3\67\38\38\38") buf.write(u"\38\38\38\38\38\39\39\39\39\39\39\39\39\3:\3:\3:\3:\3") buf.write(u":\3:\3:\3:\3;\3;\3;\3;\3;\3;\3;\3;\3<\3<\3<\3<\3<\3<") buf.write(u"\3=\3=\3=\3=\3=\3=\3>\3>\3>\3>\3>\3>\3?\3?\3?\3?\3?\3") buf.write(u"?\3?\3?\3@\3@\3@\3@\3@\3@\3@\3@\3A\3A\3A\3A\3A\3A\3A") buf.write(u"\3A\3B\3B\3B\3B\3B\3B\3B\3B\3B\3C\3C\3C\3C\3C\3C\3C\3") buf.write(u"C\3C\3D\3D\3D\3D\3D\3D\3D\3D\3D\3E\3E\3E\3E\3E\3E\3E") buf.write(u"\3F\3F\3F\3F\3F\3F\3F\3F\3G\3G\3G\3G\3G\3G\3G\3H\3H\3") buf.write(u"H\3H\3H\3H\3H\3H\3I\3I\3I\3I\3I\3I\3I\3J\3J\3J\3J\3J") buf.write(u"\3J\3J\3J\3K\3K\3K\3K\3L\3L\3L\3L\3M\3M\3M\3M\3M\3M\3") buf.write(u"N\3N\3N\3N\3N\3O\3O\3O\3O\3O\3O\3P\3P\3P\3P\3P\3Q\3Q") buf.write(u"\3Q\3Q\3Q\3R\3R\3R\3R\3R\3R\3R\3S\3S\3S\3S\3S\3S\3T\3") buf.write(u"T\3T\3T\3T\3U\3U\3U\3U\3U\3V\3V\3V\3V\3V\3V\3V\3W\3W") buf.write(u"\3W\3W\3W\3W\3X\3X\3X\3X\3X\3Y\3Y\3Y\3Y\3Y\3Y\3Z\3Z\3") buf.write(u"Z\3Z\3Z\3Z\3Z\3[\3[\3[\3[\3[\3[\3[\3[\3\\\3\\\3\\\3\\") buf.write(u"\3\\\3]\3]\3]\3]\3]\3]\3]\3]\3^\3^\3^\3^\3^\3^\3^\3^") buf.write(u"\3^\3^\3^\3^\3^\3^\3_\3_\3_\3_\3_\3_\3_\3`\3`\3`\3`\3") buf.write(u"`\3`\3`\3`\3a\3a\3a\3a\3a\3a\3a\3a\3b\3b\3b\3b\3b\3b") buf.write(u"\3b\3b\3c\3c\3c\5c\u03b1\nc\3d\3d\3d\3d\3d\3d\3d\3d\3") buf.write(u"d\3d\3d\3e\3e\3e\3e\3e\3e\3e\3e\3e\3f\3f\3f\3f\3f\3f") buf.write(u"\3f\3f\3f\3f\3f\3g\3g\3g\3g\3g\3g\3g\3g\3g\3h\3h\3i\3") buf.write(u"i\3i\3j\3j\3j\3j\3j\3j\3j\3j\3j\3j\3j\3j\3j\3j\3j\3j") buf.write(u"\3j\3j\3j\3j\3j\3j\3j\3j\5j\u03f8\nj\3k\3k\3k\3k\3k\3") buf.write(u"k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k") buf.write(u"\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\3k\5k\u041e\nk\3") buf.write(u"l\3l\3m\3m\3m\3m\3m\3m\3m\3m\3m\3m\3n\3n\3n\3n\3n\3o") buf.write(u"\3o\3p\3p\3q\3q\3r\3r\3s\3s\3t\3t\3u\3u\3v\3v\7v\u0441") buf.write(u"\nv\fv\16v\u0444\13v\3v\3v\3v\6v\u0449\nv\rv\16v\u044a") buf.write(u"\5v\u044d\nv\3w\3w\3w\3w\3w\3w\3w\3w\3w\3w\3w\3w\3w\3") buf.write(u"w\5w\u045d\nw\3x\3x\3y\3y\3z\3z\3{\3{\3|\6|\u0468\n|") buf.write(u"\r|\16|\u0469\3|\3|\3|\3|\3|\7|\u0471\n|\f|\16|\u0474") buf.write(u"\13|\3|\7|\u0477\n|\f|\16|\u047a\13|\3|\3|\3|\3|\3|\7") buf.write(u"|\u0481\n|\f|\16|\u0484\13|\3|\3|\6|\u0488\n|\r|\16|") buf.write(u"\u0489\5|\u048c\n|\3}\3}\3}\3}\5}\u0492\n}\3}\6}\u0495") buf.write(u"\n}\r}\16}\u0496\3~\3~\3\177\3\177\3\177\3\177\3\177") buf.write(u"\3\177\3\177\3\177\5\177\u04a3\n\177\3\u0080\3\u0080") buf.write(u"\3\u0081\3\u0081\3\u0081\3\u0081\3\u0081\3\u0081\3\u0081") buf.write(u"\3\u0081\3\u0081\3\u0081\3\u0081\3\u0081\3\u0081\3\u0081") buf.write(u"\3\u0081\3\u0081\5\u0081\u04b7\n\u0081\3\u0082\3\u0082") buf.write(u"\3\u0083\3\u0083\3\u0083\3\u0083\3\u0083\3\u0083\3\u0083") buf.write(u"\3\u0083\3\u0083\3\u0083\3\u0083\3\u0083\3\u0083\3\u0083") buf.write(u"\3\u0083\3\u0083\5\u0083\u04cb\n\u0083\3\u0084\3\u0084") buf.write(u"\3\u0084\3\u0084\3\u0084\3\u0084\3\u0084\3\u0084\3\u0084") buf.write(u"\3\u0084\3\u0084\3\u0084\3\u0084\3\u0084\3\u0084\3\u0084") buf.write(u"\3\u0084\3\u0084\3\u0084\3\u0084\3\u0084\3\u0084\5\u0084") buf.write(u"\u04e3\n\u0084\3\u0085\3\u0085\3\u0086\3\u0086\3\u0086") buf.write(u"\3\u0087\3\u0087\3\u0087\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088\3\u0088") buf.write(u"\3\u0088\3\u0088\3\u0088\5\u0088\u066e\n\u0088\3\u0089") buf.write(u"\3\u0089\5\u0089\u0672\n\u0089\3\u008a\3\u008a\3\u008a") buf.write(u"\3\u008a\3\u008b\3\u008b\3\u008b\3\u008b\3\u008b\3\u008b") buf.write(u"\3\u008b\3\u008c\3\u008c\3\u008c\3\u008c\3\u008c\3\u008c") buf.write(u"\3\u008c\5\u008c\u0686\n\u008c\3\u008d\3\u008d\3\u008d") buf.write(u"\3\u008d\3\u008d\3\u008d\3\u008d\3\u008d\3\u008d\3\u008d") buf.write(u"\3\u008e\3\u008e\3\u008e\5\u008e\u0695\n\u008e\3\u008f") buf.write(u"\3\u008f\3\u008f\3\u008f\3\u008f\3\u008f\3\u008f\3\u008f") buf.write(u"\3\u008f\3\u008f\3\u0090\3\u0090\3\u0090\6\u0090\u06a4") buf.write(u"\n\u0090\r\u0090\16\u0090\u06a5\3\u0090\3\u0090\3\u0090") buf.write(u"\3\u0090\3\u0090\3\u0090\6\u0090\u06ae\n\u0090\r\u0090") buf.write(u"\16\u0090\u06af\3\u0090\3\u0090\3\u0090\3\u0090\3\u0090") buf.write(u"\5\u0090\u06b7\n\u0090\5\u0090\u06b9\n\u0090\5\u0090") buf.write(u"\u06bb\n\u0090\3\u0091\3\u0091\3\u0091\3\u0091\3\u0091") buf.write(u"\5\u0091\u06c2\n\u0091\3\u0442\2\u0092\3\3\5\4\7\5\t") buf.write(u"\6\13\7\r\b\17\t\21\n\23\13\25\f\27\r\31\16\33\17\35") buf.write(u"\20\37\21!\22#\23%\24\'\25)\26+\27-\30/\31\61\32\63\33") buf.write(u"\65\34\67\359\36;\37= ?!A\"C#E$G%I&K\'M(O)Q*S+U,W-Y.") buf.write(u"[/]\60_\61a\62c\63e\64g\65i\66k\67m8o9q:s;u<w=y>{?}@") buf.write(u"\177A\u0081B\u0083C\u0085D\u0087E\u0089F\u008bG\u008d") buf.write(u"H\u008fI\u0091J\u0093K\u0095L\u0097M\u0099N\u009bO\u009d") buf.write(u"P\u009fQ\u00a1R\u00a3S\u00a5T\u00a7U\u00a9V\u00abW\u00ad") buf.write(u"X\u00afY\u00b1Z\u00b3[\u00b5\\\u00b7]\u00b9^\u00bb_\u00bd") buf.write(u"`\u00bfa\u00c1b\u00c3c\u00c5d\u00c7e\u00c9f\u00cbg\u00cd") buf.write(u"h\u00cfi\u00d1j\u00d3k\u00d5l\u00d7m\u00d9n\u00dbo\u00dd") buf.write(u"p\u00dfq\u00e1r\u00e3s\u00e5t\u00e7u\u00e9\2\u00ebv\u00ed") buf.write(u"w\u00efx\u00f1y\u00f3\2\u00f5\2\u00f7z\u00f9{\u00fb|") buf.write(u"\u00fd}\u00ff~\u0101\177\u0103\u0080\u0105\u0081\u0107") buf.write(u"\u0082\u0109\u0083\u010b\2\u010d\u0084\u010f\2\u0111") buf.write(u"\u0085\u0113\2\u0115\2\u0117\2\u0119\2\u011b\u0086\u011d") buf.write(u"\2\u011f\2\u0121\u0087\3\2\b\5\2\13\f\17\17\"\"\4\2e") buf.write(u"ett\4\2C\\c|\6\2CFH\\cfh|\3\2\62;\3\2\"\"\2\u071d\2\3") buf.write(u"\3\2\2\2\2\5\3\2\2\2\2\7\3\2\2\2\2\t\3\2\2\2\2\13\3\2") buf.write(u"\2\2\2\r\3\2\2\2\2\17\3\2\2\2\2\21\3\2\2\2\2\23\3\2\2") buf.write(u"\2\2\25\3\2\2\2\2\27\3\2\2\2\2\31\3\2\2\2\2\33\3\2\2") buf.write(u"\2\2\35\3\2\2\2\2\37\3\2\2\2\2!\3\2\2\2\2#\3\2\2\2\2") buf.write(u"%\3\2\2\2\2\'\3\2\2\2\2)\3\2\2\2\2+\3\2\2\2\2-\3\2\2") buf.write(u"\2\2/\3\2\2\2\2\61\3\2\2\2\2\63\3\2\2\2\2\65\3\2\2\2") buf.write(u"\2\67\3\2\2\2\29\3\2\2\2\2;\3\2\2\2\2=\3\2\2\2\2?\3\2") buf.write(u"\2\2\2A\3\2\2\2\2C\3\2\2\2\2E\3\2\2\2\2G\3\2\2\2\2I\3") buf.write(u"\2\2\2\2K\3\2\2\2\2M\3\2\2\2\2O\3\2\2\2\2Q\3\2\2\2\2") buf.write(u"S\3\2\2\2\2U\3\2\2\2\2W\3\2\2\2\2Y\3\2\2\2\2[\3\2\2\2") buf.write(u"\2]\3\2\2\2\2_\3\2\2\2\2a\3\2\2\2\2c\3\2\2\2\2e\3\2\2") buf.write(u"\2\2g\3\2\2\2\2i\3\2\2\2\2k\3\2\2\2\2m\3\2\2\2\2o\3\2") buf.write(u"\2\2\2q\3\2\2\2\2s\3\2\2\2\2u\3\2\2\2\2w\3\2\2\2\2y\3") buf.write(u"\2\2\2\2{\3\2\2\2\2}\3\2\2\2\2\177\3\2\2\2\2\u0081\3") buf.write(u"\2\2\2\2\u0083\3\2\2\2\2\u0085\3\2\2\2\2\u0087\3\2\2") buf.write(u"\2\2\u0089\3\2\2\2\2\u008b\3\2\2\2\2\u008d\3\2\2\2\2") buf.write(u"\u008f\3\2\2\2\2\u0091\3\2\2\2\2\u0093\3\2\2\2\2\u0095") buf.write(u"\3\2\2\2\2\u0097\3\2\2\2\2\u0099\3\2\2\2\2\u009b\3\2") buf.write(u"\2\2\2\u009d\3\2\2\2\2\u009f\3\2\2\2\2\u00a1\3\2\2\2") buf.write(u"\2\u00a3\3\2\2\2\2\u00a5\3\2\2\2\2\u00a7\3\2\2\2\2\u00a9") buf.write(u"\3\2\2\2\2\u00ab\3\2\2\2\2\u00ad\3\2\2\2\2\u00af\3\2") buf.write(u"\2\2\2\u00b1\3\2\2\2\2\u00b3\3\2\2\2\2\u00b5\3\2\2\2") buf.write(u"\2\u00b7\3\2\2\2\2\u00b9\3\2\2\2\2\u00bb\3\2\2\2\2\u00bd") buf.write(u"\3\2\2\2\2\u00bf\3\2\2\2\2\u00c1\3\2\2\2\2\u00c3\3\2") buf.write(u"\2\2\2\u00c5\3\2\2\2\2\u00c7\3\2\2\2\2\u00c9\3\2\2\2") buf.write(u"\2\u00cb\3\2\2\2\2\u00cd\3\2\2\2\2\u00cf\3\2\2\2\2\u00d1") buf.write(u"\3\2\2\2\2\u00d3\3\2\2\2\2\u00d5\3\2\2\2\2\u00d7\3\2") buf.write(u"\2\2\2\u00d9\3\2\2\2\2\u00db\3\2\2\2\2\u00dd\3\2\2\2") buf.write(u"\2\u00df\3\2\2\2\2\u00e1\3\2\2\2\2\u00e3\3\2\2\2\2\u00e5") buf.write(u"\3\2\2\2\2\u00e7\3\2\2\2\2\u00eb\3\2\2\2\2\u00ed\3\2") buf.write(u"\2\2\2\u00ef\3\2\2\2\2\u00f1\3\2\2\2\2\u00f7\3\2\2\2") buf.write(u"\2\u00f9\3\2\2\2\2\u00fb\3\2\2\2\2\u00fd\3\2\2\2\2\u00ff") buf.write(u"\3\2\2\2\2\u0101\3\2\2\2\2\u0103\3\2\2\2\2\u0105\3\2") buf.write(u"\2\2\2\u0107\3\2\2\2\2\u0109\3\2\2\2\2\u010d\3\2\2\2") buf.write(u"\2\u0111\3\2\2\2\2\u011b\3\2\2\2\2\u0121\3\2\2\2\3\u0123") buf.write(u"\3\2\2\2\5\u0126\3\2\2\2\7\u0129\3\2\2\2\t\u012f\3\2") buf.write(u"\2\2\13\u0134\3\2\2\2\r\u0136\3\2\2\2\17\u0138\3\2\2") buf.write(u"\2\21\u013a\3\2\2\2\23\u013c\3\2\2\2\25\u013e\3\2\2\2") buf.write(u"\27\u0140\3\2\2\2\31\u0148\3\2\2\2\33\u0150\3\2\2\2\35") buf.write(u"\u0152\3\2\2\2\37\u0154\3\2\2\2!\u0157\3\2\2\2#\u015a") buf.write(u"\3\2\2\2%\u0162\3\2\2\2\'\u016a\3\2\2\2)\u016c\3\2\2") buf.write(u"\2+\u016e\3\2\2\2-\u0176\3\2\2\2/\u017e\3\2\2\2\61\u0180") buf.write(u"\3\2\2\2\63\u0187\3\2\2\2\65\u018e\3\2\2\2\67\u0194\3") buf.write(u"\2\2\29\u019c\3\2\2\2;\u01a4\3\2\2\2=\u01ae\3\2\2\2?") buf.write(u"\u01b8\3\2\2\2A\u01bf\3\2\2\2C\u01c6\3\2\2\2E\u01d0\3") buf.write(u"\2\2\2G\u01da\3\2\2\2I\u01e0\3\2\2\2K\u01e7\3\2\2\2M") buf.write(u"\u01ee\3\2\2\2O\u01f6\3\2\2\2Q\u0232\3\2\2\2S\u0234\3") buf.write(u"\2\2\2U\u0239\3\2\2\2W\u023e\3\2\2\2Y\u0244\3\2\2\2[") buf.write(u"\u0249\3\2\2\2]\u024d\3\2\2\2_\u0252\3\2\2\2a\u0257\3") buf.write(u"\2\2\2c\u025c\3\2\2\2e\u0261\3\2\2\2g\u0266\3\2\2\2i") buf.write(u"\u026b\3\2\2\2k\u0270\3\2\2\2m\u0278\3\2\2\2o\u0280\3") buf.write(u"\2\2\2q\u0288\3\2\2\2s\u0290\3\2\2\2u\u0298\3\2\2\2w") buf.write(u"\u02a0\3\2\2\2y\u02a6\3\2\2\2{\u02ac\3\2\2\2}\u02b2\3") buf.write(u"\2\2\2\177\u02ba\3\2\2\2\u0081\u02c2\3\2\2\2\u0083\u02ca") buf.write(u"\3\2\2\2\u0085\u02d3\3\2\2\2\u0087\u02dc\3\2\2\2\u0089") buf.write(u"\u02e5\3\2\2\2\u008b\u02ec\3\2\2\2\u008d\u02f4\3\2\2") buf.write(u"\2\u008f\u02fb\3\2\2\2\u0091\u0303\3\2\2\2\u0093\u030a") buf.write(u"\3\2\2\2\u0095\u0312\3\2\2\2\u0097\u0316\3\2\2\2\u0099") buf.write(u"\u031a\3\2\2\2\u009b\u0320\3\2\2\2\u009d\u0325\3\2\2") buf.write(u"\2\u009f\u032b\3\2\2\2\u00a1\u0330\3\2\2\2\u00a3\u0335") buf.write(u"\3\2\2\2\u00a5\u033c\3\2\2\2\u00a7\u0342\3\2\2\2\u00a9") buf.write(u"\u0347\3\2\2\2\u00ab\u034c\3\2\2\2\u00ad\u0353\3\2\2") buf.write(u"\2\u00af\u0359\3\2\2\2\u00b1\u035e\3\2\2\2\u00b3\u0364") buf.write(u"\3\2\2\2\u00b5\u036b\3\2\2\2\u00b7\u0373\3\2\2\2\u00b9") buf.write(u"\u0378\3\2\2\2\u00bb\u0380\3\2\2\2\u00bd\u038e\3\2\2") buf.write(u"\2\u00bf\u0395\3\2\2\2\u00c1\u039d\3\2\2\2\u00c3\u03a5") buf.write(u"\3\2\2\2\u00c5\u03b0\3\2\2\2\u00c7\u03b2\3\2\2\2\u00c9") buf.write(u"\u03bd\3\2\2\2\u00cb\u03c6\3\2\2\2\u00cd\u03d1\3\2\2") buf.write(u"\2\u00cf\u03da\3\2\2\2\u00d1\u03dc\3\2\2\2\u00d3\u03f7") buf.write(u"\3\2\2\2\u00d5\u041d\3\2\2\2\u00d7\u041f\3\2\2\2\u00d9") buf.write(u"\u0421\3\2\2\2\u00db\u042b\3\2\2\2\u00dd\u0430\3\2\2") buf.write(u"\2\u00df\u0432\3\2\2\2\u00e1\u0434\3\2\2\2\u00e3\u0436") buf.write(u"\3\2\2\2\u00e5\u0438\3\2\2\2\u00e7\u043a\3\2\2\2\u00e9") buf.write(u"\u043c\3\2\2\2\u00eb\u043e\3\2\2\2\u00ed\u045c\3\2\2") buf.write(u"\2\u00ef\u045e\3\2\2\2\u00f1\u0460\3\2\2\2\u00f3\u0462") buf.write(u"\3\2\2\2\u00f5\u0464\3\2\2\2\u00f7\u048b\3\2\2\2\u00f9") buf.write(u"\u048d\3\2\2\2\u00fb\u0498\3\2\2\2\u00fd\u04a2\3\2\2") buf.write(u"\2\u00ff\u04a4\3\2\2\2\u0101\u04b6\3\2\2\2\u0103\u04b8") buf.write(u"\3\2\2\2\u0105\u04ca\3\2\2\2\u0107\u04e2\3\2\2\2\u0109") buf.write(u"\u04e4\3\2\2\2\u010b\u04e6\3\2\2\2\u010d\u04e9\3\2\2") buf.write(u"\2\u010f\u066d\3\2\2\2\u0111\u066f\3\2\2\2\u0113\u0673") buf.write(u"\3\2\2\2\u0115\u0677\3\2\2\2\u0117\u0685\3\2\2\2\u0119") buf.write(u"\u0687\3\2\2\2\u011b\u0694\3\2\2\2\u011d\u0696\3\2\2") buf.write(u"\2\u011f\u06a3\3\2\2\2\u0121\u06bc\3\2\2\2\u0123\u0124") buf.write(u"\7`\2\2\u0124\u0125\7V\2\2\u0125\4\3\2\2\2\u0126\u0127") buf.write(u"\7)\2\2\u0127\6\3\2\2\2\u0128\u012a\t\2\2\2\u0129\u0128") buf.write(u"\3\2\2\2\u012a\u012b\3\2\2\2\u012b\u0129\3\2\2\2\u012b") buf.write(u"\u012c\3\2\2\2\u012c\u012d\3\2\2\2\u012d\u012e\b\4\2") buf.write(u"\2\u012e\b\3\2\2\2\u012f\u0130\7^\2\2\u0130\u0131\7&") buf.write(u"\2\2\u0131\u0132\3\2\2\2\u0132\u0133\b\5\2\2\u0133\n") buf.write(u"\3\2\2\2\u0134\u0135\7-\2\2\u0135\f\3\2\2\2\u0136\u0137") buf.write(u"\7/\2\2\u0137\16\3\2\2\2\u0138\u0139\7,\2\2\u0139\20") buf.write(u"\3\2\2\2\u013a\u013b\7\61\2\2\u013b\22\3\2\2\2\u013c") buf.write(u"\u013d\7*\2\2\u013d\24\3\2\2\2\u013e\u013f\7+\2\2\u013f") buf.write(u"\26\3\2\2\2\u0140\u0141\7^\2\2\u0141\u0142\7n\2\2\u0142") buf.write(u"\u0143\7i\2\2\u0143\u0144\7t\2\2\u0144\u0145\7q\2\2\u0145") buf.write(u"\u0146\7w\2\2\u0146\u0147\7r\2\2\u0147\30\3\2\2\2\u0148") buf.write(u"\u0149\7^\2\2\u0149\u014a\7t\2\2\u014a\u014b\7i\2\2\u014b") buf.write(u"\u014c\7t\2\2\u014c\u014d\7q\2\2\u014d\u014e\7w\2\2\u014e") buf.write(u"\u014f\7r\2\2\u014f\32\3\2\2\2\u0150\u0151\7}\2\2\u0151") buf.write(u"\34\3\2\2\2\u0152\u0153\7\177\2\2\u0153\36\3\2\2\2\u0154") buf.write(u"\u0155\7^\2\2\u0155\u0156\7}\2\2\u0156 \3\2\2\2\u0157") buf.write(u"\u0158\7^\2\2\u0158\u0159\7\177\2\2\u0159\"\3\2\2\2\u015a") buf.write(u"\u015b\7^\2\2\u015b\u015c\7n\2\2\u015c\u015d\7d\2\2\u015d") buf.write(u"\u015e\7t\2\2\u015e\u015f\7c\2\2\u015f\u0160\7e\2\2\u0160") buf.write(u"\u0161\7g\2\2\u0161$\3\2\2\2\u0162\u0163\7^\2\2\u0163") buf.write(u"\u0164\7t\2\2\u0164\u0165\7d\2\2\u0165\u0166\7t\2\2\u0166") buf.write(u"\u0167\7c\2\2\u0167\u0168\7e\2\2\u0168\u0169\7g\2\2\u0169") buf.write(u"&\3\2\2\2\u016a\u016b\7]\2\2\u016b(\3\2\2\2\u016c\u016d") buf.write(u"\7_\2\2\u016d*\3\2\2\2\u016e\u016f\7^\2\2\u016f\u0170") buf.write(u"\7n\2\2\u0170\u0171\7d\2\2\u0171\u0172\7t\2\2\u0172\u0173") buf.write(u"\7c\2\2\u0173\u0174\7e\2\2\u0174\u0175\7m\2\2\u0175,") buf.write(u"\3\2\2\2\u0176\u0177\7^\2\2\u0177\u0178\7t\2\2\u0178") buf.write(u"\u0179\7d\2\2\u0179\u017a\7t\2\2\u017a\u017b\7c\2\2\u017b") buf.write(u"\u017c\7e\2\2\u017c\u017d\7m\2\2\u017d.\3\2\2\2\u017e") buf.write(u"\u017f\7~\2\2\u017f\60\3\2\2\2\u0180\u0181\7^\2\2\u0181") buf.write(u"\u0182\7n\2\2\u0182\u0183\7x\2\2\u0183\u0184\7g\2\2\u0184") buf.write(u"\u0185\7t\2\2\u0185\u0186\7v\2\2\u0186\62\3\2\2\2\u0187") buf.write(u"\u0188\7^\2\2\u0188\u0189\7t\2\2\u0189\u018a\7x\2\2\u018a") buf.write(u"\u018b\7g\2\2\u018b\u018c\7t\2\2\u018c\u018d\7v\2\2\u018d") buf.write(u"\64\3\2\2\2\u018e\u018f\7^\2\2\u018f\u0190\7x\2\2\u0190") buf.write(u"\u0191\7g\2\2\u0191\u0192\7t\2\2\u0192\u0193\7v\2\2\u0193") buf.write(u"\66\3\2\2\2\u0194\u0195\7^\2\2\u0195\u0196\7n\2\2\u0196") buf.write(u"\u0197\7h\2\2\u0197\u0198\7n\2\2\u0198\u0199\7q\2\2\u0199") buf.write(u"\u019a\7q\2\2\u019a\u019b\7t\2\2\u019b8\3\2\2\2\u019c") buf.write(u"\u019d\7^\2\2\u019d\u019e\7t\2\2\u019e\u019f\7h\2\2\u019f") buf.write(u"\u01a0\7n\2\2\u01a0\u01a1\7q\2\2\u01a1\u01a2\7q\2\2\u01a2") buf.write(u"\u01a3\7t\2\2\u01a3:\3\2\2\2\u01a4\u01a5\7^\2\2\u01a5") buf.write(u"\u01a6\7n\2\2\u01a6\u01a7\7n\2\2\u01a7\u01a8\7e\2\2\u01a8") buf.write(u"\u01a9\7q\2\2\u01a9\u01aa\7t\2\2\u01aa\u01ab\7p\2\2\u01ab") buf.write(u"\u01ac\7g\2\2\u01ac\u01ad\7t\2\2\u01ad<\3\2\2\2\u01ae") buf.write(u"\u01af\7^\2\2\u01af\u01b0\7n\2\2\u01b0\u01b1\7t\2\2\u01b1") buf.write(u"\u01b2\7e\2\2\u01b2\u01b3\7q\2\2\u01b3\u01b4\7t\2\2\u01b4") buf.write(u"\u01b5\7p\2\2\u01b5\u01b6\7g\2\2\u01b6\u01b7\7t\2\2\u01b7") buf.write(u">\3\2\2\2\u01b8\u01b9\7^\2\2\u01b9\u01ba\7n\2\2\u01ba") buf.write(u"\u01bb\7e\2\2\u01bb\u01bc\7g\2\2\u01bc\u01bd\7k\2\2\u01bd") buf.write(u"\u01be\7n\2\2\u01be@\3\2\2\2\u01bf\u01c0\7^\2\2\u01c0") buf.write(u"\u01c1\7t\2\2\u01c1\u01c2\7e\2\2\u01c2\u01c3\7g\2\2\u01c3") buf.write(u"\u01c4\7k\2\2\u01c4\u01c5\7n\2\2\u01c5B\3\2\2\2\u01c6") buf.write(u"\u01c7\7^\2\2\u01c7\u01c8\7w\2\2\u01c8\u01c9\7n\2\2\u01c9") buf.write(u"\u01ca\7e\2\2\u01ca\u01cb\7q\2\2\u01cb\u01cc\7t\2\2\u01cc") buf.write(u"\u01cd\7p\2\2\u01cd\u01ce\7g\2\2\u01ce\u01cf\7t\2\2\u01cf") buf.write(u"D\3\2\2\2\u01d0\u01d1\7^\2\2\u01d1\u01d2\7w\2\2\u01d2") buf.write(u"\u01d3\7t\2\2\u01d3\u01d4\7e\2\2\u01d4\u01d5\7q\2\2\u01d5") buf.write(u"\u01d6\7t\2\2\u01d6\u01d7\7p\2\2\u01d7\u01d8\7g\2\2\u01d8") buf.write(u"\u01d9\7t\2\2\u01d9F\3\2\2\2\u01da\u01db\7^\2\2\u01db") buf.write(u"\u01dc\7n\2\2\u01dc\u01dd\7g\2\2\u01dd\u01de\7h\2\2\u01de") buf.write(u"\u01df\7v\2\2\u01dfH\3\2\2\2\u01e0\u01e1\7^\2\2\u01e1") buf.write(u"\u01e2\7t\2\2\u01e2\u01e3\7k\2\2\u01e3\u01e4\7i\2\2\u01e4") buf.write(u"\u01e5\7j\2\2\u01e5\u01e6\7v\2\2\u01e6J\3\2\2\2\u01e7") buf.write(u"\u01e8\7^\2\2\u01e8\u01e9\7o\2\2\u01e9\u01ea\7n\2\2\u01ea") buf.write(u"\u01eb\7g\2\2\u01eb\u01ec\7h\2\2\u01ec\u01ed\7v\2\2\u01ed") buf.write(u"L\3\2\2\2\u01ee\u01ef\7^\2\2\u01ef\u01f0\7o\2\2\u01f0") buf.write(u"\u01f1\7t\2\2\u01f1\u01f2\7k\2\2\u01f2\u01f3\7i\2\2\u01f3") buf.write(u"\u01f4\7j\2\2\u01f4\u01f5\7v\2\2\u01f5N\3\2\2\2\u01f6") buf.write(u"\u01f7\7^\2\2\u01f7\u01f8\7n\2\2\u01f8\u01f9\7k\2\2\u01f9") buf.write(u"\u01fa\7o\2\2\u01faP\3\2\2\2\u01fb\u01fc\7^\2\2\u01fc") buf.write(u"\u01fd\7v\2\2\u01fd\u0233\7q\2\2\u01fe\u01ff\7^\2\2\u01ff") buf.write(u"\u0200\7t\2\2\u0200\u0201\7k\2\2\u0201\u0202\7i\2\2\u0202") buf.write(u"\u0203\7j\2\2\u0203\u0204\7v\2\2\u0204\u0205\7c\2\2\u0205") buf.write(u"\u0206\7t\2\2\u0206\u0207\7t\2\2\u0207\u0208\7q\2\2\u0208") buf.write(u"\u0233\7y\2\2\u0209\u020a\7^\2\2\u020a\u020b\7T\2\2\u020b") buf.write(u"\u020c\7k\2\2\u020c\u020d\7i\2\2\u020d\u020e\7j\2\2\u020e") buf.write(u"\u020f\7v\2\2\u020f\u0210\7c\2\2\u0210\u0211\7t\2\2\u0211") buf.write(u"\u0212\7t\2\2\u0212\u0213\7q\2\2\u0213\u0233\7y\2\2\u0214") buf.write(u"\u0215\7^\2\2\u0215\u0216\7n\2\2\u0216\u0217\7q\2\2\u0217") buf.write(u"\u0218\7p\2\2\u0218\u0219\7i\2\2\u0219\u021a\7t\2\2\u021a") buf.write(u"\u021b\7k\2\2\u021b\u021c\7i\2\2\u021c\u021d\7j\2\2\u021d") buf.write(u"\u021e\7v\2\2\u021e\u021f\7c\2\2\u021f\u0220\7t\2\2\u0220") buf.write(u"\u0221\7t\2\2\u0221\u0222\7q\2\2\u0222\u0233\7y\2\2\u0223") buf.write(u"\u0224\7^\2\2\u0224\u0225\7N\2\2\u0225\u0226\7q\2\2\u0226") buf.write(u"\u0227\7p\2\2\u0227\u0228\7i\2\2\u0228\u0229\7t\2\2\u0229") buf.write(u"\u022a\7k\2\2\u022a\u022b\7i\2\2\u022b\u022c\7j\2\2\u022c") buf.write(u"\u022d\7v\2\2\u022d\u022e\7c\2\2\u022e\u022f\7t\2\2\u022f") buf.write(u"\u0230\7t\2\2\u0230\u0231\7q\2\2\u0231\u0233\7y\2\2\u0232") buf.write(u"\u01fb\3\2\2\2\u0232\u01fe\3\2\2\2\u0232\u0209\3\2\2") buf.write(u"\2\u0232\u0214\3\2\2\2\u0232\u0223\3\2\2\2\u0233R\3\2") buf.write(u"\2\2\u0234\u0235\7^\2\2\u0235\u0236\7k\2\2\u0236\u0237") buf.write(u"\7p\2\2\u0237\u0238\7v\2\2\u0238T\3\2\2\2\u0239\u023a") buf.write(u"\7^\2\2\u023a\u023b\7u\2\2\u023b\u023c\7w\2\2\u023c\u023d") buf.write(u"\7o\2\2\u023dV\3\2\2\2\u023e\u023f\7^\2\2\u023f\u0240") buf.write(u"\7r\2\2\u0240\u0241\7t\2\2\u0241\u0242\7q\2\2\u0242\u0243") buf.write(u"\7f\2\2\u0243X\3\2\2\2\u0244\u0245\7^\2\2\u0245\u0246") buf.write(u"\7n\2\2\u0246\u0247\7q\2\2\u0247\u0248\7i\2\2\u0248Z") buf.write(u"\3\2\2\2\u0249\u024a\7^\2\2\u024a\u024b\7n\2\2\u024b") buf.write(u"\u024c\7p\2\2\u024c\\\3\2\2\2\u024d\u024e\7^\2\2\u024e") buf.write(u"\u024f\7g\2\2\u024f\u0250\7z\2\2\u0250\u0251\7r\2\2\u0251") buf.write(u"^\3\2\2\2\u0252\u0253\7^\2\2\u0253\u0254\7u\2\2\u0254") buf.write(u"\u0255\7k\2\2\u0255\u0256\7p\2\2\u0256`\3\2\2\2\u0257") buf.write(u"\u0258\7^\2\2\u0258\u0259\7e\2\2\u0259\u025a\7q\2\2\u025a") buf.write(u"\u025b\7u\2\2\u025bb\3\2\2\2\u025c\u025d\7^\2\2\u025d") buf.write(u"\u025e\7v\2\2\u025e\u025f\7c\2\2\u025f\u0260\7p\2\2\u0260") buf.write(u"d\3\2\2\2\u0261\u0262\7^\2\2\u0262\u0263\7e\2\2\u0263") buf.write(u"\u0264\7u\2\2\u0264\u0265\7e\2\2\u0265f\3\2\2\2\u0266") buf.write(u"\u0267\7^\2\2\u0267\u0268\7u\2\2\u0268\u0269\7g\2\2\u0269") buf.write(u"\u026a\7e\2\2\u026ah\3\2\2\2\u026b\u026c\7^\2\2\u026c") buf.write(u"\u026d\7e\2\2\u026d\u026e\7q\2\2\u026e\u026f\7v\2\2\u026f") buf.write(u"j\3\2\2\2\u0270\u0271\7^\2\2\u0271\u0272\7c\2\2\u0272") buf.write(u"\u0273\7t\2\2\u0273\u0274\7e\2\2\u0274\u0275\7u\2\2\u0275") buf.write(u"\u0276\7k\2\2\u0276\u0277\7p\2\2\u0277l\3\2\2\2\u0278") buf.write(u"\u0279\7^\2\2\u0279\u027a\7c\2\2\u027a\u027b\7t\2\2\u027b") buf.write(u"\u027c\7e\2\2\u027c\u027d\7e\2\2\u027d\u027e\7q\2\2\u027e") buf.write(u"\u027f\7u\2\2\u027fn\3\2\2\2\u0280\u0281\7^\2\2\u0281") buf.write(u"\u0282\7c\2\2\u0282\u0283\7t\2\2\u0283\u0284\7e\2\2\u0284") buf.write(u"\u0285\7v\2\2\u0285\u0286\7c\2\2\u0286\u0287\7p\2\2\u0287") buf.write(u"p\3\2\2\2\u0288\u0289\7^\2\2\u0289\u028a\7c\2\2\u028a") buf.write(u"\u028b\7t\2\2\u028b\u028c\7e\2\2\u028c\u028d\7e\2\2\u028d") buf.write(u"\u028e\7u\2\2\u028e\u028f\7e\2\2\u028fr\3\2\2\2\u0290") buf.write(u"\u0291\7^\2\2\u0291\u0292\7c\2\2\u0292\u0293\7t\2\2\u0293") buf.write(u"\u0294\7e\2\2\u0294\u0295\7u\2\2\u0295\u0296\7g\2\2\u0296") buf.write(u"\u0297\7e\2\2\u0297t\3\2\2\2\u0298\u0299\7^\2\2\u0299") buf.write(u"\u029a\7c\2\2\u029a\u029b\7t\2\2\u029b\u029c\7e\2\2\u029c") buf.write(u"\u029d\7e\2\2\u029d\u029e\7q\2\2\u029e\u029f\7v\2\2\u029f") buf.write(u"v\3\2\2\2\u02a0\u02a1\7^\2\2\u02a1\u02a2\7u\2\2\u02a2") buf.write(u"\u02a3\7k\2\2\u02a3\u02a4\7p\2\2\u02a4\u02a5\7j\2\2\u02a5") buf.write(u"x\3\2\2\2\u02a6\u02a7\7^\2\2\u02a7\u02a8\7e\2\2\u02a8") buf.write(u"\u02a9\7q\2\2\u02a9\u02aa\7u\2\2\u02aa\u02ab\7j\2\2\u02ab") buf.write(u"z\3\2\2\2\u02ac\u02ad\7^\2\2\u02ad\u02ae\7v\2\2\u02ae") buf.write(u"\u02af\7c\2\2\u02af\u02b0\7p\2\2\u02b0\u02b1\7j\2\2\u02b1") buf.write(u"|\3\2\2\2\u02b2\u02b3\7^\2\2\u02b3\u02b4\7c\2\2\u02b4") buf.write(u"\u02b5\7t\2\2\u02b5\u02b6\7u\2\2\u02b6\u02b7\7k\2\2\u02b7") buf.write(u"\u02b8\7p\2\2\u02b8\u02b9\7j\2\2\u02b9~\3\2\2\2\u02ba") buf.write(u"\u02bb\7^\2\2\u02bb\u02bc\7c\2\2\u02bc\u02bd\7t\2\2\u02bd") buf.write(u"\u02be\7e\2\2\u02be\u02bf\7q\2\2\u02bf\u02c0\7u\2\2\u02c0") buf.write(u"\u02c1\7j\2\2\u02c1\u0080\3\2\2\2\u02c2\u02c3\7^\2\2") buf.write(u"\u02c3\u02c4\7c\2\2\u02c4\u02c5\7t\2\2\u02c5\u02c6\7") buf.write(u"v\2\2\u02c6\u02c7\7c\2\2\u02c7\u02c8\7p\2\2\u02c8\u02c9") buf.write(u"\7j\2\2\u02c9\u0082\3\2\2\2\u02ca\u02cb\7^\2\2\u02cb") buf.write(u"\u02cc\7c\2\2\u02cc\u02cd\7t\2\2\u02cd\u02ce\7e\2\2\u02ce") buf.write(u"\u02cf\7u\2\2\u02cf\u02d0\7k\2\2\u02d0\u02d1\7p\2\2\u02d1") buf.write(u"\u02d2\7j\2\2\u02d2\u0084\3\2\2\2\u02d3\u02d4\7^\2\2") buf.write(u"\u02d4\u02d5\7c\2\2\u02d5\u02d6\7t\2\2\u02d6\u02d7\7") buf.write(u"e\2\2\u02d7\u02d8\7e\2\2\u02d8\u02d9\7q\2\2\u02d9\u02da") buf.write(u"\7u\2\2\u02da\u02db\7j\2\2\u02db\u0086\3\2\2\2\u02dc") buf.write(u"\u02dd\7^\2\2\u02dd\u02de\7c\2\2\u02de\u02df\7t\2\2\u02df") buf.write(u"\u02e0\7e\2\2\u02e0\u02e1\7v\2\2\u02e1\u02e2\7c\2\2\u02e2") buf.write(u"\u02e3\7p\2\2\u02e3\u02e4\7j\2\2\u02e4\u0088\3\2\2\2") buf.write(u"\u02e5\u02e6\7c\2\2\u02e6\u02e7\7t\2\2\u02e7\u02e8\7") buf.write(u"u\2\2\u02e8\u02e9\7k\2\2\u02e9\u02ea\7p\2\2\u02ea\u02eb") buf.write(u"\7j\2\2\u02eb\u008a\3\2\2\2\u02ec\u02ed\7c\2\2\u02ed") buf.write(u"\u02ee\7t\2\2\u02ee\u02ef\7e\2\2\u02ef\u02f0\7u\2\2\u02f0") buf.write(u"\u02f1\7k\2\2\u02f1\u02f2\7p\2\2\u02f2\u02f3\7j\2\2\u02f3") buf.write(u"\u008c\3\2\2\2\u02f4\u02f5\7c\2\2\u02f5\u02f6\7t\2\2") buf.write(u"\u02f6\u02f7\7e\2\2\u02f7\u02f8\7q\2\2\u02f8\u02f9\7") buf.write(u"u\2\2\u02f9\u02fa\7j\2\2\u02fa\u008e\3\2\2\2\u02fb\u02fc") buf.write(u"\7c\2\2\u02fc\u02fd\7t\2\2\u02fd\u02fe\7e\2\2\u02fe\u02ff") buf.write(u"\7e\2\2\u02ff\u0300\7q\2\2\u0300\u0301\7u\2\2\u0301\u0302") buf.write(u"\7j\2\2\u0302\u0090\3\2\2\2\u0303\u0304\7c\2\2\u0304") buf.write(u"\u0305\7t\2\2\u0305\u0306\7v\2\2\u0306\u0307\7c\2\2\u0307") buf.write(u"\u0308\7p\2\2\u0308\u0309\7j\2\2\u0309\u0092\3\2\2\2") buf.write(u"\u030a\u030b\7c\2\2\u030b\u030c\7t\2\2\u030c\u030d\7") buf.write(u"e\2\2\u030d\u030e\7v\2\2\u030e\u030f\7c\2\2\u030f\u0310") buf.write(u"\7p\2\2\u0310\u0311\7j\2\2\u0311\u0094\3\2\2\2\u0312") buf.write(u"\u0313\7i\2\2\u0313\u0314\7e\2\2\u0314\u0315\7f\2\2\u0315") buf.write(u"\u0096\3\2\2\2\u0316\u0317\7n\2\2\u0317\u0318\7e\2\2") buf.write(u"\u0318\u0319\7o\2\2\u0319\u0098\3\2\2\2\u031a\u031b\7") buf.write(u"h\2\2\u031b\u031c\7n\2\2\u031c\u031d\7q\2\2\u031d\u031e") buf.write(u"\7q\2\2\u031e\u031f\7t\2\2\u031f\u009a\3\2\2\2\u0320") buf.write(u"\u0321\7e\2\2\u0321\u0322\7g\2\2\u0322\u0323\7k\2\2\u0323") buf.write(u"\u0324\7n\2\2\u0324\u009c\3\2\2\2\u0325\u0326\7^\2\2") buf.write(u"\u0326\u0327\7u\2\2\u0327\u0328\7s\2\2\u0328\u0329\7") buf.write(u"t\2\2\u0329\u032a\7v\2\2\u032a\u009e\3\2\2\2\u032b\u032c") buf.write(u"\7^\2\2\u032c\u032d\7i\2\2\u032d\u032e\7e\2\2\u032e\u032f") buf.write(u"\7f\2\2\u032f\u00a0\3\2\2\2\u0330\u0331\7^\2\2\u0331") buf.write(u"\u0332\7n\2\2\u0332\u0333\7e\2\2\u0333\u0334\7o\2\2\u0334") buf.write(u"\u00a2\3\2\2\2\u0335\u0336\7^\2\2\u0336\u0337\7h\2\2") buf.write(u"\u0337\u0338\7n\2\2\u0338\u0339\7q\2\2\u0339\u033a\7") buf.write(u"q\2\2\u033a\u033b\7t\2\2\u033b\u00a4\3\2\2\2\u033c\u033d") buf.write(u"\7^\2\2\u033d\u033e\7e\2\2\u033e\u033f\7g\2\2\u033f\u0340") buf.write(u"\7k\2\2\u0340\u0341\7n\2\2\u0341\u00a6\3\2\2\2\u0342") buf.write(u"\u0343\7^\2\2\u0343\u0344\7o\2\2\u0344\u0345\7c\2\2\u0345") buf.write(u"\u0346\7z\2\2\u0346\u00a8\3\2\2\2\u0347\u0348\7^\2\2") buf.write(u"\u0348\u0349\7o\2\2\u0349\u034a\7k\2\2\u034a\u034b\7") buf.write(u"p\2\2\u034b\u00aa\3\2\2\2\u034c\u034d\7^\2\2\u034d\u034e") buf.write(u"\7v\2\2\u034e\u034f\7k\2\2\u034f\u0350\7o\2\2\u0350\u0351") buf.write(u"\7g\2\2\u0351\u0352\7u\2\2\u0352\u00ac\3\2\2\2\u0353") buf.write(u"\u0354\7^\2\2\u0354\u0355\7e\2\2\u0355\u0356\7f\2\2\u0356") buf.write(u"\u0357\7q\2\2\u0357\u0358\7v\2\2\u0358\u00ae\3\2\2\2") buf.write(u"\u0359\u035a\7^\2\2\u035a\u035b\7f\2\2\u035b\u035c\7") buf.write(u"k\2\2\u035c\u035d\7x\2\2\u035d\u00b0\3\2\2\2\u035e\u035f") buf.write(u"\7^\2\2\u035f\u0360\7h\2\2\u0360\u0361\7t\2\2\u0361\u0362") buf.write(u"\7c\2\2\u0362\u0363\7e\2\2\u0363\u00b2\3\2\2\2\u0364") buf.write(u"\u0365\7^\2\2\u0365\u0366\7d\2\2\u0366\u0367\7k\2\2\u0367") buf.write(u"\u0368\7p\2\2\u0368\u0369\7q\2\2\u0369\u036a\7o\2\2\u036a") buf.write(u"\u00b4\3\2\2\2\u036b\u036c\7^\2\2\u036c\u036d\7e\2\2") buf.write(u"\u036d\u036e\7j\2\2\u036e\u036f\7q\2\2\u036f\u0370\7") buf.write(u"q\2\2\u0370\u0371\7u\2\2\u0371\u0372\7g\2\2\u0372\u00b6") buf.write(u"\3\2\2\2\u0373\u0374\7^\2\2\u0374\u0375\7o\2\2\u0375") buf.write(u"\u0376\7q\2\2\u0376\u0377\7f\2\2\u0377\u00b8\3\2\2\2") buf.write(u"\u0378\u0379\7^\2\2\u0379\u037a\7o\2\2\u037a\u037b\7") buf.write(u"c\2\2\u037b\u037c\7v\2\2\u037c\u037d\7j\2\2\u037d\u037e") buf.write(u"\7k\2\2\u037e\u037f\7v\2\2\u037f\u00ba\3\2\2\2\u0380") buf.write(u"\u0381\7^\2\2\u0381\u0382\7q\2\2\u0382\u0383\7r\2\2\u0383") buf.write(u"\u0384\7g\2\2\u0384\u0385\7t\2\2\u0385\u0386\7c\2\2\u0386") buf.write(u"\u0387\7v\2\2\u0387\u0388\7q\2\2\u0388\u0389\7t\2\2\u0389") buf.write(u"\u038a\7p\2\2\u038a\u038b\7c\2\2\u038b\u038c\7o\2\2\u038c") buf.write(u"\u038d\7g\2\2\u038d\u00bc\3\2\2\2\u038e\u038f\7o\2\2") buf.write(u"\u038f\u0390\7c\2\2\u0390\u0391\7v\2\2\u0391\u0392\7") buf.write(u"t\2\2\u0392\u0393\7k\2\2\u0393\u0394\7z\2\2\u0394\u00be") buf.write(u"\3\2\2\2\u0395\u0396\7r\2\2\u0396\u0397\7o\2\2\u0397") buf.write(u"\u0398\7c\2\2\u0398\u0399\7v\2\2\u0399\u039a\7t\2\2\u039a") buf.write(u"\u039b\7k\2\2\u039b\u039c\7z\2\2\u039c\u00c0\3\2\2\2") buf.write(u"\u039d\u039e\7d\2\2\u039e\u039f\7o\2\2\u039f\u03a0\7") buf.write(u"c\2\2\u03a0\u03a1\7v\2\2\u03a1\u03a2\7t\2\2\u03a2\u03a3") buf.write(u"\7k\2\2\u03a3\u03a4\7z\2\2\u03a4\u00c2\3\2\2\2\u03a5") buf.write(u"\u03a6\7x\2\2\u03a6\u03a7\7o\2\2\u03a7\u03a8\7c\2\2\u03a8") buf.write(u"\u03a9\7v\2\2\u03a9\u03aa\7t\2\2\u03aa\u03ab\7k\2\2\u03ab") buf.write(u"\u03ac\7z\2\2\u03ac\u00c4\3\2\2\2\u03ad\u03b1\5\u00bd") buf.write(u"_\2\u03ae\u03b1\5\u00bf`\2\u03af\u03b1\5\u00c1a\2\u03b0") buf.write(u"\u03ad\3\2\2\2\u03b0\u03ae\3\2\2\2\u03b0\u03af\3\2\2") buf.write(u"\2\u03b1\u00c6\3\2\2\2\u03b2\u03b3\7^\2\2\u03b3\u03b4") buf.write(u"\7d\2\2\u03b4\u03b5\7g\2\2\u03b5\u03b6\7i\2\2\u03b6\u03b7") buf.write(u"\7k\2\2\u03b7\u03b8\7p\2\2\u03b8\u03b9\3\2\2\2\u03b9") buf.write(u"\u03ba\5\33\16\2\u03ba\u03bb\5\u00c5c\2\u03bb\u03bc\5") buf.write(u"\35\17\2\u03bc\u00c8\3\2\2\2\u03bd\u03be\7^\2\2\u03be") buf.write(u"\u03bf\7g\2\2\u03bf\u03c0\7p\2\2\u03c0\u03c1\7f\2\2\u03c1") buf.write(u"\u03c2\3\2\2\2\u03c2\u03c3\5\33\16\2\u03c3\u03c4\5\u00c5") buf.write(u"c\2\u03c4\u03c5\5\35\17\2\u03c5\u00ca\3\2\2\2\u03c6\u03c7") buf.write(u"\7^\2\2\u03c7\u03c8\7d\2\2\u03c8\u03c9\7g\2\2\u03c9\u03ca") buf.write(u"\7i\2\2\u03ca\u03cb\7k\2\2\u03cb\u03cc\7p\2\2\u03cc\u03cd") buf.write(u"\3\2\2\2\u03cd\u03ce\5\33\16\2\u03ce\u03cf\5\u00c3b\2") buf.write(u"\u03cf\u03d0\5\35\17\2\u03d0\u00cc\3\2\2\2\u03d1\u03d2") buf.write(u"\7^\2\2\u03d2\u03d3\7g\2\2\u03d3\u03d4\7p\2\2\u03d4\u03d5") buf.write(u"\7f\2\2\u03d5\u03d6\3\2\2\2\u03d6\u03d7\5\33\16\2\u03d7") buf.write(u"\u03d8\5\u00c3b\2\u03d8\u03d9\5\35\17\2\u03d9\u00ce\3") buf.write(u"\2\2\2\u03da\u03db\7(\2\2\u03db\u00d0\3\2\2\2\u03dc\u03dd") buf.write(u"\7^\2\2\u03dd\u03de\7^\2\2\u03de\u00d2\3\2\2\2\u03df") buf.write(u"\u03e0\7^\2\2\u03e0\u03e1\7z\2\2\u03e1\u03e2\7t\2\2\u03e2") buf.write(u"\u03e3\7k\2\2\u03e3\u03e4\7i\2\2\u03e4\u03e5\7j\2\2\u03e5") buf.write(u"\u03e6\7v\2\2\u03e6\u03e7\7c\2\2\u03e7\u03e8\7t\2\2\u03e8") buf.write(u"\u03e9\7t\2\2\u03e9\u03ea\7q\2\2\u03ea\u03f8\7y\2\2\u03eb") buf.write(u"\u03ec\7^\2\2\u03ec\u03ed\7z\2\2\u03ed\u03ee\7T\2\2\u03ee") buf.write(u"\u03ef\7k\2\2\u03ef\u03f0\7i\2\2\u03f0\u03f1\7j\2\2\u03f1") buf.write(u"\u03f2\7v\2\2\u03f2\u03f3\7c\2\2\u03f3\u03f4\7t\2\2\u03f4") buf.write(u"\u03f5\7t\2\2\u03f5\u03f6\7q\2\2\u03f6\u03f8\7y\2\2\u03f7") buf.write(u"\u03df\3\2\2\2\u03f7\u03eb\3\2\2\2\u03f8\u00d4\3\2\2") buf.write(u"\2\u03f9\u03fa\7>\2\2\u03fa\u03fb\7/\2\2\u03fb\u041e") buf.write(u"\7@\2\2\u03fc\u03fd\7>\2\2\u03fd\u03fe\7?\2\2\u03fe\u041e") buf.write(u"\7@\2\2\u03ff\u0400\7^\2\2\u0400\u0401\7n\2\2\u0401\u0402") buf.write(u"\7g\2\2\u0402\u0403\7h\2\2\u0403\u0404\7v\2\2\u0404\u0405") buf.write(u"\7t\2\2\u0405\u0406\7k\2\2\u0406\u0407\7i\2\2\u0407\u0408") buf.write(u"\7j\2\2\u0408\u0409\7v\2\2\u0409\u040a\7c\2\2\u040a\u040b") buf.write(u"\7t\2\2\u040b\u040c\7t\2\2\u040c\u040d\7q\2\2\u040d\u041e") buf.write(u"\7y\2\2\u040e\u040f\7^\2\2\u040f\u0410\7N\2\2\u0410\u0411") buf.write(u"\7g\2\2\u0411\u0412\7h\2\2\u0412\u0413\7v\2\2\u0413\u0414") buf.write(u"\7t\2\2\u0414\u0415\7k\2\2\u0415\u0416\7i\2\2\u0416\u0417") buf.write(u"\7j\2\2\u0417\u0418\7v\2\2\u0418\u0419\7c\2\2\u0419\u041a") buf.write(u"\7t\2\2\u041a\u041b\7t\2\2\u041b\u041c\7q\2\2\u041c\u041e") buf.write(u"\7y\2\2\u041d\u03f9\3\2\2\2\u041d\u03fc\3\2\2\2\u041d") buf.write(u"\u03ff\3\2\2\2\u041d\u040e\3\2\2\2\u041e\u00d6\3\2\2") buf.write(u"\2\u041f\u0420\t\3\2\2\u0420\u00d8\3\2\2\2\u0421\u0422") buf.write(u"\7^\2\2\u0422\u0423\7q\2\2\u0423\u0424\7x\2\2\u0424\u0425") buf.write(u"\7g\2\2\u0425\u0426\7t\2\2\u0426\u0427\7n\2\2\u0427\u0428") buf.write(u"\7k\2\2\u0428\u0429\7p\2\2\u0429\u042a\7g\2\2\u042a\u00da") buf.write(u"\3\2\2\2\u042b\u042c\7^\2\2\u042c\u042d\7d\2\2\u042d") buf.write(u"\u042e\7c\2\2\u042e\u042f\7t\2\2\u042f\u00dc\3\2\2\2") buf.write(u"\u0430\u0431\7a\2\2\u0431\u00de\3\2\2\2\u0432\u0433\7") buf.write(u"`\2\2\u0433\u00e0\3\2\2\2\u0434\u0435\7<\2\2\u0435\u00e2") buf.write(u"\3\2\2\2\u0436\u0437\7=\2\2\u0437\u00e4\3\2\2\2\u0438") buf.write(u"\u0439\7.\2\2\u0439\u00e6\3\2\2\2\u043a\u043b\7\60\2") buf.write(u"\2\u043b\u00e8\3\2\2\2\u043c\u043d\t\2\2\2\u043d\u00ea") buf.write(u"\3\2\2\2\u043e\u0442\7f\2\2\u043f\u0441\5\u00e9u\2\u0440") buf.write(u"\u043f\3\2\2\2\u0441\u0444\3\2\2\2\u0442\u0443\3\2\2") buf.write(u"\2\u0442\u0440\3\2\2\2\u0443\u044c\3\2\2\2\u0444\u0442") buf.write(u"\3\2\2\2\u0445\u044d\t\4\2\2\u0446\u0448\7^\2\2\u0447") buf.write(u"\u0449\t\4\2\2\u0448\u0447\3\2\2\2\u0449\u044a\3\2\2") buf.write(u"\2\u044a\u0448\3\2\2\2\u044a\u044b\3\2\2\2\u044b\u044d") buf.write(u"\3\2\2\2\u044c\u0445\3\2\2\2\u044c\u0446\3\2\2\2\u044d") buf.write(u"\u00ec\3\2\2\2\u044e\u045d\7g\2\2\u044f\u0450\7^\2\2") buf.write(u"\u0450\u0451\7g\2\2\u0451\u0452\7z\2\2\u0452\u0453\7") buf.write(u"r\2\2\u0453\u0454\7q\2\2\u0454\u0455\7p\2\2\u0455\u0456") buf.write(u"\7g\2\2\u0456\u0457\7p\2\2\u0457\u0458\7v\2\2\u0458\u0459") buf.write(u"\7k\2\2\u0459\u045a\7c\2\2\u045a\u045b\7n\2\2\u045b\u045d") buf.write(u"\7G\2\2\u045c\u044e\3\2\2\2\u045c\u044f\3\2\2\2\u045d") buf.write(u"\u00ee\3\2\2\2\u045e\u045f\7G\2\2\u045f\u00f0\3\2\2\2") buf.write(u"\u0460\u0461\t\5\2\2\u0461\u00f2\3\2\2\2\u0462\u0463") buf.write(u"\t\4\2\2\u0463\u00f4\3\2\2\2\u0464\u0465\t\6\2\2\u0465") buf.write(u"\u00f6\3\2\2\2\u0466\u0468\5\u00f5{\2\u0467\u0466\3\2") buf.write(u"\2\2\u0468\u0469\3\2\2\2\u0469\u0467\3\2\2\2\u0469\u046a") buf.write(u"\3\2\2\2\u046a\u0472\3\2\2\2\u046b\u046c\5\u00e5s\2\u046c") buf.write(u"\u046d\5\u00f5{\2\u046d\u046e\5\u00f5{\2\u046e\u046f") buf.write(u"\5\u00f5{\2\u046f\u0471\3\2\2\2\u0470\u046b\3\2\2\2\u0471") buf.write(u"\u0474\3\2\2\2\u0472\u0470\3\2\2\2\u0472\u0473\3\2\2") buf.write(u"\2\u0473\u048c\3\2\2\2\u0474\u0472\3\2\2\2\u0475\u0477") buf.write(u"\5\u00f5{\2\u0476\u0475\3\2\2\2\u0477\u047a\3\2\2\2\u0478") buf.write(u"\u0476\3\2\2\2\u0478\u0479\3\2\2\2\u0479\u0482\3\2\2") buf.write(u"\2\u047a\u0478\3\2\2\2\u047b\u047c\5\u00e5s\2\u047c\u047d") buf.write(u"\5\u00f5{\2\u047d\u047e\5\u00f5{\2\u047e\u047f\5\u00f5") buf.write(u"{\2\u047f\u0481\3\2\2\2\u0480\u047b\3\2\2\2\u0481\u0484") buf.write(u"\3\2\2\2\u0482\u0480\3\2\2\2\u0482\u0483\3\2\2\2\u0483") buf.write(u"\u0485\3\2\2\2\u0484\u0482\3\2\2\2\u0485\u0487\5\u00e7") buf.write(u"t\2\u0486\u0488\5\u00f5{\2\u0487\u0486\3\2\2\2\u0488") buf.write(u"\u0489\3\2\2\2\u0489\u0487\3\2\2\2\u0489\u048a\3\2\2") buf.write(u"\2\u048a\u048c\3\2\2\2\u048b\u0467\3\2\2\2\u048b\u0478") buf.write(u"\3\2\2\2\u048c\u00f8\3\2\2\2\u048d\u048e\5\u00f7|\2\u048e") buf.write(u"\u0491\5\u00efx\2\u048f\u0492\5\r\7\2\u0490\u0492\5\13") buf.write(u"\6\2\u0491\u048f\3\2\2\2\u0491\u0490\3\2\2\2\u0491\u0492") buf.write(u"\3\2\2\2\u0492\u0494\3\2\2\2\u0493\u0495\5\u00f5{\2\u0494") buf.write(u"\u0493\3\2\2\2\u0495\u0496\3\2\2\2\u0496\u0494\3\2\2") buf.write(u"\2\u0496\u0497\3\2\2\2\u0497\u00fa\3\2\2\2\u0498\u0499") buf.write(u"\7?\2\2\u0499\u00fc\3\2\2\2\u049a\u049b\7?\2\2\u049b") buf.write(u"\u04a3\7?\2\2\u049c\u049d\7^\2\2\u049d\u049e\7g\2\2\u049e") buf.write(u"\u049f\7s\2\2\u049f\u04a0\7w\2\2\u04a0\u04a1\7k\2\2\u04a1") buf.write(u"\u04a3\7x\2\2\u04a2\u049a\3\2\2\2\u04a2\u049c\3\2\2\2") buf.write(u"\u04a3\u00fe\3\2\2\2\u04a4\u04a5\7>\2\2\u04a5\u0100\3") buf.write(u"\2\2\2\u04a6\u04a7\7^\2\2\u04a7\u04a8\7n\2\2\u04a8\u04a9") buf.write(u"\7g\2\2\u04a9\u04b7\7s\2\2\u04aa\u04ab\7^\2\2\u04ab\u04ac") buf.write(u"\7n\2\2\u04ac\u04b7\7g\2\2\u04ad\u04ae\7^\2\2\u04ae\u04af") buf.write(u"\7n\2\2\u04af\u04b0\7g\2\2\u04b0\u04b1\7s\2\2\u04b1\u04b2") buf.write(u"\7u\2\2\u04b2\u04b3\7n\2\2\u04b3\u04b4\7c\2\2\u04b4\u04b5") buf.write(u"\7p\2\2\u04b5\u04b7\7v\2\2\u04b6\u04a6\3\2\2\2\u04b6") buf.write(u"\u04aa\3\2\2\2\u04b6\u04ad\3\2\2\2\u04b7\u0102\3\2\2") buf.write(u"\2\u04b8\u04b9\7@\2\2\u04b9\u0104\3\2\2\2\u04ba\u04bb") buf.write(u"\7^\2\2\u04bb\u04bc\7i\2\2\u04bc\u04bd\7g\2\2\u04bd\u04cb") buf.write(u"\7s\2\2\u04be\u04bf\7^\2\2\u04bf\u04c0\7i\2\2\u04c0\u04cb") buf.write(u"\7g\2\2\u04c1\u04c2\7^\2\2\u04c2\u04c3\7i\2\2\u04c3\u04c4") buf.write(u"\7g\2\2\u04c4\u04c5\7s\2\2\u04c5\u04c6\7u\2\2\u04c6\u04c7") buf.write(u"\7n\2\2\u04c7\u04c8\7c\2\2\u04c8\u04c9\7p\2\2\u04c9\u04cb") buf.write(u"\7v\2\2\u04ca\u04ba\3\2\2\2\u04ca\u04be\3\2\2\2\u04ca") buf.write(u"\u04c1\3\2\2\2\u04cb\u0106\3\2\2\2\u04cc\u04cd\7#\2\2") buf.write(u"\u04cd\u04e3\7?\2\2\u04ce\u04cf\7#\2\2\u04cf\u04d0\7") buf.write(u"?\2\2\u04d0\u04e3\7?\2\2\u04d1\u04d2\7^\2\2\u04d2\u04d3") buf.write(u"\7p\2\2\u04d3\u04e3\7g\2\2\u04d4\u04d5\7^\2\2\u04d5\u04d6") buf.write(u"\7p\2\2\u04d6\u04d7\7g\2\2\u04d7\u04e3\7s\2\2\u04d8\u04d9") buf.write(u"\7^\2\2\u04d9\u04da\7p\2\2\u04da\u04db\7q\2\2\u04db\u04dc") buf.write(u"\7v\2\2\u04dc\u04dd\7^\2\2\u04dd\u04de\7g\2\2\u04de\u04df") buf.write(u"\7s\2\2\u04df\u04e0\7w\2\2\u04e0\u04e1\7k\2\2\u04e1\u04e3") buf.write(u"\7x\2\2\u04e2\u04cc\3\2\2\2\u04e2\u04ce\3\2\2\2\u04e2") buf.write(u"\u04d1\3\2\2\2\u04e2\u04d4\3\2\2\2\u04e2\u04d8\3\2\2") buf.write(u"\2\u04e3\u0108\3\2\2\2\u04e4\u04e5\7#\2\2\u04e5\u010a") buf.write(u"\3\2\2\2\u04e6\u04e7\7^\2\2\u04e7\u04e8\7\'\2\2\u04e8") buf.write(u"\u010c\3\2\2\2\u04e9\u04ea\5\u00f7|\2\u04ea\u04eb\5\u010b") buf.write(u"\u0086\2\u04eb\u010e\3\2\2\2\u04ec\u04ed\7^\2\2\u04ed") buf.write(u"\u04ee\7e\2\2\u04ee\u04ef\7j\2\2\u04ef\u04f0\7c\2\2\u04f0") buf.write(u"\u04f1\7t\2\2\u04f1\u04f2\7$\2\2\u04f2\u04f3\7\62\2\2") buf.write(u"\u04f3\u04f4\7\62\2\2\u04f4\u04f5\7\62\2\2\u04f5\u04f6") buf.write(u"\7\65\2\2\u04f6\u04f7\7;\2\2\u04f7\u066e\7\63\2\2\u04f8") buf.write(u"\u04f9\7^\2\2\u04f9\u04fa\7c\2\2\u04fa\u04fb\7n\2\2\u04fb") buf.write(u"\u04fc\7r\2\2\u04fc\u04fd\7j\2\2\u04fd\u066e\7c\2\2\u04fe") buf.write(u"\u04ff\7^\2\2\u04ff\u0500\7e\2\2\u0500\u0501\7j\2\2\u0501") buf.write(u"\u0502\7c\2\2\u0502\u0503\7t\2\2\u0503\u0504\7$\2\2\u0504") buf.write(u"\u0505\7\62\2\2\u0505\u0506\7\62\2\2\u0506\u0507\7\62") buf.write(u"\2\2\u0507\u0508\7\65\2\2\u0508\u0509\7;\2\2\u0509\u066e") buf.write(u"\7\64\2\2\u050a\u050b\7^\2\2\u050b\u050c\7d\2\2\u050c") buf.write(u"\u050d\7g\2\2\u050d\u050e\7v\2\2\u050e\u066e\7c\2\2\u050f") buf.write(u"\u0510\7^\2\2\u0510\u0511\7I\2\2\u0511\u0512\7c\2\2\u0512") buf.write(u"\u0513\7o\2\2\u0513\u0514\7o\2\2\u0514\u066e\7c\2\2\u0515") buf.write(u"\u0516\7^\2\2\u0516\u0517\7i\2\2\u0517\u0518\7c\2\2\u0518") buf.write(u"\u0519\7o\2\2\u0519\u051a\7o\2\2\u051a\u066e\7c\2\2\u051b") buf.write(u"\u051c\7^\2\2\u051c\u051d\7F\2\2\u051d\u051e\7g\2\2\u051e") buf.write(u"\u051f\7n\2\2\u051f\u0520\7v\2\2\u0520\u066e\7c\2\2\u0521") buf.write(u"\u0522\7^\2\2\u0522\u0523\7f\2\2\u0523\u0524\7g\2\2\u0524") buf.write(u"\u0525\7n\2\2\u0525\u0526\7v\2\2\u0526\u066e\7c\2\2\u0527") buf.write(u"\u0528\7^\2\2\u0528\u0529\7e\2\2\u0529\u052a\7j\2\2\u052a") buf.write(u"\u052b\7c\2\2\u052b\u052c\7t\2\2\u052c\u052d\7$\2\2\u052d") buf.write(u"\u052e\7\62\2\2\u052e\u052f\7\62\2\2\u052f\u0530\7\62") buf.write(u"\2\2\u0530\u0531\7\63\2\2\u0531\u0532\7;\2\2\u0532\u066e") buf.write(u"\7\62\2\2\u0533\u0534\7^\2\2\u0534\u0535\7g\2\2\u0535") buf.write(u"\u0536\7r\2\2\u0536\u0537\7u\2\2\u0537\u0538\7k\2\2\u0538") buf.write(u"\u0539\7n\2\2\u0539\u053a\7q\2\2\u053a\u066e\7p\2\2\u053b") buf.write(u"\u053c\7^\2\2\u053c\u053d\7x\2\2\u053d\u053e\7c\2\2\u053e") buf.write(u"\u053f\7t\2\2\u053f\u0540\7g\2\2\u0540\u0541\7r\2\2\u0541") buf.write(u"\u0542\7u\2\2\u0542\u0543\7k\2\2\u0543\u0544\7n\2\2\u0544") buf.write(u"\u0545\7q\2\2\u0545\u066e\7p\2\2\u0546\u0547\7^\2\2\u0547") buf.write(u"\u0548\7e\2\2\u0548\u0549\7j\2\2\u0549\u054a\7c\2\2\u054a") buf.write(u"\u054b\7t\2\2\u054b\u054c\7$\2\2\u054c\u054d\7\62\2\2") buf.write(u"\u054d\u054e\7\62\2\2\u054e\u054f\7\62\2\2\u054f\u0550") buf.write(u"\7\65\2\2\u0550\u0551\7;\2\2\u0551\u066e\78\2\2\u0552") buf.write(u"\u0553\7^\2\2\u0553\u0554\7|\2\2\u0554\u0555\7g\2\2\u0555") buf.write(u"\u0556\7v\2\2\u0556\u066e\7c\2\2\u0557\u0558\7^\2\2\u0558") buf.write(u"\u0559\7e\2\2\u0559\u055a\7j\2\2\u055a\u055b\7c\2\2\u055b") buf.write(u"\u055c\7t\2\2\u055c\u055d\7$\2\2\u055d\u055e\7\62\2\2") buf.write(u"\u055e\u055f\7\62\2\2\u055f\u0560\7\62\2\2\u0560\u0561") buf.write(u"\7\65\2\2\u0561\u0562\7;\2\2\u0562\u066e\79\2\2\u0563") buf.write(u"\u0564\7^\2\2\u0564\u0565\7g\2\2\u0565\u0566\7v\2\2\u0566") buf.write(u"\u066e\7c\2\2\u0567\u0568\7^\2\2\u0568\u0569\7V\2\2\u0569") buf.write(u"\u056a\7j\2\2\u056a\u056b\7g\2\2\u056b\u056c\7v\2\2\u056c") buf.write(u"\u066e\7c\2\2\u056d\u056e\7^\2\2\u056e\u056f\7v\2\2\u056f") buf.write(u"\u0570\7j\2\2\u0570\u0571\7g\2\2\u0571\u0572\7v\2\2\u0572") buf.write(u"\u066e\7c\2\2\u0573\u0574\7^\2\2\u0574\u0575\7x\2\2\u0575") buf.write(u"\u0576\7c\2\2\u0576\u0577\7t\2\2\u0577\u0578\7v\2\2\u0578") buf.write(u"\u0579\7j\2\2\u0579\u057a\7g\2\2\u057a\u057b\7v\2\2\u057b") buf.write(u"\u066e\7c\2\2\u057c\u057d\7^\2\2\u057d\u057e\7e\2\2\u057e") buf.write(u"\u057f\7j\2\2\u057f\u0580\7c\2\2\u0580\u0581\7t\2\2\u0581") buf.write(u"\u0582\7$\2\2\u0582\u0583\7\62\2\2\u0583\u0584\7\62\2") buf.write(u"\2\u0584\u0585\7\62\2\2\u0585\u0586\7\65\2\2\u0586\u0587") buf.write(u"\7;\2\2\u0587\u066e\7;\2\2\u0588\u0589\7^\2\2\u0589\u058a") buf.write(u"\7k\2\2\u058a\u058b\7q\2\2\u058b\u058c\7v\2\2\u058c\u066e") buf.write(u"\7c\2\2\u058d\u058e\7^\2\2\u058e\u058f\7e\2\2\u058f\u0590") buf.write(u"\7j\2\2\u0590\u0591\7c\2\2\u0591\u0592\7t\2\2\u0592\u0593") buf.write(u"\7$\2\2\u0593\u0594\7\62\2\2\u0594\u0595\7\62\2\2\u0595") buf.write(u"\u0596\7\62\2\2\u0596\u0597\7\65\2\2\u0597\u0598\7;\2") buf.write(u"\2\u0598\u066e\7C\2\2\u0599\u059a\7^\2\2\u059a\u059b") buf.write(u"\7m\2\2\u059b\u059c\7c\2\2\u059c\u059d\7r\2\2\u059d\u059e") buf.write(u"\7r\2\2\u059e\u066e\7c\2\2\u059f\u05a0\7^\2\2\u05a0\u05a1") buf.write(u"\7N\2\2\u05a1\u05a2\7c\2\2\u05a2\u05a3\7o\2\2\u05a3\u05a4") buf.write(u"\7d\2\2\u05a4\u05a5\7f\2\2\u05a5\u066e\7c\2\2\u05a6\u05a7") buf.write(u"\7^\2\2\u05a7\u05a8\7n\2\2\u05a8\u05a9\7c\2\2\u05a9\u05aa") buf.write(u"\7o\2\2\u05aa\u05ab\7d\2\2\u05ab\u05ac\7f\2\2\u05ac\u066e") buf.write(u"\7c\2\2\u05ad\u05ae\7^\2\2\u05ae\u05af\7e\2\2\u05af\u05b0") buf.write(u"\7j\2\2\u05b0\u05b1\7c\2\2\u05b1\u05b2\7t\2\2\u05b2\u05b3") buf.write(u"\7$\2\2\u05b3\u05b4\7\62\2\2\u05b4\u05b5\7\62\2\2\u05b5") buf.write(u"\u05b6\7\62\2\2\u05b6\u05b7\7\65\2\2\u05b7\u05b8\7;\2") buf.write(u"\2\u05b8\u066e\7E\2\2\u05b9\u05ba\7^\2\2\u05ba\u05bb") buf.write(u"\7o\2\2\u05bb\u066e\7w\2\2\u05bc\u05bd\7^\2\2\u05bd\u05be") buf.write(u"\7e\2\2\u05be\u05bf\7j\2\2\u05bf\u05c0\7c\2\2\u05c0\u05c1") buf.write(u"\7t\2\2\u05c1\u05c2\7$\2\2\u05c2\u05c3\7\62\2\2\u05c3") buf.write(u"\u05c4\7\62\2\2\u05c4\u05c5\7\62\2\2\u05c5\u05c6\7\65") buf.write(u"\2\2\u05c6\u05c7\7;\2\2\u05c7\u066e\7F\2\2\u05c8\u05c9") buf.write(u"\7^\2\2\u05c9\u05ca\7p\2\2\u05ca\u066e\7w\2\2\u05cb\u05cc") buf.write(u"\7^\2\2\u05cc\u05cd\7Z\2\2\u05cd\u066e\7k\2\2\u05ce\u05cf") buf.write(u"\7^\2\2\u05cf\u05d0\7z\2\2\u05d0\u066e\7k\2\2\u05d1\u05d2") buf.write(u"\7^\2\2\u05d2\u05d3\7e\2\2\u05d3\u05d4\7j\2\2\u05d4\u05d5") buf.write(u"\7c\2\2\u05d5\u05d6\7t\2\2\u05d6\u05d7\7$\2\2\u05d7\u05d8") buf.write(u"\7\62\2\2\u05d8\u05d9\7\62\2\2\u05d9\u05da\7\62\2\2\u05da") buf.write(u"\u05db\7\65\2\2\u05db\u05dc\7;\2\2\u05dc\u066e\7H\2\2") buf.write(u"\u05dd\u05de\7^\2\2\u05de\u05df\7q\2\2\u05df\u05e0\7") buf.write(u"o\2\2\u05e0\u05e1\7k\2\2\u05e1\u05e2\7e\2\2\u05e2\u05e3") buf.write(u"\7t\2\2\u05e3\u05e4\7q\2\2\u05e4\u066e\7p\2\2\u05e5\u05e6") buf.write(u"\7^\2\2\u05e6\u05e7\7R\2\2\u05e7\u066e\7k\2\2\u05e8\u05e9") buf.write(u"\7^\2\2\u05e9\u05ea\7x\2\2\u05ea\u05eb\7c\2\2\u05eb\u05ec") buf.write(u"\7t\2\2\u05ec\u05ed\7r\2\2\u05ed\u066e\7k\2\2\u05ee\u05ef") buf.write(u"\7^\2\2\u05ef\u05f0\7e\2\2\u05f0\u05f1\7j\2\2\u05f1\u05f2") buf.write(u"\7c\2\2\u05f2\u05f3\7t\2\2\u05f3\u05f4\7$\2\2\u05f4\u05f5") buf.write(u"\7\62\2\2\u05f5\u05f6\7\62\2\2\u05f6\u05f7\7\62\2\2\u05f7") buf.write(u"\u05f8\7\65\2\2\u05f8\u05f9\7C\2\2\u05f9\u066e\7\63\2") buf.write(u"\2\u05fa\u05fb\7^\2\2\u05fb\u05fc\7t\2\2\u05fc\u05fd") buf.write(u"\7j\2\2\u05fd\u066e\7q\2\2\u05fe\u05ff\7^\2\2\u05ff\u0600") buf.write(u"\7x\2\2\u0600\u0601\7c\2\2\u0601\u0602\7t\2\2\u0602\u0603") buf.write(u"\7t\2\2\u0603\u0604\7j\2\2\u0604\u066e\7q\2\2\u0605\u0606") buf.write(u"\7^\2\2\u0606\u0607\7U\2\2\u0607\u0608\7k\2\2\u0608\u0609") buf.write(u"\7i\2\2\u0609\u060a\7o\2\2\u060a\u066e\7c\2\2\u060b\u060c") buf.write(u"\7^\2\2\u060c\u060d\7u\2\2\u060d\u060e\7k\2\2\u060e\u060f") buf.write(u"\7i\2\2\u060f\u0610\7o\2\2\u0610\u066e\7c\2\2\u0611\u0612") buf.write(u"\7^\2\2\u0612\u0613\7x\2\2\u0613\u0614\7c\2\2\u0614\u0615") buf.write(u"\7t\2\2\u0615\u0616\7u\2\2\u0616\u0617\7k\2\2\u0617\u0618") buf.write(u"\7i\2\2\u0618\u0619\7o\2\2\u0619\u066e\7c\2\2\u061a\u061b") buf.write(u"\7^\2\2\u061b\u061c\7e\2\2\u061c\u061d\7j\2\2\u061d\u061e") buf.write(u"\7c\2\2\u061e\u061f\7t\2\2\u061f\u0620\7$\2\2\u0620\u0621") buf.write(u"\7\62\2\2\u0621\u0622\7\62\2\2\u0622\u0623\7\62\2\2\u0623") buf.write(u"\u0624\7\65\2\2\u0624\u0625\7C\2\2\u0625\u066e\7\66\2") buf.write(u"\2\u0626\u0627\7^\2\2\u0627\u0628\7v\2\2\u0628\u0629") buf.write(u"\7c\2\2\u0629\u066e\7w\2\2\u062a\u062b\7^\2\2\u062b\u062c") buf.write(u"\7W\2\2\u062c\u062d\7r\2\2\u062d\u062e\7u\2\2\u062e\u062f") buf.write(u"\7k\2\2\u062f\u0630\7n\2\2\u0630\u0631\7q\2\2\u0631\u066e") buf.write(u"\7p\2\2\u0632\u0633\7^\2\2\u0633\u0634\7w\2\2\u0634\u0635") buf.write(u"\7r\2\2\u0635\u0636\7u\2\2\u0636\u0637\7k\2\2\u0637\u0638") buf.write(u"\7n\2\2\u0638\u0639\7q\2\2\u0639\u066e\7p\2\2\u063a\u063b") buf.write(u"\7^\2\2\u063b\u063c\7R\2\2\u063c\u063d\7j\2\2\u063d\u066e") buf.write(u"\7k\2\2\u063e\u063f\7^\2\2\u063f\u0640\7r\2\2\u0640\u0641") buf.write(u"\7j\2\2\u0641\u066e\7k\2\2\u0642\u0643\7^\2\2\u0643\u0644") buf.write(u"\7x\2\2\u0644\u0645\7c\2\2\u0645\u0646\7t\2\2\u0646\u0647") buf.write(u"\7r\2\2\u0647\u0648\7j\2\2\u0648\u066e\7k\2\2\u0649\u064a") buf.write(u"\7^\2\2\u064a\u064b\7e\2\2\u064b\u064c\7j\2\2\u064c\u064d") buf.write(u"\7c\2\2\u064d\u064e\7t\2\2\u064e\u064f\7$\2\2\u064f\u0650") buf.write(u"\7\62\2\2\u0650\u0651\7\62\2\2\u0651\u0652\7\62\2\2\u0652") buf.write(u"\u0653\7\65\2\2\u0653\u0654\7C\2\2\u0654\u066e\79\2\2") buf.write(u"\u0655\u0656\7^\2\2\u0656\u0657\7e\2\2\u0657\u0658\7") buf.write(u"j\2\2\u0658\u066e\7k\2\2\u0659\u065a\7^\2\2\u065a\u065b") buf.write(u"\7R\2\2\u065b\u065c\7u\2\2\u065c\u066e\7k\2\2\u065d\u065e") buf.write(u"\7^\2\2\u065e\u065f\7r\2\2\u065f\u0660\7u\2\2\u0660\u066e") buf.write(u"\7k\2\2\u0661\u0662\7^\2\2\u0662\u0663\7Q\2\2\u0663\u0664") buf.write(u"\7o\2\2\u0664\u0665\7g\2\2\u0665\u0666\7i\2\2\u0666\u066e") buf.write(u"\7c\2\2\u0667\u0668\7^\2\2\u0668\u0669\7q\2\2\u0669\u066a") buf.write(u"\7o\2\2\u066a\u066b\7g\2\2\u066b\u066c\7i\2\2\u066c\u066e") buf.write(u"\7c\2\2\u066d\u04ec\3\2\2\2\u066d\u04f8\3\2\2\2\u066d") buf.write(u"\u04fe\3\2\2\2\u066d\u050a\3\2\2\2\u066d\u050f\3\2\2") buf.write(u"\2\u066d\u0515\3\2\2\2\u066d\u051b\3\2\2\2\u066d\u0521") buf.write(u"\3\2\2\2\u066d\u0527\3\2\2\2\u066d\u0533\3\2\2\2\u066d") buf.write(u"\u053b\3\2\2\2\u066d\u0546\3\2\2\2\u066d\u0552\3\2\2") buf.write(u"\2\u066d\u0557\3\2\2\2\u066d\u0563\3\2\2\2\u066d\u0567") buf.write(u"\3\2\2\2\u066d\u056d\3\2\2\2\u066d\u0573\3\2\2\2\u066d") buf.write(u"\u057c\3\2\2\2\u066d\u0588\3\2\2\2\u066d\u058d\3\2\2") buf.write(u"\2\u066d\u0599\3\2\2\2\u066d\u059f\3\2\2\2\u066d\u05a6") buf.write(u"\3\2\2\2\u066d\u05ad\3\2\2\2\u066d\u05b9\3\2\2\2\u066d") buf.write(u"\u05bc\3\2\2\2\u066d\u05c8\3\2\2\2\u066d\u05cb\3\2\2") buf.write(u"\2\u066d\u05ce\3\2\2\2\u066d\u05d1\3\2\2\2\u066d\u05dd") buf.write(u"\3\2\2\2\u066d\u05e5\3\2\2\2\u066d\u05e8\3\2\2\2\u066d") buf.write(u"\u05ee\3\2\2\2\u066d\u05fa\3\2\2\2\u066d\u05fe\3\2\2") buf.write(u"\2\u066d\u0605\3\2\2\2\u066d\u060b\3\2\2\2\u066d\u0611") buf.write(u"\3\2\2\2\u066d\u061a\3\2\2\2\u066d\u0626\3\2\2\2\u066d") buf.write(u"\u062a\3\2\2\2\u066d\u0632\3\2\2\2\u066d\u063a\3\2\2") buf.write(u"\2\u066d\u063e\3\2\2\2\u066d\u0642\3\2\2\2\u066d\u0649") buf.write(u"\3\2\2\2\u066d\u0655\3\2\2\2\u066d\u0659\3\2\2\2\u066d") buf.write(u"\u065d\3\2\2\2\u066d\u0661\3\2\2\2\u066d\u0667\3\2\2") buf.write(u"\2\u066e\u0110\3\2\2\2\u066f\u0671\5\u010f\u0088\2\u0670") buf.write(u"\u0672\t\7\2\2\u0671\u0670\3\2\2\2\u0671\u0672\3\2\2") buf.write(u"\2\u0672\u0112\3\2\2\2\u0673\u0674\7^\2\2\u0674\u0675") buf.write(u"\7r\2\2\u0675\u0676\7k\2\2\u0676\u0114\3\2\2\2\u0677") buf.write(u"\u0678\7^\2\2\u0678\u0679\7k\2\2\u0679\u067a\7p\2\2\u067a") buf.write(u"\u067b\7h\2\2\u067b\u067c\7v\2\2\u067c\u067d\7{\2\2\u067d") buf.write(u"\u0116\3\2\2\2\u067e\u0686\5\u0115\u008b\2\u067f\u0680") buf.write(u"\5\t\5\2\u0680\u0681\5\u0115\u008b\2\u0681\u0686\3\2") buf.write(u"\2\2\u0682\u0683\5\u0115\u008b\2\u0683\u0684\5\u010b") buf.write(u"\u0086\2\u0684\u0686\3\2\2\2\u0685\u067e\3\2\2\2\u0685") buf.write(u"\u067f\3\2\2\2\u0685\u0682\3\2\2\2\u0686\u0118\3\2\2") buf.write(u"\2\u0687\u0688\7^\2\2\u0688\u0689\7g\2\2\u0689\u068a") buf.write(u"\7o\2\2\u068a\u068b\7r\2\2\u068b\u068c\7v\2\2\u068c\u068d") buf.write(u"\7{\2\2\u068d\u068e\7u\2\2\u068e\u068f\7g\2\2\u068f\u0690") buf.write(u"\7v\2\2\u0690\u011a\3\2\2\2\u0691\u0695\5\u0113\u008a") buf.write(u"\2\u0692\u0695\5\u0117\u008c\2\u0693\u0695\5\u0119\u008d") buf.write(u"\2\u0694\u0691\3\2\2\2\u0694\u0692\3\2\2\2\u0694\u0693") buf.write(u"\3\2\2\2\u0695\u011c\3\2\2\2\u0696\u0697\7^\2\2\u0697") buf.write(u"\u0698\7x\2\2\u0698\u0699\7c\2\2\u0699\u069a\7t\2\2\u069a") buf.write(u"\u069b\7k\2\2\u069b\u069c\7c\2\2\u069c\u069d\7d\2\2\u069d") buf.write(u"\u069e\7n\2\2\u069e\u069f\7g\2\2\u069f\u011e\3\2\2\2") buf.write(u"\u06a0\u06a4\5\u0111\u0089\2\u06a1\u06a4\5\u00f3z\2\u06a2") buf.write(u"\u06a4\5\u00f5{\2\u06a3\u06a0\3\2\2\2\u06a3\u06a1\3\2") buf.write(u"\2\2\u06a3\u06a2\3\2\2\2\u06a4\u06a5\3\2\2\2\u06a5\u06a3") buf.write(u"\3\2\2\2\u06a5\u06a6\3\2\2\2\u06a6\u06ba\3\2\2\2\u06a7") buf.write(u"\u06b8\5\u00ddo\2\u06a8\u06ad\5\33\16\2\u06a9\u06ae\5") buf.write(u"\u0111\u0089\2\u06aa\u06ae\5\u00f3z\2\u06ab\u06ae\5\u00f5") buf.write(u"{\2\u06ac\u06ae\5\u00e5s\2\u06ad\u06a9\3\2\2\2\u06ad") buf.write(u"\u06aa\3\2\2\2\u06ad\u06ab\3\2\2\2\u06ad\u06ac\3\2\2") buf.write(u"\2\u06ae\u06af\3\2\2\2\u06af\u06ad\3\2\2\2\u06af\u06b0") buf.write(u"\3\2\2\2\u06b0\u06b1\3\2\2\2\u06b1\u06b2\5\35\17\2\u06b2") buf.write(u"\u06b9\3\2\2\2\u06b3\u06b7\5\u0111\u0089\2\u06b4\u06b7") buf.write(u"\5\u00f3z\2\u06b5\u06b7\5\u00f5{\2\u06b6\u06b3\3\2\2") buf.write(u"\2\u06b6\u06b4\3\2\2\2\u06b6\u06b5\3\2\2\2\u06b7\u06b9") buf.write(u"\3\2\2\2\u06b8\u06a8\3\2\2\2\u06b8\u06b6\3\2\2\2\u06b9") buf.write(u"\u06bb\3\2\2\2\u06ba\u06a7\3\2\2\2\u06ba\u06bb\3\2\2") buf.write(u"\2\u06bb\u0120\3\2\2\2\u06bc\u06bd\5\u011d\u008f\2\u06bd") buf.write(u"\u06be\5\33\16\2\u06be\u06bf\5\u011f\u0090\2\u06bf\u06c1") buf.write(u"\5\35\17\2\u06c0\u06c2\5\u010b\u0086\2\u06c1\u06c0\3") buf.write(u"\2\2\2\u06c1\u06c2\3\2\2\2\u06c2\u0122\3\2\2\2$\2\u012b") buf.write(u"\u0232\u03b0\u03f7\u041d\u0442\u044a\u044c\u045c\u0469") buf.write(u"\u0472\u0478\u0482\u0489\u048b\u0491\u0496\u04a2\u04b6") buf.write(u"\u04ca\u04e2\u066d\u0671\u0685\u0694\u06a3\u06a5\u06ad") buf.write(u"\u06af\u06b6\u06b8\u06ba\u06c1\3\b\2\2") return buf.getvalue() class PSLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] T__0 = 1 T__1 = 2 WS = 3 DOLLAR_SIGN = 4 ADD = 5 SUB = 6 MUL = 7 DIV = 8 L_PAREN = 9 R_PAREN = 10 L_GROUP = 11 R_GROUP = 12 L_BRACE = 13 R_BRACE = 14 L_BRACE_VISUAL = 15 R_BRACE_VISUAL = 16 L_BRACE_CMD = 17 R_BRACE_CMD = 18 L_BRACKET = 19 R_BRACKET = 20 L_BRACK = 21 R_BRACK = 22 BAR = 23 L_VERT = 24 R_VERT = 25 VERT = 26 L_FLOOR = 27 R_FLOOR = 28 LL_CORNER = 29 LR_CORNER = 30 L_CEIL = 31 R_CEIL = 32 UL_CORNER = 33 UR_CORNER = 34 L_LEFT = 35 R_RIGHT = 36 ML_LEFT = 37 MR_RIGHT = 38 FUNC_LIM = 39 LIM_APPROACH_SYM = 40 FUNC_INT = 41 FUNC_SUM = 42 FUNC_PROD = 43 FUNC_LOG = 44 FUNC_LN = 45 FUNC_EXP = 46 FUNC_SIN = 47 FUNC_COS = 48 FUNC_TAN = 49 FUNC_CSC = 50 FUNC_SEC = 51 FUNC_COT = 52 FUNC_ARCSIN = 53 FUNC_ARCCOS = 54 FUNC_ARCTAN = 55 FUNC_ARCCSC = 56 FUNC_ARCSEC = 57 FUNC_ARCCOT = 58 FUNC_SINH = 59 FUNC_COSH = 60 FUNC_TANH = 61 FUNC_ARSINH = 62 FUNC_ARCOSH = 63 FUNC_ARTANH = 64 FUNC_ARCSINH = 65 FUNC_ARCCOSH = 66 FUNC_ARCTANH = 67 FUNC_ARSINH_NAME = 68 FUNC_ARCSINH_NAME = 69 FUNC_ARCOSH_NAME = 70 FUNC_ARCCOSH_NAME = 71 FUNC_ARTANH_NAME = 72 FUNC_ARCTANH_NAME = 73 FUNC_GCD_NAME = 74 FUNC_LCM_NAME = 75 FUNC_FLOOR_NAME = 76 FUNC_CEIL_NAME = 77 FUNC_SQRT = 78 FUNC_GCD = 79 FUNC_LCM = 80 FUNC_FLOOR = 81 FUNC_CEIL = 82 FUNC_MAX = 83 FUNC_MIN = 84 CMD_TIMES = 85 CMD_CDOT = 86 CMD_DIV = 87 CMD_FRAC = 88 CMD_BINOM = 89 CMD_CHOOSE = 90 CMD_MOD = 91 CMD_MATHIT = 92 CMD_OPERATORNAME = 93 MATRIX_TYPE_MATRIX = 94 MATRIX_TYPE_PMATRIX = 95 MATRIX_TYPE_BMATRIX = 96 MATRIX_TYPE_DET = 97 MATRIX_TYPES = 98 CMD_MATRIX_START = 99 CMD_MATRIX_END = 100 CMD_DET_START = 101 CMD_DET_END = 102 MATRIX_DEL_COL = 103 MATRIX_DEL_ROW = 104 MATRIX_XRIGHTARROW = 105 TRANSFORM_EXCHANGE = 106 ROW_OR_COL = 107 ACCENT_OVERLINE = 108 ACCENT_BAR = 109 UNDERSCORE = 110 CARET = 111 COLON = 112 SEMICOLON = 113 COMMA = 114 PERIOD = 115 DIFFERENTIAL = 116 EXP_E = 117 E_NOTATION_E = 118 LETTER_NO_E = 119 NUMBER = 120 E_NOTATION = 121 ASSIGNMENT = 122 EQUAL = 123 LT = 124 LTE = 125 GT = 126 GTE = 127 UNEQUAL = 128 BANG = 129 PERCENT_NUMBER = 130 GREEK_CMD = 131 SYMBOL = 132 VARIABLE = 133 channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ] modeNames = [ u"DEFAULT_MODE" ] literalNames = [ u"<INVALID>", u"'^T'", u"'''",
json.load(setup) else: with open("POSCAR", "r") as poscar: for line_ind, line in enumerate(poscar): if line_ind in [5, 6]: no_of_atoms = sum([int(atom_no) for atom_no in re.findall("[0-9]+", line)]) if no_of_atoms > 0: break raw_argv_dict = {key.lower(): value for key, value in [argv.split(":") for argv in argv_list[1:]]} argv_dict = {} try: argv_dict["NL_start"] = int(raw_argv_dict.get("--nl_start", 10)) except: print(__doc__) raise Exception("The value passed to --NL_start should be an integer. See more in the above document") try: argv_dict["NL_end"] = int(raw_argv_dict.get("--nl_end", 60)) except: print(__doc__) raise Exception("The value passed to --NL_end should be an integer. See more in the above document") try: argv = raw_argv_dict.get("--dn", "2") items = re.findall("[0-9]+", argv) if len(items) == 1: assert int(items[0]) > 0 if argv == items[0]: argv = [int(argv)] * 3 elif argv.lower() == ("any_" + items[0]): argv = {"any": int(items[0])} else: assert 1 == 2 elif len(items) == 3: assert argv == "_".join(items) argv = [int(item) for item in items] assert False not in [item >= 0 for item in argv] assert True in [item > 0 for item in argv] else: assert 1 == 2 argv_dict["dN"] = argv except: print(__doc__) raise Exception("Fail to parse --dN. See the above document to ensure it is set properly") try: argv_dict["max_no_of_points"] = int(raw_argv_dict.get("--max_no_of_points", 10)) assert argv_dict["max_no_of_points"] > 0 except: print(__doc__) raise Exception("Fail to parse --max_no_of_points or its value is not positive. See more in the above document.") try: argv_dict["opt_nl_if_conv_failed"] = int(raw_argv_dict.get("--opt_nl_if_conv_failed", 60)) assert argv_dict["opt_nl_if_conv_failed"] >= 60 except: print(__doc__) raise Exception("The value passed to --opt_nl_if_conv_failed should be an integer >= 60 (default: 60). See more in the above document.") convergence= raw_argv_dict.get("--convergence", "1meV/atom").lower() argv_dict["convergence_unit"] = "ev" if "mev/atom" in convergence: argv_dict["convergence"] = float(convergence.split("mev/atom")[0])*no_of_atoms/1000. elif "ev/atom" in convergence: argv_dict["convergence"] = float(convergence.split("ev/atom")[0])*no_of_atoms elif "mev" in convergence: argv_dict["convergence"] = float(convergence.split("mev")[0])/1000. elif "ev" in convergence: argv_dict["convergence"] = float(convergence.split("ev")) else: print(__doc__) raise Exception("The energy convergence criterion should be set by '--convergence=AB', where A is a number and B should be ev, mev, ev/atom or mev/atom.\nSee more in the above document") if "--convergence_type" in raw_argv_dict.keys(): convergence_type = raw_argv_dict["--convergence_type"].lower() if convergence_type.startswith("chg"): argv_dict["convergence_type"] = "chg" elif convergence_type.startswith("aver"): argv_dict["convergence_type"] = "aver" else: print(__doc__) raise Exception("The value passed to --convergence_type should be either 'chg' or 'aver'. See the above document for more details.") else: argv_dict["convergence_type"] = "aver" try: argv_dict["no_of_consecutive_convergences"] = int(raw_argv_dict.get("--no_of_consecutive_convergences", 3)) assert argv_dict["no_of_consecutive_convergences"] >= 2 except: print(__doc__) raise Exception("Fail to parse --no_of_consecutive_convergences or its value is incorrect. See the above document to ensure that it is set properly.") try: argv_dict["which"] = int(raw_argv_dict.get("--which", 2)) assert argv_dict["which"] <= argv_dict["no_of_consecutive_convergences"] + 1 except: print(__doc__) raise Exception("Fail to parse --which or its value is invalid. See the above document to ensure it is set properly.") try: argv_dict["max_vacuum_thickness"] = raw_argv_dict["--max_vacuum_thickness"] argv_dict["max_vacuum_thickness"] = [int(thickness) for thickness in argv_dict["max_vacuum_thickness"].split("_")[:3]] except: print(__doc__) raise Exception("You must set --max_vacuum_thickness. See the above document to ensure that it is set properly.") kmesh_type = raw_argv_dict.get("--kmesh_type", "Auto").lower() if kmesh_type.startswith("g"): kmesh_type = "Gamma" elif kmesh_type.startswith("m"): kmesh_type = "Monkhorst-Pack" elif kmesh_type.startswith("a"): kmesh_type = "Auto" else: print(__doc__) raise Exception("Fail to parse --kmesh_type. See the above document to ensure that it is set properly..") argv_dict["kmesh_type"] = kmesh_type try: argv_dict["shift"] = [int(st) if st=="0" else float(st) for st in raw_argv_dict.get("--shift", "0_0_0").split("_")[:3]] except: print(__doc__) raise Exception("Fail to parse --shift. See the above document to ensure that it is set properly.") try: argv_dict["symprec_latt_const"] = float(raw_argv_dict.get("--symprec_latt_const", 0.1)) except: print(__doc__) raise Exception("Fail to parse --symprec_latt_const. See the above document to ensure that it is set properly.") try: argv_dict["symprec_angle"] = float(raw_argv_dict.get("--symprec_angle", 1)) except: print(__doc__) raise Exception("Fail to parse --symprec_angle. See the above document to ensure that it is set properly.") argv_dict["extra_copy"] = [file for file in raw_argv_dict.get("--extra_copy", "").split("+") if file] for file in argv_dict["extra_copy"]: assert os.path.isfile(file), "{} doesn't exist under {}".format(file, os.getcwd()) for std_vasp_input in ["INCAR", "POTCAR", "POSCAR", "KPOINTS"]: assert not file.endswith(std_vasp_input), "INCAR, POTCAR, POSCAR and KPOINTS will be copied implicitly. Don't set them via --extra_copy" with open("kpoints_convergence_setup.json", "w") as setup: json.dump(argv_dict, setup, indent=4) input_kwargvs = {} for key in ["kmesh_type", "shift", "max_vacuum_thickness", "symprec_latt_const", "symprec_angle"]: input_kwargvs[key] = argv_dict[key] input_kwargvs["cal_loc"] = "." NL_list, kpoints_setup_list, NL, dN, NL_end = [], [], argv_dict["NL_start"], argv_dict["dN"], argv_dict["NL_end"] is_it_0D = False while NL <= NL_end: automatic_kmesh = VaspAutomaticKMesh(NL=NL, **input_kwargvs)#.get_kpoints_setup() kpoints_setup = automatic_kmesh.get_kpoints_setup() if automatic_kmesh.pbc_type_of_xyz == [False, False, False]: #If it is 0D, KPOINTS must be Gamma point only. is_it_0D = True break optimal_NL = list(kpoints_setup["optimal_NL"].keys())[0] pbc_subdivision = VaspAutomaticKMesh.get_pbc_sublist(kpoints_setup["subdivisions"], kpoints_setup["pbc_type_of_xyz"]) is_NL_unique = False if NL_list == []: is_NL_unique = True if isinstance(argv_dict["dN"], list): pbc_dN_list = VaspAutomaticKMesh.get_pbc_sublist(argv_dict["dN"], kpoints_setup["pbc_type_of_xyz"]) elif isinstance(argv_dict["dN"], list): if False not in [dN <= (pbc_div_1 - pbc_div_0) for dN, pbc_div_0, pbc_div_1 in zip(pbc_dN_list, pbc_subdivision_0, pbc_subdivision)]: is_NL_unique = True elif isinstance(argv_dict["dN"], dict): if True in [argv_dict["dN"]["any"] <= (pbc_div_1 - pbc_div_0) for pbc_div_0, pbc_div_1 in zip(pbc_subdivision_0, pbc_subdivision)]: is_NL_unique = True #For test only if False and NL_list == [] and is_NL_unique: print(kpoints_setup["subdivisions"], NL, optimal_NL, kpoints_setup["equivalent_NL"]) elif False and is_NL_unique: print(kpoints_setup["subdivisions"], NL, optimal_NL, kpoints_setup["equivalent_NL"], end=" ") if isinstance(argv_dict["dN"], list): print([dN <= (pbc_div_1 - pbc_div_0) for dN, pbc_div_0, pbc_div_1 in zip(pbc_dN_list, pbc_subdivision_0, pbc_subdivision)]) else: print([argv_dict["dN"]["any"] <= (pbc_div_1 - pbc_div_0) for pbc_div_0, pbc_div_1 in zip(pbc_subdivision_0, pbc_subdivision)]) NL = max(kpoints_setup["equivalent_NL"]) + 1 if is_NL_unique: pbc_subdivision_0 = pbc_subdivision kpoints_setup["NL"] = optimal_NL kpoints_setup_list.append(kpoints_setup) NL_list.append(optimal_NL) argv_dict["opt_kpoints_setup_if_conv_failed"] = VaspAutomaticKMesh(NL=argv_dict["opt_nl_if_conv_failed"], **input_kwargvs).get_kpoints_setup() argv_dict["NL_list"] = NL_list[:min([len(NL_list), argv_dict["max_no_of_points"]])] argv_dict["kpoints_setup_list"] = kpoints_setup_list[:min([len(NL_list), argv_dict["max_no_of_points"]])] argv_dict["is_it_0D"] = is_it_0D assert is_it_0D == False, "Given the parameters in kpoints_convergence_setup.json, this is zero-dimensional material. No need to test total energy convergence w.r.t. KPOINTS." argv_dict["is_nl_end_included"] = (argv_dict["NL_list"][-1] == NL_list[-1]) sub_dir_creation_summary_dict = {"extra_copy_to_sub_dir": [os.path.split(file)[1] for file in argv_dict["extra_copy"]]} sub_dir_creation_summary_dict["sub_dir_name_list"] = ["NL_" + str(NL) for NL in argv_dict["NL_list"]] with open("sub_dir_creation_summary.json", "w") as summary_df: json.dump(sub_dir_creation_summary_dict, summary_df, indent=4) return argv_dict # In[6]: def prepare_cal_files(argv_dict): if argv_dict["opt_nl_if_conv_failed"] not in argv_dict["NL_list"]: kpoints_setup_list = argv_dict["kpoints_setup_list"] + [argv_dict["opt_kpoints_setup_if_conv_failed"]] NL_list = argv_dict["NL_list"] + [argv_dict["opt_nl_if_conv_failed"]] is_opt_nl_if_conv_failed_appended = True else: kpoints_setup_list = argv_dict["kpoints_setup_list"] NL_list = argv_dict["NL_list"] is_opt_nl_if_conv_failed_appended = False for kpoints_setup, NL in zip(kpoints_setup_list, NL_list): is_preparation_needed = True sub_dir_name = "NL_" + str(NL) if not os.path.isdir(sub_dir_name): os.mkdir(sub_dir_name) else: file_list = os.listdir(sub_dir_name) for filename in file_list: if filename.startswith("__") and filename.endswith("__"): #The presence of any HTC signal file indicates that the sub-dir VASP calculation input files were prepared. is_preparation_needed = False break if is_preparation_needed: if os.path.isfile(os.path.join(sub_dir_name, "opt_nl_if_conv_failed")): if is_opt_nl_if_conv_failed_appended: pass else: open(os.path.join(sub_dir_name, "__ready__"), "w").close() print("{}: The VASP input files are already ready. Just create __ready__".format(sub_dir_name)) else: shutil.copy("POSCAR", os.path.join(sub_dir_name, "POSCAR")) shutil.copy("KPOINTS", os.path.join(sub_dir_name, "KPOINTS")) shutil.copy("POTCAR", os.path.join(sub_dir_name, "POTCAR")) shutil.copy("INCAR", os.path.join(sub_dir_name, "INCAR")) if argv_dict["extra_copy"]: for file in argv_dict["extra_copy"]: shutil.copy2(file, sub_dir_name) print("Create sub-dir {} and copy the following files to it: INCAR, POSCAR, POTCAR, KPOINTS, ".format(sub_dir_name), end=" ") [print(extra_file, end=" ") for extra_file in argv_dict["extra_copy"]] print(" && write KPOINTS under {}: ".format(sub_dir_name), end=" ") #The detail of KPOINTS will be printed by the bellow function. VaspAutomaticKMesh.write_KPOINTS(kpoints_setup=kpoints_setup, cal_loc=sub_dir_name) if is_opt_nl_if_conv_failed_appended and NL_list[-1] == NL: open(os.path.join(sub_dir_name, "opt_nl_if_conv_failed"), "w").close() else: open(os.path.join(sub_dir_name, "__ready__"), "w").close() if not is_opt_nl_if_conv_failed_appended and argv_dict["opt_nl_if_conv_failed"] == NL: open(os.path.join(sub_dir_name, "opt_nl_if_conv_failed"), "w").close() # In[2]: def read_and_write_no_to(filename, read_mode=True, no=0): if read_mode: if not os.path.isfile(filename): return 0 with open(filename, "r") as f: no = list(f)[0].strip("\n").strip() return int(no) else: with open(filename, "w") as f: f.write(str(no)) # In[3]: def are_all_sub_dir_cal_finished(argv_dict): for NL in argv_dict["NL_list"]: sub_dir_name = "NL_" + str(NL) if True not in [os.path.isfile(os.path.join(sub_dir_name, target_file)) for target_file in ["__done__", "__skipped__", "__done_cleaned_analyzed__", "__done_failed_to_clean_analyze__"]]: return False with open(os.path.join(sub_dir_name, "OSZICAR"), "r") as oszicar: for line in oszicar: pass incomplete_oszicar_counter = os.path.join(sub_dir_name, "_no_of_incomplete_OSZICAR_") if "F=" not in line or "E0=" not in line: no = read_and_write_no_to(filename=incomplete_oszicar_counter, read_mode=True) if no <= 5: read_and_write_no_to(filename=incomplete_oszicar_counter, read_mode=False, no=no+1) else: open("__manual__", "w").close() print("Although the calculation under {} finished, OSZICAR is found incomplete 5 times. Please check.".format(sub_dir_name)) print("Create __manual__") return False else: if os.path.isfile(incomplete_oszicar_counter): os.remove(incomplete_oszicar_counter) return True # In[15]: def find_converged_NL(argv_dict): """ Find the converged Nk_IRBZ w.r.t. the total Energy E0 in OSZICAR. Two different cases: 1. convergence_type:chg, If there are NCC consencutive absolute changes in the
<reponame>RobSpringer/xls<filename>xls/contrib/xlscc/build_rules/xlscc_rules.bzl # Copyright 2021 The XLS Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Build rules to compile with xlscc""" load("@bazel_skylib//lib:dicts.bzl", "dicts") load( "//xls/build_rules:xls_common_rules.bzl", "append_default_to_args", "args_to_string", "get_output_filename_value", "is_args_valid", ) load( "//xls/build_rules:xls_config_rules.bzl", "CONFIG", "enable_generated_file_wrapper", ) load("//xls/build_rules:xls_providers.bzl", "ConvIRInfo") load( "//xls/build_rules:xls_ir_rules.bzl", "append_xls_ir_opt_ir_generated_files", "get_xls_ir_opt_ir_generated_files", "xls_ir_opt_ir_attrs", "xls_ir_opt_ir_impl", ) load( "//xls/build_rules:xls_codegen_rules.bzl", "append_xls_ir_verilog_generated_files", "get_xls_ir_verilog_generated_files", "xls_ir_verilog_attrs", "xls_ir_verilog_impl", ) load("//xls/build_rules:xls_toolchains.bzl", "xls_toolchain_attr") _CC_FILE_EXTENSION = ".cc" _H_FILE_EXTENSION = ".h" _INC_FILE_EXTENSION = ".inc" _IR_FILE_EXTENSION = ".ir" _PROTOBIN_FILE_EXTENSION = ".protobin" _BINARYPB_FILE_EXTENSION = ".binarypb" _DEFAULT_XLSCC_ARGS = { "dump_ir_only": "True", "top": "Run", } def _append_xls_cc_ir_generated_files(args, basename): """Returns a dictionary of arguments appended with filenames generated by the 'xls_cc_ir' rule. Args: args: A dictionary of arguments. basename: The file basename. Returns: Returns a dictionary of arguments appended with filenames generated by the 'xls_cc_ir' rule. """ args.setdefault("ir_file", basename + _IR_FILE_EXTENSION) return args def _get_xls_cc_ir_generated_files(args): """Returns a list of filenames generated by the 'xls_cc_ir' rule found in 'args'. Args: args: A dictionary of arguments. Returns: Returns a list of files generated by the 'xls_cc_ir' rule found in 'args'. """ return [args.get("ir_file")] def _get_runfiles_for_xls_cc_ir(ctx): """Returns the runfiles from a 'xls_cc_ir' ctx. Args: ctx: The current rule's context object. Returns: The runfiles from a 'xls_cc_ir' ctx. """ transitive_runfiles = [] runfiles = ctx.runfiles(files = [ctx.file.src] + [ctx.file.block] + ctx.files._default_cc_header_files + ctx.files._default_synthesis_header_files + ctx.files.src_deps) transitive_runfiles.append(ctx.attr ._xlscc_tool[DefaultInfo].default_runfiles) transitive_runfiles.append(ctx.attr ._default_cc_header_files[DefaultInfo].default_runfiles) transitive_runfiles.append(ctx.attr ._default_synthesis_header_files[DefaultInfo].default_runfiles) for dep in ctx.attr.src_deps: transitive_runfiles.append(dep[DefaultInfo].default_runfiles) runfiles = runfiles.merge_all(transitive_runfiles) return runfiles def _get_transitive_built_files_for_xls_cc_ir(ctx): """Returns the transitive built files from a 'xls_cc_ir' ctx. Args: ctx: The current rule's context object. Returns: The transitive built files from a 'xls_cc_ir' ctx. """ transitive_built_files = [] transitive_built_files.append(ctx.attr.src[DefaultInfo].files) transitive_built_files.append(ctx.attr.block[DefaultInfo].files) transitive_built_files.append(ctx.attr._xlscc_tool[DefaultInfo].files) transitive_built_files.append(ctx.attr ._default_cc_header_files[DefaultInfo].files) transitive_built_files.append(ctx.attr ._default_synthesis_header_files[DefaultInfo].files) for dep in ctx.attr.src_deps: transitive_built_files.append(dep[DefaultInfo].files) if not transitive_built_files: return None return transitive_built_files def _xls_cc_ir_impl(ctx): """The implementation of the 'xls_cc_ir' rule. Converts a C/C++ source file to an IR file. Args: ctx: The current rule's context object. Returns: A tuple with the following elements in the order presented: 1. The ConvIRInfo provider 1. The list of built files. 1. The runfiles. """ XLSCC_FLAGS = ( "module_name", "block_pb", "top", "package", "clang_args_file", "defines", "include_dirs", "meta_out", "dump_ir_only", ) xlscc_args = append_default_to_args( ctx.attr.xlscc_args, _DEFAULT_XLSCC_ARGS, ) # Append to user paths. xlscc_args["include_dirs"] = ( xlscc_args.get("include_dirs", "") + ",${PWD},./," + ctx.genfiles_dir.path + "," + ctx.bin_dir.path + "," + "xls/contrib/xlscc/synth_only," + "xls/contrib/xlscc/synth_only/ac_compat," + ctx.attr._default_cc_header_files.label.workspace_root # This must the last directory in the list. ) # Append to user defines. xlscc_args["defines"] = ( xlscc_args.get("defines", "") + "__SYNTHESIS__," + "__AC_OVERRIDE_OVF_UPDATE_BODY=,__AC_OVERRIDE_OVF_UPDATE2_BODY=" ) is_args_valid(xlscc_args, XLSCC_FLAGS) my_args = args_to_string(xlscc_args) ir_filename = get_output_filename_value( ctx, "ir_file", ctx.attr.name + _IR_FILE_EXTENSION, ) ir_file = ctx.actions.declare_file(ir_filename) # Get runfiles runfiles = _get_runfiles_for_xls_cc_ir(ctx) ctx.actions.run_shell( outputs = [ir_file], # The IR converter executable is a tool needed by the action. tools = [ctx.executable._xlscc_tool], # The files required for converting the C/C++ source file. inputs = runfiles.files, command = "{} {} --block_pb {} {} > {}".format( ctx.executable._xlscc_tool.path, ctx.file.src.path, ctx.file.block.path, my_args, ir_file.path, ), mnemonic = "ConvertXLSCC", progress_message = "Converting XLSCC file: %s" % (ctx.file.src.path), ) return [ConvIRInfo(conv_ir_file = ir_file), [ir_file], runfiles] _xls_cc_ir_attrs = { "src": attr.label( doc = "The C/C++ source file containing the top level block. A " + "single source file must be provided. The file must have a '" + _CC_FILE_EXTENSION + "' extension.", mandatory = True, allow_single_file = [_CC_FILE_EXTENSION], ), "block": attr.label( doc = "Protobuf describing top-level block interface. A single " + "source file single source file must be provided. The file " + "must have a '" + _PROTOBIN_FILE_EXTENSION + "' or a '" + _BINARYPB_FILE_EXTENSION + "' extension.", mandatory = True, allow_single_file = [ _PROTOBIN_FILE_EXTENSION, _BINARYPB_FILE_EXTENSION, ], ), "src_deps": attr.label_list( doc = "Additional source files for the rule. The file must have a " + _CC_FILE_EXTENSION + ", " + _H_FILE_EXTENSION + " or " + _INC_FILE_EXTENSION + " extension.", allow_files = [ _CC_FILE_EXTENSION, _H_FILE_EXTENSION, _INC_FILE_EXTENSION, ], ), "xlscc_args": attr.string_dict( doc = "Arguments of the XLSCC conversion tool.", ), "ir_file": attr.output( doc = "Filename of the generated IR. If not specified, the " + "target name of the bazel rule followed by an " + _IR_FILE_EXTENSION + " extension is used.", ), "_xlscc_tool": attr.label( doc = "The target of the XLSCC executable.", default = Label("//xls/contrib/xlscc:xlscc"), allow_single_file = True, executable = True, cfg = "exec", ), "_default_cc_header_files": attr.label( doc = "Default C/C++ header files for xlscc.", default = Label("@com_github_hlslibs_ac_types//:ac_types_as_data"), cfg = "target", ), "_default_synthesis_header_files": attr.label( doc = "Default synthesis header files for xlscc.", default = Label("//xls/contrib/xlscc:synth_only_headers"), cfg = "target", ), } def _xls_cc_ir_impl_wrapper(ctx): """The implementation of the 'xls_cc_ir' rule. Wrapper for xls_cc_ir_impl. See: xls_cc_ir_impl. Args: ctx: The current rule's context object. Returns: ConvIRInfo provider DefaultInfo provider """ ir_conv_info, built_files, runfiles = _xls_cc_ir_impl(ctx) return [ ir_conv_info, DefaultInfo( files = depset( direct = built_files, transitive = _get_transitive_built_files_for_xls_cc_ir(ctx), ), runfiles = runfiles, ), ] xls_cc_ir = rule( doc = """A build rule that converts a C/C++ source file to an IR file. Examples: 1) A simple IR conversion example. Assume target 'a_block_pb' is defined. ``` xls_cc_ir( name = "a_ir", src = "a.cc", block = ":a_block_pb", ) ``` """, implementation = _xls_cc_ir_impl_wrapper, attrs = dicts.add( _xls_cc_ir_attrs, CONFIG["xls_outs_attrs"], ), ) def xls_cc_ir_macro( name, src, block, src_deps = [], xlscc_args = {}, enable_generated_file = True, enable_presubmit_generated_file = False, **kwargs): """A macro that instantiates a build rule generating an IR file from a C/C++ source file. The macro instantiates a rule that converts a C/C++ source file to an IR file and the 'enable_generated_file_wrapper' function. The generated files are listed in the outs attribute of the rule. Examples: 1) A simple IR conversion example. Assume target 'a_block_pb' is defined. ``` xls_cc_ir( name = "a_ir", src = "a.cc", block = ":a_block_pb", ) ``` Args: name: The name of the rule. src: The C/C++ source file containing the top level block. A single source file must be provided. The file must have a '.cc' extension. block: Protobuf describing top-level block interface. A single source file single source file must be provided. The file must have a '.protobin' or a '.binarypb' extension. src_deps: Additional source files for the rule. The file must have a '.cc', '.h' or '.inc' extension. xlscc_args: Arguments of the XLSCC conversion tool. enable_generated_file: See 'enable_generated_file' from 'enable_generated_file_wrapper' function. enable_presubmit_generated_file: See 'enable_presubmit_generated_file' from 'enable_generated_file_wrapper' function. **kwargs: Keyword arguments. Named arguments. """ # Type check input if type(name) != type(""): fail("Argument 'name' must be of string type.") if type(src) != type(""): fail("Argument 'src' must be of string type.") if type(block) != type(""): fail("Argument 'block' must be of string type.") if type(src_deps) != type([]): fail("Argument 'src_deps' must be of list type.") if type(xlscc_args) != type({}): fail("Argument 'xlscc_args' must be of dictionary type.") if type(enable_generated_file) != type(True): fail("Argument 'enable_generated_file' must be of boolean type.") if type(enable_presubmit_generated_file) != type(True): fail("Argument 'enable_presubmit_generated_file' must be " + "of boolean type.") # Append output files to arguments. kwargs = _append_xls_cc_ir_generated_files(kwargs, name) xls_cc_ir( name = name, src = src, block = block, src_deps = src_deps, xlscc_args = xlscc_args, outs = _get_xls_cc_ir_generated_files(kwargs), **kwargs ) enable_generated_file_wrapper( wrapped_target = name, enable_generated_file = enable_generated_file, enable_presubmit_generated_file = enable_presubmit_generated_file, **kwargs ) def _xls_cc_verilog_impl(ctx): """The implementation of the 'xls_cc_verilog' rule. Converts a C/C++ file to an IR, optimizes the IR, and generates a verilog file from the optimized IR. Args: ctx: The current rule's context object. Returns: ConvIRInfo provider. OptIRInfo provider. CodegenInfo provider. DefaultInfo provider. """ ir_conv_info, ir_conv_built_files, ir_conv_runfiles = _xls_cc_ir_impl(ctx) ir_opt_info, opt_ir_built_files, opt_ir_runfiles = xls_ir_opt_ir_impl( ctx, ir_conv_info.conv_ir_file, ) codegen_info, verilog_built_files, verilog_runfiles = xls_ir_verilog_impl( ctx, ir_opt_info.opt_ir_file, ) runfiles = ir_conv_runfiles.merge_all([opt_ir_runfiles, verilog_runfiles]) return [ ir_conv_info, ir_opt_info, codegen_info, DefaultInfo( files = depset( direct = ir_conv_built_files + opt_ir_built_files + verilog_built_files, transitive = _get_transitive_built_files_for_xls_cc_ir(ctx), ), runfiles = runfiles, ), ] _cc_verilog_attrs = dicts.add( _xls_cc_ir_attrs, xls_ir_opt_ir_attrs, xls_ir_verilog_attrs, CONFIG["xls_outs_attrs"], xls_toolchain_attr, ) xls_cc_verilog = rule( doc = """A build rule that generates a Verilog file from a C/C++
retrieve the preferred lifetime value of a DHCP IPv6 Network object. range_templates: The list of IPv6 address range templates assigned to this IPv6 network template object. When you create an IPv6 network based on an IPv6 network template object that contains IPv6 range templates, the IPv6 address ranges are created based on the associated IPv6 address range templates. recycle_leases: If the field is set to True, the leases are kept in the Recycle Bin until one week after expiration. Otherwise, the leases are permanently deleted. rir: The registry (RIR) that allocated the IPv6 network address space. rir_organization: The RIR organization associated with the IPv6 network. rir_registration_action: The action for the RIR registration. rir_registration_status: The registration status of the IPv6 network in RIR. send_rir_request: Determines whether to send the RIR registration request. update_dns_on_lease_renewal: This field controls whether the DHCP server updates DNS when a DHCP lease is renewed. use_ddns_domainname: Use flag for: ddns_domainname use_ddns_enable_option_fqdn: Use flag for: ddns_enable_option_fqdn use_ddns_generate_hostname: Use flag for: ddns_generate_hostname use_ddns_ttl: Use flag for: ddns_ttl use_domain_name: Use flag for: domain_name use_domain_name_servers: Use flag for: domain_name_servers use_enable_ddns: Use flag for: enable_ddns use_options: Use flag for: options use_preferred_lifetime: Use flag for: preferred_lifetime use_recycle_leases: Use flag for: recycle_leases use_update_dns_on_lease_renewal: Use flag for: update_dns_on_lease_renewal use_valid_lifetime: Use flag for: valid_lifetime valid_lifetime: Use this method to set or retrieve the valid lifetime value of a DHCP IPv6 Network object. """ _infoblox_type = 'ipv6networktemplate' _fields = ['allow_any_netmask', 'auto_create_reversezone', 'cidr', 'cloud_api_compatible', 'comment', 'ddns_domainname', 'ddns_enable_option_fqdn', 'ddns_generate_hostname', 'ddns_server_always_updates', 'ddns_ttl', 'delegated_member', 'domain_name', 'domain_name_servers', 'enable_ddns', 'extattrs', 'fixed_address_templates', 'ipv6prefix', 'members', 'name', 'options', 'preferred_lifetime', 'range_templates', 'recycle_leases', 'rir', 'rir_organization', 'rir_registration_action', 'rir_registration_status', 'send_rir_request', 'update_dns_on_lease_renewal', 'use_ddns_domainname', 'use_ddns_enable_option_fqdn', 'use_ddns_generate_hostname', 'use_ddns_ttl', 'use_domain_name', 'use_domain_name_servers', 'use_enable_ddns', 'use_options', 'use_preferred_lifetime', 'use_recycle_leases', 'use_update_dns_on_lease_renewal', 'use_valid_lifetime', 'valid_lifetime'] _search_for_update_fields = ['name'] _updateable_search_fields = ['comment', 'ipv6prefix', 'name', 'rir_organization'] _all_searchable_fields = ['comment', 'ipv6prefix', 'name', 'rir', 'rir_organization'] _return_fields = ['comment', 'extattrs', 'name'] _remap = {} _shadow_fields = ['_ref'] _ip_version = 6 _custom_field_processing = { 'members': Dhcpmember.from_dict, 'options': Dhcpoption.from_dict, } class IPRange(InfobloxObject): @classmethod def get_v4_class(cls): return IPRangeV4 @classmethod def get_v6_class(cls): return IPRangeV6 class IPRangeV4(IPRange): """ IPRangeV4: DHCP Range object. Corresponds to WAPI object 'range' A DHCP range defines the specified range of IP addresses in a network. A DHCP range should be added for a network so the Infoblox appliance can assign IP addresses within that specified range to DHCP clients. If the client is on a network that is assigned a DHCP range, the device distributes an available IP address from that range to the DHCP client, or to a DHCP relay agent if the request came through an agent. The DHCP range should also be assigned with a device. If devices are in a grid, the particular member serving DHCP for the DHCP range must be specified. If the server is an independent device, this device must be specified as the member that serves the DHCP range. Fields: always_update_dns: This field controls whether only the DHCP server is allowed to update DNS, regardless of the DHCP clients requests. bootfile: The bootfile name for the range. You can configure the DHCP server to support clients that use the boot file name option in their DHCPREQUEST messages. bootserver: The bootserver address for the range. You can specify the name and/or IP address of the boot server that the host needs to boot.The boot server IPv4 Address or name in FQDN format. cloud_info: Structure containing all cloud API related information for this object. comment: Comment for the range; maximum 256 characters. ddns_domainname: The dynamic DNS domain name the appliance uses specifically for DDNS updates for this range. ddns_generate_hostname: If this field is set to True, the DHCP server generates a hostname and updates DNS with it when the DHCP client request does not contain a hostname. deny_all_clients: If True, send NAK forcing the client to take the new address. deny_bootp: If set to true, BOOTP settings are disabled and BOOTP requests will be denied. dhcp_utilization: The percentage of the total DHCP utilization of the range multiplied by 1000. This is the percentage of the total number of available IP addresses belonging to the range versus the total number of all IP addresses in the range. dhcp_utilization_status: A string describing the utilization level of the range. disable: Determines whether a range is disabled or not. When this is set to False, the range is enabled. discover_now_status: Discover now status for this range. discovery_basic_poll_settings: The discovery basic poll settings for this range. discovery_blackout_setting: The discovery blackout setting for this range. discovery_member: The member that will run discovery for this range. dynamic_hosts: The total number of DHCP leases issued for the range. email_list: The e-mail lists to which the appliance sends DHCP threshold alarm e-mail messages. enable_ddns: The dynamic DNS updates flag of a DHCP range object. If set to True, the DHCP server sends DDNS updates to DNS servers in the same Grid, and to external DNS servers. enable_dhcp_thresholds: Determines if DHCP thresholds are enabled for the range. enable_discovery: Determines whether a discovery is enabled or not for this range. When this is set to False, the discovery for this range is disabled. enable_email_warnings: Determines if DHCP threshold warnings are sent through email. enable_ifmap_publishing: Determines if IFMAP publishing is enabled for the range. enable_immediate_discovery: Determines if the discovery for the range should be immediately enabled. enable_pxe_lease_time: Set this to True if you want the DHCP server to use a different lease time for PXE clients. enable_snmp_warnings: Determines if DHCP threshold warnings are send through SNMP. end_addr: The IPv4 Address end address of the range. endpoint_sources: The endpoints that provides data for the DHCP Range object. exclude: These are ranges of IP addresses that the appliance does not use to assign to clients. You can use these exclusion addresses as static IP addresses. They contain the start and end addresses of the exclusion range, and optionally, information about this exclusion range. extattrs: Extensible attributes associated with the object.For valid values for extensible attributes, see the following information. failover_association: The name of the failover association: the server in this failover association will serve the IPv4 range in case the main server is out of service. fingerprint_filter_rules: This field contains the fingerprint filters for this DHCP range.The appliance uses matching rules in these filters to select the address range from which it assigns a lease. high_water_mark: The percentage of DHCP range usage threshold above which range usage is not expected and may warrant your attention. When the high watermark is reached, the Infoblox appliance generates a syslog message and sends a warning (if enabled).A number that specifies the percentage of allocated addresses. The range is from 1 to 100. high_water_mark_reset: The percentage of DHCP range usage below which the corresponding SNMP trap is reset.A number that specifies the percentage of allocated addresses. The range is from 1 to 100. The high watermark reset value must be lower than the high watermark value. ignore_dhcp_option_list_request: If this field is set to False, the appliance returns all DHCP options the client is eligible to receive, rather than only the list of options the client has requested. ignore_id: Indicates whether the appliance will ignore DHCP client IDs or MAC addresses. Valid values are "NONE", "CLIENT", or "MACADDR". The default is "NONE". ignore_mac_addresses: A list of MAC addresses the appliance will ignore. is_split_scope: This field will be 'true' if this particular range is part of a split scope. known_clients: Permission for known clients. This can be 'Allow' or 'Deny'. If set to 'Deny' known clients will be denied IP addresses.Known clients include roaming hosts and clients with fixed addresses or DHCP host entries. Unknown clients include clients that are not roaming hosts and clients that do not have fixed addresses or DHCP host entries. lease_scavenge_time: An integer that specifies the period of time (in seconds) that frees and backs up leases remained
return vimagemodule.VImage_tan(*args) def andimage(*args): return vimagemodule.VImage_andimage(*args) def orimage(*args): return vimagemodule.VImage_orimage(*args) def eorimage(*args): return vimagemodule.VImage_eorimage(*args) def shiftleft(*args): return vimagemodule.VImage_shiftleft(*args) def shiftright(*args): return vimagemodule.VImage_shiftright(*args) def greyc(*args): return vimagemodule.VImage_greyc(*args) def greyc_mask(*args): return vimagemodule.VImage_greyc_mask(*args) def LCh2Lab(*args): return vimagemodule.VImage_LCh2Lab(*args) def LCh2UCS(*args): return vimagemodule.VImage_LCh2UCS(*args) def Lab2LCh(*args): return vimagemodule.VImage_Lab2LCh(*args) def Lab2LabQ(*args): return vimagemodule.VImage_Lab2LabQ(*args) def Lab2LabS(*args): return vimagemodule.VImage_Lab2LabS(*args) def Lab2UCS(*args): return vimagemodule.VImage_Lab2UCS(*args) def Lab2XYZ(*args): return vimagemodule.VImage_Lab2XYZ(*args) def Lab2XYZ_temp(*args): return vimagemodule.VImage_Lab2XYZ_temp(*args) def Lab2disp(*args): return vimagemodule.VImage_Lab2disp(*args) def LabQ2LabS(*args): return vimagemodule.VImage_LabQ2LabS(*args) def LabQ2Lab(*args): return vimagemodule.VImage_LabQ2Lab(*args) def LabQ2XYZ(*args): return vimagemodule.VImage_LabQ2XYZ(*args) def LabQ2disp(*args): return vimagemodule.VImage_LabQ2disp(*args) def LabS2LabQ(*args): return vimagemodule.VImage_LabS2LabQ(*args) def LabS2Lab(*args): return vimagemodule.VImage_LabS2Lab(*args) def UCS2LCh(*args): return vimagemodule.VImage_UCS2LCh(*args) def UCS2Lab(*args): return vimagemodule.VImage_UCS2Lab(*args) def UCS2XYZ(*args): return vimagemodule.VImage_UCS2XYZ(*args) def XYZ2Lab(*args): return vimagemodule.VImage_XYZ2Lab(*args) def XYZ2Lab_temp(*args): return vimagemodule.VImage_XYZ2Lab_temp(*args) def XYZ2UCS(*args): return vimagemodule.VImage_XYZ2UCS(*args) def XYZ2Yxy(*args): return vimagemodule.VImage_XYZ2Yxy(*args) def XYZ2disp(*args): return vimagemodule.VImage_XYZ2disp(*args) def XYZ2sRGB(*args): return vimagemodule.VImage_XYZ2sRGB(*args) def Yxy2XYZ(*args): return vimagemodule.VImage_Yxy2XYZ(*args) def dE00_fromLab(*args): return vimagemodule.VImage_dE00_fromLab(*args) def dECMC_fromLab(*args): return vimagemodule.VImage_dECMC_fromLab(*args) def dECMC_fromdisp(*args): return vimagemodule.VImage_dECMC_fromdisp(*args) def dE_fromLab(*args): return vimagemodule.VImage_dE_fromLab(*args) def dE_fromXYZ(*args): return vimagemodule.VImage_dE_fromXYZ(*args) def dE_fromdisp(*args): return vimagemodule.VImage_dE_fromdisp(*args) def disp2Lab(*args): return vimagemodule.VImage_disp2Lab(*args) def disp2XYZ(*args): return vimagemodule.VImage_disp2XYZ(*args) def icc_ac2rc(*args): return vimagemodule.VImage_icc_ac2rc(*args) def icc_export(*args): return vimagemodule.VImage_icc_export(*args) def icc_export_depth(*args): return vimagemodule.VImage_icc_export_depth(*args) def icc_import(*args): return vimagemodule.VImage_icc_import(*args) def icc_import_embedded(*args): return vimagemodule.VImage_icc_import_embedded(*args) def icc_transform(*args): return vimagemodule.VImage_icc_transform(*args) def lab_morph(*args): return vimagemodule.VImage_lab_morph(*args) def sRGB2XYZ(*args): return vimagemodule.VImage_sRGB2XYZ(*args) def bandjoin(*args): return vimagemodule.VImage_bandjoin(*args) __swig_getmethods__["black"] = lambda x: vimagemodule.VImage_black if _newclass:black = staticmethod(vimagemodule.VImage_black) def c2amph(*args): return vimagemodule.VImage_c2amph(*args) def c2imag(*args): return vimagemodule.VImage_c2imag(*args) def c2ps(*args): return vimagemodule.VImage_c2ps(*args) def c2real(*args): return vimagemodule.VImage_c2real(*args) def c2rect(*args): return vimagemodule.VImage_c2rect(*args) def clip2c(*args): return vimagemodule.VImage_clip2c(*args) def clip2cm(*args): return vimagemodule.VImage_clip2cm(*args) def clip2d(*args): return vimagemodule.VImage_clip2d(*args) def clip2dcm(*args): return vimagemodule.VImage_clip2dcm(*args) def clip2f(*args): return vimagemodule.VImage_clip2f(*args) def clip2fmt(*args): return vimagemodule.VImage_clip2fmt(*args) def clip2i(*args): return vimagemodule.VImage_clip2i(*args) def clip2s(*args): return vimagemodule.VImage_clip2s(*args) def clip2ui(*args): return vimagemodule.VImage_clip2ui(*args) def clip2us(*args): return vimagemodule.VImage_clip2us(*args) def clip(*args): return vimagemodule.VImage_clip(*args) def copy(*args): return vimagemodule.VImage_copy(*args) def copy_morph(*args): return vimagemodule.VImage_copy_morph(*args) def copy_swap(*args): return vimagemodule.VImage_copy_swap(*args) def copy_set(*args): return vimagemodule.VImage_copy_set(*args) __swig_getmethods__["csv2vips"] = lambda x: vimagemodule.VImage_csv2vips if _newclass:csv2vips = staticmethod(vimagemodule.VImage_csv2vips) def extract_area(*args): return vimagemodule.VImage_extract_area(*args) def extract_areabands(*args): return vimagemodule.VImage_extract_areabands(*args) def extract_band(*args): return vimagemodule.VImage_extract_band(*args) def extract_bands(*args): return vimagemodule.VImage_extract_bands(*args) def extract(*args): return vimagemodule.VImage_extract(*args) def falsecolour(*args): return vimagemodule.VImage_falsecolour(*args) def fliphor(*args): return vimagemodule.VImage_fliphor(*args) def flipver(*args): return vimagemodule.VImage_flipver(*args) __swig_getmethods__["gbandjoin"] = lambda x: vimagemodule.VImage_gbandjoin if _newclass:gbandjoin = staticmethod(vimagemodule.VImage_gbandjoin) def grid(*args): return vimagemodule.VImage_grid(*args) def insert(*args): return vimagemodule.VImage_insert(*args) def insert_noexpand(*args): return vimagemodule.VImage_insert_noexpand(*args) __swig_getmethods__["jpeg2vips"] = lambda x: vimagemodule.VImage_jpeg2vips if _newclass:jpeg2vips = staticmethod(vimagemodule.VImage_jpeg2vips) def lrjoin(*args): return vimagemodule.VImage_lrjoin(*args) __swig_getmethods__["magick2vips"] = lambda x: vimagemodule.VImage_magick2vips if _newclass:magick2vips = staticmethod(vimagemodule.VImage_magick2vips) __swig_getmethods__["mask2vips"] = lambda x: vimagemodule.VImage_mask2vips if _newclass:mask2vips = staticmethod(vimagemodule.VImage_mask2vips) def msb(*args): return vimagemodule.VImage_msb(*args) def msb_band(*args): return vimagemodule.VImage_msb_band(*args) __swig_getmethods__["png2vips"] = lambda x: vimagemodule.VImage_png2vips if _newclass:png2vips = staticmethod(vimagemodule.VImage_png2vips) __swig_getmethods__["exr2vips"] = lambda x: vimagemodule.VImage_exr2vips if _newclass:exr2vips = staticmethod(vimagemodule.VImage_exr2vips) __swig_getmethods__["ppm2vips"] = lambda x: vimagemodule.VImage_ppm2vips if _newclass:ppm2vips = staticmethod(vimagemodule.VImage_ppm2vips) __swig_getmethods__["analyze2vips"] = lambda x: vimagemodule.VImage_analyze2vips if _newclass:analyze2vips = staticmethod(vimagemodule.VImage_analyze2vips) def recomb(*args): return vimagemodule.VImage_recomb(*args) def replicate(*args): return vimagemodule.VImage_replicate(*args) def ri2c(*args): return vimagemodule.VImage_ri2c(*args) def rot180(*args): return vimagemodule.VImage_rot180(*args) def rot270(*args): return vimagemodule.VImage_rot270(*args) def rot90(*args): return vimagemodule.VImage_rot90(*args) def scale(*args): return vimagemodule.VImage_scale(*args) def scaleps(*args): return vimagemodule.VImage_scaleps(*args) def rightshift_size(*args): return vimagemodule.VImage_rightshift_size(*args) def slice(*args): return vimagemodule.VImage_slice(*args) def subsample(*args): return vimagemodule.VImage_subsample(*args) def system(*args): return vimagemodule.VImage_system(*args) def tbjoin(*args): return vimagemodule.VImage_tbjoin(*args) __swig_getmethods__["text"] = lambda x: vimagemodule.VImage_text if _newclass:text = staticmethod(vimagemodule.VImage_text) def thresh(*args): return vimagemodule.VImage_thresh(*args) __swig_getmethods__["tiff2vips"] = lambda x: vimagemodule.VImage_tiff2vips if _newclass:tiff2vips = staticmethod(vimagemodule.VImage_tiff2vips) def vips2csv(*args): return vimagemodule.VImage_vips2csv(*args) def vips2jpeg(*args): return vimagemodule.VImage_vips2jpeg(*args) def vips2mask(*args): return vimagemodule.VImage_vips2mask(*args) def vips2mimejpeg(*args): return vimagemodule.VImage_vips2mimejpeg(*args) def vips2png(*args): return vimagemodule.VImage_vips2png(*args) def vips2ppm(*args): return vimagemodule.VImage_vips2ppm(*args) def vips2tiff(*args): return vimagemodule.VImage_vips2tiff(*args) def wrap(*args): return vimagemodule.VImage_wrap(*args) def zoom(*args): return vimagemodule.VImage_zoom(*args) def addgnoise(*args): return vimagemodule.VImage_addgnoise(*args) def compass(*args): return vimagemodule.VImage_compass(*args) def contrast_surface(*args): return vimagemodule.VImage_contrast_surface(*args) def contrast_surface_raw(*args): return vimagemodule.VImage_contrast_surface_raw(*args) def conv(*args): return vimagemodule.VImage_conv(*args) def conv_raw(*args): return vimagemodule.VImage_conv_raw(*args) def convf(*args): return vimagemodule.VImage_convf(*args) def convf_raw(*args): return vimagemodule.VImage_convf_raw(*args) def convsep(*args): return vimagemodule.VImage_convsep(*args) def convsep_raw(*args): return vimagemodule.VImage_convsep_raw(*args) def convsepf(*args): return vimagemodule.VImage_convsepf(*args) def convsepf_raw(*args): return vimagemodule.VImage_convsepf_raw(*args) def convsub(*args): return vimagemodule.VImage_convsub(*args) def embed(*args): return vimagemodule.VImage_embed(*args) def fastcor(*args): return vimagemodule.VImage_fastcor(*args) def fastcor_raw(*args): return vimagemodule.VImage_fastcor_raw(*args) __swig_getmethods__["gaussnoise"] = lambda x: vimagemodule.VImage_gaussnoise if _newclass:gaussnoise = staticmethod(vimagemodule.VImage_gaussnoise) def grad_x(*args): return vimagemodule.VImage_grad_x(*args) def grad_y(*args): return vimagemodule.VImage_grad_y(*args) def gradcor(*args): return vimagemodule.VImage_gradcor(*args) def gradcor_raw(*args): return vimagemodule.VImage_gradcor_raw(*args) def gradient(*args): return vimagemodule.VImage_gradient(*args) __swig_getmethods__["rank_image"] = lambda x: vimagemodule.VImage_rank_image if _newclass:rank_image = staticmethod(vimagemodule.VImage_rank_image) def lindetect(*args): return vimagemodule.VImage_lindetect(*args) __swig_getmethods__["maxvalue"] = lambda x: vimagemodule.VImage_maxvalue if _newclass:maxvalue = staticmethod(vimagemodule.VImage_maxvalue) def mpercent(*args): return vimagemodule.VImage_mpercent(*args) def phasecor_fft(*args): return vimagemodule.VImage_phasecor_fft(*args) def rank(*args): return vimagemodule.VImage_rank(*args) def rank_raw(*args): return vimagemodule.VImage_rank_raw(*args) def resize_linear(*args): return vimagemodule.VImage_resize_linear(*args) def sharpen(*args): return vimagemodule.VImage_sharpen(*args) def shrink(*args): return vimagemodule.VImage_shrink(*args) def spcor(*args): return vimagemodule.VImage_spcor(*args) def spcor_raw(*args): return vimagemodule.VImage_spcor_raw(*args) def stretch3(*args): return vimagemodule.VImage_stretch3(*args) def zerox(*args): return vimagemodule.VImage_zerox(*args) __swig_getmethods__["create_fmask"] = lambda x: vimagemodule.VImage_create_fmask if _newclass:create_fmask = staticmethod(vimagemodule.VImage_create_fmask) def disp_ps(*args): return vimagemodule.VImage_disp_ps(*args) def flt_image_freq(*args): return vimagemodule.VImage_flt_image_freq(*args) __swig_getmethods__["fractsurf"] = lambda x: vimagemodule.VImage_fractsurf if _newclass:fractsurf = staticmethod(vimagemodule.VImage_fractsurf) def freqflt(*args): return vimagemodule.VImage_freqflt(*args) def fwfft(*args): return vimagemodule.VImage_fwfft(*args) def rotquad(*args): return vimagemodule.VImage_rotquad(*args) def invfft(*args): return vimagemodule.VImage_invfft(*args) def invfftr(*args): return vimagemodule.VImage_invfftr(*args) def gammacorrect(*args): return vimagemodule.VImage_gammacorrect(*args) def heq(*args): return vimagemodule.VImage_heq(*args) def hist(*args): return vimagemodule.VImage_hist(*args) def histcum(*args): return vimagemodule.VImage_histcum(*args) def histeq(*args): return vimagemodule.VImage_histeq(*args) def histgr(*args): return vimagemodule.VImage_histgr(*args) def histnD(*args): return vimagemodule.VImage_histnD(*args) def histnorm(*args): return vimagemodule.VImage_histnorm(*args) def histplot(*args): return vimagemodule.VImage_histplot(*args) def histspec(*args): return vimagemodule.VImage_histspec(*args) def hsp(*args): return vimagemodule.VImage_hsp(*args) __swig_getmethods__["identity"] = lambda x: vimagemodule.VImage_identity if _newclass:identity = staticmethod(vimagemodule.VImage_identity) __swig_getmethods__["identity_ushort"] = lambda x: vimagemodule.VImage_identity_ushort if _newclass:identity_ushort = staticmethod(vimagemodule.VImage_identity_ushort) def ismonotonic(*args): return vimagemodule.VImage_ismonotonic(*args) def lhisteq(*args): return vimagemodule.VImage_lhisteq(*args) def lhisteq_raw(*args): return vimagemodule.VImage_lhisteq_raw(*args) __swig_getmethods__["invertlut"] = lambda x: vimagemodule.VImage_invertlut if _newclass:invertlut = staticmethod(vimagemodule.VImage_invertlut) __swig_getmethods__["buildlut"] = lambda x: vimagemodule.VImage_buildlut if _newclass:buildlut = staticmethod(vimagemodule.VImage_buildlut) def maplut(*args): return vimagemodule.VImage_maplut(*args) def project(*args): return vimagemodule.VImage_project(*args) def stdif(*args): return vimagemodule.VImage_stdif(*args) def stdif_raw(*args): return vimagemodule.VImage_stdif_raw(*args) def tone_analyse(*args): return vimagemodule.VImage_tone_analyse(*args) __swig_getmethods__["tone_build"] = lambda x: vimagemodule.VImage_tone_build if _newclass:tone_build = staticmethod(vimagemodule.VImage_tone_build) __swig_getmethods__["tone_build_range"] = lambda x: vimagemodule.VImage_tone_build_range if _newclass:tone_build_range = staticmethod(vimagemodule.VImage_tone_build_range) def tone_map(*args): return vimagemodule.VImage_tone_map(*args) def circle(*args): return vimagemodule.VImage_circle(*args) def flood_blob_copy(*args): return vimagemodule.VImage_flood_blob_copy(*args) def insertplace(*args): return vimagemodule.VImage_insertplace(*args) def line(*args): return vimagemodule.VImage_line(*args) def lineset(*args): return vimagemodule.VImage_lineset(*args) __swig_getmethods__["binfile"] = lambda x: vimagemodule.VImage_binfile if _newclass:binfile = staticmethod(vimagemodule.VImage_binfile) def cache(*args): return vimagemodule.VImage_cache(*args) def header_get_type(*args): return vimagemodule.VImage_header_get_type(*args) def header_int(*args): return vimagemodule.VImage_header_int(*args) def header_double(*args): return vimagemodule.VImage_header_double(*args) def header_string(*args): return vimagemodule.VImage_header_string(*args) def cntlines(*args): return vimagemodule.VImage_cntlines(*args) def dilate(*args): return vimagemodule.VImage_dilate(*args) def dilate_raw(*args): return vimagemodule.VImage_dilate_raw(*args) def erode(*args): return vimagemodule.VImage_erode(*args) def erode_raw(*args): return vimagemodule.VImage_erode_raw(*args) def profile(*args): return vimagemodule.VImage_profile(*args) def affine(*args): return vimagemodule.VImage_affine(*args) def align_bands(*args): return vimagemodule.VImage_align_bands(*args) def correl(*args): return vimagemodule.VImage_correl(*args) def _find_lroverlap(*args): return vimagemodule.VImage__find_lroverlap(*args) def _find_tboverlap(*args): return vimagemodule.VImage__find_tboverlap(*args) def global_balance(*args): return vimagemodule.VImage_global_balance(*args) def global_balancef(*args): return vimagemodule.VImage_global_balancef(*args) def lrmerge(*args): return vimagemodule.VImage_lrmerge(*args) def lrmerge1(*args): return vimagemodule.VImage_lrmerge1(*args) def lrmosaic(*args): return vimagemodule.VImage_lrmosaic(*args) def lrmosaic1(*args): return vimagemodule.VImage_lrmosaic1(*args) def match_linear(*args): return vimagemodule.VImage_match_linear(*args) def match_linear_search(*args): return vimagemodule.VImage_match_linear_search(*args) def maxpos_subpel(*args): return vimagemodule.VImage_maxpos_subpel(*args) def remosaic(*args): return vimagemodule.VImage_remosaic(*args) def similarity_area(*args): return vimagemodule.VImage_similarity_area(*args) def similarity(*args): return vimagemodule.VImage_similarity(*args) def tbmerge(*args): return vimagemodule.VImage_tbmerge(*args) def tbmerge1(*args): return vimagemodule.VImage_tbmerge1(*args) def tbmosaic(*args): return vimagemodule.VImage_tbmosaic(*args) def tbmosaic1(*args): return vimagemodule.VImage_tbmosaic1(*args) def benchmark(*args): return vimagemodule.VImage_benchmark(*args) def benchmark2(*args): return vimagemodule.VImage_benchmark2(*args) def benchmarkn(*args): return vimagemodule.VImage_benchmarkn(*args) __swig_getmethods__["eye"] = lambda x: vimagemodule.VImage_eye if _newclass:eye = staticmethod(vimagemodule.VImage_eye) __swig_getmethods__["grey"] = lambda x: vimagemodule.VImage_grey if _newclass:grey = staticmethod(vimagemodule.VImage_grey) __swig_getmethods__["feye"] = lambda x: vimagemodule.VImage_feye if _newclass:feye = staticmethod(vimagemodule.VImage_feye) __swig_getmethods__["fgrey"] = lambda x: vimagemodule.VImage_fgrey if _newclass:fgrey = staticmethod(vimagemodule.VImage_fgrey) __swig_getmethods__["fzone"] = lambda x: vimagemodule.VImage_fzone if _newclass:fzone = staticmethod(vimagemodule.VImage_fzone) __swig_getmethods__["make_xy"] = lambda x: vimagemodule.VImage_make_xy if _newclass:make_xy = staticmethod(vimagemodule.VImage_make_xy) __swig_getmethods__["zone"] = lambda x: vimagemodule.VImage_zone if _newclass:zone = staticmethod(vimagemodule.VImage_zone) def blend(*args): return vimagemodule.VImage_blend(*args) def equal(*args): return vimagemodule.VImage_equal(*args) def ifthenelse(*args): return vimagemodule.VImage_ifthenelse(*args) def less(*args): return vimagemodule.VImage_less(*args) def lesseq(*args): return vimagemodule.VImage_lesseq(*args) def more(*args): return vimagemodule.VImage_more(*args) def moreeq(*args): return vimagemodule.VImage_moreeq(*args) def notequal(*args): return vimagemodule.VImage_notequal(*args) __swig_getmethods__["video_test"] = lambda x: vimagemodule.VImage_video_test if _newclass:video_test = staticmethod(vimagemodule.VImage_video_test) __swig_getmethods__["video_v4l1"] = lambda x: vimagemodule.VImage_video_v4l1 if _newclass:video_v4l1 = staticmethod(vimagemodule.VImage_video_v4l1) def tobuffer(*args): return vimagemodule.VImage_tobuffer(*args) __swig_getmethods__["frombuffer"] = lambda x: vimagemodule.VImage_frombuffer if _newclass:frombuffer = staticmethod(vimagemodule.VImage_frombuffer) def tostring(*args): return vimagemodule.VImage_tostring(*args) __swig_getmethods__["fromstring"] = lambda x: vimagemodule.VImage_fromstring if _newclass:fromstring = staticmethod(vimagemodule.VImage_fromstring) VImage_swigregister = vimagemodule.VImage_swigregister VImage_swigregister(VImage) VImage_print_all = vimagemodule.VImage_print_all VImage_convert2disc = vimagemodule.VImage_convert2disc VImage_linreg = vimagemodule.VImage_linreg VImage_black = vimagemodule.VImage_black VImage_csv2vips = vimagemodule.VImage_csv2vips VImage_gbandjoin = vimagemodule.VImage_gbandjoin VImage_jpeg2vips = vimagemodule.VImage_jpeg2vips VImage_magick2vips = vimagemodule.VImage_magick2vips VImage_mask2vips = vimagemodule.VImage_mask2vips VImage_png2vips = vimagemodule.VImage_png2vips VImage_exr2vips = vimagemodule.VImage_exr2vips VImage_ppm2vips = vimagemodule.VImage_ppm2vips VImage_analyze2vips = vimagemodule.VImage_analyze2vips VImage_text = vimagemodule.VImage_text VImage_tiff2vips = vimagemodule.VImage_tiff2vips VImage_gaussnoise = vimagemodule.VImage_gaussnoise VImage_rank_image = vimagemodule.VImage_rank_image VImage_maxvalue = vimagemodule.VImage_maxvalue VImage_create_fmask = vimagemodule.VImage_create_fmask VImage_fractsurf = vimagemodule.VImage_fractsurf VImage_identity = vimagemodule.VImage_identity VImage_identity_ushort = vimagemodule.VImage_identity_ushort VImage_invertlut = vimagemodule.VImage_invertlut VImage_buildlut = vimagemodule.VImage_buildlut VImage_tone_build = vimagemodule.VImage_tone_build VImage_tone_build_range = vimagemodule.VImage_tone_build_range VImage_binfile = vimagemodule.VImage_binfile VImage_eye = vimagemodule.VImage_eye VImage_grey = vimagemodule.VImage_grey VImage_feye = vimagemodule.VImage_feye VImage_fgrey = vimagemodule.VImage_fgrey VImage_fzone = vimagemodule.VImage_fzone VImage_make_xy = vimagemodule.VImage_make_xy VImage_zone = vimagemodule.VImage_zone VImage_video_test = vimagemodule.VImage_video_test VImage_video_v4l1 = vimagemodule.VImage_video_v4l1 VImage_frombuffer = vimagemodule.VImage_frombuffer VImage_fromstring = vimagemodule.VImage_fromstring im_init_world = vimagemodule.im_init_world im__print_all = vimagemodule.im__print_all im_col_Lab2XYZ = vimagemodule.im_col_Lab2XYZ # try to guess a PIL mode string from a VIPS image def PIL_mode_from_vips (vim): if vim.Bands
/ "correct2002", feeddown=0, ips=correct_ips, ignore_missing_columns=True, iterations=1, ) # Testing -------------------------------------------------------------- # Check output data --- assert len(list(tmp_path.glob("correct*"))) == 6 # Check all found correctors --- # only octupole correctors should be present for correction in (df_corrections_f4000, df_corrections_f2200, df_corrections_f2002): assert len(correction.index) == 4 assert all(correction['order'] == 4) # f4000 and f2200 should give same values for correction assert_frame_equal(df_corrections_f4000, df_corrections_f2200) # f4000 and f2002 should give different values for correction with pytest.raises(AssertionError): assert_series_equal(df_corrections_f4000[VALUE], df_corrections_f2002[VALUE]) # frames are equal apart from value, though non_val_columns = [col for col in df_corrections_f2200.columns if col != VALUE] assert_frame_equal(df_corrections_f4000[non_val_columns], df_corrections_f2002[non_val_columns]) def test_switched_beta(self): """Test using the special RDTs* where the beta-exponents are switched.""" # Parameters ----------------------------------------------------------- accel = 'hllhc' correct_ips = (1, 3) n_magnets = 4 n_ips = 4 n_sides = 2 # Setup ---------------------------------------------------------------- beta = 2 error_value = 2 optics = generate_pseudo_model( accel=accel, n_ips=n_ips, n_magnets=n_magnets, betax=beta, betay=beta) errors = generate_errortable( index=get_some_magnet_names(n_ips=n_ips, n_magnets=n_magnets), value=error_value, ) # Correction --------------------------------------------------------------- _, df_corrections = irnl_correct( accel=accel, optics=[optics, ], errors=[errors, ], beams=[1, ], rdts=["f4000", ], ips=correct_ips, ignore_missing_columns=True, iterations=1, ) _, df_corrections_switched = irnl_correct( accel=accel, optics=[optics, ], errors=[errors, ], beams=[1, ], rdts=["f0004*", ], # only for testing purposes use this RDT ips=correct_ips, ignore_missing_columns=True, iterations=1, ) # as beta cancels out: error_strengths = n_sides * n_magnets * error_value for ip in correct_ips: mask = df_corrections_switched[IP] == ip corrector_strengths_switched = sum(df_corrections_switched.loc[mask, VALUE]) assert abs(corrector_strengths_switched + error_strengths) < EPS # compensation of RDT assert_frame_equal(df_corrections, df_corrections_switched) class TestFeeddown: @pytest.mark.parametrize('x', (2, 0)) @pytest.mark.parametrize('y', (1.5, 0)) def test_general_feeddown(self, tmp_path: Path, x: float, y: float): """Test feeddown functionality from decapoles to octupoles and sextupoles.""" # Parameters ----------------------------------------------------------- accel = 'lhc' correct_ips = (1, 3) error_value = 2 n_magnets = 4 n_ips = 4 n_sides = 2 # Setup ---------------------------------------------------------------- optics = generate_pseudo_model( accel=accel, n_ips=n_ips, n_magnets=n_magnets, x=x, y=y) errors = generate_errortable( index=get_some_magnet_names(n_ips=n_ips, n_magnets=n_magnets), ) errors["K4L"] = error_value # normal decapole errors # Correction --------------------------------------------------------------- rdts = "f4000", "f3001" _, df_corrections = irnl_correct( accel=accel, optics=[optics], errors=[errors], beams=[1], rdts=rdts, output=tmp_path / "correct", feeddown=0, ips=correct_ips, ignore_missing_columns=True, iterations=1, ) _, df_corrections_fd1 = irnl_correct( accel=accel, optics=[optics], errors=[errors], beams=[1], rdts=rdts, output=tmp_path / "correct_fd1", feeddown=1, ips=correct_ips, ignore_missing_columns=True, iterations=1, ) errors["K4L"] = 0 errors["K5L"] = error_value # normal dodecapole errors _, df_corrections_fd2 = irnl_correct( accel=accel, optics=[optics], errors=[errors], beams=[1], rdts=rdts, output=tmp_path / "correct_fd2", feeddown=2, ips=correct_ips, ignore_missing_columns=True, iterations=1, ) # Testing ------------------------------------------------------------------ # Check output data --- assert len(list(tmp_path.glob("correct*"))) == 6 # Check all found correctors --- # no corrections with feed-down assert all(df_corrections[VALUE] == 0) if x == 0 and y == 0: assert all(df_corrections_fd1[VALUE] == 0) assert all(df_corrections_fd2[VALUE] == 0) else: for ip in correct_ips: normal_oct_mask = (df_corrections[STRENGTH] == "K3L") & (df_corrections[IP] == ip) skew_oct_mask = (df_corrections[STRENGTH] == "K3SL") & (df_corrections[IP] == ip) dodecapole_error_sum = error_value * n_magnets * n_sides norm_oct_corr_fd1 = sum(df_corrections_fd1.loc[normal_oct_mask, VALUE]) skew_oct_corr_fd1 = sum(df_corrections_fd1.loc[skew_oct_mask, VALUE]) assert abs(norm_oct_corr_fd1 + x * dodecapole_error_sum) < EPS assert abs(skew_oct_corr_fd1 + y * dodecapole_error_sum) < EPS norm_oct_corr_fd2 = sum(df_corrections_fd2.loc[normal_oct_mask, VALUE]) skew_oct_corr_fd2 = sum(df_corrections_fd2.loc[skew_oct_mask, VALUE]) assert abs(norm_oct_corr_fd2 + 0.5 * (x**2 - y**2) * dodecapole_error_sum) < EPS assert abs(skew_oct_corr_fd2 + x * y * dodecapole_error_sum) < EPS @pytest.mark.parametrize('corrector', ("a5", "b5", "a6", "b6")) @pytest.mark.parametrize('x', (2, 0)) @pytest.mark.parametrize('y', (2, 1.5, 0)) def test_correct_via_feeddown(self, tmp_path: Path, x: float, y: float, corrector: str): """Test correct RDT via feeddown from higher order corrector. In this example: Use normal and skew deca- and dodecapole correctors to correct for normal octupole errors (which make it easy to just sum up over both sides). """ # Parameters ----------------------------------------------------------- accel = 'hllhc' correct_ips = (1, 3) error_value = 2 n_magnets = 4 n_ips = 4 n_sides = 2 # Setup ---------------------------------------------------------------- optics = generate_pseudo_model( accel=accel, n_ips=n_ips, n_magnets=n_magnets, x=x, y=y) errors = generate_errortable( index=get_some_magnet_names(n_ips=n_ips, n_magnets=n_magnets), ) errors["K3L"] = error_value # octupole errors # Correction --------------------------------------------------------------- rdts = {"f4000": [corrector]} _, df_corrections = irnl_correct( accel=accel, optics=[optics], errors=[errors], beams=[1], rdts=rdts, output=tmp_path / "correct", feeddown=0, ips=correct_ips, ignore_missing_columns=True, iterations=1, ) assert len(df_corrections.index) == len(correct_ips) * n_sides assert all(df_corrections[FIELD] == corrector) coeff = {"a5": y, "b5": x, "a6": y*x, "b6": 0.5*(x**2 - y**2)}[corrector] if coeff == 0: # No Feed-down possible assert all(df_corrections[VALUE] < EPS) else: # as beta cancels out (and is 1 anyway) error_strengths = n_sides * n_magnets * error_value for ip in correct_ips: mask = df_corrections[IP] == ip corrector_strengths = coeff * sum(df_corrections.loc[mask, VALUE]) assert abs(corrector_strengths + error_strengths) < EPS # compensation of RDT class TestUnit: """Unit Tests for easy to test functions.""" def test_get_integral_sign(self): for n in range(10): assert get_integral_sign(n, "R") == (-1)**n assert get_integral_sign(n, "L") == 1 def test_list_to_str(self): assert ABC == "".join(list2str(list(ABC)).replace(" ", "").replace("'", "").replace('"', "").split(',')) def test_wrong_arguments(self): with pytest.raises(AttributeError) as e: irnl_correct( feddown=0, itterations=1, ) assert "feddown" in str(e) assert "itterations" in str(e) @pytest.mark.parametrize('beam', (1, 2, 4)) def test_switch_signs(self, beam: int): all_k = [f"K{order}{orientation}L" for order in range(2, MAX_N) for orientation in ("S", "")] optics = generate_pseudo_model(n_ips=1, n_magnets=10, accel='lhc', x=10, y=5) optics[all_k] = 1 errors = generate_errortable(index=optics.index, value=2.) # make copies as it switches in place optics_switch = optics.copy() errors_switch = errors.copy() switch_signs_for_beam4([optics_switch], [errors_switch], [beam]) if beam != 4: assert_frame_equal(optics, optics_switch) assert_frame_equal(errors, errors_switch) else: # in madx optics only X changes sign for beam 4 ... switch_col_optics_mask = optics.columns.isin(["X"]) assert_frame_equal(optics.loc[:, switch_col_optics_mask], -optics_switch.loc[:, switch_col_optics_mask]) assert_frame_equal(optics.loc[:, ~switch_col_optics_mask], optics_switch.loc[:, ~switch_col_optics_mask]) # ... but in the errors DX and the anti-symmetric KL change sign switch_col_errors_mask = errors.columns.isin(["DX"] + _get_opposite_sign_beam4_kl_columns(range(MAX_N))) assert_frame_equal(errors.loc[:, switch_col_errors_mask], -errors_switch.loc[:, switch_col_errors_mask]) assert_frame_equal(errors.loc[:, ~switch_col_errors_mask], errors_switch.loc[:, ~switch_col_errors_mask]) def test_ircorrector_class(self): # Test Corrector a5_corrector_L1 = IRCorrector(field_component="a5", accel="lhc", ip=1, side="L") # Test Equality assert a5_corrector_L1 == IRCorrector(field_component="a5", accel="lhc", ip=1, side="L") assert a5_corrector_L1 != IRCorrector(field_component="a4", accel="lhc", ip=1, side="L") # Test > and < per order (important for feed-down!) assert a5_corrector_L1 > IRCorrector(field_component="a4", accel="lhc", ip=1, side="L") assert a5_corrector_L1 > IRCorrector(field_component="a4", accel="lhc", ip=2, side="R") assert a5_corrector_L1 > IRCorrector(field_component="b4", accel="lhc", ip=1, side="L") assert a5_corrector_L1 < IRCorrector(field_component="a6", accel="lhc", ip=1, side="L") assert a5_corrector_L1 < IRCorrector(field_component="b6", accel="lhc", ip=1, side="L") assert a5_corrector_L1 < IRCorrector(field_component="b6", accel="lhc", ip=8, side="R") # These ones are arbitrary, just to allow sorting/make sorting unique assert a5_corrector_L1 > IRCorrector(field_component="b5", accel="lhc", ip=1, side="L") assert a5_corrector_L1 < IRCorrector(field_component="a5", accel="lhc", ip=1, side="R") assert a5_corrector_L1 < IRCorrector(field_component="a5", accel="lhc", ip=2, side="L") def test_ircorrector_accel(self): a4_corrector_L1 = IRCorrector(field_component="a4", accel="lhc", ip=1, side="L") assert "F" not in a4_corrector_L1.name a4_corrector_L1_hllhc = IRCorrector(field_component="a4", accel="hllhc", ip=1, side="L") assert "F" in a4_corrector_L1_hllhc.name assert a4_corrector_L1_hllhc.name.startswith("MCOS") assert a4_corrector_L1 != a4_corrector_L1_hllhc assert IRCorrector(field_component="a4", accel="lhc", ip=2, side="L") == IRCorrector(field_component="a4", accel="hllhc", ip=2, side="L") assert IRCorrector(field_component="b2", accel="hllhc", ip=1, side="L").name.startswith("MCQ") assert IRCorrector(field_component="a2", accel="hllhc", ip=1, side="L").name.startswith("MCQS") assert IRCorrector(field_component="b3", accel="hllhc", ip=1, side="L").name.startswith("MCS") assert IRCorrector(field_component="a3", accel="hllhc", ip=1, side="L").name.startswith("MCSS") assert IRCorrector(field_component="b4", accel="hllhc", ip=1, side="L").name.startswith("MCO") assert IRCorrector(field_component="a4", accel="hllhc", ip=1, side="L").name.startswith("MCOS") assert IRCorrector(field_component="b5", accel="hllhc", ip=1, side="L").name.startswith("MCD") assert IRCorrector(field_component="a5", accel="hllhc", ip=1, side="L").name.startswith("MCDS") assert IRCorrector(field_component="b6", accel="hllhc", ip=1, side="L").name.startswith("MCT") assert IRCorrector(field_component="a6", accel="hllhc", ip=1, side="L").name.startswith("MCTS") def test_rdt_init(self): jklm = (1, 2, 3, 4) rdt = RDT(name=f"f{''.join(str(ii) for ii in jklm)}") assert rdt.order == sum(jklm) assert rdt.jklm == jklm assert rdt.j == jklm[0] assert rdt.k == jklm[1] assert rdt.l == jklm[2] assert rdt.m == jklm[3] assert not rdt.swap_beta_exp assert RDT("f1001*").swap_beta_exp def test_rdt_equality(self): assert RDT("f2110") == RDT("f2110") assert RDT("f2110") != RDT("f2110*") def test_rdt_sortable(self): # sortable by order assert RDT("f1001") < RDT("f2001") assert RDT("f1003") > RDT("f2001") # arbitrary (so sorting is unique) assert RDT("f1001") > RDT("f2000") assert RDT("f3002") < RDT("f2003") assert RDT("f2110") < RDT("f2110*") assert RDT("f1001*") > RDT("f1001") # Helper ------------------------------------------------------------------------------------------- def read_lhc_model(beam: int) -> tfs.TfsDataFrame: """Read the LHC model from the input directory.""" # tfs files were too big, but if generated from the `.madx` the `.tfs` can be used directly. # E.g. for debugging purposes. # return tfs.read_tfs(LHC_MODELS_PATH / f"twiss.lhc.b{beam}.nominal.tfs", index="NAME") return tfs_tools.read_hdf(LHC_MODELS_PATH / f"twiss.lhc.b{beam}.nominal.hd5") def generate_pseudo_model(n_ips: int, n_magnets: int, accel: str, betax: float = 1, betay: float = 1, x: float = 0, y: float = 0) -> pd.DataFrame: """Generate a Twiss-Like DataFrame with magnets as index and Beta and Orbit columns.""" df = pd.DataFrame( index=( get_some_magnet_names(n_ips=n_ips, n_magnets=n_magnets) + get_lhc_corrector_names(n_ips=n_ips, accelerator=accel) ), columns=[f"{BETA}{X}", f"{BETA}{Y}", X, Y, KEYWORD] ) df[f"{BETA}{X}"] = betax df[f"{BETA}{Y}"] = betay df[X] = x df[Y] = y df[KEYWORD] = MULTIPOLE return df def generate_errortable(index: pd.Series, value: float = 0) -> pd.DataFrame: """Return
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """CusFusedAbsMax1""" from te import tik from topi.cce import util from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType cus_fused_abs_max1_op_info = TBERegOp("CusFusedAbsMax1") \ .fusion_type("OPAQUE") \ .async_flag(False) \ .binfile_name("fusedabsmax1.so") \ .compute_cost(10) \ .kernel_name("CusFusedAbsMax1") \ .partial_flag(True) \ .attr("origin_shape", "required", "listInt", "all") \ .input(0, "x1", False, "required", "all") \ .output(0, "y", False, "required", "all") \ .dtype_format(DataType.F32_Default, DataType.F32_Default) \ .get_op_info() @op_info_register(cus_fused_abs_max1_op_info) def CusFusedAbsMax1(input_x, output, origin_shape=None, kernel_name="fused_abs_max1"): """CusFusedAbsMax1""" input_x_shape = input_x.get("shape") output_shape = output.get("shape") dtype = input_x.get("dtype") if util.get_product_version() == util.VERSION_MINI: tik_instance = tik.Tik(tik.Dprofile("v100", "mini")) else: tik_instance = tik.Tik(tik.Dprofile("v100", "cloud")) support_shape = [((1, 128, 128), "float32"), ((2, 128, 128), "float32"), ((4, 128, 128), "float32"), ((8, 128, 128), "float32"), ((16, 128, 128), "float32"), ((5, 128, 128), "float32"), ((9, 128, 128), "float32"), ((18, 128, 128), "float32"), ((36, 128, 128), "float32"), ((32, 128, 128), "float32"), ((1, 64, 64), "float32"), ((32, 64), "float32") ] ori_shape = tuple(origin_shape) input_info = (tuple(input_x_shape), dtype) if input_info not in support_shape: raise RuntimeError("input_shape %s is not supported" % str(input_info)) if input_info == ((1, 128, 128), "float32"): input_x = tik_instance.Tensor("float32", input_x_shape, name="input_x", scope=tik.scope_gm) res = tik_instance.Tensor("float32", output_shape, name="res", scope=tik.scope_gm) total_elements = 1 for val in input_x_shape: total_elements *= val blocks = 32 each_block_element = total_elements // blocks with tik_instance.for_range(0, blocks, block_num=blocks) as block_index: input_x_ub = tik_instance.Tensor("float32", (each_block_element,), name="input_x_ub", scope=tik.scope_ubuf) broadcast_0_local_UB = tik_instance.Tensor("float32", (4096,), name="broadcast_0_local_UB", scope=tik.scope_ubuf) tik_instance.data_move(input_x_ub, input_x[each_block_element * block_index], 0, 1, each_block_element // 8, 0, 0) repeat_time = each_block_element // 64 tik_instance.vabs(64, input_x_ub, input_x_ub, repeat_time, 1, 1, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[256], 4, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[128], 2, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[64], 1, 1, 1, 1, 8, 8, 8) with tik_instance.for_range(0, 64) as cc0: data_temp = tik_instance.Scalar("float32") data_temp.set_as(input_x_ub[cc0]) tik_instance.vector_dup(64, broadcast_0_local_UB[cc0 * 64], data_temp, 1, 1, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[2048], 32, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[1024], 16, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[512], 8, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[256], 4, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[128], 2, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[64], 1, 1, 1, 1, 8, 8, 8) tik_instance.data_move(res[block_index, 0], broadcast_0_local_UB, 0, 1, 8, 0, 0) elif input_info == ((2, 128, 128), "float32"): if ori_shape == (147, 147): phase_1 = 16384 phase_2 = 1216 blocks = 32 each_block_element = phase_1 // blocks + 64 input_x = tik_instance.Tensor("float32", input_x_shape, name="input_x", scope=tik.scope_gm) res = tik_instance.Tensor("float32", output_shape, name="res", scope=tik.scope_gm) with tik_instance.for_range(0, blocks, block_num=blocks) as block_index: input_x_ub = tik_instance.Tensor("float32", (each_block_element,), name="input_x_ub", scope=tik.scope_ubuf) broadcast_0_local_UB = tik_instance.Tensor("float32", (4096,), name="broadcast_0_local_UB", scope=tik.scope_ubuf) tik_instance.data_move(input_x_ub, input_x[512 * block_index], 0, 1, 512 // 8, 0, 0) line_id = block_index % 19 tik_instance.data_move(input_x_ub[512], input_x[16384 + 128 * line_id], 0, 1, 8, 0, 0) repeat_time = each_block_element // 64 tik_instance.vabs(64, input_x_ub, input_x_ub, repeat_time, 1, 1, 8, 8) tik_instance.vmax(19, input_x_ub, input_x_ub, input_x_ub[512], 1, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[256], 4, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[128], 2, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[64], 1, 1, 1, 1, 8, 8, 8) with tik_instance.for_range(0, 64) as cc0: data_temp = tik_instance.Scalar("float32") data_temp.set_as(input_x_ub[cc0]) tik_instance.vector_dup(64, broadcast_0_local_UB[cc0 * 64], data_temp, 1, 1, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[2048], 32, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[1024], 16, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[512], 8, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[256], 4, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[128], 2, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[64], 1, 1, 1, 1, 8, 8, 8) tik_instance.data_move(res[block_index, 0], broadcast_0_local_UB, 0, 1, 8, 0, 0) elif ori_shape in ((256, 256), None, (-1, -1)): input_x = tik_instance.Tensor("float32", input_x_shape, name="input_x", scope=tik.scope_gm) res = tik_instance.Tensor("float32", output_shape, name="res", scope=tik.scope_gm) total_elements = 1 for val in input_x_shape: total_elements *= val blocks = 32 each_block_element = total_elements // blocks with tik_instance.for_range(0, blocks, block_num=blocks) as block_index: input_x_ub = tik_instance.Tensor("float32", (each_block_element,), name="input_x_ub", scope=tik.scope_ubuf) broadcast_0_local_UB = tik_instance.Tensor("float32", (4096,), name="broadcast_0_local_UB", scope=tik.scope_ubuf) tik_instance.data_move(input_x_ub, input_x[each_block_element * block_index], 0, 1, each_block_element // 8, 0, 0) repeat_time = each_block_element // 64 tik_instance.vabs(64, input_x_ub, input_x_ub, repeat_time, 1, 1, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[512], 8, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[256], 4, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[128], 2, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[64], 1, 1, 1, 1, 8, 8, 8) with tik_instance.for_range(0, 64) as cc0: data_temp = tik_instance.Scalar("float32") data_temp.set_as(input_x_ub[cc0]) tik_instance.vector_dup(64, broadcast_0_local_UB[cc0 * 64], data_temp, 1, 1, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[2048], 32, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[1024], 16, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[512], 8, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[256], 4, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[128], 2, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[64], 1, 1, 1, 1, 8, 8, 8) tik_instance.data_move(res[block_index, 0], broadcast_0_local_UB, 0, 1, 8, 0, 0) else: raise RuntimeError("origin shape %s is not supported" % str(ori_shape)) elif input_info == ((4, 128, 128), "float32"): input_x = tik_instance.Tensor("float32", input_x_shape, name="input_x", scope=tik.scope_gm) res = tik_instance.Tensor("float32", output_shape, name="res", scope=tik.scope_gm) total_elements = 1 for val in input_x_shape: total_elements *= val blocks = 32 each_block_element = total_elements // blocks with tik_instance.for_range(0, blocks, block_num=blocks) as block_index: input_x_ub = tik_instance.Tensor("float32", (each_block_element,), name="input_x_ub", scope=tik.scope_ubuf) broadcast_0_local_UB = tik_instance.Tensor("float32", (4096,), name="broadcast_0_local_UB", scope=tik.scope_ubuf) tik_instance.data_move(input_x_ub, input_x[each_block_element * block_index], 0, 1, each_block_element // 8, 0, 0) repeat_time = each_block_element // 64 tik_instance.vabs(64, input_x_ub, input_x_ub, repeat_time, 1, 1, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[1024], 16, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[512], 8, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[256], 4, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[128], 2, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, input_x_ub, input_x_ub, input_x_ub[64], 1, 1, 1, 1, 8, 8, 8) with tik_instance.for_range(0, 64) as cc0: data_temp = tik_instance.Scalar("float32") data_temp.set_as(input_x_ub[cc0]) tik_instance.vector_dup(64, broadcast_0_local_UB[cc0 * 64], data_temp, 1, 1, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[2048], 32, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[1024], 16, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[512], 8, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[256], 4, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[128], 2, 1, 1, 1, 8, 8, 8) tik_instance.vmax(64, broadcast_0_local_UB, broadcast_0_local_UB, broadcast_0_local_UB[64], 1, 1, 1, 1, 8, 8, 8) tik_instance.data_move(res[block_index, 0], broadcast_0_local_UB, 0, 1, 8, 0, 0) elif input_info == ((8, 128, 128), "float32"): if ori_shape == (1000, 1000): input_x = tik_instance.Tensor("float32", input_x_shape, name="input_x", scope=tik.scope_gm) res = tik_instance.Tensor("float32", output_shape, name="res", scope=tik.scope_gm) blocks = 32 each_block_element = 7 * 128 * 128 // 32 + 4 * 128 phase_1 = 7 * 128 * 128 // 32 with tik_instance.for_range(0, blocks, block_num=blocks) as block_index: input_x_ub = tik_instance.Tensor("float32", (each_block_element,), name="input_x_ub", scope=tik.scope_ubuf) broadcast_0_local_UB = tik_instance.Tensor("float32", (4096,), name="broadcast_0_local_UB", scope=tik.scope_ubuf) tik_instance.data_move(input_x_ub, input_x[phase_1 * block_index], 0, 1, phase_1 // 8, 0, 0) tik_instance.data_move(input_x_ub[phase_1], input_x[114688 + block_index * 384], 0, 1, 384 // 8, 0, 0) move_idx = block_index % 8 tik_instance.data_move(input_x_ub[phase_1 + 384], input_x[114688 + 96 * 128 + move_idx * 128], 0, 1, 128 // 8, 0, 0) repeat_time = each_block_element // 64 tik_instance.vabs(64, input_x_ub, input_x_ub, repeat_time, 1, 1, 8, 8) vmask = 1000 - 7 * 128 - 64 with tik_instance.for_range(0, 4) as loop_idx: tik_instance.vmax(vmask, input_x_ub[3584 + 128 * loop_idx], input_x_ub[3584 + 128 * loop_idx], input_x_ub[3584 + 128 * loop_idx + 64], 1, 1, 1, 1,
<reponame>RuichunWang/ModelArts-Lab<filename>tools/DeepFM-GPU/code/data_process.py # coding:utf-8 import os import pickle import glob import toml import collections import argparse import tensorflow as tf import numpy as np import pandas as pd import time class DataStatsDict(): def __init__(self, value_col_num=13, category_col_num=26, multi_category_len=()): self.value_col_num = value_col_num self.category_col_num = category_col_num self.multi_category_col_num = sum(multi_category_len) self.multi_category_len = multi_category_len self.field_size = value_col_num + category_col_num + self.multi_category_col_num self.val_cols = ["val_{}".format(i + 1) for i in range(value_col_num)] self.cat_cols = ["cat_{}".format(i + 1) for i in range(category_col_num)] self.multi_cat_cols = ["multi_cat_{}".format(i + 1) for i in range(len(multi_category_len))] self.val_min_dict = {col: 99999 for col in self.val_cols} self.val_max_dict = {col: -99999 for col in self.val_cols} self.cat_count_dict = {col: collections.defaultdict(int) for col in self.cat_cols} self.multi_cat_count_dict = {col: collections.defaultdict(int) for col in self.multi_cat_cols} self.oov_prefix = "OOV_" self.cat2id_dict = {} self.cat2id_dict.update({col: i for i, col in enumerate(self.val_cols)}) self.cat2id_dict.update({self.oov_prefix + col: i + len(self.val_cols) for i, col in enumerate(self.cat_cols)}) self.cat2id_dict.update({self.oov_prefix + col: i + len(self.val_cols) + len(self.cat_cols) for i, col in enumerate(self.multi_cat_cols)}) def stats_vals(self, val_list): assert len(val_list) == len(self.val_cols) def map_max_min(i, val): key = self.val_cols[i] if val != "": if float(val) > self.val_max_dict[key]: self.val_max_dict[key] = float(val) if float(val) < self.val_min_dict[key]: self.val_min_dict[key] = float(val) for i, val in enumerate(val_list): map_max_min(i, val) def stats_cats(self, cat_list): assert len(cat_list) == len(self.cat_cols) def map_cat_count(i, cat): key = self.cat_cols[i] self.cat_count_dict[key][cat] += 1 for i, cat in enumerate(cat_list): map_cat_count(i, cat) def stats_multi_cats(self, multi_cat_list): assert len(multi_cat_list) == sum(self.multi_category_len) for multi_cat in multi_cat_list: _, multi_cat_id, multi_cat_value = multi_cat.split('_') key = "multi_cat_%s" % (int(multi_cat_id) + 1) self.multi_cat_count_dict[key][multi_cat_value] += 1 def save_dict(self, output_path, prefix=""): with open(os.path.join(output_path, "{}val_max_dict.pkl".format(prefix)), "wb") as file_wrt: pickle.dump(self.val_max_dict, file_wrt) with open(os.path.join(output_path, "{}val_min_dict.pkl".format(prefix)), "wb") as file_wrt: pickle.dump(self.val_min_dict, file_wrt) with open(os.path.join(output_path, "{}cat_count_dict.pkl".format(prefix)), "wb") as file_wrt: pickle.dump(self.cat_count_dict, file_wrt) with open(os.path.join(output_path, "{}multi_cat_count_dict.pkl".format(prefix)), "wb") as file_wrt: pickle.dump(self.multi_cat_count_dict, file_wrt) def load_dict(self, dict_path, prefix=""): with open(os.path.join(dict_path, "{}val_max_dict.pkl".format(prefix)), "rb") as file_wrt: self.val_max_dict = pickle.load(file_wrt) with open(os.path.join(dict_path, "{}val_min_dict.pkl".format(prefix)), "rb") as file_wrt: self.val_min_dict = pickle.load(file_wrt) with open(os.path.join(dict_path, "{}cat_count_dict.pkl".format(prefix)), "rb") as file_wrt: self.cat_count_dict = pickle.load(file_wrt) with open(os.path.join(dict_path, "{}multi_cat_count_dict.pkl".format(prefix)), "rb") as file_wrt: self.multi_cat_count_dict = pickle.load(file_wrt) print("val_max_dict.items()[:50]: {}".format(list(self.val_max_dict.items()))) print("val_min_dict.items()[:50]: {}".format(list(self.val_min_dict.items()))) def get_cat2id(self, threshold=100): for key, cat_count_d in self.cat_count_dict.items(): new_cat_count_d = dict(filter(lambda x: x[1] > threshold, cat_count_d.items())) for cat_str, count in new_cat_count_d.items(): self.cat2id_dict[key + "_" + cat_str] = len(self.cat2id_dict) for key, multi_cat_count_d in self.multi_cat_count_dict.items(): new_multi_cat_count_d = dict(filter(lambda x: x[1] > threshold, multi_cat_count_d.items())) for multi_cat_str, count in new_multi_cat_count_d.items(): if multi_cat_str == 'OOV': continue self.cat2id_dict[key + "_" + multi_cat_str] = len(self.cat2id_dict) print("data vocab size: {}".format(len(self.cat2id_dict))) print("data vocab size[:50]: {}".format(list(self.cat2id_dict.items())[:50])) def map_cat2id(self, values, cats, multi_cats): def minmax_scale_value(i, val): min_v = float(self.val_min_dict["val_{}".format(i + 1)]) max_v = float(self.val_max_dict["val_{}".format(i + 1)]) if val >= max_v: return 1.0 elif val <= min_v or max_v == min_v: return 0.0 else: return float(val - min_v) / (max_v - min_v) id_list = [] weight_list = [] for i, val in enumerate(values): if val == "": id_list.append(i) weight_list.append(0) else: key = "val_{}".format(i + 1) id_list.append(self.cat2id_dict[key]) weight_list.append(minmax_scale_value(i, float(val))) for i, cat_str in enumerate(cats): key = "cat_{}".format(i + 1) + "_" + cat_str if key in self.cat2id_dict: id_list.append(self.cat2id_dict[key]) else: id_list.append(self.cat2id_dict[self.oov_prefix + "cat_{}".format(i + 1)]) weight_list.append(1.0) for i, multi_cat_str in enumerate(multi_cats): _, multi_cat_id, multi_cat_value = multi_cat_str.split('_') multi_cat_id = int(multi_cat_id) if multi_cat_value == 'OOV': key = "OOV_multi_cat_%s" % (multi_cat_id + 1) else: key = "multi_cat_%s_%s" % (multi_cat_id + 1, multi_cat_value) if key in self.cat2id_dict: id_list.append(self.cat2id_dict[key]) else: id_list.append(self.cat2id_dict[self.oov_prefix + "multi_cat_{}".format(multi_cat_id + 1)]) weight_list.append(1.0) return id_list, weight_list def mkdir_path(file_path): if not os.path.exists(file_path): os.makedirs(file_path) def statsdata(data_file_path, output_path, data_stats): with open(data_file_path, encoding="utf-8") as file_in: errorline_list = [] count = 0 for line in file_in: count += 1 line = line.strip("\n") items = line.split("\t") if len(items) != data_stats.field_size + 1: # feature columns; + label_col errorline_list.append(count) print("line: {}".format(line)) raise ValueError( "Expect column count is {}, real column count is {}, please check " "your value_col_num and category_col_num. " "\nError line number: {}, Error line content: {}".format( data_stats.field_size + 1, len(items), count - 1, line)) if count % 1000000 == 0: print("Have handle {}w lines.".format(count // 10000)) label = items[0] features = items[1:] values = features[:data_stats.value_col_num] cats = features[data_stats.value_col_num:data_stats.value_col_num + data_stats.category_col_num] multi_cats = features[data_stats.value_col_num + data_stats.category_col_num:] assert len(values) == data_stats.value_col_num, "values.size: {}".format(len(values)) assert len(cats) == data_stats.category_col_num, "cats.size: {}".format(len(cats)) assert len(multi_cats) == data_stats.multi_category_col_num, "multi-cats.size: {}".format(len(multi_cats)) data_stats.stats_vals(values) data_stats.stats_cats(cats) data_stats.stats_multi_cats(multi_cats) data_stats.save_dict(output_path) def add_write(file_path, wrt_str): with open(file_path, 'a', encoding="utf-8") as file_out: file_out.write(wrt_str + "\n") def get_file_line_count(file_path): line_count = 0 with open(file_path, 'r', encoding="utf-8") as file_in: for line in file_in: line = line.strip("\n") if line == "": continue line_count += 1 return line_count def random_split_trans2h5(in_file_path, output_path, data_stats, part_rows=2000000, test_size=0.1, seed=2020, output_format='h5'): value_col_num = data_stats.value_col_num category_col_num = data_stats.category_col_num multi_category_col_num = data_stats.multi_category_col_num train_line_count = get_file_line_count(in_file_path) test_size = int(train_line_count * test_size) train_size = train_line_count - test_size all_indices = [i for i in range(train_line_count)] np.random.seed(seed) np.random.shuffle(all_indices) print("all_indices.size: {}".format(len(all_indices))) lines_count_dict = collections.defaultdict(int) test_indices_set = set(all_indices[: test_size]) print("test_indices_set.size: {}".format(len(test_indices_set))) print("----------" * 10 + "\n" * 2) train_feature_file_name = os.path.join(output_path, "train_input_part_{}.h5") train_label_file_name = os.path.join(output_path, "train_output_part_{}.h5") test_feature_file_name = os.path.join(output_path, "test_input_part_{}.h5") test_label_file_name = os.path.join(output_path, "test_output_part_{}.h5") train_feature_list = [] train_label_list = [] test_feature_list = [] test_label_list = [] ids_len = 0 filtered_train_size = 0 filtered_test_size = 0 with open(in_file_path, encoding="utf-8") as file_in: count = 0 train_part_number = 0 test_part_number = 0 for i, line in enumerate(file_in): count += 1 if count % 1000000 == 0: print("Have handle {}w lines.".format(count // 10000)) line = line.strip("\n") items = line.split("\t") if len(items) != 1 + value_col_num + category_col_num + multi_category_col_num: continue label = float(items[0]) values = items[1:value_col_num+1] cats = items[value_col_num+1:value_col_num+category_col_num+1] multi_cats = items[value_col_num+category_col_num+1:] assert len(values) == value_col_num, "values.size: {}".format(len(values)) assert len(cats) == category_col_num, "cats.size: {}".format(len(cats)) assert len(multi_cats) == multi_category_col_num, "multi-cats.size: {}".format(len(multi_cats)) ids, wts = data_stats.map_cat2id(values, cats, multi_cats) ids_len = len(ids) if i not in test_indices_set: train_feature_list.append(ids + wts) train_label_list.append(label) else: test_feature_list.append(ids + wts) test_label_list.append(label) if (len(train_label_list) > 0) and (len(train_label_list) % part_rows == 0): if output_format == 'h5': pd.DataFrame(np.asarray(train_feature_list)).to_hdf(train_feature_file_name.format(train_part_number), key="fixed") pd.DataFrame(np.asarray(train_label_list)).to_hdf(train_label_file_name.format(train_part_number), key="fixed") else: with open(os.path.join(output_path, 'train_part_{}.txt'.format(train_part_number)), 'w') as f: for i in range(len(train_feature_list)): train_feature = [str(s) for s in train_feature_list[i]] train_label = str(int(train_label_list[i])) f.write(train_label + ' ' + ' '.join(train_feature) + '\n') filtered_train_size += len(train_feature_list) train_feature_list = [] train_label_list = [] train_part_number += 1 if (len(test_label_list) > 0) and (len(test_label_list) % part_rows == 0): if output_format == 'h5': pd.DataFrame(np.asarray(test_feature_list)).to_hdf(test_feature_file_name.format(test_part_number), key="fixed") pd.DataFrame(np.asarray(test_label_list)).to_hdf(test_label_file_name.format(test_part_number), key="fixed") else: with open(os.path.join(output_path, 'test_part_{}.txt'.format(test_part_number)), 'w') as f: for i in range(len(test_feature_list)): test_feature = [str(s) for s in test_feature_list[i]] test_label = str(int(test_label_list[i])) f.write(test_label + ' ' + ' '.join(test_feature) + '\n') filtered_test_size += len(test_feature_list) test_feature_list = [] test_label_list = [] test_part_number += 1 if len(train_label_list) > 0: filtered_train_size += len(train_feature_list) if output_format == 'h5': pd.DataFrame(np.asarray(train_feature_list)).to_hdf(train_feature_file_name.format(train_part_number), key="fixed") pd.DataFrame(np.asarray(train_label_list)).to_hdf(train_label_file_name.format(train_part_number), key="fixed") else: with open(os.path.join(output_path, 'train_part_{}.txt'.format(train_part_number)), 'w') as f: for i in range(len(train_feature_list)): train_feature = [str(s) for s in train_feature_list[i]] train_label = str(int(train_label_list[i])) f.write(train_label + ' ' + ' '.join(train_feature) + '\n') if len(test_label_list) > 0: filtered_test_size += len(test_feature_list) if output_format == 'h5': pd.DataFrame(np.asarray(test_feature_list)).to_hdf(test_feature_file_name.format(test_part_number), key="fixed") pd.DataFrame(np.asarray(test_label_list)).to_hdf(test_label_file_name.format(test_part_number), key="fixed") else: with open(os.path.join(output_path, 'test_part_{}.txt'.format(test_part_number)), 'w') as f: for i in range(len(test_feature_list)): test_feature = [str(s) for s in test_feature_list[i]] test_label = str(int(test_label_list[i])) f.write(test_label + ' ' + ' '.join(test_feature) + '\n') num_features = len(data_stats.cat2id_dict) num_inputs = ids_len return num_features, filtered_train_size, filtered_test_size, num_inputs def fix_multi_cat(data_file_path, multi_cat_col_num, multi_category_len, output_dir, file_pattern, feat_sep, multi_category_sep): multi_cat_len = [0 for _ in range(multi_cat_col_num)] import glob if os.path.isdir(data_file_path): data_files_list = glob.glob(os.path.join(data_file_path, file_pattern)) else: data_files_list = [data_file_path] for data_file in data_files_list: with open(data_file, 'r') as f: for line in f: line = line.strip() if not line: continue items = line.split(feat_sep) multi_cat_items = items[len(items) - multi_cat_col_num:] for i, multi_cat in enumerate(multi_cat_items): multi_cat_len[i] = max(multi_cat_len[i], len(multi_cat.split(multi_category_sep))) for i in range(len(multi_cat_len)): if multi_category_len[i] is not None and multi_category_len[i] >= 0: multi_cat_len[i] = multi_category_len[i] new_data_file_path = os.path.join(output_dir, 'fixed.txt') with open(new_data_file_path, 'w') as fw: for data_file in data_files_list: with open(data_file, 'r') as fr: for line in fr: line = line.strip() if not line: continue items = line.split(feat_sep) ok_items = items[:len(items) - multi_cat_col_num] fw.write('\t'.join(ok_items)) multi_cat_items = items[len(items) - multi_cat_col_num:] for i, multi_cat in enumerate(multi_cat_items): fw.write('\t') c_list = multi_cat.split(multi_category_sep) c_list = c_list[:multi_cat_len[i]] fw.write('\t'.join(['m_%d_%s' % (i, c) for c in c_list])) padding_len = multi_cat_len[i] - len(c_list) if padding_len > 0: fw.write('\t') fw.write('\t'.join(['m_%d_OOV' % i for _ in range(padding_len)])) fw.write('\n') return new_data_file_path, multi_cat_len def convert_tfrecords(num_inputs, input_filename, output_filename, samples_per_line): # label id1,id2,...,idn val1,val2,...,valn with open(input_filename, "r")
import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import spikewarp as sw """ Class and helpers for main clustering meta analyses """ class MetaClusterAnalysisHolder(object): def __init__(self, shuffle_option_string, is_mainz=True): self.shuffle_option_string = shuffle_option_string self.suf = "_" + shuffle_option_string self.is_mainz = is_mainz self.pdds = {} self.sdds = {} for data_name in sw.list_of_first_stage_data_names: self.pdds.update({data_name: []}) for data_name in sw.list_of_second_stage_data_names: self.sdds.update({data_name: []}) self.final_angled_cluster_count = 0 self.did_contribute_atleast_one_final_angled_cluster_count = 0 self.all_both_spiking_reliabilities = []; self.all_both_spiking_reliabilities_0s_removed = [] self.all_number_of_conjunctive_trials = []; self.all_number_of_conjunctive_trials_0s_removed = [] def extend_standard_cluster_arrays(self, single_clustering): if (single_clustering.do_use_clusters_in_analysis): self.final_angled_cluster_count += single_clustering.final_angled_cluster_count self.did_contribute_atleast_one_final_angled_cluster_count += single_clustering.was_first_single_clustering_to_pass_for_pair for key in single_clustering.primary_data_dicts.keys(): if (key not in self.pdds.keys()): self.pdds[key] = [] self.pdds[key].extend(single_clustering.primary_data_dicts[key]) for key in single_clustering.secondary_data_dicts.keys(): if (key not in self.sdds.keys()): self.sdds[key] = [] self.sdds[key].extend(single_clustering.secondary_data_dicts[key]) def extend_standard_cluster_arrays_using_another_mcah(self, mcah): self.final_angled_cluster_count += mcah.final_angled_cluster_count self.did_contribute_atleast_one_final_angled_cluster_count += mcah.did_contribute_atleast_one_final_angled_cluster_count for key in mcah.pdds.keys(): if (key not in self.pdds.keys()): self.pdds[key] = [] self.pdds[key].extend(mcah.pdds[key]) for key in mcah.sdds.keys(): if (key not in self.sdds.keys()): self.sdds[key] = [] self.sdds[key].extend(mcah.sdds[key]) def calculate_time_span_info_and_plots(self, directory_holder, cortical_onset, time_window_following_cortical_onset, end_of_spiking_activity): sdds = self.sdds pdds = self.pdds dh = directory_holder suf = self.suf tex_tag_file_name = dh.collated_root_output_directory + "AnalysisOutputLatexTimeSpan.tex" with open(tex_tag_file_name, "w") as tex_file: print(f"", file=tex_file) # Cluster Time Spans sw.basic_x_y_plot([pdds['FlatClusterStats_FlatCluster_FS_Mean0']], [pdds['FlatClusterStats_FlatCluster_FS_Mean1']], dh.clus_time_spans_dir + "PrimaryClusterMeans" + suf, s=4, draw_y_equals_x=True, y_equals_x_max=100, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10]) sw.basic_x_y_plot([sdds['FlatClusterStats_FlatCluster_FS_Mean0']], [sdds['FlatClusterStats_FlatCluster_FS_Mean1']], dh.clus_time_spans_dir + "SecondaryClusterMeans" + suf, s=4, draw_y_equals_x=True, y_equals_x_max=100, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10]) sw.basic_x_y_plot([2.0*np.hstack((pdds['FlatClusterStats_FlatCluster_N0_FS_SD'], pdds['FlatClusterStats_FlatCluster_N1_FS_SD']))], [np.hstack((pdds['FlatClusterStats_FlatCluster_FS_Mean0'], pdds['FlatClusterStats_FlatCluster_FS_Mean1']))], dh.clus_time_spans_dir + "PrimaryClusterMeans_VS_2sds" + suf, s=4, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10], opt_x_and_y_max=[40.0, 100.0], y_axis_on_right=False) sw.basic_x_y_plot([2.0*np.hstack((sdds['FlatClusterStats_FlatCluster_N0_FS_SD'], sdds['FlatClusterStats_FlatCluster_N1_FS_SD']))], [np.hstack((sdds['FlatClusterStats_FlatCluster_FS_Mean0'], sdds['FlatClusterStats_FlatCluster_FS_Mean1']))], dh.clus_time_spans_dir + "SecondaryClusterMeans_VS_2sds" + suf, s=4, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10], opt_x_and_y_max=[40.0, 100.0], y_axis_on_right=False) secondary_flat_cluster_means = np.hstack((sdds['FlatClusterStats_FlatCluster_FS_Mean0'], sdds['FlatClusterStats_FlatCluster_FS_Mean1'])) secondary_flat_cluster_pre_limits = secondary_flat_cluster_means - 4.0 * np.hstack((sdds['FlatClusterStats_FlatCluster_N0_FS_SD'], sdds['FlatClusterStats_FlatCluster_N1_FS_SD'])) secondary_flat_cluster_post_limits = secondary_flat_cluster_means + 4.0 * np.hstack((sdds['FlatClusterStats_FlatCluster_N0_FS_SD'], sdds['FlatClusterStats_FlatCluster_N1_FS_SD'])) sw.normal_histo_plot([secondary_flat_cluster_post_limits], dh.clus_time_spans_dir + "LimitsOfFlatClustersForAngledClustersOnly" + suf, bins=20, histo_range=[0.0, 100.0], x_axis_label="ms", y_axis_label="Frequency", custom_x_tick_locators=[100.0, 10.0], custom_y_tick_locators=[10.0, 10.0], alpha=0.78, add_chi_squared_text=True) time_threshold = cortical_onset + time_window_following_cortical_onset num_before = np.sum(secondary_flat_cluster_post_limits < time_threshold) num_after = np.sum(secondary_flat_cluster_post_limits > time_threshold) percent_before = 100.0 * float(num_before) / float(num_after + num_before) percent_before_string = "{:.{}f}".format(percent_before, 1) data_part = percent_before_string + "\\%" cluster_time_span_string = "As " + data_part + " of Stage 2 clusters extracted over 90ms following cortical activation onset lied within " + str(int(time_window_following_cortical_onset)) + "ms following onset (Supplementary Fig. 12), analysis was constrained to spikes in the first " + str(int(time_window_following_cortical_onset)) + "ms following activation onset. " sw.append_new_tag(data_part, "ClusterTimeSpanSummaryNum", tex_tag_file_name) sw.append_new_tag(cluster_time_span_string, "ClusterTimeSpanSummary", tex_tag_file_name) def plot_p_value_histos(self, directory_holder, do_extra_plots=False): sdds = self.sdds pdds = self.pdds dh = directory_holder suf = self.suf plot_all_lag_histograms = False if (do_extra_plots): plot_all_lag_histograms = True tex_tag_file_name = dh.collated_root_output_directory + suf + "AnalysisOutputLatex.tex" with open(tex_tag_file_name, "w") as tex_file: print(f"", file=tex_file) specific_prim_clus_corr_dir = dh.prim_clus_corr_dir + suf + "/"; sw.makedirs(specific_prim_clus_corr_dir) specific_sec_clus_corr_dir = dh.sec_clus_corr_dir + suf + "/"; sw.makedirs(specific_sec_clus_corr_dir) # Cluster Correlations Primary sw.normal_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "PVal_ZoomHist", bins=20, histo_range=[0.0, 0.1], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[0.1, 0.01], custom_y_tick_locators=[30, 30], alpha=0.78, add_chi_squared_text=True) flat_cluster_correlations_chi_squared_table_strings_array = sw.cumulative_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "PVal_CumHist", bins=200, x_axis_label="p-value", y_axis_label="Normalised\ncumulative sum", custom_x_tick_locators=[1.0, 0.2], add_chi_squared_text=True) sw.normal_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "PVal_LowResHist", bins=40, x_axis_label="p-value", y_axis_label="Frequency", custom_y_tick_locators=[100, 100], alpha=0.78, add_chi_squared_text=True) sw.cumulative_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "LowRes_LowResCumHist", bins=20, x_axis_label="p-value", y_axis_label="Normalised\ncumulative sum", add_chi_squared_text=True) if ('FlatClusterStats_FlatCluster_LR_rsquared' in sdds.keys()): # Cluster Correlations Secondary sw.normal_histo_plot([sdds['FlatClusterStats_FlatCluster_LR_rsquared'], sdds['FlatClusterStats_FlatCluster_LR_rvalue']], specific_sec_clus_corr_dir + "RVal_Hist", bins=40, histo_range=[-1.0, 1.0], x_axis_left_buffer=0.01, x_axis_label="$r$, $r^2$", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[50, 10], alpha=0.78) sw.normal_histo_plot([sdds['FlatClusterStats_FlatCluster_LR_rsquared']], specific_sec_clus_corr_dir + "R^2_Hist", colors=['g'], bins=20, x_axis_left_buffer=0.01, x_axis_label="r^2-value", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[20, 20]) cluster_p_minus_unclustered_conj_p = np.asarray(sdds['FlatClusterStats_FlatCluster_LR_pvalue']) - np.asarray(sdds['Unclustered_Conj_LR_pvalue']) num_improved_by_clustering = np.sum(cluster_p_minus_unclustered_conj_p < 0.0) num_not_improved_by_clustering = np.sum(cluster_p_minus_unclustered_conj_p >= 0.0) percent_improved_by_clustering = 100.0 * float(num_improved_by_clustering) / float(num_improved_by_clustering + num_not_improved_by_clustering) percent_improved_by_clustering_string = "{:.{}f}".format(percent_improved_by_clustering, 1) num_non_significant_before_clustering = np.sum(np.asarray(sdds['Unclustered_Conj_LR_pvalue']) > 0.05) num_sdd_clusters = len(sdds['Unclustered_Conj_LR_pvalue']) percent_non_significant_before_clustering = 100.0*(num_non_significant_before_clustering/num_sdd_clusters) percent_non_significant_before_clustering_string = "{:.{}f}".format(percent_non_significant_before_clustering, 1) sw.basic_x_y_plot([sdds['Unclustered_Conj_LR_pvalue']], [sdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_sec_clus_corr_dir + "NonConjPVal_Vs_ClusPVal", draw_y_equals_x=True, y_equals_x_max=1.0, x_axis_label='p-value', y_axis_label='p-value', scatter_point_color_groups=['b'], custom_x_tick_locators=[1.0, 0.2], dashes=(8, 2)) sw.normal_histo_plot([sdds['Unclustered_Conj_LR_pvalue']], specific_sec_clus_corr_dir + "ConjPVal_Vs_ClusPVal", bins=20, histo_range=[0.0, 1.0], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[10, 10], alpha=0.78) sw.normal_histo_plot([np.asarray(sdds['FlatClusterStats_FlatCluster_LR_pvalue']) - np.asarray(sdds['Unclustered_Conj_LR_pvalue'])], specific_sec_clus_corr_dir + "ClusPVal_Minus_ConjPVal_Hist", bins=21, histo_range=[-1.0, 0.05], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[10, 10], alpha=0.78) # Cluster Differences Correlations sw.normal_histo_plot([sdds['FlatClusterStats_FlatCluster_Diff_LR_pvalue']], dh.clus_pair_differences_dir + "FS0_Vs_Diff_LR_PVal_ZoomHist" + suf, bins=20, histo_range=[0.0, 0.1], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[0.1, 0.01], custom_y_tick_locators=[200, 200], alpha=0.78, add_chi_squared_text=True) differences_chi_squared_table_strings_array = sw.cumulative_histo_plot([sdds['FlatClusterStats_FlatCluster_Diff_LR_pvalue']], dh.clus_pair_differences_dir + "FS0_Vs_Diff_LR_PVal_CumHist" + suf, bins=200, x_axis_label="p-value", y_axis_label="Normalised\ncumulative sum", custom_x_tick_locators=[1.0, 0.2], add_chi_squared_text=True) sw.normal_histo_plot([sdds['FlatClusterStats_FlatCluster_Diff_LR_pvalue']], dh.clus_pair_differences_dir + "FS0_Vs_Diff_LR_PVal_LowResHist" + suf, bins=20, x_axis_label="p-value", y_axis_label="Frequency", custom_y_tick_locators=[100, 20], alpha=0.78, add_chi_squared_text=True) # Cluster Correlation Summary Latex sw.append_new_tag(str(len(pdds['FlatClusterStats_FlatCluster_LR_pvalue'])) + " Stage 1 clusters were extracted", "NumStage1ClustersFullString", tex_tag_file_name) sw.append_new_tag(str(len(pdds['FlatClusterStats_FlatCluster_LR_pvalue'])), "NumStage1ClustersData", tex_tag_file_name) cluster_correlation_string0 = "Spike pairs within Stage 1 cluster ellipses were linearly correlated above chance levels (Fisher's method: " + flat_cluster_correlations_chi_squared_table_strings_array[0] + ")" sw.append_new_tag(cluster_correlation_string0, "Stage1ClusterFisherFullString", tex_tag_file_name) sw.append_new_tag(flat_cluster_correlations_chi_squared_table_strings_array[0], "Stage1ClusterFisherData", tex_tag_file_name) cluster_correlation_string0p1 = "spike pair differences were correlated with the spike time of the first neuron in the pair for Stage 2 clusters (Fisher's method: " + differences_chi_squared_table_strings_array[0] + "; Fig. 3g), shows that correlations are not explained by a model of the form $s_1 = s_0 + d + independent\\_noise$ where $d$ is a fixed difference." sw.append_new_tag(cluster_correlation_string0p1, "ClusterCorrelationSummary0p1", tex_tag_file_name) num_greaterthan = np.sum(np.asarray(sdds['FlatClusterStats_FlatCluster_LR_rvalue']) > 0.0) data_part = sw.percent_and_frac_string(num_greaterthan, self.final_angled_cluster_count) cluster_correlation_string1 = data_part + " of Stage 2 clusters were positively correlated " sw.append_new_tag(cluster_correlation_string1, "Stage2PositivelyCorrelatedFullString", tex_tag_file_name) sw.append_new_tag(data_part, "Stage2PositivelyCorrelatedNum", tex_tag_file_name) cluster_correlation_string2 = percent_improved_by_clustering_string + "\\% (" + str(num_improved_by_clustering) + "/" + str(num_improved_by_clustering + num_not_improved_by_clustering) + ") of the Stage 2 clusters had correlations of higher significance than correlations calculated for all unclustered first spike pairs in the originating response distribution (Fig. 3h). Moreover, " + percent_non_significant_before_clustering_string + "\\% (" + str(num_non_significant_before_clustering) + '/' + str(num_sdd_clusters) + ") of the original response distributions from which Stage 2 clusters were extracted were not correlated significantly (p>0.05) (Fig. 3h). " sw.append_new_tag(cluster_correlation_string2, "ClusterCorrelationSummary2", tex_tag_file_name) angled_clusters_unique_pairs_summary_string = "A total of " + str(self.final_angled_cluster_count) + " unique Stage 2 clusters were extracted from " + str(self.did_contribute_atleast_one_final_angled_cluster_count) + " unique response distributions." #, confirming that there were no repeated or similar clusters." sw.append_new_tag(angled_clusters_unique_pairs_summary_string, "AngledClustersUniquePairsSummary", tex_tag_file_name) # Angle Comparisons sw.basic_x_y_plot([sdds["Original" + '_BS_PCA_mean_angle']], [sdds["SelectivelyDifferencedBoxJenkins" + '_FA_angle_BS_mean']], dh.angle_analysis_directory + "BS_PCA_VS_SelectivelyDifferencedBoxJenkins_FA_Angles" + suf, draw_y_equals_x=True, y_equals_x_max=90, x_axis_label='Degrees', y_axis_label='Degrees', s=4, scatter_point_color_groups=['g'], custom_x_tick_locators=[90, 10]) # Cluster Reliabilities sw.plot_cluster_reliability_plots(sdds['PCA_ellipse_overall_reliability'], sdds['PCA_ellipse_conj_reliability'], dh.cluster_reliabilities_dir, suf) analysis_dict_keys= ['Original', 'OriginalTestsPassed', "SelectivelyDifferenced", "SelectivelyDifferencedTestsPassedActuallyDifferenced", "SelectivelyDifferencedBoxJenkins", "SelectivelyDifferencedBoxJenkinsTestsPassed"] if ('analysis_dict_member_keys' in sdds.keys()): analysis_dict_member_keys = sdds['analysis_dict_member_keys'] for analysis_dict_key in analysis_dict_keys: # Directories specific_angle_analysis_dir = dh.angle_analysis_directory + analysis_dict_key + "/" + suf + "/"; sw.makedirs(specific_angle_analysis_dir) specific_nonstationarity_dir = dh.clus_non_stationarity_dir + analysis_dict_key + "/" + suf + "/"; sw.makedirs(specific_nonstationarity_dir) sharipo_normality_specific_nonstationarity_dir = specific_nonstationarity_dir + "SharipoNormality/"; sw.makedirs(sharipo_normality_specific_nonstationarity_dir) KPSS_stationarity_specific_nonstationarity_dir = specific_nonstationarity_dir + "KPSSStationarity/"; sw.makedirs(KPSS_stationarity_specific_nonstationarity_dir) ADF_stationarity_specific_nonstationarity_dir = specific_nonstationarity_dir + "ADFStationarity/"; sw.makedirs(ADF_stationarity_specific_nonstationarity_dir) LR_specific_nonstationarity_dir = specific_nonstationarity_dir + "LRStationarity/"; sw.makedirs(LR_specific_nonstationarity_dir) HZ_specific_nonstationarity_dir = specific_nonstationarity_dir + "HZStationarity/"; sw.makedirs(HZ_specific_nonstationarity_dir) bartlett_specific_nonstationarity_dir = specific_nonstationarity_dir + "BartlettSphericity/"; sw.makedirs(bartlett_specific_nonstationarity_dir) specific_lag_pvals_nonstationary_dir = specific_nonstationarity_dir + "LagPVals/"; sw.makedirs(specific_lag_pvals_nonstationary_dir) LR_correlation_specific_nonstationarity_dir = specific_nonstationarity_dir + "LRCorrelation/"; sw.makedirs(LR_correlation_specific_nonstationarity_dir) true_where_tests_not_passed_ORIGINAL = np.asarray(sdds['Original_tests_passed']) num_tests_not_passed_ORIGINAL = np.sum(true_where_tests_not_passed_ORIGINAL == False) if (analysis_dict_key in ["Original", "SelectivelyDifferencedBoxJenkins", "SelectivelyDifferenced"]): num_for_type = np.sum(np.bitwise_not(np.asarray(sdds[analysis_dict_key + '_is_empty']))) true_where_normal = np.asarray(sdds[analysis_dict_key + '_normal']) num_normal = np.sum(true_where_normal) where_normal = np.where(true_where_normal) true_where_tests_passed = np.asarray(sdds[analysis_dict_key + '_tests_passed']) num_tests_passed = np.sum(true_where_tests_passed) where_tests_passed = np.where(true_where_tests_passed) true_where_tests_not_passed = np.asarray(sdds[analysis_dict_key + '_tests_passed']) num_tests_not_passed = np.sum(true_where_tests_not_passed == False) true_where_tests_passed_and_normal = np.asarray(sdds[analysis_dict_key + '_tests_passed_and_normal']) num_tests_passed_and_normal = np.sum(true_where_tests_passed_and_normal) where_tests_passed_and_normal = np.where(true_where_tests_passed_and_normal) true_where_correlated = np.asarray(sdds[analysis_dict_key + '_is_still_correlated']) number_correlated = np.sum(true_where_correlated) where_correlated = np.where(true_where_correlated) true_where_tests_passed_and_correlated = np.logical_and(true_where_correlated, true_where_tests_passed) num_tests_passed_and_correlated = np.sum(true_where_tests_passed_and_correlated) where_tests_passed_and_correlated = np.where(true_where_tests_passed_and_correlated) where_different_from_45 = np.logical_and(np.asarray(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_different_from_45']), np.asarray(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_different_from_0'])) num_different_from_45 = np.sum(where_different_from_45) true_where_correlated_and_different_from_45 = np.logical_and(true_where_correlated, np.asarray(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_different_from_45'])) num_correlated_and_different_from_45 = np.sum(true_where_correlated_and_different_from_45) where_correlated_and_different_from_45 = np.where(true_where_correlated_and_different_from_45) true_where_correlated_and_different_from_45_tests_passed = np.logical_and(true_where_correlated_and_different_from_45, true_where_tests_passed) num_correlated_and_different_from_45_tests_passed = np.sum(true_where_correlated_and_different_from_45_tests_passed) where_correlated_and_different_from_45_tests_passed = np.where(true_where_correlated_and_different_from_45_tests_passed) true_where_correlated_and_different_from_45_tests_passed_and_normal = np.logical_and(true_where_correlated_and_different_from_45, true_where_tests_passed_and_normal) num_correlated_and_different_from_45_tests_passed_and_normal = np.sum(true_where_correlated_and_different_from_45_tests_passed_and_normal) where_correlated_and_different_from_45_tests_passed_and_normal = np.where(true_where_correlated_and_different_from_45_tests_passed_and_normal) true_where_correlated_and_different_from_45_and_different_from_0 = np.logical_and(true_where_correlated_and_different_from_45, np.asarray(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_different_from_0'])) num_correlated_and_different_from_45_and_different_from_0 = np.sum(true_where_correlated_and_different_from_45_and_different_from_0) where_correlated_and_different_from_45_and_different_from_0 = np.where(true_where_correlated_and_different_from_45_and_different_from_0) true_where_correlated_and_different_from_45_and_different_from_0_tests_passed = np.logical_and(true_where_correlated_and_different_from_45_and_different_from_0, true_where_tests_passed) num_correlated_and_different_from_45_and_different_from_0_tests_passed = np.sum(true_where_correlated_and_different_from_45_and_different_from_0_tests_passed) where_correlated_and_different_from_45_and_different_from_0_tests_passed = np.where(true_where_correlated_and_different_from_45_and_different_from_0_tests_passed) true_where_correlated_and_different_from_45_and_different_from_0_tests_passed_and_normal = np.logical_and(true_where_correlated_and_different_from_45_and_different_from_0, true_where_tests_passed_and_normal) num_correlated_and_different_from_45_and_different_from_0_tests_passed_and_normal = np.sum(true_where_correlated_and_different_from_45_and_different_from_0_tests_passed_and_normal) where_correlated_and_different_from_45_and_different_from_0_tests_passed_and_normal = np.where(true_where_correlated_and_different_from_45_and_different_from_0_tests_passed_and_normal) num_correlated_diferent_from_45_but_not_different_from_0 = num_correlated_and_different_from_45 - num_correlated_and_different_from_45_and_different_from_0 num_correlated_diferent_from_45_but_not_different_from_0_tests_passed = num_correlated_and_different_from_45_tests_passed - num_correlated_and_different_from_45_and_different_from_0_tests_passed num_correlated_diferent_from_45_but_not_different_from_0_tests_passed_and_normal = num_correlated_and_different_from_45_tests_passed_and_normal - num_correlated_and_different_from_45_and_different_from_0_tests_passed_and_normal data_part = sw.percent_and_frac_string(num_different_from_45, self.final_angled_cluster_count) ps_0 = data_part + " of $\\theta_{45}$ angles were between and significantly different from $0^{\circ}$ and $45^{\circ}$ for " + analysis_dict_key sw.append_new_tag(ps_0, analysis_dict_key + "AnglesDifferentFrom45FullText", tex_tag_file_name) sw.append_new_tag(data_part, analysis_dict_key + "AnglesDifferentFrom45Num", tex_tag_file_name) data_part = sw.percent_and_frac_string(num_correlated_and_different_from_45_and_different_from_0_tests_passed, num_tests_passed) ps_1_1 = data_part + analysis_dict_key + " had $\\theta_{45}$ angles between and significantly different from $45^{\circ}$ (p<0.025) and $0^{\circ}$ (p<0.025). " sw.append_new_tag(ps_1_1, analysis_dict_key + "TestsPassedAngleSummaryFullString", tex_tag_file_name) sw.append_new_tag(data_part, analysis_dict_key + "TestsPassedAngleSummaryNum", tex_tag_file_name) data_part = sw.percent_and_frac_string(num_for_type - num_normal, num_for_type) ps_new_normality_str = "It is important to note that the Henze-Zirkler null hypothesis of normality was rejected (p < 0.05) for " + data_part + " " + analysis_dict_key sw.append_new_tag(ps_new_normality_str, analysis_dict_key + "NormalityFullString", tex_tag_file_name) sw.append_new_tag(data_part, analysis_dict_key + "NormalityNum", tex_tag_file_name) data_part = sw.percent_and_frac_string(num_tests_passed - num_tests_passed_and_normal, num_tests_passed) ps_new_tests_passed_normality_str = "It is important to note that the Henze-Zirkler null hypothesis (p < 0.05) of normality was rejected for " + data_part + " " + analysis_dict_key + "TestsPassed" sw.append_new_tag(ps_new_tests_passed_normality_str, analysis_dict_key + "TestsPassedNormalityFullString", tex_tag_file_name) sw.append_new_tag(data_part, analysis_dict_key + "TestsPassedNormalityNum", tex_tag_file_name) if (analysis_dict_key == "Original"): num_stage_2_clusters_string = str(self.final_angled_cluster_count) + " unique Stage 2 clusters were extracted" sw.append_new_tag(num_stage_2_clusters_string, "NumStage2ClustersFullString", tex_tag_file_name) sw.append_new_tag(str(self.final_angled_cluster_count), "NumStage2ClustersNum", tex_tag_file_name) data_part = sw.percent_and_frac_string(number_correlated, self.final_angled_cluster_count) ps_p1 = data_part + " of which remained correlated above chance (p < 0.005)." sw.append_new_tag(ps_p1, "NumStage2ClustersCorrelatedFullString", tex_tag_file_name) sw.append_new_tag(data_part, "NumStage2ClustersCorrelatedNum", tex_tag_file_name) ps_p2 = str(self.final_angled_cluster_count - number_correlated) + " Stage 2 clusters were not significantly correlated (p >= 0.005) and were removed from further analysis, leaving " + str(number_correlated) + " Stage 2 clusters." sw.append_new_tag(ps_p2, "OriginalStage2Uncorrelated", tex_tag_file_name) data_part = sw.percent_and_frac_string(num_tests_passed, self.final_angled_cluster_count) ps_1_0 = data_part + " of Stage 2 clusters were determined as stationary " sw.append_new_tag(ps_1_0, "OriginalTestsPassedSummaryFullString", tex_tag_file_name) sw.append_new_tag(data_part, "OriginalTestsPassedSummaryNum", tex_tag_file_name) ps_1_1 = str(num_tests_passed_and_normal) + " stationary Stage 2 clusters were determined as normal (Henze-Zirkler p > 0.05), of which " + str(num_correlated_and_different_from_45_and_different_from_0_tests_passed_and_normal) + " had $\\theta_{45}$ angles between and significantly different from $45^{\circ}$ (p-value < 0.025)
inequality]( https://en.wikipedia.org/wiki/Jensen%27s_inequality)) this is *smaller* in expectation than the true `log p(observations[t] | observations[:t])`. ${non_markovian_specification_str} #### Examples **Tracking unknown position and velocity**: Let's consider tracking an object moving in a one-dimensional space. We'll define a dynamical system by specifying an `initial_state_prior`, a `transition_fn`, and `observation_fn`. The structure of the latent state space is determined by the prior distribution. Here, we'll define a state space that includes the object's current position and velocity: ```python initial_state_prior = tfd.JointDistributionNamed({ 'position': tfd.Normal(loc=0., scale=1.), 'velocity': tfd.Normal(loc=0., scale=0.1)}) ``` The `transition_fn` specifies the evolution of the system. It should return a distribution over latent states of the same structure as the prior. Here, we'll assume that the position evolves according to the velocity, with a small random drift, and the velocity also changes slowly, following a random drift: ```python def transition_fn(_, previous_state): return tfd.JointDistributionNamed({ 'position': tfd.Normal( loc=previous_state['position'] + previous_state['velocity'], scale=0.1), 'velocity': tfd.Normal(loc=previous_state['velocity'], scale=0.01)}) ``` The `observation_fn` specifies the process by which the system is observed at each time step. Let's suppose we observe only a noisy version of the = current position. ```python def observation_fn(_, state): return tfd.Normal(loc=state['position'], scale=0.1) ``` Now let's track our object. Suppose we've been given observations corresponding to an initial position of `0.4` and constant velocity of `0.01`: ```python # Generate simulated observations. observed_positions = tfd.Normal(loc=tf.linspace(0.4, 0.8, 0.01), scale=0.1).sample() # Run particle filtering to sample plausible trajectories. (trajectories, # {'position': [40, 1000], 'velocity': [40, 1000]} lps) = tfp.experimental.mcmc.infer_trajectories( observations=observed_positions, initial_state_prior=initial_state_prior, transition_fn=transition_fn, observation_fn=observation_fn, num_particles=1000) ``` For all `i`, `trajectories['position'][:, i]` is a sample from the posterior over position sequences, given the observations: `p(state[0:T] | observations[0:T])`. Often, the sampled trajectories will be highly redundant in their earlier timesteps, because most of the initial particles have been discarded through resampling (this problem is known as 'particle degeneracy'; see section 3.5 of [Doucet and Johansen][1]). In such cases it may be useful to also consider the series of *filtering* distributions `p(state[t] | observations[:t])`, in which each latent state is inferred conditioned only on observations up to that point in time; these may be computed using `tfp.mcmc.experimental.particle_filter`. #### References [1] <NAME> and <NAME>. A tutorial on particle filtering and smoothing: Fifteen years later. _Handbook of nonlinear filtering_, 12(656-704), 2009. https://www.stats.ox.ac.uk/~doucet/doucet_johansen_tutorialPF2011.pdf """ with tf.name_scope(name or 'infer_trajectories') as name: seed = SeedStream(seed, 'infer_trajectories') (particles, log_weights, parent_indices, incremental_log_marginal_likelihoods) = particle_filter( observations=observations, initial_state_prior=initial_state_prior, transition_fn=transition_fn, observation_fn=observation_fn, num_particles=num_particles, initial_state_proposal=initial_state_proposal, proposal_fn=proposal_fn, resample_criterion_fn=resample_criterion_fn, rejuvenation_kernel_fn=rejuvenation_kernel_fn, num_transitions_per_observation=num_transitions_per_observation, num_steps_state_history_to_pass=num_steps_state_history_to_pass, num_steps_observation_history_to_pass=( num_steps_observation_history_to_pass), trace_fn=_default_trace_fn, seed=seed, name=name) weighted_trajectories = reconstruct_trajectories(particles, parent_indices) # Resample all steps of the trajectories using the final weights. resample_indices = categorical.Categorical( dist_util.move_dimension( log_weights[-1, ...], source_idx=0, dest_idx=-1)).sample(num_particles, seed=seed) trajectories = tf.nest.map_structure( lambda x: _batch_gather(x, resample_indices, axis=1), weighted_trajectories) return trajectories, incremental_log_marginal_likelihoods @docstring_util.expand_docstring( particle_filter_arg_str=particle_filter_arg_str, non_markovian_specification_str=non_markovian_specification_str) def particle_filter(observations, initial_state_prior, transition_fn, observation_fn, num_particles, initial_state_proposal=None, proposal_fn=None, resample_criterion_fn=ess_below_threshold, rejuvenation_kernel_fn=None, # TODO(davmre): not yet supported. pylint: disable=unused-argument num_transitions_per_observation=1, num_steps_state_history_to_pass=None, num_steps_observation_history_to_pass=None, trace_fn=_default_trace_fn, step_indices_to_trace=None, seed=None, name=None): # pylint: disable=g-doc-args """Samples a series of particles representing filtered latent states. The particle filter samples from the sequence of "filtering" distributions `p(state[t] | observations[:t])` over latent states: at each point in time, this is the distribution conditioned on all observations *up to that time*. Because particles may be resampled, a particle at time `t` may be different from the particle with the same index at time `t + 1`. To reconstruct trajectories by tracing back through the resampling process, see `tfp.mcmc.experimental.reconstruct_trajectories`. ${particle_filter_arg_str} trace_fn: Python `callable` defining the values to be traced at each step. It takes a `ParticleFilterStepResults` tuple and returns a structure of `Tensor`s. The default function returns `(particles, log_weights, parent_indices, step_log_likelihood)`. step_indices_to_trace: optional `int` `Tensor` listing, in increasing order, the indices of steps at which to record the values traced by `trace_fn`. If `None`, the default behavior is to trace at every timestep, equivalent to specifying `step_indices_to_trace=tf.range(num_timsteps)`. seed: Python `int` seed for random ops. name: Python `str` name for ops created by this method. Default value: `None` (i.e., `'particle_filter'`). Returns: particles: a (structure of) Tensor(s) matching the latent state, each of shape `concat([[num_timesteps, num_particles, b1, ..., bN], event_shape])`, representing (possibly weighted) samples from the series of filtering distributions `p(latent_states[t] | observations[:t])`. log_weights: `float` `Tensor` of shape `[num_timesteps, num_particles, b1, ..., bN]`, such that `log_weights[t, :]` are the logarithms of normalized importance weights (such that `exp(reduce_logsumexp(log_weights), axis=-1) == 1.`) of the particles at time `t`. These may be used in conjunction with `particles` to compute expectations under the series of filtering distributions. parent_indices: `int` `Tensor` of shape `[num_timesteps, num_particles, b1, ..., bN]`, such that `parent_indices[t, k]` gives the index of the particle at time `t - 1` that the `k`th particle at time `t` is immediately descended from. See also `tfp.experimental.mcmc.reconstruct_trajectories`. incremental_log_marginal_likelihoods: float `Tensor` of shape `[num_observation_steps, b1, ..., bN]`, giving the natural logarithm of an unbiased estimate of `p(observations[t] | observations[:t])` at each observed timestep `t`. Note that (by [Jensen's inequality]( https://en.wikipedia.org/wiki/Jensen%27s_inequality)) this is *smaller* in expectation than the true `log p(observations[t] | observations[:t])`. ${non_markovian_specification_str} """ seed = SeedStream(seed, 'particle_filter') with tf.name_scope(name or 'particle_filter'): num_observation_steps = ps.size0(tf.nest.flatten(observations)[0]) num_timesteps = ( 1 + num_transitions_per_observation * (num_observation_steps - 1)) # If no criterion is specified, default is to resample at every step. if not resample_criterion_fn: resample_criterion_fn = lambda _: True # Canonicalize the list of steps to trace as a rank-1 tensor of (sorted) # positive integers. E.g., `3` -> `[3]`, `[-2, -1]` -> `[N - 2, N - 1]`. if step_indices_to_trace is not None: (step_indices_to_trace, traced_steps_have_rank_zero) = _canonicalize_steps_to_trace( step_indices_to_trace, num_timesteps) # Dress up the prior and prior proposal as a fake `transition_fn` and # `proposal_fn` respectively. prior_fn = lambda _1, _2: SampleParticles( # pylint: disable=g-long-lambda initial_state_prior, num_particles) prior_proposal_fn = ( None if initial_state_proposal is None else lambda _1, _2: SampleParticles( # pylint: disable=g-long-lambda initial_state_proposal, num_particles)) # Initially the particles all have the same weight, `1. / num_particles`. broadcast_batch_shape = tf.convert_to_tensor( functools.reduce( ps.broadcast_shape, tf.nest.flatten(initial_state_prior.batch_shape_tensor()), []), dtype=tf.int32) log_uniform_weights = ps.zeros( ps.concat([ [num_particles], broadcast_batch_shape], axis=0), dtype=tf.float32) - ps.log(num_particles) # Initialize from the prior and incorporate the first observation. dummy_previous_step = ParticleFilterStepResults( particles=prior_fn(0, []).sample(), log_weights=log_uniform_weights, parent_indices=None, incremental_log_marginal_likelihood=0., accumulated_log_marginal_likelihood=0.) initial_step_results = _filter_one_step( step=0, # `previous_particles` at the first step is a dummy quantity, used only # to convey state structure and num_particles to an optional # proposal fn. previous_step_results=dummy_previous_step, observation=tf.nest.map_structure( lambda x: tf.gather(x, 0), observations), transition_fn=prior_fn, observation_fn=observation_fn, proposal_fn=prior_proposal_fn, resample_criterion_fn=resample_criterion_fn, seed=seed) def _loop_body(step, previous_step_results, accumulated_traced_results, state_history, num_steps_traced): """Take one step in dynamics and accumulate marginal likelihood.""" step_has_observation = ( # The second of these conditions subsumes the first, but both are # useful because the first can often be evaluated statically. ps.equal(num_transitions_per_observation, 1) | ps.equal(step % num_transitions_per_observation, 0)) observation_idx = step // num_transitions_per_observation current_observation = tf.nest.map_structure( lambda x, step=step: tf.gather(x, observation_idx), observations) history_to_pass_into_fns = {} if num_steps_observation_history_to_pass: history_to_pass_into_fns['observation_history'] = _gather_history( observations, observation_idx, num_steps_observation_history_to_pass) if num_steps_state_history_to_pass: history_to_pass_into_fns['state_history'] = state_history new_step_results = _filter_one_step( step=step, previous_step_results=previous_step_results, observation=current_observation, transition_fn=functools.partial( transition_fn, **history_to_pass_into_fns), observation_fn=functools.partial( observation_fn, **history_to_pass_into_fns), proposal_fn=( None if proposal_fn is None else functools.partial(proposal_fn, **history_to_pass_into_fns)), resample_criterion_fn=resample_criterion_fn, has_observation=step_has_observation, seed=seed) return _update_loop_variables( step=step, current_step_results=new_step_results, accumulated_traced_results=accumulated_traced_results, state_history=state_history, trace_fn=trace_fn, step_indices_to_trace=step_indices_to_trace, num_steps_traced=num_steps_traced) loop_results = tf.while_loop( cond=lambda step, *_: step < num_timesteps, body=_loop_body, loop_vars=_initialize_loop_variables( initial_step_results=initial_step_results, num_timesteps=num_timesteps, num_steps_state_history_to_pass=num_steps_state_history_to_pass, trace_fn=trace_fn, step_indices_to_trace=step_indices_to_trace)) results = tf.nest.map_structure(lambda ta: ta.stack(), loop_results.accumulated_traced_results) if step_indices_to_trace is not None: # If we were passed a rank-0 (single scalar) step to trace, don't # return a time axis in the returned results. results = ps.cond( traced_steps_have_rank_zero, lambda: tf.nest.map_structure(lambda x: x[0, ...], results), lambda: results) return results def _canonicalize_steps_to_trace(step_indices_to_trace, num_timesteps): """Canonicalizes `3` -> `[3]`, `[-2, -1]` -> `[N - 2, N - 1]`, etc.""" step_indices_to_trace = tf.convert_to_tensor( step_indices_to_trace, dtype_hint=tf.int32) traced_steps_have_rank_zero = ps.equal( ps.rank_from_shape(ps.shape(step_indices_to_trace)), 0) # Canonicalize negative step indices as positive. step_indices_to_trace = ps.where(step_indices_to_trace < 0, num_timesteps + step_indices_to_trace, step_indices_to_trace) # Canonicalize scalars as length-one vectors. return (ps.reshape(step_indices_to_trace, [ps.size(step_indices_to_trace)]), traced_steps_have_rank_zero) def _initialize_loop_variables(initial_step_results, num_timesteps, num_steps_state_history_to_pass, trace_fn, step_indices_to_trace): """Initialize arrays and other quantities passed through the filter loop.""" # Create arrays to store traced values (particles, likelihoods, etc). num_steps_to_trace = (num_timesteps if step_indices_to_trace is None else ps.size0(step_indices_to_trace)) traced_results = trace_fn(initial_step_results) trace_arrays = tf.nest.map_structure( lambda
# -*- mode: python; coding: utf-8 -*- # Copyright 2012-2018 <NAME> <<EMAIL>> and collaborators. # Licensed under the MIT License. """Model data with least-squares fitting This module provides tools for fitting models to data using least-squares optimization. """ from __future__ import absolute_import, division, print_function __all__ = 'ModelBase Model ComposedModel PolynomialModel ScaleModel'.split() import numpy as np try: # numpy 1.7 import numpy.polynomial.polynomial as npoly except ImportError: import numpy.polynomial as npoly from six import get_function_code from six.moves import range, reduce from . import binary_type, text_type class Parameter(object): """Information about a parameter in a least-squares model. These data may only be obtained after solving least-squares problem. These objects reference information from their parent objects, so changing the parent will alter the apparent contents of these objects. """ def __init__(self, owner, index): self._owner = owner self._index = index def __repr__(self): return '<Parameter "%s" (#%d) of %s>' % (self.name, self._index, self._owner) @property def index(self): # make this read-only "The parameter's index in the Model's arrays." return self._index @property def name(self): "The parameter's name." return self._owner.pnames[self._index] @property def value(self): "The parameter's value." return self._owner.params[self._index] @property def uncert(self): "The uncertainty in :attr:`value`." return self._owner.puncerts[self._index] @property def uval(self): "Accesses :attr:`value` and :attr:`uncert` as a :class:`pwkit.msmt.Uval`." from .msmt import Uval return Uval.from_norm(self.value, self.uncert) class ModelBase(object): """An abstract base class holding data and a model for least-squares fitting. The models implemented in this module all derive from this class and so inherit the attributes and methods described below. A :class:`Parameter` data structure may be obtained by indexing this object with either the parameter's numerical index or its name. I.e.:: m = Model(...).solve(...) p = m['slope'] print(p.name, p.value, p.uncert, p.uval) """ data = None "The data to be modeled; an *n*-dimensional Numpy array." invsigma = None "Data weights: 1/σ for each data point." params = None "After fitting, a Numpy ndarray of solved model parameters." puncerts = None "After fitting, a Numpy ndarray of 1σ uncertainties on the model parameters." pnames = None "A list of textual names for the parameters." covar = None """After fitting, the variance-covariance matrix representing the parameter uncertainties. """ mfunc = None """After fitting, a callable function evaluating the model fixed at best params. The resulting function may or may not take arguments depending on the particular kind of model being evaluated. """ mdata = None "After fitting, the modeled data at the best parameters." chisq = None "After fitting, the χ² of the fit." rchisq = None "After fitting, the reduced χ² of the fit, or None if there are no degrees of freedom." resids = None "After fitting, the residuals: ``resids = data - mdata``." def __init__(self, data, invsigma=None): self.set_data(data, invsigma) def set_data(self, data, invsigma=None): """Set the data to be modeled. Returns *self*. """ self.data = np.array(data, dtype=np.float, ndmin=1) if invsigma is None: self.invsigma = np.ones(self.data.shape) else: i = np.array(invsigma, dtype=np.float) self.invsigma = np.broadcast_arrays(self.data, i)[1] # allow scalar invsigma if self.invsigma.shape != self.data.shape: raise ValueError('data values and inverse-sigma values must have same shape') return self def print_soln(self): """Print information about the model solution.""" lmax = reduce(max,(len(x) for x in self.pnames), len('r chi sq')) if self.puncerts is None: for pn, val in zip(self.pnames, self.params): print('%s: %14g' % (pn.rjust(lmax), val)) else: for pn, val, err in zip(self.pnames, self.params, self.puncerts): frac = abs(100. * err / val) print('%s: %14g +/- %14g (%.2f%%)' % (pn.rjust(lmax), val, err, frac)) if self.rchisq is not None: print('%s: %14g' % ('r chi sq'.rjust(lmax), self.rchisq)) elif self.chisq is not None: print('%s: %14g' % ('chi sq'.rjust(lmax), self.chisq)) else: print('%s: unknown/undefined' % ('r chi sq'.rjust(lmax))) return self def make_frozen_func(self, params): """Return a data-generating model function frozen at the specified parameters. As with the :attr:`mfunc` attribute, the resulting function may or may not take arguments depending on the particular kind of model being evaluated. """ raise NotImplementedError() def __getitem__(self, key): if isinstance(key, binary_type): # If you're not using the unicode_literals __future__, things get # annoying really quickly without this. key = text_type(key) if isinstance(key, int): idx = key if idx < 0 or idx >= len(self.pnames): raise ValueError('illegal parameter number %d' % key) elif isinstance(key, text_type): try: idx = self.pnames.index(key) except ValueError: raise ValueError('no such parameter named "%s"' % key) else: raise ValueError('illegal parameter key %r' % key) return Parameter(self, idx) def plot(self, modelx, dlines=False, xmin=None, xmax=None, ymin=None, ymax=None, **kwargs): """Plot the data and model (requires `omega`). This assumes that `data` is 1D and that `mfunc` takes one argument that should be treated as the X variable. """ import omega as om modelx = np.asarray(modelx) if modelx.shape != self.data.shape: raise ValueError('modelx and data arrays must have same shape') modely = self.mfunc(modelx) sigmas = self.invsigma**-1 # TODO: handle invsigma = 0 vb = om.layout.VBox(2) vb.pData = om.quickXYErr(modelx, self.data, sigmas, 'Data', lines=dlines, **kwargs) vb[0] = vb.pData vb[0].addXY(modelx, modely, 'Model') vb[0].setYLabel('Y') vb[0].rebound(False, True) vb[0].setBounds(xmin, xmax, ymin, ymax) vb[1] = vb.pResid = om.RectPlot() vb[1].defaultField.xaxis = vb[1].defaultField.xaxis vb[1].addXYErr(modelx, self.resids, sigmas, None, lines=False) vb[1].setLabels('X', 'Residuals') vb[1].rebound(False, True) # ignore Y values since residuals are on different scale: vb[1].setBounds(xmin, xmax) vb.setWeight(0, 3) return vb def show_cov(self): "Show the parameter covariance matrix with `pwkit.ndshow_gtk3`." # would be nice: labels with parameter names (hard because this is # ndshow, not omegaplot) from .ndshow_gtk3 import view view(self.covar, title='Covariance Matrix') def show_corr(self): "Show the parameter correlation matrix with `pwkit.ndshow_gtk3`." from .ndshow_gtk3 import view d = np.diag(self.covar) ** -0.5 corr = self.covar * d[np.newaxis,:] * d[:,np.newaxis] view(corr, title='Correlation Matrix') class Model(ModelBase): """Models data with a generic nonlinear optimizer Basic usage is:: def func(p1, p2, x): simulated_data = p1 * x + p2 return simulated_data x = [1, 2, 3] data = [10, 14, 15.8] mdl = Model(func, data, args=(x,)).solve(guess).print_soln() The :class:`Model` constructor can take an optional argument ``invsigma`` after ``data``; it specifies *inverse sigmas*, **not** inverse *variances* (the usual statistical weights), for the data points. Since most applications deal in sigmas, take care to write:: m = Model(func, data, 1. / uncerts) # right! not:: m = Model(func, data, uncerts) # WRONG If you have zero uncertainty on a measurement, you must wind a way to express that constraint without including that measurement as part of the ``data`` vector. """ lm_prob = None """A :class:`pwkit.lmmin.Problem` instance describing the problem to be solved. After setting up the data-generating function, you can access this item to tune the solver. """ def __init__(self, simple_func, data, invsigma=None, args=()): if simple_func is not None: self.set_simple_func(simple_func, args) if data is not None: self.set_data(data, invsigma) def set_func(self, func, pnames, args=()): """Set the model function to use an efficient but tedious calling convention. The function should obey the following convention:: def func(param_vec, *args): modeled_data = { do something using param_vec } return modeled_data This function creates the :class:`pwkit.lmmin.Problem` so that the caller can futz with it before calling :meth:`solve`, if so desired. Returns *self*. """ from .lmmin import Problem self.func = func self._args = args self.pnames = list(pnames) self.lm_prob = Problem(len(self.pnames)) return self def set_simple_func(self, func, args=()): """Set the model function to use a simple but somewhat inefficient calling convention. The function should obey the following convention:: def func(param0, param1, ..., paramN, *args): modeled_data = { do something using the parameters } return modeled_data Returns *self*. """ code = get_function_code(func) npar = code.co_argcount - len(args) pnames = code.co_varnames[:npar] def wrapper(params, *args): return func(*(tuple(params) + args)) return self.set_func(wrapper, pnames, args) def make_frozen_func(self, params): """Returns a model function frozen to the specified parameter values. Any remaining arguments are left free and must be provided when the function is called. For this model, the returned function is the application of :func:`functools.partial` to the :attr:`func` property of this object. """ params = np.array(params, dtype=np.float, ndmin=1) from functools import partial return partial(self.func, params) def solve(self, guess): """Solve for the parameters, using an initial guess. This uses the Levenberg-Marquardt optimizer described in :mod:`pwkit.lmmin`. Returns *self*. """ guess = np.array(guess, dtype=np.float, ndmin=1) f = self.func args = self._args def lmfunc(params, vec): vec[:] = f(params, *args).flatten() self.lm_prob.set_residual_func(self.data.flatten(), self.invsigma.flatten(), lmfunc, None) self.lm_soln
Adjustment Method: SS-S by stability class Alpha w/cup') ResultsLists_class_alpha_Ane = initialize_resultsLists('class_alpha_Ane') className = 1 for item in All_class_data_alpha_Ane: inputdata_adj, lm_adj, m, c = adjuster.perform_SS_S_adjustment(item.copy()) print ("SS-S: y = " + str(m) + "* x +" + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = str('SS-S' + '_alphaCup_' + 'class_' + str(className)) adjustment_name = str('SS-S' + '_' + str(className)) ResultsLists_class_alpha_Ane = populate_resultsLists(ResultsLists_class_alpha_Ane, 'class_alpha_Ane', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsLists_stability_alpha_Ane = populate_resultsLists_stability(ResultsLists_stability_alpha_Ane, ResultsLists_class_alpha_Ane, 'alpha_Ane') # ********************************************** # # Site Specific Simple + Filter Adjustment (SS-SF) if method != 'SS-SF': pass elif method == 'SS-SF' and adjustments_metadata['SS-SF'] == False: pass else: print('Applying Adjustment Method: SS-SF') logger.info('Applying Adjustment Method: SS-SF') # inputdata_adj, lm_adj, m, c = perform_SS_SF_adjustment(inputdata.copy()) inputdata_adj, lm_adj, m, c = adjuster.perform_SS_SF_adjustment(inputdata.copy()) print("SS-SF: y = " + str(m) + " * x + " + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = 'SS-SF' adjustment_name = 'SS_SF' baseResultsLists = populate_resultsLists(baseResultsLists, '', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) TI_10minuteAdjusted = record_TIadj(adjustment_name,inputdata_adj,Timestamps, method, TI_10minuteAdjusted, emptyclassFlag=False) if RSDtype['Selection'][0:4] == 'Wind' or 'ZX' in RSDtype['Selection']: print('Applying Adjustment Method: SS-SF by stability class (TKE)') logger.info('Applying Adjustment Method: SS-SF by stability class (TKE)') # stability subset output for primary height (all classes) ResultsLists_class = initialize_resultsLists('class_') className = 1 for item in All_class_data: inputdata_adj, lm_adj, m, c = adjuster.perform_SS_SF_adjustment(item[primary_idx].copy()) print("SS-SF: y = " + str(m) + " * x + " + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = str('SS-SF' + '_' + 'class_' + str(className)) adjustment_name = str('SS_SF' + '_TKE_' + str(className)) ResultsLists_class = populate_resultsLists(ResultsLists_class, 'class_', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsList_stability = populate_resultsLists_stability(ResultsLists_stability, ResultsLists_class, '') if RSD_alphaFlag: print('Applying Adjustment Method: SS-SF by stability class Alpha w/ RSD') logger.info('Applying Adjustment Method: SS-SF by stability class Alpha w/ RSD') ResultsLists_class_alpha_RSD = initialize_resultsLists('class_alpha_RSD') className = 1 for item in All_class_data_alpha_RSD: inputdata_adj, lm_adj, m, c = adjuster.perform_SS_SF_adjustment(item.copy()) print ("SS-SF: y = " + str(m) + "* x +" + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = str('SS-SF' + '_' + 'class_' + str(className)) adjustment_name = str('SS_SF' + '_alphaRSD_' + str(className)) ResultsLists_class_alpha_RSD = populate_resultsLists(ResultsLists_class_alpha_RSD, 'class_alpha_RSD', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsLists_stability_alpha_RSD = populate_resultsLists_stability(ResultsLists_stability_alpha_RSD, ResultsLists_class_alpha_RSD, 'alpha_RSD') if cup_alphaFlag: print('Applying Adjustment Method: SS-SF by stability class Alpha w/cup') logger.info('Applying Adjustment Method: SS-SF by stability class Alpha w/cup') ResultsLists_class_alpha_Ane = initialize_resultsLists('class_alpha_Ane') className = 1 for item in All_class_data_alpha_Ane: inputdata_adj, lm_adj, m, c = adjuster.perform_SS_SF_adjustment(item.copy()) print ("SS-SF: y = " + str(m) + "* x +" + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = str('SS-SF' + '_' + 'class_' + str(className)) adjustment_name = str('SS_SF' + '_alphaCup_' + str(className)) ResultsLists_class_alpha_Ane = populate_resultsLists(ResultsLists_class_alpha_Ane, 'class_alpha_Ane', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsLists_stability_alpha_Ane = populate_resultsLists_stability(ResultsLists_stability_alpha_Ane, ResultsLists_class_alpha_Ane, 'alpha_Ane') # ************************************ # # Site Specific Simple Adjustment (SS-SS) combining stability classes adjusted differently if method != 'SS-SS': pass elif method == 'SS-SS' and adjustments_metadata['SS-SS'] == False: pass elif RSDtype['Selection'][0:4] != 'Wind' and 'ZX' not in RSDtype['Selection']: pass else: print('Applying Adjustment Method: SS-SS') logger.info('Applying Adjustment Method: SS-SS') inputdata_adj, lm_adj, m, c = perform_SS_SS_adjustment(inputdata.copy(),All_class_data,primary_idx) print("SS-SS: y = " + str(m) + " * x + " + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = 'SS-SS' adjustment_name = 'SS_SS' baseResultsLists = populate_resultsLists(baseResultsLists, '', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) TI_10minuteAdjusted = record_TIadj(adjustment_name,inputdata_adj,Timestamps, method, TI_10minuteAdjusted, emptyclassFlag=False) if RSDtype['Selection'][0:4] == 'Wind': print('Applying Adjustment Method: SS-SS by stability class (TKE). SAME as Baseline') logger.info('Applying Adjustment Method: SS-SS by stability class (TKE). SAME as Baseline') ResultsLists_class = initialize_resultsLists('class_') className = 1 for item in All_class_data: print("SS-SS: y = " + str(m) + " * x + " + str(c)) adjustment_name = str('SS_SS' + '_TKE_' + str(className)) ResultsLists_class = populate_resultsLists(ResultsLists_class, 'class_', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsList_stability = populate_resultsLists_stability(ResultsLists_stability, ResultsLists_class, '') if RSD_alphaFlag: print('Applying Adjustment Method: SS-SS by stability class Alpha w/ RSD. SAEM as Baseline') logger.info('Applying Adjustment Method: SS-SS by stability class Alpha w/ RSD. SAEM as Baseline') ResultsLists_class_alpha_RSD = initialize_resultsLists('class_alpha_RSD') className = 1 for item in All_class_data_alpha_RSD: print ("SS-SS: y = " + str(m) + "* x +" + str(c)) adjustment_name = str('SS_SS' + '_alphaRSD_' + str(className)) ResultsLists_class_alpha_RSD = populate_resultsLists(ResultsLists_class_alpha_RSD, 'class_alpha_RSD', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsLists_stability_alpha_RSD = populate_resultsLists_stability(ResultsLists_stability_alpha_RSD, ResultsLists_class_alpha_RSD, 'alpha_RSD') if cup_alphaFlag: print('Applying Adjustment Method: SS-SS by stability class Alpha w/cup') logger.info('Applying Adjustment Method: SS-SS by stability class Alpha w/cup') ResultsLists_class_alpha_Ane = initialize_resultsLists('class_alpha_Ane') className = 1 for item in All_class_data_alpha_Ane: print ("SS-SS: y = " + str(m) + "* x +" + str(c)) emptyclassFlag = False adjustment_name = str('SS_SS' + '_alphaCup_' + str(className)) ResultsLists_class_alpha_Ane = populate_resultsLists(ResultsLists_class_alpha_Ane, 'class_alpha_Ane', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsLists_stability_alpha_Ane = populate_resultsLists_stability(ResultsLists_stability_alpha_Ane, ResultsLists_class_alpha_Ane, 'alpha_Ane') # ******************************************* # # Site Specific WindSpeed Adjustment (SS-WS) if method != 'SS-WS': pass elif method == 'SS-WS' and adjustments_metadata['SS-WS'] == False: pass else: print('Applying Adjustment Method: SS-WS') logger.info('Applying Adjustment Method: SS-WS') inputdata_adj, lm_adj, m, c = perform_SS_WS_adjustment(inputdata.copy()) print("SS-WS: y = " + str(m) + " * x + " + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = 'SS-WS' adjustment_name = 'SS_WS' baseResultsLists = populate_resultsLists(baseResultsLists, '', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) TI_10minuteAdjusted = record_TIadj(adjustment_name,inputdata_adj,Timestamps, method, TI_10minuteAdjusted, emptyclassFlag=False) if RSDtype['Selection'][0:4] == 'Wind' or 'ZX' in RSDtype['Selection']: print('Applying Adjustment Method: SS-WS by stability class (TKE)') logger.info('Applying Adjustment Method: SS-WS by stability class (TKE)') # stability subset output for primary height (all classes) ResultsLists_class = initialize_resultsLists('class_') className = 1 for item in All_class_data: inputdata_adj, lm_adj, m, c = perform_SS_WS_adjustment(item[primary_idx].copy()) print("SS-WS: y = " + str(m) + " * x + " + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = str('SS-WS' + '_' + 'class_' + str(className)) adjustment_name = str('SS_WS' + '_TKE_' + str(className)) ResultsLists_class = populate_resultsLists(ResultsLists_class, 'class_', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsList_stability = populate_resultsLists_stability(ResultsLists_stability, ResultsLists_class, '') if RSD_alphaFlag: print('Applying Adjustment Method: SS-WS by stability class Alpha w/ RSD') logger.info('Applying Adjustment Method: SS-WS by stability class Alpha w/ RSD') ResultsLists_class_alpha_RSD = initialize_resultsLists('class_alpha_RSD') className = 1 for item in All_class_data_alpha_RSD: inputdata_adj, lm_adj, m, c = perform_SS_WS_adjustment(item.copy()) print ("SS-WS: y = " + str(m) + "* x +" + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = str('SS-WS' + '_' + 'class_' + str(className)) adjustment_name = str('SS_WS' + '_alphaRSD_' + str(className)) ResultsLists_class_alpha_RSD = populate_resultsLists(ResultsLists_class_alpha_RSD, 'class_alpha_RSD', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsLists_stability_alpha_RSD = populate_resultsLists_stability(ResultsLists_stability_alpha_RSD, ResultsLists_class_alpha_RSD, 'alpha_RSD') if cup_alphaFlag: print('Applying Adjustment Method: SS-WS by stability class Alpha w/cup') logger.info('Applying Adjustment Method: SS-WS by stability class Alpha w/cup') ResultsLists_class_alpha_Ane = initialize_resultsLists('class_alpha_Ane') className = 1 for item in All_class_data_alpha_Ane: inputdata_adj, lm_adj, m, c = perform_SS_WS_adjustment(item.copy()) print ("SS-WS: y = " + str(m) + "* x +" + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = str('SS-WS' + '_' + 'class_' + str(className)) emptyclassFlag = False adjustment_name = str('SS_WS' + '_alphaCup_' + str(className)) ResultsLists_class_alpha_Ane = populate_resultsLists(ResultsLists_class_alpha_Ane, 'class_alpha_Ane', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) className += 1 ResultsLists_stability_alpha_Ane = populate_resultsLists_stability(ResultsLists_stability_alpha_Ane, ResultsLists_class_alpha_Ane, 'alpha_Ane') # ******************************************* # # Site Specific Comprehensive Adjustment (SS-WS-Std) if method != 'SS-WS-Std': pass elif method == 'SS-WS-Std' and adjustments_metadata['SS-WS-Std'] == False: pass else: print('Applying Adjustment Method: SS-WS-Std') logger.info('Applying Adjustment Method: SS-WS-Std') inputdata_adj, lm_adj, m, c = perform_SS_WS_Std_adjustment(inputdata.copy()) print("SS-WS-Std: y = " + str(m) + " * x + " + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = 'SS-WS-Std' adjustment_name = 'SS_WS_Std' baseResultsLists = populate_resultsLists(baseResultsLists, '', adjustment_name, lm_adj, inputdata_adj, Timestamps, method) TI_10minuteAdjusted = record_TIadj(adjustment_name,inputdata_adj,Timestamps, method, TI_10minuteAdjusted, emptyclassFlag=False) if RSDtype['Selection'][0:4] == 'Wind' or 'ZX' in RSDtype['Selection']: print('Applying Adjustment Method: SS-WS-Std by stability class (TKE)') logger.info('Applying Adjustment Method: SS-WS-Std by stability class (TKE)') # stability subset output for primary height (all classes) ResultsLists_class = initialize_resultsLists('class_') className = 1 for item in All_class_data: inputdata_adj, lm_adj, m, c = perform_SS_WS_Std_adjustment(item[primary_idx].copy()) print("SS-WS-Std: y = " + str(m) + " * x + " + str(c)) lm_adj['sensor'] = sensor lm_adj['height'] = height lm_adj['adjustment'] = str('SS-WS-Std' + '_' + 'class_' + str(className)) adjustment_name = str('SS_WS_Std' +
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Hash Code 2017 """ import os, sys from pprint import pprint import argparse import time import datetime import pandas as pd from pymongo import MongoClient import numpy as np from math import cos, sin from collections import defaultdict, deque import copy import matplotlib.pyplot as plt from sets import Set def structure_inputs(lines): ## NETWORK ## 5 videos, 2 endpoints, 4 request descriptions, 3 caches 100MB each. network = lines.pop(0).split(" ") nb_videos = int(network[0]) nb_endpoints = int(network[1]) nb_requestsDesc = int(network[2]) nb_caches = int(network[3]) nb_MBperCache = int(network[4]) print "nb_videos:", nb_videos print "nb_endpoints:", nb_endpoints print "nb_requestsDesc:", nb_requestsDesc print "nb_caches:", nb_caches print "nb_MBperCache:", nb_MBperCache ## VIDEOS video_sizes_row = lines.pop(0) video_sizes = [int(s) for s in video_sizes_row.split(" ")] print("\nVideos Sizes") pprint(video_sizes) ## ENDPOINTS (with caches) endpoints = [] endpoints_caches = np.ones((nb_endpoints, nb_caches), dtype=np.int) * -1 for e in xrange(nb_endpoints): infosE = lines.pop(0).split(" ") endpoints.append({}) endpoints[e]['id'] = e endpoints[e]['Ld'] = int(infosE[0]) endpoints[e]['nb_caches'] = int(infosE[1]) endpoints[e]['caches'] = [] for c in xrange(endpoints[e]['nb_caches']): infosEC = lines.pop(0).split(" ") cacheID = int(infosEC[0]) cacheLatency = int(infosEC[1]) endpoints[e]['caches'].append(cacheID) endpoints_caches[e][cacheID] = cacheLatency print("\nEndpoints") pprint(endpoints) print("\nEndpoints x Caches latency matrix") print endpoints_caches ## ENDPOINTS improved: re-order caches of endpoints from fastest to slowest for e in xrange(nb_endpoints): cacheIDs = np.array(copy.copy(endpoints[e]['caches'])) cacheLatencies = [] for c in cacheIDs: cacheLatencies.append(endpoints_caches[e][c]) idx_caches_ranked = np.argsort(cacheLatencies) endpoints[e]['caches'] = cacheIDs[idx_caches_ranked] print("\nEndpoints with caches ranked by their latencies") pprint(endpoints) ## CACHES (serving a list of endpoints) caches = [] caches = [{'id':i, #'videos': [], 'endpoints':[]} for i in xrange(nb_caches)] for e in endpoints: for cID in e['caches']: caches[cID]['endpoints'].append(e['id']) print("\nCaches (each element has its list of endpoints)") pprint(caches) ## CACHES: re-ordered so that the most connected caches appear first caches_reordered = [] while len(caches)>0: mxEndpts = -1 idMxC = -1 for i,c in enumerate(caches): if len(c['endpoints']) > mxEndpts: idMxC = i mxEndpts = len(c['endpoints']) caches_reordered.append(caches[idMxC]) del caches[idMxC] caches = np.copy(caches_reordered) print("\nCaches re-ordered") pprint(caches) mostConnected_caches = [c['id'] for c in caches] print "mostConnected_caches: ", mostConnected_caches ## REQUEST DESCRIPTIONS BY ENDPOINTS PER VIDEOS videos = [] videos_endpoints = np.zeros((nb_videos, nb_endpoints), dtype=np.int) for r in xrange(nb_requestsDesc): infosR = lines.pop(0).split(" ") videoID = int(infosR[0]) endpointID = int(infosR[1]) nb_req = int(infosR[2]) videos_endpoints[videoID][endpointID] = nb_req print("\nVideos x Endpoints: requests matrix") print videos_endpoints videos_sumEndpoints = np.sum(videos_endpoints, axis=1) print("\nVideos requests summed over endpoints: requests vector") print videos_sumEndpoints print('\nsort videos per "popularity" = nb. of requests over all endpoints') print("Indices of Videos ranked per total nb. of requests") print("=What are the videos that requires caching??") idx_videos_ranked = np.argsort(-videos_sumEndpoints) print idx_videos_ranked print("\nVideos requests ranked per total nb. of requests") videos_ranked = videos_sumEndpoints[idx_videos_ranked] print videos_ranked # First videos whose nb. request not null print("\nVideos ranked per total nb. of requests whose requests are not null") videos_ranked_not_null = videos_ranked[np.where(videos_ranked > 0)] print videos_ranked_not_null nb_videos_ranked_not_null = len(videos_ranked_not_null) print(nb_videos_ranked_not_null, "videos") # sorted videos x endpoints matrix print("\nVideos ranked per total nb. of requests (and not null) x endpoints") videos_endpoints_ranked = videos_endpoints[idx_videos_ranked] idx_videos_ranked_not_null = idx_videos_ranked[:nb_videos_ranked_not_null] videos_endpoints_ranked_not_null = videos_endpoints_ranked[:nb_videos_ranked_not_null] pprint(videos_endpoints_ranked_not_null) ## update endpoints with a list of videoIDs ranked by requests endpoints_videos = np.transpose(videos_endpoints_ranked[:nb_videos_ranked_not_null]) for e in xrange(nb_endpoints): endpoints[e]['videos'] = [] #print "rqs:", endpoints_videos[e] for iv,r in enumerate(endpoints_videos[e]): if r != 0: v = idx_videos_ranked[iv] #print r, iv ,v endpoints[e]['videos'].append(v) print("\nEndpoints now with videos ranked by nb.requests") pprint(endpoints) return (nb_videos, video_sizes, nb_endpoints, nb_requestsDesc, nb_caches, nb_MBperCache, endpoints, endpoints_caches, mostConnected_caches, videos_endpoints, nb_videos_ranked_not_null, idx_videos_ranked) def get_score(videoIDs_in_caches, videos_endpoints, endpoints, endpoints_caches): """ in the form: [[videoID_10, videoID_22], # videos in cache #0 [videoID_03, videoID_34], # videos in cache #1 ...} """ endpoints_videos = np.transpose(videos_endpoints) tot_time_saved = 0 score = 0 tot_req = 0 for e, endp in enumerate(endpoints): cacheIDs = endpoints[e]["caches"] ld = endpoints[e]["Ld"] lc_arr = endpoints_caches[e] videosInDemand = copy.deepcopy(endpoints[e]['videos']) videosRequests = endpoints_videos[e] for v in videosInDemand: tot_req += videosRequests[v] ## Checking if any video added to the cache are used by the endpoint (only once by the fastest cache server) for c in cacheIDs: for v in videoIDs_in_caches[c]: if v in videosInDemand: idx_v = videosInDemand.index(v) #print "\nvideo #{v} in cache #{c} and used by endpoint #{e}".format(v=v, c=c, e=e) #print "ld-lc=", ld-lc_arr[c] time_saved = (ld-lc_arr[c]) * videosRequests[v] tot_time_saved += time_saved #print "time saved : {: 8d}".format(time_saved) #print "total time_saved: {: 8d}".format(tot_time_saved) #print "nb. requests: ", videosRequests[v] del videosInDemand[idx_v] #print "videos in demand", videosInDemand break #print "tot_req.=", tot_req if tot_req == 0: score = 0 else: score = int(np.floor(tot_time_saved * 1000. / tot_req)) return score def check_video_subset_fit_in_caches(videoIDs_in_caches, video_sizes, nb_MBperCache): mem_used = np.zeros(len(videoIDs_in_caches,), dtype=np.int) for cID, lst_v in enumerate(videoIDs_in_caches): for vID in lst_v: mem_used[cID] += video_sizes[vID] if mem_used[cID] > nb_MBperCache: return False #print "\nPercentage of memory used in each cache" #pprint(mem_used*100./nb_MBperCache) return True def writing_videos_in_caches(videoIDs_in_caches, outFile="test.out"): #pprint(videoIDs_in_caches) nb_caches = len(videoIDs_in_caches) with open(outFile,'w') as o: o.write(str(nb_caches)+'\n') for c in videoIDs_in_caches: o.write(" ".join(str(i) for i in c) +'\n') def cut_the_crap(scoresDelta, factor): if len(scoresDelta) < 2: return True elif scoresDelta[-1] > 1.0*factor*scoresDelta[1]: return True else: return False def solve_with_common_sense(endpoints, videos_endpoints, idx_videos_ranked, nb_videos_ranked_not_null, video_sizes,nb_MBperCache, nb_caches, endpoints_caches, mostConnected_caches, outFile=outFile): """ Base on the shape of the matrix videos_endpoints_ranked showing [videos,endpoints] ranked along video axis according to the highest total number of requests. Pseudocode: 1. from a COPY of videos_endpoints_ranked, get stats on the distribution of requests, define a minimum size of requests to consider: smallestNbReq based on quantile 2. consider dispatching videos only if #req is larger than the minimum 3. select one video to add to one cache based on: * the most "popular" video which has highest #tot_reqs * select the fastest cache from the endpoints having most req for that video 4. add the video to endpoints[e]['videosInMyCache'] 5. recompute the matrix "videos_endpoints_ranked_not_null" after annealing push(v in e[fastest_cache]) IF-AND-ONLY-IF v not in e['videosAlreadyInOneOfMyCaches'] """ videoIDs_in_caches = [] [videoIDs_in_caches.append([]) for c in xrange(nb_caches)] videos_endpoints_ranked_not_null = np.copy(videos_endpoints[idx_videos_ranked][:nb_videos_ranked_not_null]) df = pd.DataFrame(videos_endpoints_ranked_not_null) df_req_notNull = df[df>0] mean = df_req_notNull.mean(axis=0,skipna=True).mean(axis=0,skipna=True) std = df_req_notNull.std(axis=0,skipna=True).mean(axis=0,skipna=True) ## 68% of requests are in mean +/- 1*std ## 95% of requests are in mean +/- 2*std ## 99% of requests are in mean +/- 3*std print "mean",mean print "std",std # ## Consider gradually more videos to dispatch based on the "popularity" # ### init # videoIDs_in_caches = [] # isFittingCacheSize = True # quantile = 0.4 # pprint(df_req_notNull.quantile(q=quantile, axis=1, numeric_only=True)) # pprint(df_req_notNull.quantile(q=quantile, axis=0, numeric_only=True)) # smallestNbReq = max(df_req_notNull.quantile(q=quantile, axis=1, numeric_only=True)) # print "smallestNbReq: ",smallestNbReq # sys.exit() # for eID, e in enumerate(endpoints): # e['vidAlreadyInOneOfMyCaches'] = [] # while isFittingCacheSize: # isFittingCacheSize = False #check_video_subset_fit_in_caches(videoIDs_in_caches, video_sizes, nb_MBperCache) newScore = 0 iter = -1 while iter < nb_videos_ranked_not_null-1: # Best would be not estimate when a cache is nearly full, with no chance to accept one more video oldScore = -1 iter += 1 print "#"*100 print "iter={iter}/{tot_iter}".format(iter=iter,tot_iter=nb_videos_ranked_not_null) top_video = videos_endpoints_ranked_not_null[iter] top_video_ID = idx_videos_ranked[iter] #print "Id for the current top video: ", top_video_ID # get endpoints where the video ranked #1 is present endpts_listeners_set = Set() potential_caches_set = Set() for eID,rqs in enumerate(top_video): if rqs > mean: ## CAREFUL, this parameter can be tuned to consider more/less endpoints wrt #requests. Try 0 or mean, or mean-std endpts_listeners_set.add(eID) [potential_caches_set.add(c) for c in endpoints[eID]['caches']] potential_caches = list(potential_caches_set) ## Re-order the potential caches potential_caches_reordered = [] for pc in mostConnected_caches: if pc in potential_caches: potential_caches_reordered.append(pc) potential_caches = copy.deepcopy(potential_caches_reordered) if len(potential_caches) == 0: #print "Nothing to cache with this video" continue #print "endpts_listeners_set: ", endpts_listeners_set #print "potential_caches:", potential_caches # compute the score for various combination of videos in caches test = 0 scoresDelta = [] print cut_the_crap(scoresDelta, factor=0.1) while newScore > oldScore and cut_the_crap(scoresDelta, factor=0.1): scoresDelta.append(newScore-oldScore) print "newScore= ",newScore print "oldScore= ", oldScore print "newScore-oldScore= ",newScore-oldScore oldScore = newScore test += 1 # keep adding the same video to more caches. Start with one cache, see if more caches improves # Build the possible configurations to test test_videoIDs_in_caches = [ copy.deepcopy(videoIDs_in_caches) for c in xrange(len(potential_caches))] #print "\nConfigurations before adding the top video to the caches" #pprint(test_videoIDs_in_caches) for t in xrange(len(potential_caches)): cacheID = potential_caches[t] #print "cacheID to add the video to: ", cacheID if top_video_ID not in test_videoIDs_in_caches[t][cacheID]: temp_config
-- an end-user error if not self.commands: raise DistutilsArgError, "no commands supplied" # All is well: return true return 1 def _get_toplevel_options(self): """Return the non-display options recognized at the top level. This includes options that are recognized *only* at the top level as well as options recognized for commands. """ if sys.version < '2.4': toplevel_options = self.global_options else: toplevel_options = Distribution._get_toplevel_options(self) return toplevel_options + self.toplevel_options def finalize_options(self): if sys.version < '2.5': # Run the setter functions for the metadata fields that have them. # Only those fields that have a supplied value (not None) will # be considered. for name, value in vars(self.metadata).items(): if value is not None: try: setter = getattr(self.metadata, 'set_' + name) except AttributeError: pass else: setter(value) requires_python = self.get_requires_python() if requires_python: requires_python = 'Python (%s)' % ', '.join(requires_python) requires_python = Version.VersionPredicate(requires_python) python_version = version.StrictVersion() python_version.version = sys.version_info[:3] python_version.prerelease = sys.version_info[3:] if not requires_python.satisfied_by(python_version): raise DistutilsSetupError( "%s requires %s" % (self.metadata.name, requires_python)) # Initialize the containter type data variables before dealing # with the information from the package defintions. if self.packages is None: self.packages = [] if self.package_dir is None: self.package_dir = {} if self.py_modules is None: self.py_modules = [] if self.libraries is None: self.libraries = [] if self.headers is None: self.headers = [] if self.ext_modules is None: self.ext_modules = [] if self.include_dirs is None: self.include_dirs = [] if self.scripts is None: self.scripts = [] if self.data_files is None: self.data_files = [] if self.package_file is None: self.package_file = self.script_name if self.namespace_packages is None: self.namespace_packages = [] # Per PEP 314, only use License and Platform if they can't be # handled by an appropriate classifier. Or, in our case, aren't # being handled by a classifier entry. has_platform = has_license = False for classifier in self.get_classifiers(): category = classifier.split('::', 1)[0] category = category.strip().title() if category == 'Operating System': has_platform = True elif category == 'License': has_license = True if self.metadata.license and has_license: raise DistutilsSetupError("license keyword conflicts with" " classifiers list") if self.metadata.platforms and has_platform: raise DistutilsSetupError("platforms keyword conflicts with" " classifiers list") # Finalize "private" variables; those that are not part of the # setup arguments. self._allfiles = None Distribution.finalize_options(self) def print_commands(self): """ Overridden to add the commands defined by 'command_mapping' to the list of "standard commands". """ std_commands = [] is_std = {} for command in self.standard_commands: std_commands.append(command) is_std[command] = True klass = self.get_command_class(command) for command, method in klass.sub_commands: std_commands.append(command) is_std[command] = True extra_commands = [] for command in self.cmdclass: if command not in is_std: extra_commands.append(command) max_length = max(map(len, (std_commands + extra_commands))) self.print_command_list(std_commands, "Standard commands", max_length) if extra_commands: print self.print_command_list(extra_commands, "Extra commands", max_length) return def get_command_list(self): """ Overridden to add the commands defined by 'command_mapping' to the list of (command, description) tuples. """ for command in self.command_mapping: self.get_command_class(command) return Distribution.get_command_list(self) def print_option_list(self, options, header, max_length): # Generate lines of help text. line_width = Terminfo.GetColumns() opt_width = max_length + 2 + 2 + 2 # room for indent + dashes + gutter text_width = line_width - opt_width big_indent = ' ' * opt_width print header for option in options: long, short, help = option[:3] if long[-1] == '=': long = long[0:-1] # Case 1: no short option at all if short is None: opt_names = long # Case 2: we have a short option, so we have to include it # just after the long option else: opt_names = "%s (-%s)" % (long, short) text = wrap_text(help, text_width) if text: print " --%-*s %s" % (max_length, opt_names, text[0]) for line in text[1:]: print big_indent + line else: print " --%-*s" % (max_length, opt_names) print return def _show_help (self, parser, global_options=1, display_options=1, commands=[]): # Gather the options for the distribution options = [] if global_options: if display_options: global_options = self._get_toplevel_options() else: global_options = self.global_options options.extend(global_options) if display_options: display_options = self.display_options options.extend(display_options) # Gather the options for the requested commands commands = [] for command in self.commands: klass = self.get_command_class(command) command_name = getattr(klass, 'command_name', klass.__name__) command_options = klass.user_options if hasattr(klass, 'help_options'): command_options = command_options + klass.help_options commands.append((command_name, command_options)) options.extend(command_options) # Determine maximum length of option names max_length = 0 for option in options: long = option[0] short = option[1] l = len(long) if long[-1] == '=': l = l - 1 if short is not None: l = l + 5 # " (-x)" where short == 'x' if l > max_length: max_length = l # Now print the option tables if global_options: self.print_option_list(global_options, "Global options:", max_length) if display_options: self.print_option_list(display_options, "Information display options (just display" " information, ignore any commands):", max_length) for name, options in commands: self.print_option_list(options, "Options for '%s' command:" % name, max_length) print gen_usage(self.script_name) return # -- Command class/object methods ---------------------------------- def get_command_class(self, command): """ Extends Distribution.get_command_class() to search 'command_mapping' for modules that implement that requested command. """ # Try user defined classes first (and already loaded classes) klass = self.cmdclass.get(command) if klass: return klass if command in self.command_aliases: command = self.command_aliases[command] base_name = self.command_mapping.get(command) if base_name is None: return Distribution.get_command_class(self, command) command_package = 'Ft.Lib.DistExt' module_name = command_package + '.' + base_name klass_name = base_name try: module = __import__(module_name, {}, {}, [klass_name]) except ImportError: # If the module exists but is just broken, re-raise the existing # exception as this is (most likely) a developer error. if sys.exc_info()[-1].tb_next is not None: raise raise DistutilsModuleError( "invalid command '%s' (no module named '%s')" % (command, module_name)) try: klass = getattr(module, klass_name) except AttributeError: raise DistutilsModuleError( "invalid command '%s' (no class '%s' in module '%s')" % (command, klass_name, module_name)) # Make sure that the command provides the proper command name try: if command != klass.command_name: raise AttributeError('command_name') except AttributeError: raise DistutilsClassError( "command class %s must define 'command_name' as %r" % (klass, command)) self.cmdclass[command] = klass return klass # -- Methods that operate on the Distribution ---------------------- def announce (self, msg, level=1): """If the current verbosity level is of greater than or equal to 'level' print 'msg' to stdout. """ log.log(level, msg) # -- Distribution query methods ------------------------------------ def has_l10n(self): # Used for both build and generate return len(self.l10n) > 0 def has_sysconf(self): # Used for install return len(self.sysconf_files) > 0 def has_localstate(self): # Used for install return len(self.localstate_files) > 0 def has_docs(self): # Used for both build and install # Both scripts and modules have generated documentation return (len(self.doc_files) > 0 or self.has_modules() or self.has_scripts()) def has_text(self): return self.license_file is not None or len(self.doc_files) > 0 def has_devel(self): # Used for install return len(self.devel_files) > 0 def has_bgen(self): # Used for both sdist and generate return self.bgen_files and len(self.bgen_files) > 0 # ---------------------------------------------------------------------- # Upgade distutils core support to 2.5+ features import re, operator from distutils import dist from distutils.util import rfc822_escape class DistributionMetadata(dist.DistributionMetadata): _METHOD_BASENAMES = dist.DistributionMetadata._METHOD_BASENAMES + ( 'requires_python', 'requires_external') requires_python = None requires_external = None copyright = None def get_requires_python(self): return self.requires_python or [] def set_requires_python(self, value): if not isinstance(value, list): value = [ v.strip() for v in value.split(',') ] for v in value: Version.SplitComparison(v) self.requires_python = value def get_requires_external(self): return self.requires_external or [] def set_requires_external(self, value): for v in value: Version.SplitComparison(v) self.requires_external = value if sys.version < '2.5': requires = None provides = None obsoletes = None _METHOD_BASENAMES += ('requires', 'provides', 'obsoletes') def get_requires(self): return self.requires or [] def set_requires(self, value): for v in value: Version.VersionPredicate(v) self.requires = value def get_provides(self): return self.provides or [] def set_provides(self, value): for v in value: Version.SplitProvision(v) self.provides = value def get_obsoletes(self): return self.obsoletes or [] def set_obsoletes(self, value): for v in value: Version.VersionPredicate(v) self.obsoletes = value def write_pkg_info(self, base_dir): """ Write the PKG-INFO file into the release tree. """ pkg_info = open(os.path.join(base_dir, 'PKG-INFO'), 'w') self.write_pkg_file(pkg_info) pkg_info.close() if sys.version < '2.3': classifiers = None download_url = None _METHOD_BASENAMES += ('classifiers', 'download_url') def get_classifiers(self): return self.classifiers or [] def get_download_url(self): return self.download_url or "UNKNOWN" # -- PKG-INFO and .egg-info utility methods -------------------- def from_stream(cls, stream): headers = email.message_from_file(stream)
""" Module implements classes and functions to specify data for use in pointlike analysis. author(s): <NAME>, <NAME> """ __version__ = '$Revision: 1.29 $' #$Header: /nfs/slac/g/glast/ground/cvs/pointlike/python/uw/data/dataman.py,v 1.29 2016/06/22 17:02:49 wallacee Exp $ import os, sys import collections import glob import warnings from cPickle import dump,load import numpy as np from astropy.io import fits as pyfits import pointlike import skymaps from uw.utilities import keyword_options,fitstools from uw.data import dssman class DataManException(Exception):pass dataman_version=__version__.split()[1] # TODO energy sanity check on DSS keywords # -- scheme would be to cut all data that isn't commensurate # -- or flag bad bins # TODO event class check against Pass6 or Pass7 # TODO check to make sure FT2 and FT1 agree (compare Gti to FT2 times?) # -- think this is too onerous if we allow FT1/FT2 lists # -- eew: might also cause problems for some cases where the FT1 Gti is # -- subset of the FT2 Gti, which I think can be valid. # TODO idea for binning -- just have it save both 4 and 8? # TODO -- check exposure radius against ROI kwargs... # -- eew: perhaps better done in the ROI constructor? def get_pass(ft1): """ Try to determine if the provided FT1 file is Pass6 or Pass7. If the algo. can't figure it out, Pass7 is assumed.""" f = pyfits.open(ft1) h = f[1]._header v = h.get('PASS_VER') if (v is not None): if str(v).strip()[:2]=='P7': return 7 if str(v).strip()[:2]=='P8': return 8 if 'CTBCLASSLEVEL' in h.keys(): return 6 return 7 def SimpleCut(vmin,vmax,vuni,colname): """ Specify a simple (inclusive or exclusive) cut on a single FT1 column, e.g. ZENITH_ANGLE < 100 or 100 < ENERGY < 100000. To specify an open-ended cut, use None for the upper or lower bound. This is a wrapper/factory for DSSSimpleRange.""" return dssman.make_simple_dss(colname,vuni,vmin,vmax) def get_default(colname, kw): """return DSS object for colname defaults wired in, except for event class, get info from kw args """ if colname == 'ZENITH_ANGLE': return SimpleCut(None,100,'deg','ZENITH_ANGLE') if colname == 'THETA': #print 'applying thetacut, kw=', kw return SimpleCut(None,kw.get('thetacut',66.4),'deg','THETA') if colname == 'EVENT_CLASS': if kw.get('data_pass')>6: d = dict(TYP='BIT_MASK(EVENT_CLASS,%d)'%kw.get('event_class_bit',2),UNI='DIMENSIONLESS', VAL='1:1', REF=None) return dssman.DSSBitMask(d) else: return SimpleCut(3,None,'dimensionless','EVENT_CLASS') class NsideMapper(object): """ Manage the mapping between energy bands and pixel size, as parameterized by nside, the number of subdivisions of the base pixels in HEALPix scheme. Roughly, the side of a (quadrilateral) pixel is 1/Nside radians, or 60/Nside degrees. The default scheme is hardwired based on the pre-scaling of the PSF for Pass 6. This is a power law with slope -0.8. This prescaling gives, approximately, r68. The default pixelization is so that, at 100 MeV, 5 pixels fit within the sigma pre-scale. This pixelization continues until about 1 GeV, when nside goes rapidly to 8192, the maximum value for 32-bit architecture, with a pixel size of 0.007 deg. We do this because with pixels appropriate to the PSF the mean pixel occupation becomes 1 at about 1 GeV, so there is nothing to be gained by binning. Using such small pixels means the data are essentially unbinned in position for E > a few GeV. """ norms = [0.0116, 0.0192, 0.0283, 0.0202, 0.0161, 0.007] # pix size at 100 MeV in radians # front back psf0 psf1 psf2 psf3 # derived from https://confluence.slac.stanford.edu/display/SCIGRPS/2015/02/22/P8V6+irfs slopes = [-0.8]*6 # slope for pix size with energy cuts = [20.]*6 # "cutoff" energy, 2 GeV = 20 in E_100 units maxnside = [8192]*6 minnside = [0]*6 @staticmethod def nside(en,ct=0): """Return nside for provide energy and conversion type. en -- energy in MeV ct -- conversion type (0/1) """ en = np.asarray(en)/100. nsm = NsideMapper mns = nsm.maxnside[ct] t = nsm.norms[ct]*(en)**nsm.slopes[ct]*np.exp(-(en/nsm.cuts[ct])**2) nside = np.round(float(mns)/(1+mns*t)).astype(int) return np.maximum(nside,nsm.minnside[ct]).tolist() class DataSpec(object): """ Class to specify the data for use in a spectral analysis. This includes both RAW data (e.g. FT1) and CUTS. Required cuts are on ZENITH, THETA, and EVENT_CLASS In order of precedence, these are taken from (1) the FT1 DSS keywords (2) user specification (3) defaults An exception is raised if a set of FT1 files have differing DSS keywords. This is done to ensure consistency with gtmktime. Some other cuts are recognized by the pointlike machinery. (1) PULSE_PHASE (treated as a table, a la GTI) / TODO If a binned photon file (binfile) and livetime cube (ltcube) do not yet exist (see keywords), they will be created. If the destination for these files isn't specified, files with sensible names will be created in the same directory as the base FT1 file. DSS keywords are saved both to the binfile and the ltcube, conventionally in the primary header (0). On loading these data, they keywords will be compared with those saved at the time of their creation as a sanity check. """ defaults = ( ('ft1',None,'a file, list of files, or wildcard expression'), ('ft2','$FERMI/ft2.fits','a file, list of files, or wildcard expression'), ('binfile',None,'(a) destination for new binfile or (b) location of existing one'), ('ltcube',None,'(a) destination for new ltcube or (b) location of existing one'), ('binsperdec',4,'energy bins per decade; must be 8 or 4'), ('psf_event_types', False,'if set, use the PSFn event types instead of front/back'), ('zenith_cut',None,'a SimpleCut wrapper giving zenith cuts'), ('theta_cut',None,'a SimpleCut wrapper giving theta cuts'), ('event_class_cut',None,'a SimpleCut wrapper giving event cuts'), ('event_class_bit',2, 'an integer specifying the event class, post pass 6'), ('gti_mask',None,'a GTI mask to apply to the data (intersection); note this can be used to set tstart/tstop for the data'), ('mc_src_id',-1,'select only photons from MC source ID; default is no selection'), ('mc_energy',False,'bin on MC_ENERGY instead of ENERGY'), ('clobber',False,'if True, will attempt to produce new binfile and ltcube and replace any existing ones'), ('quiet',True,'control verbosity, ever so coarsely'), ('use_weighted_livetime',True,'if True, calculate the weighted livetime for use in livetime-dependent corrections to the effective area'), ('livetime_buffer',10,'radius in degrees by which livetime cube cone is larger than ROI cone'), ('livetime_pixelsize',1,'pixel size to use for livetime calculation'), ('exposure_cube', None, 'if set, file names of a pair of exposure cubes genertated by gtexpcube2'\ 'override use of ltcube'), ('data_name', '', 'descriptive name for the data set'), ('legacy', False, 'relax DSS requirements for legacy files'), ('data_pass',7,'the generation (Pass6, Pass7,...) of the data'), ('nocreate', False, 'Set True to supress creation of files, raise exception instead'), # keyword controlling livetimecube pixel size? and buffer cone? ) binner = None # static variable for PhotonBinner @keyword_options.decorate(defaults) def __init__(self,output=None,**kwargs): """ **NB -- if ft1 is None, binfile MUST be set to a real file **NB -- if ft2 is None, either ltcube must be set to a real file or $FERMI/ft2.fits must exist """ keyword_options.process(self,kwargs) self._set_bins() self.dss = None # initialize self.gti = None def init_data(): self.ft1files = self._parse_filename(self.ft1) if self.ft1files is not None: # Register FT1 DSS keywords self._get_ft1_dss() self._make_cuts() # Get GTI from FT1 if not already set if self.gti is None: self.gti = self._get_GTI() if not self._check_binfile(): if self.nocreate: raise DataManException('need to create %s' %self.binfile) self._make_binfile() elif not self._check_binfile(): raise ValueError('No FT1 files or valid binned data found. (Looking for %s)' % self.binfile) init_data() def init_exposure(): self.ft2files = self._parse_filename(self.ft2) if self.exposure_cube is not None: print 'using exposure cube files: ignore FT2' full = [os.path.join(os.path.expandvars('$FERMI/data'),f) for f in self.exposure_cube] assert np.all(map(os.path.exists, full)), 'Exposure cube file(s) #s not found' %full self.exposure_cube = full #replace with full path return if self.ft2files is not None: if not self._check_ltcube(): if self.nocreate: raise DataManException('need to create %s' %self.ltcube) self._make_ltcube() elif not self._check_ltcube(): raise ValueError('No FT2 files or valid livetime found.') init_exposure() # save version to allow custom processing for backwards compat. self.version = dataman_version if output is not None: self.dump(output) def __str__(self): """ Pretty print of cuts/data.""" s = collections.deque() s.append('Event types:' + 'PSF' if self.psf_event_types else 'Front/back') s.append('Bins per decade: {0}'.format(self.binsperdec)) s.append('DSS keywords:\n{0}'.format(self.dss)) def process_ft(files): if files is None: s.append('\t\tNone') return if len(files) < 10: s.append('\n\t'.join(files)) else: s.append('\n\t'.join(files[:5])) s.append('...') s.append('\n\t'.join(files[-5:])) s.append('FT1 files: ') process_ft(self.ft1files) s.append('FT2 files: ') process_ft(self.ft2files) s.append('Binned data: {0}'.format(self.binfile)) s.append('Livetime cube: {0}'.format(self.ltcube)) return '\n'.join(s) def __getstate__(self): #If you're pickling, you shouldn't be clobbering self.clobber = False self.binner = None return self.__dict__ def __setstate__(self,dict): """ Override default unpickle to perform a few sanity checks.""" for t
# -*- coding: utf-8 -*- # Copyright © 2014, German Neuroinformatics Node (G-Node) # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted under the terms of the BSD License. See # LICENSE file in the root of the Project. import os import gc import numpy as np from warnings import warn try: from sys import maxint except ImportError: from sys import maxsize as maxint import h5py from .hdf5.h5group import H5Group from .block import Block from .section import Section from .container import Container, SectionContainer from . import util from .exceptions import InvalidFile, DuplicateName from .util import find as finders from . import validator from .compression import Compression FILE_FORMAT = "nix" HDF_FF_VERSION = (1, 2, 1) def can_write(nixfile): filever = nixfile.version if len(filever) != 3: raise RuntimeError("Invalid version specified in file.") if HDF_FF_VERSION == filever: return True else: return False def can_read(nixfile): filever = nixfile.version if len(filever) != 3: raise RuntimeError("Invalid version specified in file.") ver_x, ver_y, _ = HDF_FF_VERSION file_x, file_y, _ = filever if ver_x == file_x and ver_y >= file_y: return True else: return False class FileMode(object): ReadOnly = 'r' ReadWrite = 'a' Overwrite = 'w' def map_file_mode(mode): if mode == FileMode.ReadOnly: return h5py.h5f.ACC_RDONLY elif mode == FileMode.ReadWrite: return h5py.h5f.ACC_RDWR elif mode == FileMode.Overwrite: return h5py.h5f.ACC_TRUNC else: raise ValueError("Invalid file mode specified.") def make_fapl(): return h5py.h5p.create(h5py.h5p.FILE_ACCESS) def make_fcpl(): fcpl = h5py.h5p.create(h5py.h5p.FILE_CREATE) flags = h5py.h5p.CRT_ORDER_TRACKED | h5py.h5p.CRT_ORDER_INDEXED fcpl.set_link_creation_order(flags) return fcpl class File(object): def __init__(self, path, mode=FileMode.ReadWrite, compression=Compression.Auto, auto_update_timestamps=True): """ Open a NIX file, or create it if it does not exist. :param path: Path to file :param mode: FileMode ReadOnly, ReadWrite, or Overwrite. (default: ReadWrite) :param compression: No, DeflateNormal, Auto (default: Auto) :param auto_update_timestamps: Enable/disable automatic updating of 'updated_at' timestamp. (default: True) :return: nixio.File object """ try: path = path.encode("utf-8") except (UnicodeError, LookupError): pass if not os.path.exists(path) and mode == FileMode.ReadOnly: raise RuntimeError( "Cannot open non-existent file in ReadOnly mode!" ) if not os.path.exists(path) or mode == FileMode.Overwrite: mode = FileMode.Overwrite h5mode = map_file_mode(mode) fid = h5py.h5f.create(path, flags=h5mode, fapl=make_fapl(), fcpl=make_fcpl()) self._h5file = h5py.File(fid) self._root = H5Group(self._h5file, "/", create=True) self._create_header() else: h5mode = map_file_mode(mode) fid = h5py.h5f.open(path, flags=h5mode, fapl=make_fapl()) self._h5file = h5py.File(fid) self._root = H5Group(self._h5file, "/") self._h5group = self._root # to match behaviour of other objects self._auto_update_timestamps = auto_update_timestamps self._check_header(mode) self.mode = mode self._data = self._root.open_group("data", create=True) self._metadata = self._root.open_group("metadata", create=True) if "created_at" not in self._h5file.attrs: self.force_created_at() if "updated_at" not in self._h5file.attrs: self.force_updated_at() if compression == Compression.Auto: compression = Compression.No self._compr = compression # make container props but don't initialise self._blocks = None self._sections = None @classmethod def open(cls, path, mode=FileMode.ReadWrite, compression=Compression.Auto, backend=None, auto_update_timestamps=True): if backend is not None: warn("Backend selection is deprecated. Ignoring value.") return cls(path, mode, compression, auto_update_timestamps) def _create_header(self): self._set_format() self._set_version() self._set_id() def _check_header(self, mode): if self.format != FILE_FORMAT: raise InvalidFile if mode == FileMode.ReadWrite: if not can_write(self): raise RuntimeError("Cannot open file for writing. " "Incompatible version.") elif mode == FileMode.ReadOnly: if not can_read(self): raise RuntimeError("Cannot open file. " "Incompatible version.") if self.version >= (1, 2, 0): if not util.is_uuid(self.id): raise RuntimeError("Cannot open file. " "The file does not have an ID.") def __enter__(self): return self def __exit__(self, *args): self.close() @property def id(self): return self._root.get_attr("id") def _set_id(self): # file id attribute should only be set on creation (or format # upgrade), so do nothing if it's already set if self._root.get_attr("id"): return self._root.set_attr("id", util.create_id()) @property def version(self): """ The file format version. :type: tuple """ return tuple(self._root.get_attr("version")) def _set_version(self): # file format version should only be set on creation, so do nothing # if it's already set if self._root.get_attr("version"): return # convert to np.int32 since py3 defaults to 64 file_ver = np.array(HDF_FF_VERSION, dtype=np.int32) self._root.set_attr("version", file_ver) @property def format(self): """ The format of the file. This read only property should always have the value 'nix'. :type: str """ return self._root.get_attr("format") def _set_format(self): self._root.set_attr("format", FILE_FORMAT.encode("ascii")) @property def auto_update_timestamps(self): """ If enabled, automatically updates the 'updated_at' attribute when an object's data or attributes are changed. :type: bool """ return self._auto_update_timestamps @auto_update_timestamps.setter def auto_update_timestamps(self, enable): """ If enabled, automatically updates the 'updated_at' attribute when an object's data or attributes are changed. :type: bool """ self._auto_update_timestamps = enable @property def created_at(self): """ The creation time of the file. This is a read-only property. Use `force_created_at` in order to change the creation time. :rtype: int """ return util.str_to_time(self._h5file.attrs["created_at"]) def force_created_at(self, time=None): """ Sets the creation time `created_at` to the given time (default: current time). :param time: The time to set :type time: int """ if time is None: time = util.now_int() else: util.check_attr_type(time, int) self._h5file.attrs["created_at"] = util.time_to_str(time) @property def updated_at(self): """ The time of the last update of the file. This is a read-only property. Use `force_updated_at` in order to change the update time. :rtype: int """ return util.str_to_time(self._h5file.attrs["updated_at"]) def force_updated_at(self, time=None): """ Sets the update time `updated_at` to the given time. (default: current time) :param time: The time to set (default: now) :type time: int """ if time is None: time = util.now_int() else: util.check_attr_type(time, int) self._h5file.attrs["updated_at"] = util.time_to_str(time) def is_open(self): """ Checks whether a file is open or closed. :returns: True if the file is open, False otherwise. :rtype: bool """ try: _ = self._h5file.mode return True except ValueError: return False def validate(self): return validator.check_file(self) def pprint(self, indent=2, max_length=120, extra=True, max_depth=3): """ Pretty Printing the Data and MetaData Tree of the whole File :param indent: The length of one indentation space :type indent: int :param max_length: Maximum length of each line of output :type max_length: int :param extra: True to print extra information of Entities :type extra: bool :param max_depth: Maximum recursion being printed in MetaData tree :type max_depth: int """ print("File: name = {}".format(self._h5group.group.file.filename)) if self.blocks: for blk in self.blocks: blk.pprint(indent=indent, max_length=max_length, extra=extra, start_depth=1) if self.sections: for sec in self.sections: sec.pprint(indent=indent, max_depth=max_depth, max_length=max_length, current_depth=1) # TODO: if same file, set_attr("entity_id", id_) def copy_section(self, obj, children=True, keep_id=True, name=""): """ Copy a section to the file. :param obj: The Section to be copied :type obj: nixio.Section :param children: Specify if the copy should be recursive :type children: bool :param keep_id: Specify if the id should be kept :type keep_id: bool :param name: Name of copied section, Default is name of source section :type name: str :returns: The copied section :rtype: nixio.Section """ if not isinstance(obj, Section): raise TypeError("Object to be copied is not a Section") if obj._sec_parent: src = "{}/{}".format("sections", obj.name) else: src = "{}/{}".format("metadata", obj.name) clsname = "metadata" if not name: name = str(obj.name) sec = self._h5group.open_group("sections", True) if name in sec: raise NameError("Name already exist. Possible solution is to " "provide a new name when copying destination " "is the same as the source parent") obj._parent._h5group.copy(source=src, dest=self._h5group, name=name, cls=clsname, shallow=not children, keep_id=keep_id) if not children: for prop in obj.props: self.sections[obj.name].create_property(copy_from=prop, keep_copy_id=keep_id) return self.sections[obj.name] def flush(self): self._h5file.flush() def close(self): """ Closes an open file. """ gc.collect() # should handle refs better instead of calling collect() # Flush is probably unnecessary self._h5file.flush() self._h5file.close() # Block def create_block(self, name="", type_="", compression=Compression.Auto, copy_from=None, keep_copy_id=True): """ Create a new block inside the file. :param name: The name of the block to create. :type name: str :param type_: The type of the block. :type type_: str :param compression: No, DeflateNormal, Auto (default: Auto) :param copy_from: The Block to be copied, None in normal mode :type copy_from: nixio.Block :param keep_copy_id: Specify if the id should be copied in copy mode :type keep_copy_id: bool :returns: The newly created block. :rtype: nixio.Block """ if copy_from: if not isinstance(copy_from, Block): raise TypeError("Object to be copied is not a Block") clsname = "data" src = "{}/{}".format(clsname, copy_from.name) if not name: name = str(copy_from.name) if name in self._data: raise NameError("Name already exist. Possible solution is to " "provide a new name when copying destination " "is the same as the source parent") blk = copy_from._parent._h5group.copy(source=src, dest=self._h5group, name=name, cls=clsname, keep_id=keep_copy_id) entity_id = blk.attrs["entity_id"] return self.blocks[entity_id] if name in self._data: raise DuplicateName("Block with the given name already exists!") if compression == Compression.Auto: compression = self._compr
maint_date maintenance.maint_type = row[8] maintenance.current_mileage = row[7] maintenance.description = row[2] maintenance.projected_cost = row[11] maintenance.actual_cost = row[12] maintenance.difference = row[13] maintenance.status = "Good Condition" maintenance.invoice_number = row[3] maintenance.service_provider = row[4] maintenance.created_by=request.user maintenance.modified_by=request.user maintenance.accept=True maintenance.authorize="Aproved" if "Service" in str(row[8]): service = ServiceBooking.objects.filter(vehicle=maintenance.vehicle, booking_date=maintenance.maint_date, mileage=maintenance.current_mileage ).order_by('-id')[0] maintenance.service_booking_number = service maintenance.save() upload_list.append(maintenance) return upload_list def import_incidences(request, import_file): upload_list = [] dataReader = csv.reader(open(import_file), delimiter=',', quotechar='"') capture_date = date.today() for row in dataReader: if not row[0] == "IncidentDate": incident = Incident() employee = row[59] drivers = Employee.objects.filter(employee_old_id = employee) if len(drivers) > 0: driver = drivers.first() incident.driver = driver licence_plate = str(row[60]) vehicles = Vehicle.objects.filter(licence_plate = licence_plate) print(licence_plate, ": Data Imported") if len(vehicles) > 0: vehicle = vehicles.first() incident.vehicle = vehicle inc_date = datetime.strptime(row[0], "%Y-%m-%d").date() incident.incident_date = inc_date inc_time = datetime.strptime(row[1], "%H:%M").time() incident.time_of_incident = inc_time incident.incident_type = row[2] case_number = row[3] if case_number == "": case_number = "%s-%s-%s"%(driver.id,vehicle.id,row[0]) incident.case_number = case_number incident.location = row[4] incident.Description = row[5] incident.recomendations = row[6] incident.date_reported = row[7] incident.police_station = row[8] incident.damage_extent = row[9] incident.right_rear_fender =row[10] incident.right_rear_wheel = row[11] incident.right_rear_door = row[12] incident.right_rear_lamp = row[13] incident.right_rear_window = row[14] incident.right_rear_door_window = row[15] incident.right_rear_viewmirror = row[16] incident.right_front_door_window = row[17] incident.right_front_door = row[18] incident.right_front_wheel = row[19] incident.right_front_fender = row[20] incident.right_head_lamp = row[21] incident.left_rear_fender =row[22] incident.left_rear_wheel = row[23] incident.left_rear_door = row[24] incident.left_rear_lamp = row[25] incident.left_rear_window = row[26] incident.left_rear_door_window = row[27] incident.left_rear_viewmirror = row[28] incident.left_front_door_window = row[29] incident.left_front_door = row[30] incident.left_front_wheel = row[31] incident.left_front_fender = row[32] incident.left_head_lamp = row[33] incident.rear_bumper = row[34] incident.boot_door = row[35] incident.rear_wind_screen = row[36] incident.car_top = row[37] incident.wind_screen = row[38] incident.hood = row[39] incident.grill = row[40] incident.front_bumper = row[41] incident.chasis = row[42] incident.suspension = row[43] incident.engine = row[44] incident.gear_box = row[45] incident.dashboard = row[46] incident.dashboard_controls = row[47] incident.sound_system = row[48] incident.steering = row[49] incident.left_front_seat = row[50] incident.rear_seat = row[51] incident.right_front_seat = row[52] incident.door_panels = row[53] incident.foot_pedals = row[54] incident.hand_brake = row[55] incident.capets = row[56] incident.ceiling = row[57] incident.current_mileage = row[58] incident.save() upload_list.append(incident) return upload_list def import_inspections(request, import_file): upload_list = [] dataReader = csv.reader(open(import_file), delimiter=',', quotechar='"') capture_date = date.today() for row in dataReader: # if not row[0] == "LogDate": insepction = MileageLog() log_date = datetime.strptime(row[0], "%Y-%m-%d").date() insepction.log_date = log_date insepction.starting_mileage = float(row[4]) insepction.current_mileage = float(row[5]) insepction.mileage = float(row[6]) insepction.fuel_balance_bf = 0 insepction.fuel_used = 0 insepction.fuel_balance = 0 insepction.doors = 1 insepction.seats = 1 insepction.body = 1 insepction.tires = 1 insepction.interior = 1 insepction.boot = 1 insepction.under_hood = 1 insepction.engine_check = 1 insepction.exhaust_check = 1 insepction.features_check = 1 insepction.sound_system = 1 insepction.steering = 1 insepction.brakes = 1 insepction.transmission = 1 insepction.overall_feel = 1 start_date = datetime.strptime(row[7], "%Y-%m-%d").date() insepction.start_date = start_date end_date = datetime.strptime(row[8], "%Y-%m-%d").date() insepction.end_date = end_date employee = row[10] insepction.created_by=request.user insepction.modified_by=request.user drivers = Employee.objects.filter(employee_old_id = employee) if len(drivers) > 0: driver = drivers.first() insepction.driver = driver licence_plate = str(row[1]) vehicles = Vehicle.objects.filter(licence_plate = licence_plate) print(licence_plate, ": Data Imported") if len(vehicles) > 0: vehicle = vehicles.first() insepction.vehicle = vehicle insepction.save() upload_list.append(insepction) return upload_list def import_vehicle_allocations(request, import_file): upload_list = [] dataReader = csv.reader(open(import_file), delimiter=',', quotechar='"') capture_date = date.today() for row in dataReader: # if not row[0] == "TransactionType": allocation = VehicleAllocation() allocation.transaction_type = row[1] allo_date = datetime.strptime(row[0], "%Y-%m-%d").date() allocation.allocation_date = allo_date allocation.cycle_limit = 5000 allocation.mileage = float(row[8]) allocation.status = row[5] allocation.accept=True allocation.authorize=True allocation.created_by=request.user allocation.modified_by=request.user employee = row[3] drivers = Employee.objects.filter(employee_old_id = employee) if len(drivers) > 0: driver = drivers.first() allocation.driver = driver card = row[4] petrol_cards = FuelCard.objects.filter(card_number =card) if len(petrol_cards) > 0: petrol_card = petrol_cards.first() allocation.fuel_card = petrol_card licence_plate = row[2] vehicles = Vehicle.objects.filter(licence_plate = licence_plate) if len(vehicles) > 0: vehicle = vehicles.first() allocation.vehicle = vehicle allocation.save() upload_list.append(vehicle) return upload_list def import_vehicle(request, import_file): upload_list = [] dataReader = csv.reader(open(import_file), delimiter=',', quotechar='"') capture_date = date.today() for row in dataReader: if not row[0] == "LicencePlate": vehicle= Vehicle() vehicle.vehicle = row[0] vehicle.ownership_type = row[1] vehicle.vin_number = row[2] vehicle.model_year = row[3] vehicle.signing_mileage = float(row[4]) licence_date = datetime.strptime(row[5], "%Y-%m-%d").date() vehicle.licence_disk_expiry = licence_date vehicle.color = row[6] vehicle.status = row[7] vehicle.available = int(row[8]) vehicle.active = int(row[9]) re_start_date = datetime.strptime(row[10], "%Y-%m-%d").date() vehicle.rental_start_date = re_start_date re_end_date = datetime.strptime(row[11], "%Y-%m-%d").date() vehicle.rental_end_date = re_end_date purchase_date = datetime.strptime(row[12], "%Y-%m-%d").date() vehicle.purchase_date = purchase_date vehicle.purchase_amount = float(row[13]) vehicle.supplier = row[14] vehicle.condition = row[15] vehicle.invoice_number = row[16] vehicle.warranty_expiry = row[17] vehicle.financier = row[18] vehicle.on_sp = int(row[19]) vehicle.on_mo = int(row[20]) vehicle.plan_provider = row[21] vehicle.period = row[22] start_date = datetime.strptime(row[23], "%Y-%m-%d").date() vehicle.start_date = start_date end_date = datetime.strptime(row[24], "%Y-%m-%d").date() vehicle.end_date = end_date vehicle.mileage_covered = float(row[25]) vehicle.fuel_balance = float(row[26]) vehicle.current_driver_id = row[28] vehicle.make_n_model_id = row[29] vehicle.save() upload_list.append(vehicle) return upload_list # def imports(request): # upload_file_form = fileUploadForm(request.POST or None, request.FILES or None, prefix='doc') # context = { # "upload_file_form": upload_file_form, # } # post = request.POST # if request.POST: # if u'upload' in post: # # services = ServiceBooking.objects.all() # # for service in services: # # service.next_service_mileage = service.mileage + 10000 # # service.save() # # print("Saved") # validated = upload_file_form.is_valid() # if validated: # uploaded = upload_file_form.save(commit=False) # uploaded.file_name = uploaded.file.name # uploaded.transaction = "Data Imports" # uploaded.save() # file = '%s/%s'% (settings.MEDIA_ROOT, uploaded.file) # # import_vehicle(request, file) # # import_vehicle_allocations(request, file) # # import_fuel_cards(request, file) # # import_inspections(request, file) # # import_incidences(request, file) # # import_maintenance(request, file) # # import_service_bookings(request, file) # # import_traffic_fines(request, file) # # import_claims(request, file) # employee_contacts(request, file) # # transactions = VehicleMaintenance.objects.all() # # for transaction in transactions: # # if not transaction.comments == "": # # comment = Comment() # # comment.comments = transaction.comments # # comment.vehicle = transaction.vehicle # # comment.comment_type = "VehicleMaintenance" # # comment.obj_id = transaction.id # # comment.created_by = request.user # # print(comment.vehicle, comment.comment_type) # # comment.save() # return HttpResponseRedirect(reverse('fleet:vehiclesList')) # return render(request, "imports.html", context) # def employee_contacts(request, import_file): # upload_list = [] # dataReader = csv.reader(open(import_file), delimiter=',', quotechar='"') # capture_date = date.today() # for row in dataReader: # if not row[0] == "FullName": # contact = Contact() # employee = row[11] # drivers = Employee.objects.filter(employee_old_id = employee) # if len(drivers) > 0: # driver = drivers.first() # contact.employee = driver # contact.email = row[6] # contact.celphone ='0%s'%(row[7]) # contact.res_address1 = row[5] # contact.save() # upload_list.append(contact) # return upload_list # def import_comments(request): # import_list = [] # transactions = Incident.objects.all() # for transaction in transactions: # if not transaction.recomendations == "": # comment = Comment() # comment.comments = transaction.recomendations # comment.vehicle = transaction.vehicle # comment.comment_type = "Incidences" # comment.obj_id = transaction.id # comment.created_by = request.user # print(comment.vehicle, comment.comment_type) # comment.save() # import_list.append(comment) # return import_list # def import_claims(request, import_file): # upload_list = [] # dataReader = csv.reader(open(import_file), delimiter=',', quotechar='"') # capture_date = date.today() # for row in dataReader: # if not row[0] == "SubmissionDate": # claim = InsuranceClaim() # employee = row[9] # drivers = Employee.objects.filter(employee_old_id = employee) # if len(drivers) > 0: # driver = drivers.first() # claim.driver = driver # licence_plate = str(row[10]) # vehicles = Vehicle.objects.filter(vehicle = licence_plate) # print(licence_plate, ">>>>>>>Data Imported") # if len(vehicles) > 0: # vehicle = vehicles.first() # claim.vehicle = vehicle # submission_date = datetime.strptime(row[0], "%Y-%m-%d").date() # claim.submission_date = submission_date # claim_number = row[1] # if claim_number == "": # claim_number = "%s-%s-%s"%(driver.id,vehicle.id,row[0]) # claim.claim_number = claim_number # payout_date = datetime.strptime(row[2], "%Y-%m-%d").date() # claim.payout_date = payout_date # claim.payout_amount = row[3] # sp_payout_date = datetime.strptime(row[4], "%Y-%m-%d").date() # claim.sp_payout_date = sp_payout_date # claim.sp_payout_amount = row[5] # claim.excess = row[6] # claim.comments = row[7] # claim.claim_status = row[8] # claim.save() # upload_list.append(claim) # return upload_list # def import_traffic_fines(request, import_file): # upload_list = [] # dataReader = csv.reader(open(import_file), delimiter=',', quotechar='"') # capture_date = date.today() # for row in dataReader: # if not row[0] == "NoticeNumber": # notice_number = row[0] # existing = Trafficfine.objects.filter(notice_number=notice_number).count() # if existing == 0: # fine = Trafficfine() # fine.notice_number = row[0] # offence_date = datetime.strptime(row[1], "%Y-%m-%d").date() # fine.offence_date = offence_date # due_date = datetime.strptime(row[2], "%Y-%m-%d").date() # fine.due_date = due_date # fine.description = str(row[3]) # fine.location = row[4] # fine.amount = row[5] # court_date = datetime.strptime(row[6], "%Y-%m-%d").date() # fine.court_date = court_date # fine.serious_offence = int(row[7]) # fine.awaiting_summons = int(row[8]) # fine.court_appearance = int(row[9]) # fine.court_attended = int(row[10]) # fine.paid = int(row[11]) # date_paid = datetime.strptime(row[12], "%Y-%m-%d").date() # if row[12] == "1900-01-01": # date_paid = due_date # fine.payment_date = date_paid # employee = row[13] # drivers = Employee.objects.filter(employee_old_id = employee) # if len(drivers) > 0: # driver = drivers.first() # fine.driver = driver # licence_plate = str(row[14]) # vehicles = Vehicle.objects.filter(vehicle = licence_plate) # print("Vehicle:>>",licence_plate, notice_number, ":>>Data Imported") # if len(vehicles) >
"""UmiSchedules module.""" import calendar import collections import hashlib from datetime import datetime import numpy as np import pandas as pd from validator_collection import validators from archetypal.schedule import Schedule, _ScheduleParser, get_year_for_first_weekday from archetypal.template.umi_base import UmiBase from archetypal.utils import log class UmiSchedule(Schedule, UmiBase): """Class that handles Schedules.""" __slots__ = ("_quantity",) def __init__(self, Name, quantity=None, **kwargs): """Initialize object with parameters. Args: Name: quantity: **kwargs: """ super(UmiSchedule, self).__init__(Name, **kwargs) self.quantity = quantity @property def quantity(self): """Get or set the schedule quantity.""" return self._quantity @quantity.setter def quantity(self, value): self._quantity = value @classmethod def constant_schedule(cls, value=1, Name="AlwaysOn", Type="Fraction", **kwargs): """Create an UmiSchedule with a constant value at each timestep. Args: Type: value (float): Name: idf: **kwargs: """ value = validators.float(value) return super(UmiSchedule, cls).constant_schedule( value=value, Name=Name, Type=Type, **kwargs ) @classmethod def random(cls, Name="AlwaysOn", Type="Fraction", **kwargs): """Create an UmiSchedule with a randomized value (0-1) at each timestep. Args: Name (str): The name of the Schedule. Type (str or ScheduleTypeLimits): **kwargs: keywords passed to the constructor. """ values = np.random.rand( 8760, ) return cls(Values=values.tolist(), Name=Name, Type=Type, **kwargs) @classmethod def from_values(cls, Name, Values, Type="Fraction", **kwargs): """Create an UmiSchedule from a list of values. Args: Name (str): The name of the Schedule. Values (list): Type: **kwargs: """ return super(UmiSchedule, cls).from_values( Name=Name, Values=Values, Type=Type, **kwargs ) def combine(self, other, weights=None, quantity=None): """Combine two UmiSchedule objects together. Args: other (UmiSchedule): The other Schedule object to combine with. weights (list, dict or string): Attribute of self and other containing the weight factor. If a list is passed, it must have len = 2; the first element is applied to self and the second element is applied to other. If a dict is passed, the self.Name and other.Name are the keys. If a str is passed, the quantity (list or dict or bool): Scalar value that will be multiplied by self before the averaging occurs. This ensures that the resulting schedule returns the correct integrated value. If a dict is passed, keys are schedules Names and values are quantities. Returns: (UmiSchedule): the combined UmiSchedule object. Raises: TypeError: if Quantity is not of type list, tuple, dict or a callable. """ # Check if other is None. Simply return self if not other: return self if not self: return other if not isinstance(other, UmiSchedule): msg = "Cannot combine %s with %s" % ( self.__class__.__name__, other.__class__.__name__, ) raise NotImplementedError(msg) # check if the schedule is the same if self == other: if self.quantity and other.quantity: self.quantity += other.quantity return self # check if self is only zeros. Should not affect other. if not np.any(self.all_values): return other # check if other is only zeros. Should not affect self. if not np.any(other.all_values): return self if not weights: log( 'using 1 as weighting factor in "{}" ' "combine.".format(self.__class__.__name__) ) weights = [1, 1] elif isinstance(weights, str): # get the attribute from self and other weights = [getattr(self, weights), getattr(other, weights)] elif isinstance(weights, (list, tuple)): # check if length is 2. length = len(weights) if length != 2: raise ValueError( "USing a list or tuple, the weights attribute must " "have a length of 2. A length of {}".format(length) ) elif isinstance(weights, dict): weights = [weights[self.Name], weights[other.Name]] if quantity is None: new_values = np.average( [self.all_values, other.all_values], axis=0, weights=weights ) elif isinstance(quantity, dict): # Multiplying the schedule values by the quantity for both self and other # and then using a weighted average. Finally, new values are normalized. new_values = np.average( [ self.all_values * quantity[self.Name], other.all_values * quantity[other.Name], ], axis=0, weights=weights, ) new_values /= quantity[self.Name] + quantity[other.Name] elif callable(quantity): new_values = np.average( np.stack((self.all_values, other.all_values), axis=1), axis=1, weights=[ quantity(self.predecessors.data), quantity(other.predecessors.data), ], ) elif isinstance(quantity, (list, tuple)): # Multiplying the schedule values by the quantity for both self and other # and then using a weighted average. Finally, new values are normalized. self_quantity, other_quantity = quantity new_values = ( self.all_values * self_quantity + other.all_values * other_quantity ) / sum(quantity) elif isinstance(quantity, bool): new_values = np.average( [self.all_values, other.all_values], axis=0, weights=[self.quantity * weights[0], other.quantity * weights[1]], ) else: raise TypeError("Quantity is not of type list, tuple, dict or a callable") # the new object's name meta = self._get_predecessors_meta(other) # Overriding meta Name hasher = hashlib.md5() hasher.update(new_values) meta["Name"] = f"Combined_UmiSchedule_{hasher.hexdigest()}" quantity = np.nansum( [self.quantity or float("nan"), other.quantity or float("nan")] ) new_obj = UmiSchedule.from_values( Values=new_values, Type="Fraction", quantity=quantity, **meta ) new_obj.predecessors.update(self.predecessors + other.predecessors) new_obj.weights = sum(weights) return new_obj def develop(self): """Develop the UmiSchedule into a Year-Week-Day schedule structure.""" year, weeks, days = self.to_year_week_day() lines = ["- {}".format(obj) for obj in self.predecessors] _from = "\n".join(lines) year.Comments = ( f"Year Week Day schedules created from: \n{_from}" + str(id(self)), ) return year def get_unique(self): """Return the first of all the created objects that is equivalent to self.""" return super(UmiSchedule, self.develop()).get_unique() def to_dict(self): """Return UmiSchedule dictionary representation. Hint: UmiSchedule does not implement the to_dict method because it is not used when generating the json file. Only Year-Week- and DaySchedule classes are used. """ return self.to_ref() def to_ref(self): """Return a ref pointer to self.""" return {"$ref": str(self.id)} def validate(self): """Validate object and fill in missing values.""" return self def mapping(self, validate=True): """Get a dict based on the object properties, useful for dict repr. Args: validate (bool): If True, try to validate object before returning the mapping. """ if validate: self.validate() return dict( Category=self.Category, Type=self.Type, Comments=self.Comments, DataSource=self.DataSource, Name=self.Name, ) def get_ref(self, ref): """Get item matching reference id. Args: ref: """ return next( iter( [ value for value in UmiSchedule.CREATED_OBJECTS if value.id == ref["$ref"] ] ), None, ) def duplicate(self): """Get copy of self.""" return self.__copy__() def __add__(self, other): """Return new object that is the combination of self and other.""" return UmiSchedule.combine(self, other) def __repr__(self): """Return a representation of self.""" name = self.Name resample = self.series.resample("D") min = resample.min().mean() mean = resample.mean().mean() max = resample.max().mean() return ( name + ": " + "mean daily min:{:.2f} mean:{:.2f} max:{:.2f} ".format(min, mean, max) + (f"quantity {self.quantity}" if self.quantity is not None else "") ) def __str__(self): """Return the string representation of self.""" return repr(self) def __hash__(self): """Return the hash value of self.""" return hash((self.__class__.__name__, getattr(self, "Name", None))) def __eq__(self, other): """Assert self is equivalent to other.""" if not isinstance(other, UmiSchedule): return NotImplemented if self.all_values.size != other.all_values.size: return NotImplemented else: return all( [ self.strict == other.strict, self.Type == other.Type, self.quantity == other.quantity, np.allclose(self.all_values, other.all_values, rtol=1e-02), ] ) def __copy__(self): """Create a copy of self.""" return self.__class__( Name=self.Name, quantity=self.quantity, Values=self.all_values.tolist(), strict=self.strict, Type=self.Type, ) class YearSchedulePart: """Helper Class for YearSchedules defined with FromDay FromMonth ToDay ToMonth.""" __slots__ = ("_from_day", "_from_month", "_to_day", "_to_month", "_schedule") def __init__( self, FromDay=None, FromMonth=None, ToDay=None, ToMonth=None, Schedule=None, **kwargs, ): """Initialize YearSchedulePart. Args: FromDay (int): This numeric field is the starting day for the schedule time period. FromMonth (int): This numeric field is the starting month for the schedule time period. ToDay (int): This numeric field is the ending day for the schedule time period. ToMonth (int): This numeric field is the ending month for the schedule time period. Schedule (UmiSchedule): The associated UmiSchedule related to this object. kwargs (dict): Other Keyword arguments. """ self.FromDay = FromDay self.FromMonth = FromMonth self.ToDay = ToDay self.ToMonth = ToMonth self.Schedule = Schedule @property def FromDay(self): """Get or set the start day-of-month number [int].""" return self._from_day @FromDay.setter def FromDay(self, value): self._from_day = validators.integer(value, minimum=1, maximum=31) @property def FromMonth(self): """Get or set the start month-number [int].""" return self._from_month @FromMonth.setter def FromMonth(self, value): self._from_month = validators.integer(value, minimum=1, maximum=12) @property def ToDay(self): """Get or set the end day-of-month number [int].""" return self._to_day @ToDay.setter def ToDay(self, value): self._to_day = validators.integer(value, minimum=1, maximum=31) @property def ToMonth(self): """Get or set the end month-number [int].""" return self._to_month @ToMonth.setter def ToMonth(self, value): self._to_month = validators.integer(value, minimum=1, maximum=12) @property def Schedule(self): """Get or set the WeekSchedule object.""" return self._schedule @Schedule.setter def Schedule(self, value): assert isinstance(value, WeekSchedule), "schedule must be of type WeekSchedule" self._schedule = value @classmethod def from_dict(cls, data, schedules, **kwargs): """Create a YearSchedulePart object from a dictionary. Args: data (dict): The python dictionary.
is '<CatName>_HTM' Output :- A list of N_trixels dictionnaries containing the 2D matrix info example: By : <NAME> (original Matlab function by <NAME>) August 2018""" #print('I am looking for the data in',catalogs_dir + '/' + CatDir + '/' +Filename) Data=class_HDF5.HDF5(catalogs_dir + '/' + CatDir + '/' +Filename).load(VarName,numpy_array=True)#as many columns as trixels, 13 lines with: # [index,Father index,son1 index,son2 index,son3 index,son4 index, Pole1 long, Pole1 lat,Pole2 long, Pole2 lat,Pole3 long, Pole3 lat, either Nan or the data] N_trixels=np.shape(Data)[1] #print('there are {0} trixels'.format(N_trixels)) #load this data into a dictionnaries #each trixel is a dictionnary HTM_list=[]#will end up being a list of N_trixels dictionnaries for i in range(N_trixels): trixel = dict() trixel['level']=Data[0,i]#line 1 of column 0 if np.isnan(np.array(Data[1,i])).all() == True: trixel['father']=[] else: trixel['father']=Data[1,i] if np.isnan(np.array(Data[2,i])).all() == True: trixel['son']=[] else: trixel['son']=Data[2:6,i] trixel['PolesCoo'] = np.zeros((3, 2)) trixel['PolesCoo'][0, 0] = Data[6,i] trixel['PolesCoo'][0, 1] = Data[7,i] trixel['PolesCoo'][1, 0] = Data[8,i] trixel['PolesCoo'][1, 1] = Data[9,i] trixel['PolesCoo'][2, 0] = Data[10,i] trixel['PolesCoo'][2, 1] = Data[11,i] trixel['Nsrc']=Data[12,i] HTM_list.append(trixel) return HTM_list,Data def load_colcell(CatDir,CatName): ColCelFile = CatDir+'/'+CatName + '_htmColCell.mat' test = sio.loadmat(ColCelFile) if np.shape(test['ColCell'])[1] < np.shape(test['ColCell'])[0]: # test=test.transpose() Ncol = np.shape(test['ColCell'])[0] else: Ncol = np.shape(test['ColCell'])[1] ColCell = np.empty((Ncol), dtype=object) ColUnits = np.empty((Ncol), dtype=object) if np.shape(test['ColCell'])[1] < np.shape(test['ColCell'])[0]: # test=test.transpose() Ncol = np.shape(test['ColCell'])[0] for i, j in enumerate(test['ColCell'][:, 0]): # print(str(test['ColCell'][i][0][0])) ColCell[i] = str(test['ColCell'][i][0][0]) for i, j in enumerate(test['ColUnits'][0, :]): if len(test['ColUnits'][0, i]) > 0: ColUnits[i] = str(test['ColUnits'][0, i][0]) else: ColUnits[i] = ' ' else: Ncol = np.shape(test['ColCell'])[1] for i, j in enumerate(test['ColCell'][0, :]): # print(test['ColCell'][0,i][0]) ColCell[i] = str(test['ColCell'][0, i][0]) for i, j in enumerate(test['ColUnits'][0, :]): if len(test['ColUnits'][0, i]) > 0: ColUnits[i] = str(test['ColUnits'][0, i][0]) else: ColUnits[i] = ' ' return ColCell, ColUnits def load_trix_by_ind(CatName,index,SearchParValue=None,num=100,catalogs_dir='./data',Ncol=None,Verbose=True):#load_cat in Eran's library """Description: given a catalog basename and the index of a trixel, load the content of the corresponding trixel dataset to a numpy array Input :- CatName - trixel index, or a a dataset name - A two element vector of lower and upper value. Only lines in which the sorted parameter is between the low and high value will be retrieved. If empty, retrieve all lines. Default is empty. -number of columns in the catalog. Output :-a numpy array with the content of the trixel, Ind ? example: By : <NAME> (original Matlab function by <NAME>) August 2018""" if isinstance(index,str)==False: names=get_file_dataset_from_trixel_id(CatName,index,NfilesinHDF=num,Verbose=Verbose) Filename=names[0] Data_set_name=names[1] CatDir=get_CatDir(CatName) if SearchParValue is None: trixel_data=class_HDF5.HDF5(catalogs_dir + '/'+ CatDir + '/' + Filename).load(Data_set_name, numpy_array=True).T Ind=1 else: #load the index file VarIndStr=Data_set_name+'_Ind' #the name of the index file if Verbose==True: print('Filename is',Filename) DataInd=class_HDF5.HDF5(catalogs_dir+'/'+CatDir+'/'+Filename).load(VarIndStr,numpy_array=True,Verbose=Verbose).T#the content f the index file if len(DataInd)>0: Ndi=np.shape(DataInd)[0] I1=bin_sear(DataInd[:,1],SearchParValue[0]) I2=bin_sear(DataInd[:,1],SearchParValue[1]) #print('before the if, I1 is {0} and I2 is {1}'.format(I1,I2)) Ind=DataInd[I1,0] #the Offset=np.append(DataInd[I1,0]-1,0) if I1==I2: I2=I2+1 I2=min(I2,Ndi-1) Block=[1+DataInd[I2,0]-DataInd[I1,0],Ncol] #print('Block is',Block) trixel_data=class_HDF5.HDF5(catalogs_dir+'/'+CatDir+'/'+Filename).load(Data_set_name,Offset=Offset,Block=Block,numpy_array=True,Verbose=Verbose).T #seach the indexes of the else: trixel_data=np.array([]) Ind=None return trixel_data,Ind def bin_sear(X,Val): #Util.find.of eran """Description: Input :- sorted vector (ascending) - Value to search Output :- Index of closest value example: By : <NAME> (original Matlab function by <NAME>) August 2018""" N=len(X) if N==1: IndVal=1 else: Ind1=0 Ind2=N-1 IndM=math.floor(0.5*N) Y1=X[Ind1] Y2=X[Ind2] Ym=X[IndM] Found=0 while Found==0: if Val>Ym: Ind1=IndM Y1=X[Ind1] if Ind2-Ind1>=2: IndM= math.floor(0.5*(Ind2+Ind1)) else: Found=1 if abs(Val-Y1)<abs(Val-Y2): IndVal=Ind1 else: IndVal=Ind2 Ym=X[IndM] elif Val<Ym: Ind2=IndM Y2=X[Ind2] if Ind2-Ind1>=2: IndM=math.floor(0.5*(Ind1+Ind2)) else: Found=1 if abs(Val-Y1)<abs(Val-Y2): IndVal=Ind1 else: IndVal=Ind2 Ym=X[IndM] else: Found=1 IndVal=IndM return IndVal def mfind_bin(X,Vals): """Description: Binary search on a vector running simolutnously on multiple values. A feature of this program is that it you need to add 1 to the index in order to make sure the found value is larger than the searched value. Input :- Sorted column vector. - Row vector of values to search. Output :- Indices of nearest values. example: By : <NAME> (original Matlab function by <NAME>) August 2018""" Nvals=len(Vals) N=len(X) I1=np.ones(Nvals) I2=N*np.ones(Nvals) Im=np.floor(0.5*(I1+I2)).astype(int) #print('Im is',Im) PrevIm=np.zeros(np.shape(Im)[0]).astype(int) #print('PrevIm is', PrevIm) #pdb.set_trace() if np.shape(X)[0]<2: if X.size==0: Im=[] else: Im=np.ones(Nvals).astype(int) else: while np.all(Im==PrevIm)==False: #print(np.all(Im==PrevIm)) #print('X[Im-1] is',X[Im-1]) FlagU=Vals>X[Im-1] #print('FlagU is',FlagU) FlagD=np.invert(FlagU) #print('FlagD is',FlagD) I1[FlagU]=Im[FlagU] I2[FlagD]=Im[FlagD] PrevIm=Im Im=np.floor(0.5*(I1+I2)).astype(int) #print('Im is',Im) #print('PrevIm is',PrevIm) return Im def get_file_dataset_from_trixel_id(CatName,index,NfilesinHDF,Verbose=True):#get_file_var_from_htmid in Eran's library """Description: given a catalog basename and the index of a trixel and the number of trixels in an HDF5 file, create the trixel dataset name Input :- CatName - index - NfilesinHDF: number of datasets in an HDF5 files (default is 100) Output :- Filename: name of the HDF5 file where the trixel_dataset is stored - Datasetname: name of the trixel_dataset example: By : <NAME> (original Matlab function by <NAME>) August 2018""" if Verbose==True: print('index is',index) num_file=math.floor(index/NfilesinHDF)*NfilesinHDF #equivalent to index//Nfiles*Nfiles Filename='%s_htm_%06d.hdf5' % (CatName, num_file) DatasetName='htm_%06d' % index return Filename,DatasetName def Number_of_trixels(Catname,catalogs_dir='./data',CatDir=None): """Description: finds the number of trixels for a given catalod Input :- catalog basename Output :- number of trixels for this catalog example: By : <NAME> (original Matlab function by <NAME>) August 2018""" IndexFileName = get_index_filename(Catname)[0] # name of the index file associated with Catname IndexVarName=get_index_filename(Catname)[1] # name of the data set containing the index filename content List_of_dict=load_HTM_ind(IndexFileName,IndexVarName,catalogs_dir=catalogs_dir,CatDir=CatDir)[0] Number_of_trixels_in_cat=len(List_of_dict) return Number_of_trixels_in_cat def simplify_list(val): if isinstance(val, list) == False: return val else: if len(val) > 1: return val else: return simplify_list(val[0]) def simplify2(x): IDc=[] for i in x: if isinstance(i, (list, tuple, np.ndarray)) == True: for j in i: IDc.append(j) else: IDc.append(i) return IDc #return simplify2(IDc) def simplify3(x): if isinstance(x[0],(list, tuple, np.ndarray)) == False: return x else: y=simplify2(x) #print(y) return simplify3(y) def match_cats(Cat,Refcat,Radius=2,RadiusUnits='arcsec'): """Description: translation of VO.search.match_cats of Eran. Given two spherical coordinate catalogs. - for each entry in the reference catalog (second input argument), search for all nearby sources in the catalog (first input). Input :- A catalog sorted by declination. Ra and Dec in Rad - A reference catalog. Ra and Dec in rad - 'Radius' - Search radius. This is either a scalar or a vector which length is identical to that of the reference catalog (second input). If a vector than each source in the reference catalog may have a different search radius. Default is 2 (arcsec). - 'RadiusUnits' - Search radius units. See convert.angular for options. Default is 'arcsec'. Output :-Vec: a dictionnary with the following keys Vec['Nfound']= A vector, the size of RefCat, with the number of sources found in the catalog Cat that are within the search radius from the source with same indice in refcat. in the reference catalog. Vec['MinDist']=A vector, the size of RefCat, with the minimum distance (radians) of matched sources in Cat to the source of same indice in RefCat. NaN if not found. - Res: a list of dictionnaries (one item per *matched* refernce source! this list is not the size of cat1, it is the size of the number of objects in cat1 that DO have at least one cross-matched object in cat2): Res['IndRef']=Index of source in reference catalog. Res['IndCat']=List of indices in the catalog that are matched to % the 'IndRef' source of the reference catalog. Res['Dist']= Vecor of angular distances (radians) for each one % of the sources indicated in 'IndCat'. Res['Num']=Number of sources within search radius - IndCatMinDist: vector, the size of Refcat, with the indice of the cat2 nearest sources to the cat1 source of indice Res[Indref]. NaN if no source was found example: By : <NAME> (original Matlab function by <NAME>) August 2018""" if RadiusUnits=='rad': Radius=Radius if RadiusUnits=='arcsec': Radius=math.pi*Radius/(180.*3600.) Ncat=np.shape(Cat)[0] #print('Ncat is',Ncat)#ok #print('Refcat is',Refcat) Nref=np.shape(Refcat)[0] #print('Nref is', Nref)#ok Radius=Radius*np.ones(Nref) Res=[] Iuppx=mfind_bin(Cat[:,1],Refcat[:,1]+Radius) #only if second column is dec! Ilowx=mfind_bin(Cat[:,1],Refcat[:,1]-Radius) #only if second column is dec! #print('Iupx is',Iuppx)#ok #print('Ilowx is',Ilowx)#ok Ilow=np.zeros(np.shape(Ilowx)[0]) for r,s in enumerate(Ilowx): Ilow[r]=max(1,Ilowx[r]) #Ilow=np.max(1,Ilowx) Iupp=np.zeros(np.shape(Iuppx)[0]) for r,s in enumerate(Iuppx): Iupp[r]=min(Ncat,Iuppx[r]+1) #print('Iup is',Iupp)#ok #print('Ilow is',Ilow)#ok Ncand=Iupp-Ilow Ic=np.array(np.where(Ncand>=1))[0] #print('Ic is',Ic) #print(np.shape(Ic)) #print('Ic is',Ic)#index where condition verified, same as matlab one -1 Nc=np.shape(Ic)[0] #print('Nc is',Nc) #pdb.set_trace() Vec=dict() Vec['Nfound']=np.zeros(Nref) #vectornan=np.empty(Nref) #vectornan[:]=np.nan Vec['MinDist']=np.full(Nref, np.nan)#vectornan Vec['MinPa']=np.full(Nref, np.nan)#vectornan K=0 IndCatMinDist=np.full(Nref, np.nan)#vectornan for Icr in range(Nc): #print("Vec['MinDist']5 is", Vec['MinDist']) #print('Nc is',Nc) Iref=Ic[Icr] #print('Iref is',Iref)#ok #pdb.set_trace() Icat=np.linspace(Ilow[Iref],Iupp[Iref],Iupp[Iref]-Ilow[Iref]+1).astype(int) #print('Icat is',Icat)#ok #print('Cat[Icat-1,0] is',Cat[Icat-1,0])#ok #print('Cat[Icat-1,1] is',Cat[Icat-1,1])#ok #print('Refcat[Iref,0]',Refcat[Iref,0])#ok #print( 'Refcat[Iref,1]) is',Refcat[Iref,1])#ok Dist=celestial.sphere_dist_fast(Cat[Icat-1,0],Cat[Icat-1,1],Refcat[Iref,0],Refcat[Iref,1])[0] #print('Dist is',Dist) #print('Radius[Iref] is',Radius[Iref]) IndRelative=np.where(Dist<=Radius[Iref])[0] IndCat=Ilow[Icr]-1+IndRelative #print('IndRelative is',IndRelative)#ok #print('IndCat is',IndCat)#ok Vec['Nfound'][Iref]=np.shape(IndCat)[0]#ok #print("Vec['Nfound'][Iref] is",Vec['Nfound'][Iref])#ok #pdb.set_trace() if
import numpy as np import matplotlib import platform if platform.system() == 'Darwin': matplotlib.use('TkAgg') import matplotlib.pyplot as plt from matplotlib import rcParams import torch from datetime import datetime import time import pickle import os import seaborn as sns import matplotlib.pylab as plt from scipy.special import softmax import json from double_well_model import * from metropolis import MetropolisHastings from utils import * from nflib.MADE import * from nflib.flows import * from nflib.spline_flows import NSF_AR, NSF_CL import itertools import os cwd = os.getcwd() print('current directory', cwd) def main(params): # setting device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") params['device'] = device if torch.cuda.is_available(): torch.set_default_tensor_type('torch.cuda.FloatTensor') # timing the entire run. start_time = time.time() if params['random_seed'] == 0: params['random_seed'] = np.random.randint(1,100) # setting the random seeds torch.manual_seed(params['random_seed']) np.random.seed(params['random_seed']) # Creating new directory to save all run outputs in date_time = str(datetime.now()).replace(' ', '_').replace(':', '_') # ensures there aren't any issues saving this as a file name. experiment_name = params['exp_base_name']+"_rand_seed-%s_ML_epochs-%s_KL_epochs-%s_learning_rate-%s_MLweight-%s_KLweight-%s_explore%s_temperature-%s_s_time-%s" % ( params['random_seed'], params['MLepochs'], params['KLepochs'], params['lr'], params['MLweight'], params['KLweight'], params['explore'], params['temperature'], date_time ) os.mkdir('experiments/'+experiment_name) experiment_dir = 'experiments/'+ experiment_name+'/' # write out all of the parameters used into a text file: with open(experiment_dir+ 'params_used.txt', 'w') as file: file.write(json.dumps(params, cls=NumpyEncoder)) # loading in the environment class, used to score the evolutionary hamiltonians well_params = DoubleWell.params_default.copy() well_params['dim'] = 2 gen_model = DoubleWell(params=well_params) if params['MCMC'] == True: nsteps = 20000 x0_left = np.array([[-1.8, 0.0]]) x0_right = np.array([[1.8, 0.0]]) sampler = MetropolisHastings(gen_model, x0=x0_left, noise=0.1, stride=10, mapper=None, is_discrete=False) data1 = sampler.run(nsteps) sampler = MetropolisHastings(gen_model, x0=x0_right, noise=0.1, stride=10, mapper=None, is_discrete=False) data2 = sampler.run(nsteps) data = np.concatenate([data1, data2 ], axis=0) print('amount of concat data', data.shape) print('the size of all data to be used (train and val)', data.shape) # make data a torch tensor data = torch.from_numpy(data).float().to(device) # prepare transition state x_ts = np.vstack([np.zeros(1000), (1.0/gen_model.params['k']) * np.random.randn(1000)]).T # make train test split rand_inds = np.random.choice(np.arange(data.shape[0]), params['tda'], replace=False) train_set = rand_inds[: (params['tda']//2) ] test_set = rand_inds[ (params['tda']//2): ] x = data[train_set, :] xval = data[test_set, :] print('shape of data used for training', x.shape) # plotting the training and Xval dataset energy histograms: for dset, name in zip([x, xval], ['Train', 'XVal']): plt.figure() scores = gen_model.energy(dset.cpu().detach().numpy()) plt.hist(scores, bins=100) plt.gcf().savefig(experiment_dir+'Expectation_'+name+'_Data_Hist.png', dpi=100) plt.close() # ======= setting up the normalizing flows: # logistic distribution # base = TransformedDistribution(Uniform(torch.zeros(gen_model.dim), torch.ones(gen_model.dim)), SigmoidTransform().inv) base = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(gen_model.dim), torch.eye(gen_model.dim)) if params['model_type'] == 'realNVP': # RealNVP # used to have 9 layers flows = [AffineHalfFlow(dim=gen_model.dim, parity=i%2, nh=params['hidden_dim'], block_mask=params['block_mask']) for i in range(params['num_layers'])] if params['model_type'] == 'NICE': # NICE # 4 layers flows = [AffineHalfFlow(dim=gen_model.dim, parity=i%2, nh=params['hidden_dim'] ,scale=False, block_mask=params['block_mask']) for i in range(params['num_layers'])] flows.append(AffineConstantFlow(dim=gen_model.dim, shift=False)) if params['model_type'] == 'slowMAF': #SlowMAF (MAF, but without any parameter sharing for each dimension's scale/shift) #4 layers flows = [SlowMAF(dim=gen_model.dim, parity=i%2, nh=params['hidden_dim']) for i in range(params['num_layers'])] if params['model_type'] == 'MAF': # MAF (with MADE net, so we get very fast density estimation) # 4 layers flows = [MAF(dim=gen_model.dim, parity=i%2, nh=params['hidden_dim']) for i in range(params['num_layers'])] # Neural splines, coupling if params['model_type'] == 'neuralSpline': nfs_flow = NSF_CL if True else NSF_AR # MAY WANT TO CHANGE THIS HIDDEN_DIM SIZE! # 3 layers flows = [nfs_flow(dim=gen_model.dim, K=8, B=3, hidden_dim=params['hidden_dim']) for _ in range(params['num_layers'])] convs = [Invertible1x1Conv(dim=gen_model.dim) for _ in flows] # PREVIOUSLY WAS ACTNORM BUT THIS CLEVER INIT DOESNT WORK FOR ONEHOTS norms = [AffineConstantFlow(dim=gen_model.dim) for _ in flows] flows = list(itertools.chain(*zip(norms, convs, flows))) network = NormalizingFlowModel(base, flows, gen_model) network.flow.to(device) print('data', data1.shape) # printing out where the samples are from plt.figure() plt.scatter(data1[:,0], data1[:,1], color='blue') plt.scatter(data2[:,0], data2[:,1], color='red') plt.gcf().savefig(experiment_dir+'training_data.png', dpi=100) plt.close() plt.figure() plt.hist(data1[:,0], color='blue') plt.hist(data2[:,0], color='red') plt.gcf().savefig(experiment_dir+'training_data_hist.png', dpi=100) plt.close() if params['MLepochs']>0: # only ML training. ML_losses = network.train_flexible(x, xval=xval, lr=params['lr'], std=params['latent_std'], epochs=params['MLepochs'], batch_size=params['MLbatch'], verbose=params['verbose'], clipnorm=params['gradient_clip'], weight_KL=0.0, save_partway_inter=params['save_partway_inter'], experiment_dir=experiment_dir) ML_losses = ML_losses['total_loss'] print('done with ML training') # TODO: Add in temperature for sampling: temperature=params['temperature'] #exp_energy_x, hard_energy_x = network.sample_energy(num_samples=5000, temperature=params['temperature'] ) plt.figure() fig, axes = plot_network(network, gen_model, data1, data2, x_ts, weight_cutoff=1e-2) fig.savefig(experiment_dir+'ML_only_network_plot.png', dpi=100) plt.close() plt.figure() plt.plot(ML_losses, label='training') #plt.plot(network1.history['val_loss'], label='validation') plt.legend() plt.gcf().savefig(experiment_dir+'Post_ML_LossCurves.png', dpi=100) plt.close() torch.save(network.flow.state_dict(), experiment_dir+'Model_Post_ML_Training.torch') pickle.dump(ML_losses, open(experiment_dir+'ML_only_losses_dict.pickle','wb')) if params['KL_only']: KL_losses = network.train_flexible(x, weight_ML=0.0, weight_entropy = params['Entropyweight'], epochs=params['KLepochs'], lr=params['lr'], batch_size=params['KLbatch'], temperature=params['temperature'], explore=params['explore'], verbose=params['verbose'], save_partway_inter=params['save_partway_inter'], experiment_dir=experiment_dir, clipnorm=params['gradient_clip']) KL_losses = KL_losses['total_loss'] plt.figure() plt.plot(KL_losses, label='training') #plt.plot(KL_losses, label='validation') plt.legend() plt.gcf().savefig(experiment_dir+'Post_KL_LossCurves.png', dpi=100) plt.close() torch.save(network.flow.state_dict(), experiment_dir+'Model_Post_KL_Training.torch') pickle.dump(KL_losses, open(experiment_dir+'KL_only_losses_dict.pickle','wb')) else: ML_KL_losses = network.train_flexible(x, xval=xval, lr=params['lr'], std=params['latent_std'], epochs=params['KLepochs'], batch_size=params['KLbatch'], weight_ML=params['MLweight'], weight_KL=params['KLweight'], temperature=params['temperature'], explore=params['explore'], verbose=params['verbose'], save_partway_inter=params['save_partway_inter'], clipnorm=params['gradient_clip'], experiment_dir=experiment_dir, weight_entropy = params['Entropyweight']) for loss_to_plot in ['total_loss', 'ld_loss', 'kl_loss', 'ml_loss']: print('to plot', loss_to_plot, len(ML_KL_losses[loss_to_plot])) plt.figure() plt.plot(ML_KL_losses[loss_to_plot]) plt.gcf().savefig(experiment_dir+'Post_KL_'+loss_to_plot+'_LossCurve.png', dpi=100) plt.close() pickle.dump(ML_KL_losses, open(experiment_dir+'ML_KL_losses_dict.pickle','wb')) plt.figure() fig, axes = plot_network(network, gen_model, data1, data2, x_ts, weight_cutoff=1e-2) fig.savefig(experiment_dir+'MLandKL_network_plot.png', dpi=100) plt.close() total_time = time.time() - start_time print('======== total time for this run in minutes', total_time/60) with open(experiment_dir+ 'time_taken.txt', 'w') as file: file.write('Total time taken was: ' + str(total_time)) def plot_network(network, gen_model, traj_left, traj_right, x_ts, weight_cutoff=1e-2,): fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(16, 3.5)) plt.subplots_adjust(wspace=0.25) # Plot X distribution axis = axes[0] axis.plot(traj_left[:, 0], traj_left[:, 1], linewidth=0, marker='.', markersize=3, color='blue') axis.plot(x_ts[:, 0], x_ts[:, 1], linewidth=0, marker='.', markersize=3, color='orange') axis.plot(traj_right[:, 0], traj_right[:, 1], linewidth=0, marker='.', markersize=3, color='red') axis.set_xlabel('$x_1$') axis.set_xlim(-3, 3) axis.set_ylabel('$x_2$', labelpad=-12) axis.set_ylim(-4, 4) axis.set_yticks([-4, -2, 0, 2, 4]) # Plot Z distribution axis = axes[1] with torch.no_grad(): z_left, _, _ = network.forward(torch.from_numpy(traj_left).float()) z_ts, _, _ = network.forward( torch.from_numpy(x_ts).float()) z_right, _, _ = network.forward( torch.from_numpy(traj_right).float()) axis.plot(z_left[:, 0], z_left[:, 1], linewidth=0, marker='.', markersize=3, color='blue') axis.plot(z_ts[:, 0], z_ts[:, 1], linewidth=0, marker='.', markersize=3, color='orange') axis.plot(z_right[:, 0], z_right[:, 1], linewidth=0, marker='.', markersize=3, color='red') circle = plt.Circle((0, 0), radius=1.0, color='black', alpha=0.4, fill=True) axis.add_artist(circle) circle = plt.Circle((0, 0), radius=2.0, color='black', alpha=0.25, fill=True) axis.add_artist(circle) circle = plt.Circle((0, 0), radius=3.0, color='black', alpha=0.1, fill=True) axis.add_artist(circle) axis.set_xlabel('$z_1$') axis.set_xlim(-4, 4) axis.set_ylabel('$z_2$', labelpad=-12) axis.set_ylim(-4, 4) axis.set_yticks([-4, -2, 0, 2, 4]) # Plot proposal distribution # getting samples and histograms. X1, Y1 = test_sample(network, temperature=1.0, plot=False) # bin means and then negative log of empirical x0 frequencies. _, W1 = hist_weights(network) axis = axes[2] # this is a grid of energies that are plotted as a line. ground truth. _, E = gen_model.plot_dimer_energy(axis=axis, temperature=1.0) Y1 = Y1 - Y1.min() + E.min() Inan = np.where(W1 < weight_cutoff) Y1[Inan] = np.nan #Y2 = Y2 - Y2.min() + E.min() #axis.plot(X2, Y2, color='#FF6600', linewidth=2, label='ML+KL+RC') axis.plot(X1, Y1, color='orange', linewidth=2, label='ML+KL') axis.set_xlim(-3, 3) axis.set_ylim(-12, 5.5) axis.set_yticks([]) axis.set_xlabel('$x_1$') axis.set_ylabel('Energy / kT') #plt.legend(ncol=1, loc=9, fontsize=12, frameon=False) # Plot reweighted distribution RX1, RY1, DR1 = test_sample_rew(network, gen_model, temperature=1.0, plot=False) axis = axes[3] Ex, E = gen_model.plot_dimer_energy(axis=axis, temperature=1.0) RY1 = RY1 - RY1[np.isfinite(RY1)].min() + E.min() RY1[Inan] = np.nan #RY1[RY1 > -4] = np.nan #RY2 = RY2 - RY2[np.isfinite(RY2)].min() + E.min() #axis.errorbar(RX2, RY2, DR2, color='#FF6600', linewidth=2, label='ML+KL+RC') axis.errorbar(RX1, RY1, DR1, color='orange', linewidth=2, label='ML+KL') axis.set_xlim(-3, 3) axis.set_ylim(-12, 5.5) axis.set_yticks([-12, -10, -8, -6, -4, -2, 0, 2, 4]) axis.set_xlabel('$x_1$') axis.set_ylabel('') return fig, axes def test_sample(network, temperature=1.0, nsample=100000, plot=True): if nsample <= 100000: sample_x = network.sample_xs(temperature=temperature, num_samples=nsample) else: sample_x = [] for i in range(int(nsample/100000)): sample_x = network.sample_xs(temperature=temperature, num_samples=nsample) sample_x.append(sample_x) sample_x = np.vstack(sample_x) sample_x = sample_x.detach().numpy() # xgen = network.Tzx.predict(np.sqrt(temperature) * np.random.randn(100000, 2)) params = DoubleWell.params_default.copy() params['dim'] = 2 double_well = DoubleWell(params=params) plt.figure(figsize=(4, 4)) h, b = np.histogram(sample_x[:, 0], bins=100) # h is the numbers in each bin. bin_means = (b[:-1] + b[1:])/2 Eh = -np.log(h) / temperature # log of numbers in each. this brings it down from the boltzmann. if plot: Ex, E = double_well.plot_dimer_energy(temperature=temperature) Eh = Eh - Eh.min() + E.min() # from the lowest real energy E, have the increase in energy on a log scale. plt.plot(bin_means, Eh, color='green', linewidth=2) return bin_means, Eh def hist_weights(network): sample_x, log_w = network.sample_log_w(temperature=1.0, num_samples=100000) log_w -= log_w.max() bins = np.linspace(-2.5, 2.5, 100) bin_means = (bins[:-1] + bins[1:]) /2 sample_x_index = np.digitize(sample_x[:, 0], bins) whist = np.zeros(len(bins) + 1) for i in range(len(log_w)): whist[sample_x_index[i]] += np.exp(log_w[i]) return bin_means, whist[1:-1] # reweighting def test_sample_rew(network, gen_model, temperature=1.0, plot=True): sample_x, log_w = network.sample_log_w(temperature=1.0, num_samples=100000) log_w -= log_w.max() bin_means, Es = free_energy_bootstrap(sample_x[:, 0], bins=100, nbootstrap=100, log_weights=log_w) plt.figure(figsize=(4, 4)) Emean = mean_finite(Es, axis=0)-10.7 Estd = std_finite(Es, axis=0) var = mean_finite(std_finite(Es, axis=0) ** 2) if plot: gen_model.plot_dimer_energy() plt.errorbar(bin_means, Emean, Estd, linewidth=2, color='green') # variance print('Estimator Standard Error:
direct children. children = sorted(directory_node.Query(filter_string=filter_string, limit=100000)) # Filter the children according to types. if self.visible_types: children = [x for x in children if x.__class__.__name__ in self.visible_types] self.content_cache.Put(key, children) try: self.message = "Directory Listing '%s' was taken on %s" % ( aff4_path, directory_node.Get(directory_node.Schema.TYPE.age)) except AttributeError: pass except IOError: children = [] children.sort(reverse=reverse_sort) row_index = start_row # Make sure the table knows how large it is for paging. self.size = len(children) self.columns[1].base_path = urn for fd in children[start_row:end_row]: # We use the timestamp on the TYPE as a proxy for the last update time # of this object - its only an estimate. fd_type = fd.Get(fd.Schema.TYPE) if fd_type: self.AddCell(row_index, "Age", rdfvalue.RDFDatetime(fd_type.age)) self.AddCell(row_index, "Name", fd.urn) # Add the fd to all the columns for column in self.columns: # This sets AttributeColumns directly from their fd. if isinstance(column, semantic.AttributeColumn): column.AddRowFromFd(row_index, fd) if "Container" in fd.behaviours: self.AddCell(row_index, "Icon", dict(icon="directory", description="Directory")) else: self.AddCell(row_index, "Icon", dict(icon="file", description="File Like Object")) row_index += 1 if row_index > end_row: return class FileTable(AbstractFileTable): """A table that displays the content of a directory. Listening Javascript Events: - tree_select(aff4_path) - A selection event on the tree informing us of the tree path. We re-layout the entire table on this event to show the directory listing of aff4_path. Generated Javascript Events: - file_select(aff4_path, age) - The full AFF4 path for the file in the directory which is selected. Age is the latest age we wish to see. Internal State: - client_id. """ root_path = None # The root will be dynamically set to the client path. toolbar = "Toolbar" context_help_url = "user_manual.html#_listing_the_virtual_filesystem" def __init__(self, **kwargs): super(FileTable, self).__init__(**kwargs) self.AddColumn(semantic.RDFValueColumn( "Icon", renderer=semantic.IconRenderer, width="40px")) self.AddColumn(semantic.RDFValueColumn( "Name", renderer=semantic.SubjectRenderer, sortable=True, width="20%")) self.AddColumn(semantic.AttributeColumn("type", width="10%")) self.AddColumn(semantic.AttributeColumn("size", width="10%")) self.AddColumn(semantic.AttributeColumn("stat.st_size", width="15%")) self.AddColumn(semantic.AttributeColumn("stat.st_mtime", width="15%")) self.AddColumn(semantic.AttributeColumn("stat.st_ctime", width="15%")) self.AddColumn(semantic.RDFValueColumn( "Age", renderer=AgeSelector, width="15%")) def Layout(self, request, response): """Populate the table state with the request.""" self.state["client_id"] = client_id = request.REQ.get("client_id") self.root_path = client_id return super(FileTable, self).Layout(request, response) def BuildTable(self, start_row, end_row, request): client_id = request.REQ.get("client_id") self.root_path = client_id return super(FileTable, self).BuildTable(start_row, end_row, request) class FileSystemTree(renderers.TreeRenderer): """A FileSystem navigation Tree. Generated Javascript Events: - tree_select(aff4_path) - The full aff4 path for the branch which the user selected. Internal State: - client_id: The client this tree is showing. - aff4_root: The aff4 node which forms the root of this tree. """ # Flows are special children which confuse users when seen, so we remove them # from the tree. Note that they are still visible in the table. hidden_branches = ["/flows"] def Layout(self, request, response): self.state["client_id"] = client_id = request.REQ.get("client_id") self.state["aff4_root"] = request.REQ.get("aff4_root", client_id) response = super(FileSystemTree, self).Layout(request, response) return self.CallJavascript(response, "FileSystemTree.Layout") def RenderBranch(self, path, request): """Renders tree leafs for filesystem path.""" client_id = request.REQ["client_id"] aff4_root = rdfvalue.RDFURN(request.REQ.get("aff4_root", client_id)) # Path is relative to the aff4 root specified. urn = aff4_root.Add(path) try: # Open the client directory = aff4.FACTORY.Open(urn, token=request.token).Upgrade( "VFSDirectory") children = [ch for ch in directory.OpenChildren(limit=100000) if "Container" in ch.behaviours] try: self.message = "Directory %s Last retrieved %s" % ( urn, directory.Get(directory.Schema.TYPE).age) except AttributeError: pass for child in sorted(children): self.AddElement(child.urn.RelativeName(urn)) except IOError as e: self.message = "Error fetching %s: %s" % (urn, e) class RecursiveRefreshDialog(renderers.ConfirmationDialogRenderer): """Dialog that allows user to recursively update directories.""" post_parameters = ["aff4_path"] header = "Recursive Refresh" proceed_button_title = "Refresh!" content_template = renderers.Template(""" {{this.recursive_refresh_form|safe}} """) ajax_template = renderers.Template(""" <p class="text-info">Refresh started successfully!</p> """) def Layout(self, request, response): args = rdfvalue.RecursiveListDirectoryArgs() self.recursive_refresh_form = forms.SemanticProtoFormRenderer( args, supressions=["pathspec"]).RawHTML(request) return super(RecursiveRefreshDialog, self).Layout(request, response) def RenderAjax(self, request, response): aff4_path = rdfvalue.RDFURN(request.REQ.get("aff4_path")) args = forms.SemanticProtoFormRenderer( rdfvalue.RecursiveListDirectoryArgs()).ParseArgs(request) fd = aff4.FACTORY.Open(aff4_path, aff4_type="AFF4Volume", token=request.token) args.pathspec = fd.real_pathspec flow.GRRFlow.StartFlow(client_id=aff4_path.Split()[0], flow_name="RecursiveListDirectory", args=args, notify_to_user=True, token=request.token) return self.RenderFromTemplate(self.ajax_template, response) class Toolbar(renderers.TemplateRenderer): """A navigation enhancing toolbar. Listening Javascript Events: - AttributeUpdated(aff4_path, attribute): This event is fired then the aff4_path has updated. If the content of this event have changed, we emit the tree_select and file_select events to force the table to redraw. Generated Javascript Events: - file_select(aff4_path), tree_select(aff4_path) are fired when the buttons are clicked. Internal State: - aff4_path: The path we are viewing now in the table. """ layout_template = renderers.Template(""" <div class="navbar navbar-default"> <div class="navbar-inner"> <div class="navbar-form pull-right"> <button class="btn btn-default" id='refresh_{{unique|escape}}' name="Refresh" title='Refresh this directory listing.'> <img src='/static/images/stock_refresh.png' class="toolbar_icon" /> </button> <button class="btn btn-default" id='recursive_refresh_{{unique|escape}}' title='Refresh this directory listing.' style='position: relative' name="RecursiveRefresh" data-toggle="modal" data-target="#recursive_refresh_dialog_{{unique|escape}}"> <img src='/static/images/stock_refresh.png' class="toolbar_icon" /> <span style='position: absolute; left: 23px; top: 5px; font-weight: bold; font-size: 18px; -webkit-text-stroke: 1px #000; color: #fff'>R</span> </button> <button class="btn btn-default" id='rweowned' title='Is this machine pwned?'> <img src='/static/images/stock_dialog_question.png' class="toolbar_icon" /> </button> </div> <ul class="breadcrumb"> {% for path, fullpath, fullpath_id, i, last in this.paths %} <li {% if forloop.last %}class="active"{% endif %}> {% if forloop.last %} {{path|escape}} {% else %} <a id="path_{{i|escape}}">{{path|escape}}</a> {% endif %} </li> {% endfor %} <div class="clearfix"></div> </ul> </div> </div> <div id="refresh_action" class="hide"></div> <div id="rweowned_dialog" class="modal"></div> <div id="recursive_refresh_dialog_{{unique|escape}}" class="modal" tabindex="-1" role="dialog" aria-hidden="true"> </div> """) def Layout(self, request, response): """Render the toolbar.""" self.state["client_id"] = client_id = request.REQ.get("client_id") self.state["aff4_path"] = aff4_path = request.REQ.get( "aff4_path", client_id) client_urn = rdfvalue.ClientURN(client_id) self.paths = [("/", client_urn, "_", 0)] for path in rdfvalue.RDFURN(aff4_path).Split()[1:]: previous = self.paths[-1] fullpath = previous[1].Add(path) self.paths.append((path, fullpath, renderers.DeriveIDFromPath( fullpath.RelativeName(client_urn)), previous[3] + 1)) response = super(Toolbar, self).Layout(request, response) return self.CallJavascript(response, "Toolbar.Layout", aff4_path=utils.SmartUnicode(aff4_path), paths=self.paths) class UpdateAttribute(renderers.TemplateRenderer): """Reloads a directory listing from client. The renderer will launch the flow in the layout method, and then call its render method every few seconds to check if the flow is complete. Post Parameters: - aff4_path: The aff4 path to update the attribute for. - aff4_type: If provided, the aff4 object will be upgraded to this type before updating. - attribute: The attribute name to update. Generated Javascript Events: - AttributeUpdated(aff4_path, attribute) - When the flow is complete we emit this event. """ # Number of ms to wait poll_time = 1000 def ParseRequest(self, request): """Parses parameters from the request.""" self.aff4_path = request.REQ.get("aff4_path") self.flow_urn = request.REQ.get("flow_urn") # Refresh the contains attribute self.attribute_to_refresh = request.REQ.get("attribute", "CONTAINS") def Layout(self, request, response): """Render the toolbar.""" self.ParseRequest(request) try: client_id = rdfvalue.RDFURN(self.aff4_path).Split(2)[0] update_flow_urn = flow.GRRFlow.StartFlow( client_id=client_id, flow_name="UpdateVFSFile", token=request.token, vfs_file_urn=rdfvalue.RDFURN(self.aff4_path), attribute=self.attribute_to_refresh) update_flow = aff4.FACTORY.Open( update_flow_urn, aff4_type="UpdateVFSFile", token=request.token) self.flow_urn = str(update_flow.state.get_file_flow_urn) except IOError as e: raise IOError("Sorry. This path cannot be refreshed due to %s" % e) if self.flow_urn: response = super(UpdateAttribute, self).Layout(request, response) return self.CallJavascript(response, "UpdateAttribute.Layout", aff4_path=self.aff4_path, flow_urn=self.flow_urn, attribute_to_refresh=self.attribute_to_refresh, poll_time=self.poll_time) def RenderAjax(self, request, response): """Continue polling as long as the flow is in flight.""" super(UpdateAttribute, self).RenderAjax(request, response) self.ParseRequest(request) # Check if the flow is still in flight. try: flow_obj = aff4.FACTORY.Open(self.flow_urn, token=request.token) complete = not flow_obj.GetRunner().IsRunning() except IOError: # Something went wrong, stop polling. complete = True if complete: return renderers.JsonResponse("1") class AFF4ReaderMixin(object): """A helper which reads a buffer from an AFF4 object. This is meant to be mixed in with the HexView and TextView renderers. """ def ReadBuffer(self, request, offset, length): """Renders the HexTable.""" # Allow derived classes to just set the urn directly self.aff4_path = request.REQ.get("aff4_path") self.age = request.REQ.get("age") if not self.aff4_path: return try: fd = aff4.FACTORY.Open(self.aff4_path, token=request.token, age=rdfvalue.RDFDatetime(self.age)) self.total_size = int(fd.Get(fd.Schema.SIZE)) except (IOError, TypeError, AttributeError): self.total_size = 0 return "" fd.Seek(offset) return fd.Read(length) class FileHexViewer(AFF4ReaderMixin, fileview_widgets.HexView): """A HexView renderer.""" class FileTextViewer(AFF4ReaderMixin, fileview_widgets.TextView): """A TextView renderer.""" class VirtualFileSystemView(renderers.Splitter): """This is the main view to browse files.""" behaviours = frozenset(["Host"]) order = 10 description = "Browse Virtual Filesystem" left_renderer = "FileSystemTree" top_right_renderer = "FileTable" bottom_right_renderer = "AFF4ObjectRenderer" class DownloadView(renderers.TemplateRenderer): """Renders a download page.""" # We allow a longer execution time here to be able to download large files. max_execution_time = 60 * 15 layout_template = renderers.Template(""" <h3>{{ this.path|escape }}</h3> <div id="{{ unique|escape }}_action" class="hide"></div> {% if this.hash %} Hash was {{ this.hash|escape }}. {% endif %} {% if this.file_exists %} As downloaded on {{ this.age|escape }}.<br> <p> <button id="{{ unique|escape }}_2" class="btn btn-default"> Download ({{this.size|escape}} bytes) </button> </p> <p>or download using command line export tool:</p> <pre> {{ this.export_command_str|escape }} </pre> <hr/> {% endif %} <button id="{{ unique|escape }}" class="btn btn-default"> Get a new Version </button> </div> """) error_template = renderers.Template(""" <div class="alert alert-danger alert-block"> <h4>Error!</h4> {{this.path|escape}} does not appear to be a file object. <p><em>{{this.error_message|escape}}</em></p> </div> """) bad_extensions = [".bat", ".cmd", ".exe", ".com", ".pif", ".py", ".pl", ".scr", ".vbs"] def Layout(self, request, response): """Present a download form.""" self.age = rdfvalue.RDFDatetime(request.REQ.get("age")) client_id = request.REQ.get("client_id") aff4_path = request.REQ.get("aff4_path", client_id) try: fd = aff4.FACTORY.Open(aff4_path, token=request.token, age=self.age) self.path
Optional[pulumi.Input[bool]]): pulumi.set(self, "tls", value) @property @pulumi.getter(name="userDisabledBitMask") def user_disabled_bit_mask(self) -> Optional[pulumi.Input[int]]: """ User disabled bit mask (int) """ return pulumi.get(self, "user_disabled_bit_mask") @user_disabled_bit_mask.setter def user_disabled_bit_mask(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "user_disabled_bit_mask", value) @property @pulumi.getter(name="userEnabledAttribute") def user_enabled_attribute(self) -> Optional[pulumi.Input[str]]: """ User enable attribute (string) """ return pulumi.get(self, "user_enabled_attribute") @user_enabled_attribute.setter def user_enabled_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_enabled_attribute", value) @property @pulumi.getter(name="userLoginAttribute") def user_login_attribute(self) -> Optional[pulumi.Input[str]]: """ User login attribute. Default `uid` (string) """ return pulumi.get(self, "user_login_attribute") @user_login_attribute.setter def user_login_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_login_attribute", value) @property @pulumi.getter(name="userMemberAttribute") def user_member_attribute(self) -> Optional[pulumi.Input[str]]: """ User member attribute. Default `memberOf` (string) """ return pulumi.get(self, "user_member_attribute") @user_member_attribute.setter def user_member_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_member_attribute", value) @property @pulumi.getter(name="userNameAttribute") def user_name_attribute(self) -> Optional[pulumi.Input[str]]: """ User name attribute. Default `givenName` (string) """ return pulumi.get(self, "user_name_attribute") @user_name_attribute.setter def user_name_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_name_attribute", value) @property @pulumi.getter(name="userObjectClass") def user_object_class(self) -> Optional[pulumi.Input[str]]: """ User object class. Default `inetorgperson` (string) """ return pulumi.get(self, "user_object_class") @user_object_class.setter def user_object_class(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_object_class", value) @property @pulumi.getter(name="userSearchAttribute") def user_search_attribute(self) -> Optional[pulumi.Input[str]]: """ User search attribute. Default `uid|sn|givenName` (string) """ return pulumi.get(self, "user_search_attribute") @user_search_attribute.setter def user_search_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_search_attribute", value) @pulumi.input_type class _AuthConfigOpenLdapState: def __init__(__self__, *, access_mode: Optional[pulumi.Input[str]] = None, allowed_principal_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, certificate: Optional[pulumi.Input[str]] = None, connection_timeout: Optional[pulumi.Input[int]] = None, enabled: Optional[pulumi.Input[bool]] = None, group_dn_attribute: Optional[pulumi.Input[str]] = None, group_member_mapping_attribute: Optional[pulumi.Input[str]] = None, group_member_user_attribute: Optional[pulumi.Input[str]] = None, group_name_attribute: Optional[pulumi.Input[str]] = None, group_object_class: Optional[pulumi.Input[str]] = None, group_search_attribute: Optional[pulumi.Input[str]] = None, group_search_base: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, nested_group_membership_enabled: Optional[pulumi.Input[bool]] = None, port: Optional[pulumi.Input[int]] = None, servers: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service_account_distinguished_name: Optional[pulumi.Input[str]] = None, service_account_password: Optional[pulumi.Input[str]] = None, test_password: Optional[pulumi.Input[str]] = None, test_username: Optional[pulumi.Input[str]] = None, tls: Optional[pulumi.Input[bool]] = None, type: Optional[pulumi.Input[str]] = None, user_disabled_bit_mask: Optional[pulumi.Input[int]] = None, user_enabled_attribute: Optional[pulumi.Input[str]] = None, user_login_attribute: Optional[pulumi.Input[str]] = None, user_member_attribute: Optional[pulumi.Input[str]] = None, user_name_attribute: Optional[pulumi.Input[str]] = None, user_object_class: Optional[pulumi.Input[str]] = None, user_search_attribute: Optional[pulumi.Input[str]] = None, user_search_base: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering AuthConfigOpenLdap resources. :param pulumi.Input[str] access_mode: Access mode for auth. `required`, `restricted`, `unrestricted` are supported. Default `unrestricted` (string) :param pulumi.Input[Sequence[pulumi.Input[str]]] allowed_principal_ids: Allowed principal ids for auth. Required if `access_mode` is `required` or `restricted`. Ex: `openldap_user://<DN>` `openldap_group://<DN>` (list) :param pulumi.Input[Mapping[str, Any]] annotations: Annotations of the resource (map) :param pulumi.Input[str] certificate: Base64 encoded CA certificate for TLS if self-signed. Use filebase64(<FILE>) for encoding file (string) :param pulumi.Input[int] connection_timeout: OpenLdap connection timeout. Default `5000` (int) :param pulumi.Input[bool] enabled: Enable auth config provider. Default `true` (bool) :param pulumi.Input[str] group_dn_attribute: Group DN attribute. Default `entryDN` (string) :param pulumi.Input[str] group_member_mapping_attribute: Group member mapping attribute. Default `member` (string) :param pulumi.Input[str] group_member_user_attribute: Group member user attribute. Default `entryDN` (string) :param pulumi.Input[str] group_name_attribute: Group name attribute. Default `cn` (string) :param pulumi.Input[str] group_object_class: Group object class. Default `groupOfNames` (string) :param pulumi.Input[str] group_search_attribute: Group search attribute. Default `cn` (string) :param pulumi.Input[str] group_search_base: Group search base (string) :param pulumi.Input[Mapping[str, Any]] labels: Labels of the resource (map) :param pulumi.Input[str] name: (Computed) The name of the resource (string) :param pulumi.Input[bool] nested_group_membership_enabled: Nested group membership enable. Default `false` (bool) :param pulumi.Input[int] port: OpenLdap port. Default `389` (int) :param pulumi.Input[Sequence[pulumi.Input[str]]] servers: OpenLdap servers list (list) :param pulumi.Input[str] service_account_distinguished_name: Service account DN for access OpenLdap service (string) :param pulumi.Input[str] service_account_password: Service account password for access OpenLdap service (string) :param pulumi.Input[str] test_password: Password for test access to OpenLdap service (string) :param pulumi.Input[str] test_username: Username for test access to OpenLdap service (string) :param pulumi.Input[bool] tls: Enable TLS connection (bool) :param pulumi.Input[str] type: (Computed) The type of the resource (string) :param pulumi.Input[int] user_disabled_bit_mask: User disabled bit mask (int) :param pulumi.Input[str] user_enabled_attribute: User enable attribute (string) :param pulumi.Input[str] user_login_attribute: User login attribute. Default `uid` (string) :param pulumi.Input[str] user_member_attribute: User member attribute. Default `memberOf` (string) :param pulumi.Input[str] user_name_attribute: User name attribute. Default `givenName` (string) :param pulumi.Input[str] user_object_class: User object class. Default `inetorgperson` (string) :param pulumi.Input[str] user_search_attribute: User search attribute. Default `uid|sn|givenName` (string) :param pulumi.Input[str] user_search_base: User search base DN (string) """ if access_mode is not None: pulumi.set(__self__, "access_mode", access_mode) if allowed_principal_ids is not None: pulumi.set(__self__, "allowed_principal_ids", allowed_principal_ids) if annotations is not None: pulumi.set(__self__, "annotations", annotations) if certificate is not None: pulumi.set(__self__, "certificate", certificate) if connection_timeout is not None: pulumi.set(__self__, "connection_timeout", connection_timeout) if enabled is not None: pulumi.set(__self__, "enabled", enabled) if group_dn_attribute is not None: pulumi.set(__self__, "group_dn_attribute", group_dn_attribute) if group_member_mapping_attribute is not None: pulumi.set(__self__, "group_member_mapping_attribute", group_member_mapping_attribute) if group_member_user_attribute is not None: pulumi.set(__self__, "group_member_user_attribute", group_member_user_attribute) if group_name_attribute is not None: pulumi.set(__self__, "group_name_attribute", group_name_attribute) if group_object_class is not None: pulumi.set(__self__, "group_object_class", group_object_class) if group_search_attribute is not None: pulumi.set(__self__, "group_search_attribute", group_search_attribute) if group_search_base is not None: pulumi.set(__self__, "group_search_base", group_search_base) if labels is not None: pulumi.set(__self__, "labels", labels) if name is not None: pulumi.set(__self__, "name", name) if nested_group_membership_enabled is not None: pulumi.set(__self__, "nested_group_membership_enabled", nested_group_membership_enabled) if port is not None: pulumi.set(__self__, "port", port) if servers is not None: pulumi.set(__self__, "servers", servers) if service_account_distinguished_name is not None: pulumi.set(__self__, "service_account_distinguished_name", service_account_distinguished_name) if service_account_password is not None: pulumi.set(__self__, "service_account_password", service_account_password) if test_password is not None: pulumi.set(__self__, "test_password", test_password) if test_username is not None: pulumi.set(__self__, "test_username", test_username) if tls is not None: pulumi.set(__self__, "tls", tls) if type is not None: pulumi.set(__self__, "type", type) if user_disabled_bit_mask is not None: pulumi.set(__self__, "user_disabled_bit_mask", user_disabled_bit_mask) if user_enabled_attribute is not None: pulumi.set(__self__, "user_enabled_attribute", user_enabled_attribute) if user_login_attribute is not None: pulumi.set(__self__, "user_login_attribute", user_login_attribute) if user_member_attribute is not None: pulumi.set(__self__, "user_member_attribute", user_member_attribute) if user_name_attribute is not None: pulumi.set(__self__, "user_name_attribute", user_name_attribute) if user_object_class is not None: pulumi.set(__self__, "user_object_class", user_object_class) if user_search_attribute is not None: pulumi.set(__self__, "user_search_attribute", user_search_attribute) if user_search_base is not None: pulumi.set(__self__, "user_search_base", user_search_base) @property @pulumi.getter(name="accessMode") def access_mode(self) -> Optional[pulumi.Input[str]]: """ Access mode for auth. `required`, `restricted`, `unrestricted` are supported. Default `unrestricted` (string) """ return pulumi.get(self, "access_mode") @access_mode.setter def access_mode(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "access_mode", value) @property @pulumi.getter(name="allowedPrincipalIds") def allowed_principal_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Allowed principal ids for auth. Required if `access_mode` is `required` or `restricted`. Ex: `openldap_user://<DN>` `openldap_group://<DN>` (list) """ return pulumi.get(self, "allowed_principal_ids") @allowed_principal_ids.setter def allowed_principal_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "allowed_principal_ids", value) @property @pulumi.getter def annotations(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Annotations of the resource (map) """ return pulumi.get(self, "annotations") @annotations.setter def annotations(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "annotations", value) @property @pulumi.getter def certificate(self) -> Optional[pulumi.Input[str]]: """ Base64 encoded CA certificate for TLS if self-signed. Use filebase64(<FILE>) for encoding file (string) """ return pulumi.get(self, "certificate") @certificate.setter def certificate(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "certificate", value) @property @pulumi.getter(name="connectionTimeout") def connection_timeout(self) -> Optional[pulumi.Input[int]]: """ OpenLdap connection timeout. Default `5000` (int) """ return pulumi.get(self, "connection_timeout") @connection_timeout.setter def connection_timeout(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "connection_timeout", value) @property @pulumi.getter def enabled(self) -> Optional[pulumi.Input[bool]]: """ Enable auth config provider. Default `true` (bool) """ return pulumi.get(self, "enabled") @enabled.setter def enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enabled", value) @property @pulumi.getter(name="groupDnAttribute") def group_dn_attribute(self) -> Optional[pulumi.Input[str]]: """ Group DN attribute. Default `entryDN` (string) """ return pulumi.get(self, "group_dn_attribute") @group_dn_attribute.setter def group_dn_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "group_dn_attribute", value) @property @pulumi.getter(name="groupMemberMappingAttribute") def group_member_mapping_attribute(self) -> Optional[pulumi.Input[str]]: """ Group member mapping attribute. Default `member` (string) """ return pulumi.get(self, "group_member_mapping_attribute") @group_member_mapping_attribute.setter def group_member_mapping_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "group_member_mapping_attribute", value) @property @pulumi.getter(name="groupMemberUserAttribute") def group_member_user_attribute(self) -> Optional[pulumi.Input[str]]: """ Group member user attribute. Default `entryDN` (string) """ return pulumi.get(self, "group_member_user_attribute") @group_member_user_attribute.setter def group_member_user_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "group_member_user_attribute", value) @property @pulumi.getter(name="groupNameAttribute") def group_name_attribute(self) -> Optional[pulumi.Input[str]]: """ Group name attribute. Default `cn` (string) """ return pulumi.get(self, "group_name_attribute") @group_name_attribute.setter def group_name_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "group_name_attribute", value) @property @pulumi.getter(name="groupObjectClass") def group_object_class(self) -> Optional[pulumi.Input[str]]: """ Group object class. Default `groupOfNames` (string) """ return pulumi.get(self, "group_object_class") @group_object_class.setter def group_object_class(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "group_object_class", value) @property @pulumi.getter(name="groupSearchAttribute") def group_search_attribute(self) -> Optional[pulumi.Input[str]]: """ Group search attribute. Default `cn` (string) """ return pulumi.get(self, "group_search_attribute") @group_search_attribute.setter def group_search_attribute(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "group_search_attribute", value) @property @pulumi.getter(name="groupSearchBase") def group_search_base(self) -> Optional[pulumi.Input[str]]: """ Group search base (string) """ return pulumi.get(self, "group_search_base") @group_search_base.setter def group_search_base(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "group_search_base", value) @property @pulumi.getter def labels(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Labels of the resource (map) """ return pulumi.get(self, "labels") @labels.setter def labels(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "labels", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ (Computed) The name
'</td>' + \ '<td>' + r10c3 + '</td>' + \ '<td>' + r10c4 + '</td>' + \ '<td>' + r10c5 + '</td>' + \ '<td>' + r10c6 + '</td>' + \ '<td>' + r10c7 + '</td>' + \ '<td>' + r10c8 + '</td>' + \ '<td>' + r10c9 + '</td>' + \ '<td>' + r10c10 + '</td>' + \ '<td>' + r10c11 + '</td>' + \ '<td>' + r10c12 + '</td>' + \ '<td>' + r10c13 + '</td>' + \ '<td>' + r10c14 + '</td>' + \ '<td>' + r10c15 + '</td>' + \ '<td>' + r10c16 + '</td>' + \ '<td>' + r10c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Gifts actual income</td>' + \ '<td>' + r11c1 + '</td>' + \ '<td>' + r11c2 + '</td>' + \ '<td>' + r11c3 + '</td>' + \ '<td>' + r11c4 + '</td>' + \ '<td>' + r11c5 + '</td>' + \ '<td>' + r11c6 + '</td>' + \ '<td>' + r11c7 + '</td>' + \ '<td>' + r11c8 + '</td>' + \ '<td>' + r11c9 + '</td>' + \ '<td>' + r11c10 + '</td>' + \ '<td>' + r11c11 + '</td>' + \ '<td>' + r11c12 + '</td>' + \ '<td>' + r11c13 + '</td>' + \ '<td>' + r11c14 + '</td>' + \ '<td>' + r11c15 + '</td>' + \ '<td>' + r11c16 + '</td>' + \ '<td>' + r11c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Gifts variance income</td>' + \ '<td>' + r12c1 + '</td>' + \ '<td>' + r12c2 + '</td>' + \ '<td>' + r12c3 + '</td>' + \ '<td>' + r12c4 + '</td>' + \ '<td>' + r12c5 + '</td>' + \ '<td>' + r12c6 + '</td>' + \ '<td>' + r12c7 + '</td>' + \ '<td>' + r12c8 + '</td>' + \ '<td>' + r12c9 + '</td>' + \ '<td>' + r12c10 + '</td>' + \ '<td>' + r12c11 + '</td>' + \ '<td>' + r12c12 + '</td>' + \ '<td>' + r12c13 + '</td>' + \ '<td>' + r12c14 + '</td>' + \ '<td>' + r12c15 + '</td>' + \ '<td>' + r12c16 + '</td>' + \ '<td>' + r12c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Interest budget income</td>' + \ '<td>' + r13c1 + '</td>' + \ '<td>' + r13c2 + '</td>' + \ '<td>' + r13c3 + '</td>' + \ '<td>' + r13c4 + '</td>' + \ '<td>' + r13c5 + '</td>' + \ '<td>' + r13c6 + '</td>' + \ '<td>' + r13c7 + '</td>' + \ '<td>' + r13c8 + '</td>' + \ '<td>' + r13c9 + '</td>' + \ '<td>' + r13c10 + '</td>' + \ '<td>' + r13c11 + '</td>' + \ '<td>' + r13c12 + '</td>' + \ '<td>' + r13c13 + '</td>' + \ '<td>' + r13c14 + '</td>' + \ '<td>' + r13c15 + '</td>' + \ '<td>' + r13c16 + '</td>' + \ '<td>' + r13c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Interest actual income</td>' + \ '<td>' + r14c1 + '</td>' + \ '<td>' + r14c2 + '</td>' + \ '<td>' + r14c3 + '</td>' + \ '<td>' + r14c4 + '</td>' + \ '<td>' + r14c5 + '</td>' + \ '<td>' + r14c6 + '</td>' + \ '<td>' + r14c7 + '</td>' + \ '<td>' + r14c8 + '</td>' + \ '<td>' + r14c9 + '</td>' + \ '<td>' + r14c10 + '</td>' + \ '<td>' + r14c11 + '</td>' + \ '<td>' + r14c12 + '</td>' + \ '<td>' + r14c13 + '</td>' + \ '<td>' + r14c14 + '</td>' + \ '<td>' + r14c15 + '</td>' + \ '<td>' + r14c16 + '</td>' + \ '<td>' + r14c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Interest variance income</td>' + \ '<td>' + r15c1 + '</td>' + \ '<td>' + r15c2 + '</td>' + \ '<td>' + r15c3 + '</td>' + \ '<td>' + r15c4 + '</td>' + \ '<td>' + r15c5 + '</td>' + \ '<td>' + r15c6 + '</td>' + \ '<td>' + r15c7 + '</td>' + \ '<td>' + r15c8 + '</td>' + \ '<td>' + r15c9 + '</td>' + \ '<td>' + r15c10 + '</td>' + \ '<td>' + r15c11 + '</td>' + \ '<td>' + r15c12 + '</td>' + \ '<td>' + r15c13 + '</td>' + \ '<td>' + r15c14 + '</td>' + \ '<td>' + r15c15 + '</td>' + \ '<td>' + r15c16 + '</td>' + \ '<td>' + r15c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Rent budget income</td>' + \ '<td>' + r16c1 + '</td>' + \ '<td>' + r16c2 + '</td>' + \ '<td>' + r16c3 + '</td>' + \ '<td>' + r16c4 + '</td>' + \ '<td>' + r16c5 + '</td>' + \ '<td>' + r16c6 + '</td>' + \ '<td>' + r16c7 + '</td>' + \ '<td>' + r16c8 + '</td>' + \ '<td>' + r16c9 + '</td>' + \ '<td>' + r16c10 + '</td>' + \ '<td>' + r16c11 + '</td>' + \ '<td>' + r16c12 + '</td>' + \ '<td>' + r16c13 + '</td>' + \ '<td>' + r16c14 + '</td>' + \ '<td>' + r16c15 + '</td>' + \ '<td>' + r16c16 + '</td>' + \ '<td>' + r16c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Rent actual income</td>' + \ '<td>' + r17c1 + '</td>' + \ '<td>' + r17c2 + '</td>' + \ '<td>' + r17c3 + '</td>' + \ '<td>' + r17c4 + '</td>' + \ '<td>' + r17c5 + '</td>' + \ '<td>' + r17c6 + '</td>' + \ '<td>' + r17c7 + '</td>' + \ '<td>' + r17c8 + '</td>' + \ '<td>' + r17c9 + '</td>' + \ '<td>' + r17c10 + '</td>' + \ '<td>' + r17c11 + '</td>' + \ '<td>' + r17c12 + '</td>' + \ '<td>' + r17c13 + '</td>' + \ '<td>' + r17c14 + '</td>' + \ '<td>' + r17c15 + '</td>' + \ '<td>' + r17c16 + '</td>' + \ '<td>' + r17c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Rent variance income</td>' + \ '<td>' + r18c1 + '</td>' + \ '<td>' + r18c2 + '</td>' + \ '<td>' + r18c3 + '</td>' + \ '<td>' + r18c4 + '</td>' + \ '<td>' + r18c5 + '</td>' + \ '<td>' + r18c6 + '</td>' + \ '<td>' + r18c7 + '</td>' + \ '<td>' + r18c8 + '</td>' + \ '<td>' + r18c9 + '</td>' + \ '<td>' + r18c10 + '</td>' + \ '<td>' + r18c11 + '</td>' + \ '<td>' + r18c12 + '</td>' + \ '<td>' + r18c13 + '</td>' + \ '<td>' + r18c14 + '</td>' + \ '<td>' + r18c15 + '</td>' + \ '<td>' + r18c16 + '</td>' + \ '<td>' + r18c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Other budget income</td>' + \ '<td>' + r19c1 + '</td>' + \ '<td>' + r19c2 + '</td>' + \ '<td>' + r19c3 + '</td>' + \ '<td>' + r19c4 + '</td>' + \ '<td>' + r19c5 + '</td>' + \ '<td>' + r19c6 + '</td>' + \ '<td>' + r19c7 + '</td>' + \ '<td>' + r19c8 + '</td>' + \ '<td>' + r19c9 + '</td>' + \ '<td>' + r19c10 + '</td>' + \ '<td>' + r19c11 + '</td>' + \ '<td>' + r19c12 + '</td>' + \ '<td>' + r19c13 + '</td>' + \ '<td>' + r19c14 + '</td>' + \ '<td>' + r19c15 + '</td>' + \ '<td>' + r19c16 + '</td>' + \ '<td>' + r19c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Other actual income</td>' + \ '<td>' + r20c1 + '</td>' + \ '<td>' + r20c2 + '</td>' + \ '<td>' + r20c3 + '</td>' + \ '<td>' + r20c4 + '</td>' + \ '<td>' + r20c5 + '</td>' + \ '<td>' + r20c6 + '</td>' + \ '<td>' + r20c7 + '</td>' + \ '<td>' + r20c8 + '</td>' + \ '<td>' + r20c9 + '</td>' + \ '<td>' + r20c10 + '</td>' + \ '<td>' + r20c11 + '</td>' + \ '<td>' + r20c12 + '</td>' + \ '<td>' + r20c13 + '</td>' + \ '<td>' + r20c14 + '</td>' + \ '<td>' + r20c15 + '</td>' + \ '<td>' + r20c16 + '</td>' + \ '<td>' + r20c17 + '</td>' + \ '</tr>' + \ '<tr>' + \ '<td>Other variance income</td>' + \ '<td>' + r21c1 + '</td>' + \ '<td>' + r21c2 + '</td>' + \ '<td>' + r21c3 + '</td>' + \ '<td>' + r21c4 + '</td>' + \ '<td>' + r21c5 + '</td>' + \ '<td>' + r21c6 + '</td>' + \ '<td>' + r21c7 + '</td>' + \ '<td>' + r21c8 + '</td>' + \ '<td>' + r21c9 + '</td>' + \ '<td>' + r21c10 + '</td>' + \ '<td>' + r21c11 + '</td>' + \ '<td>' + r21c12 + '</td>' + \ '<td>' + r21c13 + '</td>' + \ '<td>' +
''' Created on Jul 07, 2015 @author: alexandru-m-g ''' import datetime import json import logging from flask import request from sqlalchemy import or_ import ckan.lib.dictization.model_save as model_save import ckan.lib.munge as munge import ckan.lib.plugins as lib_plugins import ckan.lib.uploader as uploader import ckan.logic.action.update as core_update import ckan.plugins as plugins import ckan.plugins.toolkit as tk import ckanext.hdx_package.helpers.geopreview as geopreview import ckanext.hdx_package.helpers.helpers as helpers from ckan.common import _ from ckanext.hdx_org_group.helpers.org_batch import get_batch_or_generate from ckanext.hdx_package.helpers.analytics import QACompletedAnalyticsSender from ckanext.hdx_package.helpers.constants import FILE_WAS_UPLOADED, \ BATCH_MODE, BATCH_MODE_DONT_GROUP, BATCH_MODE_KEEP_OLD from ckanext.hdx_package.helpers.file_removal import file_remove, find_filename_in_url _check_access = tk.check_access _get_action = tk.get_action _get_or_bust = tk.get_or_bust get_or_bust = tk.get_or_bust NotFound = tk.ObjectNotFound ValidationError = tk.ValidationError log = logging.getLogger(__name__) SKIP_VALIDATION = 'skip_validation' @geopreview.geopreview_4_resources def resource_update(context, data_dict): ''' This runs the 'resource_update' action from core ckan's update.py It allows us to do some minor changes and wrap it. ''' id = _get_or_bust(data_dict, "id") process_batch_mode(context, data_dict) # flag_if_file_uploaded(context, data_dict) process_skip_validation(context, data_dict) # make the update faster (less computation in the custom package_show) context['no_compute_extra_hdx_show_properties'] = True # prev_resource_dict = _fetch_prev_resource_info(context['model'], id) # new_file_uploaded = bool(data_dict.get('upload')) if data_dict.get('resource_type', '') != 'file.upload': #If this isn't an upload, it is a link so make sure we update #the url_type otherwise solr will screw everything up data_dict['url_type'] = 'api' # we need to overwrite size field (not just setting it to None or pop) otherwise # ckan.lib.dictization.model_save.resource_dict_save() keeps the old value data_dict['size'] = 0 else: try: if len(request.files) > 0: data_dict['size'] = request.content_length data_dict['mimetype'] = request.files['upload'].mimetype except RuntimeError as re: log.debug('This usually happens for tests when there is no HTTP request: ' + unicode(re)) if data_dict.get('datastore_active', 'false') in ('false', 'False'): data_dict['datastore_active'] = False else: if data_dict.get('datastore_active', 'true') in ('true', 'True'): data_dict['datastore_active'] = True result_dict = core_update.resource_update(context, data_dict) # if new_file_uploaded: # _delete_old_file_if_necessary(prev_resource_dict, result_dict) return result_dict def _delete_old_file_if_necessary(prev_resource_dict, resource_dict): prev_resource_is_upload = prev_resource_dict.get('url_type') == 'upload' new_resource_is_api = resource_dict.get('url_type') == 'api' filename = find_filename_in_url(resource_dict.get('url', '')) munged_current_filename = munge.munge_filename(filename) munged_prev_filename = munge.munge_filename(prev_resource_dict['url']) new_file_has_same_name = munged_current_filename == munged_prev_filename if prev_resource_is_upload and (new_resource_is_api or not new_file_has_same_name): log.info('Deleting resource {}/{}'.format(prev_resource_dict['id'], prev_resource_dict['name'])) file_remove(prev_resource_dict['id'], prev_resource_dict['url'], prev_resource_dict['url_type']) else: log.info('Not deleting resource: prev_resource_is_upload {} ' '/ new_file_has_same_name {} / new_resource_is_api {}' .format(prev_resource_is_upload, new_file_has_same_name, new_resource_is_api)) # def _fetch_prev_resource_info(model, resource_id): # id_to_resource_map = _fetch_prev_resources_info(model, [resource_id]) # return id_to_resource_map.get(resource_id) def _fetch_prev_resources_info(model, resource_ids): q = model.Session.query(model.Resource).filter( or_( model.Resource.id.in_(resource_ids), model.Resource.name.in_(resource_ids) ) ) resources = q.all() id_to_resource_map = {} for res in resources: id_to_resource_map[res.id] = { 'id': res.id, 'name': res.name, 'url_type': res.url_type, 'url': res.url, } return id_to_resource_map @geopreview.geopreview_4_packages def package_update(context, data_dict): '''Update a dataset (package). You must be authorized to edit the dataset and the groups that it belongs to. It is recommended to call :py:func:`ckan.logic.action.get.package_show`, make the desired changes to the result, and then call ``package_update()`` with it. Plugins may change the parameters of this function depending on the value of the dataset's ``type`` attribute, see the :py:class:`~ckan.plugins.interfaces.IDatasetForm` plugin interface. For further parameters see :py:func:`~ckan.logic.action.create.package_create`. :param id: the name or id of the dataset to update :type id: string :returns: the updated dataset (if ``'return_package_dict'`` is ``True`` in the context, which is the default. Otherwise returns just the dataset id) :rtype: dictionary ''' process_batch_mode(context, data_dict) process_skip_validation(context, data_dict) model = context['model'] session = context['session'] name_or_id = data_dict.get('id') or data_dict.get('name') if name_or_id is None: raise ValidationError({'id': _('Missing value')}) pkg = model.Package.get(name_or_id) if pkg is None: raise NotFound(_('Package was not found.')) context["package"] = pkg prev_last_modified = pkg.metadata_modified # immutable fields data_dict["id"] = pkg.id data_dict['type'] = pkg.type if 'groups' in data_dict: data_dict['solr_additions'] = helpers.build_additions(data_dict['groups']) if 'dataset_confirm_freshness' in data_dict and data_dict['dataset_confirm_freshness'] == 'on': data_dict['review_date'] = datetime.datetime.utcnow() _check_access('package_update', context, data_dict) user = context['user'] # get the schema package_plugin = lib_plugins.lookup_package_plugin(pkg.type) if 'schema' in context: schema = context['schema'] else: schema = package_plugin.update_package_schema() if 'api_version' not in context: # check_data_dict() is deprecated. If the package_plugin has a # check_data_dict() we'll call it, if it doesn't have the method we'll # do nothing. check_data_dict = getattr(package_plugin, 'check_data_dict', None) if check_data_dict: try: package_plugin.check_data_dict(data_dict, schema) except TypeError: # Old plugins do not support passing the schema so we need # to ensure they still work. package_plugin.check_data_dict(data_dict) # Inject the existing package_creator as it should not be modifiable if hasattr(pkg, 'extras'): data_dict['package_creator'] = pkg.extras.get('package_creator', data_dict.get('package_creator')) # Get previous version of QA COMPLETED prev_qa_completed = pkg.extras.get('qa_completed') == 'true' # Inject a code representing the batch within which this dataset was modified if pkg.type == 'dataset': if context.get(BATCH_MODE) == BATCH_MODE_KEEP_OLD: try: batch_extras = pkg._extras.get('batch') if batch_extras and batch_extras.state == 'active': data_dict['batch'] = batch_extras.value except Exception, e: log.info(str(e)) elif context.get(BATCH_MODE) != BATCH_MODE_DONT_GROUP: data_dict['batch'] = get_batch_or_generate(data_dict.get('owner_org')) resource_upload_ids = [] resource_uploads = [] for resource in data_dict.get('resources', []): # I believe that unless a resource has either an upload field or is marked to be deleted # we don't need to create an uploader object which is expensive if 'clear_upload' in resource or resource.get('upload'): #this needs to be run while the upload field still exists flag_if_file_uploaded(context, resource) # file uploads/clearing upload = uploader.get_resource_uploader(resource) resource_upload_ids.append(resource.get('id') or resource.get('name')) if 'mimetype' not in resource: if hasattr(upload, 'mimetype'): resource['mimetype'] = upload.mimetype resource['size'] = upload.filesize else: upload = None resource_uploads.append(upload) ids_to_prev_resource_dict = _fetch_prev_resources_info(model, resource_upload_ids) data, errors = lib_plugins.plugin_validate( package_plugin, context, data_dict, schema, 'package_update') log.debug('package_update validate_errs=%r user=%s package=%s data=%r', errors, context.get('user'), context.get('package').name if context.get('package') else '', data) if errors: model.Session.rollback() raise ValidationError(errors) #avoid revisioning by updating directly model.Session.query(model.Package).filter_by(id=pkg.id).update( {"metadata_modified": datetime.datetime.utcnow()}) model.Session.refresh(pkg) if 'tags' in data: data['tags'] = helpers.get_tag_vocabulary(data['tags']) pkg = modified_save(context, data) # pkg = model_save.package_dict_save(data, context) context_org_update = context.copy() context_org_update['ignore_auth'] = True context_org_update['defer_commit'] = True _get_action('package_owner_org_update')(context_org_update, {'id': pkg.id, 'organization_id': pkg.owner_org}) # Needed to let extensions know the new resources ids model.Session.flush() for index, (resource, upload) in enumerate( zip(data.get('resources', []), resource_uploads)): resource['id'] = pkg.resources[index].id if upload: log.info('There\'s a resource in package_update() which is marked for: {}' .format('clear' if upload.clear else 'upload')) upload.upload(resource['id'], uploader.get_max_resource_size()) for item in plugins.PluginImplementations(plugins.IPackageController): item.edit(pkg) item.after_update(context, data) # Create activity if not pkg.private and pkg.type == 'dataset': user_obj = model.User.by_name(user) if user_obj: user_id = user_obj.id else: user_id = 'not logged in' activity = pkg.activity_stream_item('changed', user_id) session.add(activity) if not context.get('defer_commit'): model.repo.commit() log.debug('Updated object %s' % pkg.name) return_id_only = context.get('return_id_only', False) # Make sure that a user provided schema is not used on package_show context.pop('schema', None) # we could update the dataset so we should still be able to read it. context['ignore_auth'] = True new_data_dict = _get_action('package_show')(context, {'id': data_dict['id']}) # HDX - delete previous files if needed for resource_dict in new_data_dict.get('resources'): prev_resource_dict = ids_to_prev_resource_dict.get(resource_dict['id']) if prev_resource_dict: _delete_old_file_if_necessary(prev_resource_dict, resource_dict) new_qa_completed = new_data_dict.get('qa_completed') if new_qa_completed != prev_qa_completed and new_data_dict.get('type') == 'dataset': QACompletedAnalyticsSender(new_data_dict, prev_last_modified, mark_as_set=new_qa_completed).send_to_queue() log.debug('new QA COMPLETED value: {}'.format(new_qa_completed)) return data_dict['id'] if return_id_only else new_data_dict def package_resource_reorder(context, data_dict): ''' This runs the 'package_resource_reorder' action from core ckan's update.py It allows us to do some minor changes and wrap it. ''' process_batch_mode(context, data_dict) result_dict = core_update.package_resource_reorder(context, data_dict) return result_dict def process_batch_mode(context, data_dict): if BATCH_MODE in data_dict: context[BATCH_MODE] = data_dict[BATCH_MODE] del data_dict[BATCH_MODE] def flag_if_file_uploaded(context, resource_dict): if resource_dict.get('upload'): if FILE_WAS_UPLOADED not in context: context[FILE_WAS_UPLOADED] = set() context[FILE_WAS_UPLOADED].add(resource_dict.get('id', 'NEW')) def process_skip_validation(context, data_dict): if SKIP_VALIDATION in data_dict: context[SKIP_VALIDATION] = data_dict[SKIP_VALIDATION] del data_dict[SKIP_VALIDATION] def modified_save(context, data): """ Wrapper around lib.dictization.model_save.package_dict_save """ groups_key = 'groups' if groups_key in data: temp_groups = data[groups_key] data[groups_key] = None pkg = model_save.package_dict_save(data, context) data[groups_key] = temp_groups else: pkg = model_save.package_dict_save(data, context) package_membership_list_save(data.get("groups"), pkg, context) return pkg def package_membership_list_save(group_dicts, package, context): """ Overrides lib.dictization.model_save.package_membership_list_save """ allow_partial_update = context.get("allow_partial_update", False) if group_dicts is None and allow_partial_update: return capacity = 'public' model = context["model"] session = context["session"] pending = context.get('pending') user = context.get('user') members = session.query(model.Member) \ .filter(model.Member.table_id == package.id) \ .filter(model.Member.capacity != 'organization') group_member = dict((member.group, member) for member in members) groups = set() for group_dict in group_dicts or []: id = group_dict.get("id") name = group_dict.get("name") capacity = group_dict.get("capacity", "public") if capacity == 'organization': continue if id: group = session.query(model.Group).get(id) else: group = session.query(model.Group).filter_by(name=name).first() if group: groups.add(group) # need to flush so we can get out the package id model.Session.flush() # Remove any groups we are no longer in for group in set(group_member.keys()) - groups: member_obj = group_member[group] if member_obj and member_obj.state == 'deleted': continue member_obj.capacity = capacity member_obj.state = 'deleted' session.add(member_obj) # Add any new groups for group in groups: member_obj = group_member.get(group) if member_obj and member_obj.state == 'active': continue member_obj = group_member.get(group) if member_obj: member_obj.capacity = capacity